WorldWideScience

Sample records for burkholderia thailandensis harbors

  1. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids

    Directory of Open Access Journals (Sweden)

    Woods Donald E

    2009-12-01

    Full Text Available Abstract Background Rhamnolipids are surface active molecules composed of rhamnose and β-hydroxydecanoic acid. These biosurfactants are produced mainly by Pseudomonas aeruginosa and have been thoroughly investigated since their early discovery. Recently, they have attracted renewed attention because of their involvement in various multicellular behaviors. Despite this high interest, only very few studies have focused on the production of rhamnolipids by Burkholderia species. Results Orthologs of rhlA, rhlB and rhlC, which are responsible for the biosynthesis of rhamnolipids in P. aeruginosa, have been found in the non-infectious Burkholderia thailandensis, as well as in the genetically similar important pathogen B. pseudomallei. In contrast to P. aeruginosa, both Burkholderia species contain these three genes necessary for rhamnolipid production within a single gene cluster. Furthermore, two identical, paralogous copies of this gene cluster are found on the second chromosome of these bacteria. Both Burkholderia spp. produce rhamnolipids containing 3-hydroxy fatty acid moieties with longer side chains than those described for P. aeruginosa. Additionally, the rhamnolipids produced by B. thailandensis contain a much larger proportion of dirhamnolipids versus monorhamnolipids when compared to P. aeruginosa. The rhamnolipids produced by B. thailandensis reduce the surface tension of water to 42 mN/m while displaying a critical micelle concentration value of 225 mg/L. Separate mutations in both rhlA alleles, which are responsible for the synthesis of the rhamnolipid precursor 3-(3-hydroxyalkanoyloxyalkanoic acid, prove that both copies of the rhl gene cluster are functional, but one contributes more to the total production than the other. Finally, a double ΔrhlA mutant that is completely devoid of rhamnolipid production is incapable of swarming motility, showing that both gene clusters contribute to this phenotype. Conclusions Collectively, these

  2. Burkholderia thailandensis: Growth and Laboratory Maintenance.

    Science.gov (United States)

    Garcia, Erin C; Cotter, Peggy A

    2016-08-12

    Burkholderia thailandensis is a nonpathogenic Gram-negative bacterium found in tropical soils. Closely related to several human pathogens, its ease of genetic manipulation, rapid growth in the laboratory, and low virulence make B. thailandensis a commonly used model organism. This unit describes the fundamental protocols for in vitro growth and maintenance of B. thailandensis in the laboratory. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  3. Competition between Burkholderia pseudomallei and B. thailandensis.

    Science.gov (United States)

    Ngamdee, Wikanda; Tandhavanant, Sarunporn; Wikraiphat, Chanthiwa; Reamtong, Onrapak; Wuthiekanun, Vanaporn; Salje, Jeanne; Low, David A; Peacock, Sharon J; Chantratita, Narisara

    2015-03-03

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, an often fatal disease in tropical countries. Burkholderia thailandensis is a non-virulent but closely related species. Both species are soil saprophytes but are almost never isolated together. We identified two mechanisms by which B. pseudomallei affects the growth of B. thailandensis. First, we found that six different isolates of B. pseudomallei inhibited the growth of B. thailandensis on LB agar plates. Second, our results indicated that 55% of isolated strains of B. pseudomallei produced a secreted compound that inhibited the motility but not the viability of B. thailandensis. Analysis showed that the active compound was a pH-sensitive and heat-labile compound, likely a protein, which may affect flagella processing or facilitate their degradation. Analysis of bacterial sequence types (STs) demonstrated an association between this and motility inhibition. The active compound was produced from B. pseudomallei during the stationary growth phase. Taken together, our results indicate that B. pseudomallei inhibits both the growth and motility of its close relative B. thailandensis. The latter phenomenon appears to occur via a previously unreported mechanism involving flagellar processing or degradation.

  4. Skin infection caused by Burkholderia thailandensis: Case report with review

    Directory of Open Access Journals (Sweden)

    AbdelRahman Mohammad Zueter, Mahmoud Abumarzouq, Chan Yean Yean, Azian Harun

    2016-06-01

    Full Text Available Burkholderia thailandensis is genetically closed to Burkholderia pseudomallei, which causes melioidosis. The bacterium inhabits the environments of tropical regions including those in Southeast Asia and the Northern part of Australia. B. thailandensis is considered avirulent and extremely uncommon to cause disease. We report the first case of foot abscess with skin cellulitis and ankle swelling caused by B. thailandensis in Malaysia. J Microbiol Infect Dis 2016;6(2: 92-95

  5. Development of a multiplex PCR assay for rapid identification of Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex.

    Science.gov (United States)

    Koh, Seng Fook; Tay, Sun Tee; Sermswan, Rasana; Wongratanacheewin, Surasakdi; Chua, Kek Heng; Puthucheary, Savithri D

    2012-09-01

    We have developed a multiplex PCR assay for rapid identification and differentiation of cultures for Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. The assay is valuable for use in clinical and veterinary laboratories, and in a deployable laboratory during outbreaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei and Burkholderia thailandensis by multiplex PCR.

    Science.gov (United States)

    Lee, May-Ann; Wang, Dongling; Yap, Eu Hian

    2005-03-01

    Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis may be differentiated from closely related species of Burkholderia mallei that causes glanders and non-pathogenic species of Burkholderia thailandensis by multiplex PCR. The multiplex PCR consists of primers that flank a 10-bp repetitive element in B. pseudomallei and B. mallei amplifying PCR fragment of varying sizes between 400-700 bp, a unique sequence in B. thailandensis amplifying a PCR fragment of 308 bp and the metalloprotease gene amplifying a PCR fragment of 245 bp in B. pseudomallei and B. thailandensis. The multiplex PCR not only can differentiate the three Burkholderia species but can also be used for epidemiological typing of B. pseudomallei and B. mallei strains.

  7. Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production.

    Science.gov (United States)

    Tseng, Boo Shan; Majerczyk, Charlotte D; Passos da Silva, Daniel; Chandler, Josephine R; Greenberg, E Peter; Parsek, Matthew R

    2016-10-01

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for

  8. Volatile-sulfur-compound profile distinguishes Burkholderia pseudomallei from Burkholderia thailandensis.

    Science.gov (United States)

    Inglis, Timothy J J; Hahne, Dorothee R; Merritt, Adam J; Clarke, Michael W

    2015-03-01

    Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced by Burkholderia pseudomallei is responsible for its unusual truffle-like smell and distinguishes the species from Burkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grown B. pseudomallei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Antibodies from Patients with Melioidosis Recognize Burkholderia mallei but Not Burkholderia thailandensis Antigens in the Indirect Hemagglutination Assay

    OpenAIRE

    Tiyawisutsri, Rachaneeporn; Peacock, Sharon J.; Langa, Sayan; Limmathurotsakul, Direk; Allen C Cheng; Chierakul, Wirongrong; Chaowagul, Wipada; Day, Nicholas P. J.; Wuthiekanun, Vanaporn

    2005-01-01

    The indirect hemagglutination assay routinely used to detect antibodies to Burkholderia pseudomallei was modified to detect cross-reactivity of antibodies to B. pseudomallei, B. mallei, and B. thailandensis antigens. We demonstrate a lack of cross-reactivity between B. pseudomallei and B. thailandensis but marked cross-reactivity between B. pseudomallei and B. mallei.

  10. Burkholderia thailandensis oacA mutants facilitate the expression of Burkholderia mallei-like O polysaccharides.

    Science.gov (United States)

    Brett, Paul J; Burtnick, Mary N; Heiss, Christian; Azadi, Parastoo; DeShazer, David; Woods, Donald E; Gherardini, Frank C

    2011-02-01

    Previous studies have shown that the O polysaccharides (OPS) expressed by Burkholderia mallei are similar to those produced by Burkholderia thailandensis except that they lack the 4-O-acetyl modifications on their 6-deoxy-α-l-talopyranosyl residues. In the present study, we describe the identification and characterization of an open reading frame, designated oacA, expressed by B. thailandensis that accounts for this phenomenon. Utilizing the B. thailandensis and B. mallei lipopolysaccharide (LPS)-specific monoclonal antibodies Pp-PS-W and 3D11, Western immunoblot analyses demonstrated that the LPS antigens expressed by the oacA mutant, B. thailandensis ZT0715, were antigenically similar to those produced by B. mallei ATCC 23344. In addition, immunoblot analyses demonstrated that when B. mallei ATCC 23344 was complemented in trans with oacA, it synthesized B. thailandensis-like LPS antigens. To elucidate the structure of the OPS moieties expressed by ZT0715, purified samples were analyzed via nuclear magnetic resonance spectroscopy. As predicted, these studies demonstrated that the loss of OacA activity influenced the O acetylation phenotype of the OPS moieties. Unexpectedly, however, the results indicated that the O methylation status of the OPS antigens was also affected by the loss of OacA activity. Nonetheless, it was revealed that the LPS moieties expressed by the oacA mutant reacted strongly with the B. mallei LPS-specific protective monoclonal antibody 9C1-2. Based on these findings, it appears that OacA is required for the 4-O acetylation and 2-O methylation of B. thailandensis OPS antigens and that ZT0715 may provide a safe and cost-effective source of B. mallei-like OPS to facilitate the synthesis of glanders subunit vaccine candidates.

  11. Burkholderia thailandensis oacA Mutants Facilitate the Expression of Burkholderia mallei-Like O Polysaccharides▿

    Science.gov (United States)

    Brett, Paul J.; Burtnick, Mary N.; Heiss, Christian; Azadi, Parastoo; DeShazer, David; Woods, Donald E.; Gherardini, Frank C.

    2011-01-01

    Previous studies have shown that the O polysaccharides (OPS) expressed by Burkholderia mallei are similar to those produced by Burkholderia thailandensis except that they lack the 4-O-acetyl modifications on their 6-deoxy-α-l-talopyranosyl residues. In the present study, we describe the identification and characterization of an open reading frame, designated oacA, expressed by B. thailandensis that accounts for this phenomenon. Utilizing the B. thailandensis and B. mallei lipopolysaccharide (LPS)-specific monoclonal antibodies Pp-PS-W and 3D11, Western immunoblot analyses demonstrated that the LPS antigens expressed by the oacA mutant, B. thailandensis ZT0715, were antigenically similar to those produced by B. mallei ATCC 23344. In addition, immunoblot analyses demonstrated that when B. mallei ATCC 23344 was complemented in trans with oacA, it synthesized B. thailandensis-like LPS antigens. To elucidate the structure of the OPS moieties expressed by ZT0715, purified samples were analyzed via nuclear magnetic resonance spectroscopy. As predicted, these studies demonstrated that the loss of OacA activity influenced the O acetylation phenotype of the OPS moieties. Unexpectedly, however, the results indicated that the O methylation status of the OPS antigens was also affected by the loss of OacA activity. Nonetheless, it was revealed that the LPS moieties expressed by the oacA mutant reacted strongly with the B. mallei LPS-specific protective monoclonal antibody 9C1-2. Based on these findings, it appears that OacA is required for the 4-O acetylation and 2-O methylation of B. thailandensis OPS antigens and that ZT0715 may provide a safe and cost-effective source of B. mallei-like OPS to facilitate the synthesis of glanders subunit vaccine candidates. PMID:21115721

  12. Membrane-active mechanism of LFchimera against Burkholderia pseudomallei and Burkholderia thailandensis.

    Science.gov (United States)

    Kanthawong, Sakawrat; Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; van Marle, Jan; de Soet, Johannes J; Veerman, Enno C I; Wongratanacheewin, Surasakdi; Taweechaisupapong, Suwimol

    2014-10-01

    LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265-284 and lactoferricin17-30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study we analyzed the killing activity of LFchimera on the category B pathogen Burkholderia pseudomallei in comparison to the lesser virulent Burkholderia thailandensis often used as a model for the highly virulent B. pseudomallei. Killing kinetics showed that B. thailandensis E264 was more susceptible for LFchimera than B. pseudomallei 1026b. Interestingly the bactericidal activity of LFchimera appeared highly pH dependent; B. thailandensis killing was completely abolished at and below pH 6.4. FITC-labeled LFchimera caused a rapid accumulation within 15 min in the cytoplasm of both bacterial species. Moreover, freeze-fracture electron microscopy demonstrated extreme effects on the membrane morphology of both bacterial species within 1 h of incubation, accompanied by altered membrane permeability monitored as leakage of nucleotides. These data indicate that the mechanism of action of LFchimera is similar for both species and encompasses disruption of the plasma membrane and subsequently leakage of intracellular nucleotides leading to cell dead.

  13. DNA binding site analysis of Burkholderia thailandensis response regulators.

    Science.gov (United States)

    Nowak-Lovato, Kristy L; Hickmott, Alexana J; Maity, Tuhin S; Bulyk, Martha L; Dunbar, John; Hong-Geller, Elizabeth

    2012-07-01

    Bacterial response regulators (RR) that function as transcription factors in two component signaling pathways are crucial for ensuring tight regulation and coordinated expression of the genome. Currently, consensus DNA binding sites in the promoter for very few bacterial RRs have been identified. A systematic method to characterize these DNA binding sites for RRs would enable prediction of specific gene expression patterns in response to extracellular stimuli. To identify RR DNA binding sites, we functionally activated RRs using beryllofluoride and applied them to a protein-binding microarray (PBM) to discover DNA binding motifs for RRs expressed in Burkholderia, a Gram-negative bacterial genus. We identified DNA binding motifs for conserved RRs in Burkholderia thailandensis, including KdpE, RisA, and NarL, as well as for a previously uncharacterized RR at locus BTH_II2335 and its ortholog in the human pathogen Burkholderia pseudomallei at locus BPSS2315. We further demonstrate RR binding of predicted genomic targets for the two orthologs using gel shift assays and reveal a pattern of RR regulation of expression of self and other two component systems. Our studies illustrate the use of PBMs to identify DNA binding specificities for bacterial RRs and enable prediction of gene regulatory networks in response to two component signaling. Published by Elsevier B.V.

  14. Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons.

    Science.gov (United States)

    Majerczyk, Charlotte D; Brittnacher, Mitchell J; Jacobs, Michael A; Armour, Christopher D; Radey, Matthew C; Bunt, Richard; Hayden, Hillary S; Bydalek, Ryland; Greenberg, E Peter

    2014-11-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    Directory of Open Access Journals (Sweden)

    Sofiya N. Micheva-Viteva

    2017-06-01

    Full Text Available Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective

  16. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis

    Directory of Open Access Journals (Sweden)

    Fisher Nathan A

    2012-06-01

    Full Text Available Abstract Background Burkholderia pseudomallei and Burkholderia mallei are gram-negative pathogens responsible for the diseases melioidosis and glanders, respectively. Both species cause disease in humans and animals and have been designated as category B select agents by the Centers for Disease Control and Prevention (CDC. Burkholderia thailandensis is a closely related bacterium that is generally considered avirulent for humans. While it can cause disease in rodents, the B. thailandensis 50% lethal dose (LD50 is typically ≥ 104-fold higher than the B. pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species. Results Madagascar hissing cockroaches (MH cockroaches possess a number of qualities that make them desirable for use as a surrogate host, including ease of breeding, ease of handling, a competent innate immune system, and the ability to survive at 37°C. MH cockroaches were highly susceptible to infection with B. pseudomallei, B. mallei and B. thailandensis and the LD50 was 50 for Escherichia coli in MH cockroaches was >105 cfu. B. pseudomallei, B. mallei, and B. thailandensis cluster 1 type VI secretion system (T6SS-1 mutants were all attenuated in MH cockroaches, which is consistent with previous virulence studies conducted in rodents. B. pseudomallei mutants deficient in the other five T6SS gene clusters, T6SS-2 through T6SS-6, were virulent in both MH cockroaches and hamsters. Hemocytes obtained from MH cockroaches infected with B. pseudomallei harbored numerous intracellular bacteria, suggesting that this facultative intracellular pathogen can survive and replicate inside of MH cockroach phagocytic cells. The hemolymph extracted from these MH cockroaches also contained multinuclear giant cells (MNGCs with intracellular B. pseudomallei, which indicates that infected hemocytes can

  17. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis.

    Science.gov (United States)

    Fisher, Nathan A; Ribot, Wilson J; Applefeld, Willard; DeShazer, David

    2012-06-22

    Burkholderia pseudomallei and Burkholderia mallei are gram-negative pathogens responsible for the diseases melioidosis and glanders, respectively. Both species cause disease in humans and animals and have been designated as category B select agents by the Centers for Disease Control and Prevention (CDC). Burkholderia thailandensis is a closely related bacterium that is generally considered avirulent for humans. While it can cause disease in rodents, the B. thailandensis 50% lethal dose (LD50) is typically ≥ 104-fold higher than the B. pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species. Madagascar hissing cockroaches (MH cockroaches) possess a number of qualities that make them desirable for use as a surrogate host, including ease of breeding, ease of handling, a competent innate immune system, and the ability to survive at 37°C. MH cockroaches were highly susceptible to infection with B. pseudomallei, B. mallei and B. thailandensis and the LD50 was 105 cfu. B. pseudomallei, B. mallei, and B. thailandensis cluster 1 type VI secretion system (T6SS-1) mutants were all attenuated in MH cockroaches, which is consistent with previous virulence studies conducted in rodents. B. pseudomallei mutants deficient in the other five T6SS gene clusters, T6SS-2 through T6SS-6, were virulent in both MH cockroaches and hamsters. Hemocytes obtained from MH cockroaches infected with B. pseudomallei harbored numerous intracellular bacteria, suggesting that this facultative intracellular pathogen can survive and replicate inside of MH cockroach phagocytic cells. The hemolymph extracted from these MH cockroaches also contained multinuclear giant cells (MNGCs) with intracellular B. pseudomallei, which indicates that infected hemocytes can fuse while flowing through the insect's open circulatory system in vivo. The results

  18. Novel pan-genomic analysis approach in target selection for multiplex PCR identification and detection of Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia cepacia complex species: a proof-of-concept study.

    Science.gov (United States)

    Ho, Chi-Chun; Lau, Candy C Y; Martelli, Paolo; Chan, San-Yuen; Tse, Cindy W S; Wu, Alan K L; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2011-03-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and the Burkholderia cepacia complex differ greatly in pathogenicity and epidemiology. Yet, they are occasionally misidentified by biochemical profiling, and even 16S rRNA gene sequencing may not offer adequate discrimination between certain species groups. Using the 23 B. pseudomallei, four B. thailandensis, and 16 B. cepacia complex genome sequences available, we identified gene targets specific to each of them (a Tat domain protein, a 70-kDa protein, and a 12-kDa protein for B. pseudomallei, B. thailandensis, and the B. cepacia complex, respectively), with an in-house developed algorithm. Using these targets, we designed a robust multiplex PCR assay useful for their identification and detection from soil and simulated sputum samples. For all 43 B. pseudomallei, seven B. thailandensis, and 20 B. cepacia complex (B. multivorans, n = 6; B. cenocepacia, n = 3; B. cepacia, n = 4; B. arboris, n = 2; B. contaminans, B. anthina, and B. pyrrocinia, n = 1 each; other unnamed members, n = 2) isolates, the assay produced specific products of predicted size without false positives or negatives. Of the 60 soil samples screened, 19 (31.6%) and 29 (48.3%) were positive for B. pseudomallei and the B. cepacia complex, respectively, and in four (6.7%) soil samples, the organisms were codetected. DNA sequencing confirmed that all PCR products originated from their targeted loci. This novel pan-genomic analysis approach in target selection is simple, computationally efficient, and potentially applicable to any species that harbors species-specific genes. A multiplex PCR assay for rapid and accurate identification and detection of B. pseudomallei, B. thailandensis, and the B. cepacia complex was developed and verified.

  19. Novel Pan-Genomic Analysis Approach in Target Selection for Multiplex PCR Identification and Detection of Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia cepacia Complex Species: a Proof-of-Concept Study▿

    Science.gov (United States)

    Ho, Chi-Chun; Lau, Candy C. Y.; Martelli, Paolo; Chan, San-Yuen; Tse, Cindy W. S.; Wu, Alan K. L.; Yuen, Kwok-Yung; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2011-01-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and the Burkholderia cepacia complex differ greatly in pathogenicity and epidemiology. Yet, they are occasionally misidentified by biochemical profiling, and even 16S rRNA gene sequencing may not offer adequate discrimination between certain species groups. Using the 23 B. pseudomallei, four B. thailandensis, and 16 B. cepacia complex genome sequences available, we identified gene targets specific to each of them (a Tat domain protein, a 70-kDa protein, and a 12-kDa protein for B. pseudomallei, B. thailandensis, and the B. cepacia complex, respectively), with an in-house developed algorithm. Using these targets, we designed a robust multiplex PCR assay useful for their identification and detection from soil and simulated sputum samples. For all 43 B. pseudomallei, seven B. thailandensis, and 20 B. cepacia complex (B. multivorans, n = 6; B. cenocepacia, n = 3; B. cepacia, n = 4; B. arboris, n = 2; B. contaminans, B. anthina, and B. pyrrocinia, n = 1 each; other unnamed members, n = 2) isolates, the assay produced specific products of predicted size without false positives or negatives. Of the 60 soil samples screened, 19 (31.6%) and 29 (48.3%) were positive for B. pseudomallei and the B. cepacia complex, respectively, and in four (6.7%) soil samples, the organisms were codetected. DNA sequencing confirmed that all PCR products originated from their targeted loci. This novel pan-genomic analysis approach in target selection is simple, computationally efficient, and potentially applicable to any species that harbors species-specific genes. A multiplex PCR assay for rapid and accurate identification and detection of B. pseudomallei, B. thailandensis, and the B. cepacia complex was developed and verified. PMID:21177905

  20. Discrimination of Burkholderia mallei/pseudomallei from Burkholderia thailandensis by sequence comparison of a fragment of the ribosomal protein S21 (rpsU) gene

    OpenAIRE

    Frickmann, H.; Chantratita, N; Gauthier, Y. P.; Neubauer, H.; Hagen, R. M.

    2012-01-01

    Discrimination of Burkholderia (B.) pseudomallei and B. mallei from environmental B. thailandensis is challenging. We describe a discrimination method based on sequence comparison of the ribosomal protein S21 (rpsU) gene.

  1. Burkholderia humptydooensis sp. nov., A Burkholderia thailandensis-Like Species and the Fifth Member of the pseudomallei Complex

    Science.gov (United States)

    2016-06-02

    2012). The type strain, MSMB43T, has been previously referred to as B. 312 Page 14 of 23 thailandensis-like species in multiple studies (Currie...closely related species were used to reconstruct the phylogenetic relationships. 339 Genomes from this study in bold and assembly numbers in...The In Vitro Antibiotic Susceptibility of Malaysian 379 Isolates of Burkholderia pseudomallei. Int J Microbiol, 2013, 121845. 380 BARNES, J. L

  2. Novel pan-genomic analysis approach in target selection for multiplex PCR identification and detection of Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia cepacia complex species: A proof-of-concept study

    OpenAIRE

    Ho, Chi-Chun; Lau, Candy C. Y.; Martelli, Paolo; Chan, San-Yuen; Tse, Cindy W. S.; Wu, Alan K.L.; Yuen, Kwok-yung; Lau, Susanna K.P.; Patrick C Y Woo

    2011-01-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and the Burkholderia cepacia complex differ greatly in pathogenicity and epidemiology. Yet, they are occasionally misidentified by biochemical profiling, and even 16S rRNA gene sequencing may not offer adequate discrimination between certain species groups. Using the 23 B. pseudomallei, four B. thailandensis, and 16 B. cepacia complex genome sequences available, we identified gene targets specific to each of them (a Tat domain protein, a ...

  3. Actin-Binding Proteins from Burkholderia mallei and Burkholderia thailandensis Can Functionally Compensate for the Actin-Based Motility Defect of a Burkholderia pseudomallei bimA Mutant

    OpenAIRE

    Stevens, J M; Ulrich, R L; Taylor, L A; Wood, M W; DeShazer, D; Stevens, M P; Galyov, E E

    2005-01-01

    Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind ...

  4. Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis.

    Science.gov (United States)

    Andreae, Clio A; Titball, Richard W; Butler, Clive S

    2014-01-01

    Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Development of a multiplex PCR assay for the detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cepacia complex.

    Science.gov (United States)

    Zakharova, Irina; Teteryatnikova, Natalya; Toporkov, Andrey; Viktorov, Dmitry

    2017-10-01

    Two species of Burkholderia pseudomallei complex (Bpc), B. pseudomallei and B. mallei, can cause severe life-threatening infections. Rapidly discerning individual species within the group and separating them from other opportunistic pathogens of the Burkholderia cepacia complex (Bcc) is essential to establish a correct diagnosis and for epidemiological surveillance. In this study, a multiplex PCR assay based on the detection of an individual set of chromosomal beta-lactamase genes for single-step identification and differentiation of B. pseudomallei, B. mallei, B. thailandensis, and Bcc was developed. Two pairs of primers specific to a distinct class of B metallo-beta-lactamase genes and a pair of primers specific to the oxacillin-hydrolyzing class D beta-lactamase gene were demonstrated to successfully discriminate species within Bpc and from Bcc. The assay sensitivity was 9561 genomic equivalents (GE) for B. pseudomallei, 7827 GE for B. mallei, 8749 GE for B. thailandensis and 6023 GE for B. cepacia. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Involvement of the efflux pumps in chloramphenicol selected strains of Burkholderia thailandensis: proteomic and mechanistic evidence.

    Directory of Open Access Journals (Sweden)

    Fabrice V Biot

    Full Text Available Burkholderia is a bacterial genus comprising several pathogenic species, including two species highly pathogenic for humans, B. pseudomallei and B. mallei. B. thailandensis is a weakly pathogenic species closely related to both B. pseudomallei and B. mallei. It is used as a study model. These bacteria are able to exhibit multiple resistance mechanisms towards various families of antibiotics. By sequentially plating B. thailandensis wild type strains on chloramphenicol we obtained several resistant variants. This chloramphenicol-induced resistance was associated with resistance against structurally unrelated antibiotics including quinolones and tetracyclines. We functionally and proteomically demonstrate that this multidrug resistance phenotype, identified in chloramphenicol-resistant variants, is associated with the overexpression of two different efflux pumps. These efflux pumps are able to expel antibiotics from several families, including chloramphenicol, quinolones, tetracyclines, trimethoprim and some β-lactams, and present a partial susceptibility to efflux pump inhibitors. It is thus possible that Burkholderia species can develop such adaptive resistance mechanisms in response to antibiotic pressure resulting in emergence of multidrug resistant strains. Antibiotics known to easily induce overexpression of these efflux pumps should be used with discernment in the treatment of Burkholderia infections.

  7. Gene and protein expression in response to different growth temperatures and oxygen availability in Burkholderia thailandensis.

    Directory of Open Access Journals (Sweden)

    Clelia Peano

    Full Text Available Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically. We characterized the B. thailandensis clinical isolate CDC2721121 (BtCDC272 at the genome level and studied its response to environmental cues associated with human host colonization, namely, temperature and oxygen limitation. Effects of the different growth conditions on BtCDC272 were studied through whole genome transcription studies and analysis of proteins associated with the bacterial cell surface. We found that growth at 37°C, compared to 28°C, negatively affected cell motility and flagella production through a mechanism involving regulation of the flagellin-encoding fliC gene at the mRNA stability level. Growth in oxygen-limiting conditions, in contrast, stimulated various processes linked to virulence, such as lipopolysaccharide production and expression of genes encoding protein secretion systems. Consistent with these observations, BtCDC272 grown in oxygen limitation was more resistant to phagocytosis and strongly induced the production of inflammatory cytokines from murine macrophages. Our results suggest that, while temperature sensing is important for regulation of B. thailandensis cell motility, oxygen limitation has a deeper impact on its physiology and constitutes a crucial environmental signal for the production of virulence factors.

  8. DISCRIMINATION OF Burkholderia mallei/pseudomallei FROM Burkholderia thailandensis BY SEQUENCE COMPARISON OF A FRAGMENT OF THE RIBOSOMAL PROTEIN S21 (RPSU) GENE.

    Science.gov (United States)

    Frickmann, H; Chantratita, N; Gauthier, Y P; Neubauer, H; Hagen, R M

    2012-06-13

    Discrimination of Burkholderia (B.) pseudomallei and B. mallei from environmental B. thailandensis is challenging. We describe a discrimination method based on sequence comparison of the ribosomal protein S21 (rpsU) gene.The rpsU gene was sequenced in ten B. pseudomallei, six B. mallei, one B. thailandensis reference strains, six isolates of B. pseudomallei, and 37 of B. thailandensis. Further rpsU sequences of six B. pseudomallei, three B. mallei, and one B. thailandensis were identified via NCBI GenBank. Three to four variable base-positions were identified within a 120-base-pair fragment, allowing discrimination of the B. pseudomallei/mallei-cluster from B. thailandensis, whose sequences clustered identically. All B. mallei and three B. pseudomallei sequences were identical, while 17/22 B. pseudomallei strains differed in one nucleotide (78A>C). Sequences of the rpsU fragment of 'out-stander' reference strains of B. cepacia, B. gladioli, B. plantarii, and B. vietnamensis clustered differently.Sequence comparison of the described rpsU gene fragment can be used as a supplementary diagnostic procedure for the discrimination of B. mallei/pseudomallei from B. thailandensis as well as from other species of the genus Burkholderia, keeping in mind that it does not allow for a differentiation between B. mallei and B. pseudomallei.

  9. Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators.

    Science.gov (United States)

    Nock, Adam M; Wargo, Matthew J

    2016-09-15

    Burkholderia thailandensis is a soil-dwelling bacterium that shares many metabolic pathways with the ecologically similar, but evolutionarily distant, Pseudomonas aeruginosa Among the diverse nutrients it can utilize is choline, metabolizable to the osmoprotectant glycine betaine and subsequently catabolized as a source of carbon and nitrogen, similar to P. aeruginosa Orthologs of genes in the choline catabolic pathway in these two bacteria showed distinct differences in gene arrangement as well as an additional orthologous transcriptional regulator in B. thailandensis In this study, we showed that multiple glutamine amidotransferase 1 (GATase 1)-containing AraC family transcription regulators (GATRs) are involved in regulation of the B. thailandensis choline catabolic pathway (gbdR1, gbdR2, and souR). Using genetic analyses and sequencing the transcriptome in the presence and absence of choline, we identified the likely regulons of gbdR1 (BTH_II1869) and gbdR2 (BTH_II0968). We also identified a functional ortholog for P. aeruginosa souR, a GATR that regulates the metabolism of sarcosine to glycine. GbdR1 is absolutely required for expression of the choline catabolic locus, similar to P. aeruginosa GbdR, while GbdR2 is important to increase expression of the catabolic locus. Additionally, the B. thailandensis SouR ortholog (BTH_II0994) is required for catabolism of choline and its metabolites as carbon sources, whereas in P. aeruginosa, SouR function can by bypassed by GbdR. The strategy employed by B. thailandensis represents a distinct regulatory solution to control choline catabolism and thus provides both an evolutionary counterpoint and an experimental system to analyze the acquisition and regulation of this pathway during environmental growth and infection. Many proteobacteria that occupy similar environmental niches have horizontally acquired orthologous genes for metabolism of compounds useful in their shared environment. The arrangement and differential

  10. Effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 580-185 (Korea, Republic of); Choi, Kyoung-Hee [Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, Jeollabuk 570-749 (Korea, Republic of); Lee, Ju-Woon, E-mail: sjwlee@kaeri.re.k [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 580-185 (Korea, Republic of)

    2010-04-15

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D{sub 10} values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased (P<0.05) as irradiation dose increased, and no differences (P>=0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D{sub 10} values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  11. Effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    Science.gov (United States)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-04-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( P<0.05) as irradiation dose increased, and no differences ( P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  12. Membrane-active mechanism of LFchimera against Burkholderia pseudomallei and Burkholderia thailandensis

    NARCIS (Netherlands)

    Kanthawong, S.; Puknun, A.; Bolscher, J.G.M.; Nazmi, K.; van Marle, J.; de Soet, J.J.; Veerman, E.C.I.; Wongratanacheewin, S.; Taweechaisupapong, S.

    2014-01-01

    LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265-284 and lactoferricin17-30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study

  13. Interplay between Three RND Efflux Pumps in Doxycycline-Selected Strains of Burkholderia thailandensis

    Science.gov (United States)

    Biot, Fabrice Vincent; Lopez, Mélanie Monique; Poyot, Thomas; Neulat-Ripoll, Fabienne; Lignon, Sabrina; Caclard, Arnaud; Thibault, François Michel; Peinnequin, Andre; Pagès, Jean-Marie; Valade, Eric

    2013-01-01

    Background Efflux systems are involved in multidrug resistance in most Gram-negative non-fermentative bacteria. We have chosen Burkholderia thailandensis to dissect the development of multidrug resistance phenotypes under antibiotic pressure. Methodology/Principal Findings We used doxycycline selection to obtain several resistant B. thailandensis variants. The minimal inhibitory concentrations of a large panel of structurally unrelated antibiotics were determined ± the efflux pump inhibitor phenylalanine-arginine ß-naphthylamide (PAßN). Membrane proteins were identified by proteomic method and the expressions of major efflux pumps in the doxycycline selected variants were compared to those of the parental strains by a quantitative RT-PCR analysis. Doxycycline selected variants showed a multidrug resistance in two major levels corresponding to the overproduction of two efflux pumps depending on its concentration: AmrAB-OprA and BpeEF-OprC. The study of two mutants, each lacking one of these pumps, indicated that a third pump, BpeAB-OprB, could substitute for the defective pump. Surprisingly, we observed antagonistic effects between PAßN and aminoglycosides or some ß-lactams. PAßN induced the overexpression of AmrAB-OprA and BpeAB-OprB pump genes, generating this unexpected effect. Conclusions/Significance These results may account for the weak activity of PAßN in some Gram-negative species. We clearly demonstrated two antagonistic effects of this molecule on bacterial cells: the blocking of antibiotic efflux and an increase in efflux pump gene expression. Thus, doxycycline is a very efficient RND efflux pump inducer and PAßN may promote the production of some efflux pumps. These results should be taken into account when considering antibiotic treatments and in future studies on efflux pump inhibitors. PMID:24386333

  14. Gas chromatography-mass spectrometry method for rapid identification and differentiation of Burkholderia pseudomallei and Burkholderia mallei from each other, Burkholderia thailandensis and several members of the Burkholderia cepacia complex.

    Science.gov (United States)

    Li, D; March, J K; Bills, T M; Holt, B C; Wilson, C E; Lowe, W; Tolley, H D; Lee, M L; Robison, R A

    2013-11-01

    To develop a simple gas chromatography-mass spectrometry (GC-MS) method for the detection and differentiation of Burkholderia pseudomallei and Burkholderia mallei from each other, Burkholderia thailandensis and several members of the Burkholderia cepacia complex. Biomarkers were generated by one-step thermochemolysis (TCM) and analysed using a GC-MS system. Fragments of poly-3-hydroxybutyrate-co-hydroxyvalerate [poly(3HBA-co-3HVA)] produced by TCM were useful biomarkers. Several cellular fatty acid methyl esters were important in differentiating the various Burkholderia species. A statistical discrimination algorithm was constructed using a combination of biomarkers. The identities of four B. pseudomallei strains, four B. mallei strains and one strain of each near neighbour were confirmed in a statistically designed test using the algorithm. The detection limit for this method was found to be approximately 4000 cells. The method is fast, accurate and easy to use. The algorithm is robust against different growth conditions (medium and temperature). This assay may prove beneficial in a clinical diagnostic setting, where the rapid identification of B. pseudomallei is essential to effective treatment. This method could also be easily employed after a biological attack to confirm the presence of either B. pseudomallei or B. mallei. © 2013 The Society for Applied Microbiology.

  15. Biochemical Characterization and Structural Basis of Reactivity and Regioselectivity Differences between Burkholderia thailandensis and Burkholderia glumae 1,6-Didesmethyltoxoflavin N-Methyltransferase.

    Science.gov (United States)

    Fenwick, Michael K; Almabruk, Khaled H; Ealick, Steven E; Begley, Tadhg P; Philmus, Benjamin

    2017-08-01

    Burkholderia glumae converts the guanine base of guanosine triphosphate into an azapteridine and methylates both the pyrimidine and triazine rings to make toxoflavin. Strains of Burkholderia thailandensis and Burkholderia pseudomallei have a gene cluster encoding seven putative biosynthetic enzymes that resembles the toxoflavin gene cluster. Four of the enzymes are similar in sequence to BgToxBCDE, which have been proposed to make 1,6-didesmethyltoxoflavin (1,6-DDMT). One of the remaining enzymes, BthII1283 in B. thailandensis E264, is a predicted S-adenosylmethionine (SAM)-dependent N-methyltransferase that shows a low level of sequence identity to BgToxA, which sequentially methylates N6 and N1 of 1,6-DDMT to form toxoflavin. Here we show that, unlike BgToxA, BthII1283 catalyzes a single methyl transfer to N1 of 1,6-DDMT in vitro. In addition, we investigated the differences in reactivity and regioselectivity by determining crystal structures of BthII1283 with bound S-adenosylhomocysteine (SAH) or 1,6-DDMT and SAH. BthII1283 contains a class I methyltransferase fold and three unique extensions used for 1,6-DDMT recognition. The active site structure suggests that 1,6-DDMT is bound in a reduced form. The plane of the azapteridine ring system is orthogonal to its orientation in BgToxA. In BthII1283, the modeled SAM methyl group is directed toward the p orbital of N1, whereas in BgToxA, it is first directed toward an sp(2) orbital of N6 and then toward an sp(2) orbital of N1 after planar rotation of the azapteridine ring system. Furthermore, in BthII1283, N1 is hydrogen bonded to a histidine residue whereas BgToxA does not supply an obvious basic residue for either N6 or N1 methylation.

  16. Characterization of an omega-6 linoleate lipoxygenase from Burkholderia thailandensis and its application in the production of 13-hydroxyoctadecadienoic acid.

    Science.gov (United States)

    An, Jung-Ung; Kim, Baek-Joong; Hong, Seung-Hye; Oh, Deok-Kun

    2015-07-01

    A recombinant putative lipoxygenase from Burkholderia thailandensis with a specific activity of 26.4 U mg(-1) was purified using HisTrap affinity chromatography. The native enzyme was a 75-kDa dimer with a molecular mass of 150 kDa. The enzyme activity and catalytic efficiency (k cat/K m) were the highest for linoleic acid (k cat of 93.7 s(-1) and K m of 41.5 μM), followed by arachidonic acid, α-linolenic acid, and γ-linolenic acid. The enzyme was identified as an omega-6 linoleate lipoxygenase (or a linoleate 13S-lipoxygenase) based on genetic and HPLC analyses as well as substrate specificity. The reaction conditions for the enzymatic production of 13-hydroxy-9,11(Z,E)-octadecadienoic acid (13-HODE) were optimal at pH 7.5, 25 °C, 20 g l(-1) linoleic acid, 2.5 g l(-1) enzyme, 0.1 mM Cu(2+), and 6% (v/v) methanol. Under these conditions, linoleate 13-lipoxygenase from B. thailandensis produced 20.8 g l(-1) 13-HODE (70.2 mM) from 20 g l(-1) linoleic acid (71.3 mM) for 120 min, with a molar conversion yield of 98.5% and productivity of 10.4 g l(-1) h(-1). The molar conversion yield and productivity of 13-HODE obtained using B. thailandensis lipoxygenase were 151 and 158% higher, respectively, than those obtained using commercial soybean lipoxygenase under the optimum conditions for each enzyme at the same concentrations of substrate and enzyme.

  17. PCR-based Methodologies Used to Detect and Differentiate the Burkholderia pseudomallei complex: B. pseudomallei, B. mallei, and B. thailandensis.

    Science.gov (United States)

    Lowe, Woan; March, Jordon K; Bunnell, Annette J; O'Neill, Kim L; Robison, Richard A

    2014-01-01

    Methods for the rapid detection and differentiation of the Burkholderia pseudomallei complex comprising B. pseudomallei, B. mallei, and B. thailandensis, have been the topic of recent research due to the high degree of phenotypic and genotypic similarities of these species. B. pseudomallei and B. mallei are recognized by the CDC as tier 1 select agents. The high mortality rates of glanders and melioidosis, their potential use as bioweapons, and their low infectious dose, necessitate the need for rapid and accurate detection methods. Although B. thailandensis is generally avirulent in mammals, this species displays very similar phenotypic characteristics to that of B. pseudomallei. Optimal identification of these species remains problematic, due to the difficulty in developing a sensitive, selective, and accurate assay. The development of PCR technologies has revolutionized diagnostic testing and these detection methods have become popular due to their speed, sensitivity, and accuracy. The purpose of this review is to provide a comprehensive overview and evaluation of the advancements in PCR-based detection and differentiation methodologies for the B. pseudomallei complex, and examine their potential uses in diagnostic and environmental testing.

  18. Modulation of Human Airway Barrier Functions during Burkholderia thailandensis and Francisella tularensis Infection Running Title: Airway Barrier Functions during Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Cornelia Blume

    2016-08-01

    Full Text Available The bronchial epithelium provides protection against pathogens from the inhaled environment through the formation of a highly-regulated barrier. In order to understand the pulmonary diseases melioidosis and tularemia caused by Burkholderia thailandensis and Fransicella tularensis, respectively, the barrier function of the human bronchial epithelium were analysed. Polarised 16HBE14o- or differentiated primary human bronchial epithelial cells (BECs were exposed to increasing multiplicities of infection (MOI of B. thailandensis or F. tularensis Live Vaccine Strain and barrier responses monitored over 24–72 h. Challenge of polarized BECs with either bacterial species caused an MOI- and time-dependent increase in ionic permeability, disruption of tight junctions, and bacterial passage from the apical to the basolateral compartment. B. thailandensis was found to be more invasive than F. tularensis. Both bacterial species induced an MOI-dependent increase in TNF-α release. An increase in ionic permeability and TNF-α release was induced by B. thailandensis in differentiated BECs. Pretreatment of polarised BECs with the corticosteroid fluticasone propionate reduced bacterial-dependent increases in ionic permeability, bacterial passage, and TNF-α release. TNF blocking antibody Enbrel® reduced bacterial passage only. BEC barrier properties are disrupted during respiratory bacterial infections and targeting with corticosteroids or anti-TNF compounds may represent a therapeutic option.

  19. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens.

    Science.gov (United States)

    Elshikh, Mohamed; Funston, Scott; Chebbi, Alif; Ahmed, Syed; Marchant, Roger; Banat, Ibrahim M

    2017-05-25

    Biosurfactants are naturally occurring surface active compounds that have mainly been exploited for environmental applications and consumer products, with their biomedical efficacy an emerging area of research. Rhamnolipids area major group of biosurfactants that have been reported for their antimicrobial and antibiofilm efficacy. One of the main limiting factors for scaled up production and downstream applications of rhamnolipids is the fact that they are predominantly produced from the opportunistic pathogen Pseudomonas aeruginosa. In this article, we have reported the production and characterisation of long chain rhamnolipids from non-pathogenic Burkholderia thailandensis E264 (ATCC 700388). We have also investigated the antibacterial and antibiofilm properties of these rhamnolipids against some oral pathogens (Streptococcus oralis, Actinomyces naeslundii, Neisseria mucosa and Streptococcus sanguinis), important for oral health and hygiene. Treating these bacteria with different concentrations of long chain rhamnolipids resulted in a reduction of 3-4 log of bacterial viability, placing these rhamnolipids close to being classified as biocidal. Investigating long chain rhamnolipid efficacy as antibiofilm agents for prospective oral-related applications revealed good potency against oral-bacteria biofilms in a co-incubation experiments, in a pre-coated surface format, in disrupting immature biofilms and has shown excellent combination effect with Lauryl Sodium Sulphate which resulted in a drastic decrease in its minimal inhibitory concentration against different bacteria. Investigating the rhamnolipid permeabilization effect along with their ability to induce the formation of reactive oxygen species has shed light on the mechanism through which inhibition/killing of bacteria may occur. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Improved production of cytotoxic thailanstatins A and D through metabolic engineering of Burkholderia thailandensis MSMB43 and pilot scale fermentation

    Directory of Open Access Journals (Sweden)

    Xiangyang Liu

    2016-03-01

    Full Text Available Thailanstatin A (TST-A is a potent antiproliferative natural product discovered by our group from Burkholderia thailandensis MSMB43 through a genome-guided approach. The limited supply of TST-A, due to its low titer in bacterial fermentation, modest stability and very low recovery rate during purification, has hindered the investigations of TST-A as an anticancer drug candidate. Here we report the significant yield improvement of TST-A and its direct precursor, thailanstatin D (TST-D, through metabolic engineering of the thailanstatin biosynthetic pathway in MSMB43. Deletion of tstP, which encodes a dioxygenase involved in converting TST-A to downstream products including FR901464 (FR, resulted in 58% increase of the TST-A titer to 144.7 ± 2.3 mg/L and 132% increase of the TST-D titer to 14.6 ± 0.5 mg/L in the fermentation broth, respectively. Deletion of tstR, which encodes a cytochrome P450 involved in converting TST-D to TST-A, resulted in more than 7-fold increase of the TST-D titer to 53.2 ± 12.1 mg/L in the fermentation broth. An execution of 90 L pilot-scale fed-batch fermentation of the tstP deletion mutant in a 120-L fermentor led to the preparation of 714 mg of TST-A with greater than 98.5% purity. The half-life of TST-D in a phosphate buffer was found to be at least 202 h, significantly longer than that of TST-A or FR, suggesting superior stability. However, the IC50 values of TST-D against representative human cancer cell lines were determined to be greater than those of TST-A, indicating weaker antiproliferative activity. This work enabled us to prepare sufficient quantities of TST-A and TST-D for our ongoing translational research.

  1. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis

    National Research Council Canada - National Science Library

    Fisher, Nathan A; Ribot, Wilson J; Applefeld, Willard; DeShazer, David

    2012-01-01

    .... pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species...

  2. Ligand-binding pocket bridges DNA-binding and dimerization domains of the urate-responsive MarR homologue MftR from Burkholderia thailandensis.

    Science.gov (United States)

    Gupta, Ashish; Grove, Anne

    2014-07-15

    Members of the multiple antibiotic resistance regulator (MarR) family often regulate gene activity by responding to a specific ligand. In the absence of ligand, most MarR proteins function as repressors, while ligand binding causes attenuated DNA binding and therefore increased gene expression. Previously, we have shown that urate is a ligand for MftR (major facilitator transport regulator), which is encoded by the soil bacterium Burkholderia thailandensis. We show here that both mftR and the divergently oriented gene mftP encoding a major facilitator transport protein are upregulated in the presence of urate. MftR binds two cognate sites in the mftR-mftP intergenic region with equivalent affinity and sensitivity to urate. Mutagenesis of four conserved residues previously reported to be involved in urate binding to Deinococcus radiodurans HucR and Rhizobium radiobacter PecS significantly reduced protein stability and DNA binding affinity but not ligand binding. These data suggest that residues equivalent to those implicated in ligand binding to HucR and PecS serve structural roles and that MftR relies on distinct residues for ligand binding. MftR exhibits a two-step melting transition suggesting independent unfolding of the dimerization and DNA-binding regions; urate binding or mutations in the predicted ligand-binding sites result in one-step unfolding transitions. We suggest that MftR binds the ligand in a cleft between the DNA-binding lobes and the dimer interface but that the mechanism of ligand-mediated attenuation of DNA binding differs from that proposed for other urate-responsive MarR homologues. Since DNA binding by MftR is attenuated at 37 °C, our data also suggest that MftR responds to both ligand and a thermal upshift by attenuated DNA binding and upregulation of the genes under its control.

  3. Burkholderia pseudomallei-derived miR-3473 enhances NF-κB via targeting TRAF3 and is associated with different inflammatory responses compared to Burkholderia thailandensis in murine macrophages.

