WorldWideScience

Sample records for burkholderia cepacia lipase

  1. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    Science.gov (United States)

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry. PMID:27067648

  2. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.

    Science.gov (United States)

    Mello Bueno, Pabline Rafaella; de Oliveira, Tatianne Ferreira; Castiglioni, Gabriel Luis; Soares Júnior, Manoel Soares; Ulhoa, Cirano Jose

    2015-01-01

    This study aimed to analyze the physical and chemical characteristics of Amano PS commercial lipase - Burkholderia cepacia and lipase produced by Burkholderia cepacia strain ATCC 25416, in addition to studying the hydrolysis of agro-industrial effluent collected in a fried potato industry. The optimum temperature for increasing lipase activity was 37 °C. The temperature increase caused a decrease in thermostability of lipase, and the commercial lipase was less stable, with values of 10.5, 4.6 and 4.9%, respectively, lower than those obtained by lipase from strain ATCC 25416, at temperatures of 40, 50 and 60 °C. The enzymatic activity was higher in alkaline conditions, achieving better results at pH 8.0. The pH was the variable that most influenced the hydrolysis of triacylglycerides of the agro-industrial effluent, followed by enzyme concentration, and volume of gum arabic used in the reaction medium. Thus, it can be observed that the enzymatic hydrolytic process of the studied effluent presents a premising contribution to reduction of environmental impacts of potato chip processing industries. PMID:25860696

  3. [Homologous expression of Burkholderia cepacia G63 lipase gene based on T7 RNA polymerase expression system].

    Science.gov (United States)

    Jia, Bin; Yang, Jiangke; Yan, Yunjun

    2009-02-01

    In order to realize over-expression of Burkholderia cepacia (B. cepacia) lipase, we introduced the widely used T7 RAN polymerase expression system into B. cepacia G63 to over-express the lipase gene. By using PCR technique, we amplified the T7 RNA polymerase gene (T7 RNAP) from the BL21 (DE3) and cloned it into the suicide plasmid pJQ200SK. After that, we flanked T7 RNAP with two 500 bp homologous fragments and integrated it into the genomes of B. cepacia by tri-parental mating, so that T7 RNAP was under-controlled by lipase gene (lipA) promoter. Then, we cloned the lipA and its partner gene lipB into the vector pUCPCM and pBBR22b both or separately. Therefore, we got 7 expression plasmids pBBR22blipAB, pBBR22blipA, pUCPCMlipAB, pUCPCMlipA, pUCPCMdeltalipAlipB, pUCPCMdeltalipA, pUCPCMdeltalipB, and then electroporated them into B. cepacia containing T7 RNA. After shake flask culture, we found B. cepacia containing pUCPCMlipAB produced the most quantity of lipase, and lipase activity was up to 607.2 U/mg, 2.8-folds higher than that of the wild strain. Moreover, lipase activities of all engineering strains except the one containing pUCPCMdeltalipB were enhanced to some extent. The specific activities of wild type B. cepacia and B. cepacia containing pUCPCMlipAB were respectively 29 984 U/mg and 30 875 U/mg after ammonium sulfate precipitation and gel filtration chromatography. The T7 RNA polymerase expression system could effectively enhanced lipase expression in B. cepacia, and secretion signal PelB and ribosome-binding site may promote lipase expression in engineering strain. PMID:19459326

  4. Extraction of lipase from Burkholderia cepacia by PEG/Phosphate ATPS and its biochemical characterization

    Directory of Open Access Journals (Sweden)

    Giovana da Silva Padilha

    2012-02-01

    Full Text Available This work aimed to study the partitioning of a lipase produced by Burkholderia cepacia in PEG/Phosphate aqueous two phase system (ATPS and its characterization. Lipase was produced by B. cepacia strains in a fermenter. Enzyme partitioning occurred at pH 6.0 and 8.0, using PEG 1500 and 6000 on two tie lines. Metal ions, pH and temperature effects on enzyme activity were evaluated. Five milliliter of 7.5% olive oil emulsion with 2.5% gumarabic in 0.1M sodium phosphate buffer at pH 8.0 and 37ºC were used for the activity determinations. Results showed that crude stratum from B. cepacia was partitioned by PEG1500/phosphate ATPS at pH 6.0 or 8.0 for, which the partitioning coefficients were 108-and 209-folds. Lipase presented optimal activity conditions at 37ºC and pH 8.0; it showed pH-stability for 4 h of incubation at different pH values at 37ºC. Metal ions such as Mn2+ , Co2+, I-and Ca2+ sustained enzymatic activities; however, it was inhibited by the presence of Fe2+, Hg2+ and Al3+ . Km and Vmax values were 0.258 U/mg and 43.90 g/L, respectively. A molecular weight of 33 kDa and an isoelectric point at pH 5.0 were determined by SDS-PAGE and IFS electrophoresis, respectively.

  5. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    Science.gov (United States)

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  6. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    Directory of Open Access Journals (Sweden)

    Takahashi Ryo

    2011-10-01

    Full Text Available Abstract Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w. Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design

  7. Fermentation optimization for non-positional specificity lipase production of Burkholderia cepacia S31%Burkholderia cepacia S31细菌高产位置非特异性脂肪酶的发酵条件优化

    Institute of Scientific and Technical Information of China (English)

    卢亚萍; 汪瑾; 张充; 吕凤霞; 别小妹; 陆兆新

    2012-01-01

    从油脂污染的土壤中分离获得了1株高效产脂肪酶的细菌S31,经鉴定为Burkholderia cepacia(洋葱伯克霍尔德菌).B.cepacia S31所产脂肪酶具有活性高、耐高温、耐有机溶剂和位置非特异性水解甘油三酯等优良特性.为了进一步提高S31菌株的产酶量,对该菌产酶的发酵条件进行优化.通过单因子试验筛选出最佳碳源为麸皮,最佳氮源为蛋白胨,最佳诱导物为Tween-80.通过对培养基各组分及外部培养条件因素的正交试验,确定S31菌产脂肪酶的摇瓶发酵最优条件为:以20 g·L-1麸皮、10 g·L-1蛋白胨、40g·L-1Tween-80、0.5g·L-1MgSO4和2g·L-1K2 HPO4为培养基(pH 7.0),250 mL三角瓶装40 mL培养基,3%接种量,30℃、180 r·min-1培养66h可获得最理想的酶产量,达283.6 U·mL-1,比优化前提高2.73倍.%A lipase-producing strain named S31 from the soil of a cole plantation was isolated,which was identified as Burkholderia cepacia. S31 lipase had a variety of highly desirable characteristics, such as high activity, temperature stability, organic solvents tolerance and hydrolysis of triglyceride without positional specificity. In order to enhance the enzyme productivity, the culture conditions were improved. Initially, single-factor experiments were used to evaluate the optimal carbon source, nitrogen source and inducer, which were bran, peptone and Tween-80, respectively. According to the orthogonal tests of media components and fermentation parameters,the optimal culture conditions were determined as follows;the culture medium containing of 20 g·L-1 bran, l0g·L-1 peptone,40 g·L-1 Tween-80,0.5 g·L-1 MgSO4 and 2 g·L-1 K2HPO4 with initial pH 7. 0. The overnight culture was inoculated to 40 mL medium in 250 mL shaking flask,3% inocution amount,and fermented at 30 ℃ with 180 r·min-1 shaking for 66 h. The maximum lipase activity reached a high level(283.6 U·mL-1 ) .which was improved 2.73 folds compared with that under the original

  8. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    Science.gov (United States)

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  9. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Burkholderia cepacia complex. 725.1075... Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  10. High-Level Formation of Active Pseudomonas cepacia Lipase after Heterologous Expression of the Encoding Gene and Its Modified Chaperone in Escherichia coli and Rapid In Vitro Refolding

    OpenAIRE

    Quyen, Dinh Thi; Schmidt-Dannert, Claudia; Schmid, Rolf D.

    1999-01-01

    The lipase from Pseudomonas cepacia ATCC 21808 (recently reclassified as Burkholderia cepacia) is widely used by organic chemists for enantioselective synthesis and is manufactured from recombinant P. cepacia harboring on a plasmid the clustered genes for lipase and its chaperone. High levels of expression of inactive lipase (40%) in Escherichia coli were achieved with pCYTEXP1 under the control of the strong, temperature-inducible λPRL promoter. However, no overexpression of the lipase chape...

  11. Two Novel Clinical Presentations of Burkholderia cepacia Infection

    OpenAIRE

    Mukhopadhyay, Chiranjoy; Bhargava, Anudita; Ayyagari, Archana

    2004-01-01

    We report two cases of multidrug-resistant Burkholderia cepacia (B. cepacia genomovar I) and Burkholderia multivorans causing multiple liver abscesses in a patient with bronchial asthma (case 1) and peritonitis in a patient with cirrhosis and hepatitis C virus disease (case 2), respectively. Both patients were treated successfully.

  12. Removal of Burkholderia cepacia biofilms with oxidants

    Science.gov (United States)

    Koenig, D. W.; Mishra, S. K.; Pierson, D. L.

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B

  13. Burkholderia cepacia complex: Beyond pseudomonas and acinetobacter

    Directory of Open Access Journals (Sweden)

    V Gautam

    2011-01-01

    Full Text Available Burkholderia cepacia complex (BCC is an important nosocomial pathogen in hospitalised patients, particularly those with prior broad-spectrum antibacterial therapy. BCC causes infections that include bacteraemia, urinary tract infection, septic arthritis, peritonitis and respiratory tract infection. Due to high intrinsic resistance and being one of the most antimicrobial-resistant organisms encountered in the clinical laboratory, these infections can prove very difficult to treat and, in some cases, result in death. Patients with cystic fibrosis (CF and those with chronic granulomatous disease are predisposed to infection by BCC bacteria. BCC survives and multiplies in aqueous hospital environments, including disinfectant agents and intravenous fluids, where it may persist for long periods. Outbreaks and pseudo-outbreaks of BCC septicaemia have been documented in intensive care units, oncology units and renal failure patients. BCC is phenotypically unremarkable, and the complex exhibits an extensive diversity of genotypes. BCC is of increasing importance for agriculture and bioremediation because of their antinematodal and antifungal properties as well as their capability to degrade a wide range of toxic compounds. It has always been a tedious task for a routine microbiological laboratory to identify the nonfermenting gram-negative bacilli, and poor laboratory proficiency in identification of this nonfermenter worldwide still prevails. In India, there are no precise reports of the prevalence of BCC infection, and in most cases, these bacteria have been ambiguously reported as nonfermenting gram-negative bacilli or simply Pseudomonas spp. The International Burkholderia cepacia Working Group is open to clinicians and scientists interested in advancing knowledge of BCC infection/colonisation in persons with CF through the collegial exchange of information and promotion of coordinated approaches to research.

  14. Comparison of Ashdown's Medium, Burkholderia cepacia Medium, and Burkholderia pseudomallei Selective Agar for Clinical Isolation of Burkholderia pseudomallei

    OpenAIRE

    Peacock, Sharon J.; Chieng, Grace; Cheng, Allen C.; Dance, David A. B.; Amornchai, Premjit; Wongsuvan, Gumphol; Teerawattanasook, Nittaya; Chierakul, Wirongrong; Day, Nicholas P J; Wuthiekanun, Vanaporn

    2005-01-01

    Ashdown's medium, Burkholderia pseudomallei selective agar (BPSA), and a commercial Burkholderia cepacia medium were compared for their abilities to grow B. pseudomallei from 155 clinical specimens that proved positive for this organism. The sensitivity of each was equivalent; the selectivity of BPSA was lower than that of Ashdown's or B. cepacia medium.

  15. Cytotoxicity Associated with Trichloroethylene Oxidation in Burkholderia cepacia G4

    OpenAIRE

    Yeager, Chris M.; Bottomley, Peter J; Arp, Daniel J.

    2001-01-01

    The effects of trichloroethylene (TCE) oxidation on toluene 2-monooxygenase activity, general respiratory activity, and cell culturability were examined in the toluene-oxidizing bacterium Burkholderia cepacia G4. Nonspecific damage outpaced inactivation of toluene 2-monooxygenase in B. cepacia G4 cells. Cells that had degraded approximately 0.5 μmol of TCE (mg of cells−1) lost 95% of their acetate-dependent O2 uptake activity (a measure of general respiratory activity), yet toluene-dependent ...

  16. Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    Directory of Open Access Journals (Sweden)

    Lehrer Robert I

    2002-03-01

    Full Text Available Abstract Background Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1 sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. Methods The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore. Results The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 μg/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 μg/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. Conclusion These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS.

  17. Atypical presentation of chronic granulomatous disease with Burkholderia cepacia.

    Science.gov (United States)

    Vining, Mac; Sharma, Nirupma; Guill, Margaret

    2014-01-01

    Chronic granulomatous disease (CGD) is a rare inherited disorder of neutrophil oxidative burst. In patients with CGD, phagocyte destruction of catalase-producing organisms is impaired, resulting in recurrent and potentially fatal infections. Burkholderia cepacia, a catalase-producing organism, is known to infect patients with dysfunctional immune systems. We report a case of a 3-year-old boy with this rare infection that unravelled the diagnosis of CGD. PMID:25103315

  18. Dissecting novel virulent determinants in the Burkholderia cepacia complex

    OpenAIRE

    George P Tegos; Haynes, Mark K.; Schweizer, Herbert P.

    2012-01-01

    Prevention and control of infectious diseases remains a major public health challenge and a number of highly virulent pathogens are emerging both in and beyond the hospital setting. Despite beneficial aspects such as use in biocontrol and bioremediation exhibited by members of the Burkholderia cepacia complex (Bcc) some members of this group have recently gained attention as significant bacterial pathogens due to their high levels of intrinsic antibiotic resistance, transmissibility in nosoco...

  19. Misidentification of Burkholderia pseudomallei as Burkholderia cepacia by the VITEK 2 system.

    Science.gov (United States)

    Zong, Zhiyong; Wang, Xiaohui; Deng, Yiyun; Zhou, Taoyou

    2012-10-01

    A previously healthy Chinese male returned from working in the Malaysian jungle with a fever. A blood culture grew Gram-negative bacilli that were initially identified as Burkholderia cepacia by the VITEK 2 system but were subsequently found to be Burkholderia pseudomallei by partial sequencing of the 16S rRNA gene. The identification of B. pseudomallei using commercially available automated systems is problematic and clinicians in non-endemic areas should be aware of the possibility of melioidosis in patients with a relevant travel history and blood cultures growing Burkholderia spp. PMID:22820689

  20. An Effect of Biofield Treatment on Multidrug-resistant Burkholderia cepacia: A Multihost Pathogen

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. The analysis was done after 10 days of treatment and compared with con...

  1. Diagnostically and Experimentally Useful Panel of Strains from the Burkholderia cepacia Complex

    OpenAIRE

    Mahenthiralingam, Eshwar; Coenye, Tom; Chung, Jacqueline W.; Speert, David P.; Govan, John R. W.; Taylor, Peter; Vandamme, Peter

    2000-01-01

    Two new species, Burkholderia multivorans and Burkholderia vietnamiensis, and three genomovars (genomovars I, III, and IV) currently constitute the Burkholderia cepacia complex. A panel of 30 well-characterized strains representative of each genomovar and new species was assembled to assist with identification, epidemiological analysis, and virulence studies on this important group of opportunistic pathogens.

  2. Recurrent urinary tract infection by burkholderia cepacia in a live related renal transplant recipient

    International Nuclear Information System (INIS)

    Burkholderia cepacia is high virulent organism usually causing lower respiratory tract infections especially in Cystic fibrosis (CF) patients and post lung transplant. Urinary tract infections with Burkholderia cepacia have been associated after bladder irrigation or use of contaminated hospital objects. Post renal transplant urinary tract infection (UTI) is the most common infectious complications. Recurrent urinary tract infection with Burkholderia cepacia is a rare finding. Complete anatomical evaluation is essential in case recurrent urinary tract infections (UTI) after renal transplant. Vesico-ureteric reflux (VUR) and neurogenic urinary bladder was found to be important risk factors. (author)

  3. A case of native valve endocarditis caused by Burkholderia cepacia without predisposing factors

    Directory of Open Access Journals (Sweden)

    Han Seong

    2011-05-01

    Full Text Available Abstract Background Infective endocarditis is rarely caused by Burkholderia cepacia. This infection is known to occur particularly in immunocompromised hosts, intravenous heroin users, and in patients with prosthetic valve replacement. Most patients with Burkholderia cepacia endocarditis usually need surgical treatment in addition to antimicrobial treatment. Case Presentation Here, we report the case of a patient who developed Burkholderia cepacia-induced native valve endocarditis with consequent cerebral involvement without any predisposing factors; she was successfully treated by antimicrobial agents only. Conclusion In this report, we also present literature review of relevant cases.

  4. Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides.

    Science.gov (United States)

    de Los Santos-Villalobos, Sergio; Barrera-Galicia, Guadalupe Coyolxauhqui; Miranda-Salcedo, Mario Alberto; Peña-Cabriales, Juan José

    2012-08-01

    Colletotrichum gloeosporioides is the causal agent of anthracnose in mango. Burkholderia cepacia XXVI, isolated from mango rhizosphere and identified by 16S rDNA sequencing as a member of B. cepacia complex, was more effective than 6 other mango rhizosphere bacteria in inhibiting the model mango pathogen, C. gloeosporioides ATCC MYA 456. Biocontrol of this pathogen was demonstrated on Petri-dishes containing PDA by > 90 % reduction of surface colonization. The nature of the biocontrol metabolite(s) was characterized via a variety of tests. The inhibition was almost exclusively due to production of agar-diffusible, not volatile, metabolite(s). The diffusible metabolite(s) underwent thermal degradation at 70 and 121 °C (1 atm). Tests for indole acetic acid production and lytic enzyme activities (cellulase, glucanase and chitinase) by B. cepacia XXVI were negative, indicating that these metabolites were not involved in the biocontrol effect. Based on halo formation and growth inhibition of the pathogen on the diagnostic medium, CAS-agar, as well as colorimetric tests we surmised that strain XXVI produced a hydroxamate siderophore involved in the biocontrol effect observed. The minimal inhibitory concentration test showed that 0.64 μg ml(-1) of siderophore (Deferoxamine mesylate salt-equivalent) was sufficient to achieve 91.1 % inhibition of the pathogen growth on Petri-dishes containing PDA. The biocontrol capacity against C. gloeosporioides ATCC MYA 456 correlated directly with the siderophore production by B. cepacia XXVI: the highest concentration of siderophore production in PDB on day 7, 1.7 μg ml(-1) (Deferoxamine mesylate salt-equivalent), promoted a pathogen growth inhibition of 94.9 %. The growth of 5 additional strains of C. gloeosporioides (isolated from mango "Ataulfo" orchards located in the municipality of Chahuites, State of Oaxaca in Mexico) was also inhibited when confronted with B. cepacia XXVI. Results indicate that B. cepacia XXVI or its

  5. Draft Genome Sequences of Burkholderia contaminans, a Burkholderia cepacia Complex Species That Is Increasingly Recovered from Cystic Fibrosis Patients

    OpenAIRE

    Bloodworth, Ruhi A M; Selin, Carrie; López De Volder, Maria Agustina; Drevinek, Pavel; Galanternik, Laura; Degrossi, José; Cardona, Silvia T.

    2015-01-01

    Burkholderia contaminans belongs to the Burkholderia cepacia complex (BCC), a group of bacteria that are ubiquitous in the environment and capable of infecting the immunocompromised and people with cystic fibrosis. We report here draft genome sequences for the B. contaminans type strain LMG 23361 and an Argentinian cystic fibrosis sputum isolate.

  6. TRACKING THE RESPONSE OF BURKHOLDERIA CEPACIA G4 5223-PR1 IN AQUIFER MICROCOSMS

    Science.gov (United States)

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of microbial population dynamics to define persistence and activity from both efficacy and risk assessment perspectives, Burkholderia cepacia G4 5223-P...

  7. AQUIFER PROTIST RESPONSE AND THE POTENTIAL FOR TCE BIOREMEDIATION WITH BURKHOLDERIA CEPACIA G4 PR1

    Science.gov (United States)

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of the persistence and activity of microbial population for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR123 and PR131 constitutive...

  8. BIOAUGMENTATION WITH BURKHOLDERIA CEPACIA PR1301 FOR IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE CONTAMINATED GROUNDWATER (RESEARCH BRIEF)

    Science.gov (United States)

    A pilot field study was conducted at the Moffett Federal Airfield, Mountain View, California, to determine whether effective in-situ aerobic cometabolic biodegradation of TCE could be accomplished through bioaugmentation with a genetically modified strain of Burkholderia cepacia ...

  9. Characterization of integrons in Burkholderia cepacia clinical isolates

    Directory of Open Access Journals (Sweden)

    Linda Furlanis

    2010-03-01

    Full Text Available Burkholderia cepacia is an opportunistic pathogen able to colonize the airways of Cystic Fibrosis (CF patients, frequently developing chronic infections. In 20% of cases these infections cause severe and poorly controlled pathological situations because of the intrinsic antibiotic resistance expressed by the microorganism. CF patients are often subjected to antibiotic therapy: this facilitates the acquisition of antibiotic resistance determinants by the infecting bacteria. Integrons are mobile genetic elements that are widespread in bacterial populations and favor the acquisition of gene cassettes coding for these determinants.The presence of class 1 integrons was investigated by PCR with primers specific for the 5’ and 3’ ends in Burkholderia isolates recovered from patients in treatment at the CF center of Friuli Venezia Giulia. The same integron, carrying an uncommon allelic form (Ib of the aacA4 gene in its cassette array and conferring resistance to some aminoglycosides, was found in two independent isolates (different RAPD profiles infecting two different patients. In both isolates the integron was carried by plasmids and was still present 3 and 6 years later the first finding. Despite the exchange of integrons between bacterial pathogens is fully described, these items were not frequently found in Burkholderia isolates. Although the clinical relevance of the integron we identified is low (a single gene cassette encoding a widespread resistance,we feel concerned that these genetic elements begin to circulate in this bacterial species, as this could make more and more troublesome the treatment of infections notoriously difficult to eradicate.

  10. Burkholderia cepacia and cystic fibrosis: do natural environments present a potential hazard?

    OpenAIRE

    Butler, S. L.; DOHERTY, C.J; Hughes, J. E.; Nelson, J W; Govan, J R

    1995-01-01

    An environmental survey of 55 sites yielded only 12 Burkholderia cepacia isolates, none of which displayed the phenotypic properties of a multiresistant epidemic strain associated with pulmonary colonization in patients with cystic fibrosis. Although the environment probably poses a low risk for patients with cystic fibrosis as a source of B. cepacia, the pathogenic potential of individual environmental strains remains unclear. We advise caution in the development of B. cepacia as a biocontro...

  11. Species Distribution and Ribotype Diversity of Burkholderia cepacia Complex Isolates from French Patients with Cystic Fibrosis

    OpenAIRE

    Brisse, Sylvain; Cordevant, Christophe; Vandamme, Peter; Bidet, Philippe; Loukil, Chawki; Chabanon, Gérard; Lange, Marc; Bingen, Edouard

    2004-01-01

    A total of 153 Burkholderia cepacia strains obtained from 153 French patients with cystic fibrosis were identified as Burkholderia multivorans (51.6%) or Burkholderia cenocepacia (45.1%). Eighty-two genotypes were identified using PvuII and EcoRI ribotyping. B. multivorans genotype A (found in 32 French patients) and two other genotypes were also identified among isolates from Austrian, German, Italian, and Canadian patients.

  12. Differentiation of Species Combined into the Burkholderia cepacia Complex and Related Taxa on the Basis of Their Fatty Acid Patterns

    OpenAIRE

    Krejčí, Eva; Kroppenstedt, Reiner M.

    2006-01-01

    Using the established commercial system Sherlock (MIDI, Inc.), cellular fatty acid methyl ester analysis for differentiation among Burkholderia cepacia complex species was proven. The identification key based on the diagnostic fatty acids is able to discern phenotypically related Ralstonia pickettii and Pandoraea spp. and further distinguish Burkholderia pyrrocinia, Burkholderia ambifaria, and Burkholderia vietnamiensis.

  13. Postinfection Biological Control of Oomycete Pathogens of Pea by Burkholderia cepacia AMMDR1.

    Science.gov (United States)

    Heungens, K; Parke, J L

    2001-04-01

    ABSTRACT Burkholderia cepacia AMMDR1 is a biocontrol agent that reduces Pythium damping-off and Aphanomyces root rot severity on peas in the field. We studied the effect of B. cepacia AMMDR1 on post-infection stages in the life cycles of these pathogens, including mycelial colonization of the host, production of oogonia, and production of secondary zoospore inoculum. We used Burkholderia cepacia 1324, a seed and rootcolonizing but antibiosis-deficient Tn5 mutant of B. cepacia AMMDR1, to study mechanisms of biological control other than antibiosis. B. cepacia AMMDR1 significantly reduced Pythium aphanidermatum postinfection colonization and damping-off of pea seeds, even when the bacteria were applied 12 h after zoospore inoculation. B. cepacia AMMDR1 also significantly reduced colonization of taproots by Aphanomyces euteiches mycelium, but only when the bacteria were applied at high population densities at the site of zoospore inoculation. The antibiosisdeficient mutant, B. cepacia 1324, had no effect on mycelial colonization of seeds or roots by Pythium aphanidermatum nor A. euteiches, suggesting that antibiosis is the primary mechanism of biological control. B. cepacia AMMDR1, but not B. cepacia 1324, reduced production of A. euteiches oogonia. This effect occurred even when the population size of B. cepacia AMMDR1 was too small to cause a reduction in lesion length early on in the infection process and may result from in situ antibiotic production. B. cepacia AMMDR1 had no effect on the production of secondary zoospores of A. euteiches from infected roots. The main effects of B. cepacia AMMDR1 on postinfection stages in the life cycles of these pathogens therefore were reductions in mycelial colonization by Pythium aphanidermatum and in formation of oogonia by A. euteiches. No mechanism other than antibiosis could be identified. PMID:18943851

  14. Outbreak of Subclinical Mastitis in a Flock of Dairy Sheep Associated with Burkholderia cepacia Complex Infection

    Science.gov (United States)

    Berriatua, E.; Ziluaga, I.; Miguel-Virto, C.; Uribarren, P.; Juste, R.; Laevens, S.; Vandamme, P.; Govan, J. R. W.

    2001-01-01

    An outbreak of subclinical mastitis in a flock of 620 milking sheep was investigated. Microbiological and epidemiological analyses identified the causative agent as belonging to the Burkholderia cepacia complex (formerly Pseudomonas cepacia). Every ewe in the milking flock was individually tested for subclinical mastitis on two separate occasions, 6 weeks apart, by the California (rapid) mastitis test (CMT). The proportion of CMT-positive ewes was 69 of 393 (17.6%) on the first sampling and 27 of 490 (5.5%) on the second sampling. Pure B. cepacia cultures identified with the API 20 NE system were grown from 64 of 96 (66.7%) CMT-positive ewes and from 1 of 33 (3.0%) CMT-negative ewes. Statistical analysis confirmed the significant association between a positive CMT result and a positive culture result for B. cepacia complex. Additional polyphasic taxonomic analyses of eight isolates showed that seven belonged to B. cepacia genomovar III; the remaining isolate was identified as Burkholderia vietnamiensis (formerly B. cepacia genomovar V). Bacteriological investigation of samples from milking equipment and other environmental sites failed to identify “B. cepacia” in any of the samples taken. To our knowledge, this is the first report of an outbreak of natural infection in animals caused by B. cepacia complex and the first description of B. cepacia complex infection in sheep. PMID:11230416

  15. Entwicklung eines polyklonalen Antiköpers gegen Burkholderia cepacia Exopolysaccharid

    OpenAIRE

    Hartwig, Christopher

    2009-01-01

    Die cystische Fibrose (CF) ist die häufigste autosomal rezessiv vererbte Stoffwechselerkrankung der weißen Rasse. Patienten mit CF leiden häufig an Lungeninfektionen mit Erregern, die dem Burkholderia cepacia Komplex (BCC) zugeordnet werden. Der Krankheitsverlauf kann sehr dramatisch sein und wird als Cepacia Syndrom bezeichnet. Die eigentlich Pflanzen pathogenen, bei Patienten mit CF aber opportunistischen Erreger, zeigen eine ausgeprägte Resistenz gegenüber den vorhandenen Antibiotika. Es w...

  16. Cystic fibrosis adults' perception and management of the risk of infection with Burkholderia cepacia complex

    OpenAIRE

    Lowton, Karen; Gabe, Jonathan

    2006-01-01

    The risk of infection for cystic fibrosis patients from Burkholderia cepacia complex pathogens is of increasing concern to doctors and scientists. This paper reports on how these patients perceive and manage the risk of cepacia infection using Douglas and Calvez's (1990) typology of four cultures of the community (the central community, dissenting enclaves, isolates, and individualists) and Douglas' works on pollution, risk, and culture. We attempt to develop Douglas's cultural theory in the ...

  17. Comparison of different PCR approaches for characterization of Burkholderia (Pseudomonas) cepacia isolates.

    OpenAIRE

    Liu, P. Y.; Shi, Z Y; Lau, Y J; HU, B S; Shyr, J M; Tsai, W S; Lin, Y. H.; Tseng, C Y

    1995-01-01

    In this study, we evaluated three PCR methods for epidemiological typing of Burkholderia (Pseudomonas) cepacia--PCR-ribotyping, arbitrarily primed PCR (AP-PCR) and enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR)--and compared them with pulsed-field gel electrophoresis. The analysis was performed with 31 isolates of B. cepacia, comprising 23 epidemiologically unrelated isolates and 8 isolates collected from the same patient during two episodes of bacteremia. Pulsed-fiel...

  18. Outbreak of Subclinical Mastitis in a Flock of Dairy Sheep Associated with Burkholderia cepacia Complex Infection

    OpenAIRE

    Berriatua, E.; Ziluaga, I.; Miguel-Virto, C.; Uribarren, P.; Juste, R.; Laevens, S.; Vandamme, P.; Govan, J. R. W.

    2001-01-01

    An outbreak of subclinical mastitis in a flock of 620 milking sheep was investigated. Microbiological and epidemiological analyses identified the causative agent as belonging to the Burkholderia cepacia complex (formerly Pseudomonas cepacia). Every ewe in the milking flock was individually tested for subclinical mastitis on two separate occasions, 6 weeks apart, by the California (rapid) mastitis test (CMT). The proportion of CMT-positive ewes was 69 of 393 (17.6%) on the first sampling and 2...

  19. A rare case of community acquired Burkholderia cepacia infection presenting as pyopneumothorax in an immunocompetent individual

    Institute of Scientific and Technical Information of China (English)

    Suman S Karanth; Hariharan Regunath; Kiran Chawla; Mukhyaprana Prabhu

    2012-01-01

    Burkholderia cepacia (B. cepacia) infection is rarely reported in an immunocompetent host. It is a well known occurence in patients with cystic fibrosis and chronic granulomatous disease where it increases both morbidity and mortality. It has also been included in the list of organisms causing nosocomial infections in an immunocompetent host, most of them transmitted from the immunocompromised patient in which this organism harbors. We report a rare case of isolation of B. cepacia from the bronchoalveolar lavage fluid of an immunocompetent agriculturist who presented with productive cough and fever associated with a pyopneumothorax. This is the first case of community acquired infection reported in an immunocompetent person in India.

  20. Expanded bed adsorption of an alkaline lipase from Pseudomona cepacia.

    Science.gov (United States)

    da Silva Padilha, Giovana; Curvelo-Santana, José Carlos; Alegre, Ranulfo Monte; Tambourgi, Elias Basile

    2009-02-15

    An extracellular lipase was isolated from Pseudomona cepacia by expanded bed adsorption on an Amberlite 410 ion-exchange resin. Enzyme characterization and hydrodynamic study of a chromatography column were done. Enzyme purification was done at three condition of expanded bed height (H): at one and half (6cm), at two (8cm) and at three (12cm) times the fixed bed height (H(0)=4cm). The results showed that the experimental data was fitted to the Richardson and Zaki equation, and the comparison between the experimental and calculated terminal velocities showed low relative error. In enzyme purification for better condition, a purification factor of about 80 times was found at 6cm of expanded bed height, or 1.5 times of expansion degree. Purified lipase had an optimal pH and a temperature of 8 and 37 degrees C, respectively. PMID:19162572

  1. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Renny Edwin [Microelectronics and MEMS Laboratory, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail: rennyedwin@gmail.com; Bhattacharya, Enakshi [Microelectronics and MEMS Laboratory, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail: enakshi@ee.iitm.ac.in; Chadha, Anju [Department of Biotechnology, National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai (India)], E-mail: anjuc@iitm.ac.in

    2008-05-30

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C-V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.

  2. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    International Nuclear Information System (INIS)

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C-V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor

  3. Influence of neutrophil defects on Burkholderia cepacia complex pathogenesis

    Directory of Open Access Journals (Sweden)

    Laura A. Porter

    2011-11-01

    Full Text Available The Burkholderia cepacia complex (Bcc is a group of Gram-negative bacteria that are ubiquitous in the environment and have emerged as opportunistic pathogens in immunocompromised patients. The primary patient populations infected with Bcc include individuals with cystic fibrosis (CF, as well as those with chronic granulomatous disease (CGD. While Bcc infection in CF is better characterized than in CGD, these two genetic diseases are not obviously similar and it is currently unknown if there is any commonality in host immune defects that is responsible for the susceptibility to Bcc. CF is caused by mutations in the CF transmembrane conductance regulator, resulting in manifestations in various organ systems, however the major cause of morbidity and mortality is currently due to bacterial respiratory infections. CGD, on the other hand, is a genetic disorder that is caused by defects in phagocyte NADPH oxidase. Because of the defect in CGD, phagocytes in these patients are unable to produce reactive oxygen species, which results in increased susceptibility to bacterial and fungal infections. Despite this significant defect in microbial clearance, the spectrum of pathogens frequently implicated in infections in CGD is relatively narrow and includes some bacterial species that are considered almost pathognomonic for this disorder. Very little is known about the cause of the specific susceptibility to Bcc over other potential pathogens more prevalent in the environment, and a better understanding of specific mechanisms required for bacterial virulence has become a high priority. This review will summarize both the current knowledge and future directions related to Bcc virulence in immunocompromised individuals with a focus on the roles of bacterial factors and neutrophil defects in pathogenesis.

  4. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K.; Hentzer, Morten; Geisenberger, O.;

    2001-01-01

    Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co- ordinate expression of virulence factors with the...

  5. NOVEL ORGANIZATION OF THE GENES FOR PHTHALATE DEGRADATION FROM BURKHOLDERIA CEPACIA DBO1

    Science.gov (United States)

    Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthala...

  6. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K; Hentzer, Morten; Geisenberger, O;

    2001-01-01

    Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co-ordinate expression of virulence factors with the forma...

  7. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K.; Hentzer, Morten; Geisenberger, O.;

    2001-01-01

    Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co- ordinate expression of virulence factors with the form...

  8. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility

    DEFF Research Database (Denmark)

    Huber, B.; Riedel, K.; Hentzer, Morten;

    2001-01-01

    Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported. It is demons...

  9. Eradication of Burkholderia cepacia Using Inhaled Aztreonam Lysine in Two Patients with Bronchiectasis

    Directory of Open Access Journals (Sweden)

    A. Iglesias

    2014-01-01

    Full Text Available There are not many articles about the chronic bronchial infection/colonization in patients with underlying lung disease other than cystic fibrosis (CF, especially with non-CF bronchiectasis (NCFBQ. The prevalence of B. cepacia complex is not well known in NCFBQ. The vast majority of published clinical data on Burkholderia infection in individuals with CF is comprised of uncontrolled, anecdotal, and/or single center experiences, and no consensus has emerged regarding treatment. We present two cases diagnosed with bronchiectasis (BQ of different etiology, with early pulmonary infection by B. cepacia complex, which was eradicated with inhaled aztreonam lysine.

  10. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100.

    OpenAIRE

    Xun, L

    1996-01-01

    Burkholderia (formerly Pseudomonas) cepacia AC1100 mineralizes the herbicide 2,4,5-trichlorophenoxyacetate (2,4,5-T), and the first intermediate of 2,4,5-T degradation is 2,4,5-trichlorophenol. Chlorophenol 4-monooxygenase activity responsible for 2,4,5-trichlorophenol degradation was detected in the cell extract. The enzyme consisted of two components separated during purification, and both were purified to more than 95% homogeneity. The reconstituted enzyme catalyzed the hydroxylation of se...

  11. Comparative Assessment of Genotyping Methods for Epidemiologic Study of Burkholderia cepacia Genomovar III

    OpenAIRE

    Coenye, Tom; Spilker, Theodore; Martin, Alissa; LiPuma, John J.

    2002-01-01

    We analyzed a collection of 97 well-characterized Burkholderia cepacia genomovar III isolates to evaluate multiple genomic typing systems, including pulsed-field gel electrophoresis (PFGE), BOX-PCR fingerprinting and random amplified polymorphic DNA (RAPD) typing. The typeability, reproducibility, and discriminatory power of these techniques were evaluated, and the results were compared to each other and to data obtained in previous studies by using multilocus restriction typing (MLRT). All m...

  12. Differential Persistence among Genomovars of the Burkholderia cepacia Complex in a Murine Model of Pulmonary Infection

    OpenAIRE

    Chu, Karen K.; Donald J Davidson; Halsey, T. Keith; Chung, Jacqueline W.; Speert, David P.

    2002-01-01

    Cystic fibrosis patients infected with strains from different genomovars of the Burkholderia cepacia complex can experience diverse clinical outcomes. To identify genomovar-specific determinants that might be responsible for these differences, we developed a pulmonary model of infection in BALB/c mice. Mice were rendered leukopenic by administration of cyclophosphamide prior to intranasal challenge with 1.6 × 104 bacteria. Five of six genomovar II strains persisted at stable numbers in the lu...

  13. Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex

    OpenAIRE

    Bartholdson, S. Josefin; Brown, Alan R.; Mewburn, Ben R.; Clarke, David J.; Fry, Stephen C; Campopiano, Dominic J.; Govan, John R. W.

    2008-01-01

    The species that presently constitute the Burkholderia cepacia complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysa...

  14. Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health?

    OpenAIRE

    Holmes, A; Govan, J; Goldstein, R.

    1998-01-01

    In the past 2 decades, Burkholderia cepacia has emerged as a human pathogen causing numerous outbreaks, particularly among cystic fibrosis (CF) patients. One highly transmissible strain has spread across North America and Britain, and another between hospitalized CF and non-CF patients. Meanwhile, the organism has been developed as a biopesticide for protecting crops against fungal diseases and has potential as a bioremediation agent for breaking down recalcitrant herbicides and pesticides. H...

  15. Bioremediation of refinery wastewater using immobilised Burkholderia cepacia and Corynebacterium sp and their transconjugants

    OpenAIRE

    Abdullahi T. Ajao; Sabo E. Yakubu; Veronica J. Umoh; Joseph B. Ameh

    2013-01-01

    When oil spill occurs, it poses serious toxic hazards to all forms of life. Mixed culture of Burkholderia cepacia and Corynebacterium sp isolated from refinery sludge using selective enrichment technique was used for bioremediation of refinery wastewater in a laboratoryscale bioreactor. Physicochemical parameters of both raw and treated water were as determined and compared with Federal Environ - mental Protection Agency (FEPA-limit, Abuja, Nigeria) to asses the efficiency of the bioremediati...