    Science.gov (United States)

    Fang, Yao; Chen, Hai; Hu, Yi; Li, Qian; Hu, Zhiqiang; Ma, Tengfei; Mao, Xuhu

    2016-11-28

    Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a kind of tropical disease. Burkholderia thailandensis (Bt), with a high sequence similarity to Bp, is thought to be an avirulent organism. Since there are numerous similarities between Bp and Bt, their differences in pathogenesis of host response and related mechanism are still undermined. In recent years, microRNAs have been researched in many diseases, but seldom involved in bacterial infection, bacteria-host interaction or explaining the differences between virulent and avirulent species. We found that Bp and Bt had similar phenotypes in terms of intracellular replication, dissemination (reflected by multinucleated giant cell formation), TNF-α release and apoptosis in RAW264.7 macrophages or TC-1 pulmonary cell but in different level. Especially, at the late infection phases (after 12 h post infection), Bp showed faster intracellular growth, stronger cytotoxicity, and higher TNF-α release. After microRNA array analysis, we found some microRNAs were significantly expressed in macrophages treated by Bp. miR-3473 was one of them specifically induced, but not significantly changed in Bt-treated macrophages. In addition, TargetScan suggested that miR-3473 possibly target TRAF3 (TNF receptor-associated factor 3), a well-known negative regulator of the NF-κB pathway, which was probably involved in the TNF-α induction and apoptosis in cells with Bp infection. In vivo, it was found that miR-3473 expression of total lungs cells from Bp-treated was higher than that from Bt-treated mice. And miR-3473 inhibitor was able to decrease the TNF-α release of mice and prolong the survival of mice with Bp infection. In sum, miR-3473 plays an important role in the differential pathogenicity of Bp and Bt via miR-3473-TRAF3-TNF-α network, and regulates TNF-α release, cell apoptosis and animal survival after Bp treatment. In this study, we have found a specific microRNA is related to bacterial virulence and

  4. Use of the phytopathogenic effect for studies of Burkholderia virulence.

    Science.gov (United States)

    Molchanova, E V; Ageeva, N P

    2015-02-01

    The phytopathogenic effect of the pseudomallei group Burkholderia is demonstrated on the Peireskia aculeata model. A method for evaluation of the effect is suggested. The effect correlates with the levels of Burkholderia pseudomallei, Burkholderia mallei, and Burkholderia thailandensis virulence for laboratory animals. P. aculeata can be used as a model for preliminary studies of the virulence of the above species.

  5. Use of a Real-Time PCR TaqMan Assay for Rapid Identification and Differentiation of Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    U?Ren, Jana M.; Van Ert, Matthew N.; Schupp, James M.; Easterday, W Ryan; Simonson, Tatum S.; Okinaka, Richard T.; Pearson, Talima; Keim, Paul

    2005-01-01

    A TaqMan allelic-discrimination assay designed around a synonymous single-nucleotide polymorphism was used to genotype Burkholderia pseudomallei and Burkholderia mallei isolates. The assay rapidly identifies and discriminates between these two highly pathogenic bacteria and does not cross-react with genetic near neighbors, such as Burkholderia thailandensis and Burkholderia cepacia.

  6. FK228 from Burkholderia thailandensis MSMB43

    Directory of Open Access Journals (Sweden)

    Xiang-Yang Liu

    2012-09-01

    Full Text Available FK228 [systematic name: (1S,4S,7Z,10S,16E,21R-7-ethylidene-4,21-di(propan-2-yl-2-oxa-12,13-dithia-5,8,20,23-tetrazabicyclo[8.7.6]tricos-16-ene-3,6,9,19,22-pentone], C24H36N4O6S2, also known as FR901228, depsipeptide, NSC 630176, romidepsin, and marketed as Istodax by Celgene Corporation, is crystallized from ethyl acetate in P21 as compared to the absolute configuration of FK228, first crystallized from methanol in P212121 [Shigematsu et al. (1994. J. Antibiot. 47, 311–314]. A slight difference is observed between the absolute configuration of FK228 and the present structure. The molecular structure is stabilized by intramolecular N—H...O hydrogen bonds. In the crystal, molecules are linked via N—H...O hydrogen bonds.

  7. DNA microarray-based detection and identification of Burkholderia mallei, Burkholderia pseudomallei and Burkholderia spp.

    Science.gov (United States)

    Schmoock, Gernot; Ehricht, Ralf; Melzer, Falk; Rassbach, Astrid; Scholz, Holger C; Neubauer, Heinrich; Sachse, Konrad; Mota, Rinaldo Aparecido; Saqib, Muhammad; Elschner, Mandy

    2009-01-01

    We developed a rapid oligonucleotide microarray assay based on genetic markers for the accurate identification and differentiation of Burkholderia (B.) mallei and Burkholderia pseudomallei, the agents of glanders and melioidosis, respectively. These two agents were clearly identified using at least 4 independent genetic markers including 16S rRNA gene, fliC, motB and also by novel species-specific target genes, identified by in silico sequence analysis. Specific hybridization signal profiles allowed the detection and differentiation of up to 10 further Burkholderia spp., including the closely related species Burkholderia thailandensis and Burkholderia-like agents, such as Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia vietnamiensis, Burkholderia ambifaria, and Burkholderia gladioli, which are often associated with cystic fibrosis (CF) lung disease. The assay was developed using the easy-to-handle and economical ArrayTube (AT) platform. A representative strain panel comprising 44 B. mallei, 32 B. pseudomallei isolates, and various Burkholderia type strains were examined to validate the test. Assay specificity was determined by examination of 40 non-Burkholderia strains.

  8. Clear distinction between Burkholderia mallei and Burkholderia pseudomallei using fluorescent motB primers.

    Science.gov (United States)

    Schmoock, Gernot; Elschner, Mandy; Sprague, Lisa D

    2015-03-07

    A frame-shift mutation in the flagellum motor gene motB coding for the chemotaxis MotB protein of Burkholderia mallei has been utilized to design a conventional duplex PCR assay with fluorescent labelled primers. Species specificity was tested with a panel of 13 Burkholderia type strains. A total of 41 B. mallei field strains, 36 B. pseudomallei field strains, and 1 B. thailandensis field strain from different geographic regions were tested and correctly identified. Testing of 55 non-Burkholderia bacterial species revealed 100% specificity of the assay. The minimum detection limit was 1 pg DNA or 160 GE for B. mallei and 130 GE for B. pseudomallei, respectively. This assay enables the clear distinction between B. mallei and B. pseudomallei/B. thailandensis.

  9. Rapid identification of Burkholderia pseudomallei and Burkholderia mallei by fluorescence in situ hybridization (FISH) from culture and paraffin-embedded tissue samples.

    Science.gov (United States)

    Hagen, Ralf M; Frickmann, Hagen; Elschner, Mandy; Melzer, Falk; Neubauer, Heinrich; Gauthier, Yves P; Racz, Paul; Poppert, Sven

    2011-11-01

    We evaluated newly developed probes for rapid identification of Burkholderia (B.) pseudomallei and B. mallei and differentiation from B. thailandensis by fluorescence in situ hybridization (FISH). FISH correctly identified 100% of the tested B. pseudomallei (11), B. mallei (11), and B. thailandensis (1) strains, excluded 100% of all tested negative controls (61), and allowed demonstration of B. pseudomallei infection in a paraffin-embedded spleen tissue sample of an experimentally infected mouse. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Burkholderia xernovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility

    Energy Technology Data Exchange (ETDEWEB)

    Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Denef, Vincent [University of California, Berkeley; Konstantinidis, Konstantinos T [Michigan State University, East Lansing; Vergez, Lisa [Lawrence Livermore National Laboratory (LLNL); Agullo, Loreine [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Reyes, Valeria Latorre [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Hauser, Loren John [ORNL; Cordova, Macarena [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Gomez, Luis [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Gonzalez, Myriam [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Land, Miriam L [ORNL; Lao, Victoria [Lawrence Livermore National Laboratory (LLNL); Larimer, Frank W [ORNL; LiPuma, John J [University of Michigan; Mahenthiralingam, Eshwar [Cardiff University, Wales; Malfatti, Stephanie [Lawrence Livermore National Laboratory (LLNL); Marx, Christopher J [Harvard University; Parnell, J Jacob [Michigan State University, East Lansing; Ramette, Alban [Michigan State University, East Lansing; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Seeger, Michael [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Smith, Daryl [University of British Columbia, Vancouver; Spilker, Theodore [University of Michigan; Sul, Woo Jun [Michigan State University, East Lansing; Tsoi, Tamara V [Michigan State University, East Lansing; Zhulin, Igor B [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Tiedje, James M. [Michigan State University, East Lansing

    2006-01-01

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven 'central aromatic' and twenty 'peripheral aromatic' pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.

  11. Molecular Signatures and Phylogenomic Analysis of the Genus Burkholderia: Proposal for Division of this Genus into the Emended Genus Burkholderia Containing Pathogenic Organisms and a New Genus Paraburkholderia gen. nov. Harboring Environmental Species

    Directory of Open Access Journals (Sweden)

    Aman eSawana

    2014-12-01

    Full Text Available The genus Burkholderia contains large number of diverse species which are not reliably distinguished by the available biochemical or molecular characteristics. We report here results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequences, Burkholderia species grouped into two major clades. Within these main clades a number of smaller clades were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs that are uniquely found in different clades of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I which contains all clinically relevant members of the genus as well as the phytopathogenic Burkholderia species. The second main clade (Clade II composed of the environmental Burkholderia species, is also distinguished by 2 of the identified CSIs. Additionally, our work has also identified 3 CSIs that are specific for the Burkholderia cepacia complex, 4 CSIs that are uniquely found in the Burkholderia pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and for development of novel diagnostic assays for the clinically important members of the group. Based upon the results from different lines of studies, a division of the genus Burkholderia into two genera is proposed. In this new proposal, the emended genus Burkholderia will contain only the clinically relevant and phytopathogenic Burkholderia species, whereas all other Burkholderia spp. are transferred to a new genus

  12. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    Science.gov (United States)

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  13. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species.

    Science.gov (United States)

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  14. Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies

    OpenAIRE

    Sarria Saul H; Ulrich Ricky L; Yu Yan; Schell Mark A; Kim H Stanley; Nierman William C; DeShazer David

    2005-01-01

    Abstract Background Two closely related species Burkholderia mallei (Bm) and Burkholderia pseudomallei (Bp) are serious human health hazards and are potential bio-warfare agents, whereas another closely related species Burkholderia thailandensis (Bt) is a non-pathogenic saprophyte. To investigate the genomic factors resulting in such a dramatic difference, we first identified the Bm genes responsive to the mouse environment, and then examined the divergence of these genes in Bp and Bt. Result...

  15. VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence.

    Science.gov (United States)

    Schwarz, Sandra; Singh, Pragya; Robertson, Johanna D; LeRoux, Michele; Skerrett, Shawn J; Goodlett, David R; West, T Eoin; Mougous, Joseph D

    2014-04-01

    The type VI secretion system (T6SS) has emerged as a critical virulence factor for the group of closely related Burkholderia spp. that includes Burkholderia pseudomallei, B. mallei, and B. thailandensis. While the genomes of these bacteria, referred to as the Bptm group, appear to encode several T6SSs, we and others have shown that one of these, type VI secretion system 5 (T6SS-5), is required for virulence in mammalian infection models. Despite its pivotal role in the pathogenesis of the Bptm group, the effector repertoire of T6SS-5 has remained elusive. Here we used quantitative mass spectrometry to compare the secretome of wild-type B. thailandensis to that of a mutant harboring a nonfunctional T6SS-5. This analysis identified VgrG-5 as a novel secreted protein whose export depends on T6SS-5 function. Bioinformatics analysis revealed that VgrG-5 is a specialized VgrG protein that harbors a C-terminal domain (CTD) conserved among Bptm group species. We found that a vgrG-5 ΔCTD mutant is avirulent in mice and is unable to stimulate the fusion of host cells, a hallmark of the Bptm group previously shown to require T6SS-5 function. The singularity of VgrG-5 as a detected T6SS-5 substrate, taken together with the essentiality of its CTD for virulence, suggests that the protein is critical for the effector activity of T6SS-5. Intriguingly, we show that unlike the bacterial-cell-targeting T6SSs characterized so far, T6SS-5 localizes to the bacterial cell pole. We propose a model whereby the CTD of VgrG-5-, propelled by T6SS-5-, plays a key role in inducing membrane fusion, either by the recruitment of other factors or by direct participation.

  16. Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei.

    Science.gov (United States)

    Heiss, Christian; Burtnick, Mary N; Roberts, Rosemary A; Black, Ian; Azadi, Parastoo; Brett, Paul J

    2013-11-15

    O-Polysaccharides (OPS) were isolated from purified Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharides by mild-acid hydrolysis and gel-permeation chromatography. 1-D and 2-D (1)H and (13)C NMR spectroscopy experiments revealed that the OPS antigens were unbranched heteropolymers with the following structures: Collectively, our results demonstrate that the predominant OPS antigens expressed by B. pseudomallei and B. mallei isolates are structurally more complex than previously described and provide evidence that different capping residues are used by these closely related pathogens to terminate chain elongation. Additionally, they confirm that Burkholderia thailandensis and B. pseudomallei express OPS antigens that are essentially identical to one another. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis

    OpenAIRE

    Xu, Yao; Buss, Eileen A.; Boucias, Drion G.

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut ...

  18. Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements

    Directory of Open Access Journals (Sweden)

    Ulrich Ricky L

    2010-07-01

    Full Text Available Abstract Background Burkholderia species exhibit enormous phenotypic diversity, ranging from the nonpathogenic, soil- and water-inhabiting Burkholderia thailandensis to the virulent, host-adapted mammalian pathogen B. mallei. Genomic diversity is evident within Burkholderia species as well. Individual isolates of Burkholderia pseudomallei and B. thailandensis, for example, carry a variety of strain-specific genomic islands (GIs, including putative pathogenicity and metabolic islands, prophage-like islands, and prophages. These GIs may provide some strains with a competitive advantage in the environment and/or in the host relative to other strains. Results Here we present the results of analysis of 37 prophages, putative prophages, and prophage-like elements from six different Burkholderia species. Five of these were spontaneously induced to form bacteriophage particles from B. pseudomallei and B. thailandensis strains and were isolated and fully sequenced; 24 were computationally predicted in sequenced Burkholderia genomes; and eight are previously characterized prophages or prophage-like elements. The results reveal numerous differences in both genome structure and gene content among elements derived from different species as well as from strains within species, due in part to the incorporation of additional DNA, or 'morons' into the prophage genomes. Implications for pathogenicity are also discussed. Lastly, RNAseq analysis of gene expression showed that many of the genes in ϕ1026b that appear to contribute to phage and lysogen fitness were expressed independently of the phage structural and replication genes. Conclusions This study provides the first estimate of the relative contribution of prophages to the vast phenotypic diversity found among the Burkholderiae.

  19. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    Science.gov (United States)

    Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  20. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  1. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis

    Directory of Open Access Journals (Sweden)

    Michell Stephen L

    2011-01-01

    Full Text Available Abstract Background Burkholderia pseudomallei is the causative agent of melioidosis, a tropical disease of humans with a variable and often fatal outcome. In murine models of infection, different strains exhibit varying degrees of virulence. In contrast, two related species, B. thailandensis and B. oklahomensis, are highly attenuated in mice. Our aim was to determine whether virulence in mice is reflected in macrophage or wax moth larvae (Galleria mellonella infection models. Results B. pseudomallei strains 576 and K96243, which have low median lethal dose (MLD values in mice, were able to replicate and induce cellular damage in macrophages and caused rapid death of G. mellonella. In contrast, B. pseudomallei strain 708a, which is attenuated in mice, showed reduced replication in macrophages, negligible cellular damage and was avirulent in G. mellonella larvae. B. thailandensis isolates were less virulent than B. pseudomallei in all of the models tested. However, we did record strain dependent differences. B. oklahomensis isolates were the least virulent isolates. They showed minimal ability to replicate in macrophages, were unable to evoke actin-based motility or to form multinucleated giant cells and were markedly attenuated in G. mellonella compared to B. thailandensis. Conclusions We have shown that the alternative infection models tested here, namely macrophages and Galleria mellonella, are able to distinguish between strains of B. pseudomallei, B. thailandensis and B. oklahomensis and that these differences reflect the observed virulence in murine infection models. Our results indicate that B. oklahomensis is the least pathogenic of the species investigated. They also show a correlation between isolates of B. thailandensis associated with human infection and virulence in macrophage and Galleria infection models.

  2. Divergent homologs of the predicted small RNA BpCand697 in Burkholderia spp.

    Science.gov (United States)

    Damiri, Nadzirah; Mohd-Padil, Hirzahida; Firdaus-Raih, Mohd

    2015-09-01

    The small RNA (sRNA) gene candidate, BpCand697 was previously reported to be unique to Burkholderia spp. and is encoded at 3' non-coding region of a putative AraC family transcription regulator gene. This study demonstrates the conservation of BpCand697 sequence across 32 Burkholderia spp. including B. pseudomallei, B. mallei, B. thailandensis and Burkholderia sp. by integrating both sequence homology and secondary structural analyses of BpCand697 within the dataset. The divergent sequence of BpCand697 was also used as a discriminatory power in clustering the dataset according to the potential virulence of Burkholderia spp., showing that B. thailandensis was clearly secluded from the virulent cluster of B. pseudomallei and B. mallei. Finally, the differential co-transcript expression of BpCand697 and its flanking gene, bpsl2391 was detected in Burkholderia pseudomallei D286 after grown under two different culture conditions using nutrient-rich and minimal media. It is hypothesized that the differential expression of BpCand697-bpsl2391 co-transcript between the two standard prepared media might correlate with nutrient availability in the culture media, suggesting that the physical co-localization of BpCand697 in B. pseudomallei D286 might be directly or indirectly involved with the transcript regulation of bpsl2391 under the selected in vitro culture conditions.

  3. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  4. Detection of Burkholderia pseudomallei O-antigen serotypes in near-neighbor species

    Directory of Open Access Journals (Sweden)

    Stone Joshua K

    2012-11-01

    Full Text Available Abstract Background Burkholderia pseudomallei is the etiological agent of melioidosis and a CDC category B select agent with no available effective vaccine. Previous immunizations in mice have utilized the lipopolysaccharide (LPS as a potential vaccine target because it is known as one of the most important antigenic epitopes in B. pseudomallei. Complicating this strategy are the four different B. pseudomallei LPS O-antigen types: A, B, B2, and rough. Sero-crossreactivity is common among O-antigens of Burkholderia species. Here, we identified the presence of multiple B. pseudomallei O-antigen types and sero-crossreactivity in its near-neighbor species. Results PCR screening of O-antigen biosynthesis genes, phenotypic characterization using SDS-PAGE, and immunoblot analysis showed that majority of B. mallei and B. thailandensis strains contained the typical O-antigen type A. In contrast, most of B. ubonensis and B. thailandensis-like strains expressed the atypical O-antigen types B and B2, respectively. Most B. oklahomensis strains expressed a distinct and non-seroreactive O-antigen type, except strain E0147 which expressed O-antigen type A. O-antigen type B2 was also detected in B. thailandensis 82172, B. ubonensis MSMB108, and Burkholderia sp. MSMB175. Interestingly, B. thailandensis-like MSMB43 contained a novel serotype B positive O-antigen. Conclusions This study expands the number of species which express B. pseudomallei O-antigen types. Further work is required to elucidate the full structures and how closely these are to the B. pseudomallei O-antigens, which will ultimately determine the efficacy of the near-neighbor B serotypes for vaccine development.

  5. Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis.

    Science.gov (United States)

    O'Quinn, A L; Wiegand, E M; Jeddeloh, J A

    2001-06-01

    We investigated a non-mammalian host model system for fitness in genetic screening for virulence-attenuating mutations in the potential biowarfare agents Burkholderia pseudomallei and Burkholderia mallei. We determined that B. pseudomallei is able to cause 'disease-like' symptoms and kill the nematode Caenorhabditis elegans. Analysis of killing in the surrogate disease model with B. pseudomallei mutants indicated that killing did not require lipopolysaccharide (LPS) O-antigen, aminoglycoside/macrolide efflux pumping, type II pathway-secreted exoenzymes or motility. Burkholderia thailandensis and some strains of Burkholderia cepacia also killed nematodes. Manipulation of the nematode host genotype suggests that the neuromuscular intoxication caused by both B. pseudomallei and B. thailandensis acts in part through a disruption of normal Ca2+ signal transduction. Both species produce a UV-sensitive, gamma-irradiation-resistant, limited diffusion, paralytic agent as part of their nematode pathogenic mechanism. The results of this investigation suggest that killing by B. pseudomallei is an active process in C. elegans, and that the C. elegans model might be useful for the identification of vertebrate animal virulence factors in B. pseudomallei.

  6. Efflux pump-mediated drug resistance in Burkholderia

    Science.gov (United States)

    Podnecky, Nicole L.; Rhodes, Katherine A.; Schweizer, Herbert P.

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance. PMID:25926825

  7. Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant.

    Science.gov (United States)

    DeShazer, D; Waag, D M; Fritz, D L; Woods, D E

    2001-05-01

    Little is known about the virulence factors of Burkholderia mallei, the etiologic agent of glanders. We employed subtractive hybridization to identify genetic determinants present in B. mallei but not in Burkholderia thailandensis, a non-pathogenic soil microbe. Three subtractive hybridization products were mapped to a genetic locus encoding proteins involved in the biosynthesis, export and translocation of a capsular polysaccharide. We identified an insertion sequence (IS 407 A) at one end of the capsule gene cluster and demonstrated that it was functional in B. mallei. Mutations were introduced in the B. mallei capsular gene cluster and the corresponding mutants were examined for their reactivity with antibodies raised against Burkholderia pseudomallei surface polysaccharides by immunoblotting and ELISA. Immunogold electron microscopy demonstrated the presence of a capsule on the surface of B. mallei ATCC 23344 (parental strain) but not on B. mallei DD3008 (capsule mutant) or B. thailandensis. Surprisingly, B. thailandensis also harboured a portion of the capsule gene cluster. ATCC 23344 was highly virulent in hamsters and mice, but DD3008 was avirulent in both animal models. The results presented here demonstrate that the capsular polysaccharide of B. mallei is required for production of disease in two animal models of glanders infection and is a major virulence factor. Copyright 2001 Crown Copyright.

  8. Genomic Patterns of Pathogen Evolution Revealed by Comparison of Burkholderia pseudomallei, the Causative Agent of Melioidosis, to Avirulent Burkholderia thailandensis

    Science.gov (United States)

    2006-05-26

    10]. Like Bp, Bt is also a soil saprophyte , and until its classifi- cation as a distinct species in 1998 was considered to rep- resent a subtype of...islands in pathogenic and environmental microorganisms . Nat Rev Microbiol 2004, 2:414-424. 5. Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland

  9. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  10. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei.

    Science.gov (United States)

    Gregory, Anthony E; Judy, Barbara M; Qazi, Omar; Blumentritt, Carla A; Brown, Katherine A; Shaw, Andrew M; Torres, Alfredo G; Titball, Richard W

    2015-02-01

    Burkholderia mallei are Gram-negative bacteria, responsible for the disease glanders. B. mallei has recently been classified as a Tier 1 agent owing to the fact that this bacterial species can be weaponised for aerosol release, has a high mortality rate and demonstrates multi-drug resistance. Furthermore, there is no licensed vaccine available against this pathogen. Lipopolysaccharide (LPS) has previously been identified as playing an important role in generating host protection against Burkholderia infection. In this study, we present gold nanoparticles (AuNPs) functionalised with a glycoconjugate vaccine against glanders. AuNPs were covalently coupled with one of three different protein carriers (TetHc, Hcp1 and FliC) followed by conjugation to LPS purified from a non-virulent clonal relative, B. thailandensis. Glycoconjugated LPS generated significantly higher antibody titres compared with LPS alone. Further, they improved protection against a lethal inhalation challenge of B. mallei in the murine model of infection. Burkholderia mallei is associated with multi-drug resistance, high mortality and potentials for weaponization through aerosol inhalation. The authors of this study present gold nanoparticles (AuNPs) functionalized with a glycoconjugate vaccine against this Gram negative bacterium demonstrating promising results in a murine model even with the aerosolized form of B. Mallei. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5.

    Science.gov (United States)

    Whiteley, Liam; Haug, Maria; Klein, Kristina; Willmann, Matthias; Bohn, Erwin; Chiantia, Salvatore; Schwarz, Sandra

    2017-01-01

    Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- β-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell.

  12. Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5.

    Directory of Open Access Journals (Sweden)

    Liam Whiteley

    Full Text Available Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5 to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- β-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and

  13. Functions of Burkholderia virulence factors: Input from proteomics and DNA microarray analyses

    Directory of Open Access Journals (Sweden)

    Kumutha Malar Vellasamy1

    2012-03-01

    Full Text Available Burkholderia spp. consists of organisms that are extremely diverse and versatile with a natural habitat in the soil. Members of this genus, which include B. pseudomallei, B. mallei, B. thailandensis and B. cepacia, are capable of causing severe, life threatening opportunistic infection in patients who are immunocompromised. The underlying virulence mechanisms of the bacteria, their interactions with the host and the host defense mechanisms may be reflected by changes of the expression of proteins of both the pathogen as well as the host. In this article, we reviewed the current knowledge on interactions of Burkholderia spp. pathogens with their host mainly from the perspective of data that was generated from recent proteomics and DNA microarray investigations.

  14. Capsule influences the deposition of critical complement C3 levels required for the killing of Burkholderia pseudomallei via NADPH-oxidase induction by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Michael E Woodman

    Full Text Available Burkholderia pseudomallei is the causative agent of melioidosis and is a major mediator of sepsis in its endemic areas. Because of the low LD(50 via aerosols and resistance to multiple antibiotics, it is considered a Tier 1 select agent by the CDC and APHIS. B. pseudomallei is an encapsulated bacterium that can infect, multiply, and persist within a variety of host cell types. In vivo studies suggest that macrophages and neutrophils are important for controlling B. pseudomallei infections, however few details are known regarding how neutrophils respond to these bacteria. Our goal is to describe the capacity of human neutrophils to control highly virulent B. pseudomallei compared to the relatively avirulent, acapsular B. thailandensis using in vitro analyses. B. thailandensis was more readily phagocytosed than B. pseudomallei, but both displayed similar rates of persistence within neutrophils, indicating they possess similar inherent abilities to escape neutrophil clearance. Serum opsonization studies showed that both were resistant to direct killing by complement, although B. thailandensis acquired significantly more C3 on its surface than B. pseudomallei, whose polysaccharide capsule significantly decreased the levels of complement deposition on the bacterial surface. Both Burkholderia species showed significantly enhanced uptake and killing by neutrophils after critical levels of C3 were deposited. Serum-opsonized Burkholderia induced a significant respiratory burst by neutrophils compared to unopsonized bacteria, and neutrophil killing was prevented by inhibiting NADPH-oxidase. In summary, neutrophils can efficiently kill B. pseudomallei and B. thailandensis that possess a critical threshold of complement deposition, and the relative differences in their ability to resist surface opsonization may contribute to the distinct virulence phenotypes observed in vivo.

  15. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Directory of Open Access Journals (Sweden)

    Loren Baugh

    Full Text Available The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite.We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq. We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail.This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against

  16. A comparison of the immunological potency of Burkholderia lipopolysaccharides in endotoxemic BALB/c mice.

    Science.gov (United States)

    Hsueh, Pei-Tan; Liu, Chiu-Lin; Wang, Hsuan-Han; Ni, Wei-Fen; Chen, Ya-Lei; Liu, Jong-Kang

    2016-11-01

    Lipopolysaccharide is one of the virulence factors of the soil-borne pathogens Burkholderia pseudomallei, B. thailandensis, B. cenocepacia and B. multivorans, which cause septic melioidosis (often in B. pseudomallei infections but rarely in B. thailandensis infections) or cepacia syndromes (commonly in B. cenocepacia infections but rarely in B. multivorans infections). The inflammatory responses in Burkholderia LPS-induced endotoxemia were evaluated in this study. Prior to induction, the conserved structures and functions of each purified LPS were determined using electrophoretic phenotypes, the ratios of 3-hydroxytetradecanoic to 3-hydroxyhexadecanoic acid and endotoxin units. In an in vitro assay, cytokine expression of myeloid differentiation primary response gene 88 and Toll/IL-1 receptor domain containing adapter-inducing INF-β-dependent signaling-dependent signaling differed when stimulated by different LPS. Endotoxemia was induced in mice by s.c. injection as evidenced by increasing serum concentrations of 3-hydroxytetradecanoic acid and the septic prognostic markers CD62E and ICAM-1. During endotoxemia, splenic CD11b(+) I-A(+) , CD11b(+) CD80(+) , CD11b(+) CD86(+) and CD11b(+) CD11c(+) subpopulations increased. After induction with B. pseudomallei LPS, there were significant increases in splenic CD49b NK cells and CD14 macrophages. The inflamed CD11b(+) CCR2(+) , CD11b(+) CD31(+) , CD11b(+) CD14(+) , resident CD11b(+) CX3 CR1(+) and progenitor CD11b(+) CD34(+) cells showed delayed increases in bone marrow. B. multivorans LPS was the most potent inducer of serum cytokines and chemokines, whereas B. cenocepacia LPS induced relatively low concentrations of the chemokines MIP-1α and MIP-1β. Endotoxin activities did not correlate with the virulence of Burkholderia strains. Thus factors other than LPS and/or other mechanisms of low activity LPS must mediate the pathogenicity of highly virulent Burkholderia strains. © 2016 The Societies and John Wiley & Sons

  17. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Science.gov (United States)

    Baugh, Loren; Gallagher, Larry A; Patrapuvich, Rapatbhorn; Clifton, Matthew C; Gardberg, Anna S; Edwards, Thomas E; Armour, Brianna; Begley, Darren W; Dieterich, Shellie H; Dranow, David M; Abendroth, Jan; Fairman, James W; Fox, David; Staker, Bart L; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W; Stacy, Robin; Myler, Peter J; Stewart, Lance J; Manoil, Colin; Van Voorhis, Wesley C

    2013-01-01

    The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases

  18. Burkholderia pseudomallei Evades Nramp1 (Slc11a1- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression

    Directory of Open Access Journals (Sweden)

    Veerachat Muangsombut

    2017-08-01

    Full Text Available Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1 which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like Burkholderia pseudomallei causing melioidosis or non-pathogenic species like Burkholderia thailandensis. Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1+ control the net replication of B. thailandensis, but not B. pseudomallei. Control of B. thailandensis was associated with increased cytokine responses, and could be abrogated by blocking NADPH oxidase-mediated production of reactive oxygen species but not by blocking generation of reactive nitrogen species. The inability of Nramp1+ macrophages to control B. pseudomallei was associated with rapid escape of bacteria from phagosomes, as indicated by decreased co-localization with LAMP1 compared to B. thailandensis. A B. pseudomallei bipB mutant impaired in escape from phagosomes was controlled to a greater extent than the parent strain in Nramp1+ macrophages, but was also attenuated in Nramp1− cells. Consistent with reduced escape from phagosomes, B. thailandensis formed fewer multinucleated giant cells in Nramp1+ macrophages at later time points compared to B. pseudomallei. B. pseudomallei exhibited elevated transcription of virulence-associated genes of Type VI Secretion System cluster 1 (T6SS-1, the Bsa Type III Secretion System (T3SS-3 and the bimA gene required for actin-based motility in Nramp1+ macrophages. Nramp1+ macrophages were found to contain decreased iron levels that may impact on expression of such genes. Our data show that B. pseudomallei is able to evade Nramp1- and NADPH oxidase-mediated killing in macrophages and that expression of virulence

  19. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions

    DEFF Research Database (Denmark)

    Schwarz, Sandra; West, T Eoin; Boyer, Frédéric

    2010-01-01

    Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacteri...... of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections....... displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival......Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial...

  20. Comparative analysis of the Burkholderia cenocepacia K56-2 essential genome reveals cell envelope functions that are uniquely required for survival in species of the genus Burkholderia.

    Science.gov (United States)

    Gislason, April S; Turner, Keith; Domaratzki, Mike; Cardona, Silvia T

    2017-11-01

    Burkholderia cenocepacia K56-2 belongs to the Burkholderia cepacia complex, a group of Gram-negative opportunistic pathogens that have large and dynamic genomes. In this work, we identified the essential genome of B. cenocepacia K56-2 using high-density transposon mutagenesis and insertion site sequencing (Tn-seq circle). We constructed a library of one million transposon mutants and identified the transposon insertions at an average of one insertion per 27 bp. The probability of gene essentiality was determined by comparing of the insertion density per gene with the variance of neutral datasets generated by Monte Carlo simulations. Five hundred and eight genes were not significantly disrupted, suggesting that these genes are essential for survival in rich, undefined medium. Comparison of the B. cenocepacia K56-2 essential genome with that of the closely related B. cenocepacia J2315 revealed partial overlapping, suggesting that some essential genes are strain-specific. Furthermore, 158 essential genes were conserved in B. cenocepacia and two species belonging to the Burkholderia pseudomallei complex, B. pseudomallei K96243 and Burkholderia thailandensis E264. Porins, including OpcC, a lysophospholipid transporter, LplT, and a protein involved in the modification of lipid A with aminoarabinose were found to be essential in Burkholderia genomes but not in other bacterial essential genomes identified so far. Our results highlight the existence of cell envelope processes that are uniquely essential in species of the genus Burkholderia for which the essential genomes have been identified by Tn-seq.

  1. Pathogenesis of Burkholderia pseudomallei and Burkholderia mallei.

    Science.gov (United States)

    Larsen, Joseph C; Johnson, Nathan H

    2009-06-01

    Burkholderia pseudomallei and mallei are biological agents of military significance. There has been significant research in recent years to develop medical countermeasures for these organisms. This review summarizes work which details aspects of the pathogenesis of B. pseudomallei and mallei and discusses key scientific questions and directions for future research.

  2. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection.

    Directory of Open Access Journals (Sweden)

    Beth A Bachert

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer's exact test and Cramer's V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.

  3. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection.

    Science.gov (United States)

    Bachert, Beth A; Choi, Soo J; Snyder, Anna K; Rio, Rita V M; Durney, Brandon C; Holland, Lisa A; Amemiya, Kei; Welkos, Susan L; Bozue, Joel A; Cote, Christopher K; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer's exact test and Cramer's V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.

  4. Culturing and Characterization of Gut Symbiont Burkholderia spp. from the Southern Chinch Bug, Blissus insularis (Hemiptera: Blissidae).

    Science.gov (United States)

    Xu, Yao; Buss, Eileen A; Boucias, Drion G

    2016-06-01

    The phloem-feeding Southern chinch bug, Blissus insularis, harbors a high density of the exocellular bacterial symbiont Burkholderia in the lumen of specialized midgut crypts. Here we developed an organ culture method that initially involved incubating the B. insularis crypts in osmotically balanced insect cell culture medium. This approach enabled the crypt-inhabiting Burkholderia spp. to make a transition to an in vitro environment and to be subsequently cultured in standard bacteriological media. Examinations using ribotyping and BOX-PCR fingerprinting techniques demonstrated that most in vitro-produced bacterial cultures were identical to their crypt-inhabiting Burkholderia counterparts. Genomic and physiological analyses of gut-symbiotic Burkholderia spp. that were isolated individually from two separate B. insularis laboratory colonies revealed that the majority of individual insects harbored a single Burkholderia ribotype in their midgut crypts, resulting in a diverse Burkholderia community within each colony. The diversity was also exhibited by the phenotypic and genotypic characteristics of these Burkholderia cultures. Access to cultures of crypt-inhabiting bacteria provides an opportunity to investigate the interaction between symbiotic Burkholderia spp. and the B. insularis host. Furthermore, the culturing method provides an alternative strategy for establishing in vitro cultures of other fastidious insect-associated bacterial symbionts. An organ culture method was developed to establish in vitro cultures of a fastidious Burkholderia symbiont associated with the midgut crypts of the Southern chinch bug, Blissus insularis The identities of the resulting cultures were confirmed using the genomic and physiological features of Burkholderia cultures isolated from B. insularis crypts, showing that host insects maintained the diversity of Burkholderia spp. over multiple generations. The availability of characterized gut-symbiotic Burkholderia cultures provides

  5. The in vitro tolerant persister population in Burkholderia pseudomallei is altered by environmental factors

    Directory of Open Access Journals (Sweden)

    William Charles Nierman

    2015-12-01

    Full Text Available Bacterial persistence due to antibiotic tolerance is a critical aspect of antibiotic treatment failure, disease latency, and chronic or reemergent infections. The levels of persisters is especially notable for the opportunistic Gram-negative pathogens from the Burkholderia and Pseudomonas genera. We examined the rate of drug tolerant persisters in Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia cepacia complex organisms, and Pseudomonas aeruginosa at mid-log growth in LB broth culture. We found that a fraction of the antibiotic-sensitive cells from every species were tolerant to a 24 hour high-dose antibiotic challenge. All tested Burkholderia strains demonstrated a drug tolerant persister population at a rate that was at least 100 – 500 times higher than P. aeruginosa. When challenged with a 10X minimum inhibitory concentration 24 hour exposure to five different antibiotics with different modes of action we found that in B. pseudomallei Bp82 the same fraction of persisters in the bacterial population was revealed when using 4 of them. This observation suggests that our assay is detecting a single homogeneous persister population. Persistence in B. pseudomallei Bp82 was highly dependent on growth stage, with a surprisingly high persister fraction of >64% of the late stationary phase cells being antibiotic tolerant. Adaptation of B. pseudomallei to distilled water storage resulted in a population of drug tolerant cells up to 100% of the non-drug-challenged viable cell count. Cultivation of B. pseudomallei with a sub-inhibitory concentration of several antibiotics resulted in altered persister fractions within the population relative to cultures lacking the antibiotic. Our study provides insight into the sensitivity of the persister fraction within the population of B. pseudomallei due to environmental variables and suggests a lack of diversity within the persister population.

  6. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility.

    Science.gov (United States)

    Benanti, Erin L; Nguyen, Catherine M; Welch, Matthew D

    2015-04-09

    Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Development and validation of Burkholderia pseudomallei-specific real-time PCR assays for clinical, environmental or forensic detection applications.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    Full Text Available The bacterium Burkholderia pseudomallei causes melioidosis, a rare but serious illness that can be fatal if untreated or misdiagnosed. Species-specific PCR assays provide a technically simple method for differentiating B. pseudomallei from near-neighbor species. However, substantial genetic diversity and high levels of recombination within this species reduce the likelihood that molecular signatures will differentiate all B. pseudomallei from other Burkholderiaceae. Currently available molecular assays for B. pseudomallei detection lack rigorous validation across large in silico datasets and isolate collections to test for specificity, and none have been subjected to stringent quality control criteria (accuracy, precision, selectivity, limit of quantitation (LoQ, limit of detection (LoD, linearity, ruggedness and robustness to determine their suitability for environmental, clinical or forensic investigations. In this study, we developed two novel B. pseudomallei specific assays, 122018 and 266152, using a dual-probe approach to differentiate B. pseudomallei from B. thailandensis, B. oklahomensis and B. thailandensis-like species; other species failed to amplify. Species specificity was validated across a large DNA panel (>2,300 samples comprising Burkholderia spp. and non-Burkholderia bacterial and fungal species of clinical and environmental relevance. Comparison of assay specificity to two previously published B. pseudomallei-specific assays, BurkDiff and TTS1, demonstrated comparable performance of all assays, providing between 99.7 and 100% specificity against our isolate panel. Last, we subjected 122018 and 266152 to rigorous quality control analyses, thus providing quantitative limits of assay performance. Using B. pseudomallei as a model, our study provides a framework for comprehensive quantitative validation of molecular assays and provides additional, highly validated B. pseudomallei assays for the scientific research community.

  8. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex.

    Science.gov (United States)

    Vanlaere, Elke; Lipuma, John J; Baldwin, Adam; Henry, Deborah; De Brandt, Evie; Mahenthiralingam, Eshwar; Speert, David; Dowson, Chris; Vandamme, Peter

    2008-07-01

    The taxonomic position of five recA gene clusters of Burkholderia cepacia complex (Bcc) isolates was determined using a polyphasic taxonomic approach. The levels of 16S rRNA and recA gene sequence similarity, multilocus sequence typing (MLST) data and the intermediate DNA-DNA binding values demonstrated that these five clusters represented five novel species within the Bcc. Biochemical identification of these species is difficult, as is the case for most Bcc species. However, identification of these novel species can be accomplished through recA gene sequence analysis, MLST and BOX-PCR profiling and by recA RFLP analysis. For diagnostic laboratories, recA gene sequence analysis offers the best combination of accuracy and simplicity. Based on these results, we propose five novel Bcc species, Burkholderia latens sp. nov. (type strain FIRENZE 3(T) =LMG 24064(T) =CCUG 54555(T)), Burkholderia diffusa sp. nov. (type strain AU1075(T) =LMG 24065(T) =CCUG 54558(T)), Burkholderia arboris sp. nov. (type strain ES0263A(T) =LMG 24066(T) =CCUG 54561(T)), Burkholderia seminalis sp. nov. (type strain AU0475(T) =LMG 24067(T) =CCUG 54564(T)) and Burkholderia metallica sp. nov. (type strain AU0553(T) =LMG 24068(T) =CCUG 54567(T)). In the present study, we also demonstrate that Burkholderia ubonensis should be considered a member of the Bcc.

  9. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    Science.gov (United States)

    Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter

    2016-01-01

    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG

  10. Urate-responsive MarR homologs from Burkholderia.

    Science.gov (United States)

    Grove, Anne

    2010-11-01

    The genus Burkholderia includes a large number of species, some of which are serious human pathogens. A genomic locus is conserved that consists of a gene encoding a member of the multiple antibiotic resistance regulator (MarR) family of transcriptional regulators and a divergently oriented gene encoding a major facilitator transport protein (MFTP), a predicted membrane efflux pump. Homology modeling shows that the MarR homolog conserves the location of four conserved amino acid residues previously shown to bind the ligand urate in the Deinococcus radiodurans-encoded MarR homolog HucR. Analysis of the B. thailandensis-encoded homolog shows that its specific DNA binding to two adjacent sites in the intergenic region between the genes encoding the transcription factor and the MFTP is attenuated by urate and to a lesser extent by xanthine and hypoxanthine, but not by adenine or the product of urate degradation, allantoin. These data suggest the existence of a four amino acid urate-binding signature in a subset of MarR homologs, and that homologs bearing this signature will respond to the ligand urate by attenuated DNA binding. The location of binding sites predicts regulation of the MFTP and prompts a proposal to name the cognate transcription factor MftR (major facilitator transport regulator).

  11. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut.

    Science.gov (United States)

    Lee, Jun Beom; Byeon, Jin Hee; Jang, Ho Am; Kim, Jiyeun Kate; Yoo, Jin Wook; Kikuchi, Yoshitomo; Lee, Bok Luel

    2015-09-14

    We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies

    Directory of Open Access Journals (Sweden)

    Sarria Saul H

    2005-12-01

    Full Text Available Abstract Background Two closely related species Burkholderia mallei (Bm and Burkholderia pseudomallei (Bp are serious human health hazards and are potential bio-warfare agents, whereas another closely related species Burkholderia thailandensis (Bt is a non-pathogenic saprophyte. To investigate the genomic factors resulting in such a dramatic difference, we first identified the Bm genes responsive to the mouse environment, and then examined the divergence of these genes in Bp and Bt. Results The genes down-expressed, which largely encode cell growth-related proteins, are conserved well in all three species, whereas those up-expressed, which include potential virulence genes, are less well conserved or absent notably in Bt. However, a substantial number of up-expressed genes is still conserved in Bt. Bm and Bp further diverged from each other in a small number of genes resulting from unit number changes in simple sequence repeats (ssr in the homologs. Conclusion Our data suggest that divergent evolution of a small set of genes, rather than acquisition or loss of pathogenic islands, is associated with the development of different life styles in these bacteria of similar genomic contents. Further divergence between Bm and Bp mediated by ssr changes may reflect different adaptive processes of Bm and Bp fine-tuning into their host environments.

  13. Functional characterisation of Burkholderia pseudomallei biotin protein ligase: A toolkit for anti-melioidosis drug development.

    Science.gov (United States)

    Bond, Thomas E H; Sorenson, Alanna E; Schaeffer, Patrick M

    2017-06-01

    Burkholderia pseudomallei (Bp) is the causative agent of melioidosis. The bacterium is responsible for 20% of community-acquired sepsis cases and 40% of sepsis-related mortalities in northeast Thailand, and is intrinsically resistant to aminoglycosides, macrolides, rifamycins, cephalosporins, and nonureidopenicillins. There is no vaccine and its diagnosis is problematic. Biotin protein ligase (BirA) which is essential for fatty acid synthesis has been proposed as a drug target in bacteria. Very few bacterial BirA have been characterized, and a better understanding of these enzymes is necessary to further assess their value as drug targets. BirA within the Burkholderia genus have not yet been investigated. We present for the first time the cloning, expression, purification and functional characterisation of the putative Bp BirA and orthologous B. thailandensis (Bt) biotin carboxyl carrier protein (BCCP) substrate. A GFP-tagged Bp BirA was produced and applied for the development of a high-throughput (HT) assay based on our differential scanning fluorimetry of GFP-tagged proteins (DSF-GTP) principle as well as an electrophoretic mobility shift assay. Our biochemical data in combination with the new HT DSF-GTP and biotinylation activity assay could facilitate future drug screening efforts against this drug-resistant organism. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. An allelic exchange system for compliant genetic manipulation of the select agents Burkholderia pseudomallei and Burkholderia mallei.

    Science.gov (United States)

    Hamad, Mohamad A; Zajdowicz, Sheryl L; Holmes, Randall K; Voskuil, Martin I

    2009-02-01

    Burkholderia pseudomallei and B. mallei are Gram-negative bacterial pathogens that cause melioidosis in humans and glanders in horses, respectively. Both bacteria are classified as category B select agents in the United States. Due to strict select-agent regulations, the number of antibiotic selection markers approved for use in these bacteria is greatly limited. Approved markers for B. pseudomallei include genes encoding resistance to kanamycin (Km), gentamicin (Gm), and zeocin (Zeo); however, wild type B. pseudomallei is intrinsically resistant to these antibiotics. Selection markers for B. mallei are limited to Km and Zeo resistance genes. Additionally, there are few well developed counter-selection markers for use in Burkholderia. The use of SacB as a counter-selection method has been of limited success due to the presence of endogenous sacBC genes in the genomes of B. pseudomallei and B. mallei. These impediments have greatly hampered the genetic manipulation of B. pseudomallei and B. mallei and currently few reliable tools for the genetic manipulation of Burkholderia exist. To expand the repertoire of genetic tools for use in Burkholderia, we developed the suicide plasmid pMo130, which allows for the compliant genetic manipulation of the select agents B. pseudomallei and B. mallei using allelic exchange. pMo130 harbors an aphA gene which allows for Km selection, the reporter gene xylE, which allows for reliable visual detection of Burkholderia transformants, and carries a modified sacB gene that allows for the resolution of co-integrants. We employed this system to generate multiple unmarked and in-frame mutants in B. pseudomallei, and one mutant in B. mallei. This vector significantly expands the number of available tools that are select-agent compliant for the genetic manipulation of B. pseudomallei and B. mallei.

  15. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources

    National Research Council Canada - National Science Library

    De Smet, Birgit; Mayo, Mark; Peeters, Charlotte; Zlosnik, James E A; Spilker, Theodore; Hird, Trevor J; LiPuma, John J; Kidd, Timothy J; Kaestli, Mirjam; Ginther, Jennifer L; Wagner, David M; Keim, Paul; Bell, Scott C; Jacobs, Jan A; Currie, Bart J; Vandamme, Peter

    2015-01-01

    Nine Burkholderia cepacia complex (Bcc) bacteria were isolated during environmental surveys for the ecological niche of Burkholderia pseudomallei, the aetiological agent of melioidosis, in the Northern Territory of Australia...

  16. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil

    National Research Council Canada - National Science Library

    Lee, Jae-Chan; Whang, Kyung-Sook

    2015-01-01

    .... On the basis of 16S rRNA gene sequence analysis, the three strains were found to belong to the genus Burkholderia, showing the closest phylogenetic similarity to Burkholderia diazotrophica JPY461(T) (97.2-97.7...

  17. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    Science.gov (United States)

    Burtnick, Mary N; Brett, Paul J

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  18. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    Directory of Open Access Journals (Sweden)

    Mary N Burtnick

    Full Text Available Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1 expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G or minimal media plus casamino acids (M9CG facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  19. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc

    Science.gov (United States)

    Burtnick, Mary N.; Brett, Paul J.

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc. PMID:24146925

  20. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis.

    Science.gov (United States)

    Galyov, Edouard E; Brett, Paul J; DeShazer, David

    2010-01-01

    Burkholderia pseudomallei and Burkholderia mallei are closely related gram-negative bacteria that can cause serious diseases in humans and animals. This review summarizes the current and rapidly expanding knowledge on the specific virulence factors employed by these pathogens and their roles in the pathogenesis of melioidosis and glanders. In particular, the contributions of recently identified virulence factors are described in the context of the intracellular lifestyle of these pathogens. Throughout this review, unique and shared virulence features of B. pseudomallei and B. mallei are discussed.

  1. Non-obligate predatory bacterium Burkholderia casidae and uses thereof

    OpenAIRE

    2001-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  2. Non-obligate predatory bacterium burkholderia casidaeand uses thereof

    OpenAIRE

    1998-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  3. Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae).

    Science.gov (United States)

    Takeshita, Kazutaka; Matsuura, Yu; Itoh, Hideomi; Navarro, Ronald; Hori, Tomoyuki; Sone, Teruo; Kamagata, Yoichi; Mergaert, Peter; Kikuchi, Yoshitomo

    2015-01-01

    A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the "plant-associated beneficial and environmental (PBE)" group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution.

  4. Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae)

    Science.gov (United States)

    Takeshita, Kazutaka; Matsuura, Yu; Itoh, Hideomi; Navarro, Ronald; Hori, Tomoyuki; Sone, Teruo; Kamagata, Yoichi; Mergaert, Peter; Kikuchi, Yoshitomo

    2015-01-01

    A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the “plant-associated beneficial and environmental (PBE)” group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution. PMID:26657305

  5. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    Science.gov (United States)

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  6. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis.

    Science.gov (United States)

    Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M; Showmaker, Kurt C; Smith, Leif; Peterson, Daniel G; Lu, Shien

    2016-06-01

    Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14

  7. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans.

    Science.gov (United States)

    Kost, Thomas; Stopnisek, Nejc; Agnoli, Kirsty; Eberl, Leo; Weisskopf, Laure

    2014-01-01

    Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii) or human opportunistic pathogens (Burkholderia cepacia complex strains) were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered Δoxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities.

  8. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei.

    Science.gov (United States)

    Boottanun, Patcharaporn; Potisap, Chotima; Hurdle, Julian G; Sermswan, Rasana W

    2017-12-01

    Bacillus species are Gram-positive bacteria found in abundance in nature and their secondary metabolites were found to possess various potential activities, notably antimicrobial. In this study, Bacillus amyloliquefaciens N2-4 and N3-8 were isolated from soil and their metabolites could kill Burkholderia pseudomallei, a Gram-negative pathogenic bacterium also found in soil in its endemic areas. Moreover, the metabolites were able to kill drug resistant isolates of B. pseudomallei and also inhibit other pathogenic bacteria such as Staphylococcus aureus, Escherichia coli and Acinetobacter baumannii but not the non-pathogenic Burkholderia thailandensis, which is closely related to B. pseudomallei. Since the antimicrobial activity of N3-8 was not partially decreased or abolished when treated with proteolytic enzymes or autoclaved, but N2-4 was, these two strains should have produced different compounds. The N3-8 metabolites with antimicrobial activity consisted of both protein and non-protein compounds. The inhibition spectrum of the precipitated proteins compared to the culture supernatant indicated a possible synergistic effect of the non-protein and peptide compounds of N3-8 isolates against other pathogens. When either N2-4 or N3-8 isolates was co-cultured with B. pseudomallei the numbers of the bacteria decreased by 5 log10 within 72 h. Further purification and characterization of the metabolites is required for future use of the bacteria or their metabolites as biological controls of B. pseudomallei in the environment or for development as new drugs for problematic pathogenic bacteria.

  9. Production and characterization of chimeric monoclonal antibodies against Burkholderia pseudomallei and B. mallei using the DHFR expression system.

    Directory of Open Access Journals (Sweden)

    Hyung-Yong Kim

    Full Text Available Burkholderia pseudomallei (BP and B. mallei (BM are closely related gram-negative, facultative anaerobic bacteria which cause life-threatening melioidosis in human and glanders in horse, respectively. Our laboratory has previously generated and characterized more than 100 mouse monoclonal antibodies (MAbs against BP and BM, according to in vitro and in vivo assay. In this study, 3 MAbs (BP7 10B11, BP7 2C6, and BP1 7F7 were selected to develop into chimeric mouse-human monoclonal antibodies (cMAbs against BP and/or BM. For the stable production of cMAbs, we constructed 4 major different vector systems with a dihydrofolate reductase (DHFR amplification marker, and optimized transfection/selection conditions in mammalian host cells with the single-gene and/or double-gene expression system. These 3 cMAbs were stably produced by the DHFR double mutant Chinese hamster ovarian (CHO-DG44 cells. By ELISA and Western blot analysis using whole bacterial antigens treated by heat (65°C/90 min, sodium periodate, and proteinase K, the cMAb BP7 10B11 (cMAb CK1 reacted with glycoproteins (34, 38, 48 kDa in BP; 28, 38, 48 kDa in BM. The cMAb BP7 2C6 (cMAb CK2 recognized surface-capsule antigens with molecular sizes of 38 to 52 kDa, and 200 kDa in BM. The cMAb CK2 was weakly reactive to 14∼28, 200 kDa antigens in BP. The cMAb BP1 7F7 (cMAb CK3 reacted with lipopolysaccharides (38∼52 kDa in BP; 38∼60 kDa in B. thailandensis. Western blot results with the outer surface antigens of the 3 Burkholderia species were consistent with results with the whole Burkholderia cell antigens, suggesting that these immunodominant antigens reacting with the 3 cMAbs were primarily present on the outer surface of the Burkholderia species. These 3 cMAbs would be useful for analyzing the role of the major outer surface antigens in Burkholderia infection.

  10. Production and characterization of chimeric monoclonal antibodies against Burkholderia pseudomallei and B. mallei using the DHFR expression system.

    Science.gov (United States)

    Kim, Hyung-Yong; Tsai, Shien; Lo, Shyh-Ching; Wear, Douglas J; Izadjoo, Mina J

    2011-05-09

    Burkholderia pseudomallei (BP) and B. mallei (BM) are closely related gram-negative, facultative anaerobic bacteria which cause life-threatening melioidosis in human and glanders in horse, respectively. Our laboratory has previously generated and characterized more than 100 mouse monoclonal antibodies (MAbs) against BP and BM, according to in vitro and in vivo assay. In this study, 3 MAbs (BP7 10B11, BP7 2C6, and BP1 7F7) were selected to develop into chimeric mouse-human monoclonal antibodies (cMAbs) against BP and/or BM. For the stable production of cMAbs, we constructed 4 major different vector systems with a dihydrofolate reductase (DHFR) amplification marker, and optimized transfection/selection conditions in mammalian host cells with the single-gene and/or double-gene expression system. These 3 cMAbs were stably produced by the DHFR double mutant Chinese hamster ovarian (CHO)-DG44 cells. By ELISA and Western blot analysis using whole bacterial antigens treated by heat (65°C/90 min), sodium periodate, and proteinase K, the cMAb BP7 10B11 (cMAb CK1) reacted with glycoproteins (34, 38, 48 kDa in BP; 28, 38, 48 kDa in BM). The cMAb BP7 2C6 (cMAb CK2) recognized surface-capsule antigens with molecular sizes of 38 to 52 kDa, and 200 kDa in BM. The cMAb CK2 was weakly reactive to 14∼28, 200 kDa antigens in BP. The cMAb BP1 7F7 (cMAb CK3) reacted with lipopolysaccharides (38∼52 kDa in BP; 38∼60 kDa in B. thailandensis). Western blot results with the outer surface antigens of the 3 Burkholderia species were consistent with results with the whole Burkholderia cell antigens, suggesting that these immunodominant antigens reacting with the 3 cMAbs were primarily present on the outer surface of the Burkholderia species. These 3 cMAbs would be useful for analyzing the role of the major outer surface antigens in Burkholderia infection.

  11. Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil.

    Science.gov (United States)

    Vandamme, Peter; De Brandt, Evie; Houf, Kurt; Salles, Joana Falcão; Dirk van Elsas, Jan; Spilker, Theodore; Lipuma, John J

    2013-12-01

    Analysis of partial gyrB gene sequences revealed six taxa in a group of 17 Burkholderia glathei-like isolates which were further examined by (GTG)5-PCR fingerprinting, 16S rRNA gene sequence analysis, DNA-DNA hybridizations, determination of the DNA G+C content, whole-cell fatty acid analysis and an analysis of cell and colony morphology and more than 180 biochemical characteristics. The results demonstrated that one taxon consisting of three human clinical isolates represented Burkholderia zhejiangensis, a recently described methyl-parathion-degrading bacterium isolated from a wastewater-treatment system in China. The remaining taxa represented five novel species isolated from soil or rhizosphere soil samples, and could be distinguished by both genotypic and phenotypic characteristics. We therefore propose to formally classify these bacteria as Burkholderia humi sp. nov. (type strain, LMG 22934(T) = CCUG 63059(T)), Burkholderia choica sp. nov. (type strain, LMG 22940(T) = CCUG 63063(T)), Burkholderia telluris sp. nov. (type strain, LMG 22936(T) = CCUG 63060(T)), Burkholderia udeis sp. nov. (type strain, LMG 27134(T) = CCUG 63061(T)) and Burkholderia terrestris sp. nov. (type strain, LMG 22937(T) = CCUG 63062(T)).

  12. The symbiotic role of O-antigen of Burkholderia symbiont in association with host Riptortus pedestris.

    Science.gov (United States)

    Kim, Jiyeun Kate; Park, Ha Young; Lee, Bok Luel

    2016-07-01

    Riptortus pedestris harboring Burkholderia symbiont is a useful symbiosis model to study the molecular interactions between insects and bacteria. We recently reported that the lipopolysaccharide O-antigen is absent in the Burkholderia symbionts isolated from Riptortus guts. Here, we investigated the symbiotic role of O-antigen comprehensively in the Riptortus-Burkholderia model. Firstly, Burkholderia mutant strains deficient of O-antigen biosynthesis genes were generated and confirmed for their different patterns of the lipopolysaccharide by electrophoretic analysis. The O-antigen-deficient mutant strains initially exhibited a reduction of infectivity, having significantly lower level of symbiont population at the second-instar stage. However, both the wild-type and O-antigen mutant symbionts exhibited a similar level of symbiont population from the third-instar stage, indicating that the O-antigen deficiency did not affect the bacterial persistence in the host midgut. Taken together, we showed that the lipopolysaccharide O-antigen of gut symbiont plays an exclusive role in the initial symbiotic association. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Burkholderia bcpAIOB Genes Define Unique Classes of Two-Partner Secretion and Contact Dependent Growth Inhibition Systems

    Science.gov (United States)

    Anderson, Melissa S.; Garcia, Erin C.; Cotter, Peggy A.

    2012-01-01

    Microbes have evolved many strategies to adapt to changes in environmental conditions and population structures, including cooperation and competition. One apparently competitive mechanism is contact dependent growth inhibition (CDI). Identified in Escherichia coli, CDI is mediated by Two–Partner Secretion (TPS) pathway proteins, CdiA and CdiB. Upon cell contact, the toxic C-terminus of the TpsA family member CdiA, called the CdiA-CT, inhibits the growth of CDI− bacteria. CDI+ bacteria are protected from autoinhibition by an immunity protein, CdiI. Bioinformatic analyses indicate that CDI systems are widespread amongst α, β, and γ proteobacteria and that the CdiA-CTs and CdiI proteins are highly variable. CdiI proteins protect against CDI in an allele-specific manner. Here we identify predicted CDI system-encoding loci in species of Burkholderia, Ralstonia and Cupriavidus, named bcpAIOB, that are distinguished from previously-described CDI systems by gene order and the presence of a small ORF, bcpO, located 5′ to the gene encoding the TpsB family member. A requirement for bcpO in function of BcpA (the TpsA family member) was demonstrated, indicating that bcpAIOB define a novel class of TPS system. Using fluorescence microscopy and flow cytometry, we show that these genes are expressed in a probabilistic manner during culture of Burkholderia thailandensis in liquid medium. The bcpAIOB genes and extracellular DNA were required for autoaggregation and adherence to an abiotic surface, suggesting that CDI is required for biofilm formation, an activity not previously attributed to CDI. By contrast to what has been observed in E. coli, the B. thailandensis bcpAIOB genes only mediated interbacterial competition on a solid surface. Competition occurred in a defined spatiotemporal manner and was abrogated by allele-specific immunity. Our data indicate that the bcpAIOB genes encode distinct classes of CDI and TPS systems that appear to function in

  14. The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems.

    Science.gov (United States)

    Anderson, Melissa S; Garcia, Erin C; Cotter, Peggy A

    2012-01-01

    Microbes have evolved many strategies to adapt to changes in environmental conditions and population structures, including cooperation and competition. One apparently competitive mechanism is contact dependent growth inhibition (CDI). Identified in Escherichia coli, CDI is mediated by Two-Partner Secretion (TPS) pathway proteins, CdiA and CdiB. Upon cell contact, the toxic C-terminus of the TpsA family member CdiA, called the CdiA-CT, inhibits the growth of CDI(-) bacteria. CDI(+) bacteria are protected from autoinhibition by an immunity protein, CdiI. Bioinformatic analyses indicate that CDI systems are widespread amongst α, β, and γ proteobacteria and that the CdiA-CTs and CdiI proteins are highly variable. CdiI proteins protect against CDI in an allele-specific manner. Here we identify predicted CDI system-encoding loci in species of Burkholderia, Ralstonia and Cupriavidus, named bcpAIOB, that are distinguished from previously-described CDI systems by gene order and the presence of a small ORF, bcpO, located 5' to the gene encoding the TpsB family member. A requirement for bcpO in function of BcpA (the TpsA family member) was demonstrated, indicating that bcpAIOB define a novel class of TPS system. Using fluorescence microscopy and flow cytometry, we show that these genes are expressed in a probabilistic manner during culture of Burkholderia thailandensis in liquid medium. The bcpAIOB genes and extracellular DNA were required for autoaggregation and adherence to an abiotic surface, suggesting that CDI is required for biofilm formation, an activity not previously attributed to CDI. By contrast to what has been observed in E. coli, the B. thailandensis bcpAIOB genes only mediated interbacterial competition on a solid surface. Competition occurred in a defined spatiotemporal manner and was abrogated by allele-specific immunity. Our data indicate that the bcpAIOB genes encode distinct classes of CDI and TPS systems that appear to function in sociomicrobiological

  15. In Vitro Susceptibilities of Burkholderia mallei in Comparison to Those of Other Pathogenic Burkholderia spp.

    OpenAIRE

    Kenny, D. J.; Russell, P.; Rogers, D.; Eley, S M; Titball, R W

    1999-01-01

    The in vitro antimicrobial susceptibilities of isolates of Burkholderia mallei to 16 antibiotics were assessed and compared with the susceptibilities of Burkholderia pseudomallei and Burkholderia cepacia. The antibiotic susceptibility profile of B. mallei resembled that of B. pseudomallei more closely than that of B. cepacia, which corresponds to their similarities in terms of biochemistry, antigenicity, and pathogenicity. Ceftazidime, imipenem, doxycycline, and ciprofloxacin were active agai...

  16. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    OpenAIRE

    Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Vaughn S Cooper; Vandamme, Peter

    2016-01-01

    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei Glade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extende...

  17. Development of vaccines against burkholderia pseudomallei

    National Research Council Canada - National Science Library

    Patel, Natasha; Conejero, Laura; De Reynal, Melanie; Easton, Anna; Bancroft, Gregory J; Titball, Richard W

    2011-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium which is the causative agent of melioidosis, a disease which carries a high mortality and morbidity rate in endemic areas of South East Asia and Northern Australia...

  18. PPO zoekt naar mogelijkheden aanpak Burkholderia

    NARCIS (Netherlands)

    Dwarswaard, A.; Dam, van M.F.N.

    2014-01-01

    In de bloemen- en knollenteelt van gladiool komt de afgelopen decennia met enige regelmaat de bacterieziekte Burkholderia voor. Vorig jaar startte PPO met een onderzoek naar de mogelijkheden om deze ziekte aan te pakken. Een tussenstand.

  19. φX216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity.

    Science.gov (United States)

    Kvitko, Brian H; Cox, Christopher R; DeShazer, David; Johnson, Shannon L; Voorhees, Kent J; Schweizer, Herbert P

    2012-12-07

    Burkholderia pseudomallei and B. mallei are closely related Category B Select Agents of bioterrorism and the causative agents of the diseases melioidosis and glanders, respectively. Rapid phage-based diagnostic tools would greatly benefit early recognition and treatment of these diseases. There is extensive strain-to-strain variation in B. pseudomallei genome content due in part to the presence or absence of integrated prophages. Several phages have previously been isolated from B. pseudomallei lysogens, for example φK96243, φ1026b and φ52237. We have isolated a P2-like bacteriophage, φX216, which infects 78% of all B. pseudomallei strains tested. φX216 also infects B. mallei, but not other Burkholderia species, including the closely related B. thailandensis and B. oklahomensis. The nature of the φX216 host receptor remains unclear but evidence indicates that in B. mallei φX216 uses lipopolysaccharide O-antigen but a different receptor in B. pseudomallei. The 37,637 bp genome of φX216 encodes 47 predicted open reading frames and shares 99.8% pairwise identity and an identical strain host range with bacteriophage φ52237. Closely related P2-like prophages appear to be widely distributed among B. pseudomallei strains but both φX216 and φ52237 readily infect prophage carrying strains. The broad strain infectivity and high specificity for B. pseudomallei and B. mallei indicate that φX216 will provide a good platform for the development of phage-based diagnostics for these bacteria.

  20. φX216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity

    Directory of Open Access Journals (Sweden)

    Kvitko Brian H

    2012-12-01

    Full Text Available Abstract Background Burkholderia pseudomallei and B. mallei are closely related Category B Select Agents of bioterrorism and the causative agents of the diseases melioidosis and glanders, respectively. Rapid phage-based diagnostic tools would greatly benefit early recognition and treatment of these diseases. There is extensive strain-to-strain variation in B. pseudomallei genome content due in part to the presence or absence of integrated prophages. Several phages have previously been isolated from B. pseudomallei lysogens, for example φK96243, φ1026b and φ52237. Results We have isolated a P2-like bacteriophage, φX216, which infects 78% of all B. pseudomallei strains tested. φX216 also infects B. mallei, but not other Burkholderia species, including the closely related B. thailandensis and B. oklahomensis. The nature of the φX216 host receptor remains unclear but evidence indicates that in B. mallei φX216 uses lipopolysaccharide O-antigen but a different receptor in B. pseudomallei. The 37,637 bp genome of φX216 encodes 47 predicted open reading frames and shares 99.8% pairwise identity and an identical strain host range with bacteriophage φ52237. Closely related P2-like prophages appear to be widely distributed among B. pseudomallei strains but both φX216 and φ52237 readily infect prophage carrying strains. Conclusions The broad strain infectivity and high specificity for B. pseudomallei and B. mallei indicate that φX216 will provide a good platform for the development of phage-based diagnostics for these bacteria.

  1. Molecular Procedure for Rapid Detection of Burkholderia mallei and Burkholderia pseudomallei

    OpenAIRE

    Bauernfeind, Adolf; Roller, Carsten; Meyer, Detlef; Jungwirth, Renate; Schneider, Ines

    1998-01-01

    A PCR procedure for the discrimination of Burkholderia mallei and Burkholderia pseudomallei was developed. It is based on the nucleotide difference T 2143 C (T versus C at position 2143) between B. mallei and B. pseudomallei detected in the 23S rDNA sequences. In comparison with conventional methods the procedure allows more rapid identification at reduced risk for infection of laboratory personnel.

  2. Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    Heiss, Christian; Burtnick, Mary N.; Rosemary A Roberts; Black, Ian; Azadi, Parastoo; Brett, Paul J

    2013-01-01

    O-Polysaccharides (OPS) were isolated from purified Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharides by mild-acid hydrolysis and gel-permeation chromatography. 1-D and 2-D 1H and 13C NMR spectroscopy experiments revealed that the OPS antigens were unbranched heteropolymers with the following structures:

  3. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil.

    Science.gov (United States)

    Lee, Jae-Chan; Whang, Kyung-Sook

    2015-09-01

    Strains Y-12(T) and Y-47(T) were isolated from mountain forest soil and strain WR43(T) was isolated from rhizosphere soil, at Daejeon, Korea. The three strains grew at 10-55 °C (optimal growth at 28-30 °C), at pH 3.0-8.0 (optimal growth at pH 6.0) and in the presence of 0-4.0% (w/v) NaCl, growing optimally in the absence of added NaCl. On the basis of 16S rRNA gene sequence analysis, the three strains were found to belong to the genus Burkholderia, showing the closest phylogenetic similarity to Burkholderia diazotrophica JPY461(T) (97.2-97.7%); the similarity between the three sequences ranged from 98.3 to 98.7%. Additionally, the three strains formed a distinct group in phylogenetic trees based on the housekeeping genes recA and gyrB. The predominant ubiquinone was Q-8, the major fatty acids were C16 : 0 and C17  : 0 cyclo and the DNA G+C content of the novel isolates was 61.6-64.4 mol%. DNA-DNA relatedness among the three strains and the type strains of the closest species of the genus Burkholderia was less than 50%. On the basis of 16S rRNA, recA and gyrB gene sequence similarities, chemotaxonomic and phenotypic data, the three strains represent three novel species within the genus Burkholderia, for which the names Burkholderia humisilvae sp. nov. (type strain Y-12(T)= KACC 17601(T) = NBRC 109933(T) = NCAIM B 02543(T)), Burkholderia solisilvae sp. nov. (type strain Y-47(T) = KACC 17602(T)= NBRC 109934(T) = NCAIM B 02539(T)) and Burkholderia rhizosphaerae sp. nov. (type strain WR43(T) = KACC 17603(T) = NBRC 109935(T) = NCAIM B 02541(T)) are proposed.

  4. Characterization of Burkholderia cepacia genomovar I as a potential ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Burkholderia cepacia complex (Bcc) consists of nine discrete genomic species ... evaluated by using dual culture and poison food tests. Genotype ..... population of Burkholderia cepacia: effect of seed treatment on disease ...

  5. PCR detection of Burkholderia multivorans in water and soil samples

    NARCIS (Netherlands)

    Peeters, C. (Charlotte); Daenekindt, S. (Stijn); A.M. Vandamme (Anne Mieke)

    2016-01-01

    textabstractBackground: Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly

  6. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  7. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Burkholderia cepacia complex. 725.1075... Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined as...

  8. Burkholderia cordobensis sp. nov., from agricultural soils.

    Science.gov (United States)

    Draghi, Walter O; Peeters, Charlotte; Cnockaert, Margo; Snauwaert, Cindy; Wall, Luis G; Zorreguieta, Angeles; Vandamme, Peter

    2014-06-01

    Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain. © 2014 IUMS.

  9. Burkholderia humi sp nov., Burkholderia choica sp nov., Burkholderia telluris sp nov., Burkholderia terrestris sp nov and Burkholderia udeis sp nov. : Burkholderia glathei-like bacteria from soil and rhizosphere soil

    NARCIS (Netherlands)

    Vandamme, Peter; De Brandt, Evie; Houf, Kurt; Salles, Joana Falcao; van Elsas, Jan Dirk; Spilker, Theodore; LiPuma, John J.

    2013-01-01

    Analysis of partial gyrB gene sequences revealed six taxa in a group of 17 Burkholderia glathei-like isolates which were further examined by (GTG)(5)-PCR fingerprinting, 16S rRNA gene sequence analysis, DNA-DNA hybridizations, determination of the DNA G+C content, whole-cell fatty acid analysis and

  10. Symbiotic factors in Burkholderia essential for establishing an association with the bean bug, Riptortus pedestris.

    Science.gov (United States)

    Kim, Jiyeun Kate; Lee, Bok Luel

    2015-01-01

    Symbiotic bacteria are common in insects and intimately affect the various aspects of insect host biology. In a number of insect symbiosis models, it has been possible to elucidate the effects of the symbiont on host biology, whereas there is a limited understanding of the impact of the association on the bacterial symbiont, mainly due to the difficulty of cultivating insect symbionts in vitro. Furthermore, the molecular features that determine the establishment and persistence of the symbionts in their host (i.e., symbiotic factors) have remained elusive. However, the recently established model, the bean bug Riptortus pedestris, provides a good opportunity to study bacterial symbiotic factors at a molecular level through their cultivable symbionts. Bean bugs acquire genus Burkholderia cells from the environment and harbor them as gut symbionts in the specialized posterior midgut. The genome of the Burkholderia symbiont was sequenced, and the genomic information was used to generate genetically manipulated Burkholderia symbiont strains. Using mutant symbionts, we identified several novel symbiotic factors necessary for establishing a successful association with the host gut. In this review, these symbiotic factors are classified into three categories based on the colonization dynamics of the mutant symbiont strains: initiation, accommodation, and persistence factors. In addition, the molecular characteristics of the symbiotic factors are described. These newly identified symbiotic factors and on-going studies of the Riptortus-Burkholderia symbiosis are expected to contribute to the understanding of the molecular cross-talk between insects and bacterial symbionts that are of ecological and evolutionary importance. © 2014 Wiley Periodicals, Inc.

  11. Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei.

    Science.gov (United States)

    Duval, Brea D; Elrod, Mindy G; Gee, Jay E; Chantratita, Narisara; Tandhavanant, Sarunporn; Limmathurotsakul, Direk; Hoffmaster, Alex R

    2014-06-01

    Cases of melioidosis and glanders are rare in the United States, but the etiologic agents of each disease (Burkholderia pseudomallei and Burkholderia mallei, respectively) are classified as Tier 1 select agents because of concerns about their potential use as bioterrorism agents. A rapid, highly sensitive, and portable assay for clinical laboratories and field use is required. Our laboratory has further evaluated a latex agglutination assay for its ability to identify B. pseudomallei and B. mallei isolates. This assay uses a monoclonal antibody that specifically recognizes the capsular polysaccharide produced by B. pseudomallei and B. mallei, but is absent in closely related Burkholderia species. A total of 110 B. pseudomallei and B. mallei were tested, and 36 closely related Burkholderia species. The latex agglutination assay was positive for 109 of 110 (99.1% sensitivity) B. pseudomallei and B. mallei isolates tested. © The American Society of Tropical Medicine and Hygiene.

  12. Comparison of four selective media for the isolation of Burkholderia mallei and Burkholderia pseudomallei.

    Science.gov (United States)

    Glass, Mindy B; Beesley, Cari A; Wilkins, Patricia P; Hoffmaster, Alex R

    2009-06-01

    Currently there are no commercially available selective media indicated for the isolation of Burkholderia mallei and Burkholderia pseudomallei. Ashdown's agar, a custom selective medium for isolation of B. pseudomallei, is well described in the literature but unavailable commercially. Three commercially available media, Burkholderia cepacia selective agar (BCSA), oxidative-fermentative-polymyxin B-bacitracin-lactose (OFPBL) agar, and Pseudomonas cepacia (PC) agar are recommended for isolation of B. cepacia from respiratory secretions of cystic fibrosis patients. We evaluated the sensitivity and selectivity of these four media using 20 B. mallei, 20 B. pseudomallei, 20 Burkholderia spp., and 15 diagnostically challenging organisms. Ashdown's agar was the most sensitive medium for the isolation of B. pseudomallei, but it was unable to support growth of B. mallei. Pseudomonas cepacia agar was highly sensitive and selective for both organisms. In non-endemic areas, we suggest the use of the commercially available PC agar for the isolation of B. mallei and B. pseudomallei.

  13. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    Science.gov (United States)

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Molecular Procedure for Rapid Detection of Burkholderia mallei and Burkholderia pseudomallei

    Science.gov (United States)

    Bauernfeind, Adolf; Roller, Carsten; Meyer, Detlef; Jungwirth, Renate; Schneider, Ines

    1998-01-01

    A PCR procedure for the discrimination of Burkholderia mallei and Burkholderia pseudomallei was developed. It is based on the nucleotide difference T 2143 C (T versus C at position 2143) between B. mallei and B. pseudomallei detected in the 23S rDNA sequences. In comparison with conventional methods the procedure allows more rapid identification at reduced risk for infection of laboratory personnel. PMID:9705426

  15. Autotransporters and Their Role in the Virulence of Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    Natalie eLazar Adler; Joanne eStevens; Mark eStevens; Edouard eGalyov

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs) comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases and actin-nucleating factors. The B. pseudomallei K96243 genome contains eleven predicted ATs, eight of which share homologues in the B. mallei ATCC 23344 genom...

  16. Natural Burkholderia mallei infection in Dromedary, Bahrain.

    Science.gov (United States)

    Wernery, Ulrich; Wernery, Renate; Joseph, Marina; Al-Salloom, Fajer; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Jose, Sherry; Tappendorf, Britta; Hornstra, Heidie; Scholz, Holger C

    2011-07-01

    We confirm a natural infection of dromedaries with glanders. Multilocus variable number tandem repeat analysis of a Burkholderia mallei strain isolated from a diseased dromedary in Bahrain revealed close genetic proximity to strain Dubai 7, which caused an outbreak of glanders in horses in the United Arab Emirates in 2004.

  17. Burkholderia Vaccines: Are We Moving Forward?

    Directory of Open Access Journals (Sweden)

    Leang-Chung eChoh

    2013-02-01

    Full Text Available The genus Burkholderia consists of diverse species which includes both ‘friends’ and ‘foes’. Some of the ‘friendly’ Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.

  18. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    Science.gov (United States)

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  19. Burkholderia vaccines: are we moving forward?

    Science.gov (United States)

    Choh, Leang-Chung; Ong, Guang-Han; Vellasamy, Kumutha M.; Kalaiselvam, Kaveena; Kang, Wen-Tyng; Al-Maleki, Anis R.; Mariappan, Vanitha; Vadivelu, Jamuna

    2013-01-01

    The genus Burkholderia consists of diverse species which includes both “friends” and “foes.” Some of the “friendly” Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines. PMID:23386999

  20. Burkholderia in gladiolen: voortgezet diagnostisch onderzoek 2007

    NARCIS (Netherlands)

    Vink, P.; Hollinger, T.C.

    2008-01-01

    In 2006 is middels een infectieproef bekend geworden dat de bacterie Burkholderia gladioli in staat is een ziekte bij gladiolen te veroorzaken waardoor de sier- en handelswaarde zeer negatief worden beïnvloed. In 2007 is in het kader van het voortgezet diagnostisch onderzoek nagegaan of de bacterie

  1. Burkholderia monticola sp. nov., isolated from mountain soil.

    Science.gov (United States)

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Yi, Hana; Chun, Jongsik

    2015-02-01

    An ivory/yellow, Gram-stain-negative, short-rod-shaped, aerobic bacterial strain, designated JC2948(T), was isolated from a soil sample taken from Gwanak Mountain, Republic of Korea. 16S rRNA gene sequence analysis indicated that strain JC2948(T) belongs to the genus Burkholderia. The test strain showed highest sequence similarities to Burkholderia tropica LMG 22274(T) (97.6 %), Burkholderia acidipaludis NBRC 101816(T) (97.5 %), Burkholderia tuberum LMG 21444(T) (97.5 %), Burkholderia sprentiae LMG 27175(T) (97.4 %), Burkholderia terricola LMG 20594(T) (97.3 %) and Burkholderia diazotrophica LMG 26031(T) (97.1 %). Based on average nucleotide identity (ANI) values, the new isolate represents a novel genomic species as it shows less than 90 % ANI values with other closely related species. Also, other phylosiological and biochemical comparisons allowed the phenotypic differentiation of strain JC2948(T) from other members of the genus Burkholderia. Therefore, we suggest that this strain should be classified as the type strain of a novel species of the genus Burkholderia. The name Burkholderia monticola sp. nov. (type strain, JC2948(T) = JCM 19904(T) = KACC 17924(T)) is proposed. © 2015 IUMS.

  2. Brain Meta-Transcriptomics from Harbor Seals to Infer the Role of the Microbiome and Virome in a Stranding Event.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rosales

    Full Text Available Marine diseases are becoming more frequent, and tools for identifying pathogens and disease reservoirs are needed to help prevent and mitigate epizootics. Meta-transcriptomics provides insights into disease etiology by cataloguing and comparing sequences from suspected pathogens. This method is a powerful approach to simultaneously evaluate both the viral and bacterial communities, but few studies have applied this technique in marine systems. In 2009 seven harbor seals, Phoca vitulina, stranded along the California coast from a similar brain disease of unknown cause of death (UCD. We evaluated the differences between the virome and microbiome of UCDs and harbor seals with known causes of death. Here we determined that UCD stranded animals had no viruses in their brain tissue. However, in the bacterial community, we identified Burkholderia and Coxiella burnetii as important pathogens associated with this stranding event. Burkholderia were 100% prevalent and ~2.8 log2 fold more abundant in the UCD animals. Further, while C. burnetii was found in only 35.7% of all samples, it was highly abundant (~94% of the total microbial community in a single individual. In this harbor seal, C. burnetii showed high transcription rates of invading and translation genes, implicating it in the pathogenesis of this animal. Based on these data we propose that Burkholderia taxa and C. burnetii are potentially important opportunistic neurotropic pathogens in UCD stranded harbor seals.

  3. Burkholderia megalochromosomata sp. nov., isolated from grassland soil.

    Science.gov (United States)

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Lee, Kihyun; Park, Sang-Cheol; Yi, Hana; Chun, Jongsik

    2015-03-01

    A Gram-stain negative, rod-shaped, non-spore-forming, obligate aerobic bacterial strain, JC2949(T), was isolated from grassland soil in Gwanak Mountain, Seoul, Republic of Korea. Phylogenetic analysis, based on 16S rRNA sequences, indicated that strain JC2949(T) belongs to the genus Burkholderia, showing highest sequence similarities with Burkholderia grimmiae R27(T) (98.8 %), Burkholderia cordobensis LMG 27620(T) (98.6 %), Burkholderia jiangsuensis MP-1T(T) (98.6 %), Burkholderia zhejiangensis OP-1(T) (98.5 %), Burkholderia humi LMG 22934(T) (97.5 %), Burkholderia terrestris LMG 22937(T) (97.3 %), Burkholderia telluris LMG 22936(T) (97.2 %) and Burkholderia glathei ATCC 29195(T) (97.0 %). The major fatty acids of strain JC2949(T) were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. Its predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unknown amino phospholipid. The dominant isoprenoid quinone was ubiquinone Q-8. The pairwise average nucleotide identity values between strain JC2949(T) and the genomes of 30 other species of the genus Burkholderia ranged from 73.4-90.4 %, indicating that the isolate is a novel genomic species within this genus. Based on phenotypic and chemotaxonomic comparisons, it is clear that strain JC2949(T) represents a novel species of the genus Burkholderia. We propose the name for this novel species to be Burkholderia megalochromosomata sp. nov. The type strain is JC2949(T) ( = KACC 17925(T) = JCM 19905(T)). © 2015 IUMS.

  4. Autotransporters and Their Role in the Virulence of Burkholderia pseudomallei and Burkholderia mallei.

    Science.gov (United States)

    Lazar Adler, Natalie R; Stevens, Joanne M; Stevens, Mark P; Galyov, Edouard E

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs) comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases, and actin-nucleating factors. The B. pseudomallei K96243 genome contains 11 predicted ATs, eight of which share homologs in the B. mallei ATCC 23344 genome. This review distils key findings from in silico, in vitro, and in vivo studies on the ATs of B. pseudomallei and B. mallei. To date, the best characterized of the predicted ATs of B. pseudomallei and B. mallei is BimA, a predicted trimeric AT mediating actin-based motility which varies in sequence and mode of action between Burkholderia species. Of the remaining eight predicted B. pseudomallei trimeric autotransporters, five of which are also present in B. mallei, two (BoaA and BoaB), have been implicated in bacterial adhesion to epithelial cells. Several predicted Burkholderia ATs are recognized by human humoral and cell-mediated immunity, indicating that they are expressed during infection and may be useful for diagnosis and vaccine-mediated protection. Further studies on the mode of secretion and functions of Burkholderia ATs will facilitate the rational design of control strategies.

  5. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Janse Ingmar

    2013-02-01

    Full Text Available Abstract Background Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Methods Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. Results A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. Conclusions The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.

  6. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei.

    Science.gov (United States)

    Janse, Ingmar; Hamidjaja, Raditijo A; Hendriks, Amber C A; van Rotterdam, Bart J

    2013-02-14

    Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.

  7. Autotransporters and their role in the virulence of Burkholderia pseudomallei and Burkholderia mallei.

    Directory of Open Access Journals (Sweden)

    Natalie eLazar Adler

    2011-07-01

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases and actin-nucleating factors. The B. pseudomallei K96243 genome contains eleven predicted ATs, eight of which share homologues in the B. mallei ATCC 23344 genome. This review distils key findings from in silico, in vitro and in vivo studies on the ATs of B. pseudomallei and B. mallei. To date, the best characterized of the predicted ATs of B. pseudomallei and B. mallei is BimA, a predicted trimeric AT mediating actin-based motility which varies in sequence and mode of action between Burkholderia species. Of the remaining eight predicted B. pseudomallei trimeric autotransporters, five of which are also present in B. mallei, two (BoaA and BoaB, have been implicated in bacterial adhesion to epithelial cells. Several predicted Burkholderia ATs are recognized by human humoral and cell-mediated immunity, indicating that they are expressed during infection and may be useful for diagnosis and vaccine-mediated protection. Further studies on the mode of secretion and functions of Burkholderia ATs will facilitate the rational design of control strategies.

  8. Members of the genus Burkholderia: good and bad guys

    Science.gov (United States)

    Eberl, Leo; Vandamme, Peter

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains. PMID:27303639

  9. Structural flexibility in the Burkholderia mallei genome.

    Science.gov (United States)

    Nierman, William C; DeShazer, David; Kim, H Stanley; Tettelin, Herve; Nelson, Karen E; Feldblyum, Tamara; Ulrich, Ricky L; Ronning, Catherine M; Brinkac, Lauren M; Daugherty, Sean C; Davidsen, Tanja D; Deboy, Robert T; Dimitrov, George; Dodson, Robert J; Durkin, A Scott; Gwinn, Michelle L; Haft, Daniel H; Khouri, Hoda; Kolonay, James F; Madupu, Ramana; Mohammoud, Yasmin; Nelson, William C; Radune, Diana; Romero, Claudia M; Sarria, Saul; Selengut, Jeremy; Shamblin, Christine; Sullivan, Steven A; White, Owen; Yu, Yan; Zafar, Nikhat; Zhou, Liwei; Fraser, Claire M

    2004-09-28

    The complete genome sequence of Burkholderia mallei ATCC 23344 provides insight into this highly infectious bacterium's pathogenicity and evolutionary history. B. mallei, the etiologic agent of glanders, has come under renewed scientific investigation as a result of recent concerns about its past and potential future use as a biological weapon. Genome analysis identified a number of putative virulence factors whose function was supported by comparative genome hybridization and expression profiling of the bacterium in hamster liver in vivo. The genome contains numerous insertion sequence elements that have mediated extensive deletions and rearrangements of the genome relative to Burkholderia pseudomallei. The genome also contains a vast number (>12,000) of simple sequence repeats. Variation in simple sequence repeats in key genes can provide a mechanism for generating antigenic variation that may account for the mammalian host's inability to mount a durable adaptive immune response to a B. mallei infection.

  10. Development of Burkholderia mallei and pseudomallei vaccines

    Directory of Open Access Journals (Sweden)

    Ediane Batista Silva

    2013-03-01

    Full Text Available B. mallei and B. pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. chronic infection develops after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult.B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms. Thefection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88 and pro-inflammatory cytokines such as IFN- and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for these microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently progress of Burkholderia vaccines has received renewed attention.This review will summarize current and past approaches to develop Burkholderia mallei and pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines.

  11. Structural flexibility in the Burkholderia mallei genome

    OpenAIRE

    William C. Nierman; DeShazer, David; Kim, H Stanley; Tettelin, Herve; Nelson, Karen E.; Feldblyum, Tamara; Ulrich, Ricky L.; Ronning, Catherine M.; Brinkac, Lauren M.; Daugherty, Sean C.; Davidsen, Tanja D.; DeBoy, Robert T.; Dimitrov, George; Dodson, Robert J.; Durkin, A. Scott

    2004-01-01

    The complete genome sequence of Burkholderia mallei ATCC 23344 provides insight into this highly infectious bacterium's pathogenicity and evolutionary history. B. mallei, the etiologic agent of glanders, has come under renewed scientific investigation as a result of recent concerns about its past and potential future use as a biological weapon. Genome analysis identified a number of putative virulence factors whose function was supported by comparative genome hybridization and expression prof...

  12. Innate immune response to Burkholderia mallei

    OpenAIRE

    Kamal U Saikh; Mott, Tiffany M.

    2017-01-01

    Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the no...

  13. Structural analysis of capsular polysaccharides expressed by Burkholderia mallei and Burkholderia pseudomallei.

    Science.gov (United States)

    Heiss, Christian; Burtnick, Mary N; Wang, Zhirui; Azadi, Parastoo; Brett, Paul J

    2012-02-15

    Capsular polysaccharides (CPSs) were isolated from O-polysaccharide deficient strains of Burkholderia mallei and Burkholderia pseudomallei using a modified hot phenol/water extraction procedure. Glycosyl composition, methylation, MALDI-TOF MS analyses as well as (1)H NMR spectroscopy including COSY, TOCSY, NOESY, HMBC and HSQC experiments identified the presence of two distinct CPS antigens in the samples exhibiting the following structures: This study confirms the ability of B. mallei to express a 6-deoxy-heptan CPS and represents the first report of a mannan CPS being expressed by these bacterial pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Development of Burkholderia mallei and pseudomallei vaccines.

    Science.gov (United States)

    Silva, Ediane B; Dow, Steven W

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  15. Development of Burkholderia mallei and pseudomallei vaccines

    Science.gov (United States)

    Silva, Ediane B.; Dow, Steven W.

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  16. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping

    Directory of Open Access Journals (Sweden)

    Harvey Steven P

    2007-03-01

    Full Text Available Abstract Background The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. Results B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation to that of the most diverse tandemly repeated regions found in other less diverse bacteria. Conclusion The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were

  17. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey.

    Science.gov (United States)

    Daligault, H E; Johnson, S L; Davenport, K W; Minogue, T D; Bishop-Lilly, K A; Broomall, S M; Bruce, D C; Coyne, S R; Frey, K G; Gibbons, H S; Jaissle, J; Koroleva, G I; Ladner, J T; Lo, C-C; Munk, C; Wolcott, M J; Palacios, G F; Redden, C L; Rosenzweig, C N; Scholz, M B; Chain, P S

    2016-01-07

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Although glanders has been eradicated from many parts of the world, the threat of B. mallei being used as a weapon is very real. Here we present draft genome assemblies of 8 Burkholderia mallei strains that were isolated in Turkey. Copyright © 2016 Daligault et al.

  18. Profile of Neonatal Sepsis due to Burkholderia capacia Complex.

    Science.gov (United States)

    Chandrasekaran, Aparna; Subburaju, Nivedhana; Mustafa, Muzamil; Putlibai, Sulochana

    2016-12-15

    We report the result of retrospective record review of the clinical profile of 59 neonates who presented to a tertiary-care extramural neonatal unit with Burkholderia cepacia complex infection. Among the 3265 admissions over 45 months, incidence of Burkholderia sepsis was 18 per 1000 admissions. Case fatality rate was 17%. Most (95%) isolates were sensitive to cotrimoxazole.

  19. Burkholderia pyrrocinia in cystic fibrosis lung transplantation: a case report.

    Science.gov (United States)

    Savi, D; De Biase, R Valerio; Amaddeo, A; Anile, M; Venuta, F; Ruberto, F; Simmonds, N; Cimino, G; Quattrucci, S

    2014-01-01

    Infection with Burkholderia species is typically considered a contraindication leading to transplantation in cystic fibrosis (CF). However, the risks posed by different Burkholderia species on transplantation outcomes are poorly defined. We present the case of a patient with CF who underwent lung transplantation due to a severe respiratory failure from chronic airways infection with Burkholderia pyrrocinia (B. cepacia genomovar IX) and pan-resistant Pseudomonas aeruginosa. The postoperative course was complicated by recurrent B. pyrrocinia infections, ultimately lea ding to uncontrollable sepsis and death. This is the first case report in CF of Burkholderia pyrrocinia infection and lung transplantation, providing further evidence of the high risk nature of the Burkholderia species. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The Identification and Differentiation between Burkholderia mallei and Burkholderia pseudomallei Using One Gene Pyrosequencing.

    Science.gov (United States)

    Gilling, Damian H; Luna, Vicki Ann; Pflugradt, Cori

    2014-01-01

    The etiologic agents for melioidosis and glanders, Burkholderia mallei and Burkholderia pseudomallei respectively, are genetically similar making identification and differentiation from other Burkholderia species and each other challenging. We used pyrosequencing to determine the presence or absence of an insertion sequence IS407A within the flagellin P (fliP) gene and to exploit the difference in orientation of this gene in the two species. Oligonucleotide primers were designed to selectively target the IS407A-fliP interface in B. mallei and the fliP gene specifically at the insertion point in B. pseudomallei. We then examined DNA from ten B. mallei, ten B. pseudomallei, 14 B. cepacia, eight other Burkholderia spp., and 17 other bacteria. Resultant pyrograms encompassed the target sequence that contained either the fliP gene with the IS407A interruption or the fully intact fliP gene with 100% sensitivity and 100% specificity. These pyrosequencing assays based upon a single gene enable investigators to reliably identify the two species. The information obtained by these assays provides more knowledge of the genomic reduction that created the new species B. mallei from B. pseudomallei and may point to new targets that can be exploited in the future.

  1. NCBI nr-aa BLAST: CBRC-CJAC-01-0189 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0189 ref|YP_438598.1| lipoprotein, putative [Burkholderia thailandensi...s E264] gb|ABC36143.1| lipoprotein, putative [Burkholderia thailandensis E264] YP_438598.1 6e-32 45% ...

  2. NCBI nr-aa BLAST: CBRC-CJAC-01-0102 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0102 ref|YP_438598.1| lipoprotein, putative [Burkholderia thailandensi...s E264] gb|ABC36143.1| lipoprotein, putative [Burkholderia thailandensis E264] YP_438598.1 5e-36 49% ...

  3. NCBI nr-aa BLAST: CBRC-CJAC-01-0227 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0227 ref|YP_438598.1| lipoprotein, putative [Burkholderia thailandensi...s E264] gb|ABC36143.1| lipoprotein, putative [Burkholderia thailandensis E264] YP_438598.1 2e-18 52% ...

  4. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov

    National Research Council Canada - National Science Library

    Vanlaere, Elke; Baldwin, Adam; Gevers, Dirk; Henry, Deborah; De Brandt, Evie; LiPuma, John J; Mahenthiralingam, Eshwar; Speert, David P; Dowson, Chris; Vandamme, Peter

    2009-01-01

    ... (also known as group K) within the Burkholderia cepacia complex (Bcc). For this purpose, a representative set of strains was examined by a traditional polyphasic taxonomic approach, by multilocus sequence typing (MLST...

  5. Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules.

    Science.gov (United States)

    De Meyer, Sofie E; Cnockaert, Margo; Ardley, Julie K; Trengove, Robert D; Garau, Giovanni; Howieson, John G; Vandamme, Peter

    2013-11-01

    Two strains of Gram-stain-negative, rod-shaped bacteria were isolated from root nodules of the South African legume Rhynchosia ferulifolia and authenticated on this host. Based on phylogenetic analysis of the 16S rRNA gene, strains WSM3930 and WSM3937(T) belonged to the genus Burkholderia, with the highest degree of sequence similarity to Burkholderia terricola (98.84 %). Additionally, the housekeeping genes gyrB and recA were analysed since 16S rRNA gene sequences are highly similar between closely related species of the genus Burkholderia. The results obtained for both housekeeping genes, gyrB and recA, showed the highest degree of sequence similarity of the novel strains towards Burkholderia caledonica LMG 19076(T) (94.2 % and 94.5 %, respectively). Chemotaxonomic data, including fatty acid profiles and respiratory quinone data supported the assignment of strains WSM3930 and WSM3937(T) to the genus Burkholderia. DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains WSM3930 and WSM3937(T) from the most closely related species of the genus Burkholderia with validly published names. We conclude, therefore, that these strains represent a novel species for which the name Burkholderia rhynchosiae sp. nov. is proposed, with strain WSM3937(T) ( = LMG 27174(T) = HAMBI 3354(T)) as the type strain.

  6. Floating-Harbor Syndrome

    OpenAIRE

    J Gordon Millichap

    1988-01-01

    Six unrelated children with a unique association of short stature, dysmorphic features, and speech delay are reported from the Harbor/Univ of California at Los Angeles Med Center, the Kennedy Memorial Hospital, Boston, the Beilinson Med Center, the District General Hospital, Stanford, England, and the Cedars-Sinai Med Cntr, Univ of California, LA.

  7. Brain abscess caused by Burkholderia pseudomallei

    Energy Technology Data Exchange (ETDEWEB)

    Padigione, A.; Spelman, D.; Ferris, N. [Alfred Hospital, Prahran, VIC (Australia)

    1997-10-01

    Full text: Melioidosis, or infection with Burkholderia pseudomallei, is an important human disease in South East Asia and Northern Australia. Neurological manifestations are well recognized amongst its protean presentations, but direct focal central nervous system infection is infrequently described with only 9 adult and 5 paediatric cases reported in the English language literature. A case of brain abscess due to Burkholderia pseudomallei occurring in a 20 year old Dutch visitor to Australia which progressed despite antibiotic treatment is described. A review of the clinical manifestations, Magnetic Resonance (MR) appearance, diagnosis and treatment of melioidosis is presented, highlighting that: (i) physicians outside endernic areas should consider melioidosis in any patient with an appropriate travel history, (ii) MR imaging is more sensitive then CT in diagnosing early brain infection, especially of the brainstem; (iii) Bacterial culture, the mainstay of diagnosis, has many shortcomings; (iv)In vitro antibiotic sensitivity testing may not translate into clinical efficacy; and (v) Steroids appear to have little role, even in severe disease.