  16. Investigation into the susceptibility of Burkholderia cepacia complex isolates to photodynamic antimicrobial chemotherapy (PACT)

    Science.gov (United States)

    Cassidy, C. M.; Watters, A. L.; Donnelly, R. F.; Tunney, M. M.

    2009-06-01

    The main cause of morbidity and mortality in cystic fibrosis (CF) sufferers is progressive pulmonary damage caused by recurrent and often unremitting respiratory tract infection. Causative organisms include Pseudomonas aeruginosa and Haemophilus influenzae, but in recent years the Burkholderia cepacia complex has come to the fore. This group of highly drug-resistant Gram-negative bacteria are associated with a rapid decline in lung function and the often fatal cepacia syndrome, with treatment limited to patient segregation and marginally effective antibacterial regimens. Thus, development of an effective treatment is of the upmost importance. PACT, a non-target specific therapy, has proven successful in killing both Gram-positive and Gram-negative bacteria. In this study, planktonic cultures of six strains of the B. cepacia complex were irradiated (635 nm, 200 J cm-2,10 minutes irradiation) following 30 seconds incubation with methylene blue (MB) or meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Rates of kill of > 99 % were achieved with MB- and TMP-PACT. A MB concentration of 50 μg ml-1 and TMP concentration of 500 μg ml-1 were associated with highest percentage kills for each photosensitizer. PACT is an attractive option for treatment of B.cepacia complex infection. Further study, involving biofilm culture susceptibility, delivery of light to the target and in vivo testing will be necessary before it PACT becomes a viable treatment option for CF patients who are colonised or infected with B. cepacia complex.

  17. Polyphasic characterisation of Burkholderia cepacia complex species isolated from children with cystic fibrosis

    Science.gov (United States)

    Vicenzi, Fernando José; Pillonetto, Marcelo; de Souza, Helena Aguilar Peres Homem de Mello; Palmeiro, Jussara Kasuko; Riedi, Carlos Antônio; Rosario-Filho, Nelson Augusto; Dalla-Costa, Libera Maria

    2016-01-01

    Cystic fibrosis (CF) patients with Burkholderia cepacia complex (Bcc) pulmonary infections have high morbidity and mortality. The aim of this study was to compare different methods for identification of Bcc species isolated from paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain isolates of Bcc samples to evaluate six different tests for strain identification. Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction (PCR)-recA, restriction fragment length polymorphism-recA, recAsequencing, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied. Bacterial isolates were also tested for antimicrobial susceptibility. PCR-recA analysis showed that 36 out of the 54 isolates were Bcc. Kappa index data indicated almost perfect agreement between CPT and APT, CPT and PCR-recA, and APT and PCR-recA to identify Bcc, and MALDI-TOF and recAsequencing to identify Bcc species. The recAsequencing data and the MALDI-TOF data agreed in 97.2% of the isolates. Based on recA sequencing, the most common species identified were Burkholderia cenocepacia IIIA (33.4%),Burkholderia vietnamiensis (30.6%), B. cenocepaciaIIIB (27.8%), Burkholderia multivorans (5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool for identification of Bcc species obtained from CF patients, although it was not able to identify B. cenocepacia subtypes. PMID:26814642

  18. Selective media for isolation of Burkholderia (Pseudomonas) cepacia from the respiratory secretions of patients with cystic fibrosis.

    OpenAIRE

    Cimolai, N; Trombley, C.; Davidson, A. G.; Wong, L T

    1995-01-01

    One hundred and six specimens from 90 patients with cystic fibrosis were evaluated for the presence of Burkholderia cepacia using a current routine diagnostic protocol as well as a research protocol involving polymyxin B-MacConkey agar without crystal violet, PC agar, OFPVL agar, and a selective brain-heart infusion broth. Ten specimens from eight patients (8.9%) were positive by any method. The selective enrichment broth was the only medium that yielded B cepacia from all 10 positive samples...

  19. Zoospore Homing and Infection Events: Effects of the Biocontrol Bacterium Burkholderia cepacia AMMDR1 on Two Oomycete Pathogens of Pea (Pisum sativum L.)

    OpenAIRE

    Heungens, K; Parke, J. L.

    2000-01-01

    Burkholderia cepacia AMMDR1 is a biocontrol agent that protects pea and sweet corn seeds from Pythium damping-off in field experiments. The goal of this work was to understand the effect of B. cepacia AMMDR1 on Pythium aphanidermatum and Aphanomyces euteiches zoospore homing events and on infection of pea seeds or roots. In vitro, B. cepacia AMMDR1 caused zoospore lysis, prevented cyst germination, and inhibited germ tube growth of both oomycetes. B. cepacia AMMDR1 also reduced the attractive...

  20. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation.

    Science.gov (United States)

    Cuzzi, Bruno; Herasimenka, Yury; Silipo, Alba; Lanzetta, Rosa; Liut, Gianfranco; Rizzo, Roberto; Cescutti, Paola

    2014-01-01

    The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained from cultures on

  1. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation.

    Directory of Open Access Journals (Sweden)

    Bruno Cuzzi

    Full Text Available The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained

  2. The promise of bacteriophage therapy for Burkholderia cepacia complex respiratory infections.

    Directory of Open Access Journals (Sweden)

    Diana Dawn Semler

    2012-01-01

    Full Text Available In recent times, increased attention has been given to evaluating the efficacy of phage therapy, especially in scenarios where the bacterial infectious agent of interest is highly antibiotic resistant. In this regard, phage therapy is especially applicable to infections caused by the Burkholderia cepacia complex (BCC since members of the BCC are antibiotic pan-resistant. Current studies in BCC phage therapy are unique from many other avenues of phage therapy research in that the research is not only comprised of phage isolation, in vitro phage characterization and in vivo infection model efficacy, but also adapting aerosol drug delivery techniques to aerosol phage formulation delivery and storage.

  3. Genomovars of Burkholderia cepacia Complex from Rice Rhizosphere and Clinic in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Burkholderia cepacia is regarded as a genetically distinct but phenotypically similar bacteria group referring to Burkholderia cepacia complex (Bcc), which is found not only in clinic but also in rice growing environment. It is very important in microbial safety of rice for us to understand the genomovar status of Bcc. Genomovar analysis was performed among 87 Bcc isolates by means of Hae Ⅲ-recA RFLP assays and species-specific PCR tests. Three genomovars were found from the rice rhizosphere including Ⅰ, ⅢB and Ⅴ, and genomovar Ⅴ was predominant. Genomovars Ⅰ, ⅢA and ⅢB existed in the clinical samples, and genomovar ⅢA was the most popular. It showed that genomovar composition was different between the Bcc strains from the rice rhizosphere and clinical environment. Simultaneously, the results revealed the genetic diversity of Bcc strains from the rice rhizosphere, and genomovar Ⅲ referred as virulent species in clinic also existed in the rice rhizosphere.

  4. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    Science.gov (United States)

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  5. Infection of Burkholderia cepacia induces homeostatic responses in the host for their prolonged survival: the microarray perspective.

    Directory of Open Access Journals (Sweden)

    Vanitha Mariappan

    Full Text Available Burkholderia cepacia is an opportunistic human pathogen associated with life-threatening pulmonary infections in immunocompromised individuals. Pathogenesis of B. cepacia infection involves adherence, colonisation, invasion, survival and persistence in the host. In addition, B. cepacia are also known to secrete factors, which are associated with virulence in the pathogenesis of the infection. In this study, the host factor that may be the cause of the infection was elucidated in human epithelial cell line, A549, that was exposed to live B. cepacia (mid-log phase and its secretory proteins (mid-log and early-stationary phases using the Illumina Human Ref-8 microarray platform. The non-infection A549 cells were used as a control. Expression of the host genes that are related to apoptosis, inflammation and cell cycle as well as metabolic pathways were differentially regulated during the infection. Apoptosis of the host cells and secretion of pro-inflammatory cytokines were found to be inhibited by both live B. cepacia and its secretory proteins. In contrast, the host cell cycle and metabolic processes, particularly glycolysis/glycogenesis and fatty acid metabolism were transcriptionally up-regulated during the infection. Our microarray analysis provided preliminary insights into mechanisms of B. cepacia pathogenesis. The understanding of host response to an infection would provide novel therapeutic targets both for enhancing the host's defences and repressing detrimental responses induced by the invading pathogen.

  6. Bacteria of the Burkholderia cepacia complex are cyanogenic under biofilm and colonial growth conditions

    Directory of Open Access Journals (Sweden)

    Hoshino Saiko

    2008-06-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (Bcc is a collection of nine genotypically distinct but phenotypically similar species. They show wide ecological diversity and include species that are used for promoting plant growth and bio-control as well species that are opportunistic pathogens of vulnerable patients. Over recent years the Bcc have emerged as problematic pathogens of the CF lung. Pseudomonas aeruginosa is another important CF pathogen. It is able to synthesise hydrogen cyanide (HCN, a potent inhibitor of cellular respiration. We have recently shown that HCN production by P. aeruginosa may have a role in CF pathogenesis. This paper describes an investigation of the ability of bacteria of the Bcc to make HCN. Results The genome of Burkholderia cenocepacia has 3 putative HCN synthase encoding (hcnABC gene clusters. B. cenocepacia and all 9 species of the Bcc complex tested were able to make cyanide at comparable levels to P. aeruginosa, but only when grown surface attached as colonies or during biofilm growth on glass beads. In contrast to P. aeruginosa and other cyanogenic bacteria, cyanide was not detected during planktonic growth of Bcc strains. Conclusion All species in the Bcc are cyanogenic when grown as surface attached colonies or as biofilms.

  7. Outbreak of Burkholderia cepacia complex bacteremia in a chemotherapy day care unit due to intrinsic contamination of an antiemetic drug

    OpenAIRE

    Singhal, T.; Shah, S.; Naik, R.

    2015-01-01

    Background: In the end of 2009, a large number of patients with cancer undergoing chemotherapy at the day care unit of a private hospital in Mumbai, India developed Burkholderia cepacia complex (BCC) blood stream infection (BSI). Objective: The objectives were to identify the source of the outbreak and terminate the outbreak as rapidly as possible. Materials and Methods: All infection control protocols and processes were reviewed. Intensive training was started for all nursing staff involved ...

  8. Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex.

    Science.gov (United States)

    Bartholdson, S Josefin; Brown, Alan R; Mewburn, Ben R; Clarke, David J; Fry, Stephen C; Campopiano, Dominic J; Govan, John R W

    2008-08-01

    The species that presently constitute the Burkholderia cepacia complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysaccharide (EPS) when onion tissue was provided as the sole nutrient. EPS production was not species-specific, was observed in isolates from both clinical and environmental sources, and did not correlate with the ability to cause maceration of onion tissue. Chemical analysis suggested that the onion components responsible for EPS induction were primarily the carbohydrates sucrose, fructose and fructans. Additional sugars were investigated, and all alcohol sugars tested were able to induce EPS production, in particular mannitol and glucitol. To investigate the molecular basis for EPS biosynthesis, we focused on the highly conserved bce gene cluster thought to be involved in cepacian biosynthesis. We demonstrated induction of the bce gene cluster by mannitol, and found a clear correlation between the inability of representatives of the Burkholderia cenocepacia ET12 lineage to produce EPS and the presence of an 11 bp deletion within the bceB gene, which encodes a glycosyltransferase. Insertional inactivation of bceB in Burkholderia ambifaria AMMD results in loss of EPS production on sugar alcohol media. These novel and surprising insights into EPS biosynthesis highlight the metabolic potential of the Bcc and show that a potential virulence factor may not be detected by routine laboratory culture. Our results also highlight a potential hazard in the use of inhaled mannitol as an osmolyte to improve mucociliary clearance in individuals with cystic fibrosis. PMID:18667584

  9. Burkholderia cepacia complex in Serbian patients with cystic fibrosis: prevalence and molecular epidemiology.

    Science.gov (United States)

    Vasiljevic, Z V; Novovic, K; Kojic, M; Minic, P; Sovtic, A; Djukic, S; Jovcic, B

    2016-08-01

    The Burkholderia cepacia complex (Bcc) organisms remain significant pathogens in patients with cystic fibrosis (CF). This study was performed to evaluate the prevalence, epidemiological characteristics, and presence of molecular markers associated with virulence and transmissibility of the Bcc strains in the National CF Centre in Belgrade, Serbia. The Bcc isolates collected during the four-year study period (2010-2013) were further examined by 16 s rRNA gene, pulsed-field gel electrophoresis of genomic DNA, multilocus sequence typing analysis, and phylogenetic analysis based on concatenated sequence of seven alleles. Fifty out of 184 patients (27.2 %) were colonized with two Bcc species, B. cenocepacia (n = 49) and B. stabilis (n = 1). Thirty-four patients (18.5 %) had chronic colonization. Typing methods revealed a high level of similarity among Bcc isolates, indicating a person-to-person transmission or acquisition from a common source. New sequence types (STs) were identified, and none of the STs with an international distribution were found. One centre-specific ST, B. cenocepacia ST856, was highly dominant and shared by 48/50 (96 %) patients colonized by Bcc. This clone was characterized by PCR positivity for both the B. cepacia epidemic strain marker and cable pilin, and showed close genetic relatedness to the epidemic strain CZ1 (ST32). These results indicate that the impact of Bcc on airway colonization in the Serbian CF population is high and virtually exclusively limited to a single clone of B. cenocepacia. The presence of a highly transmissible clone and probable patient-to-patient spread was observed. PMID:27177755

  10. Hexadecane and Tween 80 Stimulate Lipase Production in Burkholderia glumae by Different Mechanisms▿

    OpenAIRE

    Boekema, Bouke K. H. L.; Beselin, Anke; Breuer, Michael; Hauer, Bernhard; Koster, Margot; Rosenau, Frank; Jaeger, Karl-Erich; Tommassen, Jan

    2007-01-01

    Burkholderia glumae strain PG1 produces a lipase of biotechnological relevance. Lipase production by this strain and its derivative LU8093, which was obtained through classical strain improvement, was investigated under different conditions. When 10% hexadecane was included in the growth medium, lipolytic activity in both strains could be increased ∼7-fold after 24 h of growth. Hexadecane also stimulated lipase production in a strain containing the lipase gene fused to the tac promoter, indic...

  11. Genomic sequence and activity of KS10, a transposable phage of the Burkholderia cepacia complex

    Directory of Open Access Journals (Sweden)

    Shrivastava Savita

    2008-12-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (BCC is a versatile group of Gram negative organisms that can be found throughout the environment in sources such as soil, water, and plants. While BCC bacteria can be involved in beneficial interactions with plants, they are also considered opportunistic pathogens, specifically in patients with cystic fibrosis and chronic granulomatous disease. These organisms also exhibit resistance to many antibiotics, making conventional treatment often unsuccessful. KS10 was isolated as a prophage of B. cenocepacia K56-2, a clinically relevant strain of the BCC. Our objective was to sequence the genome of this phage and also determine if this prophage encoded any virulence determinants. Results KS10 is a 37,635 base pairs (bp transposable phage of the opportunistic pathogen Burkholderia cenocepacia. Genome sequence analysis and annotation of this phage reveals that KS10 shows the closest sequence homology to Mu and BcepMu. KS10 was found to be a prophage in three different strains of B. cenocepacia, including strains K56-2, J2315, and C5424, and seven tested clinical isolates of B. cenocepacia, but no other BCC species. A survey of 23 strains and 20 clinical isolates of the BCC revealed that KS10 is able to form plaques on lawns of B. ambifaria LMG 19467, B. cenocepacia PC184, and B. stabilis LMG 18870. Conclusion KS10 is a novel phage with a genomic organization that differs from most phages in that its capsid genes are not aligned into one module but rather separated by approximately 11 kb, giving evidence of one or more prior genetic rearrangements. There were no potential virulence factors identified in KS10, though many hypothetical proteins were identified with no known function.

  12. Bioremediation of refinery wastewater using immobilised Burkholderia cepacia and Corynebacterium sp and their transconjugants

    Directory of Open Access Journals (Sweden)

    Abdullahi T. Ajao

    2013-07-01

    Full Text Available When oil spill occurs, it poses serious toxic hazards to all forms of life. Mixed culture of Burkholderia cepacia and Corynebacterium sp isolated from refinery sludge using selective enrichment technique was used for bioremediation of refinery wastewater in a laboratoryscale bioreactor. Physicochemical parameters of both raw and treated water were as determined and compared with Federal Environ - mental Protection Agency (FEPA-limit, Abuja, Nigeria to asses the efficiency of the bioremediation process. Each of the bacterium was screened for the presence of plasmid DNA and for the involvement or otherwise of plasmid in the bioremediation of wastewater. The immobilised cells showed percentage decrease in chemical oxygen demand (97%, biochemical oxygen demand (94%, phenol (98%, total petroleum hydrocarbon (79%, oil and grease (90% of the refinery waste water after 20 days of treatment while their transconjugants showed the multiplicative effect by achieving the same percentage after 10 days of treatment. Therefore, the findings revealed that bioaugmentation of wastewater using transmissible catabolic plasmid will enhance efficiency of the bioremediation by spreading the plasmid among indigenous microbial community either through horizontal gene transfer or transformation.

  13. Modification biological activity of S and R forms of Proteus mirabilis and Burkholderia cepacia lipopolysaccharides by carrageenans.

    Science.gov (United States)

    Arabski, Michał; Barabanova, Anna; Gałczyńska, Katarzyna; Węgierek-Ciuk, Aneta; Dzidowska, Kamila; Augustyniak, Daria; Drulis-Kawa, Zuzanna; Lankoff, Anna; Yermak, Irina; Molinaro, Antonio; Kaca, Wiesław

    2016-09-20

    The modification of biological features of S and R forms of Proteus mirabilis and Burkholderia cepacia LPS by kappa/iota and kappa/beta carrageenans was shown in Limulus activation test, ELISA, human complement activation and apoptotic assay. The role of positively charged substituent Ara4N in lipid A was evaluated as a suspected major domain for interactions with sulphate groups of carrageenans.The experiments obtained by three serological methods indicated that not only lipid A part of LPS but also polysaccharide elements such as core and O-specific chain are involved in interaction with carrageenes. Carrageenans turned out to be non-cytotoxic for A549 cells and were able to inhibit the apoptotic effect caused by lipid A of P. mirabilis and B. cepacia. PMID:27261765

  14. Biological control of Botrytis cinerea using the antagonistic and endophytic Burkholderia cepacia Cs5 for vine plantlet protection

    OpenAIRE

    Kilani-Feki, Olfa; Jaoua, Samir

    2011-01-01

    Antifungal activity of the Burkholderia cepacia Cs5 was tested in vitro and in vivo for the control of Botrytis cinerea . Bacterial biomass was significantly improved by the amendment of ZnSO(4), Mo(7)(NH(4))(6)O(24), and mannitol to the NBY medium; consequently, the amount of the secreted fungicides was increased. The quantification of B. cinerea inhibition, in liquid and solid conditions, showed an important sensitivity of this fungus to the strain Cs5 fungicides. Microscopic monitoring imp...

  15. Single amino acid substitution in homogentisate 1,2-dioxygenase is responsible for pigmentation in a subset of Burkholderia cepacia complex isolates

    OpenAIRE

    Gonyar, Laura A.; Fankhauser, Sarah C.; Joanna B Goldberg

    2014-01-01

    The Burkholderia cepacia complex (Bcc) is a group of Gram-negative bacilli that are ubiquitous in the environment and have emerged over the past 30 years as opportunistic pathogens in immunocompromised populations, specifically individuals with cystic fibrosis (CF) and chronic granulomatous disease. This complex of at least 18 distinct species is phenotypically and genetically diverse. One phenotype observed in a subset of Burkholderia cenocepacia (a prominent Bcc pathogen) isolates is the ab...

  16. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex

    Directory of Open Access Journals (Sweden)

    Dennis Jonathan J

    2010-10-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (BCC is comprised of at least seventeen Gram-negative species that cause infections in cystic fibrosis patients. Because BCC bacteria are broadly antibiotic resistant, phage therapy is currently being investigated as a possible alternative treatment for these infections. The purpose of our study was to sequence and characterize three novel BCC-specific phages: KS5 (vB_BceM-KS5 or vB_BmuZ-ATCC 17616, KS14 (vB_BceM-KS14 and KL3 (vB_BamM-KL3 or vB_BceZ-CEP511. Results KS5, KS14 and KL3 are myoviruses with the A1 morphotype. The genomes of these phages are between 32317 and 40555 base pairs in length and are predicted to encode between 44 and 52 proteins. These phages have over 50% of their proteins in common with enterobacteria phage P2 and so can be classified as members of the Peduovirinae subfamily and the "P2-like viruses" genus. The BCC phage proteins similar to those encoded by P2 are predominantly structural components involved in virion morphogenesis. As prophages, KS5 and KL3 integrate into an AMP nucleosidase gene and a threonine tRNA gene, respectively. Unlike other P2-like viruses, the KS14 prophage is maintained as a plasmid. The P2 E+E' translational frameshift site is conserved among these three phages and so they are predicted to use frameshifting for expression of two of their tail proteins. The lysBC genes of KS14 and KL3 are similar to those of P2, but in KS5 the organization of these genes suggests that they may have been acquired via horizontal transfer from a phage similar to λ. KS5 contains two sequence elements that are unique among these three phages: an ISBmu2-like insertion sequence and a reverse transcriptase gene. KL3 encodes an EcoRII-C endonuclease/methylase pair and Vsr endonuclease that are predicted to function during the lytic cycle to cleave non-self DNA, protect the phage genome and repair methylation-induced mutations. Conclusions KS5, KS14 and KL3 are the

  17. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Messiaen

    Full Text Available Due to the intrinsic resistance of Burkholderia cepacia complex (Bcc to many antibiotics and the production of a broad range of virulence factors, lung infections by these bacteria, primarily occurring in cystic fibrosis (CF patients, are very difficult to treat. In addition, the ability of Bcc organisms to form biofilms contributes to their persistence in the CF lung. As Bcc infections are associated with poor clinical outcome, there is an urgent need for new effective therapies to treat these infections. In the present study, we investigated whether liposomal tobramycin displayed an increased anti-biofilm effect against Bcc bacteria compared to free tobramycin. Single particle tracking (SPT was used to study the transport of positively and negatively charged nanospheres in Bcc biofilms as a model for the transport of liposomes. Negatively charged nanospheres became immobilized in close proximity of biofilm cell clusters, while positively charged nanospheres interacted with fiber-like structures, probably eDNA. Based on these data, encapsulation of tobramycin in negatively charged liposomes appeared promising for targeted drug delivery. However, the anti-biofilm effect of tobramycin encapsulated into neutral or anionic liposomes did not increase compared to that of free tobramycin. Probably, the fusion of the anionic liposomes with the negatively charged bacterial surface of Bcc bacteria was limited by electrostatic repulsive forces. The lack of a substantial anti-biofilm effect of tobramycin encapsulated in neutral liposomes could be further investigated by increasing the liposomal tobramycin concentration. However, this was hampered by the low encapsulation efficiency of tobramycin in these liposomes.

  18. The biofilm produced by Burkholderia cepacia complex: molecular aspects and relationship with exopolysaccharides

    Directory of Open Access Journals (Sweden)

    Lucia Corich

    2010-12-01

    Full Text Available Introduction. In cystic fibrosis patients, Burkholderia cepacia complex (Bcc can cause serious pulmonary chronic infections thanks in part to the ability to form biofilm, matrix rich in exopolysaccharides. In Bcc grown in the planktonic state, the main exopolysaccharide is cepacian while in biofilm its presence is controversial. Methods and Results. Two clinical isolates, named BTS7 and BTS2, were studied. BTS7 produces abundant cepacian but not much biofilm (quantified by colorimetric method.At least two of the genes involved in cepacian biosynthesis are not necessary for biofilm production as two BTS7 derivatives, bceB and bceQ knocked out by transposon mutagenesis, produce biofilm levels comparable to the wild-type. BTS2 sinthesyzes cepacian only if cultured on a specific medium. It has been colonizing a patient for almost ten years, showing a significant reduction of biofilm production during this period. This reduction did not appear together with the lack of factors required for the initial adhesion to the surface, or to differences in some of the Bcc genes involved in biofilm formation. Moreover, sequencing of its bce locus revealed a bceX gene, absent in BTS7, coding for a trascriptional regulator. Its product may negatively regulate the production of cepacian but not the one of other polysaccharides, promoting the formation of biofilm. Conclusions. Cepacian seems to be marginal in the production of biofilm.The reduced ability to produce biofilm of BTS2 suggests possible gene mutations occurred over time. Using custom arrays we will compare the gene expression of the BTS2 isolates, to identify the genes responsible for the observed phenotypic changes.

  19. Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.).

    Science.gov (United States)

    Heungens, K; Parke, J L

    2000-12-01

    Burkholderia cepacia AMMDR1 is a biocontrol agent that protects pea and sweet corn seeds from Pythium damping-off in field experiments. The goal of this work was to understand the effect of B. cepacia AMMDR1 on Pythium aphanidermatum and Aphanomyces euteiches zoospore homing events and on infection of pea seeds or roots. In vitro, B. cepacia AMMDR1 caused zoospore lysis, prevented cyst germination, and inhibited germ tube growth of both oomycetes. B. cepacia AMMDR1 also reduced the attractiveness of seed exudates to Pythium zoospores to nondetectable levels. However, when present at high levels on seeds, B. cepacia AMMDR1 had little net effect on zoospore attraction, probably because it also enhanced seed exudation. Seed-applied B. cepacia AMMDR1 dramatically reduced the incidence of infection by Pythium zoospores in situ compared with an antibiosis-deficient Tn5 mutant strain. This mutant strain also decreased Pythium infection incidence to some extent, but only when the pathogen inoculum potential was low. B. cepacia AMMDR1 did not affect attraction of Aphanomyces zoospores or Aphanomyces root rot incidence. These results suggest that B. cepacia AMMDR1 controls P. aphanidermatum largely through antibiosis, but competition for zoospore-attracting compounds can contribute to the effect. Differences in suppression of Aphanomyces and Pythium are discussed in relation to differences in the ecology of the two pathogens. PMID:11097889

  20. Inoculation of Burkholderia cepacia and Gluconacetobacter diazotrophicus on phenotype and biomass of Triticum aestivum var. Nana-F2007 at 50% of nitrogen fertilizer

    Directory of Open Access Journals (Sweden)

    Jesús Jaime Hernández-Escareño

    2015-03-01

    Full Text Available Wheat (Triticum aestivum L consuming requires of nitrogen fertilizer (NF, as ammonium nitrate (NH4NO3, which one in excess causes lost soil productivity. An alternative to reduce and optimize NF to wheat is to inoculate with endophytic promoting growth bacteria (EPGB, as genus Burkholderia cepacia and Gluconacetobacter diazotrophicus able to improve radical uptake of NF, its suggesting by inducing synthesis of growth promoting vegetal substances (GPVS. The aim of this research was to evaluate the inoculation of Burkholderia cepacia and Gluconacetobacter diazotrophicus on phenology and biomass of T.aestivum at 50% dose of NF. A trial in greenhouse condition wasconducted inoculating seed T.aestivum´s with both EPGB by measuring its phenology: (PH plant height, (RL root length and biomass: total fresh weight (TFW and dry (TDW at seedling and flowering stages. Results showed a positive effect of B. cepacia in wheat on its TDW with 0.61g value statistically significant compared to 0.53g TDW of wheat used as relative control fed with NF 100% dose (RC. B. cepacia and G. diazotrophicus inoculated to wheat had a positive increased on its TDW with 4.23 g value statistically significant compared to 1.13 g TDW of wheat used as RC. Conclusion suggested that B. cepacia and G. diazotrophicus by synthetized GPVS had a positive effect on wheat growth at reduced dose of NF.

  1. Avaliação de mecanismo de escape imunológico do complexo Burkholderia cepacia

    OpenAIRE

    Lopes, Andreia Rodrigues Josefino

    2012-01-01

    O Complexo Burkholderia cepacia (BCC) tem vindo a ter cada vez mais atenção por parte da comunidade científica, principalmente devido ao perigo que representa para os doentes com fibrose quística (FQ). Os mecanismos de infecção e invasão estão a ser cada vez mais estudados, e a versatilidade deste grupo de bactérias tem-se provado excepcional. Por outro lado, também se tem começado a estudar a sua interacção com o hospedeiro. Assim com o objectivo de contribuir para o esclarecimento desta que...

  2. Variant of X-Linked Chronic Granulomatous Disease Revealed by a Severe Burkholderia cepacia Invasive Infection in an Infant

    Directory of Open Access Journals (Sweden)

    Saul Oswaldo Lugo Reyes

    2013-01-01

    Full Text Available Chronic granulomatous disease (CGD is a primary immunodeficiency characterized by increased susceptibility to bacteria and fungi since early in life, caused by mutations in any of the five genes coding for protein subunits in NADPH oxidase. X-linked variant CGD can be missed during routine evaluation or present later in life due to hypomorphic mutations and a residual superoxide production. The case of a 10-month-old boy who died of pneumonia is reported. The isolation of Burkholderia cepacia from his lung, together with a marginally low nitroblue tetrazolium reduction assay (NBT, made us suspect and pursue the molecular diagnosis of CGD. A postmortem genetic analysis finally demonstrated CGD caused by a hypomorphic missense mutation with normal gp91phox expression. In a patient being investigated for unusually severe or recurrent infection, a high index of suspicion of immunodeficiency must be maintained.

  3. Biocontrol of Late Blight (Phytophthora capsici Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

    Directory of Open Access Journals (Sweden)

    Mao Sopheareth

    2013-03-01

    Full Text Available A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-ketogluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA and phenylacetic acid (PA. The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phytophthora capsici, pepper plants in pot trials were treated with modified medium only (M, M plus zoospore inoculation (MP, MPC-7 cultured broth (B and B plus zoospore inoculation (BP. With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.

  4. Selection of support materials for immobilization of Burkholderia cepacia PCL3 in treatment of carbofuran-contaminated water.

    Science.gov (United States)

    Laocharoen, S; Plangklang, P; Reungsang, A

    2013-01-01

    This study investigated the utilization of agricultural matrices as the support materials for cell immobilization to improve the technique of bioremediation. Coir, bulrush, banana stem and water hyacinth stem in both delignified and undelignified forms were used to immobilize Burkholderia cepacia PCL3 in bioremediation of carbofuran at 5 mg l(-1) in synthetic wastewater. Undelignified coir was found to be the most suitable support material for cell immobilization, giving the short half-life of carbofuran of 3.40 d (2.8 times shorter than the treatments with free cells). In addition, it could be reused three times without a loss in ability to degrade carbofuran. The growth and degradation ability of free cells were completely inhibited at the initial carbofuran concentrations of 250 mg l(-1), while there was no inhibitory effect of carbofuran on the immobilized cells. The results indicated a great potential for using the agricultural matrices as support material for cell immobilization to improve the overall efficiency of carbofuran bioremediation in contaminated water by B. cepacia PCL3. PMID:24527620

  5. Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli.

    Science.gov (United States)

    Inose, Ken; Fujikawa, Masako; Yamazaki, Tomohiko; Kojima, Katsuhiro; Sode, Koji

    2003-02-21

    We have cloned a 1620-nucleotide gene encoding the catalytic subunit (alpha subunit) of a thermostable glucose dehydrogenase (GDH) from Burkholderia cepacia. The FAD binding motif was found in the N-terminal region of the alpha subunit. The deduced primary structure of the alpha subunit showed about 48% identity to the catalytic subunits of sorbitol dehydrogenase (SDH) from Gluconobacter oxydans and 2-keto-D-gluconate dehydrogenases (2KGDH) from Erwinia herbicola and Pantoea citrea. The alpha subunit of B. cepacia was expressed in Escherichia coli in its active water-soluble form, showing maximum dye-mediated GDH activity at 70 degrees C, retaining high thermal stability. A putative open reading frame (ORF) of 507 nucleotides was also found upstream of the alpha subunit encoding an 18-kDa peptide, designated as gamma subunit. The deduced primary structure of gamma subunit showed about 30% identity to the small subunits of the SDH from G. oxydans and 2KGDHs from E. herbicola and P. citrea. PMID:12573242

  6. Meropenem in cystic fibrosis patients infected with resistant Pseudomonas aeruginosa or Burkholderia cepacia and with hypersensitivity to beta-lactam antibiotics

    DEFF Research Database (Denmark)

    Ciofu, Oana; Jensen, Tim; Pressler, Tacjana;

    1996-01-01

    OBJECTIVE: To assess the efficacy and safety of meropenem, administered on a compassionate basis to 62 cystic fibrosis (CF) patients (age: 24plus minus6 years) with hypersensitivity reactions to beta-lactam antibiotics and/or infection by bacteria resistant to other antibiotics. METHODS: Fifty......-seven patients were chronically infected with Pseudomonas aeruginosa and 5 with Burkholderia cepacia. In total, 124 courses (1 to 6/patient) of meropenem, 2 g three times a day by intravenous infusion (10 to 15 min) for 14 days, were administered. RESULTS: During treatment for P. aeruginosa the mean increase in...... chronic infection with B. cepacia the post treatment FEV1 and FVC values were higher than the pre-treatment values, and all the inflammatory parameters decreased. The geometric means of minimal inhibitory concentration (MICs) (microg/mL) for P. aeruginosa (B. cepacia) were: tobramycin 6 (59...

  7. Identification of Burkholderia cepacia in patients with cystic fibrosis by pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Soltan Dallal

    2014-05-01

    Conclusion: Application of PFGE and identification of pulse-type is a potential tool to enhance the investigation of apparent nosocomial outbreaks of B.cepacia. Similar type of pulse patterns was observed in this study means that all of infection has been from one source; therefore the hypothesis of transferring person to person will be rejected. Base on these results environmental sources sampling should be considered in future investigation.

  8. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production.

    Science.gov (United States)

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2012-04-15

    In this work, lipase produced from an isolated strain Burkholderia sp. C20 was immobilized on magnetic nanoparticles to catalyze biodiesel synthesis. Core-shell nanoparticles were synthesized by coating Fe(3)O(4) core with silica shell. The nanoparticles treated with dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride were used as immobilization supporters. The Burkholderia lipase was then bound to the synthesized nanoparticles for immobilization. The protein binding efficiency on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 97%, while the efficiency was only 76% on non-modified Fe(3)O(4)-SiO(2). Maximum adsorption capacity of lipase on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 29.45 mg g(-1) based on Langmuir isotherm. The hydrolytic kinetics (using olive oil as substrate) of the lipase immobilized on alkyl-grafted Fe(3)O(4)-SiO(2) followed Michaelis-Menten model with a maximum reaction rate and a Michaelis constant of 6251 Ug(-1) and 3.65 mM, respectively. Physical and chemical properties of the nanoparticles and the immobilized lipase were characterized by Brunauer-Emmett-Teller (BET) analysis, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Moreover, the immobilized lipase was used to catalyze the transesterification of olive oil with methanol to produce fatty acid methyl esters (FAMEs), attaining a FAMEs conversion of over 90% within 30 h in batch operation when 11 wt% immobilized lipase was employed. The immobilized lipase could be used for ten cycles without significant loss in its transesterification activity. PMID:22306108

  9. Biotransformation of Cholesterol and 16α,17α-Epoxypregnenolone and Isolation of Hydroxylase in Burkholderia cepacia SE-1

    Science.gov (United States)

    Zhu, XiangDong; Pang, CuiPing; Cao, Yuting; Fan, Dan

    2016-01-01

    The metabolism of cholesterol is critical in eukaryotes as a precursor for vitamins, steroid hormones, and bile acids. Some steroid compounds can be transformed into precursors of steroid medicine by some microorganisms. In this study, the biotransformation products of cholesterol and 16α,17α-epoxypregnenolone produced by Burkholderia cepacia SE-1 were investigated, and a correlative enzyme, hydroxylase, was also studied. The biotransformation products, 7β-hydroxycholesterol, 7-oxocholesterol, and 20-droxyl-16α,17α-epoxypregn-1,4-dien-3-one, were purified by silica gel and Sephadex LH-20 column chromatography and identified by nuclear magnetic resonance and mass spectroscopy. The hydroxylase was isolated from the bacterium and the partial sequences of the hydroxylase, which belong to the catalases/peroxidase family, were analyzed using MS/MS analyses. The enzyme showed activity toward cholesterol and had a specific activity of 37.2 U/mg of protein at 30°C and pH 7.0. PMID:27340662

  10. Trimeric autotransporter adhesins in members of the Burkholderia cepacia complex: a multifunctional family of proteins implicated in virulence

    Directory of Open Access Journals (Sweden)

    Arsénio Mendes Fialho

    2011-12-01

    Full Text Available Trimeric autotransporter adhesins (TAAs are multimeric surface proteins, involved in various biological traits of pathogenic Gram-negative bacteria including adherence, biofilm formation, invasion, survival within eukaryotic cells, serum resistance and cytotoxicity. TAAs have a modular architecture composed by a conserved membrane-anchored C-terminal domain and a variable number of stalk and head domains. In this study, a bioinformatic approach has been used to analyze the distribution and architecture of TAAs among Burkholderia cepacia complex (Bcc genomes. Fifteen genomes were probed revealing a total of 74 encoding sequences. Compared with other bacterial species, the Bcc genomes contain a disproportionately large number of TAAs (two genes to up to 8 genes, such as in B.cenocepacia. Phylogenetic analysis showed that the TAAs grouped into at least eight distinct clusters. TAAs with serine-rich repeats are clearly well separated from others, thereby representing a different evolutionary lineage. Comparative gene mapping across Bcc genomes reveals that TAA genes are inserted within conserved synteny blocks. We further focused our analysis on the epidemic strain B. cenocepacia J2315 in which 7 TAAs were annotated. Among these, 3 TAA-encoding genes (BCAM019, BCAM0223 and BCAM0224 are organized into a cluster and are candidates for multifunctional virulence factors. Here we review the current insights into the functional role of BCAM0224 as a model locus.

  11. Biological control of Botrytis cinerea using the antagonistic and endophytic Burkholderia cepacia Cs5 for vine plantlet protection.

    Science.gov (United States)

    Kilani-Feki, Olfa; Jaoua, Samir

    2011-11-01

    Antifungal activity of the Burkholderia cepacia Cs5 was tested in vitro and in vivo for the control of Botrytis cinerea . Bacterial biomass was significantly improved by the amendment of ZnSO(4), Mo(7)(NH(4))(6)O(24), and mannitol to the NBY medium; consequently, the amount of the secreted fungicides was increased. The quantification of B. cinerea inhibition, in liquid and solid conditions, showed an important sensitivity of this fungus to the strain Cs5 fungicides. Microscopic monitoring impact of these fungicides on mycelium structure showed an important increase in their diameter and ramifications in the presence of 0.75% supernatant. For the in vivo application of the strain Cs5, Vitis vinifera plantlets were inoculated with a Cs5 bacterial suspension, then with B. cinerea spores. The plantlets protection was total and durable when these two inoculations were made 3 weeks apart, which is the time for the endophytic bacterium to colonize the plantlets up to the top leaves. This protection is due to Cs5 antagonism and the elicitation of the plantlets self-defense via the root overgrowth. PMID:22004162

  12. Outbreak of Burkholderia cepacia complex bacteremia in a chemotherapy day care unit due to intrinsic contamination of an antiemetic drug

    Directory of Open Access Journals (Sweden)

    T Singhal

    2015-01-01

    Full Text Available Background: In the end of 2009, a large number of patients with cancer undergoing chemotherapy at the day care unit of a private hospital in Mumbai, India developed Burkholderia cepacia complex (BCC blood stream infection (BSI. Objective: The objectives were to identify the source of the outbreak and terminate the outbreak as rapidly as possible. Materials and Methods: All infection control protocols and processes were reviewed. Intensive training was started for all nursing staff involved in patient care. Cultures were sent from the environment (surfaces, water, air, intravenous fluids, disinfectants and antiseptics and opened/unopened medication. Results: A total of 13 patients with cancer with tunneled catheters were affected with BCC BSI. The isolates were of similar antimicrobial sensitivity. No significant breach of infection control protocols could be identified. Cultures from the prepared intravenous medication bags grew BCC. Subsequently, culture from unused vials of the antiemetic granisetron grew BCC, whereas those from the unopened IV fluid bag and chemotherapy medication were negative. On review, it was discovered that the outbreak started when a new brand of granisetron was introduced. The result was communicated to the manufacturer and the brand was withdrawn. There were no further cases. Conclusions: This outbreak was thus linked to intrinsic contamination of medication vials. We acknowledge a delay in identifying the source as we were concentrating more on human errors in medication preparation and less on intrinsic contamination. We recommend that in an event of an outbreak, unopened vials be cultured at the outset.