  8. Development of mouse hybridomas for production of monoclonal antibodies specific to Burkholderia mallei and Burkholderia pseudomallei.

    Science.gov (United States)

    Feng, Shaw-Huey; Tsai, Shien; Rodriguez, Jose; Newsome, Tamara; Emanuel, Peter; Lo, Shyh-Ching

    2006-08-01

    Burkholderia mallei and B. pseudomallei are designated category B biothreat agents on the "select agents" list established by the NIH and CDC. Development of monoclonal antibodies (MAbs) that could effectively differentiate these two closely related species of bacteria and other non-pathogenic Burkholderia bacteria is urgently needed. Splenocytes from mice immunized with various antigen preparations from either B. mallei (American Type Culture Collection [ATCC] 23344) or B. pseudomallei (ATCC 23343) were used for production of hybridomas. Using a three-step cross-screening protocol, a total of 10 hybridomas were selected that produced MAbs which specifically recognized B. mallei 23344 but did not bind B. pseudomallei, Pseudomonas aeruginasa, or any of the other nine Burkholderia species tested. All 10 MAbs targeted to the lipopolysaccharide (LPS) molecules of B. mallei and reacted strongly with 12 out of 15 different strains of B. mallei tested. A total of 14 hybridomas that produced MAbs reacting with B. pseudomallei 23343, but not with B. mallei, P. aeruginasa, or any other nine non-pathogenic Burkholderia species were also selected. All 14 MAbs appeared to react with a proteinase K-sensitive 200-kDa band by immunoblotting analysis. Surprisingly, these 14 MAbs that were raised against the ATCC 23343 strain failed to react to any of the other 13 different strains of B. pseudomallei examined. In conclusion, our B. mallei-specific MAbs can effectively recognize 80% of the different B. mallei strains tested, and all the B. pseudomallei-specific MAbs appeared to react with a unique antigen present only in the ATCC 23343 strain, but not in any other strains of B. pseudomallei tested.

  9. DBSecSys 2.0: a database of Burkholderia mallei and Burkholderia pseudomallei secretion systems

    OpenAIRE

    Memi?evi?, Vesna; Kumar, Kamal; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques

    2016-01-01

    Background Burkholderia mallei and B. pseudomallei are the causative agents of glanders and melioidosis, respectively, diseases with high morbidity and mortality rates. B. mallei and B. pseudomallei are closely related genetically; B. mallei evolved from an ancestral strain of B. pseudomallei by genome reduction and adaptation to an obligate intracellular lifestyle. Although these two bacteria cause different diseases, they share multiple virulence factors, including bacterial secretion syste...

  10. Port and Harbor Security

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T; Guthmuller, H; DeWeert, M

    2004-12-15

    Port and Harbor Security is a daunting task to which optics and photonics offers significant solutions. We are pleased to report that the 2005 Defense and Security Symposium (DSS, Orlando, FL) will include reports on active and passive photonic systems operating from both airborne and subsurface platforms. In addition to imaging techniques, there are various photonic applications, such as total internal reflection fluorescence (TIRF), which can be used to ''sniff'' for traces of explosives or contaminants in marine. These non-imaging technologies are beyond the scope of this article, but will also be represented at DSS 2005. We encourage colleagues to join our technical group to help us to make our ports and harbors safer and more secure.

  11. A census of RND superfamily proteins in the Burkholderia genus.

    Science.gov (United States)

    Perrin, Elena; Fondi, Marco; Papaleo, Maria Cristiana; Maida, Isabel; Emiliani, Giovanni; Buroni, Silvia; Pasca, Maria Rosalia; Riccardi, Giovanna; Fani, Renato

    2013-07-01

    The aim of this work was to analyze the eight resistance-nodulation-cell division (RND) families (a group of proteins mainly involved in multidrug resistance of Gram-negative bacteria) in 26 Burkholderia genomes in order to gain knowledge regarding their presence and distribution, to obtain a platform for future experimental tests aimed to identify new molecular targets to be used in antimicrobial therapy against Burkholderia species and to refine the annotation of RND-like sequences in these genomes. A total of 417 coding sequences were retrieved and analyzed using different bioinformatics tools. A complex pattern of RND presence and distribution in the different Burkholderia species was disclosed and a core of proteins represented in all 26 genomes was identified. These 'core' proteins might represent useful targets of new synthetic antimicrobial compounds. Furthermore, the annotation of RND-like sequences in Burkholderia was refined.

  12. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein.

    Science.gov (United States)

    Ghequire, Maarten G K; De Canck, Evelien; Wattiau, Pierre; Van Winge, Iris; Loris, Remy; Coenye, Tom; De Mot, René

    2013-08-01

    Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombinant LlpA-like protein from the human isolate Burkholderia cenocepacia AU1054 displayed narrow-spectrum genus-specific antibacterial activity, thus representing the first functionally characterized bacteriocin within this β-proteobacterial genus. Strain-specific killing was confined to other members of the Bcc, with mostly Burkholderia ambifaria strains being susceptible. In addition to killing planktonic cells, this bacteriocin also acted as an antibiofilm agent. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  13. PCR detection of Burkholderia multivorans in water and soil samples

    OpenAIRE

    Peeters, C.; Daenekindt, S. (Stijn); Vandamme, Anne Mieke

    2016-01-01

    Background Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Fland...

  14. Antimicrobial Carbohydrate Vaccines: Development of Burkholderia pseudomallei immunogens

    OpenAIRE

    Donaldson, Matthew

    2013-01-01

    The potential bio-terror threat posed by Burkholderia pseudomallei highlights the need for an effective vaccine. Immunisation and challenge experiments in mice have demonstrated that the capsular polysaccharide (CPS-1) of B. pseudomallei, which is composed of β-1,3-linked 6-deoxy-D-manno-heptopyranose residues, is a promising candidate for vaccine development. This thesis set out to explore routes to potential vaccine candidates for Burkholderia pseudomallei infection based on ...

  15. Evaluation of the Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system for identification of clinical and environmental isolates of Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    He eWang

    2016-04-01

    Full Text Available Burkholderia pseudomallei is not represented in the current version of Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS system. A total of 66 isolates of B. pseudomallei, including 30 clinical isolates collected from National Taiwan University Hospital (NTUH, n=27 and Peking Union Medical College Hospital (PUMCH, n=3, and 36 isolates of genetically confirmed strains, including 13 from clinical samples and 23 from environmental samples, collected from southern Taiwan were included in this study. All these isolates were identified by partial 16S rDNA gene sequencing analysis and the Bruker Biotyper MALDI-TOF MS system. Among the 30 isolates initially identified as B. pseudomallei by conventional identification methods, one was identified as B. cepacia complex (NTUH and three were identified as B. putida (PUMCH by partial 16S rDNA gene sequencing analysis and Bruker Biotyper MALDI-TOF MS system. The Bruker Biotyper MALDI-TOF MS system misidentified 62 genetically confirmed B. pseudomallei isolates as B. thailandensis or Burkholderia species (score values, 1.803-2.063 when the currently available database (DB 5627 was used. However, using a newly created MALDI-TOF MS database (including B. pseudomallei NTUH-3 strain, all isolates were correctly identified as B. pseudomallei (score values >2.000, 100%. An additional 60 isolates of genetically confirmed B. cepacia complex and B. putida were also evaluated by the Bruker Biotyper MALDI-TOF MS system using the newly created database and none of these isolates were identified as B. pseudomallei. MALDI-TOF MS is a versatile and robust tool for the rapid identification of B. pseudomallei using the enhanced database.

  16. Phylogenetic analysis of burkholderia species by multilocus sequence analysis.

    Science.gov (United States)

    Estrada-de los Santos, Paulina; Vinuesa, Pablo; Martínez-Aguilar, Lourdes; Hirsch, Ann M; Caballero-Mellado, Jesús

    2013-07-01

    Burkholderia comprises more than 60 species of environmental, clinical, and agro-biotechnological relevance. Previous phylogenetic analyses of 16S rRNA, recA, gyrB, rpoB, and acdS gene sequences as well as genome sequence comparisons of different Burkholderia species have revealed two major species clusters. In this study, we undertook a multilocus sequence analysis of 77 type and reference strains of Burkholderia using atpD, gltB, lepA, and recA genes in combination with the 16S rRNA gene sequence and employed maximum likelihood and neighbor-joining criteria to test this further. The phylogenetic analysis revealed, with high supporting values, distinct lineages within the genus Burkholderia. The two large groups were named A and B, whereas the B. rhizoxinica/B. endofungorum, and B. andropogonis groups consisted of two and one species, respectively. The group A encompasses several plant-associated and saprophytic bacterial species. The group B comprises the B. cepacia complex (opportunistic human pathogens), the B. pseudomallei subgroup, which includes both human and animal pathogens, and an assemblage of plant pathogenic species. The distinct lineages present in Burkholderia suggest that each group might represent a different genus. However, it will be necessary to analyze the full set of Burkholderia species and explore whether enough phenotypic features exist among the different clusters to propose that these groups should be considered separate genera.

  17. Phylogeography of Burkholderia pseudomallei Isolates, Western Hemisphere.

    Science.gov (United States)

    Gee, Jay E; Gulvik, Christopher A; Elrod, Mindy G; Batra, Dhwani; Rowe, Lori A; Sheth, Mili; Hoffmaster, Alex R

    2017-07-01

    The bacterium Burkholderia pseudomallei causes melioidosis, which is mainly associated with tropical areas. We analyzed single-nucleotide polymorphisms (SNPs) among genome sequences from isolates of B. pseudomallei that originated in the Western Hemisphere by comparing them with genome sequences of isolates that originated in the Eastern Hemisphere. Analysis indicated that isolates from the Western Hemisphere form a distinct clade, which supports the hypothesis that these isolates were derived from a constricted seeding event from Africa. Subclades have been resolved that are associated with specific regions within the Western Hemisphere and suggest that isolates might be correlated geographically with cases of melioidosis. One isolate associated with a former World War II prisoner of war was believed to represent illness 62 years after exposure in Southeast Asia. However, analysis suggested the isolate originated in Central or South America.

  18. Relationship between antigenicity and pathogenicity for Burkholderia pseudomallei and Burkholderia mallei revealed by a large panel of mouse MAbs.

    Science.gov (United States)

    Zou, Nianxiang; Tsai, Shien; Feng, Shaw-Huey; Newsome, Tamara; Kim, Hyung-Yong; Li, Bingjie; Zhang, Shimin; Lo, Shyh-Ching

    2008-08-01

    Burkholderia pseudomallei and Burkholderia mallei are two closely related gram-negative bacterial species classified by the CDC as category B biowarfare agents. To develop monoclonal antibodies (MAbs) that can recognize as many different strains and/or clinical isolates of these two pathogens as possible, we immunized mice with heat-killed bacterial whole cells and membrane preparations from multiple strains and/or clinical isolates of B. pseudomallei and B. mallei. More than 100 different hybridoma clones that produced MAbs strongly reacting to B. pseudomallei and/or B. mallei have been developed. These MAbs were categorized into eight different groups according to their reaction specificity against different species of Burkholderia bacteria as well as the different nature of target antigens (LPS, capsule polysaccharides, proteins, and glycoproteins) on the bacteria they recognized. Characterization of this large panel of MAbs has demonstrated an interesting pattern of various antigenic epitopes shared by the different species of Burkholderia bacteria. More importantly, this study has revealed a pathogenicity-linked antigen epitope(s) on capsule-like polysaccharides found only in the pathogenic species of Burkholderia bacteria and a Burkholderia-specific antigen epitope(s) that did not exist in other gram-negative bacterial species. Our MAbs should prove to be highly valuable in the development of detection, diagnosis, and therapeutic applications against B. mallei and B. pseudomallei infections.

  19. Delineating the importance of serum opsonins and the bacterial capsule in affecting the uptake and killing of Burkholderia pseudomallei by murine neutrophils and macrophages.

    Directory of Open Access Journals (Sweden)

    Minal Mulye

    2014-08-01

    Full Text Available Infection of susceptible hosts by the encapsulated Gram-negative bacterium Burkholderia pseudomallei (Bp causes melioidosis, with septic patients attaining mortality rates ≥ 40%. Due to its high infectivity through inhalation and limited effective therapies, Bp is considered a potential bioweapon. Thus, there is great interest in identifying immune effectors that effectively kill Bp. Our goal is to compare the relative abilities of murine macrophages and neutrophils to clear Bp, as well as determine the importance of serum opsonins and bacterial capsule. Our findings indicate that murine macrophages and neutrophils are inherently unable to clear either unopsonized Bp or the relatively-avirulent acapsular bacterium B. thailandensis (Bt. Opsonization of Bp and Bt with complement or pathogen-specific antibodies increases macrophage-uptake, but does not promote clearance, although antibody-binding enhances complement deposition. In contrast, complement opsonization of Bp and Bt causes enhanced uptake and killing by neutrophils, which is linked with rapid ROS induction against bacteria exhibiting a threshold level of complement deposition. Addition of bacteria-specific antibodies enhances complement deposition, but antibody-binding alone cannot elicit neutrophil clearance. Bp capsule provides some resistance to complement deposition, but is not anti-phagocytic or protective against reactive oxygen species (ROS-killing. Macrophages were observed to efficiently clear Bp only after pre-activation with IFNγ, which is independent of serum- and/or antibody-opsonization. These studies indicate that antibody-enhanced complement activation is sufficient for neutrophil-clearance of Bp, whereas macrophages are ineffective at clearing serum-opsonized Bp unless pre-activated with IFNγ. This suggests that effective immune therapies would need to elicit both antibodies and Th1-adaptive responses for successful prevention/eradication of melioidosis.

  20. Raman spectroscopic detection and identification of Burkholderia mallei and Burkholderia pseudomallei in feedstuff.

    Science.gov (United States)

    Stöckel, Stephan; Meisel, Susann; Elschner, Mandy; Melzer, Falk; Rösch, Petra; Popp, Jürgen

    2015-01-01

    Burkholderia mallei (the etiologic agent of glanders in equines and rarely humans) and Burkholderia pseudomallei, causing melioidosis in humans and animals, are designated category B biothreat agents. The intrinsically high resistance of both agents to many antibiotics, their potential use as bioweapons, and their low infectious dose, necessitate the need for rapid and accurate detection methods. Current methods to identify these organisms may require up to 1 week, as they rely on phenotypic characteristics and an extensive set of biochemical reactions. In this study, Raman microspectroscopy, a cultivation-independent typing technique for single bacterial cells with the potential for being a rapid point-of-care analysis system, is evaluated to identify and differentiate B. mallei and B. pseudomallei within hours. Here, not only broth-cultured microbes but also bacteria isolated out of pelleted animal feedstuff were taken into account. A database of Raman spectra allowed a calculation of classification functions, which were trained to differentiate Raman spectra of not only both pathogens but also of five further Burkholderia spp. and four species of the closely related genus Pseudomonas. The developed two-stage classification system comprising two support vector machine (SVM) classifiers was then challenged by a test set of 11 samples to simulate the case of a real-world-scenario, when "unknown samples" are to be identified. In the end, all test set samples were identified correctly, even if the contained bacterial strains were not incorporated in the database before or were isolated out of animal feedstuff. Specifically, the five test samples bearing B. mallei and B. pseudomallei were correctly identified on species level with accuracies between 93.9 and 98.7%. The sample analysis itself requires no biomass enrichment step prior to the analysis and can be performed under biosafety level 1 (BSL 1) conditions after inactivating the bacteria with formaldehyde.

  1. Characterization of the mrgRS locus of the opportunistic pathogen Burkholderia pseudomallei: temperature regulates the expression of a two-component signal transduction system

    Directory of Open Access Journals (Sweden)

    Dance David AB

    2006-08-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a saprophyte in tropical environments and an opportunistic human pathogen. This versatility requires a sensing mechanism that allows the bacterium to respond rapidly to altered environmental conditions. We characterized a two-component signal transduction locus from B. pseudomallei 204, mrgR and mrgS, encoding products with extensive homology with response regulators and histidine protein kinases of Escherichia coli, Bordetella pertussis, and Vibrio cholerae. Results The locus was present and expressed in a variety of B. pseudomallei human and environmental isolates but was absent from other Burkholderia species, B. cepacia, B. cocovenenans, B. plantarii, B. thailandensis, B. vandii, and B. vietnamiensis. A 2128 bp sequence, including the full response regulator mrgR, but not the sensor kinase mrgS, was present in the B. mallei genome. Restriction fragment length polymorphism downstream from mrgRS showed two distinct groups were present among B. pseudomallei isolates. Our analysis of the open reading frames in this region of the genome revealed that transposase and bacteriophage activity may help explain this variation. MrgR and MrgS proteins were expressed in B. pseudomallei 204 cultured at different pH, salinity and temperatures and the expression was substantially reduced at 25°C compared with 37°C or 42°C but was mostly unaffected by pH or salinity, although at 25°C and 0.15% NaCl a small increase in MrgR expression was observed at pH 5. MrgR was recognized by antibodies in convalescent sera pooled from melioidosis patients. Conclusion The results suggest that mrgRS regulates an adaptive response to temperature that may be essential for pathogenesis, particularly during the initial phases of infection. B. pseudomallei and B. mallei are very closely related species that differ in their capacity to adapt to changing environmental conditions. Modifications in this region of the genome may

  2. Burkholderia sprentiae sp. nov., isolated from Lebeckia ambigua root nodules.

    Science.gov (United States)

    De Meyer, Sofie E; Cnockaert, Margo; Ardley, Julie K; Maker, Garth; Yates, Ron; Howieson, John G; Vandamme, Peter

    2013-11-01

    Seven Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM5005(T) being most closely related to Burkholderia tuberum (98.08 % sequence similarity). Additionally, these strains formed a distinct group in phylogenetic trees based on the housekeeping genes gyrB and recA. Chemotaxonomic data including fatty acid profiles and analysis of respiratory quinones supported the assignment of the strains to the genus Burkholderia. Results of DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from the closest species of the genus Burkholderia with a validly published name. Therefore, these strains represent a novel species for which the name Burkholderia sprentiae sp. nov. (type strain WSM5005(T) = LMG 27175(T) = HAMBI 3357(T)) is proposed.

  3. Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules.

    Science.gov (United States)

    De Meyer, Sofie E; Cnockaert, Margo; Ardley, Julie K; Van Wyk, Ben-Erik; Vandamme, Peter A; Howieson, John G

    2014-04-01

    Three strains of Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene sequence phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM3556(T) being most closely related to Burkholderia caledonica LMG 23644(T) (98.70 % 16S rRNA gene sequence similarity) and Burkholderia rhynchosiae WSM3937(T) (98.50 %). Additionally, these strains formed a distinct group in phylogenetic trees of the housekeeping genes gyrB and recA. Chemotaxonomic data, including fatty acid profiles and analysis of respiratory quinones, supported the assignment of our strains to the genus Burkholderia. Results of DNA-DNA hybridizations, MALDI-TOF MS analysis and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their nearest neighbour species. Therefore, these strains represent a novel species, for which the name Burkholderia dilworthii sp. nov. is proposed, with the type strain WSM3556(T) ( = LMG 27173(T) = HAMBI 3353(T)).

  4. Molecular identification and typing of Burkholderia pseudomallei and Burkholderia mallei: when is enough enough?

    Science.gov (United States)

    Antonov, Valery A; Tkachenko, Galina A; Altukhova, Viktoriya V; Savchenko, Sergey S; Zinchenko, Olga V; Viktorov, Dmitry V; Zamaraev, Valery S; Ilyukhin, Vladimir I; Alekseev, Vladimir V

    2008-12-01

    Burkholderia mallei and B. pseudomallei are highly pathogenic microorganisms for both humans and animals. Moreover, they are regarded as potential agents of bioterrorism. Thus, rapid and unequivocal detection and identification of these dangerous pathogens is critical. In the present study, we describe the use of an optimized protocol for the early diagnosis of experimental glanders and melioidosis and for the rapid differentiation and typing of Burkholderia strains. This experience with PCR-based identification methods indicates that single PCR targets (23S and 16S rRNA genes, 16S-23S intergenic region, fliC and type III secretion gene cluster) should be used with caution for identification of B. mallei and B. pseudomallei, and need to be used alongside molecular methods such as gene sequencing. Several molecular typing procedures have been used to identify genetically related B. pseudomallei and B. mallei isolates, including ribotyping, pulsed-field gel electrophoresis and multilocus sequence typing. However, these methods are time consuming and technically challenging for many laboratories. RAPD, variable amplicon typing scheme, Rep-PCR, BOX-PCR and multiple-locus variable-number tandem repeat analysis have been recommended by us for the rapid differentiation of B. mallei and B. pseudomallei strains.

  5. Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens.

    Science.gov (United States)

    Tamigney Kenfack, Marielle; Mazur, Marcelina; Nualnoi, Teerapat; Shaffer, Teresa L; Ngassimou, Abba; Blériot, Yves; Marrot, Jérôme; Marchetti, Roberta; Sintiprungrat, Kitisak; Chantratita, Narisara; Silipo, Alba; Molinaro, Antonio; AuCoin, David P; Burtnick, Mary N; Brett, Paul J; Gauthier, Charles

    2017-07-24

    Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the etiologic agents of melioidosis and glanders, respectively, cause severe disease in both humans and animals. Studies have highlighted the importance of Bp and Bm lipopolysaccharides (LPS) as vaccine candidates. Here we describe the synthesis of seven oligosaccharides as the minimal structures featuring all of the reported acetylation/methylation patterns associated with Bp and Bm LPS O-antigens (OAgs). Our approach is based on the conversion of an L-rhamnose into a 6-deoxy-L-talose residue at a late stage of the synthetic sequence. Using biochemical and biophysical methods, we demonstrate the binding of several Bp and Bm LPS-specific monoclonal antibodies with terminal OAg residues. Mice immunized with terminal disaccharide-CRM197 constructs produced high-titer antibody responses that crossreacted with Bm-like OAgs. Collectively, these studies serve as foundation for the development of novel therapeutics, diagnostics, and vaccine candidates to combat diseases caused by Bp and Bm.Melioidosis and glanders are multifaceted infections caused by gram-negative bacteria. Here, the authors synthesize a series of oligosaccharides that mimic the lipopolysaccharides present on the pathogens' surface and use them to develop novel glycoconjugates for vaccine development.

  6. Outer membrane proteome of Burkholderia pseudomallei and Burkholderia mallei from diverse growth conditions.

    Science.gov (United States)

    Schell, Mark A; Zhao, Peng; Wells, Lance

    2011-05-06

    Burkholderia mallei and Burkholderia pseudomallei are closely related, aerosol-infective human pathogens that cause life-threatening diseases. Biochemical analyses requiring large-scale growth and manipulation at biosafety level 3 under select agent regulations are cumbersome and hazardous. We developed a simple, safe, and rapid method to prepare highly purified outer membrane (OM) fragments from these pathogens. Shotgun proteomic analyses of OMs by trypsin shaving and mass spectrometry identified >155 proteins, the majority of which are clearly outer membrane proteins (OMPs). These included: 13 porins, 4 secretins for virulence factor export, 11 efflux pumps, multiple components of a Type VI secreton, metal transport receptors, polysaccharide exporters, and hypothetical OMPs of unknown function. We also identified 20 OMPs in each pathogen that are abundant under a wide variety of conditions, including in serum and with macrophages, suggesting these are fundamental for growth and survival and may represent prime drug or vaccine targets. Comparison of the OM proteomes of B. mallei and B. pseudomallei showed many similarities but also revealed a few differences, perhaps reflecting evolution of B. mallei away from environmental survival toward host-adaptation.

  7. Oropharyngeal aspiration of Burkholderia mallei and Burkholderia pseudomallei in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Kevin L Schully

    Full Text Available Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure prophylaxis focus largely on inhalation models of infection. Here, we demonstrate a non-invasive and technically simple method for affecting the inhalational challenge of BALB/c mice with B. pseudomallei and B. mallei. In this model, two investigators utilized common laboratory tools such as forceps and a micropipette to conduct and characterize an effective and reproducible inhalational challenge of BALB/c mice with B. mallei and B. pseudomallei. Challenge by oropharyngeal aspiration resulted in acute disease. Additionally, 50% endpoints for B. pseudomallei K96243 and B. mallei ATCC 23344 were nearly identical to published aerosol challenge methods. Furthermore, the pathogens disseminated to all major organs typically targeted by these agents where they proliferated. The pro-inflammatory cytokine production in the proximal and peripheral fluids demonstrated a rapid and robust immune response comparable to previously described murine and human studies. These observations demonstrate that OA is a viable alternative to aerosol exposure.

  8. Oropharyngeal aspiration of Burkholderia mallei and Burkholderia pseudomallei in BALB/c mice.

    Science.gov (United States)

    Schully, Kevin L; Bell, Matthew G; Ward, Jerrold M; Keane-Myers, Andrea M

    2014-01-01

    Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure prophylaxis focus largely on inhalation models of infection. Here, we demonstrate a non-invasive and technically simple method for affecting the inhalational challenge of BALB/c mice with B. pseudomallei and B. mallei. In this model, two investigators utilized common laboratory tools such as forceps and a micropipette to conduct and characterize an effective and reproducible inhalational challenge of BALB/c mice with B. mallei and B. pseudomallei. Challenge by oropharyngeal aspiration resulted in acute disease. Additionally, 50% endpoints for B. pseudomallei K96243 and B. mallei ATCC 23344 were nearly identical to published aerosol challenge methods. Furthermore, the pathogens disseminated to all major organs typically targeted by these agents where they proliferated. The pro-inflammatory cytokine production in the proximal and peripheral fluids demonstrated a rapid and robust immune response comparable to previously described murine and human studies. These observations demonstrate that OA is a viable alternative to aerosol exposure.

  9. ATP-binding cassette systems in Burkholderia pseudomallei and Burkholderia mallei

    Directory of Open Access Journals (Sweden)

    Titball Richard W

    2007-03-01

    Full Text Available Abstract Background ATP binding cassette (ABC systems are responsible for the import and export of a wide variety of molecules across cell membranes and comprise one of largest protein superfamilies found in prokarya, eukarya and archea. ABC systems play important roles in bacterial lifestyle, virulence and survival. In this study, an inventory of the ABC systems of Burkholderia pseudomallei strain K96243 and Burkholderia mallei strain ATCC 23344 has been compiled using bioinformatic techniques. Results The ABC systems in the genomes of B. pseudomallei and B. mallei have been reannotated and subsequently compared. Differences in the number and types of encoded ABC systems in belonging to these organisms have been identified. For example, ABC systems involved in iron acquisition appear to be correlated with differences in genome size and lifestyles between these two closely related organisms. Conclusion The availability of complete inventories of the ABC systems in B. pseudomallei and B. mallei has enabled a more detailed comparison of the encoded proteins in this family. This has resulted in the identification of ABC systems which may play key roles in the different lifestyles and pathogenic properties of these two bacteria. This information has the potential to be exploited for improved clinical identification of these organisms as well as in the development of new vaccines and therapeutics targeted against the diseases caused by these organisms.

  10. Norovirus Infection in Harbor Porpoises.

    Science.gov (United States)

    de Graaf, Miranda; Bodewes, Rogier; van Elk, Cornelis E; van de Bildt, Marco; Getu, Sarah; Aron, Georgina I; Verjans, Georges M G M; Osterhaus, Albert D M E; van den Brand, Judith M A; Kuiken, Thijs; Koopmans, Marion P G

    2017-01-01

    A norovirus was detected in harbor porpoises, a previously unknown host for norovirus. This norovirus had low similarity to any known norovirus. Viral RNA was detected primarily in intestinal tissue, and specific serum antibodies were detected in 8 (24%) of 34 harbor porpoises from the North Sea.

  11. Norovirus Infection in Harbor Porpoises

    NARCIS (Netherlands)

    de Graaf, Miranda; Bodewes, Rogier|info:eu-repo/dai/nl/33230583X; van Elk, Cornelis E; van de Bildt, Marco; Getu, Sarah; Aron, Georgina I; Verjans, Georges M G M; Osterhaus, Albert D M E|info:eu-repo/dai/nl/074960172; van den Brand, Judith M A; Kuiken, Thijs; Koopmans, Marion P G

    A norovirus was detected in harbor porpoises, a previously unknown host for norovirus. This norovirus had low similarity to any known norovirus. Viral RNA was detected primarily in intestinal tissue, and specific serum antibodies were detected in 8 (24%) of 34 harbor porpoises from the North Sea.

  12. Burkholderia pseudomallei musculoskeletal infections (melioidosis in India

    Directory of Open Access Journals (Sweden)

    Pandey Vivek

    2010-01-01

    Full Text Available Melioidosis, an infection due to gram negative Burkholderia pseudomallei, is an important cause of sepsis in east Asia especially Thailand and northern Australia. It usually causes abscesses in lung, liver, spleen, skeletal muscle and parotids especially in patients with diabetes, chronic renal failure and thalassemia. Musculoskeletal melioidosis is not common in India even though sporadic cases have been reported mostly involving soft tissues. During a two-year-period, we had five patients with musculoskeletal melioidosis. All patients presented with multifocal osteomyelitis, recurrent osteomyelitis or septic arthritis. One patient died early because of septicemia and multi-organ failure. All patients were diagnosed on the basis of positive pus culture. All patients were treated by surgical debridement followed by a combination of antibiotics; (ceftazidime, amoxy-clavulanic acid, co-trimoxazole and doxycycline for six months except for one who died due to fulminant septicemia. All other patients recovered completely with no recurrences. With increasing awareness and better diagnostic facilities, probably musculoskeletal melioidosis will be increasingly diagnosed in future.

  13. Burkholderia pseudomallei transcriptional adaptation in macrophages

    Directory of Open Access Journals (Sweden)

    Chieng Sylvia

    2012-07-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation. Results Here we report the expression profile of intracellular B. pseudomallei following infection of human macrophage-like U937 cells. During intracellular growth over the 6 h infection period, approximately 22 % of the B. pseudomallei genome showed significant transcriptional adaptation. B. pseudomallei adapted rapidly to the intracellular environment by down-regulating numerous genes involved in metabolism, cell envelope, motility, replication, amino acid and ion transport system and regulatory function pathways. Reduced expression in catabolic and housekeeping genes suggested lower energy requirement and growth arrest during macrophage infection, while expression of genes encoding anaerobic metabolism functions were up regulated. However, whilst the type VI secretion system was up regulated, expression of many known virulence factors was not significantly modulated over the 6hours of infection. Conclusions The transcriptome profile described here provides the first comprehensive view of how B. pseudomallei survives within host cells and will help identify potential virulence factors and proteins that are important for the survival and growth of B. pseudomallei within human cells.

  14. Strategies for intracellular survival of Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Ben eAdler

    2011-08-01

    Full Text Available Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterised mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defence mechanisms such as the induction of iNOS, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed.

  15. Protective cellular responses to Burkholderia mallei infection.

    Science.gov (United States)

    Rowland, Caroline A; Lever, M Stephen; Griffin, Kate F; Bancroft, Gregory J; Lukaszewski, Roman A

    2010-10-01

    Burkholderia mallei is a Gram-negative bacillus causing the disease glanders in humans. During intraperitoneal infection, BALB/c mice develop a chronic disease characterised by abscess formation where mice normally die up to 70 days post-infection. Although cytokine responses have been investigated, cellular immune responses to B. mallei infection have not previously been characterised. Therefore, the influx and activation status of splenic neutrophils, macrophages and T cells was examined during infection. Gr-1+ neutrophils and F4/80+ macrophages infiltrated the spleen 5 h post-infection and an increase in activated macrophages, neutrophils and T cells occurred by 24 h post-infection. Mice depleted of Gr-1+ cells were acutely susceptible to B. mallei infection, succumbing to the infection 5 days post-infection. Mice depleted of both CD4 and CD8 T cells did not succumb to the infection until 14 days post-infection. Infected μMT (B cell) and CD28 knockout mice did not differ from wildtype mice whereas iNOS-2 knockout mice began to succumb to the infection 30 days post-infection. The data presented suggests that Gr-1+ cells, activated early in B. mallei infection, are essential for controlling the early, innate response to B. mallei infection and T cells or nitric oxide are important during the later stages of infection. Crown Copyright © 2010. Published by Elsevier SAS. All rights reserved.

  16. Innate immune response to Burkholderia mallei.

    Science.gov (United States)

    Saikh, Kamal U; Mott, Tiffany M

    2017-06-01

    Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.

  17. Discrimination of Pathogenic vs. Nonpathogenic Francisella tularensis and Burkholderia pseudomallei Using Proteomics Mass Spectrometry

    Science.gov (United States)

    2011-03-01

    F. tularensis LVS and B. thailandensis E264. Working cultures were prepared by streaking cells from cryopreserved stocks onto chocolate agar (CA...Escherichia coli and Salmonella : cellular and molecular biology, 2nd ed. ASM Press, Washington, DC. 3. Haake, D.A. 2000. Spirochaetal lipoproteins and

  18. Insecticide-degrading Burkholderia symbionts of the stinkbug naturally occupy various environments of sugarcane fields in a Southeast island of Japan.

    Science.gov (United States)

    Tago, Kanako; Okubo, Takashi; Itoh, Hideomi; Kikuchi, Yoshitomo; Hori, Tomoyuki; Sato, Yuya; Nagayama, Atsushi; Hayashi, Kentaro; Ikeda, Seishi; Hayatsu, Masahito

    2015-01-01

    The stinkbug Cavelerius saccharivorus, which harbors Burkholderia species capable of degrading the organophosphorus insecticide, fenitrothion, has been identified on a Japanese island in farmers' sugarcane fields that have been exposed to fenitrothion. A clearer understanding of the ecology of the symbiotic fenitrothion degraders of Burkholderia species in a free-living environment is vital for advancing our knowledge on the establishment of degrader-stinkbug symbiosis. In the present study, we analyzed the composition and abundance of degraders in sugarcane fields on the island. Degraders were recovered from field samples without an enrichment culture procedure. Degrader densities in the furrow soil in fields varied due to differences in insecticide treatment histories. Over 99% of the 659 isolated degraders belonged to the genus Burkholderia. The strains related to the stinkbug symbiotic group predominated among the degraders, indicating a selection for this group in response to fenitrothion. Degraders were also isolated from sugarcane stems, leaves, and rhizosphere in fields that were continuously exposed to fenitrothion. Their density was lower in the plant sections than in the rhizosphere. A phylogenetic analysis of 16S rRNA gene sequences demonstrated that most of the degraders from the plants and rhizosphere clustered with the stinkbug symbiotic group, and some were identical to the midgut symbionts of C. saccharivorus collected from the same field. Our results confirmed that plants and the rhizosphere constituted environmental reservoirs for stinkbug symbiotic degraders. To the best of our knowledge, this is the first study to investigate the composition and abundance of the symbiotic fenitrothion degraders of Burkholderia species in farmers' fields.

  19. Insecticide-Degrading Burkholderia Symbionts of the Stinkbug Naturally Occupy Various Environments of Sugarcane Fields in a Southeast Island of Japan

    Science.gov (United States)

    Tago, Kanako; Okubo, Takashi; Itoh, Hideomi; Kikuchi, Yoshitomo; Hori, Tomoyuki; Sato, Yuya; Nagayama, Atsushi; Hayashi, Kentaro; Ikeda, Seishi; Hayatsu, Masahito

    2015-01-01

    The stinkbug Cavelerius saccharivorus, which harbors Burkholderia species capable of degrading the organophosphorus insecticide, fenitrothion, has been identified on a Japanese island in farmers’ sugarcane fields that have been exposed to fenitrothion. A clearer understanding of the ecology of the symbiotic fenitrothion degraders of Burkholderia species in a free-living environment is vital for advancing our knowledge on the establishment of degrader-stinkbug symbiosis. In the present study, we analyzed the composition and abundance of degraders in sugarcane fields on the island. Degraders were recovered from field samples without an enrichment culture procedure. Degrader densities in the furrow soil in fields varied due to differences in insecticide treatment histories. Over 99% of the 659 isolated degraders belonged to the genus Burkholderia. The strains related to the stinkbug symbiotic group predominated among the degraders, indicating a selection for this group in response to fenitrothion. Degraders were also isolated from sugarcane stems, leaves, and rhizosphere in fields that were continuously exposed to fenitrothion. Their density was lower in the plant sections than in the rhizosphere. A phylogenetic analysis of 16S rRNA gene sequences demonstrated that most of the degraders from the plants and rhizosphere clustered with the stinkbug symbiotic group, and some were identical to the midgut symbionts of C. saccharivorus collected from the same field. Our results confirmed that plants and the rhizosphere constituted environmental reservoirs for stinkbug symbiotic degraders. To the best of our knowledge, this is the first study to investigate the composition and abundance of the symbiotic fenitrothion degraders of Burkholderia species in farmers’ fields. PMID:25736865

  20. Recent Advances in Burkholderia mallei and B. pseudomallei Research.

    Science.gov (United States)

    Hatcher, Christopher L; Muruato, Laura A; Torres, Alfredo G

    2015-06-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative organisms, which are etiological agents of glanders and melioidosis, respectively. Although only B. pseudomallei is responsible for a significant number of human cases, both organisms are classified as Tier 1 Select Agents and their diseases lack effective diagnosis and treatment. Despite a recent resurgence in research pertaining to these organisms, there are still a number of knowledge gaps. This article summarizes the latest research progress in the fields of B. mallei and B. pseudomallei pathogenesis, vaccines, and diagnostics.

  1. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice.

    Science.gov (United States)

    Bernhards, R C; Cote, C K; Amemiya, K; Waag, D M; Klimko, C P; Worsham, P L; Welkos, S L

    2017-03-01

    Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3-180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.

  2. Genetics Home Reference: Floating-Harbor syndrome

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Floating-Harbor syndrome Floating-Harbor syndrome Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Floating-Harbor syndrome is a disorder involving short stature, slowing ...

  3. Survival of Burkholderia pseudomallei in Water

    Directory of Open Access Journals (Sweden)

    Woods Donald E

    2008-05-01

    Full Text Available Abstract Background The ability of Burkholderia pseudomallei to survive in water likely contributes to its environmental persistence in endemic regions. To determine the physiological adaptations which allow B. pseudomallei to survive in aqueous environments, we performed microarray analyses of B. pseudomallei cultures transferred from Luria broth (LB to distilled water. Findings Increased expression of a gene encoding for a putative membrane protein (BPSL0721 was confirmed using a lux-based transcriptional reporter system, and maximal expression was noted at approximately 6 hrs after shifting cells from LB to water. A BPSL0721 deficient mutant of B. pseudomallei was able to survive in water for at least 90 days indicating that although involved, BPSL0721 was not essential for survival. BPSL2961, a gene encoding a putative phosphatidylglycerol phosphatase (PGP, was also induced when cells were shifted to water. This gene is likely involved in cell membrane biosynthesis. We were unable to construct a PGP mutant suggesting that the gene is not only involved in survival in water but is essential for cell viability. We also examined mutants of polyhydroxybutyrate synthase (phbC, lipopolysaccharide (LPS oligosaccharide and capsule synthesis, and these mutations did not affect survival in water. LPS mutants lacking outer core were found to lose viability in water by 200 days indicating that an intact LPS core provides an outer membrane architecture which allows prolonged survival in water. Conclusion The results from these studies suggest that B. pseudomallei survival in water is a complex process that requires an LPS molecule which contains an intact core region.

  4. Defense mechanisms of hepatocytes against Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Antje eBast

    2012-01-01

    Full Text Available The gram-negative facultative intracellular rod Burkholderia pseudomallei causes melioidosis, an infectious disease with a wide range of clinical presentations. Among the observed visceral abscesses, the liver is commonly affected. However, neither this organotropism of B. pseudomallei nor local hepatic defense mechanisms have been thoroughly investigated so far. Own previous studies using electron microscopy of the murine liver after systemic infection of mice indicated that hepatocytes might be capable of killing B. pseudomallei. Therefore, the aim of this study was to further elucidate the interaction of B. pseudomallei with these cells and to analyse the role of hepatocytes in anti-B. pseudomallei host defense. In vitro studies using the human hepatocyte cell line HepG2 revealed that B. pseudomallei can invade these cells. Subsequently, B. pseudomallei is able to escape from the vacuole, to replicate within the cytosol of HepG2 cells involving its type 3 and type 6 secretion systems, and to induce actin tail formation. Furthermore, stimulation of HepG2 cells showed that IFNgamma can restrict growth of B. pseudomallei in the early and late phase of infection whereas the combination of IFNgamma, IL-1beta and TNFalpha is required for the maximal antibacterial activity. This anti-B. pseudomallei defense of HepG2 cells did not seem to be mediated by iNOS-derived nitric oxide or NADPH oxidase-derived superoxide. In summary, this is the first study describing B. pseudomallei intracellular life cycle characteristics in hepatocytes and showing that IFNgamma-mediated, but nitric oxide- and reactive oxygen species-independent, effector mechanisms are important in anti-B. pseudomallei host defense of hepatocytes.

  5. A Burkholderia pseudomallei Infection Imported from Eritrea to Israel

    OpenAIRE

    Almog, Yaniv; Yagel, Yael; Geffen, Yuval; Yagupsky, Pablo

    2016-01-01

    Although it has been predicted that melioidosis is probably endemic in the Horn of Africa, no confirmed cases have ever been detected in the region. We have recently isolated Burkholderia pseudomallei from an Eritrean patient in Israel. The isolate was assigned a novel multilocus sequence type (ST-1479). The observation has important epidemiological implications in an era of massive human migration.

  6. In vitro susceptibility of Burkholderia pseudomallei to antimicrobial peptides

    NARCIS (Netherlands)

    Kanthawong, S.; Nazmi, K.; Wongratanacheewin, S.; Bolscher, J.G.M.; Wuthiekanun, V.; Taweechaisupapong, S.

    2009-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics, resulting in high mortality rates of 19% in Australia and even 50% in Thailand. Antimicrobial peptides (AMPs) possess potent broad-spectrum bactericidal activities and are regarded as

  7. Ultrastructural effects and antibiofilm activity of LFchimera against Burkholderia pseudomallei

    NARCIS (Netherlands)

    Puknun, A.; Kanthawong, S.; Anutrakunchai, C.; Nazmi, K.; Tigchelaar, W.; Hoeben, K.A.; Veerman, E.C.I.; Bolscher, J.G.M.; Taweechaisupong, S.

    2016-01-01

    Lactoferrin chimera (LFchimera), a hybrid peptide containing the two antimicrobial stretches of the innate immunity factor bovine lactoferrin, viz. LFampin265-284 and LFcin17-30, has strikingly high antimicrobial activity against the category B pathogen Burkholderia pseudomallei. The action

  8. Symbiotic ß-proteobacteria beyond legumes: Burkholderia in Rubiaceae.

    Directory of Open Access Journals (Sweden)

    Brecht Verstraete

    Full Text Available Symbiotic ß-proteobacteria not only occur in root nodules of legumes but are also found in leaves of certain Rubiaceae. The discovery of bacteria in plants formerly not implicated in endosymbiosis suggests a wider occurrence of plant-microbe interactions. Several ß-proteobacteria of the genus Burkholderia are detected in close association with tropical plants. This interaction has occurred three times independently, which suggest a recent and open plant-bacteria association. The presence or absence of Burkholderia endophytes is consistent on genus level and therefore implies a predictive value for the discovery of bacteria. Only a single Burkholderia species is found in association with a given plant species. However, the endophyte species are promiscuous and can be found in association with several plant species. Most of the endophytes are part of the plant-associated beneficial and environmental group, but others are closely related to B. glathei. This soil bacteria, together with related nodulating and non-nodulating endophytes, is therefore transferred to a newly defined and larger PBE group within the genus Burkholderia.

  9. Using real-time PCR to specifically detect Burkholderia mallei.

    Science.gov (United States)

    Ulrich, Melanie P; Norwood, David A; Christensen, Deanna R; Ulrich, Ricky L

    2006-05-01

    Burkholderia mallei is the causative agent of human and animal glanders and is a category B biothreat agent. Rapid diagnosis of B. mallei and immediate prophylactic treatment are essential for patient survival. The majority of current bacteriological and immunological techniques for identifying B. mallei from clinical samples are time-consuming, and cross-reactivity with closely related organisms (i.e. Burkholderia pseudomallei) is a problem. In this investigation, two B. mallei-specific real-time PCR assays targeting the B. mallei bimA(ma) gene (Burkholderia intracellular motility A; BMAA0749), which encodes a protein involved in actin polymerization, were developed. The PCR primer and probe sets were tested for specificity against a collection of B. mallei and B. pseudomallei isolates obtained from numerous clinical and environmental (B. pseudomallei only) sources. The assays were also tested for cross-reactivity using template DNA from 14 closely related Burkholderia species. The relative limit of detection for the assays was found to be 1 pg or 424 genome equivalents. The authors also analysed the applicability of assays to detect B. mallei within infected BALB/c mouse tissues. Beginning 1 h post aerosol exposure, B. mallei was successfully identified within the lungs, and starting at 24 h post exposure, in the spleen and liver. Surprisingly, B. mallei was not detected in the blood of acutely infected animals. This investigation provides two real-time PCR assays for the rapid and specific identification of B. mallei.

  10. Characterization of Burkholderia cepacia genomovar I as a potential ...

    African Journals Online (AJOL)

    Characterization of Burkholderia cepacia genomovar I as a potential biocontrol agent of Ganoderma boninense in oil palm. ... to the species level based on Biolog® Identification System, and to carry out DNA fingerprinting for strain differentiation as well as differentiate between pathogenic and non-pathogenic human forms.

  11. Burkholderia pseudomallei in Unchlorinated Domestic Bore Water, Tropical Northern Australia

    Science.gov (United States)

    Mayo, Mark; Kaestli, Mirjam; Harrington, Glenda; Cheng, Allen C.; Ward, Linda; Karp, Danuta; Jolly, Peter; Godoy, Daniel; Spratt, Brian G.

    2011-01-01

    To determine whether unchlorinated bore water in northern Australia contained Burkholderia pseudomallei organisms, we sampled 55 bores; 18 (33%) were culture positive. Multilocus sequence typing identified 15 sequence types. The B. pseudomallei sequence type from 1 water sample matched a clinical isolate from a resident with melioidosis on the same property. PMID:21762588

  12. Alaska Harbor Seal Glacial Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Floating glacial ice serves as a haul-out substrate for a significant number (10-15%) of Alaskan harbor seals, and thus surveying tidewater glacial fjords is an...

  13. Sediment toxicity in Savannah Harbor

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Contaminants released...

  14. Kaumalapau Harbor, Hawaii, Breakwater Repair

    Science.gov (United States)

    2012-05-01

    multiple degrees of freedom related to ship motion ( surge , sway , heave, roll, pitch, and yaw), and the associated position corrections needed by an...conditions. Local barge operators were using multi-ton ballast weights on the barges fore and aft to counter the harbor surge during loading operations...harbor basin to measure the breakwater’s effectiveness in damping waves that interfere with loading operations. These wave data will be compared to

  15. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers.

    Science.gov (United States)

    Depoorter, Eliza; Bull, Matt J; Peeters, Charlotte; Coenye, Tom; Vandamme, Peter; Mahenthiralingam, Eshwar

    2016-06-01

    Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.

  16. An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts

    Science.gov (United States)

    Kikuchi, Yoshitomo; Hosokawa, Takahiro; Fukatsu, Takema

    2011-01-01

    Here, we investigated 124 stinkbug species representing 20 families and 5 superfamilies for their Burkholderia gut symbionts, of which 39 species representing 6 families of the superfamilies Lygaeoidea and Coreoidea were Burkholderia-positive. Diagnostic PCR surveys revealed high frequencies of Burkholderia infection in natural populations of the stinkbugs, and substantial absence of vertical transmission of Burkholderia infection to their eggs. In situ hybridization confirmed localization of the Burkholderia in their midgut crypts. In the lygaeoid and coreoid stinkbugs, development of midgut crypts in their alimentary tract was coincident with the Burkholderia infection, suggesting that the specialized morphological configuration is pivotal for establishment and maintenance of the symbiotic association. The Burkholderia symbionts were easily isolated as pure culture on standard microbiological media, indicating the ability of the gut symbionts to survive outside the host insects. Molecular phylogenetic analysis showed that the gut symbionts of the lygaeoid and coreoid stinkbugs belong to a β-proteobacterial clade together with Burkholderia isolates from soil environments and Burkholderia species that induce plant galls. On the phylogeny, the stinkbug-associated, environmental and gall-forming Burkholderia strains did not form coherent groups, indicating host–symbiont promiscuity among these stinkbugs. Symbiont culturing revealed that slightly different Burkholderia genotypes often coexist in the same insects, which is also suggestive of host–symbiont promiscuity. All these results strongly suggest an ancient but promiscuous host–symbiont relationship between the lygaeoid/coreoid stinkbugs and the Burkholderia gut symbionts. Possible mechanisms as to how the environmentally transmitted promiscuous symbiotic association has been stably maintained in the evolutionary course are discussed. PMID:20882057

  17. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms.