  13. In Vitro Analysis of Roles of a Disulfide Bridge and a Calcium Binding Site in Activation of Pseudomonas sp. Strain KWI-56 Lipase

    OpenAIRE

    Yang, Junhao; Kobayashi, Koei; Iwasaki, Yugo; Nakano, Hideo; Yamane, Tsuneo

    2000-01-01

    The expression of lipase from Pseudomonas sp. strain KWI-56 (recently reclassified as Burkholderia cepacia) had been found to be dependent on an activator gene (act) downstream of its structural gene (lip). In this work, the mature lipase was synthesized in an enzymatically active form with a cell-free Escherichia coli S30 coupled transcription-translation system by expressing a recombinant lipase gene (rlip) encoding the mature lipase in the presence of its purified activator or by coexpress...

  14. Colonization of Morus alba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1

    OpenAIRE

    Lu Baoyun; Gao Huijv; Gai Yingping; Lu Guobing; Ji Xianling; Kong Lingrang; Mu Zhimei

    2010-01-01

    Abstract Background Anthracnose, caused by Colletotrichum dematium, is a serious threat to the production and quality of mulberry leaves in susceptible varieties. Control of the disease has been a major problem in mulberry cultivation. Some strains of Burkholderia cepacia were reported to be useful antagonists of plant pests and could increase the yields of several crop plants. Although B. cepacia Lu10-1 is an endophytic bacterium obtained from mulberry leaves, it has not been deployed to con...

  15. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Y.; Carlson, R.; Tharpe, W.; Schell, M.A. [Univ. of Georgia, Athens, GA (United States)

    1998-10-01

    Genetic manipulation of fluorescent pseudomonads has provided major insight into their production of antifungal molecules and their role in biological control of plant disease. Burkholderia cepacia also produces antifungal activities, but its biological control activity is much less well characterized, in part due to difficulties in applying genetic tools. Here the authors report genetic and biochemical characterization of a soil isolate of B. cepacia relating to its production of an unusual antibiotic that is very active against a variety of soil fungi. Purification and preliminary structural analyses suggest that this antibiotic (called AFC-BC11) is a novel lipopeptide associated largely with the cell membrane. Analysis of conditions for optimal production of AFC-BC11 indicated stringent environmental regulation of its synthesis. Furthermore, the authors show that production of AFC-BC11 is largely responsible for the ability of B. cepacia BC11 to effectively control the damping-Off of cotton caused by the fungal pathogen Rhizoctonia solani in a gnotobiotic system. Using Tn5 mutagenesis, they identified, cloned, and characterized a region of the genome of strain BC11 that is required for production of this antifungal metabolite. DNA sequence analysis suggested that this region encodes proteins directly involved in the production of a nonribosomally synthesized lipopeptide.

  16. Meropenem in cystic fibrosis patients infected with resistant Pseudomonas aeruginosa or Burkholderia cepacia and with hypersensitivity to beta-lactam antibiotics.

    Science.gov (United States)

    Ciofu, Oana; Jensen, Tim; Pressler, Tacjana; Johansen, Helle Krogh; Koch, Christian; Høiby, Niels

    1996-01-01

    OBJECTIVE: To assess the efficacy and safety of meropenem, administered on a compassionate basis to 62 cystic fibrosis (CF) patients (age: 24plus minus6 years) with hypersensitivity reactions to beta-lactam antibiotics and/or infection by bacteria resistant to other antibiotics. METHODS: Fifty-seven patients were chronically infected with Pseudomonas aeruginosa and 5 with Burkholderia cepacia. In total, 124 courses (1 to 6/patient) of meropenem, 2 g three times a day by intravenous infusion (10 to 15 min) for 14 days, were administered. RESULTS: During treatment for P. aeruginosa the mean increase in pulmonary function (as a percentage of the predictive values) was 5.6% for FEV1 (forced expiratory volume in the first second) and 8.6% for FVC (forced vital capacity). C-reactive protein and erythrocyte sedimentation rate (ESR) and leukocyte count decreased significantly. In courses administered for chronic infection with B. cepacia the post treatment FEV1 and FVC values were higher than the pre-treatment values, and all the inflammatory parameters decreased. The geometric means of minimal inhibitory concentration (MICs) (microg/mL) for P. aeruginosa (B. cepacia) were: tobramycin 6 (59), ciprofloxacin 1.2 (9.7), piperacillin 49 (16.3), ceftazidime 26 (23), aztreonam 26 (35), imipenem 6.4 (not determined) and meropenem 5.1 (4.8). No statistically significant increase in the MICs of meropenem for either pathogen occurred during therapy. Of the 124 courses, 115 were tolerated without any clinical complaint. The following side effects were observed: nausea (0.8%), itching (4%), rash (3.2%), drug fever (1.6%). CONCLUSIONS: Meropenem proved to be a valuable drug in the treatment of CF patients with chronic pulmonary infection with multiresistant P. aeruginosa and B. cepacia and with hypersensitivity reactions to other beta-lactam drugs. PMID:11866824

  17. Direct Detection of Burkholderia cepacia in Susceptible Pharmaceutical Products Using Semi-Nested PCR.

    Science.gov (United States)

    Attia, Mohamed A; Ali, Amal E; Essam, Tamer M; Amin, Magdy A

    2016-01-01

    Burkholderia cepaciahas recently received a considerable attention as one of the major risks in susceptible pharmaceutical products. This microorganism can easily propagate and cause vast and severe contamination, especially to the water supplies for pharmaceutical companies. Moreover, it proliferates within the products and can cause severe infections for humans. Therefore, fast and sensitive detection of these bacteria is of a great demand. The present study introduces improved application of a polymerase chain reaction assay with relatively high sensitivity and specificity for the direct detection ofB. cepaciafrom the aqueous pharmaceutical products. A semi-nested polymerase chain reaction approach using the primer set BCR1/BCR2 followed by BCR1/Mr yielding a 465 bp fragment of the recA gene was applied and tested using both crude lysate from isolated colonies and DNA directly extracted from artificially prepared and spiked reference syrup. The polymerase chain reaction assay showed no interference with other bacterial reference and environmental strains tested, includingStaphylococcus aureusATCC® 6538,Pseudomonas aeruginosaATCC® 9027,Escherichia coliATCC® 8739,Salmonella abonyNCTC® 6017,Bacillus subtilisATCC® 6633,Micrococcus luteus, Staphylococcus warneri, Pseudomonas fluorescens, Pseudomonas putida, andRalstonia pickettii Moreover, this semi-nested assay showed a detection limit of around 10 colony-forming units per sample and could detectB. cepaciastrains isolated from a municipal pre-treated potable water tank. Comparing the results for detection ofB. cepaciain 100 randomly collected commercial syrup preparations using both conventional standard method and polymerase chain reaction assay revealed thatB. cepaciawas detected in two samples using polymerase chain reaction assay while all samples showed negative results by conventional culturing and biochemical methods. These results highlight the advantage of using this polymerase chain reaction assay to

  18. Healthcare-associated respiratory tract infection and colonization in an intensive care unit caused by Burkholderia cepacia isolated in mouthwash

    Directory of Open Access Journals (Sweden)

    Jeannete Zurita

    2014-12-01

    Conclusions: Our findings strongly suggest that alcohol-free mouthwash solution intrinsically contaminated with B. cepacia was the source of these colonizations and infections involving adults in the ICU.

  19. Biochemical and functional studies on the Burkholderia cepacia complex bceN gene, encoding a GDP-D-mannose 4,6-dehydratase.

    Directory of Open Access Journals (Sweden)

    Sílvia A Sousa

    Full Text Available This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47. Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min(-1.mg(-1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis.

  20. Minocycline activity tested against Acinetobacter baumannii complex, Stenotrophomonas maltophilia, and Burkholderia cepacia species complex isolates from a global surveillance program (2013).

    Science.gov (United States)

    Flamm, Robert K; Castanheira, Mariana; Streit, Jennifer M; Jones, Ronald N

    2016-07-01

    Clinical isolates of Acinetobacter baumannii complex (1312), Stenotrophomonas maltophilia (464), and Burkholderia cepacia species complex (30) were selected from medical centers in the United States (USA), Europe and the Mediterranean (EU-M) region, Latin America, and Asia Pacific. Only one isolate per infected patient episode was included and local identifications were confirmed by the monitoring laboratory. Susceptibility testing was performed at the monitoring laboratory using the reference broth microdilution method as described by Clinical and Laboratory Standards Institute (CLSI). A. baumannii complex were classified as MDR (multi-drug resistant [MDR]; nonsusceptible to ≥1 agent in ≥3 antimicrobial classes) and extensively drug-resistant (XDR; nonsusceptible to ≥1 agent in all but ≤2 antimicrobial classes). A total of 81.6% of A. baumannii complex were MDR. Colistin was the most active agent against MDR A. baumannii complex. Minocycline was the most active "tetracycline" against these organisms based on susceptibility. Against B. cepacia, trimethoprim-sulfamethoxazole (MIC90, 2 μg/mL; 100.0% susceptible) was the most active agent tested. Overall, minocycline was the most active tetracycline tested against A. baumannii complex and S. maltophilia isolates collected from patients throughout EU-M, USA, Latin America, and the Asia-Pacific. Minocycline, particularly the intravenous formulation, has activity against several ESKAPE pathogens and merits consideration in seriously ill patients where treatment options may be limited due to the presence of MDR bacteria. PMID:27112832

  1. Colonization of Morus alba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1

    Directory of Open Access Journals (Sweden)

    Lu Baoyun

    2010-09-01

    Full Text Available Abstract Background Anthracnose, caused by Colletotrichum dematium, is a serious threat to the production and quality of mulberry leaves in susceptible varieties. Control of the disease has been a major problem in mulberry cultivation. Some strains of Burkholderia cepacia were reported to be useful antagonists of plant pests and could increase the yields of several crop plants. Although B. cepacia Lu10-1 is an endophytic bacterium obtained from mulberry leaves, it has not been deployed to control C. dematium infection in mulberry nor its colonization patterns in mulberry have been studied using GFP reporter or other reporters. The present study sought to evaluate the antifungal and plant-growth-promoting properties of strain Lu10-1, to clarify its specific localization within a mulberry plant, and to better understand its potential as a biocontrol and growth-promoting agent. Results Lu10-1 inhibited conidial germination and mycelial growth of C. dematium in vitro; when applied on leaves or to the soil, Lu10-1 also inhibited the development of anthracnose in a greenhouse, but the effectiveness varied with the length of the interval between the strain treatment and inoculation with the pathogen. Strain Lu10-1 could survive in both sterile and non-sterile soils for more than 60 days. The strain produced auxins, contributed to P solubilization and nitrogenase activity, and significantly promoted the growth of mulberry seedlings. The bacteria infected mulberry seedlings through cracks formed at junctions of lateral roots with the main root and in the zone of differentiation and elongation, and the cells were able to multiply and spread, mainly to the intercellular spaces of different tissues. The growth in all the tissues was around 1-5 × 105 CFU per gram of fresh plant tissue. Conclusions Burkholderia cepacia strain Lu10-1 is an endophyte that can multiply and spread in mulberry seedlings rapidly and efficiently. The strain is antagonistic to C

  2. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility

    DEFF Research Database (Denmark)

    Huber, B.; Riedel, K.; Hentzer, Morten; Heydorn, Arne; Gotschlich, A.; Givskov, Michael Christian; Molin, Søren; Eberl, Leo

    2001-01-01

    rapidly colonize appropriate substrata. Evidence is provided that swarming motility of B. cepacia is quorum-sensing-regulated, possibly through the control of biosurfactant production. Complementation of the cepR mutant H111-R with different biosurfactants restored swarming motility while biofilm...... demonstrated that one of these mutants no longer produces N-acylhomoserine lactones (AHLs) due to an inactivation of the cepR gene. cepR and the cepI AHL synthase gene together constitute the cep quorum-sensing system of B. cepacia. By using a gene replacement method, two defined mutants, H111-I and H111-R......, were constructed in which cepI and cepR, respectively, had been inactivated. These mutants were used to demonstrate that biofilm formation by B. cepacia H111 requires a functional cep quorum-sensing system. A detailed quantitative analysis of the biofilm structures formed by wild-type and mutant...

  3. Indagine epidemiologica locale sulle infezioni sostenute da Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cepacia e sensibilità agli antibiotici di questi microrganismi.

    Directory of Open Access Journals (Sweden)

    Valeria Di Marcello

    2007-03-01

    Full Text Available Background: The aim of this local surveillance study was to determine the distribution of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cepacia in our geographic area, their impact in the hospital and community acquired infections and their resistance to antimicrobial agents currently used in the treatment of infections due to these microrganisms. Materials and Methods: During the period January 2001 - June 2003, 14.200 clinical isolates were collected from urine,wounds, catheters, body fluids, blood, respiratory tract specimens. Bacterial identifications were performed according to the standard methods (Murray, 2003 and antibiotic susceptibility tests were carry out in microassay by the automated system MicroScan (Dade Behring, Milano, Italy.The following antimicrobial agents were tested: piperacillin (PIP, ticarcillin (TIC, piperacillin-tazobactam (TZP, ticarcillin-clavulanic acid (TTC, ceftazidime (CAZ, ceftriaxone (CRO, aztreonam (ATM, imipenem (IPM, trimethoprim-sulfamethoxazole (SXT, gentamicin (CN, amikacin (AK, tobramycin (TOB, ciprofloxacin (CIP. Results: A total of 994 Pseudomonadaceae were isolated from in- (67% and out-patients (33%.They were P.aeruginosa (81%, other Pseudomonas species as P.fluorescens and P.putida (8%, S.maltophilia (9% and B.cepacia (2%.The great majority of the strains were collected from respiratory tract specimens (70% and urine (15%.The divisions from which derived the greater quantity of isolates were pediatric (33.8%, intensive care (22.7% and pneumology (10% units.Antibiotics more active against P. aeruginosa were IPM, CAZ,AK and TZP. IPM was effective against B. cepacia also.The other drugs, except SXT, displayed against this microrganism high rates of resistance. Even S. maltophilia was not susceptible to much antimicrobial agents, whereas SXT was the drug more active against this germ. Conclusion: P. aeruginosa was the microrganism more frequently isolated among non-fermenting Gram

  4. Phosphorus uptake of an arbuscular mycorrhizal fungus is not effected by the biocontrol bacterium ¤Burkholderia cepacia¤

    DEFF Research Database (Denmark)

    Ravnskov, S.; Larsen, J.; Jakobsen, I.

    2002-01-01

    intraradices (BEG87) were studied in root-free soil compartments separated from a rooting compartment by a fine nylon-mesh. B. cepacia had no effect on AM fungal biomass and energy reserves measured using the signature fatty acid 16:1omega5 from phospholipid fatty acids (PLFAs) and neutral lipid fatty acids...

  5. Physico-chemical, spectroscopical and thermal characterization of bio diesel obtained by enzymatic route as a tool to select the most efficient immobilized lipase

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G.A.M.; Ros, P.C.M. da; Souza, L.T.A.; Costa, A.P.O.; Castro, H.F. de, E-mail: heizir@dequi.eel.usp.br [Engineering School of Lorena. University of Sao Paulo (EEL/USP), Lorena, SP (Brazil)

    2012-01-15

    Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degree C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and {sup 1}H NMR spectroscopy, suggested that the bio diesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage. (author)

  6. Physico-chemical, spectroscopical and thermal characterization of bio diesel obtained by enzymatic route as a tool to select the most efficient immobilized lipase

    International Nuclear Information System (INIS)

    Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degree C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and 1H NMR spectroscopy, suggested that the bio diesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage. (author)

  7. Burkholderia cepacia complex and its drug resistance%洋葱伯克霍尔德菌复合体及其耐药性

    Institute of Scientific and Technical Information of China (English)

    温丽; 殷瑜; 陈代杰

    2011-01-01

    洋葱伯克霍尔德菌复合体(BCC)是一组基因型不同、表型相近的细菌,上世纪80年代作为一种重要的临床病原菌尤见于囊性纤维化和慢性肉芽肿病患者.BCC可在患者之间传播且对多种抗生素高度耐药,现行治疗方法尚无法根治BCC引起的感染.本文简要综述BCC及其耐药性、治疗现状及潜在药物治疗靶点开发.%Burkholderia cepacia complex (BCC) is a group of bacteria with different genotypes and similar phenotypes. It emerged in the 1980s as important human pathogens, especially to patients with cystic fibrosis and chronic granulomatous. BCC can be spread between patients and resistant to various antibacterial drugs. Current treatment can not eradicate BCC infection. This review describes BCC, its resistance and current status of treatment and potential drug targets development.

  8. Cepacia Syndrome in a Non-Cystic Fibrosis Patient

    OpenAIRE

    Naomi Hauser; Jose Orsini

    2015-01-01

    Burkholderia (formerly Pseudomonas) cepacia complex is a known serious threat to patients with cystic fibrosis, in whom it has the potential to cause the fatal combination of necrotizing pneumonia, worsening respiratory failure, and bacteremia, known as Cepacia syndrome. The potential for this pathogen to infect non-cystic fibrosis patients is limited and its epidemiology is poorly understood. Previously reported cases of severe Burkholderia cepacia complex lung infection in immunocompetent h...

  9. Avaliação da lipase extracelular de Pseudomonas cepacia para purificação em sistema bifásico aquoso

    OpenAIRE

    Giovana Silva Padilha; Juliana Ferrari Ferreira; Gabriel Luis Castiglioni; Ranulfo Monte Alegre; Elias Basile Tambourgi

    2011-01-01

    O presente trabalho teve como objetivo a produção de lipase a partir de Pseudomona cepacia por fermentação líquida em biorreator do tipo Bioflo III. As fermentações foram conduzidas a 150 rpm durante 96 horas a 30 °C. Analisou-se a atividade enzimática em diferentes condições de temperatura (20 a 50 °C) e pH (3,0 a 11,0), e obtiveram-se 37 °C e 8,0, as condições ótimas, respectivamente. Para avaliar a estabilidade térmica, a enzima foi incubada em temperaturas de 40, 50 e 60 °C durante 120 mi...

  10. Burkholderia fungorum Septicemia

    OpenAIRE

    Gerrits, G. Peter; Klaassen, Corné; Coenye, Tom; Vandamme, Peter; Meis, Jacques F

    2005-01-01

    We report the first case of community-acquired bacteremia with Burkholderia fungorum, a newly described member of the Burkholderia cepacia complex. A 9-year-old girl sought treatment with septic arthritis in her right knee and ankle with soft tissue involvement. Commercial identification systems did not identify the causative microorganism.

  11. Common duckweed (Lemna minor is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria.

    Directory of Open Access Journals (Sweden)

    Euan L S Thomson

    Full Text Available Members of the Burkholderia cepacia complex (Bcc have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R(2 = 0.81 was found between the strains' virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R(2 = 0.93 was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhB(Bc. Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial

  12. Architecture of Burkholderia cepacia complex σ70 gene family: evidence of alternative primary and clade-specific factors, and genomic instability

    Directory of Open Access Journals (Sweden)

    Menard Aymeric

    2007-09-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (Bcc groups bacterial species with beneficial properties that can improve crop yields or remediate polluted sites but can also lead to dramatic human clinical outcomes among cystic fibrosis (CF or immuno-compromised individuals. Genome-wide regulatory processes of gene expression could explain parts of this bacterial duality. Transcriptional σ70 factors are components of these processes. They allow the reversible binding of the DNA-dependent RNA polymerase to form the holoenzyme that will lead to mRNA synthesis from a DNA promoter region. Bcc genome-wide analyses were performed to investigate the major evolutionary trends taking place in the σ70 family of these bacteria. Results Twenty σ70 paralogous genes were detected in the Burkholderia cenocepacia strain J2315 (Bcen-J2315 genome, of which 14 were of the ECF (extracytoplasmic function group. Non-ECF paralogs were related to primary (rpoD, alternative primary, stationary phase (rpoS, flagellin biosynthesis (fliA, and heat shock (rpoH factors. The number of σ70 genetic determinants among this genome was of 2,86 per Mb. This number is lower than the one of Pseudomonas aeruginosa, a species found in similar habitats including CF lungs. These two bacterial groups showed strikingly different σ70 family architectures, with only three ECF paralogs in common (fecI-like, pvdS and algU. Bcen-J2315 σ70 paralogs showed clade-specific distributions. Some paralogs appeared limited to the ET12 epidemic clone (ecfA2, particular Bcc species (sigI, the Burkholderia genus (ecfJ, ecfF, and sigJ, certain proteobacterial groups (ecfA1, ecfC, ecfD, ecfE, ecfG, ecfL, ecfM and rpoS, or were broadly distributed in the eubacteria (ecfI, ecfK, ecfH, ecfB, and rpoD-, rpoH-, fliA-like genes. Genomic instability of this gene family was driven by chromosomal inversion (ecfA2, recent duplication events (ecfA and RpoD, localized (ecfG and large scale deletions (sig

  13. Powder formulation of Burkholderia cepacia for control of rape seed damping-off caused by Rhizoctonia solani.

    Science.gov (United States)

    Sharifi-Tehrani, A; Ahmadzadeh, M; Sarani, S; Farzaneh, M

    2007-01-01

    Talc-based formulation of Burkholderia cepaci strain Bu1 was tested as seed and soil drenchs separately for its ability to control Rhizoctonia soloni the causal agent of rape seed damping-off in greenhouse and field trials. In general, the formulated bacteria was more effective to suppress the disease than the suspension of bacteria cells in carboxymethylcellulose solution (1% w/v), in both greenhouse and field trials. The formulation of strain Bul as soil and seed treatments had the greatest effect on reducing the rape seed damping-off in greenhouse and field trials (66.7, 53.3, 64.4 and 40% respectively). The formulation of strain Bu1 as soil and seed treatments were the most effective treatments to increase the root dry weights in the infected soil in greenhouse. The formulation of strain Bul as soil drench had the greatest effect on enhancement of the fresh weight of roots and stem fresh and dry weights. The formulation of strain Bu1 stored at 4 degrees C exhibited better shelf Life and efficacy in vitro than it's counterpart stored at 25 degrees C. PMID:18399433

  14. Novel Selective Medium for Isolation of Burkholderia pseudomallei

    OpenAIRE

    Howard, K; Inglis, T. J. J.

    2003-01-01

    Isolation of Burkholderia pseudomallei currently relies on the use of Ashdown's selective agar (ASA). We designed a new selective agar (Burkholderia pseudomallei selective agar [BPSA]) to improve recovery of the more easily inhibited strains of B. pseudomallei. B. pseudomallei, Burkholderia cepacia, and Pseudomonas aeruginosa were used to determine the selectivity and sensitivity of BPSA. BPSA was more inhibitory to P. aeruginosa and B. cepacia and should make recognition of Burkholderia spec...

  15. Lipase

    Science.gov (United States)

    Lipase is a digestive enzyme that is found in many plants, animals, bacteria, and molds. An enzyme ... particular biochemical reaction in the body. People use lipase as a medicine. Lipase is used for indigestion, ...

  16. In Vitro Susceptibilities of Burkholderia mallei in Comparison to Those of Other Pathogenic Burkholderia spp.

    OpenAIRE

    Kenny, D J; Russell, P; Rogers, D.; Eley, S M; Titball, R W

    1999-01-01

    The in vitro antimicrobial susceptibilities of isolates of Burkholderia mallei to 16 antibiotics were assessed and compared with the susceptibilities of Burkholderia pseudomallei and Burkholderia cepacia. The antibiotic susceptibility profile of B. mallei resembled that of B. pseudomallei more closely than that of B. cepacia, which corresponds to their similarities in terms of biochemistry, antigenicity, and pathogenicity. Ceftazidime, imipenem, doxycycline, and ciprofloxacin were active agai...

  17. Screening of lipases for the synthesis of xylitol monoesters by chemoenzymatic esterification and the potential of microwave and ultrasound irradiations to enhance the reaction rate.

    Science.gov (United States)

    Rufino, Alessandra R; Biaggio, Francisco C; Santos, Julio C; de Castro, Heizir F

    2010-07-01

    Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate. PMID:20420851

  18. Avaliação da lipase extracelular de Pseudomonas cepacia para purificação em sistema bifásico aquoso

    Directory of Open Access Journals (Sweden)

    Giovana Silva Padilha

    2011-03-01

    Full Text Available O presente trabalho teve como objetivo a produção de lipase a partir de Pseudomona cepacia por fermentação líquida em biorreator do tipo Bioflo III. As fermentações foram conduzidas a 150 rpm durante 96 horas a 30 °C. Analisou-se a atividade enzimática em diferentes condições de temperatura (20 a 50 °C e pH (3,0 a 11,0, e obtiveram-se 37 °C e 8,0, as condições ótimas, respectivamente. Para avaliar a estabilidade térmica, a enzima foi incubada em temperaturas de 40, 50 e 60 °C durante 120 minutos. Em uma segunda etapa, foram realizados experimentos preliminares para verificar as condições adequadas de partição da enzima, bem como sua estabilidade e condições ótimas de hidrólise frente às modificações de temperatura e pH. Foram preparadas soluções de PEG 1500, 4000 e 6000 a 50% p/p e soluções tampão fosfato de pHs 6, 7 e 8. Foi feita a caracterização de um sistema bifásico aquoso (SBA a partir da preparação de soluções estoques de PEG com massas molares de 1500, 4000 e 6000 (50% w/w e tampão fosfato pH 6,7 e 8,0 (20% w/w de KH2PO4/K2HPO4. Esta caracterização do SBA posteriormente poderá ser utilizada para partição de lipases, bem como de biomoléculas que estejam dentro dessa faixa de pH.

  19. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.

    Science.gov (United States)

    Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E

    2014-05-01

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times. PMID:24724828

  20. Use of a Real-Time PCR TaqMan Assay for Rapid Identification and Differentiation of Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    U'Ren, Jana M.; Matthew N. Van Ert; James M Schupp; Easterday, W. Ryan; Simonson, Tatum S.; Okinaka, Richard T; Pearson, Talima; Keim, Paul

    2005-01-01

    A TaqMan allelic-discrimination assay designed around a synonymous single-nucleotide polymorphism was used to genotype Burkholderia pseudomallei and Burkholderia mallei isolates. The assay rapidly identifies and discriminates between these two highly pathogenic bacteria and does not cross-react with genetic near neighbors, such as Burkholderia thailandensis and Burkholderia cepacia.

  1. The Burkholderia cenocepacia OmpA-like protein BCAL2958: identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients.

    Science.gov (United States)

    Sousa, Sílvia A; Morad, Mostafa; Feliciano, Joana R; Pita, Tiago; Nady, Soad; El-Hennamy, Rehab E; Abdel-Rahman, Mona; Cavaco, José; Pereira, Luísa; Barreto, Celeste; Leitão, Jorge H

    2016-12-01

    Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc. PMID:27325348

  2. Real-time PCR Method for the Quantification of Burkholderia Cepacia Complex Attached to Lung Epithelial Cells and Inhibitionn of that Attachment

    OpenAIRE

    Wight, Ciara; Herbert, Gillian; Pilkington, Ruth; Callaghan, Máire; McClean, Siobhan

    2010-01-01

    To develop a rapid method to quantify the attachment of the cystic fibrosis pathogen, Burkholderia multivorans, to lung epithelial cells (16HBE14o(-)) using real-time PCR with a view to monitoring potential inhibition of lung cell attachment. Mammalian and bacterial DNA were purified from bacteria attached to lung epithelial cells. The relative amount of bacteria attached was determined by amplification of the recA gene relative to the human GAPDH gene, in the presence of SYBR Green. The meth...

  3. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    Science.gov (United States)

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150). PMID:26724947

  4. Draft Genome Sequence of Burkholderia cenocepacia Strain CEIB S5-2, a Methyl Parathion- and p-Nitrophenol-Degrading Bacterium, Isolated from Agricultural Soils in Morelos, Mexico

    OpenAIRE

    Martínez-Ocampo, Fernando; Fernández López, Maikel Gilberto; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, M. Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando; Villalobos-López, Miguel A.; Dantán-González, Edgar

    2016-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2.

  5. Draft Genome Sequence of Burkholderia cenocepacia Strain CEIB S5-2, a Methyl Parathion- and p-Nitrophenol-Degrading Bacterium, Isolated from Agricultural Soils in Morelos, Mexico.

    Science.gov (United States)

    Martínez-Ocampo, Fernando; Fernández López, Maikel Gilberto; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, M Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando; Villalobos-López, Miguel A; Dantán-González, Edgar

    2016-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2. PMID:27125479

  6. Draft Genome Sequence of Burkholderia cenocepacia Strain CEIB S5-2, a Methyl Parathion- and p-Nitrophenol-Degrading Bacterium, Isolated from Agricultural Soils in Morelos, Mexico

    Science.gov (United States)

    Martínez-Ocampo, Fernando; Fernández López, Maikel Gilberto; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, M. Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando; Villalobos-López, Miguel A.

    2016-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2. PMID:27125479

  7. Characterization of the Poly-β-1,6-N-Acetylglucosamine Polysaccharide Component of Burkholderia Biofilms ▿

    OpenAIRE

    Yakandawala, Nandadeva; Gawande, Purushottam V.; LoVetri, Karen; Cardona, Silvia T.; Romeo, Tony; Nitz, Mark; Madhyastha, Srinivasa

    2011-01-01

    We demonstrated the production of poly-β-1,6-N-acetylglucosamine (PNAG) polysaccharide in the biofilms of Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia cepacia, and Burkholderia cenocepacia using an immunoblot assay for PNAG. These results were confirmed by further studies, which showed that the PNAG hydrolase, dispersin B, eliminated immunoreactivity of extracts from the species that were tested (B. cenocepacia and B. multivorans). Dispersin B als...

  8. The Tomato Rhizosphere, an Environment Rich in Nitrogen-Fixing Burkholderia Species with Capabilities of Interest for Agriculture and Bioremediation▿

    OpenAIRE

    Caballero-Mellado, Jesús; Onofre-Lemus, Janette; Estrada-De Los Santos, Paulina; Martínez-Aguilar, Lourdes

    2007-01-01

    Burkholderia strains are promising candidates for biotechnological applications. Unfortunately, most of these strains belong to species of the Burkholderia cepacia complex (Bcc) involved in human infections, hampering potential applications. Novel diazotrophic Burkholderia species, phylogenetically distant from the Bcc species, have been discovered recently, but their environmental distribution and relevant features for agro-biotechnological applications are little known. In this work, the oc...

  9. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  10. Draft Genome Sequence of Burkholderia dolosa PC543 Isolated from Cystic Fibrosis Airways

    OpenAIRE

    Workentine, Matthew L; Michael G Surette; Bernier, Steve P

    2014-01-01

    Burkholderia dolosa is a member of the Burkholderia cepacia complex, a group of opportunistic bacterial pathogens often associated with fatal chronic infections in the lungs of patients suffering from cystic fibrosis (CF). Here, we announce the draft genome sequence of B. dolosa PC543 (LMG 19468), a CF airway isolate.

  11. Genome Sequence of Burkholderia cenocepacia H111, a Cystic Fibrosis Airway Isolate

    OpenAIRE

    Carlier, A; Agnoli, K; Pessi, G; Suppiger, A; Jenul, C; Schmid, N; Tummler, B.; Pinto-Carbo, M; Eberl, L

    2014-01-01

    The Burkholderia cepacia complex (BCC) is a group of related bacterial species that are commonly isolated from environmental samples. Members of the BCC can cause respiratory infections in cystic fibrosis patients and immunocompromised individuals. We report here the genome sequence of Burkholderia cenocepacia H111, a well-studied model strain of the BCC.

  12. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein

    OpenAIRE

    Ghequire, Maarten; De Canck, Evelien; Wattiau, Pierre; Van Winge, Iris; Loris, Remy; Coenye, Tom; De Mot, René

    2013-01-01

    Abstract Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombin...

  13. Development of a recA Gene-Based Identification Approach for the Entire Burkholderia Genus

    OpenAIRE

    Payne, George W.; Vandamme, Peter; Morgan, Sara H.; LiPuma, John J.; Coenye, Tom; Weightman, Andrew J.; Jones, T. Hefin; Mahenthiralingam, Eshwar

    2005-01-01

    Burkholderia is an important bacterial genus containing species of ecological, biotechnological, and pathogenic interest. With their taxonomy undergoing constant revision and the phenotypic similarity of several species, correct identification of Burkholderia is difficult. A genetic scheme based on the recA gene has greatly enhanced the identification of Burkholderia cepacia complex species. However, the PCR developed for the latter approach was limited by its specificity for the complex. By ...

  14. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    International Nuclear Information System (INIS)

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  15. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Isabel; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: graca@qmc.ufsc.b [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica

    2011-07-01

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  16. Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate.

    Science.gov (United States)

    Mathpati, Ashwini C; Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2016-03-01

    The present work deals with the kinetic modeling and docking study for the furfuryl acetate synthesis using immobilized Burkholderia cepacia (BCL) lipase. Initially various lipases were immobilized on hydroxypropyl methyl cellulose (HPMC) and poly vinyl alcohol (PVA) base hybrid polymer matrix. After screening of various immobilized biocatalysts, HPMC:PVA:BCL was found to be a robust biocatalyst. Various reaction conditions were optimized using response surface methodology (RSM) based on a four-factor-three-level Box-Behnken design. The optimal conditions were obtained at molar ratio of 1:2 of furfuryl alcohol to acyl donor, temperature 50°C with catalyst loading of 30mg in 3mL of non-aqueous media toluene. Under these conditions 99.98% yield was obtained in 3h. The Arrhenius plot showed that the activation energy for furfuryl acetate synthesis was 10.68kcal/mol. The kinetics of reaction was studied close to optimized conditions which obey order bi-bi model. Molecular docking study was carried out to understand the active site of BCL which is responsible for the reaction. It was observed that the reaction proceeds via acylation of the active serine of BCL and demonstrating strong hydrogen bond between the substrate and histidine site. The catalyst recyclability study was carried up to five cycles. PMID:26827768

  17. The novel mesoporous silica aerogel modified with protic ionic liquid for lipase immobilization

    Directory of Open Access Journals (Sweden)

    Anderson S. Barbosa

    2016-05-01

    Full Text Available Mesoporous silica supports (aerogels were used to immobilize Burkholderia cepacia lipase (BC by encapsulation (EN or ENIL, physical adsorption (ADS or ADSIL and covalent binding (CB or CBIL into or onto the aerogel modified with protic ionic liquid (PIL. Yield immobilization (Ya and operational stability were determined by the hydrolytic reaction of olive oil. Ya (37% to 83% by physical adsorption and operational stability (2 to 23 batches by encapsulation increased when the support was modified with PIL. For immobilized derivates observed by the BET method, in this case ADS and CB for ADSIL and CBIL, increased pores size was observed, possibly due to the higher amount of BC immobilized conferring Ya and operational stability. This effect was probably attributed to the entry of the enzyme into the pores of the silica aerogel structure. SEM images showed a change in the structure and properties of immobilized lipase derived with PIL. A characteristic FTIR band was obtained for the silanol groups and amides I, IV and V, demonstrating the efficiency of immobilization of BC. The most efficient biocatalysts were ADSIL with regard to yield immobilization and ENIL for operational stability.

  18. Virulence and Cellular Interactions of Burkholderia multivorans in Chronic Granulomatous Disease▿

    OpenAIRE

    Zelazny, Adrian M.; Ding, Li; Elloumi, Houda Z.; Brinster, Lauren R; Benedetti, Fran; Czapiga, Meggan; Ulrich, Ricky L.; Ballentine, Samuel J.; Goldberg, Joanna B.; Sampaio, Elizabeth P.; Holland, Steven M.

    2009-01-01

    Chronic granulomatous disease (CGD) patients are susceptible to life-threatening infections by the Burkholderia cepacia complex. We used leukocytes from CGD and healthy donors and compared cell association, invasion, and cytokine induction by Burkholderia multivorans strains. A CGD isolate, CGD1, showed higher cell association than that of an environmental isolate, Env1, which correlated with cell entry. All B. multivorans strains associated significantly more with cells from CGD patients tha...

  19. [Meningoencephalitis caused by Pseudomonas cepacia].

    Science.gov (United States)

    Pérez Monrás, Miriam Fina; Batlle Almodóvar, María del Carmen; González, Cernero; Tamargo Martínez, Isis; Meneses, Félix Dickinson

    2006-01-01

    A case of meningoencephalitis of bacterial etiology caused by Pseudomonas cepacia was described. The strain was received at the Reference Laboratory of Bacterial Acute Respiratory Infections of "Pedro Kouri" Institute of Tropical Medicine, where its microbiological identification was confirmed. This isolation was a finding in an adult immunocompetent patient. The evolution was favourable with no sequelae for his future life. Pseudomona cepacia has been associated with respiratory infections in patients with cystic fibrosis. Patients with Pseudomonas cepacia may be asymptomatic or present fatal acute and fulminant infection. PMID:23427437

  20. Concomitant Cryptococcosis and Burkholderia Infection in an Asymptomatic Lung Transplant Patient with Cystic Fibrosis

    OpenAIRE

    2010-01-01

    Concomitant pulmonary infections with Cryptococcus neoformans and Burkholderia cepacia in lung transplant recipients are very rare and create unique diagnostic and therapeutic dilemmas. Herein, we present a double lung transplant patient with cystic fibrosis who was found to have coinfection with these two rare organisms, though he was completely asymptomatic.

  1. Imobilização de lipase por encapsulação em sílica aerogel

    Directory of Open Access Journals (Sweden)

    Anderson dos S. Barbosa

    2014-07-01

    Full Text Available Lipase from Burkholderia cepacia was immobilized in a silica matrix and dried in high pressure carbon dioxide media (aerogel. The protic ionic liquid (PIL was used in the immobilization process by encapsulation. The objective of this work was to evaluate the influence of the drying technique using supercritical carbon dioxide in biocatalysts obtained through the sol-gel technique by evaluating temperature and pressure and, after selecting the best drying conditions, to investigate the application of the technique for the biocatalyst using ionic liquid as an additive in the immobilization process. The results for immobilized biocatalysts showed that the best conditions of pressure and temperature were 100 bar and 25 ºC, respectively, giving a total activity recovery yield of 37.27% without PIL (EN and 44.23% with PIL (ENLI. The operational stability of the biocatalysts showed a half-life of 11.4 h for ENLI and 6 h for EN. Therefore, solvent extraction using supercritical CO2, besides shortening drying time, offers little resistance to the immobilization of lipases, since their macropores provide ample room for their molecules. The use of the ionic liquid as an additive in the process studied for the immobilization of enzymes produced attractive yields for immobilization and therefore has potential for industrial applications in the hydrolysis of vegetable oils.

  2. Chemistry and biology of the potent endotoxin from a Burkholderia dolosa clinical isolate from a cystic fibrosis patient.

    OpenAIRE

    Lorenzo, Flaviana Di; Sturiale, Luisa; Palmigiano, Angelo; Lembo-Fazio, Luigi; Paciello, Ida; Coutinho, Carla P.; Sá-Correia, Isabel; Bernardini, Marialina; Lanzetta, Rosa; Garozzo, Domenico; Silipo, Alba; Molinaro, Antonio

    2013-01-01

    This is the first report of the chemical and biological properties of the lipooligosaccharide (LOS) endotoxin isolated from Burkholderia dolosa IST4208, an isolate recovered from a cystic fibrosis (CF) patient in a Portuguese CF center. B. dolosa is a member of the Burkholderia cepacia complex, a group of closely related species that are highly problematic and opportunistic pathogens in CF. B. dolosa infection leads to accelerated loss of lung function and decreased survival. The structural d...

  3. Molecular Signatures and Phylogenomic Analysis of the Genus Burkholderia: Proposal for Division of this Genus into the Emended Genus Burkholderia Containing Pathogenic Organisms and a New Genus Paraburkholderia gen. nov. Harboring Environmental Species

    Directory of Open Access Journals (Sweden)

    Aman eSawana

    2014-12-01

    Full Text Available The genus Burkholderia contains large number of diverse species which are not reliably distinguished by the available biochemical or molecular characteristics. We report here results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequences, Burkholderia species grouped into two major clades. Within these main clades a number of smaller clades were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs that are uniquely found in different clades of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I which contains all clinically relevant members of the genus as well as the phytopathogenic Burkholderia species. The second main clade (Clade II composed of the environmental Burkholderia species, is also distinguished by 2 of the identified CSIs. Additionally, our work has also identified 3 CSIs that are specific for the Burkholderia cepacia complex, 4 CSIs that are uniquely found in the Burkholderia pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and for development of novel diagnostic assays for the clinically important members of the group. Based upon the results from different lines of studies, a division of the genus Burkholderia into two genera is proposed. In this new proposal, the emended genus Burkholderia will contain only the clinically relevant and phytopathogenic Burkholderia species, whereas all other Burkholderia spp. are transferred to a new genus

  4. Is Hydrogen Cyanide a Marker of Burkholderia cepacia Complex?

    Czech Academy of Sciences Publication Activity Database

    Gilchrist, F. J.; Sims, H.; Alcock, A.; Jones, A.M.; Bright-Thomas, R. J.; Smith, D.; Španěl, Patrik; Webb, A. K.; Lenney, W.

    2013-01-01

    Roč. 51, č. 11 (2013), s. 3849-3851. ISSN 0095-1137 Institutional support: RVO:61388955 Keywords : acetone * alcohol * hydrogen cyanide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.232, year: 2013

  5. Cicero and Burkholderia cepacia: What’s in a Name?

    OpenAIRE

    Moore, John E; Williams, Frederick

    2003-01-01

    “ Then said they unto him, Say now Shibboleth: and he said Sibboleth: for he could not frame to pronounce it right. Then they took him and slew him at the passes of Jordan: and there fell at that time of the Ephraimites forty and two thousand.” Judges 12:6

  6. Cicero and Burkholderia cepacia: What’s in a Name?

    Science.gov (United States)

    Williams, Frederick

    2003-01-01

    “ Then said they unto him, Say now Shibboleth: and he said Sibboleth: for he could not frame to pronounce it right. Then they took him and slew him at the passes of Jordan: and there fell at that time of the Ephraimites forty and two thousand.” Judges 12:6 PMID:12702238

  7. ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase Activity, a Widespread Trait in Burkholderia Species, and Its Growth-Promoting Effect on Tomato Plants▿

    OpenAIRE

    Onofre-Lemus, Janette; Hernández-Lucas, Ismael; Girard, Lourdes; Caballero-Mellado, Jesús

    2009-01-01

    The genus Burkholderia includes pathogens of plants and animals and some human opportunistic pathogens, such as the Burkholderia cepacia complex (Bcc), but most species are nonpathogenic, plant associated, and rhizospheric or endophytic. Since rhizobacteria expressing ACC (1-aminocyclopropane-1-carboxylate) deaminase may enhance plant growth by lowering plant ethylene levels, in this work we investigated the presence of ACC deaminase activity and the acdS gene in 45 strains, most of which are...

  8. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  9. Lipase Test

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Lipase Share this page: Was this page helpful? Also known as: LPS Formal name: Lipase Related tests: Amylase , Trypsin , Trypsinogen At a Glance ...

  10. Lipase-catalyzed Remote Kinetic Resolution of Quaternary Carbon-containing Alcohols and Determination of Their Absolute Configuration

    International Nuclear Information System (INIS)

    The quaternary carbon-containing alcohols (1-6) were resolved enantioselectively by various lipases such as PFL (Pseudomonas fluorescens lipase), LAK (Pseudomonas fluorescens lipase), CRL (Candida rugosa lipase) and PCL (Pseudomonas cepacia lipase). The enzymatic resolution of racemic alcohol (±)-2 gave the excellent enantioselectivity in favor of (S)-2d in 99% ee, while those of the racemic alcohols (1, 3, 4, 5 and 6) gave the resolved alcohols with moderate to good enantioselectivity. Also, their absolute configurations were determined by chemical transformation to the known compounds

  11. [Comparative analysis of total cell protein electrophoregram of pathogenic Burkholderia].

    Science.gov (United States)

    Budchenko, A A; Iliukhin, V I; Viktorov, D V

    2005-01-01

    Whole-cell proteins of 22 strain of Burkhoderia pseudomallei, including 13 B. mallei, 5 B. cepacia strains and 14 strains of opportunistically pathogenic Pseudomonas defined by 1D SDC-PAAG electrophoresis. Electrophoregrams contained 35 to 45 protein fractions sized 19 to 130 kDa, which were highly reproductive. On the basis of computer-aided comparative analysis of protein patterns the interspecies and intraspecies grouping of studied microorganisms was made. The cluster analysis of the similarity matrix of protein spectra made it possible to allocate two groups of strains at the level of similarity of 78%. Group I was formed by Burkholderia species that previously belonged to the II RNA-DNA homology group of Pseudomonas: B. pseudomallei, B. mallei, B. cepacia. All Pseudomonas species were added to the 2nd Group: P. aeruginosa, P. stutzeri, P. testosterone, P. fluorescens, P. putida, P. mendocina. Four phenons were isolated among the strains of B. pseudomallei and 2 phenons--among the strains of B. mallei at the threshold similarity level (89%). The authors conclude that the comparative analysis of electrophoregrams of whole-cell proteins can be useful in the identification and typing of pathogenic Burkholderia. PMID:15954473

  12. General characterization of noncommercial microbial lipases in hydrolytic and synthetic reactions.

    Science.gov (United States)

    Otero, C; Berrendero, M A; Cardenas, F; Alvarez, E; Elson, S W

    2005-03-01

    Fourteen noncommercial preparations of microbial lipases were investigated with respect to their catalytic activity for hydrolysis and synthesis of ester bonds. Six of the lipases were derived from microorganisms that have not previously been described as lipase producers, and another four were characterized for the first time. The synthetic reactions were carried out in two solvents of different polarities (n-heptane and acetone) using a series of fatty acids and primary and secondary alcohols with different chain lengths. Under the culture conditions employed, Pseudomonas cepacia produced more active enzyme than the other microorganisms. The lipase preparations produced using Ovadendron sulphureo-ochraceum, Monascus mucoroides, Monascus sp., Fusarium oxysporum, Penicillium chrysogenum, Rhodotorula araucariae, Pseudomonas cepacia, Streptomyces halstedii, and Streptomyces sp.were the most efficient catalysts for hydrolysis at lipid-water interfaces. Enzyme preparations from P. cepacia, Streptomyces sp., S. halstedii, and R. araucariae were good biocatalysts for esterification in the polar medium (acetone). When the lipase preparations with the greatest activity for hydrolytic reactions were excluded, regression analysis of the data for the hydrolytic and synthetic activities of the remaining lipase preparations yielded high multiple correlation coefficients for these reactions in both n-heptane and acetone (R = 0.82 and 0.91, respectively). PMID:15767695

  13. Structural identification of the O-antigen fraction from the lipopolysaccharide of the Burkholderia ambifaria strain 19182.

    Science.gov (United States)

    De Castro, Cristina; Dinischiotu, Natalia; Feys, Bart; Lanzetta, Rosa; Parrilli, Michelangelo; Molinaro, Antonio

    2013-09-20

    The Burkholderia cepacia complex comprises a group of bacterial strains with both beneficial and detrimental effects to plant and animals. Gram negative bacterial lipopolysaccharide is one of the most important molecular factors involved in the dialogue between the microbe and the host and in this context we have isolated and identified the O-antigen fraction of the Burkholderia ambifaria strain 19182. It consists of two different O-polysaccharides built up on 6-deoxy sugars, among which the 6-deoxy-altrose in the d absolute configuration, is present. This monosaccharide is found for the first time and it is a unique feature associated to this strain. PMID:23886988

  14. Microbiological and Epidemiological Features of Clinical Respiratory Isolates of Burkholderia gladioli▿

    Science.gov (United States)

    Segonds, Christine; Clavel-Batut, Patricia; Thouverez, Michelle; Grenet, Dominique; Le Coustumier, Alain; Plésiat, Patrick; Chabanon, Gérard

    2009-01-01

    Burkholderia gladioli, primarily known as a plant pathogen, is involved in human infections, especially in patients with cystic fibrosis (CF). In the present study, the first respiratory isolates recovered from 14 French patients with CF and 4 French patients without CF, identified by 16S rRNA gene analysis, were tested for growth on B. cepacia selective media, for identification by commercial systems, and for their antimicrobial susceptibilities, and were compared by pulsed-field gel electrophoresis (PFGE). Patients' data were collected. All 18 isolates grew on oxidation-fermentation-polymyxin B-bacitracin-lactose medium and Pseudomonas cepacia agar, but only 13 grew on Burkholderia cepacia selective agar. API 20NE strips did not differentiate B. gladioli from B. cepacia, whereas Vitek 2 GN cards correctly identified 15 isolates. All isolates were susceptible to piperacillin, imipenem, aminoglycosides, and ciprofloxacin and were far less resistant to ticarcillin than B. cepacia complex organisms. Fifteen PFGE types were observed among the 18 isolates, but shared types were not identified among epidemiologically related patients. The microbiological follow-up of CF patients showed that colonization was persistent in 3 of 13 documented cases; B. gladioli was isolated from posttransplantation cultures of blood from 1 patient. Among the patients without CF, B. gladioli was associated with intubation (three cases) or bronchiectasis (one case). In summary, the inclusion of B. gladioli in the databases of commercial identification systems should improve the diagnostic capabilities of those systems. In CF patients, this organism is more frequently involved in transient infections than in chronic infections, but it may be responsible for complications posttransplantation; patient-to-patient transmission has not been demonstrated to date. Lastly, B. gladioli appears to be naturally susceptible to aminoglycosides and ciprofloxacin, although resistant isolates may emerge in

  15. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  16. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    Directory of Open Access Journals (Sweden)

    Silva Jane E. S.

    2003-01-01

    Full Text Available In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25ºC in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester.

  17. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    Full Text Available Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc, a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  18. Lipase test

    Science.gov (United States)

    ... the bowel (bowel obstruction) Celiac disease Duodenal ulcer Cancer of the pancreas Infection or swelling of the pancreas This test may also be done for familial lipoprotein lipase deficiency . Risks ... Update Date 2/4/2015 Updated ...

  19. The art of persistence-the secrets to Burkholderia chronic infections.

    Science.gov (United States)

    Lewis, Eric R G; Torres, Alfredo G

    2016-08-01

    The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them. PMID:27440810

  20. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans.

    Directory of Open Access Journals (Sweden)

    LaureWeisskopf

    2014-01-01

    Full Text Available Plant roots and shoots harbour complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e. the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii or human opportunistic pathogens (Burkholderia cepacia complex strains were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered Δoxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities.

  1. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans.

    Science.gov (United States)

    Kost, Thomas; Stopnisek, Nejc; Agnoli, Kirsty; Eberl, Leo; Weisskopf, Laure

    2014-01-01

    Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii) or human opportunistic pathogens (Burkholderia cepacia complex strains) were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered Δoxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities. PMID:24409174

  2. Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members.

    Directory of Open Access Journals (Sweden)

    Graham G Willsey

    Full Text Available Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment.

  3. Synthesis of the tetrasaccharide outer core fragment of Burkholderia multivorans lipooligosaccharide.

    Science.gov (United States)

    Ziaco, Marcello; De Castro, Cristina; Silipo, Alba; Corsaro, Maria Michela; Molinaro, Antonio; Iadonisi, Alfonso; Lanzetta, Rosa; Parrilli, Michelangelo; Bedini, Emiliano

    2015-02-11

    The first synthesis of the outer core fragment of Burkholderia multivorans lipooligosaccharide [β-D-Glc-(1→3)-α-D-GalNAc-(1→3)-β-D-GalNAc-(1→3)-L-Rha] as α-allyl tetrasaccharide was accomplished. The glycosylations involving GalNAc units were studied in depth testing them under several conditions. This allowed the building of both the α- and the β-configured glycosidic bonds by employing the same GalNAc glycosyl donor, thus considerably shortening the total number of synthetic steps. The target tetrasaccharide was synthesized with an allyl aglycone to allow its future conjugation with an immunogenic protein en route to the development of a synthetic neoglycoconjugate vaccine against the Burkholderia cepacia pathogens. PMID:24933233

  4. Production of diacylglycerols from glycerol monooleate and ethyl oleate through free and immobilized lipase-catalyzed consecutive reactions.

    Science.gov (United States)

    Jin, Juan; Li, Dan; Zhu, Xue Mei; Adhikari, Prakash; Lee, Ki-Teak; Lee, Jeung-Hee

    2011-02-28

    The ability of free and immobilized lipase on the production of diacylglycerols (DAG) by transesterification of glycerol monooleate (GMO) and ethyl oleate was investigated. Among three free lipases such as lipase G (Penicillium cyclopium), lipase AK (Pseudomonas fluorescens) and lipase PS (Pseudomonas cepacia), lipase PS exhibited the highest DAG productivity, and the DAG content gradually increased up to 24 hours reaction and then remained steady. The comparative result for DAG productivity between free lipase PS and immobilized lipases (lipase PS-D and Lipozyme RM IM) during nine times of 24 hours reaction indicated that total DAG production was higher in immobilized lipase PS-D (183.5mM) and Lipozyme RM IM (309.5mM) than free lipase PS (122.0mM) at the first reaction, and that the DAG production rate was reduced by consecutive reactions, in which more sn-1,3-DAG was synthesized than sn-1,2-DAG. During the consecutive reactions, the activity of lipase PS was relatively steady by showing similar DAG content, whereas DAG production of lipase PS-D and Lipozyme RM IM was gradually decreased to 69.9 and 167.1mM at 9th reaction, respectively, resulting in 62% and 46% reduced production when compared with 1st reaction. Interestingly, from 7th reaction lipase PS produced more DAG than immobilized lipase PS-D, and exhibited a stable activity for DAG production. Therefore, the present study suggested that DAG productivity between GMO and ethyl oleate was higher in immobilized lipases than free lipases, but the activity was reduced with repeated uses. PMID:20951847

  5. Acid Lipase Disease

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage Disease, ... Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs when ...

  6. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia.

    Directory of Open Access Journals (Sweden)

    Jennifer L Ginther

    Full Text Available Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area.

  7. Mechanisms of lipase maturation

    OpenAIRE

    Doolittle, Mark H.; Péterfy, Miklós

    2010-01-01

    Lipases are acyl hydrolases that represent a diverse group of enzymes present in organisms ranging from prokaryotes to humans. This article focuses on an evolutionarily related family of extracellular lipases that include lipoprotein lipase, hepatic lipase and endothelial lipase. As newly synthesized proteins, these lipases undergo a series of co- and post-translational maturation steps occurring in the endoplasmic reticulum, including glycosylation and glycan processing, and protein folding ...

  8. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    Science.gov (United States)

    Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter

    2016-01-01

    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG

  9. The melioidosis agent Burkholderia pseudomallei and related opportunistic pathogens detected in faecal matter of wildlife and livestock in northern Australia.

    Science.gov (United States)

    Höger, A C R; Mayo, M; Price, E P; Theobald, V; Harrington, G; Machunter, B; Choy, J Low; Currie, B J; Kaestli, M

    2016-07-01

    The Darwin region in northern Australia has experienced rapid population growth in recent years, and with it, an increased incidence of melioidosis. Previous studies in Darwin have associated the environmental presence of Burkholderia pseudomallei, the causative agent of melioidosis, with anthropogenic land usage and proximity to animals. In our study, we estimated the occurrence of B. pseudomallei and Burkholderia spp. relatives in faecal matter of wildlife, livestock and domestic animals in the Darwin region. A total of 357 faecal samples were collected and bacteria isolated through culture and direct DNA extraction after enrichment in selective media. Identification of B. pseudomallei, B. ubonensis, and other Burkholderia spp. was carried out using TTS1, Bu550, and recA BUR3-BUR4 quantitative PCR assays, respectively. B. pseudomallei was detected in seven faecal samples from wallabies and a chicken. B. cepacia complex spp. and Pandoraea spp. were cultured from wallaby faecal samples, and B. cenocepacia and B. cepacia were also isolated from livestock animals. Various bacteria isolated in this study represent opportunistic human pathogens, raising the possibility that faecal shedding contributes to the expanding geographical distribution of not just B. pseudomallei but other Burkholderiaceae that can cause human disease. PMID:26935879

  10. Lipase immobilized on polydopamine-coated magnetite nanoparticles for biodiesel production from soybean oil

    OpenAIRE

    Marcos F. C. Andrade; Andre L. A. Parussulo; Caterina G. C. M. Netto; Andrade, Leandro H.; Henrique E. Toma

    2016-01-01

    Lipase from Pseudomonas cepacia was covalently attached to magnetite nanoparticles coated with a thin polydopamine film, and employed in the enzymatic conversion of soybean oil into biodiesel, in the presence of methanol.  The proposed strategy explored the direct immobilization of the enzyme via Michael addition and aldolic condensation reactions at the catechol rings, with no need of using specific coupling agents. In addition, a larger amount of enzymes could be bound to the magnetic nanop...

  11. Immobilization of Lipase on Single Walled Carbon Nanotubes in Ionic Liquid

    International Nuclear Information System (INIS)

    A lipase from Pseudomonas cepacia was immobilized onto single walled carbon nanotubes (SWNTs) in two different ways in each of two solvent systems (buffer and ionic liquid). The most efficient immobilization was achieved in ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIM-BF4). In this procedure, carbon nanotubes were first functionalized noncovalently with 1-pyrenebutyric acid N-hydroxysuccinimide ester and then subject to the coupling reaction with the lipase in ionic liquid. The resulting immobilized enzyme displayed the highest activity in the transesterification of 1-phenylethyl alcohol in the presence of vinyl acetate in toluene

  12. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases

    Directory of Open Access Journals (Sweden)

    Eva Vavříková

    2015-05-01

    Full Text Available A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22 of silychristin was accomplished by lipase PS (Pseudomonas cepacia immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/ n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule.

  13. Chemistry and biology of the potent endotoxin from a Burkholderia dolosa clinical isolate from a cystic fibrosis patient.

    Science.gov (United States)

    Lorenzo, Flaviana Di; Sturiale, Luisa; Palmigiano, Angelo; Lembo-Fazio, Luigi; Paciello, Ida; Coutinho, Carla P; Sá-Correia, Isabel; Bernardini, MariaLina; Lanzetta, Rosa; Garozzo, Domenico; Silipo, Alba; Molinaro, Antonio

    2013-06-17

    This is the first report of the chemical and biological properties of the lipooligosaccharide (LOS) endotoxin isolated from Burkholderia dolosa IST4208, an isolate recovered from a cystic fibrosis (CF) patient in a Portuguese CF center. B. dolosa is a member of the Burkholderia cepacia complex, a group of closely related species that are highly problematic and opportunistic pathogens in CF. B. dolosa infection leads to accelerated loss of lung function and decreased survival. The structural determination of its endotoxin was achieved using a combination of chemistry and spectroscopy, and has revealed a novel endotoxin structure. The purified LOS was tested for its immunostimulatory activity on human HEK 293 cells expressing TLR-4, MD-2, and CD-14. In these assays, the LOS showed strong proinflammatory activity. PMID:23733445

  14. CYTOTOXICITY ASSOCIATED WITH TRICHLOROETHYLENE OXIDATION IN BURKHOLDERIA CEPACIA G4. (R825689C027)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. CYTOTOXICITY ASSOCIATED WITH TRICHLOROETHYLENE OXIDATION IN BURKHOLDERIA CEPACIA G4. (R828772)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Microbiological assessment of Burkholderia cepacia complex (Bcc isolates in Alexandria Main University Hospital

    Directory of Open Access Journals (Sweden)

    Nancy Omar

    2015-03-01

    Minimal Inhibitory Concentration (MIC determining tests showed that only 11.5% were resistant to meropenem at MIC > 16 μg/ml, while 40% of the strains were resistant to ceftazidime at MIC > 32 μg/ml. Those results for the time being indicate that meropenem is the best therapeutic option for Bcc infections in AMUH.

  17. Charakterisierung des Burkholderia cenocepacia Aquaglyceroporins

    OpenAIRE

    Wree, Dorothea

    2010-01-01

    In der vorliegenden Arbeit wurde ein Aquaglyceroporin des Krankenhausproblemkeims Burkholderia cenocepacia, BccGlpF, charakterisiert. Unter besonderer Beobachtung stand die Struktur-Funktionsbeziehung der eigentlich kochkonservierten NPA-Motive.

  18. Burkholderia in gladiool lastige bacterie

    OpenAIRE

    Kok, B.J.; Aanholt, van, J.T.M.

    2009-01-01

    In de bollen- en bloementeelt van gladiolen komt de laatste jaren de bacterieziekte Burkholderia gladiola voor die onder vochtige warme omstandigheden veel uitval veroorzaken. PPO onderzocht een aantal maatregelen om de ziekte in kralen, pitten en knollen te bestrijden

  19. Familial lipoprotein lipase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000408.htm Familial lipoprotein lipase deficiency To use the sharing features on this page, please enable JavaScript. Familial lipoprotein lipase deficiency is a group of rare genetic disorders ...

  20. Correlation of rpsU Gene Sequence Clusters and Biochemical Properties, Gc–Ms Spectra and Resistance Profiles of Clinical Burkholderia Spp. Isolates

    Science.gov (United States)

    Ostermann, Maria Franziska; Neubauer, Heinrich; Frickmann, Hagen; Hagen, Ralf Matthias

    2016-01-01

    This study assessed the variation of phenotypic features of clinical isolates of Burkholderia spp. from common rpsU gene sequence clusters. A total of 41 clinical Burkholderia spp. isolates from German mucoviscidosis patients was subjected to rpsU gene sequencing. Biochemical assessment included the API systems 20 NE and 50 CHE as well as the Micronaut NF system. Fatty acid patterns were assessed using gas chromatography–mass spectrometry (GC–MS). Broth microdilution was used to identify minimum inhibitory concentrations. Five rpsU gene sequence clusters comprised more than one clinical isolate. Altogether, assignments to three species and seven clusters comprising more than one Burkholderia species were performed. Inhomogeneity of biochemical reactions within the clusters ranged from 0/28 to 45/50 reactions. The standard deviation for fatty acid distributions ranged from 0% to 11.5%. Minimum inhibitory concentrations within the clusters showed a wide variation but only minor differences between the clusters. Broad variations within identified rpsU gene sequence clusters regarding biochemical reactions, fatty acid patterns, and resistance patterns of clinical Burkholderia spp. isolates make the application of rpsU gene sequence analysis as a stand-alone procedure for discriminations within the Burkholderia cepacia complex unreliable.

  1. Lipoprotein lipase deficiency.

    OpenAIRE

    Shankar K; Bava H; Shetty J; Joshi M

    1997-01-01

    A rare case of a 3 month old child with lipoprotein lipase deficiency who presented with bronchopneumonia is reported. After noticing lipaemic serum and lipaemia retinalis, a diagnosis of hyperlipoproteinaemia was considered. Lipoprotein lipase deficiency was confirmed with post heparin lipoprotein lipase enzyme activity estimation.

  2. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Energy Technology Data Exchange (ETDEWEB)

    I-Ching Kuan; Chia-Chi Lee; Bing-Hong Tsai; Shiow-Ling Lee; Wei-Ting Lee; Chi-Yang Yu [Department of Bioengineering, Tatung Univ., Taipei, Taiwan (China)

    2013-04-15

    We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil) and n-hexane content (w/w of oil) were evaluated using response surface methodology (RSM) combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 deg C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 deg C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 deg C or room temperature.

  3. Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor

    International Nuclear Information System (INIS)

    Highlights: • A Burkholderia lipase was immobilized on alkyl-grafted celite carriers. • Celite-alkyl-lipase catalyzed the methanolysis of triglyceride in packed-bed reactor. • The kinetics of the enzymatic transesterification follows Ping Pong Bi Bi mechanism. • Models were developed to discuss the mass transfer and enzyme kinetics in the PBR. - Abstract: A Burkholderia lipase was immobilized on celite grafted with long alkyl groups. The immobilized lipase-catalyzed methanolysis of sunflower oil in a packed-bed reactor (PBR) follows the Ping Pong Bi Bi mechanism. The external mass transfer and enzymatic reaction that simultaneously occurred in the PBR were investigated via the mathematical models. The overall biodiesel production in the PBR was verified to work in an enzymatic reaction-limited regime. Triglyceride conversion and biodiesel yield were higher under a lower reactant feeding rate, while a larger amount of biocatalyst would be required to achieve the designated conversion rate if a higher reactant feeding rate was employed. The PBR can achieve nearly complete conversion of triglyceride at a biocatalyst bed height of 60 cm (ca. 29 g biocatalyst) and a flow rate of 0.1 ml min−1, whereas the biodiesel yield was lower than 67%, probably due to the positional specificity of Burkholderia lipase and the accumulation of glycerol

  4. Homology of lipoprotein lipase to pancreatic lipase.

    OpenAIRE

    Ben-Avram, C M; Ben-Zeev, O; Lee, T.D. (Taunia D.); Haaga, K; Shively, J. E.; Goers, J; Pedersen, M.E; Reeve, J R; Schotz, M C

    1986-01-01

    Bovine milk lipoprotein lipase was subjected to amino acid sequence analysis. The first 19 amino-terminal residues were Asp-Arg-Ile-Thr-Gly-Gly-Lys-Asp-Phe-Arg-Asp-Ile-Glu-Ser-Lys-Phe-Ala-Leu- Arg. In addition, reversed-phase high-performance liquid chromatography of a tryptic digest of reduced and alkylated lipase resolved a number of peptides, five of which contained cysteine. Sequence analysis of the tryptic peptides revealed in most instances a close homology to porcine pancreatic lipase....

  5. Inhibition of Burkholderia multivorans Adhesion to Lung Epithelial Cells by Bivalent Lactosides

    Directory of Open Access Journals (Sweden)

    Trinidad Velasco-Torrijos

    2012-08-01

    Full Text Available Burkholderia cepacia complex (Bcc is an opportunistic pathogen in cystic fibrosis patients which is inherently resistant to antimicrobial agents. The mechanisms of attachment and pathogenesis of Bcc, a group of 17 species, are poorly understood. The most commonly identified Bcc species in newly colonised patients, Burkholderia multivorans, continues to be acquired from the environment. Development of therapies which can prevent or reduce the risk of colonization on exposure to Bcc in the environment would be a better alternative to antimicrobial agents. Previously, it has been shown that Bcc strains bound to many glycolipid receptors on lung epithelia. Using a real-time PCR method to quantify the levels of binding of B. multivorans to the lung epithelial cells, we have examined glycoconjugate derivatives for their potential to inhibit host cell attachment. Bivalent lactosides previously shown to inhibit galectin binding significantly reduced the attachment of B. multivorans to CF lung epithelial cells at micromolar concentrations. This was in contrast to monosaccharides and lactose, which were only effective in the millimolar range. Development of glycoconjugate therapies such as these, which inhibit attachment to lung epithelial cells, represent an alternative means of preventing infection with inherently antimicrobially resistant pathogens such as B. multivorans.

  6. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis.

    Science.gov (United States)

    Casey, William T; Spink, Natasha; Cia, Felipe; Collins, Cassandra; Romano, Maria; Berisio, Rita; Bancroft, Gregory J; McClean, Siobhán

    2016-05-17

    Burkholderia pseudomallei is the causative agent of melioidosis, which is associated with a range of clinical manifestations, including sepsis and fatal pneumonia and is endemic in Southeast Asia and Northern Australia. Treatment can be challenging and control of infection involves prolonged antibiotic therapy, yet there are no approved vaccines available to prevent infection. Our aim was to develop and assess the potential of a prophylactic vaccine candidate targeted against melioidosis. The identified candidate is the 22kDa outer membrane protein, OmpW. We previously demonstrated that this protein was immunoprotective in mouse models of Burkholderia cepacia complex (Bcc) infections. We cloned Bp_ompW in Escherichia coli, expressed and purified the protein. Endotoxin free protein administered with SAS adjuvant protected Balb/C mice (75% survival) relative to controls (25% survival) (p<0.05). A potent serological response was observed with IgG2a to IgG1 ratio of 6.0. Furthermore C57BL/6 mice were protected for up to 80 days against a lethal dose of B. pseudomallei and surpassed the efficacy of the live attenuated 2D2 positive control. BpompW is homologous across thirteen sequenced B. pseudomallei strains, indicating that it should be broadly protective against B. pseudomallei. In conclusion, we have demonstrated that BpOmpW is able to induce protective immunity against melioidosis and is likely to be an effective vaccine antigen, possibly in combination with other subunit antigens. PMID:27091689

  7. Cyanide Toxicity to Burkholderia cenocepacia Is Modulated by Polymicrobial Communities and Environmental Factors.

    Science.gov (United States)

    Bernier, Steve P; Workentine, Matthew L; Li, Xiang; Magarvey, Nathan A; O'Toole, George A; Surette, Michael G

    2016-01-01

    Microbes within polymicrobial communities can establish positive and negative interactions that have the potential to influence the overall behavior of the community. Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can co-exist in the lower airways, however several studies have shown that P. aeruginosa can effectively kill the Bcc in vitro, for which hydrogen cyanide (HCN) was recently proposed to play a critical role. Here we show that modification of the environment (i.e., culture medium), long-term genetic adaptation of P. aeruginosa to the cystic fibrosis (CF) lung, or the addition of another bacterial species to the community can alter the sensitivity of Burkholderia cenocepacia to P. aeruginosa toxins. We specifically demonstrate that undefined rich media leads to higher susceptibility of B. cenocepacia to P. aeruginosa toxins like cyanide as compared to a synthetic medium (SCFM), that mimics the CF lung nutritional content. Overall, our study shows that the polymicrobial environment can have profound effects on negative interactions mediated by P. aeruginosa against B. cenocepacia. In fact, evolved P. aeruginosa or the presence of other species such as Staphylococcus aureus can directly abolish the direct competition mediated by cyanide and consequently maintaining a higher level of species diversity within the community. PMID:27242743

  8. Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides.

    Science.gov (United States)

    Pellizzoni, Elena; Ravalico, Fabio; Scaini, Denis; Delneri, Ambra; Rizzo, Roberto; Cescutti, Paola

    2016-02-01

    Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the Burkholderia cepacia complex species, Burkholderia cenocepacia is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, B. cenocepacia strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by 1H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs. PMID:26586192

  9. Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies.

    Science.gov (United States)

    Abbott, Iain J; Peleg, Anton Y

    2015-02-01

    Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and nonmelioid Burkholderia species, namely, Burkholderia cepacia complex, collectively are a group of troublesome nonfermenters. Although not inherently virulent organisms, these environmental Gram negatives can complicate treatment in those who are immunocompromised, critically ill in the intensive care unit and those patients with suppurative lung disease, such as cystic fibrosis. Through a range of intrinsic antimicrobial resistance mechanisms, virulence factors, and the ability to survive in biofilms, these opportunistic pathogens are well suited to persist, both in the environment and the host. Treatment recommendations are hindered by the difficulties in laboratory identification, the lack of reproducibility of antimicrobial susceptibility testing, the lack of clinical breakpoints, and the absence of clinical outcome data. Despite trimethoprim-sulfamethoxazole often being the mainstay of treatment, resistance is widely encountered, and alternative regimens, including combination therapy, are often used. This review will highlight the important aspects and unique challenges that these three nonfermenters pose, and, in the absence of clinical outcome data, our therapeutic recommendations will be based on reported antimicrobial susceptibility and pharmacokinetic/pharmacodynamic profiles. PMID:25643274

  10. Preparation and Characterization of Immobilized Lipase from Pseudomonas Cepacia onto Magnetic Cellulose Nanocrystals

    OpenAIRE

    Shi-Lin Cao; Yu-Mei Huang; Xue-Hui Li; Pei Xu; Hong Wu; Ning Li; Wen-Yong Lou; Min-Hua Zong

    2016-01-01

    Magnetic cellulose nanocrystals (MCNCs) were prepared and used as an enzyme support for immobilization of Pseudomonas cepacialipase (PCL). PCL was successfully immobilized onto MCNCs (PCL@MCNC) by a precipitation-cross-linking method. The resulting PCL@MCNC with a nanoscale size had high enzyme loading (82.2 mg enzyme/g) and activity recovery (95.9%). Compared with free PCL, PCL@MCNC exhibited significantly enhanced stability and solvent tolerance, due to the increase of enzyme structure rigi...

  11. Preparation and Characterization of Immobilized Lipase from Pseudomonas Cepacia onto Magnetic Cellulose Nanocrystals

    Science.gov (United States)

    Cao, Shi-Lin; Huang, Yu-Mei; Li, Xue-Hui; Xu, Pei; Wu, Hong; Li, Ning; Lou, Wen-Yong; Zong, Min-Hua

    2016-02-01

    Magnetic cellulose nanocrystals (MCNCs) were prepared and used as an enzyme support for immobilization of Pseudomonas cepacialipase (PCL). PCL was successfully immobilized onto MCNCs (PCL@MCNC) by a precipitation-cross-linking method. The resulting PCL@MCNC with a nanoscale size had high enzyme loading (82.2 mg enzyme/g) and activity recovery (95.9%). Compared with free PCL, PCL@MCNC exhibited significantly enhanced stability and solvent tolerance, due to the increase of enzyme structure rigidity. The observable optimum pH and temperature for PCL@MCNC were higher than those of free PCL. PCL@MCNC manifested relatively higher enzyme-substrate affinity and catalytic efficiency. Moreover, PCL@MCNC was capable of effectively catalyzing asymmetric hydrolysis of ketoprofenethyl ester with high yield of 43.4% and product e.e. of 83.5%. Besides, immobilization allowed PCL@MCNC reuse for at least 6 consecutive cycles retaining over 66% of its initial activity. PCL@MCNC was readily recycled by magnetic forces. Remarkably, the as-prepared nanobiocatalyst PCL@MCNC is promising for biocatalysis.

  12. IMMOBILIZED P. CEPACIA LIPASE FOR BIODIESEL FUEL PRODUCTION FROM SOYBEAN OIL. (R829479C008)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Pseudomonas aeruginosa and Pseudomonas cepacia are both opportunistic pathogens of patients with cystic fibrosis. The binding characteristics of these two species were compared to determine if they use similar mechanisms to adhere to respiratory epithelial cells. P. cepacia 249 was shown to be piliated, but there was no detectable homology between P. aeruginosa pilin gene probes and P. cepacia genomic DNA. P. cepacia and P. aeruginosa did not appear to compete for epithelial receptors. In the presence of purified P. aeruginosa pili, the adherence of 35S-labeled strain 249 to respiratory epithelial monolayers was unaffected, while that of P. aeruginosa PAO1 was decreased by 55%. The binding of P. cepacia 249 and 715j was increased by 2.4-fold and 1.5-fold, respectively, in the presence of an equal inoculum of PAO1. Interbacterial agglutination contributed to the increased adherence of P. cepacia, as the binding of 249 was increased twofold in the presence of irradiated PAO1. PAO1 exoproducts had a marked effect in enhancing the ability of the P. cepacia strains to adhere to the epithelial monolayers. A PAO1 supernatant increased the binding of 249 by eightfold and that of 715j by fourfold. Thus, there appears to be a synergistic relationship between P. aeruginosa and P. cepacia in which PAO1 exoproducts modify the epithelial cell surface, exposing receptors and facilitating increased P. cepacia attachment

  14. Enzymes related to fructose utilization in Pseudomonas cepacia.

    OpenAIRE

    Allenza, P; Lee, Y N; Lessie, T G

    1982-01-01

    Growth of Pseudomonas cepacia on fructose, mannitol, or sorbitol depended on formation of an inducible fructokinase (forming fructose-6-phosphate) and the presence of enzymes of the Entner-Doudoroff pathway. Mutants deficient in any of these enzymes failed to utilize the aforementioned carbohydrates. Fructokinase deficiency did not affect growth of the bacteria on glucose. Fructose was accumulated intracellularly by active transport. Mutants blocked in transport of fructose grew normally on m...

  15. Isolation of Pseudomonas cepacia in cystic fibrosis patient

    OpenAIRE

    Elizabeth Andrade Marques; Rosa Maria Carvalho Pinto; Ludma Trotta Dallallana; Elsa Fuchshuber Rodrigues de Oliveira; Italo Suassuna

    1993-01-01

    Pulmonary infection on cystic fibrosis (CF) patients are associated with a limited qualitative number of microorganisms. During the colonization process, Staphylococcus aureus usually preceedes Pseudomonas aeruginosa. This latter is at first non-mucoid, being replaced or associated to a mucoid morphotype which is rare in other diseases. In 1980, Pseudomonas cepacia appeared as an important agent in CF pulmonary infections with a mean frequency of about 6.1% isolations in different parts of th...

  16. Genome Sequencing and Transposon Mutagenesis of Burkholderia seminalis TC3.4.2R3 Identify Genes Contributing to Suppression of Orchid Necrosis Caused by B. gladioli.