    OpenAIRE

    Vesna Memišević; Nela Zavaljevski; Rajagopala, Seesandra V.; Keehwan Kwon; Rembert Pieper; David DeShazer; Jaques Reifman; Anders Wallqvist

    2015-01-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence f...

  18. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale

    Science.gov (United States)

    Bragina, Anastasia; Cardinale, Massimiliano; Berg, Christian; Berg, Gabriele

    2013-01-01

    The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses – model plants for long-term associations – in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves. PMID:24391630

  19. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells.

    Science.gov (United States)

    Balder, Rachel; Lipski, Serena; Lazarus, John J; Grose, William; Wooten, Ronald M; Hogan, Robert J; Woods, Donald E; Lafontaine, Eric R

    2010-09-28

    Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649) that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells) and A549 (type II pneumocytes), as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures.A second YadA-like gene product highly similar to BoaA (65% identity) was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705). The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to thrive inside J774A.1 murine macrophages

  20. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells

    Directory of Open Access Journals (Sweden)

    Hogan Robert J

    2010-09-01

    Full Text Available Abstract Background Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Results Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649 that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells and A549 (type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE. Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures. A second YadA-like gene product highly similar to BoaA (65% identity was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705. The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to

  1. Prey capture by harbor porpoises

    DEFF Research Database (Denmark)

    Miller, Lee; Verfuss, Ursula

    2009-01-01

    their ultrasonic clicks as biosonar for orientation and detection of prey (mostly smaller pelagic and bottom dwelling fish), and for communication. For studying wild animals, hydrophone arrays and acoustic (time/depth) tags have been used. For studying captive animals, arrays and video techniques as well......  The harbor porpoise (Phocoena phocoena) is a small toothed whale living mostly in coastal waters.  There are large, but unknown, numbers in the inner Danish waters. Four are in captivity at Fjord & Bælt, Kerteminde, Denmark, one of which was born here in 2006. Harbor porpoises use...... as miniature acoustic-behavioral tags have been used. While searching for prey, captive harbor porpoises used clicks with intervals longer than 50 ms. After detecting the prey, the click interval stabilized at about 50 ms and then became progressively shorter while approaching the prey. During this time...

  2. Prey capture by harbor porpoises

    DEFF Research Database (Denmark)

    Miller, Lee

    2008-01-01

    (2007)] have been used.  For studying captive animals, arrays and video techniques [Verfuss et al. J.Exp.Biol. 208 (2005)] as well as miniature acoustic-behavioral tags [Deruiter et al. JASA 123 (2008)] have been used.  While searching for prey, harbor porpoises use clicks at long intervals (~50 ms...... The harbor porpoise (Phocoena phocoena) is a small toothed whale living mostly in coastal waters.  There are large, but unknown, numbers in the inner Danish waters.  Four are in captivity at Fjord & Bælt, Kerteminde, Denmark, one of which was born here in 2006.  Harbor porpoises use...... their ultrasonic clicks as biosonar for orientation and detection of prey (mostly smaller pelagic and bottom dwelling fish), and for communication.  For studying wild animals, hydrophone arrays [Villadsgaard et al. J.Exp.Biol. 210 (2007)] and acoustic (time/depth) tags [Akamatsu et al. Deep Sea Research II 54...

  3. A Burkholderia pseudomallei Infection Imported from Eritrea to Israel.

    Science.gov (United States)

    Almog, Yaniv; Yagel, Yael; Geffen, Yuval; Yagupsky, Pablo

    2016-11-02

    Although it has been predicted that melioidosis is probably endemic in the Horn of Africa, no confirmed cases have ever been detected in the region. We have recently isolated Burkholderia pseudomallei from an Eritrean patient in Israel. The isolate was assigned a novel multilocus sequence type (ST-1479). The observation has important epidemiological implications in an era of massive human migration. © The American Society of Tropical Medicine and Hygiene.

  4. Molecular and Physical Characterization of Burkholderia mallei O Antigens

    OpenAIRE

    Burtnick, Mary N.; Brett, Paul J; Woods, Donald E

    2002-01-01

    Burkholderia mallei lipopolysaccharide (LPS) has been previously shown to cross-react with polyclonal antibodies raised against B. pseudomallei LPS; however, we observed that B. mallei LPS does not react with a monoclonal antibody (Pp-PS-W) specific for B. pseudomallei O polysaccharide (O-PS). In this study, we identified the O-PS biosynthetic gene cluster from B. mallei ATCC 23344 and subsequently characterized the molecular structure of the O-PS produced by this organism.

  5. Immune Recognition of the Epidemic Cystic Fibrosis Pathogen Burkholderia dolosa.

    Science.gov (United States)

    Roux, Damien; Weatherholt, Molly; Clark, Bradley; Gadjeva, Mihaela; Renaud, Diane; Scott, David; Skurnik, David; Priebe, Gregory P; Pier, Gerald; Gerard, Craig; Yoder-Himes, Deborah R

    2017-06-01

    Burkholderia dolosa caused an outbreak in the cystic fibrosis (CF) clinic at Boston Children's Hospital from 1998 to 2005 and led to the infection of over 40 patients, many of whom died due to complications from infection by this organism. To assess whether B. dolosa significantly contributes to disease or is recognized by the host immune response, mice were infected with a sequenced outbreak B. dolosa strain, AU0158, and responses were compared to those to the well-studied CF pathogen Pseudomonas aeruginosa In parallel, mice were also infected with a polar flagellin mutant of B. dolosa to examine the role of flagella in B. dolosa lung colonization. The results showed a higher persistence in the host by B. dolosa strains, and yet, neutrophil recruitment and cytokine production were lower than those with P. aeruginosa The ability of host immune cells to recognize B. dolosa was then assessed, B. dolosa induced a robust cytokine response in cultured cells, and this effect was dependent on the flagella only when bacteria were dead. Together, these results suggest that B. dolosa can be recognized by host cells in vitro but may avoid or suppress the host immune response in vivo through unknown mechanisms. B. dolosa was then compared to other Burkholderia species and found to induce similar levels of cytokine production despite being internalized by macrophages more than Burkholderia cenocepacia strains. These data suggest that B. dolosa AU0158 may act differently with host cells and is recognized differently by immune systems than are other Burkholderia strains or species. Copyright © 2017 American Society for Microbiology.

  6. DBSecSys: a database of Burkholderia mallei secretion systems

    OpenAIRE

    Memišević, Vesna; Kumar, Kamal; Cheng, Li; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques

    2014-01-01

    Background Bacterial pathogenicity represents a major public health concern worldwide. Secretion systems are a key component of bacterial pathogenicity, as they provide the means for bacterial proteins to penetrate host-cell membranes and insert themselves directly into the host cells’ cytosol. Burkholderia mallei is a Gram-negative bacterium that uses multiple secretion systems during its host infection life cycle. To date, the identities of secretion system proteins for B. mallei are not we...

  7. Environmental Survival, Military Relevance, and Persistence of Burkholderia Pseudomallei

    Science.gov (United States)

    2007-04-01

    with other intracellular bacteria [e.g.,Legionella and Listeria (Inglis et al., 2000)]. Entry into Acanthamoeba trophozoites forms vacuoles full of...endosymbioses with plant roots, and therefore provide an intracellular habitat for bacteria, inside another eukaryotic habitat. This double layer of...periodic acquisition of genetic material from either the host fungus or plant from contained Burkholderia could explain the genetic complexity of the

  8. Quorum Sensing: A Transcriptional Regulatory System Involved in the Pathogenicity of Burkholderia mallei

    Science.gov (United States)

    2004-11-01

    production. Corresponding author. Mailing address for Rickv 1. LUlrich: Bac- siderophore biosynthesis, biofilm formation, lipase and beta- teriology...bmaR. ders. The relative D150 for wild-type B. mallei at 4 days p.e. tems allow a microbial community to strategically induce or was ᝽ CIIU...thailandensis (34, 35). models, indicating that AHL biosynthesis plays an es.sential It has been proposed that microbial species carrying multi- role

  9. Characterization of integrons in Burkholderia cepacia clinical isolates

    Directory of Open Access Journals (Sweden)

    Linda Furlanis

    2010-03-01

    Full Text Available Burkholderia cepacia is an opportunistic pathogen able to colonize the airways of Cystic Fibrosis (CF patients, frequently developing chronic infections. In 20% of cases these infections cause severe and poorly controlled pathological situations because of the intrinsic antibiotic resistance expressed by the microorganism. CF patients are often subjected to antibiotic therapy: this facilitates the acquisition of antibiotic resistance determinants by the infecting bacteria. Integrons are mobile genetic elements that are widespread in bacterial populations and favor the acquisition of gene cassettes coding for these determinants.The presence of class 1 integrons was investigated by PCR with primers specific for the 5’ and 3’ ends in Burkholderia isolates recovered from patients in treatment at the CF center of Friuli Venezia Giulia. The same integron, carrying an uncommon allelic form (Ib of the aacA4 gene in its cassette array and conferring resistance to some aminoglycosides, was found in two independent isolates (different RAPD profiles infecting two different patients. In both isolates the integron was carried by plasmids and was still present 3 and 6 years later the first finding. Despite the exchange of integrons between bacterial pathogens is fully described, these items were not frequently found in Burkholderia isolates. Although the clinical relevance of the integron we identified is low (a single gene cassette encoding a widespread resistance,we feel concerned that these genetic elements begin to circulate in this bacterial species, as this could make more and more troublesome the treatment of infections notoriously difficult to eradicate.

  10. The Tomato Rhizosphere, an Environment Rich in Nitrogen-Fixing Burkholderia Species with Capabilities of Interest for Agriculture and Bioremediation▿

    OpenAIRE

    Caballero-Mellado, Jesús; Onofre-Lemus, Janette; Estrada-de los Santos, Paulina; Martínez-Aguilar, Lourdes

    2007-01-01

    Burkholderia strains are promising candidates for biotechnological applications. Unfortunately, most of these strains belong to species of the Burkholderia cepacia complex (Bcc) involved in human infections, hampering potential applications. Novel diazotrophic Burkholderia species, phylogenetically distant from the Bcc species, have been discovered recently, but their environmental distribution and relevant features for agro-biotechnological applications are little known. In this work, the oc...

  11. NCBI nr-aa BLAST: CBRC-XTRO-01-0459 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0459 ref|YP_438260.1| transporter, AcrB/D/F family [Burkholderia thail...andensis E264] gb|ABC35049.1| transporter, AcrB/D/F family [Burkholderia thailandensis E264] YP_438260.1 0.0 70% ...

  12. NCBI nr-aa BLAST: CBRC-CREM-01-1103 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1103 ref|YP_439586.1| CAAX protease family protein [Burkholderia thail...andensis E264] gb|ABC35570.1| CAAX protease family protein [Burkholderia thailandensis E264] YP_439586.1 3.2 36% ...

  13. NCBI nr-aa BLAST: CBRC-PTRO-12-0172 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-12-0172 ref|YP_440088.1| Rhs element Vgr protein [Burkholderia thailanden...sis E264] gb|ABC34956.1| Rhs element Vgr protein [Burkholderia thailandensis E264] YP_440088.1 4e-07 30% ...

  14. NCBI nr-aa BLAST: CBRC-TSYR-01-0757 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TSYR-01-0757 ref|YP_440088.1| Rhs element Vgr protein [Burkholderia thailanden...sis E264] gb|ABC34956.1| Rhs element Vgr protein [Burkholderia thailandensis E264] YP_440088.1 2e-09 36% ...

  15. NCBI nr-aa BLAST: CBRC-CREM-01-1310 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1310 ref|YP_442494.1| acyltransferase family protein [Burkholderia thai...landensis E264] gb|ABC38658.1| acyltransferase family protein [Burkholderia thailandensis E264] YP_442494.1 2e-52 44% ...

  16. NCBI nr-aa BLAST: CBRC-AGAM-07-0061 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-07-0061 ref|YP_443145.1| fosmidomycin resistance protein [Burkholderia thai...landensis E264] gb|ABC36646.1| fosmidomycin resistance protein [Burkholderia thailandensis E264] YP_443145.1 1e-117 64% ...

  17. NCBI nr-aa BLAST: CBRC-PTRO-12-0172 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-12-0172 ref|YP_440087.1| Rhs element Vgr protein [Burkholderia thailanden...sis E264] gb|ABC34278.1| Rhs element Vgr protein [Burkholderia thailandensis E264] YP_440087.1 4e-06 29% ...

  18. NCBI nr-aa BLAST: CBRC-CBRI-08-0181 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CBRI-08-0181 ref|YP_440088.1| Rhs element Vgr protein [Burkholderia thailanden...sis E264] gb|ABC34956.1| Rhs element Vgr protein [Burkholderia thailandensis E264] YP_440088.1 1e-24 26% ...

  19. NCBI nr-aa BLAST: CBRC-AGAM-03-0035 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-03-0035 ref|YP_441277.1| hypothetical protein BTH_I0721 [Burkholderia thai...landensis E264] gb|ABC36322.1| membrane protein, putative [Burkholderia thailandensis E264] YP_441277.1 0.063 24% ...

  20. NCBI nr-aa BLAST: CBRC-OANA-01-2147 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OANA-01-2147 ref|YP_439999.1| nodulation competitiveness protein nfeD [Burkhol...deria thailandensis E264] gb|ABC34343.1| nodulation competitiveness protein nfeD [Burkholderia thailandensis E264] YP_439999.1 0.001 38% ...

  1. NCBI nr-aa BLAST: CBRC-ETEL-01-0698 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ETEL-01-0698 ref|YP_441274.1| HesA/MoeB/ThiF family protein [Burkholderia thai...landensis E264] gb|ABC38646.1| HesA/MoeB/ThiF family protein [Burkholderia thailandensis E264] YP_441274.1 0.73 41% ...

  2. NCBI nr-aa BLAST: CBRC-DMEL-08-0031 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DMEL-08-0031 ref|YP_439154.1| outer membrane protein, putative [Burkholderia t...hailandensis E264] gb|ABC34987.1| outer membrane protein, putative [Burkholderia thailandensis E264] YP_439154.1 7e-10 33% ...

  3. NCBI nr-aa BLAST: CBRC-PMAR-01-0384 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PMAR-01-0384 ref|YP_439624.1| hypothetical protein BTH_II1428 [Burkholderia th...ailandensis E264] gb|ABC34039.1| conserved hypothetical protein [Burkholderia thailandensis E264] YP_439624.1 2.3 36% ...

  4. Immunoproteomic analysis of proteins expressed by two related pathogens, Burkholderia multivorans and Burkholderia cenocepacia, during human infection.

    Directory of Open Access Journals (Sweden)

    Minu Shinoy

    Full Text Available Burkholderia cepacia complex (Bcc is an opportunistic bacterial pathogen that causes chronic infections in people with cystic fibrosis (CF. It is a highly antibiotic resistant organism and Bcc infections are rarely cleared from patients, once they are colonized. The two most clinically relevant species within Bcc are Burkholderia cenocepacia and Burkholderia multivorans. The virulence of these pathogens has not been fully elucidated and the virulence proteins expressed during human infection have not been identified to date. Furthermore, given its antibiotic resistance, prevention of infection with a prophylactic vaccine may represent a better alternative than eradication of an existing infection. We have compared the immunoproteome of two strains each from these two species of Bcc, with the aim of identifying immunogenic proteins which are common to both species. Fourteen immunoreactive proteins were exclusive to both B. cenocepacia strains, while 15 were exclusive to B. multivorans. A total of 15 proteins were immunogenic across both species. DNA-directed RNA polymerase, GroEL, 38kDa porin and elongation factor-Tu were immunoreactive proteins expressed by all four strains examined. Many proteins which were immunoreactive in both species, warrant further investigations in order to aid in the elucidation of the mechanisms of pathogenesis of this difficult organism. In addition, identification of some of these could also allow the development of protective vaccines which may prevent colonisation.

  5. In Vitro and In Vivo Studies of Monoclonal Antibodies with Prominent Bactericidal Activity against Burkholderia pseudomallei and Burkholderia mallei▿

    Science.gov (United States)

    Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching

    2011-01-01

    Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria. PMID:21450976

  6. In Vitro and In Vivo studies of monoclonal antibodies with prominent bactericidal activity against Burkholderia pseudomallei and Burkholderia mallei.

    Science.gov (United States)

    Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching

    2011-05-01

    Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria.

  7. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    Science.gov (United States)

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Ginther, Jennifer L; Mayo, Mark; Cook, James M; Seymour, Meagan L; Kaestli, Mirjam; Theobald, Vanessa; Hall, Carina M; Busch, Joseph D; Foster, Jeffrey T; Keim, Paul; Wagner, David M; Tuanyok, Apichai; Pearson, Talima; Currie, Bart J

    2013-01-01

    Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  8. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    Full Text Available Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc, a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  9. Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei

    NARCIS (Netherlands)

    Kanthawong, S.; Bolscher, J.G.M.; Veerman, E.C.I.; van Marle, J.; de Soet, H.J.J.; Nazmi, K.; Wongratanacheewin, S.; Taweechaisupapong, S.

    2012-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the aetiological agent of melioidosis, which is an endemic disease in tropical areas of Southeast Asia and Northern Australia. Burkholderia pseudomallei has intrinsic resistance to a number of commonly used antibiotics and has also been

  10. First Draft Genome for a Burkholderia mallei Isolate Originating from a Glanderous Mule from Brazil

    OpenAIRE

    Girault, G.; Woudstra, C.; Martin, B.; Vorimore, F.; Lucia de Assis Santana, V.; Fach, P.; Madani, N.; Laroucau, K.

    2017-01-01

    ABSTRACT Burkholderia mallei is the etiological agent of glanders. Here, we present the draft genome sequence of Burkholderia mallei strain 16-2438_BM#8 that was isolated from a mule found dead in Pernambuco, northeast Brazil. It is the first available genomic sequence from a strain isolated on the American continent.

  11. First Draft Genome for a Burkholderia mallei Isolate Originating from a Glanderous Mule from Brazil.

    Science.gov (United States)

    Girault, G; Woudstra, C; Martin, B; Vorimore, F; Lucia de Assis Santana, V; Fach, P; Madani, N; Laroucau, K

    2017-07-13

    Burkholderia mallei is the etiological agent of glanders. Here, we present the draft genome sequence of Burkholderia mallei strain 16-2438_BM#8 that was isolated from a mule found dead in Pernambuco, northeast Brazil. It is the first available genomic sequence from a strain isolated on the American continent. Copyright © 2017 Girault et al.

  12. Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils.

    Science.gov (United States)

    Castanheira, N; Dourado, A C; Kruz, S; Alves, P I L; Delgado-Rodríguez, A I; Pais, I; Semedo, J; Scotti-Campos, P; Sánchez, C; Borges, N; Carvalho, G; Barreto Crespo, M T; Fareleira, P

    2016-03-01

    To search for culturable Burkholderia species associated with annual ryegrass in soils from natural pastures in Portugal, with plant growth-promoting effects. Annual ryegrass seedlings were used to trap Burkholderia from two different soils in laboratory conditions. A combined approach using genomic fingerprinting and sequencing of 16S rRNA and recA genes resulted in the identification of Burkholderia strains belonging to the species Burkholderia graminis, Burkholderia fungorum and the Burkholderia cepacia complex. Most strains were able to solubilize mineral phosphate and to synthesize indole acetic acid; some of them could produce siderophores and antagonize the phytopathogenic oomycete, Phytophthora cinnamomi. A strain (G2Bd5) of B. graminis was selected for gnotobiotic plant inoculation experiments. The main effects were the stimulation of root growth and enhancement of leaf lipid synthesis and turnover. Fluorescence in situ hybridization and confocal laser microscopy evidenced that strain G2Bd5 is a rhizospheric and endophytic colonizer of annual ryegrass. This work revealed that annual ryegrass can naturally associate with members of the genus Burkholderia. A novel plant growth promoting strain of B. graminis was obtained. The novel strain belongs to the plant-associated Burkholderia cluster and is a promising candidate for exploitation as plant inoculant in field conditions. © 2015 The Society for Applied Microbiology.

  13. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years' experience.

    Science.gov (United States)

    Zlosnik, James E A; Zhou, Guohai; Brant, Rollin; Henry, Deborah A; Hird, Trevor J; Mahenthiralingam, Eshwar; Chilvers, Mark A; Wilcox, Pearce; Speert, David P

    2015-01-01

    We have been collecting Burkholderia species bacteria from patients with cystic fibrosis (CF) for the last 30 years. During this time, our understanding of their multispecies taxonomy and infection control has evolved substantially. To evaluate the long-term (30 year) epidemiology and clinical outcome of Burkholderia infection in CF, and fully define the risks associated with infection by each species. Isolates from Burkholderia-positive patients (n=107) were speciated and typed annually for each infected patient. Microbiological and clinical data were evaluated by thorough review of patient charts, and statistical analyses performed to define significant epidemiological factors. Before 1995, the majority of new Burkholderia infections were caused by epidemic clones of Burkholderia cenocepacia. After implementation of new infection control measures in 1995, Burkholderia multivorans became the most prevalent species. Survival analysis showed that patients with CF infected with B. cenocepacia had a significantly worse outcome than those with B. multivorans, and a novel finding was that, after Burkholderia infection, the prognosis for females was significantly worse than for males. B. multivorans and B. cenocepacia have been the predominant Burkholderia species infecting people with CF in Vancouver. The implementation of infection control measures were successful in preventing new acquisition of epidemic strains of B. cenocepacia, leaving nonclonal B. multivorans as the most prevalent species. Historically, survival after infection with B. cenocepacia has been significantly worse than B. multivorans infection, and, of new significance, we show that females tend toward worse clinical outcomes.

  14. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria.

    Science.gov (United States)

    DiSalvo, Susanne; Haselkorn, Tamara S; Bashir, Usman; Jimenez, Daniela; Brock, Debra A; Queller, David C; Strassmann, Joan E

    2015-09-08

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.

  15. Dual Infection by Burkholderia Cepaciaand Pseudomonas Putida in an Infective Endocarditis Case.

    Science.gov (United States)

    Khan, Maria; Lalani, Farida Khurram; Ikram, Aamer; Zaman, Gohar; Ahmed, Parvez

    2017-06-01

    Infective endocarditis is rarely caused by Burkholderia cepacia. Pseudomonas putidahas not been reported to cause infective endocarditis so far. This is the first case of infective endocarditis being reported, that is caused by Pseudomonas putidaand Burkholderia cepaciain an immunocompetent host with no predisposing factors. Aortic valve replacement surgery was carried out and antibiotics were given, to which the patient responded well and recovered.

  16. Characterization of an autotransporter adhesin protein shared by Burkholderia mallei and Burkholderia pseudomallei.

    Science.gov (United States)

    Lafontaine, Eric R; Balder, Rachel; Michel, Frank; Hogan, Robert J

    2014-04-14

    Autotransporters form a large family of outer membrane proteins specifying diverse biological traits of Gram-negative bacteria. In this study, we report the identification and characterization of a novel autotransporter gene product of Burkholderia mallei (locus tag BMA1027 in strain ATCC 23344). Database searches identified the gene in at least seven B. mallei isolates and the encoded proteins were found to be 84% identical. Inactivation of the gene encoding the autotransporter in the genome of strain ATCC 23344 substantially reduces adherence to monolayers of HEp-2 laryngeal cells and A549 type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, expression of the autotransporter on the surface of recombinant E. coli bacteria increases adherence to these cell types by 5-7 fold. The gene specifying the autotransporter was identified in the genome of 29 B. pseudomallei isolates and disruption of the gene in strain DD503 reduced adherence to NHBE cultures by 61%. Unlike B. mallei, the mutation did not impair binding of B. pseudomallei to A549 or HEp-2 cells. Analysis of sera from mice infected via the aerosol route with B. mallei and B. pseudomallei revealed that animals inoculated with as few as 10 organisms produce antibodies against the autotransporter, therefore indicating expression in vivo. Our data demonstrate that we have identified an autotransporter protein common to the pathogenic species B. mallei and B. pseudomallei which mediates adherence to respiratory epithelial cells and is expressed in vivo during the course of aerosol infection.

  17. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    Science.gov (United States)

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  18. Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs.

    Science.gov (United States)

    Sokol, Pamela A; Malott, Rebecca J; Riedel, Kathrin; Eberl, Leo

    2007-10-01

    The genus Burkholderia not only contains the primary pathogens Burkholderia pseudomallei and Burkholderia mallei but also several species that have emerged as opportunistic pathogens in persons suffering from cystic fibrosis or chronic granulomatous disease and immunocompromised individuals. Burkholderia species utilize quorum-sensing (QS) systems that rely on N-acyl-homoserine lactone (AHL) signal molecules to express virulence factors and other functions in a population-density-dependent manner. Most Burkholderia species employ the CepIR QS system, which relies on N-octanoyl-homoserine lactone. However, some strains harbour multiple QS systems and produce numerous AHLs. QS systems have been demonstrated to be essential for full virulence in various infection models and, thus, these regulatory systems represent attractive targets for the development of novel therapeutics.

  19. Surgidero de Batabanó Harbor, Cuba

    NARCIS (Netherlands)

    Hopmans, R.; Van Kessel, L.; Lendering, K.; Oud, M.; Tromp, R.

    2011-01-01

    The harbor of Surgidero de Batabano is a harbor that lies in the Gulf of Batabano in the South-Western part of Cuba. It serves as a connection between the main land of Cuba and the islands 'Isla de la Juventud' and Cayo Largo. The Batabano harbor suffers from sediment accretion. The accretion of

  20. The Floating-Harbor syndrome.

    Science.gov (United States)

    Majewski, F; Lenard, H G

    1991-02-01

    We describe the seventh patient with the Floating-Harbor syndrome. Similar to previous cases in the literature this girl presented with proportionate intrauterine and postnatal growth retardation, normocephaly, triangular face with bulbous nose, long eyelashes, short upper lip, small vermilion border of upper lip, dorsally rotated ears, deep nuchal hair line, hirsutism, and clinodactyly of little fingers. She exhibited mental retardation and retarded speech development. Clinical symptoms and differential diagnosis of this rare syndrome are briefly discussed.

  1. Tributyltin contamination and imposex in Alaska harbors.

    Science.gov (United States)

    Tallmon, David A

    2012-02-01

    We quantified imposex in file dogwinkles (Nucella lima) and tributyltin (TBT) contamination in bay mussels (Mytilus trossulus) from 10 harbors and nearby control sites throughout Alaska. We found evidence of TBT contamination in mussels from four harbors (29-54 ng TBT/g wet tissue wt). Two of these harbors now show reduced TBT contamination relative to levels found in 1987. We were able to find and collect dogwinkles from seven sites. Of these, all three dogwinkle samples from harbor sites exhibited imposex, with 36%-87.5% females affected per site. In total, six of the 10 harbors had some evidence of TBT contamination.

  2. DBSecSys 2.0: a database of Burkholderia mallei and Burkholderia pseudomallei secretion systems.

    Science.gov (United States)

    Memišević, Vesna; Kumar, Kamal; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques

    2016-09-20

    Burkholderia mallei and B. pseudomallei are the causative agents of glanders and melioidosis, respectively, diseases with high morbidity and mortality rates. B. mallei and B. pseudomallei are closely related genetically; B. mallei evolved from an ancestral strain of B. pseudomallei by genome reduction and adaptation to an obligate intracellular lifestyle. Although these two bacteria cause different diseases, they share multiple virulence factors, including bacterial secretion systems, which represent key components of bacterial pathogenicity. Despite recent progress, the secretion system proteins for B. mallei and B. pseudomallei, their pathogenic mechanisms of action, and host factors are not well characterized. We previously developed a manually curated database, DBSecSys, of bacterial secretion system proteins for B. mallei. Here, we report an expansion of the database with corresponding information about B. pseudomallei. DBSecSys 2.0 contains comprehensive literature-based and computationally derived information about B. mallei ATCC 23344 and literature-based and computationally derived information about B. pseudomallei K96243. The database contains updated information for 163 B. mallei proteins from the previous database and 61 additional B. mallei proteins, and new information for 281 B. pseudomallei proteins associated with 5 secretion systems, their 1,633 human- and murine-interacting targets, and 2,400 host-B. mallei interactions and 2,286 host-B. pseudomallei interactions. The database also includes information about 13 pathogenic mechanisms of action for B. mallei and B. pseudomallei secretion system proteins inferred from the available literature or computationally. Additionally, DBSecSys 2.0 provides details about 82 virulence attenuation experiments for 52 B. mallei secretion system proteins and 98 virulence attenuation experiments for 61 B. pseudomallei secretion system proteins. We updated the Web interface and data access layer to speed-up users

  3. Burkholderia glumae EN EL CULTIVO DE ARROZ EN COSTA RICA

    Directory of Open Access Journals (Sweden)

    Andrea Quesada-Gonz\\u00E1lez

    2014-01-01

    Full Text Available Burkholderia glumae en el cultivo de arroz en Costa Rica. El objetivo de este trabajo fue determinar la presencia de Burkholderia glumae en arroz en Costa Rica. La bacteria Burkholderia glumae está asociada al cultivo del arroz en el que provoca la enfermedad llamada añublo bacterial. Bajo condiciones ambientales favorables, la densidad bacteriana aumenta, lo que provoca que, bajo un sistema de regulación denominado quorum sensing, se expresen sus mecanismos de virulencia mediante la activación de genes responsables para la síntesis de la toxoflavina, que bloquea el flujo de nutrientes, para la biogénesis de flagelos y la respuesta quimiotáctica, y la producción de la enzima catalasa. Las plantas desarrollan la sintomatología que finalmente conlleva a un vaneamiento del grano provocando pérdidas económicas importantes. Se investigó la situación referente a la contaminación del grano de arroz causado por esta bacteria en Costa Rica durante los años 2009 y 2010, mediante un convenio entre la Corporación Nacional Arrocera y el Laboratorio de Fitopatología del Centro de Investigación en Protección de Cultivos de la Universidad de Costa Rica. Se usó la metodología de PCR de punto final recomendada por investigadores del Centro Internacional de Agricultura Tropical en Colombia y se reforzó la identificación, por medio de técnicas de microbiología convencional. Se obtuvieron resultados que indican la presencia de la bacteria en Costa Rica, la primera información sobre la prevalencia de un fitopatógeno bacteriano de gran importancia para el sector arrocero.

  4. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    2017-09-01

    Full Text Available The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4% of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the "housekeeping" narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 μg/mL, a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species.

  5. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis.

    Science.gov (United States)

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Hall, Carina M; Jaramillo, Sierra A; Sahl, Jason W; Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Baker, Anthony L; Sidak-Loftis, Lindsay C; Settles, Erik W; Lummis, Madeline; Schupp, James M; Gillece, John D; Tuanyok, Apichai; Warner, Jeffrey; Busch, Joseph D; Keim, Paul; Currie, Bart J; Wagner, David M

    2017-09-01

    The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc) species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4%) of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the "housekeeping" narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 μg/mL), a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species.

  6. Butyltin Concentrations in Selected US Harbor Systems. A Baseline Assessment.

    Science.gov (United States)

    1987-04-01

    ecological resources exist in both Pearl Harbo , and Honolulu Harbor. .0 Pearl Harbor exhibits the characteristically high biological complexity and...Naval Shipyard. Bremerton, Washington; Pearl Harbor and Honolulu Harbor/Kewalo Basin. Hawaii; Mayport-St. John’s River Complex. Florida; Charleston...18 Bremerton (Sinclair Inlet) Washington ....................................... 20 Pearl Harbor. Honolulu Harbor and

  7. Burkholderia species associated with legumes of Chiapas, Mexico, exhibit stress tolerance and growth in aromatic compounds.

    Science.gov (United States)

    de León-Martínez, José A; Yañez-Ocampo, Gustavo; Wong-Villarreal, Arnoldo

    2017-08-29

    Leguminous plants have received special interest for the diversity of β-proteobacteria in their nodules and are promising candidates for biotechnological applications. In this study, 15 bacterial strains were isolated from the nodules of the following legumes: Indigofera thibaudiana, Mimosa diplotricha, Mimosa albida, Mimosa pigra, and Mimosa pudica, collected in 9 areas of Chiapas, Mexico. The strains were grouped into four profiles of genomic fingerprints through BOX-PCR and identified based on their morphology, API 20NE biochemical tests, sequencing of the 16S rRNA, nifH and nodC genes as bacteria of the Burkholderia genus, genetically related to Burkholderia phenoliruptrix, Burkholderia phymatum, Burkholderia sabiae, and Burkholderia tuberum. The Burkholderia strains were grown under stress conditions with 4% NaCl, 45°C, and benzene presence at 0.1% as the sole carbon source. This is the first report on the isolation of these nodulating species of the Burkholderia genus in legumes in Mexico. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Exploring the HME and HAE1 efflux systems in the genus Burkholderia

    Science.gov (United States)

    2010-01-01

    Background The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND) family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i) identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii) analyze their phylogenetic distribution, iii) define the putative function(s) that RND proteins perform within the Burkholderia genus and iv) try tracing the evolutionary history of some of these genes in Burkholderia. Results BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia) as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins)/heavy-metal (HME proteins)] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE1 systems in the

  9. Exploring the HME and HAE1 efflux systems in the genus Burkholderia

    Directory of Open Access Journals (Sweden)

    Pasca Maria

    2010-06-01

    Full Text Available Abstract Background The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii analyze their phylogenetic distribution, iii define the putative function(s that RND proteins perform within the Burkholderia genus and iv try tracing the evolutionary history of some of these genes in Burkholderia. Results BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins/heavy-metal (HME proteins] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE

  10. Exploring the HME and HAE1 efflux systems in the genus Burkholderia.

    Science.gov (United States)

    Perrin, Elena; Fondi, Marco; Papaleo, Maria Cristiana; Maida, Isabel; Buroni, Silvia; Pasca, Maria Rosalia; Riccardi, Giovanna; Fani, Renato

    2010-06-03

    The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND) family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i) identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii) analyze their phylogenetic distribution, iii) define the putative function(s) that RND proteins perform within the Burkholderia genus and iv) try tracing the evolutionary history of some of these genes in Burkholderia. BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia) as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins)/heavy-metal (HME proteins)] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE1 systems in the Burkholderia genus. A

  11. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    Science.gov (United States)

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. PCR detection of Burkholderia multivorans in water and soil samples.

    Science.gov (United States)

    Peeters, Charlotte; Daenekindt, Stijn; Vandamme, Peter

    2016-08-12

    Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium).

  13. An outbreak of Burkholderia stabilis colonization in a nasal ward.

    Science.gov (United States)

    Wang, Lijun; Wang, Mei; Zhang, Junyi; Wu, Wei; Lu, Yuan; Fan, Yanyan

    2015-04-01

    The aim of this study was to describe an outbreak of Burkholderia stabilis colonization among patients in a nasal ward. Multilocus sequence typing (MLST) was used for the molecular typing of B. stabilis isolates. Microbiological records were reviewed to delineate the colonization outbreak period. One hundred seventy-one cultures of environment and equipment samples from the nasal ward were performed to trace the source of contamination. Infection control measures were taken in order to end the outbreak. All B. stabilis isolates were identified as a new MLST type, ST821. A total of 53 patients carried this B. stabilis in the nasal ward between March and September 2013, which was defined as the outbreak period. The source of the colonization was not determined because all environment cultures were negative for Burkholderia cepacia complex. No further B. stabilis carriers have been found in the ward since the implementation of interventions. Attention must be paid to asymptomatic colonization in order to identify outbreaks early. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. CRSMP Potential Harbor Borrow Sites 2012

    Data.gov (United States)

    California Department of Resources — Harbor locations as identified originally in the California Shoreline Database compiled by Noble Consultants (Jon Moore) for California Department of Boating and...

  15. Type VI Secretion is a Major Virulence Determinant in Burkholderia Mallei

    National Research Council Canada - National Science Library

    Schell, Mark A; Ulrich, Ricky L; Ribot, Wilson J; Brueggemann, Ernst E; Hines, Harry B; Chen, Dan; Lipscomb, Lyla; Kim, H. S; Mrazek, Jan; Nierman, William C; DeShazer, David

    2007-01-01

    Burkholderia mallei is a host-adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two-component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown...

  16. Identification of Burkholderia spp. in the clinical microbiology laboratory: comparison of conventional and molecular methods

    NARCIS (Netherlands)

    C. van Pelt (Cindy); C.M. Verduin (Cees); W.H.F. Goessens (Wil); M.C. Vos (Margreet); B. Tummler; C. Segonds; F. Reubsaet; A.F. van Belkum (Alex); H.A. Verbrugh (Henri)

    1999-01-01

    textabstractCystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This

  17. BIOAUGMENTATION WITH BURKHOLDERIA CEPACIA PR1301 FOR IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE CONTAMINATED GROUNDWATER (RESEARCH BRIEF)

    Science.gov (United States)

    A pilot field study was conducted at the Moffett Federal Airfield, Mountain View, California, to determine whether effective in-situ aerobic cometabolic biodegradation of TCE could be accomplished through bioaugmentation with a genetically modified strain of Burkholderia cepacia ...

  18. AQUIFER PROTIST RESPONSE AND THE POTENTIAL FOR TCE BIOREMEDIATION WITH BURKHOLDERIA CEPACIA G4 PR1

    Science.gov (United States)

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of the persistence and activity of microbial population for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR123 and PR131 constitutive...

  19. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium

    NARCIS (Netherlands)

    Salles, J.F.; Samyn, E.; Vandamme, P.A.; Veen, van J.A.; Elsas, van J.D.

    2006-01-01

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  20. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PLAT medium

    NARCIS (Netherlands)

    Salles, JF; Samyn, E; Vandamme, P; van Veen, JA; van Elsas, JD

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  1. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    Science.gov (United States)

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)). © 2015 IUMS.

  2. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of Winter...

  3. 78 FR 38577 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Science.gov (United States)

    2013-06-27

    ... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Special Local Regulations; Red Bull Flugtag National...; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor Access Channel, MD'' in the... safety of life on navigable waters of the United States during the Red Bull Flugtag National Harbor event...

  4. 78 FR 18274 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Science.gov (United States)

    2013-03-26

    ... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Special Local Regulations; Red Bull Flugtag National... during the ``Red Bull Flugtag National Harbor event,'' to be held on the waters of the Potomac River on... of National Harbor, Maryland, is sponsoring the Red Bull Flugtag National Harbor event, a competition...

  5. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    Science.gov (United States)

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Yeoh, Yun Kit; Donose, Bogdan C.; Webb, Richard I.; Parsons, Jeremy; Liao, Webber; Sagulenko, Evgeny; Lakshmanan, Prakash; Hugenholtz, Philip; Schmidt, Susanne; Ragan, Mark A.

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere. PMID:27869215

  6. Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations.

    Science.gov (United States)

    Stopnisek, Nejc; Bodenhausen, Natacha; Frey, Beat; Fierer, Noah; Eberl, Leo; Weisskopf, Laure

    2014-06-01

    Bacteria belonging to the genus Burkholderia are highly versatile with respect to their ecological niches and lifestyles, ranging from nodulating tropical plants to causing melioidosis and fatal infections in cystic fibrosis patients. Despite the clinical importance and agronomical relevance of Burkholderia species, information about the factors influencing their occurrence, abundance and diversity in the environment is scarce. Recent findings have demonstrated that pH is the main predictor of soil bacterial diversity and community structure, with the highest diversity observed in neutral pH soils. As many Burkholderia species have been isolated from low pH environments, we hypothesized that acid tolerance may be a general feature of this genus, and pH a good predictor of their occurrence in soils. Using a combination of environmental surveys at trans-continental and local scales, as well as in vitro assays, we show that, unlike most bacteria, Burkholderia species have a competitive advantage in acidic soils, but are outcompeted in alkaline soils. Physiological assays and diversity analysis based on 16S rRNA clone libraries demonstrate that pH tolerance is a general phenotypic trait of the genus Burkholderia. Our results provide a basis for building a predictive understanding of the biogeographical patterns exhibited by Burkholderia sp. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.

  8. Molecular mechanisms underlying the close association between soil Burkholderia and fungi

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  9. 33 CFR 117.549 - Cambridge Harbor.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cambridge Harbor. 117.549 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.549 Cambridge Harbor. The draw of the S342 bridge, mile 0.1 at Cambridge, shall open on signal from 6 a.m. to 8 p.m.; except that, from 12...

  10. Floating-Harbor syndrome: case report.

    Science.gov (United States)

    Genc, G; Sarac, A; Erkek Atay, N; Kulali, F

    2008-04-01

    Floating-Harbor syndrome is a rare disorder which is clinically characterized by short stature, retarded speech development, delayed bone ages, triangular face, bulbous nose and thin lips. We described two cases with Floating-Harbor syndrome and briefly reviewed the relevant literature.

  11. Burkholderia pseudomallei Genotype Distribution in the Northern Territory, Australia.

    Science.gov (United States)

    Chapple, Stephanie N J; Price, Erin P; Sarovich, Derek S; McRobb, Evan; Mayo, Mark; Kaestli, Mirjam; Spratt, Brian G; Currie, Bart J

    2016-01-01

    Melioidosis is a tropical disease of high mortality caused by the environmental bacterium, Burkholderia pseudomallei. We have collected clinical isolates from the highly endemic Northern Territory of Australia routinely since 1989, and animal and environmental B. pseudomallei isolates since 1991. Here we provide a complete record of all B. pseudomallei multilocus sequence types (STs) found in the Northern Territory to date, and distribution maps of the eight most common environmental STs. We observed surprisingly restricted geographic distributions of STs, which is contrary to previous reports suggesting widespread environmental dissemination of this bacterium. Our data suggest that B. pseudomallei from soil and water does not frequently disperse long distances following severe weather events or by migration of infected animals. © The American Society of Tropical Medicine and Hygiene.

  12. Promethazine improves antibiotic efficacy and disrupts biofilms of Burkholderia pseudomallei.

    Science.gov (United States)

    Sidrim, José Júlio Costa; Vasconcelos, David Caldas; Riello, Giovanna Barbosa; Guedes, Glaucia Morgana de Melo; Serpa, Rosana; Bandeira, Tereza de Jesus Pinheiro Gomes; Monteiro, André Jalles; Cordeiro, Rossana de Aguiar; Castelo-Branco, Débora de Souza Collares Maia; Rocha, Marcos Fábio Gadelha; Brilhante, Raimunda Sâmia Nogueira

    2017-01-01

    Efflux pumps are important defense mechanisms against antimicrobial drugs and maintenance of Burkholderia pseudomallei biofilms. This study evaluated the effect of the efflux pump inhibitor promethazine on the structure and antimicrobial susceptibility of B. pseudomallei biofilms. Susceptibility of planktonic cells and biofilms to promethazine alone and combined with antimicrobials was assessed by the broth microdilution test and biofilm metabolic activity was determined with resazurin. The effect of promethazine on 48 h-grown biofilms was also evaluated through confocal and electronic microscopy. The minimum inhibitory concentration (MIC) of promethazine was 780 mg l(-1), while the minimum biofilm elimination concentration (MBEC) was 780-3,120 mg l(-1). Promethazine reduced the MIC values for erythromycin, trimethoprim/sulfamethoxazole, gentamicin and ciprofloxacin and reduced the MBEC values for all tested drugs (pbiofilm structure of B. pseudomallei, even at subinhibitory concentrations, possibly facilitating antibiotic penetration. Promethazine improves antibiotics efficacy against B. pseudomallei biofilms, by disrupting biofilm structure.

  13. Global and regional dissemination and evolution of Burkholderia pseudomallei

    Science.gov (United States)

    Chewapreecha, Claire; Holden, Matthew T. G.; Vehkala, Minna; Välimäki, Niko; Yang, Zhirong; Harris, Simon R; Mather, Alison E.; Tuanyok, Apichai; De Smet, Birgit; Le Hello, Simon; Bizet, Chantal; Mayo, Mark; Wuthiekanun, Vanaporn; Limmathurotsakul, Direk; Phetsouvanh, Rattanaphone; Spratt, Brian G; Corander, Jukka; Keim, Paul; Dougan, Gordon; Dance, David A. B.; Currie, Bart J; Parkhill, Julian; Peacock, Sharon J.

    2017-01-01

    The environmental bacterium Burkholderia pseudomallei causes an estimated 165,000 cases of human melioidosis per year worldwide, and is also classified as a biothreat agent. We used whole genome sequences of 469 B. pseudomallei isolates from 30 countries collected over 79 years to explore its geographic transmission. Our data point to Australia as an early reservoir, with transmission to Southeast Asia followed by onward transmission to South Asia, and East Asia. Repeated reintroduction was observed within the Malay Peninsula, and between countries bordered by the Mekong river. Our data support an African origin of the Central and South American isolates with introduction of B. pseudomallei into the Americas between 1650 and 1850, providing a temporal link with the slave trade. We also identified geographically distinct genes/variants in Australasian or Southeast Asian isolates alone, with virulence-associated genes being among those overrepresented. This provides a potential explanation for clinical manifestations of melioidosis that are geographically restricted. PMID:28112723

  14. Isolation and Identification of Burkholderia glumae from Symptomless Rice Seeds

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2008-06-01

    Full Text Available A survey on isolation and detection of the casual organism of bacterial grain rot of rice was conducted during 1997–2006. In 2006, six pathogenic bacterial strains were isolated from two symptomless seed samples of rice (Oryza sativa L. originally produced in Hainan Province and then planted in Zhejiang Province, China. They were identified as Burkholderia glumae which is the causal organism of bacterial grain rot of rice by physiological characteristics, colony morphology, pathogenicity test, Biolog, fatty acid methyl ester (FAME analysis and RAPD-PCR compared with the four standard reference strains. It is confirmed that there is the infection of B. glumae in so-called ‘health looking seeds’.

  15. Use of the common marmoset to study Burkholderia mallei infection.

    Directory of Open Access Journals (Sweden)

    Tomislav Jelesijevic

    Full Text Available Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 10(4 to 2.5 X 10(5 bacteria developed acute lethal infection within 3-4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 10(3 bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 10(3 organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B

  16. A genetic programming approach for Burkholderia Pseudomallei diagnostic pattern discovery

    Science.gov (United States)

    Yang, Zheng Rong; Lertmemongkolchai, Ganjana; Tan, Gladys; Felgner, Philip L.; Titball, Richard

    2009-01-01

    Motivation: Finding diagnostic patterns for fighting diseases like Burkholderia pseudomallei using biomarkers involves two key issues. First, exhausting all subsets of testable biomarkers (antigens in this context) to find a best one is computationally infeasible. Therefore, a proper optimization approach like evolutionary computation should be investigated. Second, a properly selected function of the antigens as the diagnostic pattern which is commonly unknown is a key to the diagnostic accuracy and the diagnostic effectiveness in clinical use. Results: A conversion function is proposed to convert serum tests of antigens on patients to binary values based on which Boolean functions as the diagnostic patterns are developed. A genetic programming approach is designed for optimizing the diagnostic patterns in terms of their accuracy and effectiveness. During optimization, it is aimed to maximize the coverage (the rate of positive response to antigens) in the infected patients and minimize the coverage in the non-infected patients while maintaining the fewest number of testable antigens used in the Boolean functions as possible. The final coverage in the infected patients is 96.55% using 17 of 215 (7.4%) antigens with zero coverage in the non-infected patients. Among these 17 antigens, BPSL2697 is the most frequently selected one for the diagnosis of Burkholderia Pseudomallei. The approach has been evaluated using both the cross-validation and the Jack–knife simulation methods with the prediction accuracy as 93% and 92%, respectively. A novel approach is also proposed in this study to evaluate a model with binary data using ROC analysis. Contact: z.r.yang@ex.ac.uk PMID:19561021

  17. Burkholderia glumae en el cultivo de arroz en Costa Rica.

    Directory of Open Access Journals (Sweden)

    Andrea Quesada-González

    2014-07-01

    Full Text Available El objetivo de este trabajo fue determinar la presencia de Burkholderia glumae en arroz en Costa Rica. La bacteria Burkholderia glumae está asociada al cultivo del arroz en el que provoca la enfermedad llamada añublo bacterial. Bajo condiciones ambientales favorables, la densidad bacteriana aumenta, lo que provoca que, bajo un sistema de regulación denominado quorum sensing, se expresen sus mecanismos de virulencia mediante la activación de genes responsables para la síntesis de la toxoflavina, que bloquea el flujo de nutrientes, para la biogénesis de flagelos y la respuesta quimiotáctica, y la producción de la enzima catalasa. Las plantas desarrollan la sintomatología que finalmente conlleva a un vaneamiento del grano provocando pérdidas económicas importantes. Se investigó la situación referente a la contaminación del grano de arroz causado por esta bacteria en Costa Rica durante los años 2009 y 2010, mediante un convenio entre la Corporación Nacional Arrocera y el Laboratorio de Fitopatología del Centro de Investigación en Protección de Cultivos de la Universidad de Costa Rica. Se usó la metodología de PCR de punto final recomendada por investigadores del Centro Internacional de Agricultura Tropical en Colombia y se reforzó la identificación, por medio de técnicas de microbiología convencional. Se obtuvieron resultados que indican la presencia de la bacteria en Costa Rica, la primera información sobre la prevalencia de un fitopatógeno bacteriano de gran importancia para el sector arrocero.