    Science.gov (United States)

    Araújo, Welington L; Creason, Allison L; Mano, Emy T; Camargo-Neves, Aline A; Minami, Sonia N; Chang, Jeff H; Loper, Joyce E

    2016-06-01

    From a screen of 36 plant-associated strains of Burkholderia spp., we identified 24 strains that suppressed leaf and pseudobulb necrosis of orchid caused by B. gladioli. To gain insights into the mechanisms of disease suppression, we generated a draft genome sequence from one suppressive strain, TC3.4.2R3. The genome is an estimated 7.67 megabases in size, with three replicons, two chromosomes, and the plasmid pC3. Using a combination of multilocus sequence analysis and phylogenomics, we identified TC3.4.2R3 as B. seminalis, a species within the Burkholderia cepacia complex that includes opportunistic human pathogens and environmental strains. We generated and screened a library of 3,840 transposon mutants of strain TC3.4.2R3 on orchid leaves to identify genes contributing to plant disease suppression. Twelve mutants deficient in suppression of leaf necrosis were selected and the transposon insertions were mapped to eight loci. One gene is in a wcb cluster that is related to synthesis of extracellular polysaccharide, a key determinant in bacterial-host interactions in other systems, and the other seven are highly conserved among Burkholderia spp. The fundamental information developed in this study will serve as a resource for future research aiming to identify mechanisms contributing to biological control. PMID:26959838

  17. Stress conditions triggering mucoid morphotype variation in Burkholderia species and effect on virulence in Galleria mellonella and biofilm formation in vitro.

    Directory of Open Access Journals (Sweden)

    Inês N Silva

    Full Text Available Burkholderia cepacia complex (Bcc bacteria are opportunistic pathogens causing chronic respiratory infections particularly among cystic fibrosis patients. During these chronic infections, mucoid-to-nonmucoid morphotype variation occurs, with the two morphotypes exhibiting different phenotypic properties. Here we show that in vitro, the mucoid clinical isolate Burkholderia multivorans D2095 gives rise to stable nonmucoid variants in response to prolonged stationary phase, presence of antibiotics, and osmotic and oxidative stresses. Furthermore, in vitro colony morphotype variation within other members of the Burkholderia genus occurred in Bcc and non-Bcc strains, irrespectively of their clinical or environmental origin. Survival to starvation and iron limitation was comparable for the mucoid parental isolate and the respective nonmucoid variant, while susceptibility to antibiotics and to oxidative stress was increased in the nonmucoid variants. Acute infection of Galleria mellonella larvae showed that, in general, the nonmucoid variants were less virulent than the respective parental mucoid isolate, suggesting a role for the exopolysaccharide in virulence. In addition, most of the tested nonmucoid variants produced more biofilm biomass than their respective mucoid parental isolate. As biofilms are often associated with increased persistence of pathogens in the CF lungs and are an indicative of different cell-to-cell interactions, it is possible that the nonmucoid variants are better adapted to persist in this host environment.

  18. Domain exchange: characterization of a chimeric lipase of hepatic lipase and lipoprotein lipase.

    OpenAIRE

    Wong, H; Davis, R. C.; Nikazy, J; Seebart, K E; Schotz, M C

    1991-01-01

    Hepatic lipase and lipoprotein lipase hydrolyze fatty acids from triacylglycerols and are critical in the metabolism of circulating lipoproteins. The two lipases are similar in size and amino acid sequence but are distinguished by functional differences in substrate preference and cofactor requirement. Presumably, these distinctions result from structural differences in functional domains. To begin localization of these domains, a chimeric lipase was constructed composed of the N-terminal 329...

  19. PPO zoekt naar mogelijkheden aanpak Burkholderia

    OpenAIRE

    Dwarswaard, A.; Van Dam

    2014-01-01

    In de bloemen- en knollenteelt van gladiool komt de afgelopen decennia met enige regelmaat de bacterieziekte Burkholderia voor. Vorig jaar startte PPO met een onderzoek naar de mogelijkheden om deze ziekte aan te pakken. Een tussenstand.

  20. Molecular Procedure for Rapid Detection of Burkholderia mallei and Burkholderia pseudomallei

    OpenAIRE

    Bauernfeind, Adolf; Roller, Carsten; Meyer, Detlef; Jungwirth, Renate; Schneider, Ines

    1998-01-01

    A PCR procedure for the discrimination of Burkholderia mallei and Burkholderia pseudomallei was developed. It is based on the nucleotide difference T 2143 C (T versus C at position 2143) between B. mallei and B. pseudomallei detected in the 23S rDNA sequences. In comparison with conventional methods the procedure allows more rapid identification at reduced risk for infection of laboratory personnel.

  1. Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    Heiss, Christian; Burtnick, Mary N.; Roberts, Rosemary A.; Black, Ian; Azadi, Parastoo; Brett, Paul J.

    2013-01-01

    O-Polysaccharides (OPS) were isolated from purified Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharides by mild-acid hydrolysis and gel-permeation chromatography. 1-D and 2-D 1H and 13C NMR spectroscopy experiments revealed that the OPS antigens were unbranched heteropolymers with the following structures:

  2. Volatile-Sulfur-Compound Profile Distinguishes Burkholderia pseudomallei from Burkholderia thailandensis

    OpenAIRE

    Inglis, Timothy J J; Hahne, Dorothee R.; Merritt, Adam J.; Clarke, Michael W.

    2015-01-01

    Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced by Burkholderia pseudomallei is responsible for its unusual truffle-like smell and distinguishes the species from Burkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grown B. pseudomallei.

  3. rpsU-based discrimination within the genus Burkholderia

    OpenAIRE

    Frickmann, H.; Neubauer, H.; Loderstaedt, U.; Derschum, H.; Hagen, R. M.

    2014-01-01

    Sequencing of the gene rpsU reliably delineates saprophytic Burkholderia (B.) thailandensis from highly pathogenic B. mallei and B. pseudomallei. We analyzed the suitability of this technique for the delineation of the B. pseudomallei complex from other Burkholderia species.

  4. Isolation of Pseudomonas cepacia in cystic fibrosis patient

    Directory of Open Access Journals (Sweden)

    Elizabeth de Andrade Marques

    1993-03-01

    Full Text Available Pulmonary infection on cystic fibrosis (CF patients are associated with a limited qualitative number of microorganisms. During the colonization process, Staphylococcus aureus usually preceedes Pseudomonas aeruginosa. This latter is at first non-mucoid, being replaced or associated to a mucoid morphotype which is rare in other diseases. In 1980, Pseudomonas cepacia appeared as an important agent in CF pulmonary infections with a mean frequency of about 6.1% isolations in different parts of the world. The primus colonization mainly occurs in the presence of pre-existent tissue lesions and the clinical progress of the disease is variable. In some patients it can be fulminant; in others it can cause a gradual and slow decrease in their pulmonary functions. The concern with this germ isolation is justified by its antibiotic multiple resistence and the possibility of direct transmission from a colonized patient to a non-colonized one. We reported the first case of P. cepacia infection in a CF patient in our area. The microbiological attendance to this patient had been made from 1986 to 1991 and the first positive culture appeared in 1988. The sensitivity profile showed that the primus colonization strain was sensitive to 9 of 17 tested antibiotics, however in the last culture the strain was resistent to all antibiotics. These data corroborate the need for monitoring the bacterial flora on CF patients respiratory system.

  5. REQUIREMENT OF DNA REPAIR MECHANISMS FOR SURVIVAL OF BURKHOLDERIA CEPACIA G4 UPON DEGRADATION OF TRICHLOROETHYLENE. (R828772)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. MECHANISM-BASED INACTIVATION OF TOLUENE 2-MONOOXYGENASE IN BURKHOLDERIA CEPACIA G4 BY ALKYNES. (R825689C027)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Comparative Analyses of Lipoprotein Lipase, Hepatic Lipase, and Endothelial Lipase, and Their Binding Properties with Known Inhibitors

    OpenAIRE

    Wang, Ziyun; Li, Shen; Sun, Lidan; Fan, Jianglin; Liu, Zhenming

    2013-01-01

    The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investiga...

  8. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India.

    Science.gov (United States)

    Ghosh, Ranjan; Barman, Soma; Mukherjee, Rajib; Mandal, Narayan C

    2016-02-01

    Profuse growth of Lycpodium cernuum L. was found in phosphate deficient red lateritic soil of West Bengal, India. Interaction of vesicular-arbuscular mycorrhiza (VAM) with Lycopodium rhizoids were described earlier but association of PGPR with their rhizoids were not studied. Three potent phosphate solubilizing bacterial strains (P4, P9 and P10) associated with L. cernuum rhizoids were isolated and identified by 16S rDNA homologies on Ez-Taxon database as Burkholderia tropica, Burkholderia unamae and Burkholderia cepacia respectively. Day wise kinetics of phosphate solubilization against Ca3(PO4)2 suggested P4 (580.56±13.38μgml(-1)) as maximum mineral phosphate solubilizer followed by P9 (517.12±17.15μgml(-1)) and P10 (485.18±14.23μgml(-1)) at 28°C. Release of bound phosphates by isolated strains from ferric phosphate (FePO4), aluminum phosphate (AlPO4) and four different complex rock phosphates indicated their very good phosphate solubilizng efficacy. Nitrogen independent solubilizition also supports their nitrogen fixing capabilities. Inhibition of P solubilization by calcium salts and induction by EDTA suggested pH dependent chelation of metal cations by all of the isolates. Rhizoidal colonization potentials of Burkholderia spp. were confirmed by in planta experiment and also using scanning electron microscope (SEM). Increases of total phosphate content in Lycopodium plants upon soil treatment with these isolates were also recorded. In addition siderophore production on CAS agar medium, tryptophan dependent IAA production and antifungal activities against pathogenic fungi by rhizospheric isolates deep-rooted that they have definite role in nutrient mobilization for successful colonization of L. cernuum in nutrient deficient lateritic soil. PMID:26805621

  9. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia.

    Directory of Open Access Journals (Sweden)

    Carrie Selin

    Full Text Available Infections with the bacteria Burkholderia cepacia complex (Bcc are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery.

  10. Burkholderia cenocepacia J2315 escapes to the cytosol and actively subverts autophagy in human macrophages.

    Science.gov (United States)

    Al-Khodor, Souhaila; Marshall-Batty, Kimberly; Nair, Vinod; Ding, Li; Greenberg, David E; Fraser, Iain D C

    2014-03-01

    Selective autophagy functions to specifically degrade cellular cargo tagged by ubiquitination, including bacteria. Strains of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that cause life-threatening infections in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD). While there is evidence that defective macrophage autophagy in a mouse model of CF can influence B. cenocepacia susceptibility, there have been no comprehensive studies on how this bacterium is sensed and targeted by the host autophagy response in human macrophages. Here, we describe the intracellular life cycle of B. cenocepacia J2315 and its interaction with the autophagy pathway in human cells. Electron and confocal microscopy analyses demonstrate that the invading bacteria interact transiently with the endocytic pathway before escaping to the cytosol. This escape triggers theselective autophagy pathway, and the recruitment of ubiquitin, the ubiquitin-binding adaptors p62 and NDP52 and the autophagosome membrane-associated protein LC3B, to the bacterial vicinity. However, despite recruitment of these key autophagy pathway effectors, B. cenocepacia blocks autophagosome completion and replicates in the host cytosol. We find that a pre-infection increase in cellular autophagy flux can significantly inhibit B. cenocepacia replication and that lower autophagy flux in macrophages from immunocompromised CGD patients could contribute to increased B. cenocepacia susceptibility, identifying autophagy manipulation as a potential therapeutic approach to reduce bacterial burden in B. cenocepacia infections. PMID:24119232

  11. Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma.

    Science.gov (United States)

    Alshraiedeh, Nida H; Higginbotham, Sarah; Flynn, Padrig B; Alkawareek, Mahmoud Y; Tunney, Michael M; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-06-01

    Chronic lung infection with bacteria from the Burkholderia cepacia complex (BCC), and in particular B. cenocepacia, is associated with significant morbidity and mortality in patients with cystic fibrosis (CF). B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance. Recently, atmospheric pressure non-thermal plasmas (APNTPs) have gained increasing attention as a novel approach to the prevention and treatment of a variety of hospital-acquired infections. In this study, we evaluated an in-house-designed kHz-driven plasma source for the treatment of biofilms of a number of clinical CF B. cenocepacia isolates. The results demonstrated that APNTP is an effective and efficient tool for the eradication of B. cenocepacia biofilms but that efficacy is highly variable across different isolates. Determination of phenotypic differences between isolates in an attempt to understand variability in plasma tolerance revealed that isolates which are highly tolerant to APNTP typically produce biofilms of greater biomass than their more sensitive counterparts. This indicates a potential role for biofilm matrix components in biofilm tolerance to APNTP exposure. Furthermore, significant isolate-dependent differences in catalase activity in planktonic bacteria positively correlated with phenotypic resistance to APNTP by isolates grown in biofilms. PMID:27179816

  12. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS.

    Science.gov (United States)

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence. PMID:27597847

  13. Inhibitors of pancreatic lipase

    OpenAIRE

    Lunagariya, Nitin A.; Patel, Neeraj K.; Jagtap, Sneha C.; Bhutani, Kamlesh K.

    2014-01-01

    Obesity is a disorder of lipid metabolism and continues to be a global problem, ranking fifth for deaths worldwide. It also leads to diabetes, cardiovascular disorders, musculoskeletal disorders and some types of cancer. Obesity is regarded as the output of a long-term imbalance between energy intake and energy expenditure. Digestion and absorption of dietary lipids by pancreatic lipase, a major source of excess calorie intake, can be targeted for development of anti-obesity agents. Being the...

  14. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Directory of Open Access Journals (Sweden)

    Chi-Yang Yu

    2013-04-01

    Full Text Available We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil and n-hexane content (w/w of oil were evaluated using response surface methodology (RSM combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 °C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 °C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 °C or room temperature.

  15. Lipase-catalyzed esterification of 2-monoricinolein for 1,2 (2,3)-diricinolein synthesis.

    Science.gov (United States)

    Turner, Charlotta; Wani, Seiji; Wong, Rosalind; Lin, Jiann-Tsyh; McKeon, Thomas

    2006-01-01

    The purpose of this investigation was to develop conditions for producing 2-monoricinoleoyl DAG. We used lipase-catalyzed hydrolysis of triricinolein to obtain 2-monoricinolein and thereafter synthesized 1,2(2,3)-diricinolein through esterification of 2-monoricinolein, using ricinoleic acid as the acyl donor. Five different 1,3-specific immobilized lipases were tested for the initial methanolysis reaction: Candida antarctica type B, Rhizomucor miehei, Rhizopus oryzae (ROL), Thermomyces lanuginosus, and Aspergillus niger. For the second esterification reaction, we investigated these five lipases plus Pseudomonas cepacia, Penicillium roquefortii, Candida rugosa, and Pseudomonas fluorescence. Toluene and diisopropyl ether (DIPE) were examined as reaction media at a water activity of 0.11. ROL in DIPE gave the highest yield of 2-monoricinolein from triricinolein, 78% after 3 h of reaction. The isolated 2-monoricinolein was esterified with ricinoleic acid for synthesis of 1,2(2,3)-diricinolein. ROL in DIPE gave the highest yield of 1,2(2,3)-diricinolein, 58% after 1 h of reaction, and NMR analysis showed that the purity was 97.2%. This methodology can be used for synthesizing radiolabeled 1,2(2,3)-diricinolein to study lipid biosynthesis in castor and other oilseeds. PMID:16555475

  16. Autotransporters and Their Role in the Virulence of Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    Adler, Natalie R. Lazar; Stevens, Joanne M; Stevens, Mark P.; Galyov, Edouard E.

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs) comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases, and actin-nucleating factors. The B. pseudomallei K96243 genome contains 11 predicted ATs, eight of which share homologs in the B. mallei ATCC 23344 genome. Th...

  17. In Vitro Activity of Tigecycline against Burkholderia pseudomallei and Burkholderia thailandensis

    OpenAIRE

    Thamlikitkul, Visanu; Trakulsomboon, Suwanna

    2006-01-01

    Investigation of the in vitro activity of tigecycline against Burkholderia pseudomallei and Burkholderia thailandensis revealed that the inhibition zone diameters of tigecycline against all isolates were ≥20 mm and that the MIC50 values were 0.5 and 1 μg/ml and the MIC90 values were 2 and 1.5 μg/ml for B. pseudomallei and B. thailandensis, respectively.

  18. Autotransporters and their role in the virulence of Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    Lazar Adler, N.; Stevens, J; STEVENS, M.; Galyov, E

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs) comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases and actin-nucleating factors. The B. pseudomallei K96243 genome contains eleven predicted ATs, eight of which share homologues in the B. mallei ATCC 23344 genom...

  19. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei

    OpenAIRE

    Janse Ingmar; Hamidjaja Raditijo A; Hendriks Amber CA; van Rotterdam Bart J

    2013-01-01

    Abstract Background Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Methods Si...

  20. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells

    OpenAIRE

    Hogan Robert J; Wooten Ronald M; Grose William; Lazarus John J; Lipski Serena; Balder Rachel; Woods Donald E; Lafontaine Eric R

    2010-01-01

    Abstract Background Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Results Comparative sequence analyses ident...

  1. Natural Burkholderia mallei Infection in Dromedary, Bahrain

    Science.gov (United States)

    Wernery, Ulrich; Wernery, Renate; Joseph, Marina; Al-Salloom, Fajer; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Jose, Sherry; Tappendorf, Britta; Hornstra, Heidie

    2011-01-01

    We confirm a natural infection of dromedaries with glanders. Multilocus variable number tandem repeat analysis of a Burkholderia mallei strain isolated from a diseased dromedary in Bahrain revealed close genetic proximity to strain Dubai 7, which caused an outbreak of glanders in horses in the United Arab Emirates in 2004. PMID:21762586

  2. Natural Burkholderia mallei Infection in Dromedary, Bahrain

    OpenAIRE

    Wernery, Ulrich; Wernery, Renate; Joseph, Marina; Al-Salloom, Fajer; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Jose, Sherry; Tappendorf, Britta; Hornstra, Heidie; Scholz, Holger C.

    2011-01-01

    We confirm a natural infection of dromedaries with glanders. Multilocus variable number tandem repeat analysis of a Burkholderia mallei strain isolated from a diseased dromedary in Bahrain revealed close genetic proximity to strain Dubai 7, which caused an outbreak of glanders in horses in the United Arab Emirates in 2004.

  3. Burkholderia pseudomallei Antibodies in Children, Cambodia

    OpenAIRE

    Wuthiekanun, Vanaporn; Pheaktra, Ngoun; Putchhat, Hor; Sin, Lina; Sen, Bun; Kumar, Varun; Langla, Sayan; Peacock, Sharon J.; Nicholas P. Day

    2008-01-01

    Antibodies to Burkholderia pseudomallei were detected in 16% of children in Siem Reap, Cambodia. This organism was isolated from 30% of rice paddies in the surrounding vicinity. Despite the lack of reported indigenous cases, melioidosis is likely to occur in Cambodia.

  4. Lipase Maturation Factor 1: a lipase chaperone involved in lipid metabolism

    OpenAIRE

    Péterfy, Miklós

    2011-01-01

    Mutations in lipase maturation factor 1 (LMF1) are associated with severe hypertriglyceridemia in mice and human subjects. The underlying cause is impaired lipid clearance due to lipase deficiency. LMF1 is a chaperone of the endoplasmic reticulum (ER) and it is critically required for the post-translational activation of three vascular lipases: lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). As LMF1 is only required for the maturation of homodimeric, but not monomer...

  5. Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Nelis Hans

    2010-02-01

    Full Text Available Abstract Background Burkholderia cepacia complex bacteria are opportunistic pathogens, which can cause severe respiratory tract infections in patients with cystic fibrosis (CF. As treatment of infected CF patients is problematic, multiple preventive measures are taken to reduce the infection risk. Besides a stringent segregation policy to prevent patient-to-patient transmission, clinicians also advise patients to clean and disinfect their respiratory equipment on a regular basis. However, problems regarding the efficacy of several disinfection procedures for the removal and/or killing of B. cepacia complex bacteria have been reported. In order to unravel the molecular mechanisms involved in the resistance of biofilm-grown Burkholderia cenocepacia cells against high concentrations of reactive oxygen species (ROS, the present study focussed on the transcriptional response in sessile B. cenocepacia J2315 cells following exposure to high levels of H2O2 or NaOCl. Results The exposure to H2O2 and NaOCl resulted in an upregulation of the transcription of 315 (4.4% and 386 (5.4% genes, respectively. Transcription of 185 (2.6% and 331 (4.6% genes was decreased in response to the respective treatments. Many of the upregulated genes in the NaOCl- and H2O2-treated biofilms are involved in oxidative stress as well as general stress response, emphasizing the importance of the efficient neutralization and scavenging of ROS. In addition, multiple upregulated genes encode proteins that are necessary to repair ROS-induced cellular damage. Unexpectedly, a prolonged treatment with H2O2 also resulted in an increased transcription of multiple phage-related genes. A closer inspection of hybridisation signals obtained with probes targeting intergenic regions led to the identification of a putative 6S RNA. Conclusion Our results reveal that the transcription of a large fraction of B. cenocepacia J2315 genes is altered upon exposure of sessile cells to ROS. These

  6. Sero-characterization of lipopolysaccharide from Burkholderia thailandensis

    OpenAIRE

    Qazi, Omar; Prior, Joann L.; Judy, Barbara M; Whitlock, Gregory C.; Kitto, G. Barrie; Torres, Alfredo G.; Estes, D. Mark; Brown, Katherine A

    2008-01-01

    We report the successful purification of lipopolysaccharide (LPS) from Burkholderia thailandesis, a Gram-negative bacterium, closely related to the highly pathogenic organisms Burkholderia pseudomallei and Burkholderia mallei. B. thailandensis LPS is shown to cross-react with rabbit and mouse sera obtained from inoculation with B. pseudomallei or B. mallei, respectively. These data suggest that B. thailandensis LPS shares similar structural features with LPS molecules from highly pathogenic B...

  7. Members of the genus Burkholderia: good and bad guys

    Science.gov (United States)

    Eberl, Leo; Vandamme, Peter

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains. PMID:27303639

  8. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Janse Ingmar

    2013-02-01

    Full Text Available Abstract Background Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Methods Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. Results A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. Conclusions The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.

  9. Biodiesel production with immobilized lipase: A review.

    Science.gov (United States)

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. PMID:20580809

  10. Lipase - Catalyzed glycerolysis of sunflower oil to produce partial glycerides.

    OpenAIRE

    Zaher, F. A.; Aly, Saadia M.; El-Kinawy, O. S.

    1998-01-01

    Partial glycerides were prepared by glycerolysis of sunflower oil in presence of lipase enzyme as catalyst. Six lipases of different origins were used and compared for their catalytic activity. These include Chromobacterium lipase, pancreatic lipase, Rhizopus arrhizus lipase, lyophilized lipase (plant lipase) in addition to two lipase preparations derived from Rhizopus japonicas; Lilipase A-10 and Lilipase B-2. Chromobacterium&...

  11. Lipases in Medicine: An Overview.

    Science.gov (United States)

    Loli, Heni; Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2015-01-01

    Lipases are part of the family of hydrolases that act on carboxylic ester bonds. They are involved in catalyzing the hydrolysis of triglycerides (TG) into chylomicrons and very low density lipoprotein (VLDL) particles. Uses of lipases are evolving rapidly and currently they are reported to show high potential in medicine. Intensive study and investigations have led researchers to explore lipases for their use in substitution therapy, where in enzyme deficiency during diseased conditions is compensated by their external administration. In our body, they are used to break down fats present in food so that they can be absorbed in the intestine and deficiency of lipases leads to malabsorption of fats and fat-soluble vitamins. Lipases help a person who has cystic fibrosis, Alzheimer's disease, atherosclerosis and act as a candidate target for cancer prevention and therapy. They act as diagnostic tool and their presence or increasing levels can indicate certain infection or disease. Obesity causes metabolic disease and is a serious health problem around the world. Thus inhibiting digestive lipase to reduce fat absorption has become the main pharmacological approach to the treatment of obesity in recent years. PMID:26156413

  12. Structural flexibility in the Burkholderia mallei genome

    OpenAIRE

    Nierman, William C.; DeShazer, David; Kim, H Stanley; Tettelin, Herve; Karen E Nelson; Feldblyum, Tamara; Ulrich, Ricky L.; Ronning, Catherine M.; Brinkac, Lauren M; Daugherty, Sean C.; Davidsen, Tanja D.; DeBoy, Robert T.; Dimitrov, George; Robert J Dodson; Durkin, A. Scott

    2004-01-01

    The complete genome sequence of Burkholderia mallei ATCC 23344 provides insight into this highly infectious bacterium's pathogenicity and evolutionary history. B. mallei, the etiologic agent of glanders, has come under renewed scientific investigation as a result of recent concerns about its past and potential future use as a biological weapon. Genome analysis identified a number of putative virulence factors whose function was supported by comparative genome hybridization and expression prof...

  13. Complete Genome Sequence of the Fenitrothion-Degrading Burkholderia sp. Strain YI23

    OpenAIRE

    Lim, Jong Sung; Choi, Beom Soon; Choi, Ah Young; Kim, Kyung Duk; Kim, Dong In; Choi, Ik Young; Ka, Jong-Ok

    2012-01-01

    Burkholderia species are ubiquitous in soil environments. Many Burkholderia species isolated from various environments have the potential to biodegrade man-made chemicals. Burkholderia sp. strain YI23 was isolated from a golf course soil and identified as a fenitrothion-degrading bacterium. In this study, we report the complete genome sequence of Burkholderia sp. strain YI23.

  14. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    OpenAIRE

    Johnson, S. L.; Bishop-Lilly, Kimberly A.; Ladner, Jason T.; Daligault, Hajnalka E.; Davenport, Karen W.; Jaissle, James; Frey, Kenneth G.; Koroleva, Galina I.; Bruce, David C.; Coyne, Susan R.; Broomall, Stacey M.; Li, Po-E; Teshima, Hazuki; Gibbons, Henry S.; Palacios, Gustavo F.

    2015-01-01

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development.

  15. Molecular Characterization of Clinical Burkholderia pseudomallei Isolates from India

    OpenAIRE

    Mukhopadhyay, Chiranjay; Kaestli, Mirjam; Vandana, Kalwaje Eshwara; Sushma, Krishna; Mayo, Mark; Richardson, Leisha; Tuanyok, Apichai; Keim, Paul; Godoy, Daniel; Brian G. Spratt; Currie, Bart J.

    2011-01-01

    Multilocus sequence typing of seven isolates of Burkholderia pseudomallei from India showed considerable diversity, with six different sequence types. Possible dissemination of melioidosis by historical trading routes is supported by links to strains from Southeast Asia, China, and Africa and the presence of the Burkholderia mallei allele of the bimA gene.

  16. Crystallization and crystal manipulation of a steric chaperone in complex with its lipase substrate

    International Nuclear Information System (INIS)

    Crystals of the lipase of B. glumae in complex with its specific foldase were obtained in two forms. Crystallization, crystal manipulation and preliminary X-ray diffraction analysis are described. Bacterial lipases that are secreted via the type II secretion pathway require a lipase-specific foldase in order to obtain their native and biologically active conformation in the periplasmic space. The lipase–foldase complex from Burkholderia glumae (319 and 333 residues, respectively) was crystallized in two crystal forms. One crystal form belongs to space group P3121 (P3221), with unit-cell parameters a = b = 122.3, c = 98.2 Å. A procedure is presented which improved the diffraction of these crystals from ∼5 to 2.95 Å. For the second crystal form, which belonged to space group C2 with unit-cell parameters a = 183.0, b = 75.7, c = 116.6 Å, X-ray data were collected to 1.85 Å

  17. Actin-binding proteins from Burkholderia mallei and Burkholderia thailandensis can functionally compensate for the actin-based motility defect of a Burkholderia pseudomallei bimA mutant

    OpenAIRE

    Stevens, J. M.; Ulrich, R L; Taylor, L A; Wood, M W; DeShazer, D; M.P. Stevens; Galyov, E. E.

    2005-01-01

    Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind ...

  18. Actin-Binding Proteins from Burkholderia mallei and Burkholderia thailandensis Can Functionally Compensate for the Actin-Based Motility Defect of a Burkholderia pseudomallei bimA Mutant

    OpenAIRE

    Stevens, Joanne M; Ulrich, Ricky L.; Taylor, Lowrie A.; Wood, Michael W.; DeShazer, David; Stevens, Mark P.; Galyov, Edouard E.

    2005-01-01

    Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind ...

  19. Overview of fungal lipase: a review.

    Science.gov (United States)

    Singh, Abhishek Kumar; Mukhopadhyay, Mausumi

    2012-01-01

    Lipases (triacylglycerolacyl hydrolases, EC3.1.1.3) are class of enzymes which catalyze the hydrolysis of long-chain triglycerides. In this review paper, an overview regarding the fungal lipase production, purification, and application is discussed. The review describes various industrial applications of lipase in pulp and paper, food, detergent, and textile industries. Some important lipase-producing fungal genera include Aspergillus, Penicillium, Rhizopus, Candida, etc. Current fermentation process techniques such as batch, fed-batch, and continuous mode of lipase production in submerged and solid-state fermentations are discussed in details. The purification of lipase by hydrophobic interaction chromatography is also discussed. The development of mathematical models applied to lipase production is discussed with special emphasis on lipase engineering. PMID:22072143

  20. Genomic Sequence of Burkholderia multivorans NKI379, a Soil Bacterium That Inhibits the Growth of Burkholderia pseudomallei

    OpenAIRE

    Hsueh, Pei-Tan; Liu, Jong-Kang; Chen, Ya-Lei; Liu, Pei-Ju; Ni, Wen-Fan; Chen, Yao-Shen; Wu, Keh-Ming; Lin, Hsi-Hsun

    2015-01-01

    Burkholderia multivorans NKI379 is a soil bacterium that exhibits an antagonistic effect against the growth of Burkholderia pseudomallei, the causative agent of the infectious disease melioidosis. We report the draft genomic sequence of B. multivorans NKI379, which has a G+C content of 67% and 5,203 candidate protein-encoding genes.

  1. Effect of Population Dynamics of Pseudomonas cepacia and Paecilomyces lilacinus on Colonization of Polyfoam Rooting Cubes by Rhizoctonia solani

    OpenAIRE

    Cartwright, D. Kelly; Benson, D. M.

    1994-01-01

    Suspensions of Pseudomonas cepacia (strain 5.5B) and Paecilomyces lilacinus (isolate 6.2F) were applied to polyfoam rooting cubes for control of stem rot of poinsettia caused by Rhizoctonia solani. The populations of antagonists and colonization of rooting cubes by R. solani were monitored during a 3-week period. Colonization of cubes by R. solani was reduced in cubes treated with P. cepacia, but the population of P. cepacia decreased by as much as 97% during the test period. Increased coloni...

  2. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    Science.gov (United States)

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  3. CLONING IN PSEUDOMONAS CEPACIA: EXPRESSION AND REGULATION OF THE PROTOCATECHUATE 3,4-DIOXYGENASE GENES

    Science.gov (United States)

    Genes for the a and B subunits of the enzyme protocatechuate 3,4-dioxygenase were cloned from the Pseudomonas cepacia DB01 chromosome on a 9.5 kilobase pair PstI fragment into the broad-host-range cloning vector pR023l7. he resultant clone was able to complement protocatechuate 3...

  4. Lipases and Its Application in Food Industry

    Institute of Scientific and Technical Information of China (English)

    WANG Ting; QIN Gang

    2010-01-01

    Lipases(triacylglycerol acylhydrolases,EC 3.1.1.3)occur widely in nature.It catalyze the hydrolysis and the synthesis of esters formed from glycerol and long-chain fatty acids.Lipases are commercially significant,this article discusses the source,structure,character and preparative method,the applications of lipases in food industry are discussed too.

  5. Crystal Structure of Proteus mirabilis Lipase, a Novel Lipase from the Proteus/Psychrophilic Subfamily of Lipase Family I.1

    OpenAIRE

    Korman, Tyler P; Bowie, James U.

    2012-01-01

    Bacterial lipases from family I.1 and I.2 catalyze the hydrolysis of triacylglycerol between 25–45°C and are used extensively as biocatalysts. The lipase from Proteus mirabilis belongs to the Proteus/psychrophilic subfamily of lipase family I.1 and is a promising catalyst for biodiesel production because it can tolerate high amounts of water in the reaction. Here we present the crystal structure of the Proteus mirabilis lipase, a member of the Proteus/psychrophilic subfamily of I.1lipases. Th...

  6. Lipase Induction in Mucor hiemalis

    OpenAIRE

    Akhtar, M. Waheed; Mirza, A. Q.; Chughtai, M. I. D.

    1980-01-01

    The influence on lipase induction in Mucor hiemalis of different types of triglycerides containing mainly oleic acid (olive oil), erucic acid (mustard oil), or saturated fatty acids of 8 to 16 carbons (coconut oil) was studied. The fungus was grown in shake flasks in a fermentation medium containing peptone, minerals, and glucose or one of the oils as the carbon source. Maximum lipase was produced when the initial pH of the fermentation medium was kept at 4.0. Addition of Ca2+ to the medium d...

  7. Role of phages in the pathogenesis of Burkholderia or “Where are the toxin genes in Burkholderia phages?”

    OpenAIRE

    Summer, Elizabeth J.; Gill, Jason J.; Upton, Chris; Gonzalez, Carlos F.; Young, Ry

    2007-01-01

    Most bacteria of the genus Burkholderia are soil- and rhizosphere- associated, noted for their metabolic plasticity in the utilization of a wide range of organic compounds as carbon sources. Many Burkholderia species are also opportunistic human and plant pathogens and the distinction between environmental, plant, and human pathogens is not always clear. Burkholderia phages are not uncommon and multiple cryptic prophages are identifiable in the sequenced Burkholderia genomes. Phages have play...

  8. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase.

    OpenAIRE

    Bernbäck, S; Bläckberg, L; Hernell, O

    1990-01-01

    Gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase all have potential roles in digestion of human milk triacylglycerol. To reveal the function of each lipase, an in vitro study was carried out with purified lipases and cofactors, and with human milk as substrate. Conditions were chosen to resemble those of the physiologic environment in the gastrointestinal tract of breast-fed infants. Gastric lipase was unique in its ability to initiate hydrolysis of milk t...

  9. Epidemic of Pseudomonas cepacia in an adult cystic fibrosis unit: evidence of person-to-person transmission.

    OpenAIRE

    Smith, D. L.; Gumery, L B; Smith, E. G.; Stableforth, D. E.; Kaufmann, M. E.; Pitt, T L

    1993-01-01

    An epidemic of Pseudomonas cepacia occurred in an adult cystic fibrosis center in the United Kingdom, despite a policy of segregation of infected and noninfected patients within the hospital. Investigation of the outbreak by ribotyping and pulsed-field gel electrophoresis to characterize P. cepacia strain genomes together with inquiry into social contacts between patients revealed evidence of person-to-person transmission outside the hospital environment. Segregation policies aimed at reducin...

  10. Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipases

    DEFF Research Database (Denmark)

    Kristensen, Janni Brogaard; Xu, X.B.; Mu, Huiling

    2005-01-01

    suggests that glycerol forms a layer around the hydrophilic lipase particles, limiting contact between the lipases and the hydrophobic oil phase. With glycerol absorbed on silica gel, all lipases catalyzed the glycerolysis reaction. Faster conversion of TAG was obtained with Lipase PS-D, Lipase AK, and...

  11. Lipases in Hierarchically Structured Montmorillonite

    Czech Academy of Sciences Publication Activity Database

    Kuncová, Gabriela; Šabata, Stanislav; Kučerová, L.; Fuzik, T.; Duchek, P.

    - : -, 2011, s. 116-117. ISBN N. [International Conference on Bioencapsulation /19./. Amboise (FR), 05.10.2011-08.10.2011] R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40720504 Keywords : montmorillonite * lipase * biocatalyst Subject RIV: CC - Organic Chemistry

  12. Structural studies on lipoprotein lipase

    International Nuclear Information System (INIS)

    The structure of lipoprotein lipase is not known. The lack of information on its primary sequence has been due to the inability of preparing it in homogeneous and stable form. This research has focused on the structural characterization of lipoprotein lipase. The first approach taken was to develop a purification method using bovine milk and affinity chromatography on heparin-Sepharose. The protein obtained was a heterogeneous peak with the activity shifted towards the trailing edge fractions. These fractions only presented a 55 Kdalton band on polyacrylamide gel electrophoresis. Monoclonal antibodies against this band detected an endogenous, phenyl methane sulfonyl fluoride-sensitive protease responsible for the presence of lower molecular weight fragments. The second approach was to label the lipoprotein lipase with a radioactive, active site, directed probe. After incubation and affinity chromatography a complex [3H]inhibitor enzyme was isolated with a stoichiometry of 1.00 +/- 0.2. The complex was digested with CNBr and the insoluble peptides at low ionic strength (>90% [3H]dpm) were used for further purification. Differential extraction of the [3H]-peptide, digestion with S. aureus V8 protease, and high performance liquid chromatography yielded a hexapeptide with a composition consistent with the consensus sequence of the active site peptides of many serine-esterase. This and the kinetic data imply this being the mechanism of action for lipoprotein lipase

  13. Brain abscess caused by Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    Full text: Melioidosis, or infection with Burkholderia pseudomallei, is an important human disease in South East Asia and Northern Australia. Neurological manifestations are well recognized amongst its protean presentations, but direct focal central nervous system infection is infrequently described with only 9 adult and 5 paediatric cases reported in the English language literature. A case of brain abscess due to Burkholderia pseudomallei occurring in a 20 year old Dutch visitor to Australia which progressed despite antibiotic treatment is described. A review of the clinical manifestations, Magnetic Resonance (MR) appearance, diagnosis and treatment of melioidosis is presented, highlighting that: (i) physicians outside endernic areas should consider melioidosis in any patient with an appropriate travel history, (ii) MR imaging is more sensitive then CT in diagnosing early brain infection, especially of the brainstem; (iii) Bacterial culture, the mainstay of diagnosis, has many shortcomings; (iv)In vitro antibiotic sensitivity testing may not translate into clinical efficacy; and (v) Steroids appear to have little role, even in severe disease

  14. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis.

    Science.gov (United States)

    Xu, Yao; Buss, Eileen A; Boucias, Drion G

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained. PMID:27548682

  15. MICROBIAL LIPASES: PRODUCTION OF EXTRACELLULAR LIPASE ENZYME BY ALCALIGENES VISCOSUS (DOGE-1) STRAIN

    OpenAIRE

    P.Sekhar

    2012-01-01

    Industrially important extracellular lipase enzyme production was explored by utilizingmicrobial strain isolated from dairy effluents. Alcaligenes viscosus DOGE-1 strain isolated from dairywaste waters proved to produce extracellular lipase. Various growth factors were attempted to maximizethe lipase production by this strain. Growth factors like NH4PO4, Peptone, Urea coupled with peptone,KH2PO4, Olive oil and pH were found to be favored the maximum lipase production. This microbialstrain was...

  16. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates.

    OpenAIRE

    Folsom, B R; Chapman, P J; Pritchard, P H

    1990-01-01

    Intact cells of Pseudomonas cepacia G4 completely degraded trichloroethylene (TCE) following growth with phenol. Degradation kinetics were determined for both phenol, used to induce requisite enzymes, and TCE, the target substrate. Apparent Ks and Vmax values for degradation of phenol by cells were 8.5 microM and 466 nmol/min per mg of protein, respectively. At phenol concentrations greater than 50 microM, phenol degradation was inhibited, yielding an apparent second-order inhibitory value, K...

  17. Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4.

    OpenAIRE

    Folsom, B R; Chapman, P J

    1991-01-01

    Pseudomonas cepacia G4 grown in chemostats with phenol demonstrated constant specific degradation rates for both phenol and trichloroethylene (TCE) over a range of dilution rates. Washout of cells from chemostats was evident at a dilution rate of 0.2 h-1 at 28 degrees C. Increased phenol concentrations in the nutrient feed led to increased biomass production with constant specific degradation rates for both phenol and TCE. The addition of lactate to the phenol feed led to increased biomass pr...

  18. Serum pancreatic lipase activity in cystic fibrosis.

    OpenAIRE

    Junglee, D; Penketh, A; Katrak, A; Hodson, M.E.; Batten, J C; Dandona, P

    1983-01-01

    Patients with cystic fibrosis have been found to have abnormal serum concentrations of immunoreactive trypsin and abnormal activities of pancreatic isoamylase. A study was undertaken to discover whether activity of pancreatic lipase is also altered in cystic fibrosis. Serum from 23 patients with cystic fibrosis was assayed for immunoreactive trypsin and pancreatic lipase. Median serum pancreatic lipase activity was significantly lower in patients with cystic fibrosis than in controls, as was ...

  19. 21 CFR 184.1415 - Animal lipase.

    Science.gov (United States)

    2010-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Animal lipase. 184.1415 Section 184.1415 Food and... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an...

  20. An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts

    OpenAIRE

    Kikuchi, Yoshitomo; Hosokawa, Takahiro; Fukatsu, Takema

    2010-01-01

    Here, we investigated 124 stinkbug species representing 20 families and 5 superfamilies for their Burkholderia gut symbionts, of which 39 species representing 6 families of the superfamilies Lygaeoidea and Coreoidea were Burkholderia-positive. Diagnostic PCR surveys revealed high frequencies of Burkholderia infection in natural populations of the stinkbugs, and substantial absence of vertical transmission of Burkholderia infection to their eggs. In situ hybridization confirmed localization of...

  1. Lipase Activity of Guinea Pig Peritoneal Macrophages and Mycobacterial Lipase Inhibitor

    OpenAIRE

    Kiyotani, Katsuhiro; Tasaka, Hiromichi; Tsukiyama, Fumiaki; Matsuo, Yoshiyasu

    1983-01-01

    The interaction of mycobacterial lipase inhibitor (MLI), isolated from culture supernatant fluid of Mycobacterium tuberculosis strain H37Rv, and lipase from guinea pig peritoneal macrophages (GP-PMφs) was investigated fluorimetrically by the modified lipase assay system which had previously been proposed. Two peaks of lipase activity were observed in the enzyme preparation from GPPMφs. The activity of MLI against lipase from GP-PMφs was significantly high at acidic pH less than 5.0, and t...

  2. Stable, Site-Specific Fluorescent Tagging Constructs Optimized for Burkholderia Species▿

    OpenAIRE

    Norris, Michael H.; Kang, Yun (Kenneth); Wilcox, Bruce; Hoang, Tung T.

    2010-01-01

    Several vectors that facilitate stable fluorescent labeling of Burkholderia pseudomallei and Burkholderia thailandensis were constructed. These vectors combined the effectiveness of the mini-Tn7 site-specific transposition system with fluorescent proteins optimized for Burkholderia spp., enabling bacterial tracking during cellular infection.

  3. Organic Solvent Tolerant Lipases and Applications

    Directory of Open Access Journals (Sweden)

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  4. Draft Genome Sequence of Flavobacterium sp. Strain TAB 87, Able To Inhibit the Growth of Cystic Fibrosis Bacterial Pathogens Belonging to the Burkholderia cepacia Complex.

    Science.gov (United States)

    Presta, Luana; Inzucchi, Ilaria; Bosi, Emanuele; Fondi, Marco; Perrin, Elena; Miceli, Elisangela; Tutino, Maria Luisa; Lo Giudice, Angelina; de Pascale, Donatella; Fani, Renato

    2016-01-01

    We report here the draft genome sequence of the Flavobacterium sp. TAB 87 strain, isolated from Antarctic seawater during a summer campaign near the French Antarctic station Dumont d'Urville (60°40'S, 40°01'E). It will allow for comparative genomics and the fulfillment of both fundamental and application-oriented investigations. It allowed the recognition of genes associated with the production of bioactive compounds and antibiotic resistance. PMID:27198032

  5. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF TRANSPORT PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    Science.gov (United States)

    Transport of bacteria through geologic media may be viewed as being governed by sorption-desorption reactions. In this investigation, four facets of the process were examined: (I) the impact of sorption on bacterial transport under typical ground water flow velocities and a diffe...

  6. A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia

    Directory of Open Access Journals (Sweden)

    Klinger-Strobel M

    2016-02-01

    Full Text Available Mareike Klinger-Strobel,1,2,* Julia Ernst,3,* Christian Lautenschläger,4 Mathias W Pletz,1,2 Dagmar Fischer,3,5 Oliwia Makarewicz1,2 1Center for Infectious Diseases and Infection’s Control, 2Center for Sepsis Control and Care, Jena University Hospital, 3Department of Pharmaceutical Technology, Friedrich Schiller University Jena, 4Department of Internal Medicine IV, Jena University Hospital, 5Jena Center for Soft Matter (JCSM, Friedrich Schiller University Jena, Jena, Germany*These authors contributed equally to this work Abstract: Strategies that target and treat biofilms are widely applied to bacterial cultures using popular live/dead staining techniques with mostly red or green fluorescent markers (eg, with SYTO® 9, propidium iodide, fluorescein. Therefore, visualizing drugs or micro- and nanoparticulate delivery systems to analyze their distribution and effects in biofilms requires a third fluorescent dye that does not interfere with the properties of the live/dead markers. The present study establishes and evaluates a model for tracking polymeric particles in fluorescently stained biological material. To this end, poly(D,L-lactide-co-glycolide (PLGA-based micro- and nanoparticles were used as well-established model systems, which, because of their favorable safety profiles, are expected to play important future roles with regard to drug delivery via inhalation. PLGA was covalently and stably labeled with 7-amino-4-methyl-3-coumarinylacetic acid (AMCA, after which blue fluorescent poly(ethylene glycol-block-PLGA (PEG-PLGA particles were prepared using a mixture of fluorescent AMCA-PLGA and PEG-PLGA. Because chitosan is known to reduce negative surface charge, blue fluorescent PEG-PLGA-particles with chitosan were also prepared. These micro- and nanoparticles were physicochemically characterized and could be clearly distinguished from live/dead stained bacteria in biofilms using confocal laser scanning microscopy. Keywords: 7-amino-4-methyl-3-coumarinylacetic acid, PLGA, PEG, confocal laser scanning microscopy, cystic fibrosis, chitosan, hydrodynamic diameter

  7. Gene expression profiling of Burkholderia cenocepacia at the time of cepacia syndrome: loss of motility as a marker of poor prognosis?

    Czech Academy of Sciences Publication Activity Database

    Kalferstová, L.; Kolář, Michal; Fila, L.; Vávrová, J.; Dřevínek, P.

    2015-01-01

    Roč. 53, č. 5 (2015), s. 1515-1522. ISSN 0095-1137 Grant ostatní: GA MŠk(CZ) LD11029; GA MZd(CZ) NT12405 Institutional support: RVO:68378050 Keywords : CYSTIC-FIBROSIS PATIENTS * COMPLEX * VIRULENCE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.993, year: 2014

  8. Lipase-catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)-diricinolein.

    Science.gov (United States)

    Turner, Charlotta; He, Xiaohua; Nguyen, Tasha; Lin, Jiann-Tsyh; Wong, Rosalind Y; Lundin, Robert E; Harden, Leslie; McKeon, Thomas

    2003-11-01

    The objective of this study was to find the optimal parameters for lipase-catalyzed methanolysis of triricinolein to produce 1,2(2,3)-diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n-Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (a(w)), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)-diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)-diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)-diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at a(w) of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)-isomer vs. the 1,3-isomer was achieved at higher a(w) (88% at a(w) = 0.53), compared to lower a(w) (71% at a(w) = 0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at a(w) 0.53 is considered optimal for the synthesis of 1,2(2,3)-diricinolein from triricinolein. PMID:14733366

  9. Lipase immobilized on polydopamine-coated magnetite nanoparticles for biodiesel production from soybean oil

    Directory of Open Access Journals (Sweden)

    Marcos F. C. Andrade

    2016-06-01

    Full Text Available Lipase from Pseudomonas cepacia was covalently attached to magnetite nanoparticles coated with a thin polydopamine film, and employed in the enzymatic conversion of soybean oil into biodiesel, in the presence of methanol.  The proposed strategy explored the direct immobilization of the enzyme via Michael addition and aldolic condensation reactions at the catechol rings, with no need of using specific coupling agents. In addition, a larger amount of enzymes could be bound to the magnetic nanoparticles, allowing their efficient recycling with the use of an external magnet. In the biodiesel conversion, the transesterification reaction was carried out directly in soybean oil by the stepwise addition of methanol, in order to circumvent its inactivation effect on the enzyme. A better yield was  obtained in relation to the free enzyme, achieving 90% yield at 37 oC.  However, the catalysis became  gradually less effective after the third cycle, due to its prolonged exposition to the denaturating methanol medium.

  10. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus.

    Science.gov (United States)

    Partida-Martinez, Laila P; Groth, Ingrid; Schmitt, Imke; Richter, Walter; Roth, Martin; Hertweck, Christian

    2007-11-01

    Several strains of the fungus Rhizopus microsporus harbour endosymbiotic bacteria for the production of the causal agent of rice seedling blight, rhizoxin, and the toxic cyclopeptide rhizonin. R. microsporus and isolated endobacteria were selected for freeze-fracture electron microscopy, which allowed visualization of bacterial cells within the fungal cytosol by their two parallel-running envelope membranes and by the fine structure of the lipopolysaccharide layer of the outer membrane. Two representatives of bacterial endosymbionts were chosen for phylogenetic analyses on the basis of full 16S rRNA gene sequences, which revealed that the novel fungal endosymbionts formed a monophyletic group within the genus Burkholderia. Inter-sequence similarities ranged from 98.94 to 100%, and sequence similarities to members of the Burkholderia pseudomallei group, the closest neighbours, were 96.74-97.38%. In addition, the bacterial strains were distinguished from their phylogenetic neighbours by their fatty acid profiles and other biochemical characteristics. The phylogenetic studies based on 16S rRNA gene sequence data, together with conclusive DNA-DNA reassociation experiments, strongly support the proposal that these strains represent two novel species within the genus Burkholderia, for which the names Burkholderia rhizoxinica sp. nov. (type strain, HKI 454T=DSM 19002T=CIP 109453T) and Burkholderia endofungorum sp. nov. (type strain, HKI 456T=DSM 19003T=CIP 109454T) are proposed. PMID:17978222

  11. Oropharyngeal aspiration of Burkholderia mallei and Burkholderia pseudomallei in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Kevin L Schully

    Full Text Available Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure prophylaxis focus largely on inhalation models of infection. Here, we demonstrate a non-invasive and technically simple method for affecting the inhalational challenge of BALB/c mice with B. pseudomallei and B. mallei. In this model, two investigators utilized common laboratory tools such as forceps and a micropipette to conduct and characterize an effective and reproducible inhalational challenge of BALB/c mice with B. mallei and B. pseudomallei. Challenge by oropharyngeal aspiration resulted in acute disease. Additionally, 50% endpoints for B. pseudomallei K96243 and B. mallei ATCC 23344 were nearly identical to published aerosol challenge methods. Furthermore, the pathogens disseminated to all major organs typically targeted by these agents where they proliferated. The pro-inflammatory cytokine production in the proximal and peripheral fluids demonstrated a rapid and robust immune response comparable to previously described murine and human studies. These observations demonstrate that OA is a viable alternative to aerosol exposure.

  12. Prevalence of Burkholderia pseudomallei in Guangxi, China.

    Science.gov (United States)

    Ma, G; Zheng, D; Cai, Q; Yuan, Z

    2010-01-01

    Melioidosis, an infectious disease caused by the Gram-negative bacterium Burkholderia pseudomallei, is now recognized as an important public health problem in Southeast Asia and tropical northern Australia. Although B. pseudomallei has been detected in various water and soil samples in southeast China, the enviromental distribution of B. pseudomallei in China is unclear. In the winter months of 2007, 154 and 130 soil and water samples, respectively, were collected from several locations in Guangxi, China. The samples were screened for B. pseudomallei by bacterial culture and identification and confirmed by PCR for species-specific 16S rDNA and flagellin genes. B. pseudomallei was detected in 8.4% of the soil samples but in none of the water samples. All positive samples were confined to a single low-lying region from rice paddy fields. Counts of B. pseudomallei ranged from 23 to 521 c.f.u./g soil. This is the first geographical distribution survey of B. pseudomallei in soil in Guangxi, China, and the data are of importance for further evaluating the impact of this pathogen on melioidosis in this region. PMID:19538822

  13. Burkholderia pseudomallei musculoskeletal infections (melioidosis in India

    Directory of Open Access Journals (Sweden)

    Pandey Vivek

    2010-01-01

    Full Text Available Melioidosis, an infection due to gram negative Burkholderia pseudomallei, is an important cause of sepsis in east Asia especially Thailand and northern Australia. It usually causes abscesses in lung, liver, spleen, skeletal muscle and parotids especially in patients with diabetes, chronic renal failure and thalassemia. Musculoskeletal melioidosis is not common in India even though sporadic cases have been reported mostly involving soft tissues. During a two-year-period, we had five patients with musculoskeletal melioidosis. All patients presented with multifocal osteomyelitis, recurrent osteomyelitis or septic arthritis. One patient died early because of septicemia and multi-organ failure. All patients were diagnosed on the basis of positive pus culture. All patients were treated by surgical debridement followed by a combination of antibiotics; (ceftazidime, amoxy-clavulanic acid, co-trimoxazole and doxycycline for six months except for one who died due to fulminant septicemia. All other patients recovered completely with no recurrences. With increasing awareness and better diagnostic facilities, probably musculoskeletal melioidosis will be increasingly diagnosed in future.

  14. Strategies for Intracellular Survival of Burkholderia pseudomallei.

    Science.gov (United States)

    Allwood, Elizabeth M; Devenish, Rodney J; Prescott, Mark; Adler, Ben; Boyce, John D

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  15. Burkholderia pseudomallei transcriptional adaptation in macrophages

    Directory of Open Access Journals (Sweden)

    Chieng Sylvia

    2012-07-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation. Results Here we report the expression profile of intracellular B. pseudomallei following infection of human macrophage-like U937 cells. During intracellular growth over the 6 h infection period, approximately 22 % of the B. pseudomallei genome showed significant transcriptional adaptation. B. pseudomallei adapted rapidly to the intracellular environment by down-regulating numerous genes involved in metabolism, cell envelope, motility, replication, amino acid and ion transport system and regulatory function pathways. Reduced expression in catabolic and housekeeping genes suggested lower energy requirement and growth arrest during macrophage infection, while expression of genes encoding anaerobic metabolism functions were up regulated. However, whilst the type VI secretion system was up regulated, expression of many known virulence factors was not significantly modulated over the 6hours of infection. Conclusions The transcriptome profile described here provides the first comprehensive view of how B. pseudomallei survives within host cells and will help identify potential virulence factors and proteins that are important for the survival and growth of B. pseudomallei within human cells.

  16. Lipoprotein lipase is produced, regulated, and functional in rat brain.

    OpenAIRE

    Eckel, R.H.; Robbins, R J

    1984-01-01

    Lipoprotein lipase (LP lipase, triacylglycero-protein acylhydrolase EC 3.1.1.34) activity was found in four dissimilar brain regions (hypothalamus, cortex, cerebellum, and midbrain) of adult male rats. Progressive accumulation of LP lipase activity in cultured fetal rat hypothalamic cells was also observed, indicating de novo synthesis of the lipase. The brain LP lipase activity was serum-dependent and was inhibited by 1 M NaCl and by protamine sulfate. Kinetic analysis revealed an apparent K...

  17. Neutrophil chemotaxis by Propionibacterium acnes lipase and its inhibition.

    OpenAIRE

    Lee, W. L.; Shalita, A R; Suntharalingam, K; Fikrig, S M

    1982-01-01

    The chemoattraction of Propionibacterium acnes lipase for neutrophils and the effect of lipase inhibitor and two antibiotic agents on the chemotaxis were evaluated. Of the various fractions tested, partially purified lipase (fraction 2c) was the most active cytotaxin produced by P. acnes. Serum mediators were not required for the generation of chemotaxis by lipase in vitro. Diisopropyl phosphofluoridate at low concentration (10(-4) mM) completely inhibited lipase activity as well as polymorph...

  18. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia.

    OpenAIRE

    Kilbane, J J; Chatterjee, D K; Karns, J S; Kellogg, S T; Chakrabarty, A M

    1982-01-01

    A pure culture of Pseudomonas cepacia, designated AC1100, that can utilize 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as its sole source of carbon and energy was isolated. An actively growing culture of AC1100 was able to degrade more than 97% of 2,4,5-T, present at 1 mg/ml, within 6 days as determined by chloride release, gas chromatographic, and spectrophotometric analyses. The ability of AC1100 to oxidize a variety of chlorophenols and related compounds is also reported.

  19. Microbial Lipases and Their Industrial Applications: Review

    Directory of Open Access Journals (Sweden)

    Berhanu Andualema

    2012-01-01

    Full Text Available Microbial lipases (triacylglycerol acyl-hydrolases, EC 3.1.1.3 catalyze both the hydrolysis and synthesis of long-chain acylglycerols. They are currently given much attention with the rapid development of enzyme technology. The chemo-, regio- and enantio-specific characteristics of lipase tends to be a focus research area for scientists and industrialists. Compared to plants and animals, microorganisms have been found to produce high yields of lipases. This review describes various industrial applications of microbial lipases in the area of food industry, oil and fat industry, detergent industry, pulp and paper industry, leather industry, textile industry, in organic synthesis, production of cosmetics and biodiesel production. This makes lipases the most widely used class of enzymes in different industrial activities through the application of bioprocess technology. The aim of this review is not to discuss every lipase described in the literature but rather to present recent information on the production, characterization and industrial application of lipases in our daily activities in order to improve our life styles.

  20. Efficacy of copper and silver ions with iodine in the inactivation of Pseudomonas cepacia

    Science.gov (United States)

    Pyle, B. H.; Broadaway, S. C.; McFeters, G. A.

    1992-01-01

    Alternatives to chlorination of water have been sought for reasons which include trihalomethane formation, possible bacterial regrowth, the high concentrations of chlorine required in certain circumstances, and the taste, odour and bodily irritation in chlorine-treated water. Electrolytically generated Cu and Ag ions at low levels, in addition to very low chlorine concentrations, have been suggested as an alternative to routine chlorination. We have examined the combination of Cu and Ag ions with low levels of iodine. Pseudomonas cepacia was grown either in rich medium or under nutrient restriction prior to disinfection. Survival of the organism and its ability to regrow after treatment as well as the effects of varying buffers, metal ion and iodine concentrations were determined. Low concentrations of metal ions (100 ppb Cu and 11 ppb Ag) and iodine (200 ppb) were more effective than either metal ions or iodine alone against Ps. cepacia grown on rich agar or in low nutrient buffer. After iodination, buffer-grown suspensions recovered to their original cell concentrations within 7 d. When Cu and Ag ions were used with or without iodine, regrowth was prevented. The results show that low concentrations of Cu and Ag in combination with iodine permit effective disinfection of bacteria after cultivation on either rich media or under nutrient restriction. These results, along with published data, suggest that the combination of these metals with halogenation may have applications in the disinfection of both recreational and potable water.

  1. Survival of Burkholderia pseudomallei in Water

    Directory of Open Access Journals (Sweden)

    Woods Donald E

    2008-05-01

    Full Text Available Abstract Background The ability of Burkholderia pseudomallei to survive in water likely contributes to its environmental persistence in endemic regions. To determine the physiological adaptations which allow B. pseudomallei to survive in aqueous environments, we performed microarray analyses of B. pseudomallei cultures transferred from Luria broth (LB to distilled water. Findings Increased expression of a gene encoding for a putative membrane protein (BPSL0721 was confirmed using a lux-based transcriptional reporter system, and maximal expression was noted at approximately 6 hrs after shifting cells from LB to water. A BPSL0721 deficient mutant of B. pseudomallei was able to survive in water for at least 90 days indicating that although involved, BPSL0721 was not essential for survival. BPSL2961, a gene encoding a putative phosphatidylglycerol phosphatase (PGP, was also induced when cells were shifted to water. This gene is likely involved in cell membrane biosynthesis. We were unable to construct a PGP mutant suggesting that the gene is not only involved in survival in water but is essential for cell viability. We also examined mutants of polyhydroxybutyrate synthase (phbC, lipopolysaccharide (LPS oligosaccharide and capsule synthesis, and these mutations did not affect survival in water. LPS mutants lacking outer core were found to lose viability in water by 200 days indicating that an intact LPS core provides an outer membrane architecture which allows prolonged survival in water. Conclusion The results from these studies suggest that B. pseudomallei survival in water is a complex process that requires an LPS molecule which contains an intact core region.

  2. Cometabolic Degradation of Trichloroethylene by Pseudomonas cepacia G4 in a Chemostat with Toluene as the Primary Substrate

    NARCIS (Netherlands)

    Landa, Andrew S.; Sipkema, E. Marijn; Weijma, Jan; Beenackers, Antonie A.C.M.; Dolfing, Jan; Janssen, Dick B.

    1994-01-01

    Pseudomonas cepacia G4 is capable of cometabolic degradation of trichloroethylene (TCE) if the organism is grown on certain aromatic compounds. To obtain more insight into the kinetics of TCE degradation and the effect of TCE transformation products, we have investigated the simultaneous conversion

  3. Burkholderia pseudomallei isolates in 2 pet iguanas, California, USA.

    Science.gov (United States)

    Zehnder, Ashley M; Hawkins, Michelle G; Koski, Marilyn A; Lifland, Barry; Byrne, Barbara A; Swanson, Alexandra A; Rood, Michael P; Gee, Jay E; Elrod, Mindy Glass; Beesley, Cari A; Blaney, David D; Ventura, Jean; Hoffmaster, Alex R; Beeler, Emily S

    2014-02-01

    Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection. PMID:24447394

  4. Symbiotic ß-proteobacteria beyond legumes: Burkholderia in Rubiaceae.

    Directory of Open Access Journals (Sweden)

    Brecht Verstraete

    Full Text Available Symbiotic ß-proteobacteria not only occur in root nodules of legumes but are also found in leaves of certain Rubiaceae. The discovery of bacteria in plants formerly not implicated in endosymbiosis suggests a wider occurrence of plant-microbe interactions. Several ß-proteobacteria of the genus Burkholderia are detected in close association with tropical plants. This interaction has occurred three times independently, which suggest a recent and open plant-bacteria association. The presence or absence of Burkholderia endophytes is consistent on genus level and therefore implies a predictive value for the discovery of bacteria. Only a single Burkholderia species is found in association with a given plant species. However, the endophyte species are promiscuous and can be found in association with several plant species. Most of the endophytes are part of the plant-associated beneficial and environmental group, but others are closely related to B. glathei. This soil bacteria, together with related nodulating and non-nodulating endophytes, is therefore transferred to a newly defined and larger PBE group within the genus Burkholderia.

  5. Novel lytic bacteriophages from soil that lyse Burkholderia pseudomallei.

    Science.gov (United States)

    Yordpratum, Umaporn; Tattawasart, Unchalee; Wongratanacheewin, Surasakdi; Sermswan, Rasana W

    2011-01-01

    Burkholderia pseudomallei is a Gram-negative saprophytic bacterium that causes severe sepsis with a high mortality rate in humans and a vaccine is not available. Bacteriophages are viruses of bacteria that are ubiquitous in nature. Several lysogenic phages of Burkholderia spp. have been found but information is scarce for lytic phages. Six phages, ST2, ST7, ST70, ST79, ST88 and ST96, which lyse B. pseudomallei, were isolated from soil in an endemic area. The phages belong to the Myoviridae family. The range of estimated genome sizes is 24.0-54.6 kb. Phages ST79 and ST96 lysed 71% and 67% of tested B. pseudomallei isolates and formed plaques on Burkholderia mallei but not other tested bacteria, with the exception of closely related Burkholderia thailandensis which was lysed by ST2 and ST96 only. ST79 and ST96 were observed to clear a mid-log culture by lysis within 6 h when infected at a multiplicity of infection of 0.1. As ST79 and ST96 phages effectively lysed B. pseudomallei, their potential use as a biocontrol of B. pseudomallei in the environment or alternative treatment in infected hosts could lead to benefits from phages that are available in nature. PMID:21091532

  6. [Lipases in catalytic reactions of organic chemistry].

    Science.gov (United States)

    Bezborodov, A M; Zagustina, N A

    2014-01-01

    Aspects of enzymatic catalysis in lipase-catalyzed reactions of organic synthesis are discussed in the review. The data on modern methods of protein engineering and enzyme modification allowing a broader range of used substrates are briefly summarized. The application of lipase in the preparation of pharmaceuticals and agrochemicals containing no inactive enantiomers and in the synthesis of secondary alcohol enantiomers and optically active amides is demonstrated. The subject of lipase involvement in the C-C bond formation in the Michael reaction is discussed. Data on the enzymatic synthesis of construction materials--polyesters, siloxanes, etc.--are presented. Examples demonstrating the application of lipase enzymatic catalysis in industry are given. PMID:25707112

  7. Lipase Based Biosensors for Triglyceride Determination

    OpenAIRE

    Rosli Nurul Huwaida; Mohd Zain Zainiharyati; Ahmad Nor Monica

    2016-01-01

    A review of methods development in lipase based biosensor for triglyceride determination was briefly discussed. This review focuses on the basic principle of triglyceride biosensor that includes performances of triglyceride biosensor such as limit of detection, response time, and optimization.

  8. [Water binding of adsorptive immobilized lipases].

    Science.gov (United States)

    Loose, S; Meusel, D; Muschter, A; Ruthe, B

    1990-01-01

    It is supposed that not only the total water content of lipase preparations but more their state of water binding is of technological importance in enzymatic interesterification reactions in systems nearly free from water. The isotherms at 65 degrees C of two microbial lipases immobilized on various adsorbents as well as different adsorbents themselves are shown. The water binding capacity in the range of water content of technological interest decreases from the anion exchange resin Amberlyst A 21 via nonpolar adsorbent Amberlite XAD-2 to kieselguhr Celite 545. It is demonstrated that water binding by lipases is depending on temperature but is also affected by adsorptive immobilization. Adsorptive immobilized lipases show hysteresis, which is very important for preparing a definite water content of the enzyme preparations. PMID:2325750

  9. Structure and Function of Lipase

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob

    towards an open conformation enabling the substrate to gain access, thus initiating catalysis.Lipases have been studied for decades and their functional features have drawn much attention withinindustrial applications since their first discovery. However, given that their molecular action takes placeat...... a function of solvent polarity,which showed pronounced differences in open vs. closed states of the lid between TlL and the lidvariants.To elucidate whether the observed differences in activation could be ascribed to a lowering ofthe energy barrier of lid-opening, molecular dynamic simulations were...... carried out to calculate the energydifference between the open and closed lid conformation for TlL and a selection of lid-variants (PaperIII). Here, a correlation between experimental and theoretical data was discovered supporting the notionlid plays a key role in governing activation at the interface...

  10. Pancreatic Lipase Inhibitory Effects of Mangosteen Pericarps

    OpenAIRE

    Xinjie Lin; Baojun Xu; Liu Rui

    2014-01-01

    Pancreatic lipase plays a key role in the digestion and absorption of lipids, inhibition of Pancreatic Lipase (PL) is considered as a new approach to obesity treatment. The objective of the present study was to find PL inhibitors from natural food sources. Eighteen natural food products sampled from local supermarkets in Zhuhai were tested for PL inhibitory activity using a copper-soap photometric method. Among the samples tested, the crude extracts from mangosteen pericarp, lemon pulp, celer...

  11. The lipase system of Yarrowia lipolytica

    OpenAIRE

    Choupina, Altino; Gonzalez, Francisco J.; Morín, M.; Burguillo, Francisco J.; Ferminan, E.; Dominguez, Ángel

    1999-01-01

    Among yeast species, Yarrowia lipolytica is one of the highest producers of extracellular proteins ( acid, neutral and alkaline proteases, ácid phosphatase, ribonucleases and lipases). Lipases ( triacylglycerol hydrolases) are important enzymes in fat metabolism, catalyzing the breakdown of triacilglycerols to free fatty acids and glycerol. Owing to the very low solubility of ther natural substrats, this hydrolysis is catalysed at the interfase beteween an insoluble substrat and the aqueous p...

  12. Olive Oil as Inductor of Microbial Lipase

    Czech Academy of Sciences Publication Activity Database

    Zarevúcka, Marie

    Rijeka : InTech, 2012 - (Dimitrios, B.), s. 457-470 ISBN 978-953-307-921-9 R&D Projects: GA ČR GAP502/10/1734 Institutional research plan: CEZ:AV0Z40550506 Keywords : olive oil * microorganism * lipase Subject RIV: CC - Organic Chemistry http://www.intechopen.com/books/ olive -oil-constituents-quality-health-properties-and-bioconversions/ olive -oil-as-inductor-of-microbial-lipase

  13. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  14. Structural characterization of MAPLE deposited lipase biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Ausanio, Giovanni; Bloisi, Francesco [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Calabria, Raffaela [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Califano, Valeria, E-mail: v.califano@im.cnr.it [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Massoli, Patrizio [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Vicari, Luciano R.M. [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy)

    2014-11-30

    Highlights: • Lipase from Candida Rugosa was deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on KBr pellets, mica and glass substrate. • The deposited film was characterized morphologically and structurally by optical microscopy, SEM and FTIR analysis. • Results of characterization underlined a phenomenon of aggregation taking place. • The aggregation phenomenon was reversible since lipase showed activity in the transesterification reaction between soybean oil and isopropyl alcohol once detached from the substrate. - Abstract: Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography–mass spectrometry gave results consistent with undamaged deposition of lipase.

  15. Structural characterization of MAPLE deposited lipase biofilm

    International Nuclear Information System (INIS)

    Highlights: • Lipase from Candida Rugosa was deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on KBr pellets, mica and glass substrate. • The deposited film was characterized morphologically and structurally by optical microscopy, SEM and FTIR analysis. • Results of characterization underlined a phenomenon of aggregation taking place. • The aggregation phenomenon was reversible since lipase showed activity in the transesterification reaction between soybean oil and isopropyl alcohol once detached from the substrate. - Abstract: Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography–mass spectrometry gave results consistent with undamaged deposition of lipase

  16. LIPASES PRODUCED BY YEASTS: POWERFUL BIOCATALYSTS FOR INDUSTRIAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Luiza Lux Lock

    2007-12-01

    Full Text Available The term “lipolytic enzymes” refers to the lipases and carboxylic ester hydrolases. Lipase production is widespread among yeasts, butfew are capable of producing lipases with interesting characteristics and in sufficient amounts to be industrially useful. The literatureconcerning lipases produced by Candida rugosa, Yarrowia (Candida lipolytica, Candida antarctica and other emerging lipaseproducingyeasts is reviewed. The use of recombinant lipases is discussed, with emphasis on the utilization of heterologous expressionsystems and design of chimeras. Finally, the three approaches that aim the improvement of lipase production or the modification of thesubstrate selectivity of the enzyme (medium engineering, biocatalyst engineering, and protein engineering are discussed.

  17. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers.

    Science.gov (United States)

    Depoorter, Eliza; Bull, Matt J; Peeters, Charlotte; Coenye, Tom; Vandamme, Peter; Mahenthiralingam, Eshwar

    2016-06-01

    Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. PMID:27115756

  18. Sequence analysis of 16S rDNA derived from a high yield lipase strain%一株高产脂肪酶产生菌16S rDNA的序列分析

    Institute of Scientific and Technical Information of China (English)

    孙新城; 马淑玲; 张玲丽; 张浩; 景建洲

    2012-01-01

    [目的]对分离获得的高产脂肪酶菌株进行鉴定,为其改造和更好利用奠定基础.[方法]对从食堂下水道中分离获得的一株高效产脂肪酶细菌(JLΠ-4)进行培养,提取其基因组DNA.设计16S rDNA通用引物,扩增16S rDNA基因片段,并连接到pUC19-T载体上,转化大肠杆菌DH5X,经PCR鉴定的阳性克隆摇菌培养后测序.[结果]提取获得较高质量的基因组DNA,扩增获得新分离菌株16S rDNA基因片段,长度为1528 bp,BLAST相似性比对分析结果表明,其与伯克霍尔德氏菌16S rDNA序列相似性达97%,是一株与伯克霍尔德氏菌最近的革兰氏阴性菌.[结论]初步将高产脂肪酶细菌JTΠ-4鉴定为唐菖蒲伯克霍尔德菌.%[Objective]The present study was conducted to identify the separated high yield lipase strain to provide theoretical research references and to enhance the high yield lipase strain's transformation and application. [Method]A strain of bacterium with high yield lipase JLIT-4 was isolated from the sewage of a canteen, then its genomic DNA was extracted. The gene fragments of 16S rDNA were amplified using 16S rDNA universal primers and connected to pUC19-T vector; the fragments are then transformed into E. Coli DH5X. The positive clones identified by the PCR method were cultured and sequenced. [Result]Quality genome DNA was successfully extracted. The 16S rDNA gene fragments of newly isolated strain were amplified with the length of 1528 bp. According to comparison analysis of BLAST, 16S rDNA sequence similarity between the strains and Burkholderia(DQ355168) were 97%, so the lipase producing strains were identified as gram-negative bacteria that were most similar to the structures of Burkholderia. [ Conclusion ]The high-yield lipase JLΠ-4 was primarily identified as Burkholderia gladioli.

  19. Molecular Method To Assess the Diversity of Burkholderia Species in Environmental Samples

    OpenAIRE

    Salles, J; Souza, de, H.R.; Elsas, van, J.D.

    2002-01-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a powerful tool for studying the diversity of microbial communities, for detection and analysis of the Burkholderia diversity in soil samples. Primers specific for the genus Burkholderia were developed ...

  20. Members of the genus Burkholderia: good and bad guys [version 1; referees: 3 approved

    OpenAIRE

    Leo Eberl; Peter Vandamme

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isol...

  1. Effect of agricultural management regime on Burkholderia community structure in soil.

    Science.gov (United States)

    Salles, J F; van Elsas, J D; van Veen, J A

    2006-08-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history (arable land and permanent grassland) were exposed to three agricultural management regimes (crop rotation, maize monoculture, and grassland). By using a culture-independent approach, based on a Burkholderia-specific polymerase chain reaction-denaturing gradient gel electrophoresis system, it was possible to observe the conversion of Burkholderia communities typical for permanent grassland to those of arable land after four consecutive years. However, the time needed to achieve the reverse transition, i.e., converting the Burkholderia community associated with arable land to that of grassland, was beyond the duration of the field experiment. In addition, by applying principal response curves, the direction and extent of the conversion from grassland to arable land (maize monoculture and to crop rotation) were determined. Hence, the results suggested that agricultural practices, such as fertilization and tillage, were more effective in changing the Burkholderia community structure than agricultural management regime. To determine the effect of agricultural management on the Burkholderia population with biocontrol abilities, the culturable fraction of the Burkholderia community was assessed. The areas under permanent grassland and grassland converted to maize monoculture had the highest percentages of Burkholderia strains with antagonistic activity against Rhizoctonia solani AG-3, mainly Burkholderia pyrrocinia and Burkholderia sp. LMG 22929. The isolation frequency of antagonistic isolates from arable land was extremely low. Our results indicate that (changes in) agricultural management, mainly crop rotation, affect the frequency of isolation of antagonistic Burkholderia

  2. Modification of pancreatic lipase properties by directed molecular evolution

    OpenAIRE

    Colin, Damien; Deprez, Paule; Silva, Noella; Infantes, Lourdes; Kerfelec, Brigitte

    2010-01-01

    Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH. A single round of random mutagenesis yielded one lipase variant with an activity ...

  3. Isolated co-lipase deficiency in two brothers.

    OpenAIRE

    Hildebrand, H; Borgström, B.; Békássy, A; Erlanson-Albertsson, C; Helin, I

    1982-01-01

    Two normally developed Assyrian brothers with isolated pancreatic co-lipase deficiency are described. They presented at the age of 5-6 years with loose stools. They had steatorrhoea, and analysis of exocrine pancreatic enzymes in the small intestine showed co-lipase deficiency, while amylase, chymotrypsin, trypsin and lipase were normal. Intraduodenal infusion of purified co-lipase improved fat digestion measured by the triolein breath test. Their steatorrhoea diminished on treatment with ent...

  4. Efficient biocatalyst by encapsulating lipase into nanoporous gold

    OpenAIRE

    Du, Xiaoyu; Liu, Xueying; Li, Yufei; Wu, Chao; Wang, Xia; Xu, Ping

    2013-01-01

    Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase immobilization. The pore size of NPG and adsorption time played key roles in the construction of lipase-NPG biocomposites. The morphology and com...

  5. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells

    Directory of Open Access Journals (Sweden)

    Hogan Robert J

    2010-09-01

    Full Text Available Abstract Background Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Results Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649 that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells and A549 (type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE. Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures. A second YadA-like gene product highly similar to BoaA (65% identity was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705. The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to

  6. Lipase production by diverse phylogenetic clades of Aureobasidium pullulans

    Science.gov (United States)

    Thirty-nine strains representing 12 diverse phylogenetic clades of Aureobasidium pullulans were surveyed for lipase production using a quantitative assay. Strains in clades 4 and 10 produced 0.2-0.3 U lipase/ml, while color variant strain NRRL Y-2311-1 in clade 8 produced 0.54 U lipase/ml. Strains i...

  7. Pancreatic Lipase-related Protein 2 Is the Major Colipase-Dependent Pancreatic Lipase in Suckling Mice1

    OpenAIRE

    D’Agostino, Dymphna; Lowe, Mark E.

    2004-01-01

    Suckling mice express colipase before the expression of pancreatic triglyceride lipase. Yet, efficient fat digestion in newborns requires colipase, suggesting that colipase may act as a cofactor for another lipase such as pancreatic lipase-related protein 2 (PLRP2). We determined whether PLRP2 or another lipase depends on colipase for maximal activity in newborn mice by analyzing extracts from the pancreas of 4-d-old colipase-deficient and PLRP2-deficient mice. Pancreatic extracts from colipa...

  8. The Burkholderia Genome Database: facilitating flexible queries and comparative analyses

    OpenAIRE

    Winsor, Geoffrey L.; Khaira, Bhavjinder; Van Rossum, Thea; Lo, Raymond; Whiteside, Matthew D.; Fiona S.L. Brinkman

    2008-01-01

    Summary: As the genome sequences of multiple strains of a given bacterial species are obtained, more generalized bacterial genome databases may be complemented by databases that are focused on providing more information geared for a distinct bacterial phylogenetic group and its associated research community. The Burkholderia Genome Database represents a model for such a database, providing a powerful, user-friendly search and comparative analysis interface that contains features not found in ...

  9. Burkholderia Pseudomallei Causing Bone and Joint Infections: A Clinical Update

    OpenAIRE

    Raja, Nadeem Sajjad; Scarsbrook, Christine

    2016-01-01

    Burkholderia pseudomallei (B. pseudomallei), a causative agent of an emerging infectious disease melioidosis, is endemic in the tropical regions of the world. Due to increased international travel, the infection is now also seen outside of the tropics. The majority of patients with identified risk factors such as diabetes mellitus, heavy alcohol use, malignancy, chronic lung and kidney disease, corticosteroid use, thalassemia, rheumatic heart disease, systemic lupus erythematosus and cardiac ...