  18. Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection

    Directory of Open Access Journals (Sweden)

    Sarovich DS

    2012-08-01

    Full Text Available Derek S Sarovich,1,2,* Erin P Price,1,2,* Direk Limmathurotsakul,3 James M Cook,1 Alex T Von Schulze,1 Spenser R Wolken,1 Paul Keim,1 Sharon J Peacock,3,4 Talima Pearson1 1Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA; 2Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Darwin, Australia; 3Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 4Department of Medicine, University of Cambridge, Cambridge, United Kingdom*These authors contributed equally to this workAbstract: Burkholderia pseudomallei, a bacterium that causes the disease melioidosis, is intrinsically resistant to many antibiotics. First-line antibiotic therapy for treating melioidosis is usually the synthetic β-lactam, ceftazidime (CAZ, as almost all B. pseudomallei strains are susceptible to this drug. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, which can lead to mortality if therapy is not switched to a different drug in a timely manner. Serial B. pseudomallei isolates obtained from an acute Thai melioidosis patient infected by a CAZ susceptible strain, who ultimately succumbed to infection despite being on CAZ therapy for the duration of their infection, were analyzed. Isolates that developed CAZ resistance due to a proline to serine change at position 167 in the β-lactamase PenA were identified. Importantly, these CAZ resistant isolates remained sensitive to the alternative melioidosis treatments; namely, amoxicillin-clavulanate, imipenem, and meropenem. Lastly, real-time polymerase chain reaction-based assays capable of rapidly identifying CAZ resistance in B. pseudomallei isolates at the position 167 mutation site were developed. The ability to rapidly identify the emergence of CAZ resistant B. pseudomallei populations in melioidosis patients will allow timely alterations in treatment strategies

  19. Use of the common marmoset to study Burkholderia mallei infection.

    Science.gov (United States)

    Jelesijevic, Tomislav; Zimmerman, Shawn M; Harvey, Stephen B; Mead, Daniel G; Shaffer, Teresa L; Estes, D Mark; Michel, Frank; Quinn, Frederick D; Hogan, Robert J; Lafontaine, Eric R

    2015-01-01

    Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus) were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 10(4) to 2.5 X 10(5) bacteria developed acute lethal infection within 3-4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 10(3) bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 10(3) organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B. mallei.

  20. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants.

    Directory of Open Access Journals (Sweden)

    Birgit eMitter

    2013-04-01

    Full Text Available Burkholderia phytofirmans PsJN is a naturally occurring plant-associated bacterial endophyte that effectively colonizes a wide range of plants and stimulates their growth and vitality. Here we analyze whole genomes, of PsJN and of eight other endophytic bacteria. This study illustrates that a wide spectrum of endophytic life styles exists. Although we postulate the existence of typical endophytic traits, no unique gene cluster could be exclusively linked to the endophytic lifestyle. Furthermore, our study revealed a high genetic diversity among bacterial endophytes as reflected in their genotypic and phenotypic features. B. phytofirmans PsJN is in many aspects outstanding among the selected endophytes. It has the biggest genome consisting of two chromosomes and one plasmid, well equipped with genes for the degradation of complex organic compounds and detoxification, e.g. 24 glutathione-S-transferase genes. Furthermore, strain PsJN has a high number of cell surface signaling and secretion systems and harbors the 3-OH-PAME quorum-sensing system that coordinates the switch of free-living to the symbiotic lifestyle in the plant-pathogen R. solanacearum. The ability of B. phytofirmans PsJN to successfully colonize such a wide variety of plant species might be based on its large genome harboring a broad range of physiological functions.

  1. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII) and macrophages.

    Science.gov (United States)

    Lu, Richard; Popov, Vsevolod; Patel, Jignesh; Eaves-Pyles, Tonyia

    2012-01-01

    Alveolar type II pneumocytes (ATII) and alveolar macrophages (AM) play a crucial role in the lung's innate immune response. Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM). We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP-induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8) and macrophages (IL-6, TNFα) at 6 h post-infection compared to BM (p < 0.05). Interestingly, BM-induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6 h post-infection, with delayed induction of inflammatory cytokines at 24 h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR) 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens.

  2. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII and macrophages.

    Directory of Open Access Journals (Sweden)

    Richard eLu

    2012-12-01

    Full Text Available Alveolar type II pneumocytes (ATII and alveolar macrophages (AM play a crucial role in the lung’s innate immune response. Burkholderia pseudomallei (BP and Burkholderia mallei (BM are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM. We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8 and macrophages (IL-6, TNFα at 6h post-infection compared to BM (p<0.05. Interestingly, BM induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6h post-infection, with delayed induction of inflammatory cytokines at 24h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens.

  3. Draft genome sequence of Burkholderia sordidicola S170, a potential plant growth promoter isolated from coniferous forest soil in the Czech Republic

    DEFF Research Database (Denmark)

    Lladó, Salvador; Xu, Zhuofei; Sørensen, Søren Johannes

    2014-01-01

    Burkholderia species are key players in the accumulation of carbon from cellulose decomposition in coniferous forest ecosystems. We report here the draft genome of Burkholderia sordidicola strain S170, containing features associated with known genes involved in plant growth promotion, the biologi......Burkholderia species are key players in the accumulation of carbon from cellulose decomposition in coniferous forest ecosystems. We report here the draft genome of Burkholderia sordidicola strain S170, containing features associated with known genes involved in plant growth promotion...

  4. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans.

    Directory of Open Access Journals (Sweden)

    Thomas eKost

    2014-01-01

    Full Text Available Plant roots and shoots harbour complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e. the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii or human opportunistic pathogens (Burkholderia cepacia complex strains were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered Δoxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities.

  5. Comparative Genomics of Burkholderia singularis sp. nov., a Low G+C Content, Free-Living Bacterium That Defies Taxonomic Dissection of the Genus Burkholderia

    Science.gov (United States)

    Vandamme, Peter; Peeters, Charlotte; De Smet, Birgit; Price, Erin P.; Sarovich, Derek S.; Henry, Deborah A.; Hird, Trevor J.; Zlosnik, James E. A.; Mayo, Mark; Warner, Jeffrey; Baker, Anthony; Currie, Bart J.; Carlier, Aurélien

    2017-01-01

    Four Burkholderia pseudomallei-like isolates of human clinical origin were examined by a polyphasic taxonomic approach that included comparative whole genome analyses. The results demonstrated that these isolates represent a rare and unusual, novel Burkholderia species for which we propose the name B. singularis. The type strain is LMG 28154T (=CCUG 65685T). Its genome sequence has an average mol% G+C content of 64.34%, which is considerably lower than that of other Burkholderia species. The reduced G+C content of strain LMG 28154T was characterized by a genome wide AT bias that was not due to reduced GC-biased gene conversion or reductive genome evolution, but might have been caused by an altered DNA base excision repair pathway. B. singularis can be differentiated from other Burkholderia species by multilocus sequence analysis, MALDI-TOF mass spectrometry and a distinctive biochemical profile that includes the absence of nitrate reduction, a mucoid appearance on Columbia sheep blood agar, and a slowly positive oxidase reaction. Comparisons with publicly available whole genome sequences demonstrated that strain TSV85, an Australian water isolate, also represents the same species and therefore, to date, B. singularis has been recovered from human or environmental samples on three continents. PMID:28932212

  6. Complete Genome Sequence of a Burkholderia mallei Isolate Originating from a Glanderous Horse from the Kingdom of Bahrain

    OpenAIRE

    Elschner, Mandy C; Thomas, Prasad; Melzer, Falk

    2016-01-01

    Burkholderia mallei is a zoonotic agent causing glanders, a notifiable disease in equines. During the past decades glanders emerged, and the Kingdom of Bahrain reported outbreaks to the World Organization of Animal Health in 2010 and 2011. This paper presents the complete genome sequence of the Burkholderia mallei strain 11RR2811 Bahrain1.

  7. Complete Genome Sequence of a Burkholderia mallei Isolate Originating from a Glanderous Horse from the Kingdom of Bahrain.

    Science.gov (United States)

    Elschner, Mandy C; Thomas, Prasad; Melzer, Falk

    2016-12-01

    Burkholderia mallei is a zoonotic agent causing glanders, a notifiable disease in equines. During the past decades glanders emerged, and the Kingdom of Bahrain reported outbreaks to the World Organization of Animal Health in 2010 and 2011. This paper presents the complete genome sequence of the Burkholderia mallei strain 11RR2811 Bahrain1. Copyright © 2016 Elschner et al.

  8. Unusual distribution of Burkholderia cepacia complex species in Danish cystic fibrosis clinics may stem from restricted transmission between patients

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Niels; Johansen, Helle Krogh; Fenger, Mette G

    2010-01-01

    Forty-four of 48 Burkholderia cepacia complex strains cultured from Danish cystic fibrosis patients were Burkholderia multivorans, a distribution of species that has not been reported before. Although cases of cross infections were demonstrated, no major epidemic clone was found. The species...

  9. Chignik small boat harbor planning aid report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Unless additional salmon use data would indicate otherwise, harbor site 3 is considered the environmentally preferred alternative for construction of a small...

  10. Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis.

    Science.gov (United States)

    Angus, Annette A; Agapakis, Christina M; Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; Caballero-Mellado, Jésus; de Faria, Sergio M; Dakora, Felix D; Weinstock, George; Hirsch, Ann M

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low.

  11. Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis.

    Directory of Open Access Journals (Sweden)

    Annette A Angus

    Full Text Available Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low.

  12. The Organization of the Quorum Sensing luxI/R Family Genes in Burkholderia

    Science.gov (United States)

    Choudhary, Kumari Sonal; Hudaiberdiev, Sanjarbek; Gelencsér, Zsolt; Coutinho, Bruna Gonçalves; Venturi, Vittorio; Pongor, Sándor

    2013-01-01

    Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology) of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/. PMID:23820583

  13. A Possible Link between Infection with Burkholderia Bacteria and Systemic Lupus Erythematosus Based on Epitope Mimicry

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2008-01-01

    Full Text Available We previously demonstrated that purified polyclonal and monoclonal anti-dsDNA antibodies bind a 15-mer peptide ASPVTARVLWKASHV in ELISA and Dot blot. This 15-mer peptide partial sequence ARVLWKASH shares similarity with burkholderia bacterial cytochrome B 561 partial sequence ARVLWRATH. In this study, we show that purified anti-dsDNA antibodies react with burkholderia fungorum bacterial cell lysates in Western blot. We used anti-dsDNA antibodies to make an anti-dsDNA antibodies affinity column and used this column to purify the burkholderia fungorum bacterial protein. Purified anti-dsDNA antibodies bind specifically to purified bacterial antigen and purified bacterial antigen blocked the anti-dsDNA antibodies binding to dsDNA antigen. Sera with anti-dsDNA antibodies bind specifically to purified bacterial antigen. We obtained protein partial sequence of RAGTDEGFG which is shared with burkholderia bacterial transcription regulator protein sequence. Sera with anti-dsDNA antibodies bind to RAGTDEGFG peptide better than control groups. These data support our hypothesis that the origin of anti-dsDNA antibodies in SLE may be associated with burkholderia bacterial infection.

  14. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae).

    Science.gov (United States)

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-06-25

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction.

  15. The art of persistence-the secrets to Burkholderia chronic infections.

    Science.gov (United States)

    Lewis, Eric R G; Torres, Alfredo G

    2016-08-01

    The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation.

    Science.gov (United States)

    Caballero-Mellado, Jesús; Onofre-Lemus, Janette; Estrada-de Los Santos, Paulina; Martínez-Aguilar, Lourdes

    2007-08-01

    Burkholderia strains are promising candidates for biotechnological applications. Unfortunately, most of these strains belong to species of the Burkholderia cepacia complex (Bcc) involved in human infections, hampering potential applications. Novel diazotrophic Burkholderia species, phylogenetically distant from the Bcc species, have been discovered recently, but their environmental distribution and relevant features for agro-biotechnological applications are little known. In this work, the occurrence of N2-fixing Burkholderia species in the rhizospheres and rhizoplanes of tomato plants field grown in Mexico was assessed. The results revealed a high level of diversity of diazotrophic Burkholderia species, including B. unamae, B. xenovorans, B. tropica, and two other unknown species, one of them phylogenetically closely related to B. kururiensis. These N2-fixing Burkholderia species exhibited activities involved in bioremediation, plant growth promotion, or biological control in vitro. Remarkably, B. unamae and B. kururiensis grew with aromatic compounds (phenol and benzene) as carbon sources, and the presence of aromatic oxygenase genes was confirmed in both species. The rhizospheric and endophyte nature of B. unamae and its ability to degrade aromatic compounds suggest that it could be used in rhizoremediation and for improvement of phytoremediation. B. kururiensis and other Burkholderia sp. strains grew with toluene. B. unamae and B. xenovorans exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase activity, and the occurrence of acdS genes encoding ACC deaminase was confirmed. Mineral phosphate solubilization through organic acid production appears to be the mechanism used by most diazotrophic Burkholderia species, but in B. tropica, there presumably exists an additional unknown mechanism. Most of the diazotrophic Burkholderia species produced hydroxamate-type siderophores. Certainly, the N2-fixing Burkholderia species associated with plants have great

  17. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts.

    Science.gov (United States)

    Seo, Young-Su; Lim, Jae Yun; Park, Jungwook; Kim, Sunyoung; Lee, Hyun-Hee; Cheong, Hoon; Kim, Sang-Mok; Moon, Jae Sun; Hwang, Ingyu

    2015-05-06

    In addition to human and animal diseases, bacteria of the genus Burkholderia can cause plant diseases. The representative species of rice-pathogenic Burkholderia are Burkholderia glumae, B. gladioli, and B. plantarii, which primarily cause grain rot, sheath rot, and seedling blight, respectively, resulting in severe reductions in rice production. Though Burkholderia rice pathogens cause problems in rice-growing countries, comprehensive studies of these rice-pathogenic species aiming to control Burkholderia-mediated diseases are only in the early stages. We first sequenced the complete genome of B. plantarii ATCC 43733T. Second, we conducted comparative analysis of the newly sequenced B. plantarii ATCC 43733T genome with eleven complete or draft genomes of B. glumae and B. gladioli strains. Furthermore, we compared the genome of three rice Burkholderia pathogens with those of other Burkholderia species such as those found in environmental habitats and those known as animal/human pathogens. These B. glumae, B. gladioli, and B. plantarii strains have unique genes involved in toxoflavin or tropolone toxin production and the clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bacterial immune system. Although the genome of B. plantarii ATCC 43733T has many common features with those of B. glumae and B. gladioli, this B. plantarii strain has several unique features, including quorum sensing and CRISPR/CRISPR-associated protein (Cas) systems. The complete genome sequence of B. plantarii ATCC 43733T and publicly available genomes of B. glumae BGR1 and B. gladioli BSR3 enabled comprehensive comparative genome analyses among three rice-pathogenic Burkholderia species responsible for tissue rotting and seedling blight. Our results suggest that B. glumae has evolved rapidly, or has undergone rapid genome rearrangements or deletions, in response to the hosts. It also, clarifies the unique features of rice pathogenic Burkholderia species relative to other

  18. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Tiffany M. Mott

    2013-05-01

    Full Text Available Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.

  19. Molecular Characterization of Putative Virulence Determinants in Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Suat Moi Puah

    2014-01-01

    Full Text Available The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P=0.049 at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.

  20. Genetic similarity of Burkholderia cenocepacia from cystic fibrosis patients

    Directory of Open Access Journals (Sweden)

    Luana Pretto

    2013-02-01

    Full Text Available Burkholderia cenocepacia may cause serious infections in patients with cystic fibrosis, and this microorganism can be highly transmissible. Pulsed-field gel electrophoresis is widely used to study the dynamics of strain spread in cystic fibrosis patients. The aim of this work was to perform pulsed-field gel electrophoresis-based molecular typing of B. cenocepacia isolates to evaluate the epidemiology of this species at our hospital. A total of 28 isolates from 23 cystic fibrosis patients were analyzed. Initially, we compared isolates obtained from the same patient at different periods of time. We then compared the pulsed-field gel electrophoresis profiles of 15 IIIA isolates, and in a third analysis, evaluated the genetic profile of 8 IIIB isolates from different patients. The pulsed-field gel electrophoresis profiles of isolates from the same patient indicated that they are genetically indistinguishable. Analysis of isolates from different patients revealed the presence of multiple clonal groups. These results do not indicate cross-transmission of a unique clone of B. cenocepacia among cystic fibrosis patients, although this has been observed in some patients. Our findings highlight the importance of adequate patient follow-up at cystic fibrosis centers and adherence to management and segregation measures in cystic fibrosis patients colonized with B. cenocepacia.

  1. Genetic diversity and microevolution of Burkholderia pseudomallei in the environment.

    Directory of Open Access Journals (Sweden)

    Narisara Chantratita

    2008-02-01

    Full Text Available The soil dwelling Gram-negative pathogen Burkholderia pseudomallei is the cause of melioidosis. The diversity and population structure of this organism in the environment is poorly defined.We undertook a study of B. pseudomallei in soil sampled from 100 equally spaced points within 237.5 m(2 of disused land in northeast Thailand. B. pseudomallei was present on direct culture of 77/100 sampling points. Genotyping of 200 primary plate colonies from three independent sampling points was performed using a combination of pulsed field gel electrophoresis (PFGE and multilocus sequence typing (MLST. Twelve PFGE types and nine sequence types (STs were identified, the majority of which were present at only a single sampling point. Two sampling points contained four STs and the third point contained three STs. Although the distance between the three sampling points was low (7.6, 7.9, and 13.3 meters, respectively, only two STs were present in more than one sampling point. Each of the three samples was characterized by the localized expansion of a single B. pseudomallei clone (corresponding to STs 185, 163, and 93. Comparison of PFGE and MLST results demonstrated that two STs contained strains with variable PFGE banding pattern types, indicating geographic structuring even within a single MLST-defined clone.We discuss the implications of this extreme structuring of genotype and genotypic frequency in terms of micro-evolutionary dynamics and ecology, and how our results may inform future sampling strategies.

  2. Burkholderia mallei cellular interactions in a respiratory cell model.

    Science.gov (United States)

    Whitlock, Gregory C; Valbuena, Gustavo A; Popov, Vsevolod L; Judy, Barbara M; Estes, D Mark; Torres, Alfredo G

    2009-05-01

    Burkholderia mallei is a facultative intracellular pathogen that survives and replicates in phagocytic cell lines. The bacterial burden recovered from naïve BALB/c mice infected by intranasal delivery indicated that B. mallei persists in the lower respiratory system. To address whether B. mallei invades respiratory non-professional phagocytes, this study utilized A549 and LA-4 respiratory epithelial cells and demonstrated that B. mallei possesses the capacity to adhere poorly to, but not to invade, these cells. Furthermore, it was found that B. mallei was taken up by the murine alveolar macrophage cell line MH-S following serum coating, an attribute suggestive of complement- or Fc receptor-mediated uptake. Invasion/intracellular survival assays of B. mallei-infected MH-S cells demonstrated decreased intracellular survival, whilst a type III secretion system effector bopA mutant strain survived longer than the wild-type. Evaluation of the potential mechanism(s) responsible for efficient clearing of intracellular organisms demonstrated comparable levels of caspase-3 in both the wild-type and bopA mutant with characteristics consistent with apoptosis of infected MH-S cells. Furthermore, challenge of BALB/c mice with the bopA mutant by the intranasal route resulted in increased survival. Overall, these data suggest that B. mallei induces apoptotic cell death, whilst the BopA effector protein participates in intracellular survival.

  3. Virulence of Burkholderia mallei quorum-sensing mutants.

    Science.gov (United States)

    Majerczyk, Charlotte; Kinman, Loren; Han, Tony; Bunt, Richard; Greenberg, E Peter

    2013-05-01

    Many Proteobacteria use acyl-homoserine lactone-mediated quorum-sensing (QS) to activate specific sets of genes as a function of cell density. QS often controls the virulence of pathogenic species, and in fact a previous study indicated that QS was important for Burkholderia mallei mouse lung infections. To gain in-depth information on the role of QS in B. mallei virulence, we constructed and characterized a mutant of B. mallei strain GB8 that was unable to make acyl-homoserine lactones. The QS mutant showed virulence equal to that of its wild-type parent in an aerosol mouse infection model, and growth in macrophages was indistinguishable from that of the parent strain. Furthermore, we assessed the role of QS in B. mallei ATCC 23344 by constructing and characterizing a mutant strain producing AiiA, a lactonase enzyme that degrades acyl-homoserine lactones. Although acyl-homoserine lactone levels in cultures of this strain are very low, it showed full virulence. Contrary to the previous report, we conclude that QS is not required for acute B. mallei infections of mice. QS may be involved in some stage of chronic infections in the natural host of horses, or the QS genes may be remnants of the QS network in B. pseudomallei from which this host-adapted pathogen evolved.

  4. Incidence of Burkholderia mallei infection among indigenous equines in India.

    Science.gov (United States)

    Malik, Praveen; Singha, Harisankar; Goyal, Sachin K; Khurana, Sandip K; Tripathi, Badri Naryan; Dutt, Abha; Singh, Dabal; Sharma, Neeraj; Jain, Sanjay

    2015-01-01

    Burkholderia mallei is the causative agent of glanders which is a highly contagious and fatal disease of equines. Considering the nature and severity of the disease in equines, and potential of transmission to human beings, glanders is recognised as a 'notifiable' disease in many countries. An increasing number of glanders outbreaks throughout the Asian continents, including India, have been noticed recently. In view of the recent re-emergence of the disease, the present study was undertaken to estimate the prevalence of glanders among indigenous equines from different parts of India. Serum samples were analysed by complement fixation test (CFT) and ELISA for the detection of B mallei specific antibodies. A total of 7794 equines, which included 4720 horses, 1881 donkeys and 1193 mules were sampled from April 2011 to December 2014 from 10 states of India. Serologically, 36 equines (pony=7, mules=10, horses=19) were found to be positive for glanders by CFT and indirect-ELISA. The highest number of cases were detected in Uttar Pradesh (n=31) followed by Himachal Pradesh (n=4) and Chhattisgarh (n=1). Isolation of B mallei was attempted from nasal and abscess swabs collected from seropositive equines. Four isolates of B mallei were cultured from nasal swabs of two mules and two ponies. Identity of the isolates was confirmed by PCR and sequencing of fliP gene fragment. The study revealed circulation of B mallei in northern India and the need for continued surveillance to support the eradication.

  5. An ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Douglas R.; Staker, Bart L.; Abendroth, Jan A.; Edwards, Thomas E.; Hartley, Robert; Leonard, Jess; Kim, Hidong; Rychel, Amanda L.; Hewitt, Stephen N.; Myler, Peter J.; Stewart, Lance J. (UWASH); (Emerald)

    2011-12-07

    Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and Northern Australia. Burkholderia is responsible for melioidosis, a serious infection of the skin. The enzyme 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (PGAM) catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate, a key step in the glycolytic pathway. As such it is an extensively studied enzyme and X-ray crystal structures of PGAM enzymes from multiple species have been elucidated. Vanadate is a phosphate mimic that is a powerful tool for studying enzymatic mechanisms in phosphoryl-transfer enzymes such as phosphoglycerate mutase. However, to date no X-ray crystal structures of phosphoglycerate mutase have been solved with vanadate acting as a substrate mimic. Here, two vanadate complexes together with an ensemble of substrate and fragment-bound structures that provide a comprehensive picture of the function of the Burkholderia enzyme are reported.

  6. Host-pathogen interactions between Burkholderia species and lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Jonathan eDavid

    2015-11-01

    Full Text Available Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognised as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, B. pseudomallei and B. mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention.

  7. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations.

    Science.gov (United States)

    Takeshita, Kazutaka; Kikuchi, Yoshitomo

    2017-04-01

    A number of insects establish symbiotic associations with beneficial microorganisms in various manners. The bean bug Riptortus pedestris and allied stink bugs possess an environmentally acquired Burkholderia symbiont in their midgut crypts. Unlike other insect endosymbionts, the Burkholderia symbiont is easily culturable and genetically manipulatable outside the host. In conjunction with the experimental advantages of the host insect, the Riptortus-Burkholderia symbiosis is an ideal model system for elucidating the molecular bases underpinning insect-microbe symbioses, which opens a new window in the research field of insect symbiosis. This review summarizes current knowledge of this system and discusses future perspectives. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis

    Science.gov (United States)

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-09-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria.

  9. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia

    Science.gov (United States)

    Ginther, Jennifer L.; Mayo, Mark; Warrington, Stephanie D.; Kaestli, Mirjam; Mullins, Travis; Wagner, David M.; Currie, Bart J.; Tuanyok, Apichai; Keim, Paul

    2015-01-01

    Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area. PMID:26121041

  10. Burkholderia Species Are the Most Common and Preferred Nodulating Symbionts of the Piptadenia Group (Tribe Mimoseae)

    Science.gov (United States)

    Bournaud, Caroline; de Faria, Sergio Miana; dos Santos, José Miguel Ferreira; Tisseyre, Pierre; Silva, Michele; Chaintreuil, Clémence; Gross, Eduardo; James, Euan K.; Prin, Yves; Moulin, Lionel

    2013-01-01

    Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the “Piptadenia group”. We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from β to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species. PMID:23691052

  11. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia.

    Directory of Open Access Journals (Sweden)

    Jennifer L Ginther

    Full Text Available Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area.

  12. A High-Throughput Pipeline for Designing Microarray-Based Pathogen Diagnostic Assays

    Science.gov (United States)

    2008-04-10

    tularensis (1892819) Francisella philomiragia (2049711) 22 5 440% Burkholderia mallei (5835527) Burkholderia thailandensis (6723972) 21 7 300% Brucella...836 Francisella tularensis 1469 2028 Burkholderia mallei 572 1146 Brucella melitensis 1352 7659Page 8 of 13 (page number not for citation purposes

  13. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil.

    Science.gov (United States)

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Van An, Hoang; Sukweenadhi, Johan; Singh, Priyanka; Huq, Md Amdadul; Yang, Deok-Chun

    2015-04-01

    Strain DCY85(T) and DCY85-1(T), isolated from rhizosphere of ginseng, were rod-shaped, Gram-reaction-negative, strictly aerobic, catalase positive and oxidase negative. 16S rRNA gene sequence analysis revealed that strain DCY85(T) as well as DCY85-1(T) belonged to the genus Burkholderia and were closely related to Burkholderia fungorum KACC 12023(T) (98.1 and 98.0 % similarity, respectively). The major polar lipids of strain DCY85(T) and DCY85-1(T) were phosphatidylethanolamine, one unidentified aminolipid and two unidentified phospholipids. The major fatty acids of both strains are C16:0, C18:1 ω7c and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The predominant isoprenoid quinone of each strain DCY85(T) and DCY85-1(T) was ubiquinone (Q-8) and the G+C content of their genomic DNA was 66.0 and 59.4 mol%, respectively, which fulfill the characteristic range of the genus Burkholderia. The polyamine content of both DCY85(T) and DCY85-1(T) was putrescine. Although both DCY85(T) and DCY85-1(T) have highly similar 16S rRNA and identical RecA and gyrB sequences, they show differences in phenotypic and chemotaxonomic characteristics. DNA-DNA hybridization results proved the consideration of both strains as two different species. Based on the results from our polyphasic characterization, strain DCY85(T) and DCY85-1(T) are considered novel Burkholderia species for which the name Burkholderia ginsengiterrae sp. nov and Burkholderia panaciterrae sp. nov are, respectively, proposed. An emended description of those strains is also proposed. DCY85(T) and DCY85-1(T) showed antagonistic activity against the common root rot pathogen of ginseng, Cylindrocarpon destructans. The proposed type strains are DCY85(T) (KCTC 42054(T) = JCM 19888(T)) and DCY85-1(T) (KCTC 42055(T) = JCM 19889(T)).

  14. New Harbor in Kangerlussuaq, Western Greenland

    DEFF Research Database (Denmark)

    Stenstad, Jaran Gjerlandj; Eppeland, Kjetil Grødal; Ingeman-Nielsen, Thomas

    2015-01-01

    transported by rivers from the inland ice to the inner parts of the fjord. These sediment layers reduce the water depth and prevent container- and cruiseships to dock, imposing large additional maintenance costs, and inefficient operability. Through engineering geological field and lab investigations......The international airport of Greenland is located in Kangerlussuaq, making it an important connection point for tourists and transportation of goods. However, the existing harbor in Kangerlussuaq experiences major challenges in the form of extensive sedimentation of glaciofluvial sediments......, a possible new harbor location around 10 km further out the fjord near Hancock Pynt, has been investigated. The onshore area was found to be highly suitable for a harbor support area, where a sub-base thickness of 1.8 m with gravel cover-layer was found adequate for the calculated design loads. Existing...

  15. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  16. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia.

    Directory of Open Access Journals (Sweden)

    Silvia Bazzini

    Full Text Available Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division efflux pumps are known to be among the mediators of multidrug resistance in gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16 has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9, and a double-mutant in both efflux pumps (named D4-D9, were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4-D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.

  17. Influence of neutrophil defects on Burkholderia cepacia complex pathogenesis

    Directory of Open Access Journals (Sweden)

    Laura A. Porter

    2011-11-01

    Full Text Available The Burkholderia cepacia complex (Bcc is a group of Gram-negative bacteria that are ubiquitous in the environment and have emerged as opportunistic pathogens in immunocompromised patients. The primary patient populations infected with Bcc include individuals with cystic fibrosis (CF, as well as those with chronic granulomatous disease (CGD. While Bcc infection in CF is better characterized than in CGD, these two genetic diseases are not obviously similar and it is currently unknown if there is any commonality in host immune defects that is responsible for the susceptibility to Bcc. CF is caused by mutations in the CF transmembrane conductance regulator, resulting in manifestations in various organ systems, however the major cause of morbidity and mortality is currently due to bacterial respiratory infections. CGD, on the other hand, is a genetic disorder that is caused by defects in phagocyte NADPH oxidase. Because of the defect in CGD, phagocytes in these patients are unable to produce reactive oxygen species, which results in increased susceptibility to bacterial and fungal infections. Despite this significant defect in microbial clearance, the spectrum of pathogens frequently implicated in infections in CGD is relatively narrow and includes some bacterial species that are considered almost pathognomonic for this disorder. Very little is known about the cause of the specific susceptibility to Bcc over other potential pathogens more prevalent in the environment, and a better understanding of specific mechanisms required for bacterial virulence has become a high priority. This review will summarize both the current knowledge and future directions related to Bcc virulence in immunocompromised individuals with a focus on the roles of bacterial factors and neutrophil defects in pathogenesis.

  18. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    Science.gov (United States)

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  19. Alanine racemase mutants of Burkholderia pseudomallei and Burkholderia mallei and use of alanine racemase as a non-antibiotic-based selectable marker.

    Directory of Open Access Journals (Sweden)

    Sheryl L W Zajdowicz

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711, and B. mallei ATCC 23344 has one (bma1575. Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine

  20. Alanine racemase mutants of Burkholderia pseudomallei and Burkholderia mallei and use of alanine racemase as a non-antibiotic-based selectable marker.

    Science.gov (United States)

    Zajdowicz, Sheryl L W; Jones-Carson, Jessica; Vazquez-Torres, Andres; Jobling, Michael G; Gill, Ronald E; Holmes, Randall K

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages.

  1. Determining the biochemical properties of the Oxalate Biosynthetic Component (Obc)1 from Burkholderia mallei

    Science.gov (United States)

    Oxalic acid is produced by a variety of organisms ranging from simple microbes to complex animals. This acid has been proposed to fulfill various physiological and pathological functions which vary between organisms. In bacteria from the Burkholderia genus, oxalate secretion has been shown to be quo...

  2. Molecular Characterization of Genetic Loci Required for Secretion of Exoproducts in Burkholderia pseudomallei

    OpenAIRE

    DeShazer, David; Brett, Paul J.; Burtnick, Mary N; Woods, Donald E.

    1999-01-01

    Previous studies have demonstrated that Burkholderia pseudomallei secretes protease, lipase, and phospholipase C (PLC) into the extracellular milieu, but their mechanisms of secretion and roles in pathogenesis have not been elucidated. In this study, we isolated and characterized 29 transposon mutants unable to secrete protease, lipase, and PLC.

  3. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application

    NARCIS (Netherlands)

    Lankelma, Jacqueline M.; Wagemakers, Alex; Birnie, Emma; Haak, Bastiaan W.; Trentelman, Jos J. A.; Weehuizen, Tassili A. F.; Ersöz, Jasmin; Roelofs, Joris J. T. H.; Hovius, Joppe W.; Wiersinga, W. Joost; Bins, Adriaan D.

    2017-01-01

    Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror weapon due to its high virulence and potential for easy dissemination. Currently, there is

  4. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients

    DEFF Research Database (Denmark)

    Holden, Matthew T G; Seth-Smith, Helena M B; Crossman, Lisa C

    2009-01-01

    Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradica...

  5. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K.; Hentzer, Morten; Geisenberger, O.

    2001-01-01

    Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co- ordinate expression of virulence factors with the form...

  6. Study of the mode of action of a polygalacturonase from the phytopathogen Burkholderia cepacia

    DEFF Research Database (Denmark)

    Massa, C.; Clausen, Mads Hartvig; Stojan, J.

    2007-01-01

    We have recently isolated and heterologously expressed BcPeh28A, an endopolygalacturonase from the phytopathogenic Gram-negative bacterium Burkholderia cepacia. Endopolygalacturonases belong to glycoside hydrolase family 28 and are responsible for the hydrolysis of the non-esterified regions of p...

  7. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus.

    Science.gov (United States)

    McNeely, Damian; Chanyi, Ryan M; Dooley, James S; Moore, John E; Koval, Susan F

    2017-04-01

    Bdellovibrio and like organisms are predatory bacteria that have the unusual property of using the cytoplasmic constituents of other Gram-negative bacteria as nutrients. These predators may thus provide an alternative approach to the biocontrol of human and plant pathogens. Predators were isolated on Burkholderia cenocepacia K56-2 and J2315 as prey cells, in enrichment cultures with soil and sewage. Three isolates (DM7C, DM8A, and DM11A) were identified as Bdellovibrio bacteriovorus on the basis of morphology, a periplasmic life cycle, and 16S rRNA gene sequencing. The prey range of these isolates was tested on Burkholderia cepacia complex bacteria and several phytopathogenic bacteria of agricultural importance. Of 31 strains of the Burkholderia cepacia complex tested, only 4 were resistant to predation by strain DM7C. A subset of 9 of the prey tested were also susceptible to strains DM8A and DM11A. Of 12 phytopathogens tested, 4 were resistant to strains DM7C and DM8A, and only 2 were resistant to strain DM11A. Thus, Bdellovibrio bacteriovorus strains retrieved from environmental samples on 2 Burkholderia cenocepacia isolates from cystic fibrosis patients did not distinguish in their prey range between other isolates of that pathogen or phytopathogens. Such strains hold promise as potential wide-spectrum biocontrol agents.

  8. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei

    NARCIS (Netherlands)

    Puknun, A.; Bolscher, J.G.M.; Nazmi, K.; Veerman, E.C.I.; Tungpradabkul, S.; Wongratanacheewin, S.; Kanthawong, S.; Taweechaisupapong, S.

    2013-01-01

    Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin

  9. Osteopontin Impairs Host Defense during Established Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis)

    NARCIS (Netherlands)

    van der Windt, G.J.W.; Wiersinga, W.J.; Wieland, C.W.; Tjia, I.C.S.I.; Day, N.P.; Peacock, S.J.; Florquin, S.; van der Poll, T.

    2010-01-01

    Background: Melioidosis, caused by infection with Burkholderia (B.) pseudomallei, is a severe illness that is endemic in Southeast Asia. Osteopontin (OPN) is a phosphorylated glycoprotein that is involved in several immune responses including induction of T-helper 1 cytokines and recruitment of

  10. The oxalic acid biosynthetic activity of Burkholderia mallei is encoded by a single locus.

    Science.gov (United States)

    Nakata, Paul A

    2011-10-20

    Although it is known that oxalic acid provides a selective advantage to the secreting microbe our understanding of how this acid is biosynthesized remains incomplete. This study reports the identification, cloning, and partial characterization of the oxalic acid biosynthetic enzyme from the animal bacterial pathogen, Burkholderia mallei. The discovered gene was named oxalate biosynthetic component (obc)1. Complementation of Burkholderia oxalate defective (Bod)1, a Burkholderia glumae mutant that lacks expression of a functional oxalic acid biosynthetic operon, revealed that the obc1 was able to rescue the no oxalate mutant phenotype. This single gene rescue is in contrast to the situation found in B. glumae which required the expression of two genes, obcA and obcB, to achieve complementation. Enzyme assays showed that even though the two Burkholderia species differed in the number of genes required to encode a functional enzyme, both catalyzed the same acyl-CoA dependent biosynthetic reaction. In addition, mutagenesis studies suggested a similar domain structure of the assembled oxalate biosynthetic enzymes whether encoded by one or two genes. Published by Elsevier GmbH.

  11. Type VI secretion is a major virulence determinant in Burkholderia mallei

    National Research Council Canada - National Science Library

    Schell, Mark A; Ulrich, Ricky L; Ribot, Wilson J; Brueggemann, Ernst E; Hines, Harry B; Chen, Dan; Lipscomb, Lyla; Kim, H. Stanley; Mrázek, Jan; Nierman, William C; DeShazer, David

    2007-01-01

    Burkholderia mallei is a host‐adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two‐component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown...

  12. Onderzoek naar de bestrijding van de bacterieziekte Burkholderia gladioli in gladiool

    NARCIS (Netherlands)

    Kok, B.J.; Aanholt, van J.T.M.

    2010-01-01

    Gladiolenkralen kunnen tijdens de teelt net als pitten en knollen door de bacterieziekte Burkholdeia worden aangetast. In de praktijk wordt Burkholderia in kralen volledig bestreden door een warmwaterbehandeling van 0,5 uur bij 53°C gevolgd door een ontsmetting van de kralen in een reinigingsmiddel.

  13. Molecular method to assess the diversity of Burkholderia species in environmental samples

    NARCIS (Netherlands)

    Salles, J.F.; De Souza, F.A.; Van Elsas, J.D.

    2002-01-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient get electrophoresis (DGGE), a

  14. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J. F.; van Elsas, J. D.; van Veen, J. A.

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  15. Molecular method to assess the diversity of Burkholderia species in environmental samples

    NARCIS (Netherlands)

    Salles, J.; Souza, de F.A.; Elsas, van J.D.

    2002-01-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a

  16. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J.F.; Elsas, van J.D.; Veen, van J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  17. Multivariate Analyses of Burkholderia species in soil: effect of crop and land use history.

    NARCIS (Netherlands)

    Salles, J.F.; Veen, van J.A.; Elsas, van J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus

  18. Assessing the potential for Burkholderia pseudomallei in the southeastern United States

    Science.gov (United States)

    Burkholderia pseudomallei, the causative agent of melioidosis, is an underreported zoonosis in many countries where environmental conditions may be favorable for B. pseudomallei. This soil saprophyte is most often detected in tropical areas such as Southeast Asia and Northern Australia where the cas...

  19. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium

    NARCIS (Netherlands)

    Salles, J.F.; Samyn, E.; Vandamme, P.; Van Veen, J.A.; van Elsas, J.D.

    2006-01-01

    Abstract In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  20. The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62

    Science.gov (United States)

    Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...

  1. Effect of agricultural management regimes on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J.F.; van Elsas, J.D.; Van Veen, J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  2. Antimicrobial Properties of an Oxidizer Produced by Burkholderia cenocepacia P525

    Science.gov (United States)

    A compound with both oxidizing properties and antibiotic properties was extracted and purified from broth cultures of Burkholderia cenocepacia strain P525. A four step purification procedure was used to increase its specific activity ~ 400 fold and to yield a HPLC- UV chromatogram containing a sing...

  3. NOVEL ORGANIZATION OF THE GENES FOR PHTHALATE DEGRADATION FROM BURKHOLDERIA CEPACIA DBO1

    Science.gov (United States)

    Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthala...

  4. Distinct colicin M-like bacteriocin-immunity pairs in Burkholderia.

    Science.gov (United States)

    Ghequire, Maarten G K; De Mot, René

    2015-11-27

    The Escherichia coli bacteriocin colicin M (ColM) acts via degradation of the cell wall precursor lipid II in target cells. ColM producers avoid self-inhibition by a periplasmic immunity protein anchored in the inner membrane. In this study, we identified colM-like bacteriocin genes in genomes of several β-proteobacterial strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. Two selected Burkholderia ambifaria proteins, designated burkhocins M1 and M2, were produced recombinantly and showed antagonistic activity against Bcc strains. In their considerably sequence-diverged catalytic domain, a conserved aspartate residue equally proved pivotal for cytotoxicity. Immunity to M-type burkhocins is conferred upon susceptible strains by heterologous expression of a cognate gene located either upstream or downstream of the toxin gene. These genes lack homology with currently known ColM immunity genes and encode inner membrane-associated proteins of two distinct types, differing in predicted transmembrane topology and moiety exposed to the periplasm. The addition of burkhocins to the bacteriocin complement of Burkholderia reveals a wider phylogenetic distribution of ColM-like bacteriotoxins, beyond the γ-proteobacterial genera Escherichia, Pectobacterium and Pseudomonas, and illuminates the diversified nature of immunity-providing proteins.

  5. Multivariate analyses of Burkholderia species in soil : Effect of crop and land use history

    NARCIS (Netherlands)

    Salles, JF; van Veen, JA; van Elsas, JD

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus

  6. Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2.

    Science.gov (United States)

    Wang, X Q; Liu, A X; Guerrero, A; Liu, J; Yu, X Q; Deng, P; Ma, L; Baird, S M; Smith, L; Li, X D; Lu, S E

    2016-03-01

    To identify the taxonomy of tobacco rhizosphere-isolated strain Lyc2 and investigate the mechanisms of the antifungal activities, focusing on antimicrobials gene clusters identification and function analysis. Multilocus sequence typing and 16S rRNA analyses indicated that strain Lyc2 belongs to Burkholderia pyrrocinia. Bioassay results indicated strain Lyc2 showed significant antifungal activities against a broad range of plant and animal fungal pathogens and control efficacy on seedling damping off disease of cotton. A 55·2-kb gene cluster which was homologous to ocf gene clusters in Burkholderia contaminans MS14 was confirmed to be responsible for antifungal activities by random mutagenesis; HPLC was used to verify the production of antifungal compounds. Multiple antibiotic and secondary metabolized biosynthesis gene clusters predicated by antiSMASH revealed the broad spectrum of antimicrobials activities of the strain. Our results revealed the mechanisms of antifungal activities of strain Lyc2 and expand our knowledge about production of occidiofungin in the bacteria Burkholderia. Understanding the mechanisms of antifungal activities of strain Lyc2 has contributed to discovery of new antibiotics and expand our knowledge of production of occidiofungin in the bacteria Burkholderia. © 2015 The Society for Applied Microbiology.

  7. Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb.

    Science.gov (United States)

    Mavengere, Natasha R; Ellis, Allan G; Le Roux, Johannes J

    2014-06-01

    During a study to investigate the diversity of rhizobia associated with native legumes in South Africa's Cape Floristic Region, a Gram-negative bacterium designated VG1C(T) was isolated from the root nodules of Aspalathus abietina Thunb. Based on phylogenetic analyses of the 16S rRNA and recA genes, VG1C(T) belongs to the genus Burkholderia, with the highest degree of sequence similarity to the type strain of Burkholderia sediminicola (98.5% and 98%, respectively). The DNA G+C content of strain VG1C(T) was 60.1 mol%, and DNA-DNA relatedness values to the type strain of closely related species were found to be substantially lower than 70%. As evidenced by results of genotypic, phenotypic and chemotaxonomic tests provided here, we conclude that isolate VG1C(T) represents a novel rhizosphere-associated species in the genus Burkholderia, for which the name Burkholderia aspalathi sp. nov. is proposed, with the type strain VG1C(T) ( = DSM 27239(T) = LMG 27731(T)). © 2014 IUMS.

  8. Multivariate analyses of Burkholderia species in soil: effect of crop and land use history

    NARCIS (Netherlands)

    Salles, J.F.; Van Veen, J.A.; van Elsas, J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus

  9. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K; Hentzer, Morten; Geisenberger, O

    2001-01-01

    Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co-ordinate expression of virulence factors with the forma...

  10. Ocular abnormalities in Floating-Harbor syndrome.

    Science.gov (United States)

    Asseidat, Ibrahim; Kaufman, Lawrence M

    2009-04-01

    We present the first case report of a comprehensive eye examination in a patient with Floating-Harbor syndrome. Ocular findings were limited to partially accommodative, acquired esotropia, and unusual eyelashes. A variety of other ocular features have been previously reported in the nonophthalmic medical literature and are herein reviewed.

  11. A functional oriT in the Ptw plasmid of Burkholderia cenocepacia can be recognized by the R388 relaxase TrwC

    Directory of Open Access Journals (Sweden)

    Esther eFernandez-Gonzalez

    2016-05-01

    Full Text Available Burkholderia cenocepacia is both a plant pathogen and the cause of serious opportunistic infections, particularly in cystic fibrosis patients. B. cenocepacia K56-2 harbors a native plasmid named Ptw for its involvement in the Plant Tissue Watersoaking phenotype. Ptw has also been reported to be important for survival in human cells. Interestingly, the presence of PtwC, a homologue of the conjugative relaxase TrwC of plasmid R388, suggests a possible function for Ptw in conjugative DNA transfer. The ptw region includes Type IV Secretion System genes related to those of the F-plasmid. However, genes in the adjacent region shared stronger homology with the R388 genes involved in conjugative DNA metabolism. This region included the putative relaxase ptwC, a putative coupling protein and accessory nicking protein, and a DNA segment with high number of inverted repeats and elevated AT content, suggesting a possible oriT. Although we were unable to detect conjugative transfer of the Ptw resident plasmid, we detected conjugal mobilization of a co-resident plasmid containing the ptw region homologous to R388, demonstrating the cloned ptw region contains an oriT. A similar plasmid lacking ptwC could not be mobilized, suggesting that the putative relaxase PtwC must act in cis on its oriT. Remarkably, we also detected mobilization of a plasmid containing the Ptw oriT by the R388 relaxase TrwC, yet we could not detect PtwC-mediated mobilization of an R388 oriT-containing plasmid. Our data unambiguously show that the Ptw plasmid harbors DNA transfer functions, and suggests the Ptw plasmid may play a dual role in horizontal DNA transfer and eukaryotic infection.

  12. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs.

    Science.gov (United States)

    Tago, Kanako; Kikuchi, Yoshitomo; Nakaoka, Sinji; Katsuyama, Chie; Hayatsu, Masahito

    2015-07-01

    Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance. © 2015 John Wiley & Sons Ltd.

  13. Identification of Burkholderia spp. in the Clinical Microbiology Laboratory: Comparison of Conventional and Molecular Methods

    Science.gov (United States)

    van Pelt, Cindy; Verduin, Cees M.; Goessens, Wil H. F.; Vos, Margreet C.; Tümmler, Burkhard; Segonds, Christine; Reubsaet, Frans; Verbrugh, Henri; van Belkum, Alex

    1999-01-01

    Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR

  14. Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides.