  10. Methods for genetic manipulation of Burkholderia gladioli pathovar cocovenenans

    OpenAIRE

    Karkhoff-Schweizer RoxAnn R; McMillan Ian; Somprasong Nawarat; Mongkolsuk Skorn; Schweizer Herbert P

    2010-01-01

    Abstract Background Burkholderia gladioli pathovar cocovenenans (BGC) is responsible for sporadic food-poisoning outbreaks with high morbidity and mortality in Asian countries. Little is known about the regulation of virulence factor and toxin production in BGC, and studies in this bacterium have been hampered by lack of genetic tools. Findings Establishment of a comprehensive antibiotic susceptibility profile showed that BGC strain ATCC33664 is susceptible to a number of antibiotics includin...

  11. Burkholderia pseudomallei Capsular Polysaccharide Conjugates Provide Protection against Acute Melioidosis

    OpenAIRE

    Scott, Andrew E.; Mary N Burtnick; Stokes, Margaret G. M.; Whelan, Adam O.; Williamson, E. Diane; Atkins, Timothy P.; Prior, Joann L.; Brett, Paul J

    2014-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a CDC tier 1 select agent that causes severe disease in both humans and animals. Diagnosis and treatment of melioidosis can be challenging, and in the absence of optimal chemotherapeutic intervention, acute disease is frequently fatal. Melioidosis is an emerging infectious disease for which there are currently no licensed vaccines. Due to the potential malicious use of B. pseudomallei as well as its impact on public health in r...

  12. Symbiotic ß-Proteobacteria beyond Legumes: Burkholderia in Rubiaceae

    OpenAIRE

    Brecht Verstraete; Steven Janssens; Erik Smets; Steven Dessein

    2013-01-01

    Symbiotic ß-proteobacteria not only occur in root nodules of legumes but are also found in leaves of certain Rubiaceae. The discovery of bacteria in plants formerly not implicated in endosymbiosis suggests a wider occurrence of plant-microbe interactions. Several ß-proteobacteria of the genus Burkholderia are detected in close association with tropical plants. This interaction has occurred three times independently, which suggest a recent and open plant-bacteria association. The presence or a...

  13. Burkholderia pseudomallei: Its Detection in Soil and Seroprevalence in Bangladesh

    OpenAIRE

    Jilani, Md. Shariful Alam; Robayet, Jamshedul Alam Mohammad; Mohiuddin, Md.; Hasan, Md. Rokib; Ahsan, Chowdhury Rafiqul; Haq, Jalaluddin Ashraful

    2016-01-01

    Background Melioidosis, caused by Burkholderia pseudomallei, is an endemic disease in Bangladesh. No systematic study has yet been done to detect the environmental source of the organism and its true extent in Bangladesh. The present study attempted to isolate B. pseudomallei in soil samples and to determine its seroprevalence in several districts in Bangladesh. Methodology and Results Soil samples were collected from rural areas of four districts of Bangladesh from where culture confirmed me...

  14. Recurrent Burkholderia Infection in Patients with Chronic Granulomatous Disease: 11-Year Experience at a Large Referral Center

    OpenAIRE

    Greenberg, David E.; Goldberg, Joanna B.; Stock, Frida; Murray, Patrick R.; Holland, Steven M.; LiPuma, John J.

    2009-01-01

    The epidemiology of Burkholderia infection in persons with chronic granulomatous disease is poorly understood. We used species-specific polymerase chain reaction–based assays and genotyping analyses to identify 32 strains representing 9 Burkholderia species among 50 isolates recovered from 18 patients with chronic granulomatous disease. We found that recurrent pulmonary infection with distinct Burkholderia strains is common in chronic granulomatous disease.

  15. Draft Genome Sequence of the Organophosphorus Compound-Degrading Burkholderia zhejiangensis Strain CEIB S4-3

    OpenAIRE

    Hernández-Mendoza, Armando; Martínez-Ocampo, Fernando; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, Laura; Sánchez-Salinas, Enrique; Dantán-González, Edgar

    2014-01-01

    Burkholderia species are widely distributed in the environment. A Burkholderia zhejiangensis strain was isolated from pesticide-contaminated soil from an agricultural field in Mexico and identified as an organophosphorus compound-degrading bacterium. In this study, we report the draft genome sequence of Burkholderia zhejiangensis strain CEIB S4-3.

  16. Draft Genome Sequence of the Lignin-Degrading Burkholderia sp. Strain LIG30, Isolated from Wet Tropical Forest Soil

    OpenAIRE

    Woo, Hannah L.; Utturkar, Sagar; Klingeman, Dawn; Simmons, Blake A.; DeAngelis, Kristen M; Brown, Steven D.; Hazen, Terry C.

    2014-01-01

    Burkholderia species are common soil Betaproteobacteria capable of degrading recalcitrant aromatic compounds and xenobiotics. Burkholderia sp. strain LIG30 was isolated from wet tropical forest soil and is capable of utilizing lignin as a sole carbon source. Here we report the draft genome sequence of Burkholderia sp. strain LIG30.

  17. Lipase and protease extraction from activated sludge

    DEFF Research Database (Denmark)

    Gessesse, Amare; Dueholm, Thomas; Petersen, Steffen B.;

    2003-01-01

    gentle and efficient enzyme extraction methods from environmental samples is very important. In this study we present a method for the extraction of lipases and proteases from activated sludge using the non-ionic detergent Triton X-100, EDTA, and cation exchange resin (CER), alone or in combination for......In the process of wastewater treatment hydrolysis of polymeric substances is the first and rate-limiting step. A closer study of the enzymes catalysing these reactions is essential for a better understanding of the microbial activity in the wastewater treatment process. Therefore, development of...... the extraction of lipases and proteases from activated sludge. The sludge was continuously stirred in the presence of either buffer alone or in the presence of detergent and/or chelating agents. In all cases, a marked reduction in floc size was observed upon continuous stirring. However, no lipase...

  18. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y.Y.; Wang, Zhuo Lin; Uosukainen, E.; Seppaelae, J. [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M. [Raisio Group Oil Milling Industry, Raisio (Finland)

    1996-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  19. Cometabolic Degradation of Trichloroethylene by Pseudomonas cepacia G4 in a Chemostat with Toluene as the Primary Substrate

    OpenAIRE

    Landa, Andrew S.; Sipkema, E. Marijn; Weijma, Jan; Beenackers, Antonie A.C.M.; Dolfing, Jan; Janssen, Dick B.

    1994-01-01

    Pseudomonas cepacia G4 is capable of cometabolic degradation of trichloroethylene (TCE) if the organism is grown on certain aromatic compounds. To obtain more insight into the kinetics of TCE degradation and the effect of TCE transformation products, we have investigated the simultaneous conversion of toluene and TCE in steady-state continuous culture. The organism was grown in a chemostat,vith toluene as the carbon and energy source at a range of volumetric TCE loading rates, up to 330 mu mo...

  20. Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase-osmolytes interaction

    Science.gov (United States)

    Ghodselahi, T.; Hoornam, S.; Vesaghi, M. A.; Ranjbar, B.; Azizi, A.; Mobasheri, H.

    2014-09-01

    Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H) thin film was used as intermediate material to immobilize Au NPs on the SiO2 substrate. The interaction between two types of osmolytes, i.e. sorbitol and trehalose, with Pseudomonas cepacia lipase (PCL) were detected by the prepared LSPR biosensor chip. The detection mechanism is based on LSPR spectroscopy in which the wavelength of absorption peak is sensitive to the refractive index of the environment of the Au NPs. This mechanism eliminates the use of a probe or immobilization of PCL on the Au NPs of LSPR sensor chip. The interaction between PCL and osmolytes can change refractive index of the mixture or solution. We found that unlike to trehalose, sorbitol interacts with the PCL. This interaction increases refractive index of the PCL and sorbitol mixture. Refractive index of PCL in the presence of different concentration of sorbitol was obtained by Mie theory modeling of LSPR peaks. This modeling stated that the present LSPR sensor chip has sensitivity as high as wavelength shift of 175 nm per refractive index. Moreover, the detection of such weakly interaction between bio-molecules cannot be achieved by other analysis.

  1. Use of a fluorescent radiolabeled triacylglycerol as a substrate for lipoprotein lipase and hepatic triglyceride lipase

    International Nuclear Information System (INIS)

    A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein. Using this substrate, both post-heparin lipases exhibited their characteristic properties (pH optimum and effect of inhibitors) and attacked external ester bonds (1 or 3) containing pyrene decanoic and oleic acids at a similar rate

  2. Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia

    Directory of Open Access Journals (Sweden)

    Malott Rebecca J

    2009-09-01

    Full Text Available Abstract Background Burkholderia cenocepacia belongs to a group of closely related organisms called the B. cepacia complex (Bcc which are important opportunistic human pathogens. B. cenocepacia utilizes a mechanism of cell-cell communication called quorum sensing to control gene expression including genes involved in virulence. The B. cenocepacia quorum sensing network includes the CepIR and CciIR regulatory systems. Results Global gene expression profiles during growth in stationary phase were generated using microarrays of B. cenocepacia cepR, cciR and cepRcciIR mutants. This is the first time CciR was shown to be a global regulator of quorum sensing gene expression. CepR was primarily responsible for positive regulation of gene expression while CciR generally exerted negative gene regulation. Many of the genes that were regulated by both quorum sensing systems were reciprocally regulated by CepR and CciR. Microarray analysis of the cepRcciIR mutant suggested that CepR is positioned upstream of CciR in the quorum sensing hierarchy in B. cenocepacia. A comparison of CepIR-regulated genes identified in previous studies and in the current study showed a substantial amount of overlap validating the microarray approach. Several novel quorum sensing-controlled genes were confirmed using qRT-PCR or promoter::lux fusions. CepR and CciR inversely regulated flagellar-associated genes, the nematocidal protein AidA and a large gene cluster on Chromosome 3. CepR and CciR also regulated genes required for iron transport, synthesis of extracellular enzymes and surface appendages, resistance to oxidative stress, and phage-related genes. Conclusion For the first time, the influence of CciIR on global gene regulation in B. cenocepacia has been elucidated. Novel genes under the control of the CepIR and CciIR quorum sensing systems in B. cenocepacia have been identified. The two quorum sensing systems exert reciprocal regulation of many genes likely enabling fine

  3. Anti-obesity activity of hen egg anti-lipase immunoglobulin yolk, a novel pancreatic lipase inhibitor

    OpenAIRE

    Hirose, Mai; Ando, Taishi; Shofiqur, Rahman; Umeda, Kouji; Kodama, Yoshikatsu; Van Nguyen, Sa; Goto, Tsuyoshi; Shimada, Masaya; Nagaoka, Satoshi

    2013-01-01

    Background There is completely no report about both hen egg anti-lipase immunoglobulin yolk (IgY) and its anti-obesity action. Thus, we tried to isolate and characterize a novel anti-lipase immunoglobulin from hen egg yolk. Moreover, we investigated whether hen egg yolk anti-lipase IgY inhibits pancreatic lipase activity in vitro, and examined its ability to prevent obesity in a murine high fat diet-induced obesity model. Methods We determined the inhibitory action of Anti-lipase IgY on lipas...

  4. [The characterization of microbial lipases. 1. The determination of lipase activity].

    Science.gov (United States)

    Bariszlovich, M; Meusel, D; Tülsner, M

    1990-01-01

    In the selection of an appropriate method for activity determination of lipases existing technical equipment, kind of enzymes, number of samples investigated (e.g. in routine analysis), and expected sensitivity range have to be taken into account. Titrimetric methods and above all copper salt methods with their high detection sensitivity are the most suitable procedures for activity determination of lipases used in laboratories and institutions without equipment for radiochemical analysis. PMID:2233988

  5. Immobilization of a Commercial Lipase from Penicillium camembertii (Lipase G) by Different Strategies

    OpenAIRE

    Adriano A. Mendes; Larissa Freitas; de Carvalho, Ana Karine F.; de Oliveira, Pedro C.; Heizir F. de Castro

    2011-01-01

    The objective of this work was to select the most suitable procedure to immobilize lipase from Penicillium camembertii (Lipase G). Different techniques and supports were evaluated, including physical adsorption on hydrophobic supports octyl-agarose, poly(hydroxybutyrate) and Amberlite resin XAD-4; ionic adsorption on the anionic exchange resin MANAE-agarose and covalent attachment on glyoxyl-agarose, MANAE-agarose cross-linked with glutaraldehyde, MANAE-agarose-glutaraldehyde, and epoxy-silic...

  6. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase

    OpenAIRE

    Johnson, Karin; Ross, Leah; Miller, Rita; Xiao, Xunjun; Lowe, Mark E.

    2013-01-01

    INTRODUCTION Dietary fats must be digested into fatty acids and monoacylglycerols prior to absorption. In adults, colipase-dependent pancreatic triglyceride lipase (PTL) contributes significantly to fat digestion. In newborn rodents and humans, the pancreas expresses low levels of PTL. In rodents, a homologue of PTL, pancreatic lipase related protein 2 (PLRP2) and carboxyl ester lipase (CEL) compensate for the lack of PTL. In human newborns, the role for PLRP2 in dietary fat digestion is uncl...

  7. Discrimination of Burkholderia mallei/pseudomallei from Burkholderia thailandensis by sequence comparison of a fragment of the ribosomal protein S21 (rpsU) gene

    OpenAIRE

    Frickmann, H.; Chantratita, N.; Gauthier, Y. P.; Neubauer, H.; Hagen, R. M.

    2012-01-01

    Discrimination of Burkholderia (B.) pseudomallei and B. mallei from environmental B. thailandensis is challenging. We describe a discrimination method based on sequence comparison of the ribosomal protein S21 (rpsU) gene.

  8. KARAKTERISASI SIFAT-SIFAT BIOKIMIA EKSTRAK KASAR LIPASE EKSTRASELULER BAKTERI Azospirillum sp.PRD1

    OpenAIRE

    Santi Nur Handayani; Puji Lestari; Oedjijono; Tri Joko Raharjo; Sabirin Matsjeh

    2011-01-01

    Enzim lipase mempunyai peranan penting dalam katalis berbagai reaksi industri satu diantaranya pembuatan flavor melalui reaksi esterifikasi. Lipase adalah biokatalis yang berperan besar dalam aplikasi bioteknologi, seperti dalam sintesis biopolimer, biodiesel, produksi obat, dan produksi flavor. Peningkatan penggunaan lipase untuk industri mendorong dilakukan penelitian untuk mendapatkan sumber-sumber lipase baru. Sumber lipase yang potensial salah satunya adalah bakteri Azospirillum sp.PRD1 ...

  9. Use of a Safe, Reproducible, and Rapid Aerosol Delivery Method to Study Infection by Burkholderia pseudomallei and Burkholderia mallei in Mice

    OpenAIRE

    Eric R Lafontaine; Zimmerman, Shawn M.; Teresa L Shaffer; Frank Michel; Xiudan Gao; Hogan, Robert J.

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most comm...

  10. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    Science.gov (United States)

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion. PMID:26132857

  11. New Extremophilic Lipases and Esterases from Metagenomics

    Science.gov (United States)

    López-López, Olalla; Cerdán, Maria E; González Siso, Maria I

    2014-01-01

    Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications. PMID:24588890

  12. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  13. Structural characterization of MAPLE deposited lipase biofilm

    Science.gov (United States)

    Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.

    2014-11-01

    Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.

  14. Gastric Lipase Secretion in Children with Gastritis

    Directory of Open Access Journals (Sweden)

    Krystyna Sztefko

    2013-07-01

    Full Text Available Gastric lipase is one of the prepancreatic lipases found in some mammalian species and in humans. Our knowledge of the hormonal regulation of gastric lipase secretion in children and adolescents is still very limited. The aim of this study was to compare the activity of human gastric lipase (HGL in gastric juice in healthy adolescents and in patients with gastritis. The adolescents were allocated to three groups: the first including patients with Helicobacter pylori gastritis (HPG; n = 10, the second including patients with superficial gastritis caused by pathogens other than H. pylori (non-HPG; n = 14 and the control group including healthy adolescents (n = 14. Activity of HGL was measured in gastric juice collected during endoscopy. Plasma concentrations of cholecystokinin (CCK, glucagon-like peptide-1 (GLP-1 and glucose-dependent insulinotropic peptide (GIP were measured in all adolescents. Activity of HGL in the non-HPG group was significantly lower than in the HPG group (p < 0.005 and the control group (p < 0.005. Mean plasma GIP levels in the control group were lower than in the non-HPG group (p < 0.003 and the HPG group (p < 0.01. We conclude that the regulation of HGL secretion by GLP-1 and CCK is altered in patients with gastritis. Moreover, GIP is a potent controller of HGL activity, both in healthy subjects and in patients with gastritis.

  15. Lipase as a marker enzyme for bioassays

    International Nuclear Information System (INIS)

    The detection of various biochemical analytes is usually carried out after the biorecognition with labeled molecules. The most common label is still the radioactivity. However, the short half-life and health hazard of the radionuclides make the non-radioactive labels more popular. The fluorescence and chemiluminescence markers allow direct measurements, but they are not as sensitive as the enzymatic labels. Enzyme labels are the most sensitive non-radioactive markers and in combination with suitable colorimetric or chemiluminescence substrates the same detection limits as with radioactivity can be achieved. Direct enzyme markers offer not only a high sensitivity, but also a low background and non problematic and fast detection. The most commonly used enzymatic labels are horse-radish peroxidase and the alkaline phosphatase. In this work a new enzymatic label, lipase from Candida rugosa, was introduced. This 60 kDa large protein from the group of hydrolases is more active then the commercially available enzymes. In this thesis the most important characteristics of the lipase were characterized: specific activity, substrate specificity, temperature stability, pH optimum, storage stability and influence of detergents an the protein. The lipase was used for the labeling of short oligonucleotides (20-30 nucleotides long). The labeling was carried out through a terminal pending reactive group not to prevent the formation of hybrids during the hybridization process. The hybridization with labeled oligonucleotides is a fast process in comparison to the hybridization with long nucleic acids. This process takes place in simple working solutions at relatively low temperatures. Under these condition lipase remains active and stable, which leads to high signals. According to the high stability of lipase under working conditions, wide pH optimum and extreme high specific activity in comparison to the commonly used enzyme labels make it possible to open new perspectives for

  16. Efficient biocatalyst by encapsulating lipase into nanoporous gold

    Science.gov (United States)

    Du, Xiaoyu; Liu, Xueying; Li, Yufei; Wu, Chao; Wang, Xia; Xu, Ping

    2013-04-01

    Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase immobilization. The pore size of NPG and adsorption time played key roles in the construction of lipase-NPG biocomposites. The morphology and composition of NPG before and after lipase loading are verified using a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer. The resulting lipase-NPG biocomposites exhibited excellent catalytic activity and remarkable reusability. The catalytic activity of the lipase-NPG biocomposite with a pore size of 35 nm had no decrease after ten recycles. Besides, the lipase-NPG biocomposite exhibited high catalytic activity in a broader pH range and higher temperature than that of free lipase. In addition, the leaching of lipase from NPG could be prevented by matching the protein's diameter and pore size. Thus, the encapsulation of enzymes within NPG is quite useful for establishing new functions and will have wide applications for different chemical processes.

  17. Placental lipases in pregnancies complicated by gestational diabetes mellitus (GDM.

    Directory of Open Access Journals (Sweden)

    Helen L Barrett

    Full Text Available Infants of women with gestational diabetes mellitus (GDM are more likely to be born large for gestational age with a higher percentage body fat. Elevated maternal lipids may contribute to this. Placental lipases such as lipoprotein lipase (LPL, endothelial lipase (EL and hormone sensitive lipase (HSL are involved in transferring lipids from mother to fetus. Previous studies of expression of these lipases in placentae in women with diabetes in pregnancy have reported divergent results. Intracellular lipases such as adipose triglyceride lipase (ATGL, and HSL are central to lipid droplet metabolism. The activities of these lipases are both influenced by Perilipin 1, and ATGL is also activated by a co-factor comparative gene identification-58 (CGI-58 and inhibited by G0/G1 switch gene 2 (GS02. None of these modifying factors or ATGL have been examined previously in placenta. The purpose of this study was therefore to examine the expression of ATGL, HSL, LPL, EL, as well as Perilipin 1, GS02 and CGI-58 in term pregnancies complicated by GDM. mRNA and protein expression of the lipases were measured in placentae from 17 women with GDM and 17 normoglycaemic pregnancies, matched for maternal BMI and gestational age of delivery. ATGL mRNA expression was increased and HSL mRNA expression reduced in placentae from GDM although there was no differences in protein expression of any of the lipases. All lipases were localised to trophoblasts and endothelial cells. The expression of Perilipin 1 and CGI-58 mRNA was increased and GS02 not altered in GDM. These results suggest that there is no difference in expression in these four lipases between GDM and normoglycaemic placentae, and therefore altered lipid transfer via these lipases does not contribute to large for gestational age in infants of women with GDM.

  18. Burkholderia glumae EN EL CULTIVO DE ARROZ EN COSTA RICA

    Directory of Open Access Journals (Sweden)

    Andrea Quesada-Gonz\\u00E1lez

    2014-01-01

    Full Text Available Burkholderia glumae en el cultivo de arroz en Costa Rica. El objetivo de este trabajo fue determinar la presencia de Burkholderia glumae en arroz en Costa Rica. La bacteria Burkholderia glumae está asociada al cultivo del arroz en el que provoca la enfermedad llamada añublo bacterial. Bajo condiciones ambientales favorables, la densidad bacteriana aumenta, lo que provoca que, bajo un sistema de regulación denominado quorum sensing, se expresen sus mecanismos de virulencia mediante la activación de genes responsables para la síntesis de la toxoflavina, que bloquea el flujo de nutrientes, para la biogénesis de flagelos y la respuesta quimiotáctica, y la producción de la enzima catalasa. Las plantas desarrollan la sintomatología que finalmente conlleva a un vaneamiento del grano provocando pérdidas económicas importantes. Se investigó la situación referente a la contaminación del grano de arroz causado por esta bacteria en Costa Rica durante los años 2009 y 2010, mediante un convenio entre la Corporación Nacional Arrocera y el Laboratorio de Fitopatología del Centro de Investigación en Protección de Cultivos de la Universidad de Costa Rica. Se usó la metodología de PCR de punto final recomendada por investigadores del Centro Internacional de Agricultura Tropical en Colombia y se reforzó la identificación, por medio de técnicas de microbiología convencional. Se obtuvieron resultados que indican la presencia de la bacteria en Costa Rica, la primera información sobre la prevalencia de un fitopatógeno bacteriano de gran importancia para el sector arrocero.

  19. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction

    OpenAIRE

    2015-01-01

    To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities ...

  20. Gastric lipase: localization of the enzyme in the stomach

    International Nuclear Information System (INIS)

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using 3H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined

  1. Screening for lipase activity in the oil palm.

    Science.gov (United States)

    Sambanthamurthi, R; Rajanaidu, N; Hasnah Parman, S

    2000-12-01

    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value. PMID:11171201

  2. Rat liver contains a limited number of binding sites for hepatic lipase

    OpenAIRE

    Schoonderwoerd, Kees; Verhoeven, Adrie; Jansen, Hans

    1994-01-01

    textabstractThe binding of hepatic lipase to rat liver was studied in an ex vivo perfusion model. The livers were perfused with media containing partially purified rat hepatic lipase or bovine milk lipoprotein lipase. The activity of the enzymes was determined in the perfusion media before and after passage through the liver. During perfusion with a hepatic-lipase-containing medium the lipase activity in the medium did not change, indicating that there was no net binding of lipase by the live...

  3. Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2

    OpenAIRE

    Sangeetha, R.; Arulpandi, I.; A Geetha

    2014-01-01

    Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The l...

  4. Characterization of lipase activities in obese Pima indians. Decreases with weight reduction.

    OpenAIRE

    Reitman, J S; Kosmakos, F C; Howard, B V; Taskinen, M R; Kuusi, T.; Nikkila, E A

    1982-01-01

    Adipose tissue and muscle lipoprotein lipase and postheparin hepatic and lipoprotein lipase activities have been measured in a group of 21 Pima Indian males over a wide range of body weight to determine the relationship between obesity and these lipase activities. There was a significant positive correlation between adipose tissue lipoprotein lipase and obesity; muscle and postheparin lipoprotein lipase and hepatic lipase were not related to degree of obesity. Fasting insulin levels were not ...

  5. Exploring the HME and HAE1 efflux systems in the genus Burkholderia

    Directory of Open Access Journals (Sweden)

    Pasca Maria

    2010-06-01

    Full Text Available Abstract Background The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii analyze their phylogenetic distribution, iii define the putative function(s that RND proteins perform within the Burkholderia genus and iv try tracing the evolutionary history of some of these genes in Burkholderia. Results BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins/heavy-metal (HME proteins] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE

  6. Studies on the incorporation of lipase in synthetic polymerisable vesicles.

    OpenAIRE

    Mosmuller, E.W.J.

    1993-01-01

    This thesis describes studies on the suitability of synthetic polymerisable vesicles for the incorporation and stabilisation of lipase for the bioconversion of organic chemical compounds.In chapter 1 , some characteristics are reviewed of hydrolytic enzymes, and more specific those of lipases. In chapter 2 an overview is presented of the features and properties of surfactants and vesicles.In chapter 3 , the incorporation is described of lipase from Candida cylindracea (CCL) into polymerisable...

  7. Seed lipases: sources, applications and properties - a review

    OpenAIRE

    Barros, M; L. F. Fleuri; G. A. MACEDO

    2010-01-01

    This paper provides an overview regarding the main aspects of seed lipases, such as the reactions catalyzed, physiological functions, specificities, sources and applications. Lipases are ubiquitous in nature and are produced by several plants, animals and microorganisms. These enzymes exhibit several very interesting features, such as low cost and easy purification, which make their commercial exploitation as industrial enzymes a potentially attractive alternative. The applications of lipases...

  8. Serum immunoreactive trypsin and pancreatic lipase in primary biliary cirrhosis.

    OpenAIRE

    Fonseca, V.; Epstein, O; Katrak, A; Junglee, D; Mikhailidis, D P; McIntyre, N; Dandona, P

    1986-01-01

    Immunoreactive trypsin concentration and pancreatic lipase activity were measured in the sera of 33 patients with primary biliary cirrhosis. Immunoreactive trypsin was increased (above the normal range) in 16 (48%) and pancreatic lipase activity in 18 (55%) patients. Both enzymes were increased in 10 (30%) patients. Twenty four patients (73%) had an increase of either one or both enzymes. There was a significant correlation between immunoreactive trypsin and pancreatic lipase activity. This a...

  9. Effects of Deltamethrin on Lipase Activity in Guppies (Poecilia reticulata)

    OpenAIRE

    Güneş, Elif; Sedat V. Yerli

    2011-01-01

    Effect of the deltamethrin, which is extensively used synthetic pyrethroid, was investigated on the lipase activity of Poecilia reticulata in the present study. One control and five experimental groups were exposed to different concentrations of deltamethrin. Three experiments, including 60 guppies each, were conducted. Titration method was used in order to determine the lipase activity. Lipase activity level in control group was 5 U/min, while it was 2.5 U/min in the highest concentration of...

  10. Immobilization of Isolated Lipase From Moldy Copra (Aspergillus Oryzae)

    OpenAIRE

    Seniwati

    2012-01-01

    Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase from Aspergillus oryzae. Lipase was partially purified from the culture supernatant of Aspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of op...

  11. Serum pancreatic lipase as a screening test for cystic fibrosis.

    OpenAIRE

    Adriaenssens, K; Van Riel, L

    1982-01-01

    Pancreatic lipase catalyses the hydrolysis of emulsified triglycerides to form a transparent solution of monoglycerides and fatty acids. Levels of serum pancreatic lipase were measured in neonates known to have cystic fibrosis and compared with levels in control infants. During the first weeks of life infants with cystic fibrosis had raised serum pancreatic lipase values in parallel with raised serum trypsin values. A simple and specific turbidimetric dried blood spot assay for serum pancreat...

  12. Expression of the Staphylococcus hyicus Lipase in Lactococcus lactis

    OpenAIRE

    Drouault, Sophie; Corthier, Gerard; Ehrlich, S. Dusko; Renault, Pierre

    2000-01-01

    The extracellular Staphylococcus hyicus lipase was expressed under the control of different promoters in Lactococcus lactis and Bacillus subtilis. Its expression at high and moderate levels is toxic for the former and the latter hosts, respectively. In L. lactis, the lipase was expressed at a high level, up to 30% of the total cellular proteins, under the control of the inducible promoter PnisA. About 80% of the lipase remained associated with the cells. Close to half of this amount remained ...

  13. Immobilization of Isolated Lipase From Moldy Copra (Aspergillus Oryzae)

    OpenAIRE

    Seniwati Dali; A. B. D. Rauf Patong; M.Noor Jalaluddin; Pirman; Baharuddin Hamzah

    2011-01-01

    Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase from Aspergillus oryzae. Lipase was partially purified from the culture supernatant of Aspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of optimum pH, optimum ...

  14. Endothelial lipase is a major determinant of HDL level

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  15. Computational Modeling of the Electrochemical System of Lipase Activity Detection

    Directory of Open Access Journals (Sweden)

    Valdemaras Razumas

    2008-06-01

    Full Text Available This paper presents computational modeling of response kinetics of bioelectroanalytical system based on solid supported lipase substrate and lipase interaction. The model assumes that lipase substrate is formed by dripping and drying a small amount of the ethanol solution of 9-(5’-ferrocenylpentanoyloxynonyl disulfide (FPONDS and that lipase is capable of cleaving FPONDS ester bonds via hydrolysis mechanism. Two mathematical models have been developed and evaluated trough computational simulation series by comparing them to experimental data. The results of simulation demonstrate that a good fitting might be obtained only taking into account non-linear substrate wash off process.

  16. Seed lipases: sources, applications and properties - a review

    Directory of Open Access Journals (Sweden)

    M. Barros

    2010-03-01

    Full Text Available This paper provides an overview regarding the main aspects of seed lipases, such as the reactions catalyzed, physiological functions, specificities, sources and applications. Lipases are ubiquitous in nature and are produced by several plants, animals and microorganisms. These enzymes exhibit several very interesting features, such as low cost and easy purification, which make their commercial exploitation as industrial enzymes a potentially attractive alternative. The applications of lipases in food, detergents, oils and fats, medicines and fine chemistry, effluent treatment, biodiesel production and in the cellulose pulp industry, as well as the main sources of oilseed and cereal seed lipases, are reviewed.

  17. Lipase Activity among Bacteria Isolated from Amazonian Soils

    OpenAIRE

    André Luis Willerding; Luiz Antonio de Oliveira; Francisco Wesen Moreira; Mariana Gomes Germano; Aloísio Freitas Chagas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greate...

  18. Covalent functionalization of multi-walled carbon nanotubes by lipase

    International Nuclear Information System (INIS)

    Lipase from Candida rugosa was covalently anchored onto acid-treated multi-walled carbon nanotubes (MWNTs) through a self-catalytic mechanism. A variety of characterization techniques including FTIR, Raman spectroscopy, and XPS were employed to demonstrate the formation of the ester linkage between lipase and MWNTs. The MWNTs-lipase biocomposites showed significantly increased solubility in some common-used organic solvents, such as THF, DMF and chloroform. This study may offer a novel and facile route for covalent modification of carbon nanotubes, and expand the potential utilization of both lipases and MWNTs in the fields of biocatalyst and biosensor

  19. The value of immunoreactive lipase in acute pancreatitis.

    OpenAIRE

    1988-01-01

    We have evaluated a new agglutination test for serum immunoreactive lipase in 24 patients with abdominal pain and hyperamylasaemia. On admission all 20 patients with acute pancreatitis had a positive lipase test, 3 of the 4 patients who did not have pancreatitis had a negative lipase test. The sensitivity of the lipase test on day 1 is 100%, the specificity 96% and predictive value of a positive test is 95.2% compared to 83% for amylase. A negative test excludes pancreatitis. In addition, the...

  20. Biosensor Applications of MAPLE Deposited Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2014-10-01

    Full Text Available Matrix Assisted Pulsed Laser Evaporation (MAPLE is a thin film deposition technique derived from Pulsed Laser Deposition (PLD for deposition of delicate (polymers, complex biological molecules, etc. materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest molecules to be deposited in a volatile substance (matrix. Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis.

  1. Lipoprotein lipase deficiency with visceral xanthomas

    Energy Technology Data Exchange (ETDEWEB)

    Servaes, Sabah; Bellah, Richard [Department of Radiology, Philadelphia, PA (United States); Verma, Ritu [Department of Gastroenterology, Philadelphia, PA (United States); Pawel, Bruce [Department of Pathology, Philadelphia, PA (United States)

    2010-08-15

    Lipoprotein lipase deficiency (LLD) is a rare metabolic disorder that typically presents with skin xanthomas and pancreatitis in childhood. We report a case of LLD in an infant who presented with jaundice caused by a pancreatic head mass. Abdominal imaging also incidentally revealed hyperechoic renal masses caused by renal xanthomas. This appearance of the multiple abdominal masses makes this a unique infantile presentation of LLD. (orig.)

  2. Directed evolution of an enantioselective lipase

    OpenAIRE

    Liebeton, Klaus; Zonta, Albin; Schimossek, Klaus; Nardini, Marco; Lang, Dietmar; Dijkstra, Bauke W.; Reetz, Manfred T.; Jaeger, Karl-Erich

    2000-01-01

    Background: The biocatalytic production of enantiopure compounds is of steadily increasing importance to the chemical and biotechnological industry. In most cases, however, it is impossible to identify an enzyme that possesses the desired enantioselectivity. Therefore, there is a strong need to create by molecular biological methods novel enzymes which display high enantioselectivity. Results: A bacterial lipase from Pseudomonas aeruginosa (PAL) was evolved to catalyze with high enantioselect...

  3. Characterization of Cross-Linked Lipase Aggregates

    DEFF Research Database (Denmark)

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2009-01-01

    Commercially available microbial lipases from different sources were immobilized as cross-linked enzyme aggregates (CLEAs) using different precipitants and glutaraldehyde as cross-linkers. These CLEAs were assayed based on esterification between lauric acid and n-propanol in solvent-free systems....... change upon CLEA formation. This work presents a characterization of CLEAs based on an esterification activity assay, which is useful for exploring the synthetic application potential of CLEA technology with favorable perspectives....

  4. Study of enzymatic reactors with microencapsulated lipase. Doctoral thesis. Estudo de reactores enzimaticos com lipase microencapsulada

    Energy Technology Data Exchange (ETDEWEB)

    de Franca Teixeira dos Prazeres, D.M.

    1992-10-01

    The work reports the development of a membrane reactor for the hydrolysis of triglycerides catalyzed by lipase B from Chromobacterium viscosum in AOT/isooctane reversed miceller system. In a preliminary phase the potential of the organic system was evaluated with comparative studies on the activity and stability of lipase B in aqueous media (emulsion) and in the alternative miceller media. A tubular ceramic membrane reactor with recirculation was selected for the olive oil hydrolysis in a reversed miceller system. The influence of the hydration degree, recirculation rate, AOT, olive oil and lipase concentration in the operation of the reactor were investigated in a batch mode. The hydration degree was identified as a critical parameter due to its influence in the separation process and in the kinetics of the reaction.

  5. Novel Metagenome-Derived, Cold-Adapted Alkaline Phospholipase with Superior Lipase Activity as an Intermediate between Phospholipase and Lipase

    OpenAIRE

    Lee, Mi-Hwa; Oh, Ki-Hoon; Kang, Chul-Hyung; Kim, Ji-Hoon; Oh, Tae-Kwang; Ryu, Choong-Min; Yoon, Jung-Hoon

    2012-01-01

    A novel lipolytic enzyme was isolated from a metagenomic library obtained from tidal flat sediments on the Korean west coast. Its putative functional domain, designated MPlaG, showed the highest similarity to phospholipase A from Grimontia hollisae CIP 101886, though it was screened from an emulsified tricaprylin plate. Phylogenetic analysis showed that MPlaG is far from family I.6 lipases, including Staphylococcus hyicus lipase, a unique lipase which can hydrolyze phospholipids, and is more ...

  6. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    OpenAIRE

    Patrícia de O. Carvalho; Silvana Ap. Calafatti; Maurício Marassi; Daniela M. da Silva; Fabiano J. Contesini; Renato Bizaco; Gabriela Alves Macedo

    2005-01-01

    Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum) were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase ...

  7. Biodiesel production by transesterification using immobilized lipase.

    Science.gov (United States)

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production. PMID:23247566

  8. Alkaline lipase of glyoxysomes is a glycoprotein

    International Nuclear Information System (INIS)

    In castor bean endosperm, the glyoxysomal alkaline lipase is an intrinsic membrane protein. At four days post-germination, the enzyme is also present in the endoplasmic reticulum where it accounts for approximately 15% of total activity. The active enzyme was purified by Maeshima and Beevers from isolated glyoxysomes. Specific antibodies to the 62 kD subunit were raised in rabbits. The anti-lipase has been used in preliminary experiments to determine the relationship between the lipase of the glyoxysomal membrane and the ER. Results indicate the presence of 3 cross-reacting antigens in carbonate-washed ER and glyoxysomal membranes. The 62 kD subunit, found predominantly in glyoxysomes, was eluted form Con-A Sepharose by 0.5 M α-methylglucoside. An 86kD form present in 2-d ER (but not in 4-d ER) and glyoxysomes did not bind Con-A Sepharose. This form appears to be an unglycosylated precursor or the 62 kD subunit. A 67 kD form was the only species seen in 4-d ER. In a time course experiment, the 67 kD form appeared on the glyoxysomal membrane

  9. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L® and Novozym 388®, were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 oC and total reaction time 6 h. Lipozyme TL-100L® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  10. Immobilization of a Commercial Lipase from Penicillium camembertii (Lipase G by Different Strategies

    Directory of Open Access Journals (Sweden)

    Adriano A. Mendes

    2011-01-01

    Full Text Available The objective of this work was to select the most suitable procedure to immobilize lipase from Penicillium camembertii (Lipase G. Different techniques and supports were evaluated, including physical adsorption on hydrophobic supports octyl-agarose, poly(hydroxybutyrate and Amberlite resin XAD-4; ionic adsorption on the anionic exchange resin MANAE-agarose and covalent attachment on glyoxyl-agarose, MANAE-agarose cross-linked with glutaraldehyde, MANAE-agarose-glutaraldehyde, and epoxy-silica-polyvinyl alcohol composite. Among the tested protocols, the highest hydrolytic activity (128.2 ± 8.10 IU·g−1 of support was achieved when the lipase was immobilized on epoxy-SiO2-PVA using hexane as coupling medium. Lipase immobilized by ionic adsorption on MANAE-agarose also gave satisfactory result, attaining 55.6 ± 2.60 IU·g−1 of support. In this procedure, the maximum loading of immobilized enzyme was 9.3 mg·g−1 of gel, and the highest activity (68.8 ± 2.70 IU·g−1 of support was obtained when 20 mg of protein·g−1 was offered. Immobilization carried out in aqueous medium by physical adsorption on hydrophobic supports and covalent attachment on MANAE-agarose-glutaraldehyde and glyoxyl-agarose was shown to be unfeasible for Lipase G. Thermal stability tests revealed that the immobilized derivative on epoxy-SiO2-PVA composite using hexane as coupling medium had a slight higher thermal stability than the free lipase.