    Science.gov (United States)

    de Los Santos-Villalobos, Sergio; Barrera-Galicia, Guadalupe Coyolxauhqui; Miranda-Salcedo, Mario Alberto; Peña-Cabriales, Juan José

    2012-08-01

    Colletotrichum gloeosporioides is the causal agent of anthracnose in mango. Burkholderia cepacia XXVI, isolated from mango rhizosphere and identified by 16S rDNA sequencing as a member of B. cepacia complex, was more effective than 6 other mango rhizosphere bacteria in inhibiting the model mango pathogen, C. gloeosporioides ATCC MYA 456. Biocontrol of this pathogen was demonstrated on Petri-dishes containing PDA by > 90 % reduction of surface colonization. The nature of the biocontrol metabolite(s) was characterized via a variety of tests. The inhibition was almost exclusively due to production of agar-diffusible, not volatile, metabolite(s). The diffusible metabolite(s) underwent thermal degradation at 70 and 121 °C (1 atm). Tests for indole acetic acid production and lytic enzyme activities (cellulase, glucanase and chitinase) by B. cepacia XXVI were negative, indicating that these metabolites were not involved in the biocontrol effect. Based on halo formation and growth inhibition of the pathogen on the diagnostic medium, CAS-agar, as well as colorimetric tests we surmised that strain XXVI produced a hydroxamate siderophore involved in the biocontrol effect observed. The minimal inhibitory concentration test showed that 0.64 μg ml(-1) of siderophore (Deferoxamine mesylate salt-equivalent) was sufficient to achieve 91.1 % inhibition of the pathogen growth on Petri-dishes containing PDA. The biocontrol capacity against C. gloeosporioides ATCC MYA 456 correlated directly with the siderophore production by B. cepacia XXVI: the highest concentration of siderophore production in PDB on day 7, 1.7 μg ml(-1) (Deferoxamine mesylate salt-equivalent), promoted a pathogen growth inhibition of 94.9 %. The growth of 5 additional strains of C. gloeosporioides (isolated from mango "Ataulfo" orchards located in the municipality of Chahuites, State of Oaxaca in Mexico) was also inhibited when confronted with B. cepacia XXVI. Results indicate that B. cepacia XXVI or its

  15. Burkholderia pseudomallei: Its Detection in Soil and Seroprevalence in Bangladesh.

    Science.gov (United States)

    Jilani, Md Shariful Alam; Robayet, Jamshedul Alam Mohammad; Mohiuddin, Md; Hasan, Md Rokib; Ahsan, Chowdhury Rafiqul; Haq, Jalaluddin Ashraful

    2016-01-01

    Melioidosis, caused by Burkholderia pseudomallei, is an endemic disease in Bangladesh. No systematic study has yet been done to detect the environmental source of the organism and its true extent in Bangladesh. The present study attempted to isolate B. pseudomallei in soil samples and to determine its seroprevalence in several districts in Bangladesh. Soil samples were collected from rural areas of four districts of Bangladesh from where culture confirmed melioidosis cases were detected earlier. Multiple soil samples, collected from 5-7 sampling points of 3-5 sites of each district, were cultured in Ashdown selective media. Suspected colonies of B. pseudomallei were identified by biochemical and serological test, and by polymerase chain reaction (PCR) using 16s rRNA specific primers. Blood samples were collected from 940 healthy individuals of four districts to determine anti- B. pseudomallei IgG antibody levels by indirect enzyme linked immunosorbent assay (ELISA) using sonicated crude antigen. Out of 179 soil samples, B. pseudomallei was isolated from two samples of Gazipur district which is located 58 km north of capital Dhaka city. Both the isolates were phenotypically identical, arabinose negative and showed specific 550bp band in PCR. Out of 940 blood samples, anti- B. pseudomallei IgG antibody, higher than the cut-off value (>0.8), was detected in 21.5% individuals. Seropositivity rate was 22.6%-30.8% in three districts from where melioidosis cases were detected earlier, compared to 9.8% in a district where no melioidosis case was either detected or reported (p 50 years respectively. The seropositivity rates were 26.0% and 20.6% in male and female respectively, while it was 20-27% among different occupational groups. No significant association was observed with gender (χ2 = 3.441, p = 0.064) or any occupational group (χ2 = 3.835, p = 0.280). This is the first study demonstrating the presence of B. pseudomallei in the environmental (soil) samples of

  16. Burkholderia pseudomallei genome plasticity associated with genomic island variation

    Directory of Open Access Journals (Sweden)

    Currie Bart J

    2008-04-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a soil-dwelling saprophyte and the cause of melioidosis. Horizontal gene transfer contributes to the genetic diversity of this pathogen and may be an important determinant of virulence potential. The genome contains genomic island (GI regions that encode a broad array of functions. Although there is some evidence for the variable distribution of genomic islands in B. pseudomallei isolates, little is known about the extent of variation between related strains or their association with disease or environmental survival. Results Five islands from B. pseudomallei strain K96243 were chosen as representatives of different types of genomic islands present in this strain, and their presence investigated in other B. pseudomallei. In silico analysis of 10 B. pseudomallei genome sequences provided evidence for the variable presence of these regions, together with micro-evolutionary changes that generate GI diversity. The diversity of GIs in 186 isolates from NE Thailand (83 environmental and 103 clinical isolates was investigated using multiplex PCR screening. The proportion of all isolates positive by PCR ranged from 12% for a prophage-like island (GI 9, to 76% for a metabolic island (GI 16. The presence of each of the five GIs did not differ between environmental and disease-associated isolates (p > 0.05 for all five islands. The cumulative number of GIs per isolate for the 186 isolates ranged from 0 to 5 (median 2, IQR 1 to 3. The distribution of cumulative GI number did not differ between environmental and disease-associated isolates (p = 0.27. The presence of GIs was defined for the three largest clones in this collection (each defined as a single sequence type, ST, by multilocus sequence typing; these were ST 70 (n = 15 isolates, ST 54 (n = 11, and ST 167 (n = 9. The rapid loss and/or acquisition of gene islands was observed within individual clones. Comparisons were drawn between isolates obtained

  17. Akutan, Alaska bottomfish harbor study feasibility stage: Planning aid report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Six alternatives are presently being studied by the Corps of Engineers, in conjunction with facilitating construction of a bottomfish harbor at Akutan Harbor located...

  18. Aerial Survey Units for Harbor Seals in Coastal Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial surveys of coastal Alaska are the primary method for estimating abundance of harbor seals. A particular challenge associated with aerial surveys of harbor...

  19. Complete genome sequence of Burkholderia sp. strain PAMC28687, a potential octopine-utilizing bacterium isolated from Antarctica lichen.

    Science.gov (United States)

    Han, So-Ra; Yu, Sang-Cheol; Ahn, Do-Hwan; Park, Hyun; Oh, Tae-Jin

    2016-05-20

    We report the complete genome sequence of Burkholderia sp. PAMC28687, which was isolated from the Antarctica lichen Useea sp., for better understanding of its catabolic traits in utilizing octopine as a source of carbon/nitrogen between Burkholderia and lichen. The genome consists of three circular chromosomes with five circular plasmids for the total 6,881,273bp sized genome with a G+C content of 58.14%. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae).

    Science.gov (United States)

    Itoh, Hideomi; Aita, Manabu; Nagayama, Atsushi; Meng, Xian-Ying; Kamagata, Yoichi; Navarro, Ronald; Hori, Tomoyuki; Ohgiya, Satoru; Kikuchi, Yoshitomo

    2014-10-01

    The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Preparation of Burkholderia pseudomallei Polysaccharide-CRM197 Conjugate, a Potential Vaccine Candidate for Glanders and Melioidosis

    Science.gov (United States)

    2005-10-01

    Glanders Glanders is an infectious disease that is caused by the bacterium Burkholderia mallei The types of infection include localized, pus- forming...Glanders Burkholderia mallei and B. pseudomallei are the causative agents for glanders and melioidosis, respectively Both of these organisms have... virulence factor : – Dave DeShazer prepared a capsule mutant (DD3008) and demonstrated that the mouse aerosol LD50 was at least 103 times greater than the

  2. Evidence of Environmental and Vertical Transmission of Burkholderia Symbionts in the Oriental Chinch Bug, Cavelerius saccharivorus (Heteroptera: Blissidae)

    Science.gov (United States)

    Itoh, Hideomi; Aita, Manabu; Nagayama, Atsushi; Meng, Xian-Ying; Kamagata, Yoichi; Navarro, Ronald; Hori, Tomoyuki; Ohgiya, Satoru

    2014-01-01

    The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects. PMID:25038101

  3. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    Science.gov (United States)

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel

  4. Construction and molecular characterization of mouse single-chain variable fragment antibodies against Burkholderia mallei and Burkholderia pseudomallei.

    Science.gov (United States)

    Kim, Ho San; Tsai, Shien; Zou, Nianxiang; Lo, Shyh-Ching; Wear, Douglas J; Izadjoo, Mina J

    2011-02-28

    We have selected two lipopolysaccharide (LPS) specific Burkholderia mallei mouse monoclonal antibodies (mAbs) and four anti-capsular B. pseudomallei-specific mAbs to generate mouse single-chain variable fragment (scFv) antibodies. This selection was made through extensive in vitro and in vivo assay from our library of mAbs against B. mallei and B. pseudomallei. We initially generated the mouse immunoglobulin variable heavy chain (VH) and light chain (VL) regions from each of these six selected mAbs using a phage display scFv technology. We determined the coding sequences of the VH and VL regions and successfully constructed two B. mallei-specific scFv phage antibodies consisting of two different VH (VH1 and VH2) and one Vλ1 families. Four scFvs constructed against B. pseudomallei had two VH (VH1 and VH6) and two VL (Vκ4/5 and Vκ21) families. All of six scFv antibodies constructed demonstrated good binding activity without any rounds of biopanning against B. mallei (M5D and M18F were 0.425 and 0.480 at OD405nm) and B. pseudomallei (P1E7, P2I67, P7C6, and P7F4 were 0.523, 0.859, 0.775, and 0.449 at OD405nm) by ELISA, respectively. A comparison of the immunoglobulin gene segments revealed that the gene sequences in complementarity-determining regions (CDRs) of three out of four B. pseudomallei-specific scFvs are highly conserved. We determined that the two B. mallei-specific scFvs have different CDRs in the VH, but the amino acid sequences of CDRs in the VL are conserved. This high sequence homology found in CDRs of VH or VL of these mAbs contributes to our better understanding and determination of binding to the specific antigenic epitope(s). The scFv phage display technology may be a valuable tool to develop and engineer mAbs with improved antigen-binding affinity. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. 32 CFR 765.6 - Regulations for Pearl Harbor, Hawaii.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Regulations for Pearl Harbor, Hawaii. 765.6... RULES RULES APPLICABLE TO THE PUBLIC § 765.6 Regulations for Pearl Harbor, Hawaii. The Commander, U.S. Naval Base, Pearl Harbor, Hawaii, is responsible for prescribing and enforcing such rules and...

  6. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris.

    Science.gov (United States)

    Martínez-Aguilar, Lourdes; Salazar-Salazar, Corelly; Méndez, Rafael Díaz; Caballero-Mellado, Jesús; Hirsch, Ann M; Vásquez-Murrieta, María Soledad; Estrada-de los Santos, Paulina

    2013-12-01

    During a survey of Burkholderia species with potential use in agrobiotechnology, a group of 12 strains was isolated from the rhizosphere and rhizoplane of tomato plants growing in Mexico (Nepantla, Mexico State). A phylogenetic analysis of 16S rRNA gene sequences showed that the strains are related to Burkholderia kururiensis and Burkholderia mimosarum (97.4 and 97.1 %, respectively). However, they induced effective nitrogen-fixing nodules on roots of Phaseolus vulgaris. Based on polyphasic taxonomy, the group of strains represents a novel species for which the name Burkholderia caballeronis sp. nov. is proposed. The type species is TNe-841(T) (= LMG 26416(T) = CIP 110324(T)).

  7. Floating-Harbor syndrome and celiac disease.

    Science.gov (United States)

    Chudley, A E; Moroz, S P

    1991-03-15

    We report on a 17-year-old young woman with a speech impediment, developmental delay, short stature, and facial anomalies consistent with the Floating-Harbor syndrome (FHS). In addition, she has clinical and histological evidence of celiac disease, which was observed in 1 of the 6 previously reported cases of FHS, suggesting a possible association between the 2 conditions or pleiotropism of a presumed autosomal recessive disorder.

  8. Changing phenotype in Floating-Harbor syndrome.

    Science.gov (United States)

    Hersh, J H; Groom, K R; Yen, F F; Verdi, G D

    1998-02-26

    We report on a girl with Floating-Harbor syndrome, trigonocephaly due to metopic suture synostosis, preauricular pit, hypoplastic thumb, subluxated radial head, and Sprengel deformity. A review suggests that trigonocephaly may be an important craniofacial manifestation in this syndrome that is recognizable in infancy. With time, this finding appears to become less noticeable, and the face develops a triangular shape, accentuated by a broad and bulbous nose.

  9. A Guide for Marina and Harbor Managers

    Science.gov (United States)

    1991-03-01

    and provided feedback to the questionaire . Appendix C shows the names and addresses of the facilities that responded. Three out of these eight...Title 14 5L, California Harbors and Navigation Code 81, Recreational Boat and Sport Fishing Enhancement 321, Act of 1984 Private Planning and...submission of information and 6 limitations. 32L. Recreational Boating and Sport Fishing Enhancement Act of 1984, (Wallop-Breaux Act) Gives an apportionment to

  10. Characteristics and management of Enterobacteriaceae harboring ...

    African Journals Online (AJOL)

    Cite as: Pang F, Jia X-q, Song Z-z, Li Yh, Wang B, Zhao Q-g, Wang C-x, Zhang Y, Wang L-x. Characteristics and management of Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemase in a tertiary hospital. Afri Health Sci. 2016;16(1): 153-161. http://dx.doi.org/10.4314/ahs.v16i1.21. * Corresponding authors:.

  11. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice.

    Directory of Open Access Journals (Sweden)

    Eric R Lafontaine

    Full Text Available Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 10(2, 10(3 and 10(4 organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 10(3 and 10(4 B. pseudomallei cells, animals infected with 10(2 organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses

  12. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice.

    Science.gov (United States)

    Lafontaine, Eric R; Zimmerman, Shawn M; Shaffer, Teresa L; Michel, Frank; Gao, Xiudan; Hogan, Robert J

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 10(2), 10(3) and 10(4) organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 10(3) and 10(4) B. pseudomallei cells, animals infected with 10(2) organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate

  13. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei.

    Science.gov (United States)

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-10-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Enhanced bioconversion of ethylene glycol to glycolic acid by a newly isolated Burkholderia sp. EG13.

    Science.gov (United States)

    Gao, Xiaoxin; Ma, Zhengfei; Yang, Limin; Ma, Jiangquan

    2014-10-01

    Burkholderia sp. EG13 with high ethylene glycol-oxidizing activity was isolated from soil, which could be used for the synthesis of glycolic acid from the oxidation of ethylene glycol. Using the resting cells of Burkholderia sp. EG13 as biocatalysts, the optimum reaction temperature and pH were 30 °C and 6.0, respectively. After 24 h of biotransformation, the yield of glycolic acid from 200 mM ethylene glycol was 98.8 %. Furthermore, an integrated bioprocess for the production of glycolic acid which involved in situ product removal (ISPR) was investigated. Using fed-batch method with ISPR, a total of 793 mM glycolic acid has been accumulated in the reaction mixture after the 4th feed.

  15. Bioconversion of AHX to AOH by resting cells of Burkholderia contaminans CH-1.

    Science.gov (United States)

    Choi, Jae-Hoon; Kikuchi, Ayaka; Pumkaeo, Panyapon; Hirai, Hirofumi; Tokuyama, Shinji; Kawagishi, Hirokazu

    2016-10-01

    Fairy rings are zones of stimulated grass growth owing to the interaction between a fungus and a plant. We previously reported the discovery of two novel plant-growth regulating compounds related to forming fairy rings, 2-azahypoxanthine (AHX) and 2-aza-8-oxohypoxanthine (AOH). In this study, a bacterial strain CH-1 was isolated from an airborne-contaminated nutrient medium containing AHX. The strain converted AHX to AOH and identified as Burkholderia contaminans based on the gene sequence of its 16S rDNA. The quantitative production of AOH by resting cells of the strain was achieved. Among seven Burkholderia species, two bacteria and two yeasts tested, B. contaminans CH-1 showed the highest rate of conversion of AHX to AOH. By batch system, up to 10.6 mmol AHX was converted to AOH using the resting cells. The yield of this process reached at 91%.

  16. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010.

    Science.gov (United States)

    Lipsitz, Rebecca; Garges, Susan; Aurigemma, Rosemarie; Baccam, Prasith; Blaney, David D; Cheng, Allen C; Currie, Bart J; Dance, David; Gee, Jay E; Larsen, Joseph; Limmathurotsakul, Direk; Morrow, Meredith G; Norton, Robert; O'Mara, Elizabeth; Peacock, Sharon J; Pesik, Nicki; Rogers, L Paige; Schweizer, Herbert P; Steinmetz, Ivo; Tan, Gladys; Tan, Patrick; Wiersinga, W Joost; Wuthiekanun, Vanaporn; Smith, Theresa L

    2012-12-01

    The US Public Health Emergency Medical Countermeasures Enterprise convened subject matter experts at the 2010 HHS Burkholderia Workshop to develop consensus recommendations for postexposure prophylaxis against and treatment for Burkholderia pseudomallei and B. mallei infections, which cause melioidosis and glanders, respectively. Drugs recommended by consensus of the participants are ceftazidime or meropenem for initial intensive therapy, and trimethoprim/sulfamethoxazole or amoxicillin/clavulanic acid for eradication therapy. For postexposure prophylaxis, recommended drugs are trimethoprim/sulfamethoxazole or co-amoxiclav. To improve the timely diagnosis of melioidosis and glanders, further development and wide distribution of rapid diagnostic assays were also recommended. Standardized animal models and B. pseudomallei strains are needed for further development of therapeutic options. Training for laboratory technicians and physicians would facilitate better diagnosis and treatment options.

  17. Distinct human antibody response to the biological warfare agent Burkholderia mallei.

    Science.gov (United States)

    Varga, John J; Vigil, Adam; DeShazer, David; Waag, David M; Felgner, Philip; Goldberg, Joanna B

    2012-10-01

    The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections.

  18. Burkholderia cepacia complex infection in a cohort of Italian patients with cystic fibrosis.

    Science.gov (United States)

    Lambiase, Antonietta; Raia, Valeria; Stefani, Stefania; Sepe, Angela; Ferri, Pasqualina; Buonpensiero, Paolo; Rossano, Fabio; Del Pezzo, Mariassunta

    2007-06-01

    The aims of this study were to detect Burkholderia cepacia complex (Bcc) strains in a cohort of Cystic Fibrosis patients (n=276) and to characterize Bcc isolates by molecular techniques. The results showed that 11.23% of patients were infected by Bcc. Burkholderia cenocepacia lineage III-A was the most prevalent species (64.3%) and, of these, 10% was cblA positive and 50% esmR positive. Less than half of the strains were sensitive to ceftazidime, meropenem, piperacillin tazobactam, and trimethoprim-sulfamethoxazole. About half of the strains (41%) had homogeneous profiles, suggesting cross-transmission. The infection by B. cenocepacia was associated to a high rate of mortality (p=0.01).

  19. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India

    Science.gov (United States)

    Peddayelachagiri, Bhavani V.; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H.; Batra, Harsh V.

    2016-01-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  20. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India.

    Directory of Open Access Journals (Sweden)

    Bhavani V Peddayelachagiri

    2016-09-01

    Full Text Available Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively. In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha was studied both in silico and in vitro for accurate detection of Burkholderia genus. The

  1. Gentamicin Delivery to Burkholderia cepacia Group IIIa Strains via Membrane Vesicles from Pseudomonas aeruginosa PAO1

    OpenAIRE

    Allan, Nick D.; Beveridge, Terry J.

    2003-01-01

    When Pseudomonas aeruginosa PAO1 is treated with gentamicin, it releases membrane vesicles containing gentamicin (g-MVs) and peptidoglycan hydrolase, which makes the MVs bactericidal. We evaluate the ability of g-MVs to deliver gentamicin past the intrinsic permeability barrier of group IIIa Burkholderia cepacia and show that strain CEP0248 with low resistance to gentamicin is killed but the highly resistant strain C5424 is not. Immunoelectron microscopy revealed that gentamicin was delivered...

  2. Type III Secretion: a Virulence Factor Delivery System Essential for the Pathogenicity of Burkholderia mallei

    OpenAIRE

    Ulrich, Ricky L.; DeShazer, David

    2004-01-01

    By creating mutations in the Burkholderia mallei ATCC 23344 animal pathogen-like type III secretion system (TTSS), this study analyzes the correlation between type III secretion and the pathogenicity of ATCC 23344 in vivo. Mutagenesis demonstrated that a functional TTSS was required for the full pathogenicity of ATCC 23344 in the BALB/c mouse and Syrian hamster models of infection. However, vaccination with each mutant failed to elicit a protective immunity against challenge with wild-type AT...

  3. Roles and Interactions of Burkholderia pseudomallei BpsIR Quorum-Sensing System Determinants▿

    OpenAIRE

    Kiratisin, Pattarachai; Sanmee, Sittinee

    2008-01-01

    The Burkholderia pseudomallei quorum-sensing system (QSS), designated BpsIR, is encoded by five bpsR genes and three bpsI genes. This study investigated the roles and interactions of the QSS determinants in terms of gene regulation and protein interaction. We report two novel findings, that BpsR can function as an activator and a repressor for bpsI expression and that BpsR may form homodimers and heterodimers.

  4. The BpsIR Quorum-Sensing System of Burkholderia pseudomallei

    OpenAIRE

    Song, Yan; Xie, Chao; Ong, Yong-Mei; Gan, Yunn-Hwen; Chua, Kim-Lee

    2005-01-01

    BpsIR, a LuxIR quorum-sensing homolog, is required for optimal expression of virulence and secretion of exoproducts in Burkholderia pseudomallei. Cell density-dependent expression of bpsI and bpsR, the positive regulation of bpsIR expression by BpsR, and the synthesis of N-octanoyl-homoserine lactone (C8HSL) by BpsI are described in this report.

  5. Identification of the Three Genes Involved in Controlling Production of a Phytotoxin Tropolone in Burkholderia plantarii

    OpenAIRE

    Miwa, Shunpei; Kihira, Eri; Yoshioka, Akinori; Nakasone, Kaoru; OKAMOTO, Sho; Hatano, Masaki; Igarashi, Masayuki; Eguchi, Yoko; Kato, Akinori; Ichikawa, Natsuko; Sekine, Mitsuo; Fujita, Nobuyuki; Kanesaki, Yu; Yoshikawa, Hirofumi; Utsumi, Ryutaro

    2016-01-01

    Tropolone, a phytotoxin produced by Burkholderia plantarii, causes rice seedling blight. To identify genes involved in tropolone synthesis, we systematically constructed mutations in the genes encoding 55 histidine kinases and 72 response regulators. From the resulting defective strains, we isolated three mutants, KE1, KE2, and KE3, in which tropolone production was repressed. The deleted genes of these mutants were named troR1, troK, and troR2, respectively. The mutant strains did not cause ...

  6. Insights into the Role of Extracellular Polysaccharides in Burkholderia Adaptation to Different Environments

    Science.gov (United States)

    Ferreira, Ana S.; Silva, Inês N.; Oliveira, Vítor H.; Cunha, Raquel; Moreira, Leonilde M.

    2011-01-01

    The genus Burkholderia comprises more than 60 species able to adapt to a wide range of environments such as soil and water, and also colonize and infect plants and animals. They have large genomes with multiple replicons and high gene number, allowing these bacteria to thrive in very different niches. Among the properties of bacteria from the genus Burkholderia is the ability to produce several types of exopolysaccharides (EPSs). The most common one, cepacian, is produced by the majority of the strains examined irrespective of whether or not they belong to the Burkholderia cepacia complex (Bcc). Cepacian biosynthesis proceeds by a Wzy-dependent mechanism, and some of the B. cepacia exopolysaccharide (Bce) proteins have been functionally characterized. In vitro studies showed that cepacian protects bacterial cells challenged with external stresses. Regarding virulence, bacterial cells with the ability to produce EPS are more virulent in several animal models of infection than their isogenic non-producing mutants. Although the production of EPS within the lungs of cystic fibrosis (CF) patients has not been demonstrated, the in vitro assessment of the mucoid phenotype in serial Bcc isolates from CF patients colonized for several years showed that mucoid to non-mucoid transitions are relatively frequent. This morphotype variation can be induced under laboratory conditions by exposing cells to stress such as high antibiotic concentration. Clonal isolates where mucoid to non-mucoid transition had occurred showed that during lung infection, genomic rearrangements, and mutations had taken place. Other phenotypic changes include variations in motility, chemotaxis, biofilm formation, bacterial survival rate under nutrient starvation and virulence. In this review, we summarize major findings related to EPS biosynthesis by Burkholderia and the implications in broader regulatory mechanisms important for cell adaptation to the different niches colonized by these bacteria. PMID

  7. Improved High-Quality Draft Genome Sequence and Annotation of Burkholderia contaminans LMG 23361(T).

    Science.gov (United States)

    Jung, Ji Young; Ahn, Youngbeom; Kweon, Ohgew; LiPuma, John J; Hussong, David; Marasa, Bernard S; Cerniglia, Carl E

    2017-04-20

    Burkholderia contaminans LMG 23361 is the type strain of the species isolated from the milk of a dairy sheep with mastitis. Some pharmaceutical products contain disinfectants such as benzalkonium chloride (BZK) and previously we reported that B. contaminans LMG 23361(T) possesses the ability to inactivate BZK with high biodegradation rates. Here, we report an improved high-quality draft genome sequence of this strain. Copyright © 2017 Jung et al.

  8. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms.

    Directory of Open Access Journals (Sweden)

    Vesna Memišević

    2015-03-01

    Full Text Available Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of

  9. Enhanced degradation of haloacid by heterologous expression in related Burkholderia species.

    Science.gov (United States)

    Su, Xianbin; Deng, Liyu; Kong, Ka Fai; Tsang, Jimmy S H

    2013-10-01

    Haloacids are environmental pollutant and can be transformed to non-toxic alkanoic acids by microbial dehalogenase. Bacterium Burkholderia species MBA4 was enriched from soil for its ability to bioremediate haloacids such as mono-chloroacetate (MCA), mono-bromoacetate (MBA), 2-mono-chloropropionate, and 2-mono-bromopropionate. MBA4 produces an inducible dehalogenase Deh4a that catalyzes the dehalogenation process. The growth of MBA4 on haloacid also relies on the presence of a haloacid-uptake system. Similar dehalogenase genes can be found in the genome of many related species. However, wildtype Burkholderia caribensis MWAP64, Burkholderia phymatum STM815, and Burkholderia xenovorans LB400 were not able to grow on MCA. When a plasmid containing the regulatory and structural gene of Deh4a was transformed to these species, they were able to grow on haloacid. The specific enzyme activities in these recombinants ranges from 2- to 30-fold that of MBA4 in similar condition. Reverse transcription-quantitative real-time PCR showed that the relative transcript levels in these recombinant strains ranges from 9 to over 1,600 times that of MBA4 in similar condition. A recombinant has produced nearly five times of dehalogenase that MBA4 could ever achieve. While the expressions of Deh4a were more relaxed in these phylogenetically related species, an MCA-uptake activity was found to be inducible. These metabolically engineered strains are better degraders than the haloacid-enriched MBA4. Copyright © 2013 Wiley Periodicals, Inc.

  10. Type III secretion: a virulence factor delivery system essential for the pathogenicity of Burkholderia mallei.

    Science.gov (United States)

    Ulrich, Ricky L; DeShazer, David

    2004-02-01

    By creating mutations in the Burkholderia mallei ATCC 23344 animal pathogen-like type III secretion system (TTSS), this study analyzes the correlation between type III secretion and the pathogenicity of ATCC 23344 in vivo. Mutagenesis demonstrated that a functional TTSS was required for the full pathogenicity of ATCC 23344 in the BALB/c mouse and Syrian hamster models of infection. However, vaccination with each mutant failed to elicit a protective immunity against challenge with wild-type ATCC 23344.

  11. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    Science.gov (United States)

    2015-03-04

    replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that...control and promote bacterial internalization, survival, and replication within eukaryotic host cells.We recently used yeast two-hybrid (Y2H) screening to...influencing host processes are not well understood. Here, we used host-pathogen protein-protein interac- tions derived from yeast two-hybrid screens

  12. Disseminated Burkholderia gladioli infection in a lung transplant recipient with underlying hypocomplementemic urticarial vasculitis.

    Science.gov (United States)

    Thompson, G R; Wickes, B L; Herrera, M L; Haman, T C; Lewis, J S; Jorgensen, J H

    2011-12-01

    Burkholderia gladioli is difficult to definitively identify within the laboratory using phenotypic testing alone. We describe a case of recurrent B. gladioli infection in a lung transplant recipient with underlying hypocomplementemic urticarial vasculitis syndrome, discuss the difficulties encountered with laboratory identification, provide a review of the methodology required for definitive identification, and discuss potential pathophysiologic mechanisms in this patient responsible for the difficulty in treatment. © 2011 John Wiley & Sons A/S.

  13. Global Distribution and Evolution of a Toxinogenic Burkholderia-Rhizopus Symbiosis▿†

    Science.gov (United States)

    Lackner, Gerald; Möbius, Nadine; Scherlach, Kirstin; Partida-Martinez, Laila P.; Winkler, Robert; Schmitt, Imke; Hertweck, Christian

    2009-01-01

    Toxinogenic endobacteria were isolated from a collection of Rhizopus spp. representing highly diverse geographic origins and ecological niches. All endosymbionts belonged to the Burkholderia rhizoxinica complex according to matrix-assisted laser desorption ionization-time of flight biotyping and multilocus sequence typing, suggesting a common ancestor. Comparison of host and symbiont phylogenies provides insights into possible cospeciation and horizontal-transmission events. PMID:19286793

  14. Der Abbau von Fluorbenzol und seinen Homologen durch Burkholderia fungorum FLU 100

    OpenAIRE

    Strunk, Niko

    2007-01-01

    Der Stamm Burkholderia fungorum FLU 100 besitzt die unter den Bakterien äußerst selten zu findende Eigenschaft, Fluorbenzol als alleinige Kohlenstoff- und Energiequelle nutzen zu können. Außerdem kann der Stamm auch die anderen Monohalogenbenzole sowie Benzol und Toluol - als Reinstoff oder in beliebigen Mischungen - vollständig produktiv verwerten. In dieser Arbeit wurden ein Teil des Abbauweges sowie die Einsatzmöglichkeiten des Stammes im Rahmen der biologischen Abluftreinigung erforscht. ...

  15. Nasal Acai Polysaccharides Potentiate Innate Immunity to Protect against Pulmonary Francisella tularensis and Burkholderia pseudomallei Infections

    OpenAIRE

    Skyberg, Jerod A.; Rollins, MaryClare F.; Holderness, Jeff S.; Marlenee, Nicole L.; Schepetkin, Igor A.; Goodyear, Andrew; Dow, Steven W.; Jutila, Mark A.; Pascual, David W.

    2012-01-01

    Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilitie...

  16. Biochemical Characterization of Glutamate Racemase-A New Candidate Drug Target against Burkholderia cenocepacia Infections.

    Directory of Open Access Journals (Sweden)

    Aygun Israyilova

    Full Text Available The greatest obstacle for the treatment of cystic fibrosis patients infected with the Burkholderia species is their intrinsic antibiotic resistance. For this reason, there is a need to develop new effective compounds. Glutamate racemase, an essential enzyme for the biosynthesis of the bacterial cell wall, is an excellent candidate target for the design of new antibacterial drugs. To this aim, we recombinantly produced and characterized glutamate racemase from Burkholderia cenocepacia J2315. From the screening of an in-house library of compounds, two Zn (II and Mn (III 1,3,5-triazapentadienate complexes were found to efficiently inhibit the glutamate racemase activity with IC50 values of 35.3 and 10.0 μM, respectively. Using multiple biochemical approaches, the metal complexes have been shown to affect the enzyme activity by binding to the enzyme-substrate complex and promoting the formation of an inhibited dimeric form of the enzyme. Our results corroborate the value of glutamate racemase as a good target for the development of novel inhibitors against Burkholderia.

  17. Extreme Antimicrobial Peptide and Polymyxin B Resistance in the Genus Burkholderia

    Science.gov (United States)

    Loutet, Slade A.; Valvano, Miguel A.

    2011-01-01

    Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance. PMID:22919572

  18. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments

    Directory of Open Access Journals (Sweden)

    T. Revathy

    2015-01-01

    Full Text Available The polycyclic aromatic hydrocarbons (PAHs pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2–5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%. However, naphthalene and aniline were degraded only at lower concentration (0.1% and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs.

  19. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system.

    Science.gov (United States)

    Rusch, Antje; Islam, Shaer; Savalia, Pratixa; Amend, Jan P

    2015-01-01

    Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-April(T). Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-April(T) grew at temperatures between 4 °C and 40 °C (optimum 30-37 °C), at pH 3.5 to 8.3 (optimum pH 5-6) and in the presence of up to 2.7% NaCl (optimum 0-1.0%). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-April(T) was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-April(T) belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8%), Burkholderia phytofirmans (98.8%), Burkholderia caledonica (98.4%) and Burkholderia sediminicola (98.4%). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA-DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia, for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-April(T) ( = DSM 28142(T) = LMG 28183(T)). © 2015 IUMS.

  20. Burkholderia sp. induces functional nodules on the South African invasive legume Dipogon lignosus (Phaseoleae) in New Zealand soils.

    Science.gov (United States)

    Liu, Wendy Y Y; Ridgway, Hayley J; James, Trevor K; James, Euan K; Chen, Wen-Ming; Sprent, Janet I; Young, J Peter W; Andrews, Mitchell

    2014-10-01

    The South African invasive legume Dipogon lignosus (Phaseoleae) produces nodules with both determinate and indeterminate characteristics in New Zealand (NZ) soils. Ten bacterial isolates produced functional nodules on D. lignosus. The 16S ribosomal RNA (rRNA) gene sequences identified one isolate as Bradyrhizobium sp., one isolate as Rhizobium sp. and eight isolates as Burkholderia sp. The Bradyrhizobium sp. and Rhizobium sp. 16S rRNA sequences were identical to those of strains previously isolated from crop plants and may have originated from inocula used on crops. Both 16S rRNA and DNA recombinase A (recA) gene sequences placed the eight Burkholderia isolates separate from previously described Burkholderia rhizobial species. However, the isolates showed a very close relationship to Burkholderia rhizobial strains isolated from South African plants with respect to their nitrogenase iron protein (nifH), N-acyltransferase nodulation protein A (nodA) and N-acetylglucosaminyl transferase nodulation protein C (nodC) gene sequences. Gene sequences and enterobacterial repetitive intergenic consensus (ERIC) PCR and repetitive element palindromic PCR (rep-PCR) banding patterns indicated that the eight Burkholderia isolates separated into five clones of one strain and three of another. One strain was tested and shown to produce functional nodules on a range of South African plants previously reported to be nodulated by Burkholderia tuberum STM678(T) which was isolated from the Cape Region. Thus, evidence is strong that the Burkholderia strains isolated here originated in South Africa and were somehow transported with the plants from their native habitat to NZ. It is possible that the strains are of a new species capable of nodulating legumes.

  1. Diverse Burkholderia Species Isolated from Soils in the Southern United States with No Evidence of B. pseudomallei.

    Science.gov (United States)

    Hall, Carina M; Busch, Joseph D; Shippy, Kenzie; Allender, Christopher J; Kaestli, Mirjam; Mayo, Mark; Sahl, Jason W; Schupp, James M; Colman, Rebecca E; Keim, Paul; Currie, Bart J; Wagner, David M

    2015-01-01

    The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States.

  2. Intramolecular aglycon delivery enables the synthesis of 6-deoxy-β-D-manno-heptosides as fragments of Burkholderia pseudomallei and Burkholderia mallei capsular polysaccharide.

    Science.gov (United States)

    Tamigney Kenfack, Marielle; Blériot, Yves; Gauthier, Charles

    2014-05-16

    Burkholderia pseudomallei and Burkholderia mallei are potential bioterrorism agents. They express the same capsular polysaccharide (CPS), a homopolymer featuring an unusual [→3)-2-O-acetyl-6-deoxy-β-D-manno-heptopyranosyl-(1→] as the repeating unit. This CPS is known to be one of the main targets of the adaptive immune response in humans and therefore represents a crucial subunit candidate for vaccine development. Herein, the stereoselective synthesis of mono- and disaccharidic fragments of the B. pseudomallei and B. mallei CPS repeating unit is reported. The synthesis of 6-deoxy-β-D-manno-heptosides was investigated using both inter- and intramolecular glycosylation strategies from thio-manno-heptose that was modified with 2-naphthylmethyl (NAP) at C2. We show here that NAP-mediated intramolecular aglycon delivery (IAD) represents a suitable approach for the stereocontrolled synthesis of 6-deoxy-β-D-manno-heptosides without the need for rigid 4,6-O-cyclic protection of the sugar skeleton. The IAD strategy is highly modular, as it can be applied to structurally diverse acceptors with complete control of stereoselectivity. Problematic hydrogenation of the acetylated disaccharides was overcome by using a microfluidic continuous flow reactor.

  3. Isolation and characterization of Burkholderia fungorum Gan-35 with the outstanding ammonia nitrogen-degrading ability from the tailings of rare-earth-element mines in southern Jiangxi, China.

    Science.gov (United States)

    Feng, Ai-Juan; Xiao, Xi; Ye, Cong-Cong; Xu, Xiao-Ming; Zhu, Qing; Yuan, Jian-Ping; Hong, Yue-Hui; Wang, Jiang-Hai

    2017-12-01

    The exploitation of rare-earth-element (REE) mines has resulted in severe ammonia nitrogen pollution and induced hazards to environments and human health. Screening microorganisms with the ammonia nitrogen-degrading ability provides a basis for bioremediation of ammonia nitrogen-polluted environments. In this study, a bacterium with the outstanding ammonia nitrogen-degrading capability was isolated from the tailings of REE mines in southern Jiangxi Province, China. This strain was identified as Burkholderia fungorum Gan-35 according to phenotypic and phylogenetic analyses. The optimal conditions for ammonia-nitrogen degradation by strain Gan-35 were determined as follows: pH value, 7.5; inoculum dose, 10%; incubation time, 44 h; temperature, 30 °C; and C/N ratio, 15:1. Strain Gan-35 degraded 68.6% of ammonia nitrogen under the optimized conditions. Nepeta cataria grew obviously better in the ammonia nitrogen-polluted soil with strain Gan-35 than that without inoculation, and the decrease in ammonia-nitrogen contents of the former was also more obvious than the latter. Besides, strain Gan-35 exhibited the tolerance to high salinities. In summary, strain Gan-35 harbors the ability of both ammonia-nitrogen degradation at high concentrations and promoting plant growth. This work has reported a Burkholderia strain with the ammonia nitrogen-degrading capability for the first time and is also the first study on the isolation of a bacterium with the ammonia nitrogen-degrading ability from the tailings of REE mines. The results are useful for developing an effective method for microbial remediation of the ammonia nitrogen-polluted tailings of REE mines.

  4. Floating-Harbor syndrome. A neuropsychological approach.

    Science.gov (United States)

    Davalos, I P; Figuera, L E; Bobadilla, L; Martinez-Martinez, R; Matute, E; Partida, M G; Bañuelos, L A; Ramirez-Dueñas, M L

    1996-01-01

    We describe a six year old Mexican girl whose clinical picture (short stature with delayed bone age, language difficulties and triangular face with prominent nose) was compatible with the diagnosis of Floating-Harbor Syndrome (FHS). A neuropsychological evaluation disclosed a mild mental retardation, a constructive apraxia, a comprehensive and expressive language impairment. The analysis of the present case and sixteen patients previously described establishes that the FHS is mainly characterized by proportionate short stature with significantly delayed bone age, delayed expressive language and peculiar face.

  5. Volcanic Soils as Sources of Novel CO-OxidizingParaburkholderiaandBurkholderia:Paraburkholderia hiiakaesp. nov.,Paraburkholderia metrosiderisp. nov.,Paraburkholderia paradisisp. nov.,Paraburkholderia peleaesp. nov., andBurkholderia alpinasp. nov. a Member of theBurkholderia cepaciaComplex.

    Science.gov (United States)

    Weber, Carolyn F; King, Gary M

    2017-01-01

    Previous studies showed that members of the Burkholderiales were important in the succession of aerobic, molybdenum-dependent CO oxidizing-bacteria on volcanic soils. During these studies, four isolates were obtained from Kilauea Volcano (Hawai'i, USA); one strain was isolated from Pico de Orizaba (Mexico) during a separate study. Based on 16S rRNA gene sequence similarities, the Pico de Orizaba isolate and the isolates from Kilauea Volcano were provisionally assigned to the genera Burkholderia and Paraburkholderia , respectively. Each of the isolates possessed a form I coxL gene that encoded the catalytic subunit of carbon monoxide dehydrogenase (CODH); none of the most closely related type strains possessed coxL or oxidized CO. Genome sequences for Paraburkholderia type strains facilitated an analysis of 16S rRNA gene sequence similarities and average nucleotide identities (ANI). ANI did not exceed 95% (the recommended cutoff for species differentiation) for any of the pairwise comparisons among 27 reference strains related to the new isolates. However, since the highest 16S rRNA gene sequence similarity among this set of reference strains was 98.93%, DNA-DNA hybridizations (DDH) were performed for two isolates whose 16S rRNA gene sequence similarities with their nearest phylogenetic neighbors were 98.96 and 99.11%. In both cases DDH values were <16%. Based on multiple variables, four of the isolates represent novel species within the Paraburkholderia : Paraburkholderia hiiakae sp. nov. (type strain I2 T = DSM 28029 T = LMG 27952 T ); Paraburkholderia paradisi sp. nov. (type strain WA T = DSM 28027 T = LMG 27949 T ); Paraburkholderia peleae sp. nov. (type strain PP52-1 T = DSM 28028 T = LMG 27950 T ); and Paraburkholderia metrosideri sp. nov. (type strain DNBP6-1 T = DSM 28030 T = LMG 28140 T ). The remaining isolate represents the first CO-oxidizing member of the Burkholderia cepacia complex: Burkholderia alpina sp. nov. (type strain PO-04-17-38 T = DSM 28031 T

  6. Identification of a Putative P-Transporter Operon in the Genome of a Burkholderia Strain Living inside the Arbuscular Mycorrhizal Fungus Gigaspora margarita

    Science.gov (United States)

    Ruiz-Lozano, J. M.; Bonfante, P.

    1999-01-01

    This article reports the identification of a putative P-transporter operon in the genome of a Burkholderia sp. living in the cytoplasm of the arbuscular mycorrhizal fungus Gigaspora margarita. Its presence suggests that Burkholderia sp. has the potential for P uptake from this environment. This finding raises new questions concerning the importance of intracellular bacteria for mycorrhizal symbiosis. PMID:10383982

  7. A reliable method for the selection and confirmation of transconjugants of plant growth-promoting bacteria especially plant-associated Burkholderia spp.

    Science.gov (United States)

    Tariq, Mohsin; Lum, Michelle R; Chong, Allan W; Amirapu, Anjana B; Hameed, Sohail; Hirsch, Ann M

    2015-10-01

    Selectable markers, e.g., antibiotic resistance, for conjugation experiments are not always effective for slow-growing plant growth promoting bacteria such as Burkholderia. We used PCAT medium containing Congo Red for selecting Burkholderia transconjugants. This method allows for the reliable selection of transconjugants of these novel plant growth-promoting bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum.

    Science.gov (United States)

    Nie, Yanxia; Li, Li; Wang, Mengcen; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2015-01-01

    Using a culture-based nitrous oxide (N2O) emission assay, three active N2O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N2O emission in the medium supplemented with [Formula: see text] but not with [Formula: see text], and Burkholderia sp. SF-E2 showed the most efficient N2O emission (0.20 μg·vial(-1)·day(-1)) at 1.0 mM KNO3. In Burkholderia sp. SF-E2, the optimum pH for N2O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N2O emission was ignorable, but Burkholderia sp. SF-E2 upon exposure to 100 mg·L(-1) E-caffeic acid showed uniquely 67-fold higher N2O emission. All of the three N2O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N2O reductase or the gene itself is missing in the N2O-emitting Burkholderia.

  9. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    Directory of Open Access Journals (Sweden)

    Chih-Yuan eChiang

    2015-07-01

    Full Text Available Burkholderia is a diverse genus of Gram-negative bacteria that cause high mortality rate in humans and cattle. The lack of effective therapeutic treatments poses serious public health threats. Insights toward host-Burkholderia spp. interaction are critical in understanding the pathogenesis of the infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray (RPMA technology was previously proven to characterize novel biomarkers and molecular signatures associated with infectious diseases and cancers. In the present study, this technology was utilized to interrogate changes in host protein expression and post-translational phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections and of which eight proteins were selected for further validation by immunoblotting. Kinetic expression patterns of phosphorylated AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune responses. Modulating inflammatory responses by perturbing AMPK-α1, Src, and GSK3β activities may provide novel therapeutic targets for future treatments.

  10. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413.

    Science.gov (United States)

    De Meyer, Sofie E; Fabiano, Elena; Tian, Rui; Van Berkum, Peter; Seshadri, Rekha; Reddy, Tbk; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Howieson, John; Kyrpides, Nikos; Reeve, Wayne

    2015-01-01

    Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes.

  11. RecA gene sequence and Multilocus Sequence Typing for species-level resolution of Burkholderia cepacia complex isolates.

    Science.gov (United States)

    Cesarini, S; Bevivino, A; Tabacchioni, S; Chiarini, L; Dalmastri, C

    2009-11-01

    To identify, by means of recA sequencing and multilocus sequence typing (MLST), Burkholderia cepacia complex (BCC) isolates of environmental and clinical origin, which failed to be identified by recA RFLP and species-specific PCR. By using recA sequence-based identification, 17 out of 26 BCC isolates were resolved at the level of species and lineage (ten Burkholderia cenocepacia IIIB, two Burkholderia arboris and five Burkholderia lata). By using MLST method, 24 BCC isolates were identified. MLST confirmed recA sequence results, and, furthermore, enabled to identify isolates of the BCC5 group, and showed relatedness with Burkholderia contaminans for one of the two isolates not identified. recA sequence-based identification allowed to resolve, at the level of species and lineage, 65.4%, of the BCC isolates examined, whilst MLST increased this percentage to 88.5%. BCC isolates previously not resolved by recA RFLP and species-specific PCR were successfully identified by means of recA sequencing and MLST, which represent the most appropriate methods to identify difficult strains for epidemiological purposes and cystic fibrosis patients management.

  12. 77 FR 50916 - Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA

    Science.gov (United States)

    2012-08-23

    ...) Zone for the drilling, blasting, and dredging operation on the navigable waters of Boston Inner Harbor... navigable waters during the drilling, blasting and dredging operations in support of the U.S. Army Corps of... vicinity of the drilling, dredging and blasting operations being conducted. For the safety concerns noted...

  13. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Science.gov (United States)

    2010-07-01

    ...) Passenger boats will, in general, have the preference as to location and attention by the officer in charge... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  14. Burkholderia paludis sp. nov., an Antibiotic-Siderophore Producing Novel Burkholderia cepacia Complex Species, Isolated from Malaysian Tropical Peat Swamp Soil.

    Science.gov (United States)

    Ong, Kuan Shion; Aw, Yoong Kit; Lee, Learn Han; Yule, Catherine M; Cheow, Yuen Lin; Lee, Sui Mae

    2016-01-01

    A novel Gram negative rod-shaped bacterium, designated strain MSh1T, was isolated from Southeast Pahang tropical peat swamp forest soil in Malaysia and characterized using a polyphasic taxonomy approach. The predominant cellular fatty acids (>10.0%) were C16:0 (31.7%), C17:0 cyclo (26.6%), and C19:0 cyclo ω8c (16.1%). The polar lipids detected were phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. The predominant ubiquinone was Q-8. This revealed that strain MSh1T belongs to the genus Burkholderia. The type strain MSh1T can be differentiated from other Burkholderia cepacia complex (Bcc) species by phylogenetic analysis of 16S rRNA gene sequence, multilocus sequence analysis (MLSA), average nucleotide identity (ANI) and biochemical tests. DNA-DNA relatedness values between strain MSh1T and closely related type strains were below the 70% threshold value. Based on this polyphasic study of MSh1T, it can be concluded that this strain represents a novel species within the Bcc, for which the name Burkholderia paludis sp. nov. is proposed. The type strain is MSh1T (= DSM 100703T = MCCC 1K01245T). The dichloromethane extract of MSh1T exhibited antimicrobial activity against four Gram positive bacteria (Enterococcus faecalis ATCC 29212, E. faecalis ATCC 700802, Staphylococcus aureus ATCC 29213, S. aureus ATCC 700699) and a Gram negative bacteria (Escherichia coli ATCC 25922). Further purification work has led to the isolation of Compound 1, pyochelin. Pyochelin demonstrated antimicrobial activity against four S. aureus strains and three E. faecalis strains with MIC-values of 3.13 μg/ml and 6.26 μg/ml, respectively. SEM analysis showed that the cellular morphology of E. faecalis ATCC 700802 was not affected by pyochelin; suggesting that it might target the intracellular components. Pyochelin, a siderophore with antimicrobial activity might be useful in treating bacterial infections caused by S. aureus and E. faecalis, however further work has to

  15. Rhizonin A from Burkholderia sp. KCTC11096 and Its Growth Promoting Role in Lettuce Seed Germination

    Directory of Open Access Journals (Sweden)

    Sang-Mo Kang

    2012-07-01

    Full Text Available We isolated and identified a gibberellin-producing Burkholderia sp. KCTC 11096 from agricultural field soils. The culture filtrate of plant growth promoting rhizobacteria (PGPR significantly increased the germination and growth of lettuce and Chinese cabbage seeds. The ethyl acetate extract of the PGPR culture showed significantly higher rate of lettuce seed germination and growth as compared to the distilled water treated control. The ethyl acetate fraction of the Burkholderia sp. was subjected to bioassay-guided isolation and we obtained for the first time from a Burkholderia sp. the plant growth promoting compound rhizonin A (1, which was characterized through NMR and MS techniques. Application of various concentrations of 1 significantly promoted the lettuce seed germination as compared to control.

  16. Antibodies against In Vivo-Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei.

    Science.gov (United States)

    Zimmerman, Shawn M; Dyke, Jeremy S; Jelesijevic, Tomislav P; Michel, Frank; Lafontaine, Eric R; Hogan, Robert J

    2017-08-01

    Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery. Copyright © 2017 American Society for Microbiology.

  17. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities

    Science.gov (United States)

    Fernandez, Lorena E.; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G.

    2013-01-01

    Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests. PMID:24096416

  18. Purine biosynthesis-deficient Burkholderia mutants are incapable of symbiotic accommodation in the stinkbug.

    Science.gov (United States)

    Kim, Jiyeun Kate; Jang, Ho Am; Won, Yeo Jin; Kikuchi, Yoshitomo; Han, Sang Heum; Kim, Chan-Hee; Nikoh, Naruo; Fukatsu, Takema; Lee, Bok Luel

    2014-03-01

    The Riptortus-Burkholderia symbiotic system represents a promising experimental model to study the molecular mechanisms involved in insect-bacterium symbiosis due to the availability of genetically manipulated Burkholderia symbiont. Using transposon mutagenesis screening, we found a symbiosis-deficient mutant that was able to colonize the host insect but failed to induce normal development of host's symbiotic organ. The disrupted gene was identified as purL involved in purine biosynthesis. In vitro growth impairment of the purL mutant and its growth dependency on adenine and adenosine confirmed the functional disruption of the purine synthesis gene. The purL mutant also showed defects in biofilm formation, and this defect was not rescued by supplementation of purine derivatives. When inoculated to host insects, the purL mutant was initially able to colonize the symbiotic organ but failed to attain a normal infection density. The low level of infection density of the purL mutant attenuated the development of the host's symbiotic organ at early instar stages and reduced the host's fitness throughout the nymphal stages. Another symbiont mutant-deficient in a purine biosynthesis gene, purM, showed phenotypes similar to those of the purL mutant both in vitro and in vivo, confirming that the purL phenotypes are due to disrupted purine biosynthesis. These results demonstrate that the purine biosynthesis genes of the Burkholderia symbiont are critical for the successful accommodation of symbiont within the host, thereby facilitating the development of the host's symbiotic organ and enhancing the host's fitness values.

  19. A case report of Tubo-ovarian abscess caused by Burkholderia pseudomallei.

    Science.gov (United States)

    Nernsai, Pattaranit; Sophonsritsuk, Areepan; Lertvikool, Srithean; Jinawath, Artit; Chitasombat, Maria Nina

    2018-02-08

    Melioidosis, the disease caused by Burkholderia pseudomallei is endemic in the Northeastern part of Thailand, South-East Asia, and Northern Australia. The pelvic involvement of disease is rare even in an endemic area. Therefore, we describe in this report the clinical presentation, management, and outcome of the patient with primary tubo-ovarian abscess due to melioidosis. A 31-year-old Thai cassava farmer woman presented with fever and abdominal pain at left lower quadrant for one month. She also had pain, swelling, and redness of the genitalia without any ulcer. She had odorless whitish vaginal discharge. The pelvic examination revealed excitation pain on the left side of her cervix. Transvaginal ultrasonography revealed a large left tubo-ovarian abscess size 9.4 × 4.8 cm located at anterior of the uterus. Urgent exploratory laparotomy revealed left hydrosalpinx with a large amount of pus. The pus culture grew Burkholderia pseudomallei. The computer tomography of the abdomen revealed multiple hepatosplenic abscesses. The patient underwent left salpingo-oophorectomy and pus drainage. The pathological examination of excised left adnexa revealed chronic and acute suppurative inflammation with necrotic tissue. She was given intravenous ceftazidime for one month, and her clinical symptom improved. She was diagnosed with type 2 diabetes mellitus at this visit and treated with insulin injection. She continued to take oral co-trimoxazole for 20 weeks. The final diagnosis was disseminated melioidosis with left tubo-ovarian abscess and hepatosplenic abscesses in a newly diagnosed morbidly obese diabetic patient. Burkholderia pseudomallei should be considered as the causative organism of gynecologic infection among patient with risk factor resided in an endemic area who do not respond to standard antibiotics. The pus culture from the site of infection is the only diagnostic method of pelvic melioidosis, appropriate antibiotics, and adequate surgical drainage were the

  20. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation.

    Science.gov (United States)

    Cuzzi, Bruno; Herasimenka, Yury; Silipo, Alba; Lanzetta, Rosa; Liut, Gianfranco; Rizzo, Roberto; Cescutti, Paola

    2014-01-01

    The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained from cultures on

  1. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation.

    Directory of Open Access Journals (Sweden)

    Bruno Cuzzi

    Full Text Available The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained

  2. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans.

    Science.gov (United States)

    Costello, Anne; Reen, F Jerry; O'Gara, Fergal; Callaghan, Máire; McClean, Siobhán

    2014-07-01

    Cystic fibrosis (CF) is a recessive genetic disease characterized by chronic respiratory infections and inflammation causing permanent lung damage. Recurrent infections are caused by Gram-negative antibiotic-resistant bacterial pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and the emerging pathogen genus Pandoraea. In this study, the interactions between co-colonizing CF pathogens were investigated. Both Pandoraea and Bcc elicited potent pro-inflammatory responses that were significantly greater than Ps. aeruginosa. The original aim was to examine whether combinations of pro-inflammatory pathogens would further exacerbate inflammation. In contrast, when these pathogens were colonized in the presence of Ps. aeruginosa the pro-inflammatory response was significantly decreased. Real-time PCR quantification of bacterial DNA from mixed cultures indicated that Ps. aeruginosa significantly inhibited the growth of Burkholderia multivorans, Burkholderia cenocepacia, Pandoraea pulmonicola and Pandoraea apista, which may be a factor in its dominance as a colonizer of CF patients. Ps. aeruginosa cell-free supernatant also suppressed growth of these pathogens, indicating that inhibition was innate rather than a response to the presence of a competitor. Screening of a Ps. aeruginosa mutant library highlighted a role for quorum sensing and pyoverdine biosynthesis genes in the inhibition of B. cenocepacia. Pyoverdine was confirmed to contribute to the inhibition of B. cenocepacia strain J2315. B. multivorans was the only species that could significantly inhibit Ps. aeruginosa growth. B. multivorans also inhibited B. cenocepacia and Pa. apista. In conclusion, both Ps. aeruginosa and B. multivorans are capable of suppressing growth and virulence of co-colonizing CF pathogens. © 2014 The Authors.

  3. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  4. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Chow Vincent TK

    2006-06-01

    Full Text Available Abstract Background Burkholderia pseudomallei are the causative agent of melioidosis. Increasing resistance of the disease to antibiotics is a severe problem in treatment regime and has led to intensification of the search for new drugs. Antimicrobial peptides are the most ubiquitous in nature as part of the innate immune system and host defense mechanism. Methods Here, we investigated a group of venoms (snakes, scorpions and honey bee venoms for antimicrobial properties against two strains of Gram-negative bacteria Burkholderia pseudomallei by using disc-diffusion assay for in vitro susceptibility testing. The antibacterial activities of the venoms were compared with that of the isolated L-amino acid oxidase (LAAO and phospholipase A2 (PLA2s enzymes. MICs were determined using broth dilution method. Bacterial growth was assessed by measurement of optical density at the lowest dilutions (MIC 0.25 mg/ml. The cell viability was measured using tetrazolium salts (XTT based cytotoxic assay. Results The studied venoms showed high antimicrobial activity. The venoms of C. adamanteus, Daboia russelli russelli, A. halys, P. australis, B. candidus and P. guttata were equally as effective as Chloramphenicol and Ceftazidime (30 μg/disc. Among those tested, phospholipase A2 enzymes (crotoxin B and daboiatoxin showed the most potent antibacterial activity against Gram-negative (TES bacteria. Naturally occurring venom peptides and phospholipase A2 proved to possess highly potent antimicrobial activity against Burkholderia pseudomallei. The XTT-assay results showed that the cell survival decreased with increasing concentrations (0.05–10 mg/mL of Crotalus adamanteus venom, with no effect on the cell viability evident at 0.5 mg/mL. Conclusion This antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like B. pseudomallei.

  5. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei

    Science.gov (United States)

    Perumal Samy, R; Pachiappan, A; Gopalakrishnakone, P; Thwin, Maung M; Hian, Yap E; Chow, Vincent TK; Bow, Ho; Weng, Joseph T

    2006-01-01

    Background Burkholderia pseudomallei are the causative agent of melioidosis. Increasing resistance of the disease to antibiotics is a severe problem in treatment regime and has led to intensification of the search for new drugs. Antimicrobial peptides are the most ubiquitous in nature as part of the innate immune system and host defense mechanism. Methods Here, we investigated a group of venoms (snakes, scorpions and honey bee venoms) for antimicrobial properties against two strains of Gram-negative bacteria Burkholderia pseudomallei by using disc-diffusion assay for in vitro susceptibility testing. The antibacterial activities of the venoms were compared with that of the isolated L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2s) enzymes. MICs were determined using broth dilution method. Bacterial growth was assessed by measurement of optical density at the lowest dilutions (MIC 0.25 mg/ml). The cell viability was measured using tetrazolium salts (XTT) based cytotoxic assay. Results The studied venoms showed high antimicrobial activity. The venoms of C. adamanteus, Daboia russelli russelli, A. halys, P. australis, B. candidus and P. guttata were equally as effective as Chloramphenicol and Ceftazidime (30 μg/disc). Among those tested, phospholipase A2 enzymes (crotoxin B and daboiatoxin) showed the most potent antibacterial activity against Gram-negative (TES) bacteria. Naturally occurring venom peptides and phospholipase A2 proved to possess highly potent antimicrobial activity against Burkholderia pseudomallei. The XTT-assay results showed that the cell survival decreased with increasing concentrations (0.05–10 mg/mL) of Crotalus adamanteus venom, with no effect on the cell viability evident at 0.5 mg/mL. Conclusion This antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like B. pseudomallei. PMID:16784542

  6. 33 CFR 110.238 - Apra Harbor, Guam.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Apra Harbor, Guam. 110.238 Section 110.238 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.238 Apra Harbor, Guam. (a) The anchorage grounds (Datum: WGS...

  7. 77 FR 22489 - Special Anchorage Regulations, Newport Bay Harbor, CA

    Science.gov (United States)

    2012-04-16

    ... amendment adjusts the lines to fit the current layout of moorings in Newport Harbor. Small craft are not... aft moorings for recreational and small craft of such size and alignment as permitted by the harbor... material received from the public, as well as documents mentioned in this preamble as being available in...

  8. 33 CFR 165.1309 - Eagle Harbor, Bainbridge Island, WA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Eagle Harbor, Bainbridge Island, WA. 165.1309 Section 165.1309 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Eagle Harbor, Bainbridge Island, WA. (a) Regulated area. A regulated navigation area is established on...

  9. 33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kawaihae Harbor, Hawaii, HI. 80.1470 Section 80.1470 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI...

  10. 33 CFR 80.1480 - Hilo Harbor, Hawaii, HI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hilo Harbor, Hawaii, HI. 80.1480 Section 80.1480 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1480 Hilo Harbor, Hawaii, HI. A line drawn...

  11. 33 CFR 80.1450 - Nawiliwili Harbor, Kauai, HI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nawiliwili Harbor, Kauai, HI. 80.1450 Section 80.1450 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1450 Nawiliwili Harbor, Kauai, HI...

  12. 78 FR 29089 - Safety Zones; Hawaiian Island Commercial Harbors, HI

    Science.gov (United States)

    2013-05-17

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Hawaiian Island Commercial Harbors, HI... Safety Zones; Hawaiian Islands Commercial Harbors; HI. (a) Location. The following areas are safety zones...

  13. 78 FR 63381 - Safety Zones; Hawaiian Island Commercial Harbors, HI

    Science.gov (United States)

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Hawaiian Island Commercial Harbors, HI.... 14-1414 Safety Zones; Hawaiian Islands Commercial Harbors; HI. (a) Location. The following commercial...

  14. 33 CFR 80.1460 - Kahului Harbor, Maui, HI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kahului Harbor, Maui, HI. 80.1460 Section 80.1460 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1460 Kahului Harbor, Maui, HI. A line drawn...

  15. Identification and cloning of four riboswitches from Burkholderia pseudomallei strain K96243

    Science.gov (United States)

    Munyati-Othman, Noor; Fatah, Ahmad Luqman Abdul; Piji, Mohd Al Akmarul Fizree Bin Md; Ramlan, Effirul Ikhwan; Raih, Mohd Firdaus

    2015-09-01

    Structured RNAs referred as riboswitches have been predicted to be present in the genome sequence of Burkholderia pseudomallei strain K96243. Four of the riboswitches were identified and analyzed through BLASTN, Rfam search and multiple sequence alignment. The RNA aptamers belong to the following riboswitch classifications: glycine riboswitch, cobalamin riboswitch, S-adenosyl-(L)-homocysteine (SAH) riboswitch and flavin mononucleotide (FMN) riboswitch. The conserved nucleotides for each aptamer were identified and were marked on the secondary structure generated by RNAfold. These riboswitches were successfully amplified and cloned for further study.

  16. RsaM: a transcriptional regulator of Burkholderia spp. with novel fold.

    Science.gov (United States)

    Michalska, Karolina; Chhor, Gekleng; Clancy, Shonda; Jedrzejczak, Robert; Babnigg, Gyorgy; Winans, Stephen C; Joachimiak, Andrzej

    2014-09-01

    Burkholderia cepacia complex is a set of closely related bacterial species that are notorious pathogens of cystic fibrosis patients, responsible for life-threatening lung infections. Expression of several virulence factors of Burkholderia cepacia complex is controlled by a mechanism known as quorum sensing (QS). QS is a means of bacterial communication used to coordinate gene expression in a cell-density-dependent manner. The system involves the production of diffusible signaling molecules (N-acyl-l-homoserine lactones, AHLs), that bind to cognate transcriptional regulators and influence their ability to regulate gene expression. One such system that is highly conserved in Burkholderia cepacia complex consists of CepI and CepR. CepI is AHL synthase, whereas CepR is an AHL-dependent transcription factor. In most members of the Burkholderia cepacia complex group, the cepI and cepR genes are divergently transcribed and separated by additional genes. One of them, bcam1869, encodes the BcRsaM protein, which was recently postulated to modulate the abundance or activity of CepI or CepR. Here, we show the crystal structure of BcRsaM from B. cenocepacia J2315. It is a single-domain protein with unique topology and presents a novel fold. The protein is a dimer in the crystal and in solution. This regulator has no known DNA-binding motifs and direct binding of BcRsaM to the cepI promoter could not be detected in in vitro assays. Therefore, we propose that the modulatory action of RsaM might result from interactions with other components of the QS machinery rather than from direct association with the DNA promoter. The atomic coordinates and structure factors have been deposited in the Protein Data Bank under entry 4O2H. BcRsaM and BcRsaM bind by x-ray crystallography (View interaction) BcRsaM and BcRsaM bind by molecular sieving (View interaction). © 2014 FEBS.

  17. Quorum Sensing: a Transcriptional Regulatory System Involved in the Pathogenicity of Burkholderia mallei

    OpenAIRE

    Ulrich, Ricky L.; DeShazer, David; Hines, Harry B.; Jeddeloh, Jeffrey A

    2004-01-01

    Numerous gram-negative bacterial pathogens regulate virulence factor expression by using a cell density mechanism termed quorum sensing (QS). An in silico analysis of the Burkholderia mallei ATCC 23344 genome revealed that it encodes at least two luxI and four luxR homologues. Using mass spectrometry, we showed that wild-type B. mallei produces the signaling molecules N-octanoyl-homoserine lactone and N-decanoyl-homoserine lactone. To determine if QS is involved in the virulence of B. mallei,...

  18. A Dictyostelium Migration Assay used to investigate Burkholderia mallei’s Resistance to Phagocytosis

    OpenAIRE

    Fisher, Nathan

    2014-01-01

    This poster describes the work performed by a summer research undergraduate intern in 2013.  The goal was to optimize a screening assay whereby Burkholderia virulence factors could be identified by providing ectopic protection to Dictyostelium predation when expressed in E. coli.  Ultimately, this assay that was based on total distance the amoeba travelled was too variable to be of use in high throughput screening--it produced high rates of false positives.  We've since developed other plate-...

  19. Eradication of Burkholderia cepacia Using Inhaled Aztreonam Lysine in Two Patients with Bronchiectasis

    Directory of Open Access Journals (Sweden)

    A. Iglesias

    2014-01-01

    Full Text Available There are not many articles about the chronic bronchial infection/colonization in patients with underlying lung disease other than cystic fibrosis (CF, especially with non-CF bronchiectasis (NCFBQ. The prevalence of B. cepacia complex is not well known in NCFBQ. The vast majority of published clinical data on Burkholderia infection in individuals with CF is comprised of uncontrolled, anecdotal, and/or single center experiences, and no consensus has emerged regarding treatment. We present two cases diagnosed with bronchiectasis (BQ of different etiology, with early pulmonary infection by B. cepacia complex, which was eradicated with inhaled aztreonam lysine.

  20. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents

    NARCIS (Netherlands)

    Nazir, Rashid; Tazetdinova, Diana I.; van Elsas, Jan Dirk

    2014-01-01

    Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through

  1. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility

    DEFF Research Database (Denmark)

    Huber, B.; Riedel, K.; Hentzer, Morten

    2001-01-01

    Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported. It is demons...

  2. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture

    NARCIS (Netherlands)

    Mars, Astrid E.; Houwing, Joukje; Dolfing, Jan; Janssen, Dick B.

    Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE), The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the

  3. Comparative in vivo and in vitro analyses of putative virulence factors of Burkholderia pseudomallei using lipopolysaccharide, capsule and flagellin mutants

    NARCIS (Netherlands)

    Wikraiphat, C.; Charoensap, J.; Utaisincharoen, P.; Wongratanacheewin, S.; Taweechaisupapong, S.; Woods, D.E.; Bolscher, J.G.M.; Sirisinha, S.

    2009-01-01

    Burkholderia pseudomallei is a gram-negative bacillus that is the causative agent of melioidosis. We evaluated host-pathogen interaction at different levels using three separate B. pseudomallei mutants generated by insertional inactivation. One of these mutants is defective in the production of the

  4. Draft Genome Sequences of Two Clinical Isolates of Burkholderia mallei Obtained from Nasal Swabs of Glanderous Equines in India.

    Science.gov (United States)

    Singha, Harisankar; Malik, Praveen; Saini, Sheetal; Khurana, Sandip K; Elschner, Mandy C; Mertens, Katja; Barth, Stefanie A; Tripathi, Bhupendra N; Singh, Raj K

    2017-04-06

    Burkholderia mallei is a Gram-negative coccobacillus which causes glanders-a fatal disease of equines that may occasionally be transmitted to humans. Several cases of outbreaks have been reported from India since 2006. This paper presents draft genome sequences of two B. mallei strains isolated from equines affected by glanders in India. Copyright © 2017 Singha et al.

  5. South African Papilionoid Legumes Are Nodulated by Diverse Burkholderia with Unique Nodulation and Nitrogen-Fixation Loci

    Science.gov (United States)

    Beukes, Chrizelle W.; Venter, Stephanus N.; Law, Ian J.; Phalane, Francina L.; Steenkamp, Emma T.

    2013-01-01

    The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region. PMID:23874611

  6. South african papilionoid legumes are nodulated by diverse burkholderia with unique nodulation and nitrogen-fixation Loci.

    Directory of Open Access Journals (Sweden)

    Chrizelle W Beukes

    Full Text Available The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region.

  7. Proteomics Analyses of the Opportunistic Pathogen Burkholderia vietnamiensis Using Protein Fractionations and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Samanthi Wickramasekara

    2011-01-01

    Full Text Available The main objectives of this work were to obtain a more extensive coverage of the Burkholderia vietnamiensis proteome than previously reported and to identify virulence factors using tandem mass spectrometry. The proteome of B. vietnamiensis was precipitated into four fractions to as extracellular, intracellular, cell surface and cell wall proteins. Two different approaches were used to analyze the proteins. The first was a gel-based method where 1D SDS-PAGE was used for separation of the proteins prior to reverse phase liquid chromatography tandem mass spectrometry (LC-MS/MS. The second method used MudPIT analysis (Multi dimensional Protein Identification Technique, where proteins are digested and separated using cation exchange and reversed phase separations before the MS/MS analysis (LC/LC-MS/MS. Overall, gel-based LC-MS/MS analysis resulted in more protein identifications than the MudPIT analysis. Combination of the results lead to identification of more than 1200 proteins, approximately 16% of the proteins coded from the annotated genome of Burkholderia species. Several virulence factors were detected including flagellin, porin, peroxiredoxin and zinc proteases.

  8. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex.

    Science.gov (United States)

    Greenberg, David E; Marshall-Batty, Kimberly R; Brinster, Lauren R; Zarember, Kol A; Shaw, Pamela A; Mellbye, Brett L; Iversen, Patrick L; Holland, Steven M; Geller, Bruce L

    2010-06-15

    Members of the Burkholderia cepacia complex (Bcc) cause considerable morbidity and mortality in patients with chronic granulomatous disease and cystic fibrosis. Many Bcc strains are antibiotic resistant, which requires the exploration of novel antimicrobial approaches, including antisense technologies such as phosphorodiamidate morpholino oligomers (PMOs). Peptide-conjugated PMOs (PPMOs) were developed to target acpP, which encodes an acyl carrier protein (AcpP) that is thought to be essential for growth. Their antimicrobial activities were tested against different strains of Bcc in vitro and in infection models. PPMOs targeting acpP were bactericidal against clinical isolates of Bcc (>4 log reduction), whereas a PPMO with a scrambled base sequence (scrambled PPMO) had no effect on growth. Human neutrophils were infected with Burkholderia multivorans and treated with AcpP PPMO. AcpP PPMO augmented killing, compared with neutrophils alone and compared with neutrophils alone plus scrambled PPMO. Mice with chronic granulomatous disease that were infected with B. multivorans were treated with AcpP PPMO, scrambled PPMO, or water at 0, 3, and 6 h after infection. Compared with water-treated control mice, the AcpP PPMO-treated mice showed an approximately 80% reduction in the risk of dying by day 30 of the experiment and relatively little pathology. AcpP PPMO is active against Bcc infections in vitro and in vivo.

  9. Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides.

    Science.gov (United States)

    Pellizzoni, Elena; Ravalico, Fabio; Scaini, Denis; Delneri, Ambra; Rizzo, Roberto; Cescutti, Paola

    2016-02-01

    Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the Burkholderia cepacia complex species, Burkholderia cenocepacia is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, B. cenocepacia strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by 1H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs.

  10. Synthesis of a selective inhibitor of a fucose binding bacterial lectin from Burkholderia ambifaria.

    Science.gov (United States)

    Richichi, Barbara; Imberty, Anne; Gillon, Emilie; Bosco, Rosa; Sutkeviciute, Ieva; Fieschi, Franck; Nativi, Cristina

    2013-06-28

    Burkholderia ambifaria is a bacterium member of the Burkholderia cepacia complex (BCC), a closely related group of Gram-negative bacteria responsible for "cepacia syndrome" in immunocompromised patients. B. ambifaria produces BambL, a fucose-binding lectin that displays fine specificity to human fucosylated epitopes. Here, we report the first example of a synthetic ligand able to selectively bind, in the micromolar range, the pathogen-lectin BambL. The synthetic routes for the preparation of the α conformationally constrained fucoside are described, focusing on a totally diastereoselective inverse electron demand [4 + 2] Diels-Alder reaction. Isothermal titration calorimetry (ITC) demonstrated that this compound binds to the pathogen-associated lectin BambL with an affinity comparable to that of natural fucose-containing oligosaccharides. No binding was observed by LecB, a fucose-binding lectin from Pseudomonas aeruginosa, and the differences in affinity between the two lectins could be rationalized by modeling. Furthermore, SPR analyses showed that this fucomimetic does not bind to the human fucose-binding lectin DC-SIGN, thus supporting the selective binding profile towards B. ambifaria lectin.

  11. Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia.

    Science.gov (United States)

    Stietz, Maria S; Lopez, Christina; Osifo, Osasumwen; Tolmasky, Marcelo E; Cardona, Silvia T

    2017-10-01

    There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.

  12. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.

    Science.gov (United States)

    Mello Bueno, Pabline Rafaella; de Oliveira, Tatianne Ferreira; Castiglioni, Gabriel Luis; Soares Júnior, Manoel Soares; Ulhoa, Cirano Jose

    2015-01-01

    This study aimed to analyze the physical and chemical characteristics of Amano PS commercial lipase - Burkholderia cepacia and lipase produced by Burkholderia cepacia strain ATCC 25416, in addition to studying the hydrolysis of agro-industrial effluent collected in a fried potato industry. The optimum temperature for increasing lipase activity was 37 °C. The temperature increase caused a decrease in thermostability of lipase, and the commercial lipase was less stable, with values of 10.5, 4.6 and 4.9%, respectively, lower than those obtained by lipase from strain ATCC 25416, at temperatures of 40, 50 and 60 °C. The enzymatic activity was higher in alkaline conditions, achieving better results at pH 8.0. The pH was the variable that most influenced the hydrolysis of triacylglycerides of the agro-industrial effluent, followed by enzyme concentration, and volume of gum arabic used in the reaction medium. Thus, it can be observed that the enzymatic hydrolytic process of the studied effluent presents a premising contribution to reduction of environmental impacts of potato chip processing industries.

  13. Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals.

    Science.gov (United States)

    Esmaeel, Qassim; Pupin, Maude; Jacques, Philippe; Leclère, Valérie

    2017-05-25

    Bacteria belonging to the genus Burkholderia live in various ecological niches and present a significant role in the environments through the excretion of a wide variety of secondary metabolites including modular nonribosomal peptides (NRPs) and polyketides (PKs). These metabolites represent a widely distributed biomedically and biocontrol important class of natural products including antibiotics, siderophores, and anticancers as well as biopesticides that are considered as a novel source that can be used to defend ecological niche from competitors and to promote plant growth. The aim of this review is to present all NRPs produced or potentially produced by strains of Burkholderia, as NRPs represent a major source of active compounds implicated in biocontrol. The review is a compilation of results from a large screening we have performed on 48 complete sequenced genomes available in NCBI to identify NRPS gene clusters, and data found in the literature mainly because some interesting compounds are produced by strains not yet sequenced. In addition to NRPs, hybrids NRPs/PKs are also included. Specific features about biosynthetic gene clusters and structures of the modular enzymes responsible for the synthesis, the biological activities, and the potential uses in agriculture and pharmaceutical of NRPs and hybrids NRPs/PKs will also be discussed.

  14. Burkholderia contaminans Biofilm Regulating Operon and Its Distribution in Bacterial Genomes

    Directory of Open Access Journals (Sweden)

    Olga L. Voronina

    2016-01-01

    Full Text Available Biofilm formation by Burkholderia spp. is a principal cause of lung chronic infections in cystic fibrosis patients. A “lacking biofilm production” (LBP strain B. contaminans GIMC4587:Bct370-19 has been obtained by insertion modification of clinical strain with plasposon mutagenesis. It has an interrupted transcriptional response regulator (RR gene. The focus of our investigation was a two-component signal transduction system determination, including this RR. B. contaminans clinical and LBP strains were analyzed by whole genome sequencing and bioinformatics resources. A four-component operon (BiofilmReg has a key role in biofilm formation. The relative location (i.e., by being separated by another gene of RR and histidine kinase genes is unique in BiofilmReg. Orthologs were found in other members of the Burkholderiales order. Phylogenetic analysis of strains containing BiofilmReg operons demonstrated evidence for earlier inheritance of a three-component operon. During further evolution one lineage acquired a fourth gene, whereas others lost the third component of the operon. Mutations in sensor domains have created biodiversity which is advantageous for adaptation to various ecological niches. Different species Burkholderia and Achromobacter strains all demonstrated similar BiofilmReg operon structure. Therefore, there may be an opportunity to develop a common drug which is effective for treating all these causative agents.

  15. Burkholderia contaminans Biofilm Regulating Operon and Its Distribution in Bacterial Genomes.

    Science.gov (United States)

    Voronina, Olga L; Kunda, Marina S; Ryzhova, Natalia N; Aksenova, Ekaterina I; Semenov, Andrey N; Romanova, Yulia M; Gintsburg, Alexandr L

    2016-01-01

    Biofilm formation by Burkholderia spp. is a principal cause of lung chronic infections in cystic fibrosis patients. A "lacking biofilm production" (LBP) strain B. contaminans GIMC4587:Bct370-19 has been obtained by insertion modification of clinical strain with plasposon mutagenesis. It has an interrupted transcriptional response regulator (RR) gene. The focus of our investigation was a two-component signal transduction system determination, including this RR. B. contaminans clinical and LBP strains were analyzed by whole genome sequencing and bioinformatics resources. A four-component operon (BiofilmReg) has a key role in biofilm formation. The relative location (i.e., by being separated by another gene) of RR and histidine kinase genes is unique in BiofilmReg. Orthologs were found in other members of the Burkholderiales order. Phylogenetic analysis of strains containing BiofilmReg operons demonstrated evidence for earlier inheritance of a three-component operon. During further evolution one lineage acquired a fourth gene, whereas others lost the third component of the operon. Mutations in sensor domains have created biodiversity which is advantageous for adaptation to various ecological niches. Different species Burkholderia and Achromobacter strains all demonstrated similar BiofilmReg operon structure. Therefore, there may be an opportunity to develop a common drug which is effective for treating all these causative agents.

  16. Variable virulence factors in Burkholderia pseudomallei (melioidosis associated with human disease.

    Directory of Open Access Journals (Sweden)

    Derek S Sarovich

    Full Text Available Burkholderia pseudomallei is a Gram-negative environmental bacterium that causes melioidosis, a potentially life-threatening infectious disease affecting mammals, including humans. Melioidosis symptoms are both protean and diverse, ranging from mild, localized skin infections to more severe and often fatal presentations including pneumonia, septic shock with multiple internal abscesses and occasionally neurological involvement. Several ubiquitous virulence determinants in B. pseudomallei have already been discovered. However, the molecular basis for differential pathogenesis has, until now, remained elusive. Using clinical data from 556 Australian melioidosis cases spanning more than 20 years, we identified a Burkholderia mallei-like actin polymerization bimA(Bm gene that is strongly associated with neurological disease. We also report that a filamentous hemagglutinin gene, fhaB3, is associated with positive blood cultures but is negatively correlated with localized skin lesions without sepsis. We show, for the first time, that variably present virulence factors play an important role in the pathogenesis of melioidosis. Collectively, our study provides a framework for assessing other non-ubiquitous bacterial virulence factors and their association with disease, such as candidate loci identified from large-scale microbial genome-wide association studies.

  17. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge.

    Science.gov (United States)

    Whitlock, Gregory C; Deeraksa, Arpaporn; Qazi, Omar; Judy, Barbara M; Taylor, Katherine; Propst, Katie L; Duffy, Angie J; Johnson, Kate; Kitto, G Barrie; Brown, Katherine A; Dow, Steven W; Torres, Alfredo G; Estes, D Mark

    2010-01-01

    Burkholderia mallei and B. pseudomallei are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these Burkholderia species. In this study, we aimed to identify protective proteins against these pathogens. Immunization with recombinant B. mallei Hcp1 (type VI secreted/structural protein), BimA (autotransporter protein), BopA (type III secreted protein), and B. pseudomallei LolC (ABC transporter protein) generated significant protection against lethal inhaled B. mallei ATCC23344 and B. pseudomallei 1026b challenge. Immunization with BopA elicited the greatest protective activity, resulting in 100% and 60% survival against B. mallei and B. pseudomallei challenge, respectively. Moreover, sera from recovered mice demonstrated reactivity with the recombinant proteins. Dendritic cells stimulated with each of the different recombinant proteins showed distinct cytokine patterns. In addition, T cells from immunized mice produced IFN-γ following in vitro re-stimulation. These results indicated therefore that it was possible to elicit cross-protective immunity against both B. mallei and B. pseudomallei by vaccinating animals with one or more novel recombinant proteins identified in B. mallei.

  18. Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders.

    Science.gov (United States)

    Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A; Sbrana, Elena; Torres, Alfredo G

    2016-08-01

    Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates.

    Science.gov (United States)

    Verstraete, Brecht; Peeters, Charlotte; van Wyk, Braam; Smets, Erik; Dessein, Steven; Vandamme, Peter

    2014-05-01

    The best-known interaction between bacteria and plants is the Rhizobium-legume symbiosis, but other bacteria-plant interactions exist, such as between Burkholderia and Rubiaceae (coffee family). A number of bacterial endophytes in Rubiaceae are closely related to the soil bacterium Burkholderia caledonica. This intriguing observation is explored by investigating isolates from different geographic regions (Western Europe vs. sub-Saharan Africa) and from different niches (free-living bacteria in soil vs. endophytic bacteria in host plants). The multilocus sequence analysis shows five clades, of which clade 1 with two basal isolates deviates from the rest and is therefore not considered further. All other isolates belong to the species B. caledonica, but two genetically different groups are identified. Group A holds only European isolates and group B holds isolates from Africa, with the exception of one European isolate. Although the European and African isolates are considered one species, some degree of genetic differentiation is evident. Endophytic isolates of B. caledonica are found in certain members of African Rubiaceae, but only in group B. Within this group, the endophytes cannot be distinguished from the soil isolates, which indicates a possible exchange of bacteria between soil and host plant. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies.

    Science.gov (United States)

    Abbott, Iain J; Peleg, Anton Y

    2015-02-01

    Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and nonmelioid Burkholderia species, namely, Burkholderia cepacia complex, collectively are a group of troublesome nonfermenters. Although not inherently virulent organisms, these environmental Gram negatives can complicate treatment in those who are immunocompromised, critically ill in the intensive care unit and those patients with suppurative lung disease, such as cystic fibrosis. Through a range of intrinsic antimicrobial resistance mechanisms, virulence factors, and the ability to survive in biofilms, these opportunistic pathogens are well suited to persist, both in the environment and the host. Treatment recommendations are hindered by the difficulties in laboratory identification, the lack of reproducibility of antimicrobial susceptibility testing, the lack of clinical breakpoints, and the absence of clinical outcome data. Despite trimethoprim-sulfamethoxazole often being the mainstay of treatment, resistance is widely encountered, and alternative regimens, including combination therapy, are often used. This review will highlight the important aspects and unique challenges that these three nonfermenters pose, and, in the absence of clinical outcome data, our therapeutic recommendations will be based on reported antimicrobial susceptibility and pharmacokinetic/pharmacodynamic profiles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease.

    Science.gov (United States)

    Sarovich, Derek S; Price, Erin P; Webb, Jessica R; Ward, Linda M; Voutsinos, Marcos Y; Tuanyok, Apichai; Mayo, Mark; Kaestli, Mirjam; Currie, Bart J

    2014-01-01

    Burkholderia pseudomallei is a Gram-negative environmental bacterium that causes melioidosis, a potentially life-threatening infectious disease affecting mammals, including humans. Melioidosis symptoms are both protean and diverse, ranging from mild, localized skin infections to more severe and often fatal presentations including pneumonia, septic shock with multiple internal abscesses and occasionally neurological involvement. Several ubiquitous virulence determinants in B. pseudomallei have already been discovered. However, the molecular basis for differential pathogenesis has, until now, remained elusive. Using clinical data from 556 Australian melioidosis cases spanning more than 20 years, we identified a Burkholderia mallei-like actin polymerization bimA(Bm) gene that is strongly associated with neurological disease. We also report that a filamentous hemagglutinin gene, fhaB3, is associated with positive blood cultures but is negatively correlated with localized skin lesions without sepsis. We show, for the first time, that variably present virulence factors play an important role in the pathogenesis of melioidosis. Collectively, our study provides a framework for assessing other non-ubiquitous bacterial virulence factors and their association with disease, such as candidate loci identified from large-scale microbial genome-wide association studies.

  2. Bacteria of the Burkholderia cepacia complex are cyanogenic under biofilm and colonial growth conditions

    Directory of Open Access Journals (Sweden)

    Hoshino Saiko

    2008-06-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (Bcc is a collection of nine genotypically distinct but phenotypically similar species. They show wide ecological diversity and include species that are used for promoting plant growth and bio-control as well species that are opportunistic pathogens of vulnerable patients. Over recent years the Bcc have emerged as problematic pathogens of the CF lung. Pseudomonas aeruginosa is another important CF pathogen. It is able to synthesise hydrogen cyanide (HCN, a potent inhibitor of cellular respiration. We have recently shown that HCN production by P. aeruginosa may have a role in CF pathogenesis. This paper describes an investigation of the ability of bacteria of the Bcc to make HCN. Results The genome of Burkholderia cenocepacia has 3 putative HCN synthase encoding (hcnABC gene clusters. B. cenocepacia and all 9 species of the Bcc complex tested were able to make cyanide at comparable levels to P. aeruginosa, but only when grown surface attached as colonies or during biofilm growth on glass beads. In contrast to P. aeruginosa and other cyanogenic bacteria, cyanide was not detected during planktonic growth of Bcc strains. Conclusion All species in the Bcc are cyanogenic when grown as surface attached colonies or as biofilms.

  3. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation.

    Science.gov (United States)

    Aubert, Daniel F; Xu, Hao; Yang, Jieling; Shi, Xuyan; Gao, Wenqing; Li, Lin; Bisaro, Fabiana; Chen, She; Valvano, Miguel A; Shao, Feng

    2016-05-11

    Burkholderia cenocepacia is an opportunistic pathogen of the cystic fibrosis lung that elicits a strong inflammatory response. B. cenocepacia employs a type VI secretion system (T6SS) to survive in macrophages by disarming Rho-type GTPases, causing actin cytoskeletal defects. Here, we identified TecA, a non-VgrG T6SS effector responsible for actin disruption. TecA and other bacterial homologs bear a cysteine protease-like catalytic triad, which inactivates Rho GTPases by deamidating a conserved asparagine in the GTPase switch-I region. RhoA deamidation induces caspase-1 inflammasome activation, which is mediated by the familial Mediterranean fever disease protein Pyrin. In mouse infection, the deamidase activity of TecA is necessary and sufficient for B. cenocepacia-triggered lung inflammation and also protects mice from lethal B. cenocepacia infection. Therefore, Burkholderia TecA is a T6SS effector that modifies a eukaryotic target through an asparagine deamidase activity, which in turn elicits host cell death and inflammation through activation of the Pyrin inflammasome. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia

    Directory of Open Access Journals (Sweden)

    Viola Camilla eScoffone

    2015-08-01

    Full Text Available Burkholderia cenocepacia is a major concern for people suffering from Cystic Fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult.Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109, with a bactericidal effect and a MIC of 8 µg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known Burkholderia cepacia complex species.Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by qRT-PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance.

  5. Prevalence of Burkholderia cepacia complex species in cystic fibrosis patients in Argentina during the period 2011-2015.

    Science.gov (United States)

    Cipolla, Lucía; Rocca, Florencia; Martinez, Claudia; Aguerre, Lorena; Barrios, Rubén; Prieto, Mónica

    2017-10-18

    Burkholderia cepacia (B. cepacia) complex is composed of 20 phylogenetically closely related bacterial species. Some species have emerged as opportunistic pathogens in immunocompromised patients and are responsible for nosocomial outbreaks. The B. cepacia complex is a recognized respiratory pathogen in patients with cystic fibrosis. Burkholderia cenocepacia and Burkholderia multivorans (B. multivorans) are the most prevalent species in the world, according to the literature. However, research groups in Argentina have described a particular local epidemiology, with prevalence of Burkholderia contaminans (B. contaminans). A total of 68 isolates of B. cepacia complex recovered of 46 cystic fibrosis patients attended at 14 hospitals distributed in 9 provinces of the country were studied. Identification was carried out by conventional phenotypic methods and was confirmed by recA gene sequencing. Sequences were analysed using the BLASTN program and comparing with B. cepacia complex type strains sequences deposited in GenBank. Antibiotic susceptibility tests were performed on isolates of the most prevalent species according to CLSI M45 guidelines. The prevalent specie was B. contaminans (49%, n = 33) followed by B. cenocepacia (25%; n = 17). The remaining species were Burkholderia seminalis (B. seminalis) (7%, n = 5), B. cepacia (7%, n = 5), B. multivorans (6%, n = 4), Burkholderia vietnamensis (5%, n=3) and Burkholderia pyrrocinia (1%; n = 1). The 46% of B. contaminans isolates were resistant to SXT and 76% sensitive to MIN, MEM and CAZ. The isolates of B. cenocepacia were 100% resistant to SXT and MIN and 47% to CAZ and MEM. B. seminalis showed high levels of resistance to TMS (80%), CAZ (60%) and MIN (60%), and 60% of the isolates showed intermediate sensitivity to MEM. Previous reports have described the prevalence of B. contaminans isolation from cystic fibrosis patients in Argentina, Spain and Portugal, and a case of two patients with cystic fibrosis in Ireland has

  6. The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes

    National Research Council Canada - National Science Library

    Zuleta, Luiz Fernando Goda; Cunha, Claúdio de Oliveira; de Carvalho, Fabíola Marques; Ciapina, Luciane Prioli; Souza, Rangel Celso; Mercante, Fábio Martins; de Faria, Sergio Miana; Baldani, José Ivo; Straliotto, Rosangela; Hungria, Mariangela; de Vasconcelos, Ana Tereza Ribeiro

    2014-01-01

    Burkholderia species play an important ecological role related to xenobiosis, the promotion of plant growth, the biocontrol of agricultural diseases, and symbiotic and non-symbiotic biological nitrogen fixation...

  7. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    Science.gov (United States)

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  8. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  9. 78 FR 37456 - Safety Zone; Milwaukee Harbor, Milwaukee, WI

    Science.gov (United States)

    2013-06-21

    ... have questions on this notice, call or email MST1 Joseph McCollum, Prevention Department, Coast Guard... Harbor, Milwaukee, WI, at the following times for the following events: (1) Polish Fest fireworks display...

  10. Pearl Harbor National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Pearl Harbor National Wildlife Refuge for the next 15 years. This plan outlines the...

  11. Pearl Harbor, Hawaii 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1/3-second Pearl Harbor Hawaii Elevation Grid provides bathymetric data in ASCII raster format of 1/3-second resolution in geographic coordinates. This grid is...

  12. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  13. Boston Harbor and approaches samples (WILLETT72 shapefile

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Boston Harbor (and its approaches) is a glacially carved, tidally dominated estuary in western Massachusetts Bay. Characterized by low river discharge and...

  14. Characterizing freshwater and nutrient fluxes to West Falmouth Harbor, Massachusetts

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data present oceanographic and water-quality observations made at 4 locations in West Falmouth Harbor and 3 in Buzzards Bay, Massachusetts. While both Buzzards...

  15. Environmental Assessment for Boston Harbor Maintenance Dredging, Boston, Massachusetts.

    Science.gov (United States)

    1981-12-01

    into the harbor, but the sources have never been documented. It is not unusual for the swimming beaches to be closed following a storm of moderate...sand lance involve either swimming in schools or burrowing In suitable substrate. Impacts to their natural schooling movements are iikely to be short...Edison (December 1976 - May 1977) Appendix B Boston Inner Harbor Species List Scientific Name Comm~on Nam~e CNIDARIA (Hycdroids, Anemones, Jellyfish

  16. Assessment of Modifications for Improving Navigation at Hilo Harbor, Hawaii

    Science.gov (United States)

    2016-06-01

    proposed modifications, (5) develop hydrodynamic conditions for the ship simulator study, and (6) document study results by a technical report. The...breakwater, and (f) developing hydrodynamic conditions for the ship simulator study. 1.3 Study area Hilo Harbor is a deep-draft port located in Hilo Bay...on the Island of Hawaii at the mouth of two rivers, the Wailuku River and the smaller Wailoa River. There is also a small- boat harbor in Radio Bay

  17. [Floating-Harbor syndrome in a girl with somatic asymmetry].

    Science.gov (United States)

    Midro, A T; Rogowska, M; Hubert, E; Hassman-Poznańska, E; Popko, J

    1995-09-01

    Floating-Harbor syndrome, a genetic disorder of unknown etiology, was diagnosed in a 9-year-old girl with delayed morphologic, bone and dental age, lateral asymmetry of the body, triangular face, hypotelorism, broad palpepral fissures, long eye-lashes, narrow jaw, retrogenia, a defect of phonemic audition and speech delay with poor articulation. Similarity between Floating-Harbor syndrome and Silver-Russel syndrome is discussed.

  18. Sun Coke heat recovery coke technology at Indiana Harbor

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.N. [Sun Coke Company (USA). Operations

    1999-12-01

    Sun Coke heat recovery coke technology was fully established for the first time at Indiana Harbor Coke Company, East Chicago, Indiana (USA). The plant supplies continuous heat to waste heat boilers which provide steam for a 94 MW turbine generator whilst producing 1,350,00 NT per year of metallurgical coke. The paper briefly describes the development of the technology and discusses specific design aspects of the Indiana Harbor plant. 3 refs., 2 figs., 2 tabs.

  19. Evaluation of Breakwaters and Sedimentation at Dana Point Harbor, CA

    Science.gov (United States)

    2011-05-01

    manmade and is protected from ocean waves by a pair of riprapped breakwaters constructed in the late 1960s. The breakwaters, consist of a long shore...Fugro West 2010). Bathymetric data were also collected in the marina basins, harbor entrance and nearshore areas outside the harbor. Two ADCPs were...tidal range (mean higher high water - mean lower low water) is 1.67 m. Wind data were available from NOAA coastal stations at Los Angeles Pier S

  20. Burkholderia novacaledonica sp. nov. and B. ultramafica sp. nov. isolated from roots of Costularia spp. pioneer plants of ultramafic soils in New Caledonia.

    Science.gov (United States)

    Guentas, Linda; Gensous, Simon; Cavaloc, Yvon; Ducousso, Marc; Amir, Hamid; De Georges de Ledenon, Benjamin; Moulin, Lionel; Jourand, Philippe

    2016-05-01

    The taxonomic status of eleven rhizospheric bacterial strains belonging to the genus Burkholderia and isolated from roots of Costularia (Cyperaceae), tropical herbaceous pioneer plants growing on ultramafic soils in New Caledonia, was investigated using a polyphasic taxonomic approach. The genetic analyses (16S rRNA genes, gyrB, recA, nreB and cnr) confirmed that all strains are Burkholderia and cluster into two separated groups. The DNA hybridization results showed low relatedness values to the closest relatives Burkholderia species. The phenotypic analyses confirmed that the two groups of strains could be differentiated from each other and from other known Burkholderia species. This polyphasic study revealed that these two groups of strains represent each a novel species of Burkholderia, for which the names Burkholderia novacaledonica sp. nov. (type strain STM10272(T)=LMG28615(T)=CIP110887(T)) and B. ultramafica sp. nov. (type strain STM10279(T)=LMG28614(T)=CIP110886(T)) are proposed, respectively. These strains of Burkholderia presented specific ecological traits such as the tolerance to the extreme edaphic constraints of ultramafic soils: they grew at pH between 4 and 8 and tolerate the strong unbalanced Ca/Mg ratio (1/19) and the high concentrations of heavy metals i.e. Co, Cr, Mn and Ni. Noteworthy B. ultramafica tolerated nickel until 10mM and B. novacaledonica up to 5mM. The presence of the nickel (nreB) and cobalt/nickel (cnr) resistance determinants encoding for protein involved in metal tolerance was found in all strains of both groups. Moreover, most of the strains were able to produce plant growth promoting molecules (ACC, IAA, NH3 and siderophores). Such ecological traits suggest that these new species of Burkholderia might be environmentally adaptable plant-associated bacteria and beneficial to plants. Copyright © 2016 Elsevier GmbH. All rights reserved.