  11. Immobilization of a Commercial Lipase from Penicillium camembertii (Lipase G) by Different Strategies.

    Science.gov (United States)

    Mendes, Adriano A; Freitas, Larissa; de Carvalho, Ana Karine F; de Oliveira, Pedro C; de Castro, Heizir F

    2011-01-01

    The objective of this work was to select the most suitable procedure to immobilize lipase from Penicillium camembertii (Lipase G). Different techniques and supports were evaluated, including physical adsorption on hydrophobic supports octyl-agarose, poly(hydroxybutyrate) and Amberlite resin XAD-4; ionic adsorption on the anionic exchange resin MANAE-agarose and covalent attachment on glyoxyl-agarose, MANAE-agarose cross-linked with glutaraldehyde, MANAE-agarose-glutaraldehyde, and epoxy-silica-polyvinyl alcohol composite. Among the tested protocols, the highest hydrolytic activity (128.2 ± 8.10 IU·g(-1) of support) was achieved when the lipase was immobilized on epoxy-SiO(2)-PVA using hexane as coupling medium. Lipase immobilized by ionic adsorption on MANAE-agarose also gave satisfactory result, attaining 55.6 ± 2.60 IU·g(-1) of support. In this procedure, the maximum loading of immobilized enzyme was 9.3 mg·g(-1) of gel, and the highest activity (68.8 ± 2.70 IU·g(-1) of support) was obtained when 20 mg of protein·g(-1) was offered. Immobilization carried out in aqueous medium by physical adsorption on hydrophobic supports and covalent attachment on MANAE-agarose-glutaraldehyde and glyoxyl-agarose was shown to be unfeasible for Lipase G. Thermal stability tests revealed that the immobilized derivative on epoxy-SiO(2)-PVA composite using hexane as coupling medium had a slight higher thermal stability than the free lipase. PMID:21811674

  12. Homologous Expression of the Lipase and ABC Transporter Gene Cluster, tliDEFA, Enhances Lipase Secretion in Pseudomonas spp.

    OpenAIRE

    Ahn, Jung Hoon; Pan, Jae Gu; Rhee, Joon Shick

    2001-01-01

    The ABC transporter TliDEF was found to be an efficient secretory apparatus for extracellular lipase TliA in Pseudomonas fluorescens. For the enhanced secretion of the lipase, we tried to coexpress tliA and tliDEF in various Pseudomonas species. Whereas the coexpression of tliA and tliDEF was required for the lipase secretion in P. fragi, the expression of tliA was sufficient for the lipase secretion in P. fluorescens, P. syringae, and P. putida, indicating the existence of compatible ABC tra...

  13. Emulsifying triglycerides with dairy phospholipids instead of soy lecithin modulates gut lipase activity

    DEFF Research Database (Denmark)

    Mathiassen, Jakob Hovalt; Nejrup, Rikke Guldhammer; Frøkiær, Hanne;

    2015-01-01

    hydrolytic rate of gastric lipase and pancreatic lipase, on their own or pancreatic lipase after gastric lipase on TAG droplets of similar size emulsified in either soy lecithin (SL) or in bovine milk phospholipids (MPL), more similar to human milk globule membrane lipids than soy lecithin. Gastric lipase...... activity was substantially higher on MPL-emulsified particles, while SL emulsification caused a higher rate of pancreatic lipase hydrolysis, on particles that had not been pre-treated with gastric lipase. MPL emulsification did however cause higher pancreatic lipase activity, when the particles had been...... pre-treated with gastric lipase. The attenuating effect of MPL-emulsification on pancreas lipase activity was validated in vivo in mice. Practical application: Our results show that the activity of gastric lipase, a key enzyme in lipid absorption in neonates, is highly dependent on the phospholipid...

  14. Identification of Burkholderia spp. in the clinical microbiology laboratory: comparison of conventional and molecular methods

    NARCIS (Netherlands)

    C. van Pelt (Cindy); C.M. Verduin (Cees); W.H.F. Goessens (Wil); M.C. Vos (Margreet); B. Tummler; C. Segonds; F. Reubsaet; A.F. van Belkum (Alex); H.A. Verbrugh (Henri)

    1999-01-01

    textabstractCystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situat

  15. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  16. Draft Genome Sequence of Burkholderia pseudomallei Strain 350105, Isolated in Hainan, China, in 1976

    OpenAIRE

    Song, Lihua; Yu, Yonghui; Feng, Le; He, Jun; WANG, Tao; Zhu, Hong; Duan, Qing

    2015-01-01

    Burkholderia pseudomallei is the etiological agent of the potentially fatal disease melioidosis. Here, we report the draft genome sequence of a virulent water isolate obtained from the Hainan Province of China in 1976, B. pseudomallei strain 350105.

  17. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    OpenAIRE

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concate...

  18. Lipase - Catalyzed glycerolysis of sunflower oil to produce partial glycerides.

    Directory of Open Access Journals (Sweden)

    Zaher, F. A.

    1998-12-01

    Full Text Available Partial glycerides were prepared by glycerolysis of sunflower oil in presence of lipase enzyme as catalyst. Six lipases of different origins were used and compared for their catalytic activity. These include Chromobacterium lipase, pancreatic lipase, Rhizopus arrhizus lipase, lyophilized lipase (plant lipase in addition to two lipase preparations derived from Rhizopus japonicas; Lilipase A-10 and Lilipase B-2. Chromobacterium lipase was found to be the most active as glycerolysis catalyst whereas lyophilized lipase; a plant preparation from wheat germ was the least active. The results have also shown that the lipase type affects also the product polarity and hence its field of application as a food emulsifier. Less polar products can be obtained using Chromobacterium lipase whereas the more polar ones using a fungal lipase preparation «Lipase A-10». The product polarity is also influenced by the process temperature but the mode of its effect is different for different lipases.

    Se prepararon glicéridos parciales mediante glicerolisis de aceite de girasol en presencia de lipasa como catalizador. Seis lipasas de orígenes diferentes se utilizaron y compararon en función de su actividad catalítica. Estas incluyeron lipasa de Chromobacterium, lipasa pancreática, lipasa de Rhizopus arrhizus, lipasa liofilizada (lipasa vegetal además de dos preparaciones de lipasa derivadas de Rhizopus japonicus: lilipase A-10 y lilipase B-2. Se encontró que la lipasa de Chromobacterium fue la más activa como catalizador en la glicerolisis mientras que la lipasa liofilizada, preparación vegetal a partir de germen de trigo, fue la menos activa. Los resultados mostraron que los tipos de lipasa afectan también a la polaridad de los productos y por tanto a los rendimientos en su aplicación como emulsificantes alimentarios. Los productos menos polares pueden obtenerse usando lipasa de

  19. New lipase assay using Pomegranate oil coating in microtiter plates.

    Science.gov (United States)

    Ülker, Serdar; Placidi, Camille; Point, Vanessa; Gadenne, Benoît; Serveau-Avesque, Carole; Canaan, Stéphane; Carrière, Frédéric; Cavalier, Jean-François

    2016-01-01

    Lipases play various roles in fat digestion, lipoprotein metabolism, and in the mobilization of fat stored in lipid bodies in animals, plants and microorganisms. In association with these physiological functions, there is an important field of research for discovering lipase inhibitors and developing new treatments of diseases such as obesity, atherosclerosis, diabetes and tuberculosis. In this context, the development of convenient, specific and sensitive analytical methods for the detection and assay of lipases and/or lipase inhibitors is of major importance. It is shown here that purified triacylglycerols (TAGs) from Punica granatum (Pomegranate) seed oil coated on microtiter plates can be used for the continuous assay of lipase activity by recording the variations with time of the UV absorption spectra at 275 nm. UV absorption is due the release of punicic acid (9Z,11E,13Z-octadeca-9,11,13-trienoic acid), a conjugated triene contained in Pomegranate oil. This new microtiter plate assay allows to accurately measure the activity of a wider range of lipases compared to the similar assay previously developed with Tung oil containing α-eleostearic acid (9Z,11E,13E-octadeca-9,11,13-trienoic acid), including the LipY lipase from Mycobacterium tuberculosis. Although punicic acid is a diastereoisomer of α-eleostearic acid, the Δ(13)cis double bound found in punicic acid gives a different structure to the acyl chain that probably favours the interaction of Pomegranate TAGs with the lipase active site. The microplate lipase assay using Pomegranate TAGs shows high sensitivity, reproducibility and remarkable relevance for the high-speed screening of lipases and/or lipase inhibitors directly from raw culture media without any purification step. PMID:26343557

  20. Butyl acetate synthesis using immobilized lipase in calcium alginate beads

    International Nuclear Information System (INIS)

    The esterification reaction of acetic acid and n-butanol using immobilized lipase encapsulated in calcium alginate beads (Lipase - CAB) and in chitosan coated calcium alginate beads (Lipase-CCAB) in n-hexane under mild reaction conditions were studied. Effects of temperature and substrate concentration (acetic acid and n-butanol) using Lipase - CAB, Lipase - CCAB and free lipase on the esterification reaction and their thermal stability towards esterification reaction were investigated. Results of temperature studies showed that the butyl acetate conversion increased with increase of temperature and reached the highest yield of about 70% around 50 degree Celsius for both immobilized systems but the yield of product catalyzed by free enzyme decreased as temperature was increased. Thermal stabilities studies showed that the Lipase-CCAB and Lipase-CAB were stable throughout the temperature range of 30-60 degree Celsius. However, free lipase became less stable at temperatures higher than 50 degree Celsius. The substrates, n-butanol and acetic acid exerted different effects on the esterification reaction and the reaction was favoured by higher acetic acid concentration than butanol. Kinetics parameters, Km and Vmax values for both substrates and the specific activities of the three enzyme system were also determined. The beads morphology was examined using SEM. Batch-wise operational stability studies for both immobilized systems demonstrated that the immobilized lipase performed better in the batch wise reactor system than the continuous bioreactor system and that the immobilized lipase remained active for at least 5 cycles of batch wise esterification reactions. (author)

  1. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    OpenAIRE

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widel...

  2. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale

    OpenAIRE

    AnastasiaBragina; ChristianBerg

    2013-01-01

    The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned...

  3. Multivariate Analyses of Burkholderia Species in Soil: Effect of Crop and Land Use History

    OpenAIRE

    Salles, J.F.; Veen, van, R.; Elsas, van, J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholderia. In a greenhouse experiment, different crops, i.e., maize, oat, barley, and grass, were planted in pots containing soils with different land use histories, i.e., maize monoculture, crop rotation...

  4. Characterization and Inference of Gene Gain/Loss Along Burkholderia Evolutionary History

    OpenAIRE

    Bo Zhu; Shengli Zhou; Miaomiao Lou; Jun Zhu; Bin Li; Guanlin Xie; GuLei Jin; René De Mot

    2011-01-01

    A comparative analysis of 60 complete Burkholderia genomes was conducted to obtain insight in the evolutionary history behind the diversity and pathogenicity at species level. A concatenated multiprotein phyletic pattern and a dataset with Burkholderia clusters of orthologous genes (BuCOGs) were constructed. The extent of horizontal gene transfer (HGT) was assessed using a Markov based probabilistic method. A reconstruction of the gene gains and losses history shows that more than half of the...

  5. Persistence of Burkholderia multivorans within the Pulmonary Macrophage in the Murine Lung

    OpenAIRE

    Chu, Karen K.; MacDonald, Kelly L.; Davidson, Donald J; Speert, David P.

    2004-01-01

    Differences in infection kinetics and host response between Burkholderia multivorans and Burkholderia cenocepacia were demonstrated in a pulmonary infection model in BALB/c mice. B. multivorans persisted in the lung, while B. cenocepacia was cleared. Indirect immunofluorescence and electron microscopy of B. multivorans-infected lungs localized bacteria to macrophages. Clearance of B. cenocepacia was associated with greater interleukin-1β and neutrophil responses than the responses induced by ...

  6. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge

    OpenAIRE

    Whitlock, Gregory C.; Deeraksa, Arpaporn; Qazi, Omar; Judy, Barbara M.; Taylor, Katherine; Propst, Katie L.; Duffy, Angie J.; Johnson, Kate; Kitto, G. Barrie; Brown, Katherine A.; Dow, Steven W.; Torres, Alfredo G.; Estes, D. Mark

    2010-01-01

    Burkholderia mallei and B. pseudomallei are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these Burkholderia species. In this study, we aimed to identify protective proteins against these pathogens. Immunization with recombinant B. mallei Hcp1 (type VI secreted/structural protein), BimA (autotransporter protein), BopA (type III secreted protein), and B. pseudomallei LolC (ABC...

  7. Comparative Genome Sequence Analysis Reveals the Extent of Diversity and Conservation for Glycan-Associated Proteins in Burkholderia spp.

    OpenAIRE

    Ong, Hui San; Mohamed, Rahmah; Firdaus-Raih, Mohd

    2012-01-01

    Members of the Burkholderia family occupy diverse ecological niches. In pathogenic family members, glycan-associated proteins are often linked to functions that include virulence, protein conformation maintenance, surface recognition, cell adhesion, and immune system evasion. Comparative analysis of available Burkholderia genomes has revealed a core set of 178 glycan-associated proteins shared by all Burkholderia of which 68 are homologous to known essential genes. The genome sequence compari...

  8. Developing Peptide Mimotopes of Capsular Polysaccharides and Lipopolysaccharides Protective Antigens of Pathogenic Burkholderia Bacteria.

    Science.gov (United States)

    Guo, Pengfei; Zhang, Jing; Tsai, Shien; Li, Bingjie; Lo, Shyh-Ching

    2016-06-01

    Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are two species of pathogenic Burkholderia bacteria. Our laboratory previously identified four monoclonal antibodies (MAbs) that reacted against Burkholderia capsular polysaccharides (PS) and lipopolysaccharides (LPS) and effectively protected against a lethal dose of BP/BM infections in mice. In this study, we used phage display panning against three different phage peptide libraries to select phage clones specifically recognized by each of the four protective MAbs. After sequencing a total of 179 candidate phage clones, we examined in detail six selected phage clones carrying different peptide inserts for the specificity of binding by the respective target MAbs. Chemically synthesized peptides corresponding to those displayed by the six phage clones were conjugated to keyhole limpet hemocyanin carrier protein and tested for their binding specificity to the respective protective MAbs. The study revealed that four of the six peptides, all derived from the library displaying dodecapeptides, functioned well as "mimotopes" of Burkholderia PS and LPS as demonstrated by a high degree of specific competition against the binding of three protective MAbs to BP and BM. Our results suggest that the four selected peptide mimics corresponding to PS/LPS protective antigens of BP and BM could potentially be developed into peptide vaccines against pathogenic Burkholderia bacteria. PMID:27328059

  9. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  10. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance

    Science.gov (United States)

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  11. Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability.

    Science.gov (United States)

    Stojanović, Marija; Velićković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Knežević-Jugović, Zorica; Bezbradica, Dejan

    2013-01-01

    Lipase-catalyzed ascorbyl oleate synthesis is eco-friendly and selective way of production of liposoluble biocompatible antioxidants, but still not present on an industrial level due to the high biocatalyst costs. In this study, response surface methodology was applied in order to estimate influence of individual experimental factors, identify interactions among them, and to determine optimum conditions for enzymatic synthesis of ascorbyl oleate in acetone, in terms of limiting substrate conversion, product yield, and yield per mass of consumed enzyme. As a biocatalyst, commercial immobilized preparation of lipase B from Candida antarctica, Novozym 435, was used. In order to develop cost-effective process, at reaction conditions at which maximum amount of product per mass of biocatalyst was produced (60°C, 0.018 % (v/v) of water, 0.135 M of vitamin C, substrates molar ratio 1:8, and 0.2 % (w/v) of lipase), possibilities for further increase of ester yield were investigated. Addition of molecular sieves at 4(th) hour of reaction enabled increase of yield from 16.7 mmol g⁻¹ to 19.3 mmol g⁻¹. Operational stability study revealed that after ten reaction cycles enzyme retained 48 % of its initial activity. Optimized synthesis with well-timed molecular sieves addition and repeated use of lipase provided production of 153 mmol per gram of enzyme. Further improvement of productivity was achieved using procedure for the enzyme reactivation. PMID:23985489

  12. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    Science.gov (United States)

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  13. Beneficial effects of adding lipase enzyme to broiler diet

    International Nuclear Information System (INIS)

    A total number of 300 Ross broiler chicks were obtained from commercial hatchery at one day of age. The chicks were divided into three groups (50 males and 50 females in each). The first and second groups were supplemented with 3000 and 2000 lU/kg diet of lipase enzyme, respectively, while the third group served as control and fed on basal diet. Birds fed on diets that supplemented with lipase enzyme showed significant increase in body weight and dry matter intake, as well as fats and protein content dry matters. The serum lipase activity showed significant increase in treated groups compared to the control. Non-significant changes were determined in serum total lipids, T3, T4 and ash content. Birds supplemented with lipase showed significant decrease in cholesterol concentration. It could be concluded that birds fed diets containing 2000 or 3000 lU/kg diet of lipase enzyme exhibited improvement in broiler performance

  14. Characteristic properties of lipase from cowpea (vigna unguiculata) seedlings

    International Nuclear Information System (INIS)

    Lipase activity was assayed in 4 days old cowpea seedlings using olive oil emulsion stabilized with 10% gum acacia as a substrate. The maximum lipase activity was observed at pH 8.0 with Tris-HCI buffer and at 30 degree C. The pH stability was found in between 7.5-8.5. Lipase activity was fairly stable up to 60 degree C and retaining 80% activity whereas, 26% lipase activity was remaining at 100 degree C within 15 minutes. Lipase activity was slightly increased in the presence of MnC/sub 2/ and decreased by the addition of Triton X 100, Tween 80, ZnCI/sub 2/ and mercaptoethanol. (author)

  15. In vitro activities of aztreonam, piperacillin, and ticarcillin combined with amikacin against amikacin-resistant Pseudomonas aeruginosa and P. cepacia isolates from children with cystic fibrosis.

    OpenAIRE

    Aronoff, S C; Klinger, J D

    1984-01-01

    Amikacin, combined with aztreonam, piperacillin, or ticarcillin, synergistically inhibited amikacin-resistant sputum isolates of Pseudomonas aeruginosa and P. cepacia from children with cystic fibrosis. Ticarcillin-amikacin was the least active combination. Aminoglycoside resistance should not preclude the use of beta-lactam-aminoglycoside combinations in the treatment of pulmonary infections in cystic fibrosis.

  16. CHARACTERIZATION AND NUCLEOTIDE SEQUENCE DETERMINATION OF A REPEAT ELEMENT ISOLATED FROM A 2,4,5,-T DEGRADING STRAIN OF PSEUDOMONAS CEPACIA

    Science.gov (United States)

    Pseudomonas cepacia strain AC1100, capable of growth on 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), was mutated to the 2,4,5-T− strain PT88 by a ColE1 :: Tn5 chromosomal insertion. Using cloned DNA from the region flanking the insertion, a 1477-bp sequence (designated RS1100) wa...

  17. CLONING AND CHARACTERIZATION OF A CHROMOSOMAL DNA REGION REQUIRED FOR GROWTH ON 2,4,5-T BY PSEUDOMONAS CEPACIA AC1100

    Science.gov (United States)

    A series of spontaneous 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) nonmetabolizing mutants of Pseudomonas cepacia AC1100 were characterized to be defective in either 2,4,5-T uptake or conversion of this compound to 2,4,5-trichlorophenol (2,4,5-TCP). Two of these mutants, RHC22 a...

  18. Disulfide Bond in Pseudomonas aeruginosa Lipase Stabilizes the Structure but Is Not Required for Interaction with Its Foldase

    OpenAIRE

    Liebeton, Klaus; Zacharias, Annette; Jaeger, Karl-Erich

    2001-01-01

    Pseudomonas aeruginosa secretes a 29-kDa lipase which is dependent for folding on the presence of the lipase-specific foldase Lif. The lipase contains two cysteine residues which form an intramolecular disulfide bond. Variant lipases with either one or both cysteines replaced by serines showed severely reduced levels of extracellular lipase activity, indicating the importance of the disulfide bond for secretion of lipase through the outer membrane. Wild-type and variant lipase genes fused to ...

  19. Enzymatic interesterification of palm stearin and coconut oil by a dual lipase system

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Guo, Zheng; Xu, Xuebing

    2008-01-01

    Enzymatic interesterification of palm stearin with coconut oil was conducted by applying a dual lipase system in comparison with individual lipase-catalyzed reactions. The results indicated that a synergistic effect occurred for many lipase combinations, but largely depending on the lipase species...

  20. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    Directory of Open Access Journals (Sweden)

    Jaeger Karl E

    2011-02-01

    Full Text Available Abstract Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the

  1. La lipase de Candida rugosa : caractérisation biochimique

    Directory of Open Access Journals (Sweden)

    Mtibaa Hounaida

    2002-01-01

    Full Text Available Les lipases ou triacylglycérols hydrolases (EC 3.1.1.3 sont des enzymes qui agissent en milieu hétérogène. Ces enzymes catalysent l’hydrolyse des liaisons esters des triacylglycérols à l’interface huile/eau [1]. Leur particularité vient du fait que ces enzymes sont plus actives sur les lipides qui sont sous forme agrégée [2]. Les lipases sont présentes dans la plupart des tissus animaux et végétaux ainsi que chez les microorganismes qui constituent une source importante de production de lipases à grande échelle. À ce jour, de nombreuses lipases de microorganismes ont été purifiées et caractérisées et certaines d’entres elles ont été cristallisées (lipase de Pseudomonas glumae [3], lipase de Rhizomucor miehei [4], lipase Geotrichum candidum [5], lipase de Candida rugosa [6].... La lipase de Candida cylindracea (qui est l’ancien nom de Candida rugosa a été cristallisée en présence et en l’absence d’inhibiteurs [7]. Il s’agit d’une alpha/beta hydrolase comprenant 11 brins beta entourés par 8 hélices alpha [6]. La triade catalytique est cachée sous un flap constitué de 26 résidus d’aminoacides. Dans le présent travail, nous avons cherché à étudier quelques caractéristiques biochimiques de la lipase de Candida rugosa (CRL qui a été purifiée dans notre laboratoire à partir de la poudre commercialisée.

  2. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp.

    Science.gov (United States)

    Mehta, Akshita; Kumar, Rakesh; Gupta, Reena

    2012-12-01

    Lipases catalyze the hydrolysis and the synthesis of esters formed from glycerol and long chain fatty acids. Lipases occur widely in nature, but only microbial lipases are commercially significant. In the present study, thirty-two bacterial strains, isolated from soil sample of a hot spring were screened for lipase production. The strain TS-4, which gave maximum activity, was identified as Geobacillus sp. at MTCC, IMTECH, Chandigarh. The isolated lipase producing bacteria were grown on minimal salt medium containing olive oil. Maximal quantities of lipase were produced when 30 h old inoculum was used at 10% (v/v) in production medium and incubated in shaking conditions (150 rpm) for 72 h. The optimal temperature and pH for the bacterial growth and lipase production were found to be 60°C and 9.5, respectively. Maximal enzyme production resulted when mustard oil was used as carbon source and yeast extract as sole nitrogen source at a concentration of 1% (v/v) and 0.15% (w/v), respectively. The different optimized reaction parameters were temperature 65°C, pH 8.5, incubation time 10 min and substrate p-nitrophenyl palmitate. The Km and Vmax values of enzyme were found to be 14 mM and 17.86 μmol ml-1min-1, respectively, with p-nitrophenyl palmitate as substrate. All metal ions studied (1 mM) increased the lipase activity. PMID:23195552

  3. Use of the common marmoset to study Burkholderia mallei infection.

    Directory of Open Access Journals (Sweden)

    Tomislav Jelesijevic

    Full Text Available Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 10(4 to 2.5 X 10(5 bacteria developed acute lethal infection within 3-4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 10(3 bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 10(3 organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B

  4. Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection

    Directory of Open Access Journals (Sweden)

    Sarovich DS

    2012-08-01

    Full Text Available Derek S Sarovich,1,2,* Erin P Price,1,2,* Direk Limmathurotsakul,3 James M Cook,1 Alex T Von Schulze,1 Spenser R Wolken,1 Paul Keim,1 Sharon J Peacock,3,4 Talima Pearson1 1Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA; 2Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Darwin, Australia; 3Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 4Department of Medicine, University of Cambridge, Cambridge, United Kingdom*These authors contributed equally to this workAbstract: Burkholderia pseudomallei, a bacterium that causes the disease melioidosis, is intrinsically resistant to many antibiotics. First-line antibiotic therapy for treating melioidosis is usually the synthetic β-lactam, ceftazidime (CAZ, as almost all B. pseudomallei strains are susceptible to this drug. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, which can lead to mortality if therapy is not switched to a different drug in a timely manner. Serial B. pseudomallei isolates obtained from an acute Thai melioidosis patient infected by a CAZ susceptible strain, who ultimately succumbed to infection despite being on CAZ therapy for the duration of their infection, were analyzed. Isolates that developed CAZ resistance due to a proline to serine change at position 167 in the β-lactamase PenA were identified. Importantly, these CAZ resistant isolates remained sensitive to the alternative melioidosis treatments; namely, amoxicillin-clavulanate, imipenem, and meropenem. Lastly, real-time polymerase chain reaction-based assays capable of rapidly identifying CAZ resistance in B. pseudomallei isolates at the position 167 mutation site were developed. The ability to rapidly identify the emergence of CAZ resistant B. pseudomallei populations in melioidosis patients will allow timely alterations in treatment strategies

  5. Lipases as Tools in the Synthesis of Prodrugs from Racemic 9-(2,3-Dihydroxypropyladenine

    Directory of Open Access Journals (Sweden)

    Marcela Krečmerová

    2012-11-01

    Full Text Available Lipases from Geotrichum candidum 4013 (extracellular lipase and cell-bound lipase were immobilized by adsorption on chitosan beads. The enzyme preparations were tested in the synthesis of ester prodrugs from racemic 9-(2,3-dihydroxypropyladenine in dimethylformamide with different vinyl esters (acetate, butyrate, decanoate, laurate, palmitate. The transesterification activities of these immobilized enzymes were compared with commercially available lipases (lipase from hog pancreas, Aspergillus niger, Candida antarctica, Pseudomonas fluorescens. Lipase from Candida antarctica was found to be the most efficient enzyme regarding chemical yield of the desired products, while transesterification by lipase from Aspergillus niger resulted in lower yields.

  6. Effects of Regioselectivity and Lipid Class Specificity of Lipases on Transesterification, Exemplified by Biodiesel Production.

    Science.gov (United States)

    Sinkūnienė, Dovilė; Adlercreutz, Patrick

    2014-01-01

    Lipase-catalyzed ethanolysis of triolein was studied as a model for biodiesel production. Four lipases were immobilized on porous polypropylene, and ethanolysis reactions were carried out in methyl t-butyl ether. The reaction products were analyzed using gas chromatography. Three of the four lipases studied were efficient in the conversion of triolein to 2-monoolein, but slow in the final step of producing glycerol. However, Candida antarctica lipase B was slow in the conversion of triolein, but more efficient in the subsequent two steps than the other lipases. The 1,3-selectivity of the lipases was less pronounced for the monooleins than for triolein. Silica gel was investigated as a catalyst for acyl migration, showing an increase in biodiesel yield with three of the lipases, but a reduction in yield when C. antarctica lipase B was used. The highest biodiesel yield (96 %) was obtained with a combination of Rhizopus arrhizus lipase and C. antarctica lipase B. PMID:25045169

  7. Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2

    Directory of Open Access Journals (Sweden)

    R. Sangeetha

    2014-06-01

    Full Text Available Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The lip gene consisted of 650 bp. The experimental molecular weight of SG2 lipase was nearly double that of its theoretical molecular weight, thus suggesting the existence of the functional lipase as a covalent dimer. The proteolytic cleavage sites of the lipase would have been made inaccessible by dimerisation, thus rendering the lipase resistant to protease.

  8. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection

    OpenAIRE

    Bachert, Beth A.; Choi, Soo J.; Snyder, Anna K.; Rio, Rita V. M.; Durney, Brandon C.; Holland, Lisa A.; Amemiya, Kei; Welkos, Susan L.; Bozue, Joel A.; Cote, Christopher K.; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia coll...

  9. Clinical efficacy of serum lipase subtype analysis for the differential diagnosis of pancreatic and non-pancreatic lipase elevation

    Science.gov (United States)

    Bang, Chang Seok; Kim, Jin Bong; Park, Sang Hyun; Baik, Gwang Ho; Su, Ki Tae; Yoon, Jai Hoon; Kim, Yeon Soo; Kim, Dong Joon

    2016-01-01

    Background/Aims: Non-pancreatic elevations of serum lipase have been reported, and differential diagnosis is necessary for clinical practice. This study aimed to evaluate the clinical efficacy of serum lipase subtype analysis for the differential diagnosis of pancreatic and non-pancreatic lipase elevation. Methods: Patients who were referred for the serum lipase elevation were prospectively enrolled. Clinical findings and serum lipase subtypes were analyzed and compared by dividing the patients into pancreatitis and non-pancreatitis groups. Results: A total of 34 patients (12 pancreatitis vs. 22 non-pancreatitis cases) were enrolled. In univariate analysis, the fraction of pancreatic lipase (FPL) in the total amount of serum lipase subtypes was statistically higher in patients with pancreatitis ([median, 0.004; interquartile range [IQR], 0.003 to 0.011] vs. [median, 0.002; IQR, 0.001 to 0.004], p = 0.04). Based on receiver operating characteristic curve analysis for the prediction of acute pancreatitis, FPL was the most valuable predictor (area under the receiver-operating characteristic curve [AUROC], 0.72; 95% confidence interval [CI], 0.54 to 0.86; sensitivity, 83.3%; specificity, 63.6%; positive predictive value, 55.6%; negative predictive value, 97.5%). In multivariate analysis, a cut-off value higher than 0.0027 for the FPL was associated with acute pancreatitis (odds ratio, 8.3; 95% CI, 1.3 to 51.7; p = 0.02). Conclusions: The results did not support that serum lipase subtype analysis could replace standard lipase measurement for the diagnosis of acute pancreatitis. However, the test demonstrated adequate sensitivity for use in triage or as an add-on test for serum lipase elevation. PMID:27243230

  10. SIFAT-SIFAT BIOKIMIAWI EKSTRAK KASAR LIPASE EKSTRASELULER DARI BAKTERI Azospirillum sp. JG3

    OpenAIRE

    Puji Lestari; Santi Nur Handayani; Oedjijono

    2009-01-01

    Lipases are valuable biocatalysts because they act under extremely mild conditions, are stable in organic solvents, show broad substrate specificity and exhibit high stereoselectivity. Lipases play important role in various industries such as detergent, cosmetics, flavor, pharmacy and synthesis of organic compounds. The increasing of lipases requirements in industries is goading research to get new lipases resources commited. One of potential lipase resource is Azospirillum sp.JG3 bacteria fr...

  11. Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements

    Directory of Open Access Journals (Sweden)

    Ulrich Ricky L

    2010-07-01

    Full Text Available Abstract Background Burkholderia species exhibit enormous phenotypic diversity, ranging from the nonpathogenic, soil- and water-inhabiting Burkholderia thailandensis to the virulent, host-adapted mammalian pathogen B. mallei. Genomic diversity is evident within Burkholderia species as well. Individual isolates of Burkholderia pseudomallei and B. thailandensis, for example, carry a variety of strain-specific genomic islands (GIs, including putative pathogenicity and metabolic islands, prophage-like islands, and prophages. These GIs may provide some strains with a competitive advantage in the environment and/or in the host relative to other strains. Results Here we present the results of analysis of 37 prophages, putative prophages, and prophage-like elements from six different Burkholderia species. Five of these were spontaneously induced to form bacteriophage particles from B. pseudomallei and B. thailandensis strains and were isolated and fully sequenced; 24 were computationally predicted in sequenced Burkholderia genomes; and eight are previously characterized prophages or prophage-like elements. The results reveal numerous differences in both genome structure and gene content among elements derived from different species as well as from strains within species, due in part to the incorporation of additional DNA, or 'morons' into the prophage genomes. Implications for pathogenicity are also discussed. Lastly, RNAseq analysis of gene expression showed that many of the genes in ϕ1026b that appear to contribute to phage and lysogen fitness were expressed independently of the phage structural and replication genes. Conclusions This study provides the first estimate of the relative contribution of prophages to the vast phenotypic diversity found among the Burkholderiae.

  12. Enzymatic activity of lipase in post-metamorphic phase bullfrogs

    Directory of Open Access Journals (Sweden)

    Braga Luís Gustavo Tavares

    2006-01-01

    Full Text Available The knowledge of the digestive system of bullfrogs is an important step for the determination of their nutritional requirements throughout growth phases. With the objective of evaluating the enzymatic activity of lipase in the intestinal content of bullfrogs (Rana catesbeiana Shaw, 1802, 100 animals with median weight of 3.6 g were distributed in stalls under controlled temperature and photoperiod. The frogs, selected at the post-metamorphic phase, received commercial extruded diet ad libitum throughout the 87-day experiment. The collections of the intestinal content were performed by the desensitization of the frogs in ice and water at 0ºC and subsequent isolation of the small intestine. Determination of lipase activity was performed with a commercial enzymatic kit (Lipase-Bioclin, MG, Brazil, first measured in samples taken at day three (3.46 UI. During the initial phase the bullfrog possesses low lipase hydrolysis capacity was found, having a specific activity of 217 UI mg-1. In the subsequent period both lipase activity and specific lipase activity continuously increased. Lipase activity as a function of bullfrog weight fell after day twenty and reached 0.33 UI g-1, for frogs of medium weight (179 g. Feed for bullfrogs at the post-metamorphic phase weighing more than 10 g can have larger amounts of ingredients containg lipids, due to the increased digestive capacity of these frogs.

  13. Pancreatic Lipase Inhibitory Effects of Mangosteen Pericarps

    Directory of Open Access Journals (Sweden)

    Xinjie Lin

    2014-03-01

    Full Text Available Pancreatic lipase plays a key role in the digestion and absorption of lipids, inhibition of Pancreatic Lipase (PL is considered as a new approach to obesity treatment. The objective of the present study was to find PL inhibitors from natural food sources. Eighteen natural food products sampled from local supermarkets in Zhuhai were tested for PL inhibitory activity using a copper-soap photometric method. Among the samples tested, the crude extracts from mangosteen pericarp, lemon pulp, celery, cucumber and dry longan were found to be able to suppress the PL activity to different extents, while dry red chili, fresh green chili and dry clove exhibited a promotion effect on the PL. Shiitake mushroom, green bell pepper, lemon peel and spices (ginger, oregano leaf, bay leaf, cinnamon and dry tangerine showed no significant influence either on the inhibition or promotion. The crude extract of mangosteen pericarp was further fractioned to trace active fractions. It was found that the n-butanol fraction was the major contributor to the PL-inhibitory effect of mangosteen pericarp and the inhibition rate was 43.9% at the concentration of 1 mg/mL, the IC50 value was 0.918 mg/mL. Mangosteen pericarp is worthy of utilization as functional food constituents for the prevention and treatment of obesity.

  14. A Newly Isolated Thermostable Lipase from Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Abu Bakar Salleh

    2011-05-01

    Full Text Available A thermophilic lipolytic bacterium identified as Bacillus sp. L2 via 16S rDNA was previously isolated from a hot spring in Perak, Malaysia. Bacillus sp. L2 was confirmed to be in Group 5 of bacterial classification, a phylogenically and phenotypically coherent group of thermophilic bacilli displaying very high similarity among their 16S rRNA sequences (98.5–99.2%. Polymerase chain reaction (PCR cloning of L2 lipase gene was conducted by using five different primers. Sequence analysis of the L2 lipase gene revealed an open reading frame (ORF of 1251 bp that codes for 417 amino acids. The signal peptides consist of 28 amino acids. The mature protein is made of 388 amino acid residues. Recombinant lipase was successfully overexpressed with a 178-fold increase in activity compared to crude native L2 lipase. The recombinant L2 lipase (43.2 kDa was purified to homogeneity in a single chromatography step. The purified lipase was found to be reactive at a temperature range of 55–80 °C and at a pH of 6–10. The L2 lipase had a melting temperature (Tm of 59.04 °C when analyzed by circular dichroism (CD spectroscopy studies. The optimum activity was found to be at 70 °C and pH 9. Lipase L2 was strongly inhibited by ethylenediaminetetraacetic acid (EDTA (100%, whereas phenylmethylsulfonyl fluoride (PMSF, pepstatin-A, 2-mercaptoethanol and dithiothreitol (DTT inhibited the enzyme by over 40%. The CD spectra of secondary structure analysis showed that the L2 lipase structure contained 38.6% α-helices, 2.2% ß-strands, 23.6% turns and 35.6% random conformations.

  15. Endothelial and lipoprotein lipases in human and mouse placenta

    DEFF Research Database (Denmark)

    Lindegaard, Marie Louise Skakkebæk; Olivecrona, Gunilla; Christoffersen, Christina;

    2005-01-01

    protein associated with both cell types. In mouse placentas, lack of LPL expression resulted in increased EL mRNA expression. These results suggest that the cellular expression of EL and LPL in human placenta is different. Nevertheless, the two lipases might have overlapping functions in the mouse......Placenta expresses various lipase activities. However, a detailed characterization of the involved genes and proteins is lacking. In this study, we compared the expression of endothelial lipase (EL) and LPL in human term placenta. When placental protein extracts were separated by heparin...... placenta. Our data also suggest that the major portions of both proteins are stored in an inactive form in human term placenta....

  16. Gamma-irradiation sterilization of lipases for cheese making

    International Nuclear Information System (INIS)

    The possibility of sterilizing the enzyme compounds of lipases from Oospora fragrans strains by gamma irradiation was studied. The enzyme compounds were exposed to gamma irradiation at the doses from 0.1 to 0.8 Mrad with the discreteness of 0.1 Mrad and at the dose of 2.0 Mrad. After the radiation treatment the lipases were investigated for bacterial invasion by the cultivation method and for the lipolytic activity by the titrometrical method. It is shown that the sterilization effect is achieved without losses of lipase activity and the radiation dose necessary for sterilization depends on initial invasion levels in the enzyme compounds

  17. Stability of Surfactant—coated Candida Rugosa Lipase in Isooctane

    Institute of Scientific and Technical Information of China (English)

    宋宝东; 邢爱华; 吴金川; 王世昌

    2003-01-01

    The stability of Candida rugosa lipase coated with glutamic acid didodecyl ester ribitol amide was investigated taking esterification of lauryl alcohol and lauric acid in isooctane as a model reaction.At 30℃,the half-life of the activity of the coated lipase was ca 10h,the enzyme activity became less changed after 12h and the residual activity was 39% of the initial value ,The coated lipase obeyed a first-order deactivation model with a deactivation energy of 29.9 J.mol-1.

  18. Acute Pancreatitis with Normal Serum Lipase: A Case Series

    Directory of Open Access Journals (Sweden)

    Anish M Shah

    2010-07-01

    Full Text Available Context Acute pancreatitis is diagnosed on the basis of clinical features, biochemical tests and imaging studies. Normal serum amylase level has been reported in the setting of acute pancreatitis but normal serum lipase level in acute pancreatitis is extremely rare. Case report Herein, we present a case series of acute pancreatitis with normal serum lipase levels along with a review of the topic. Conclusion In appropriate clinical setting, the diagnosis of acute pancreatitis should be entertained even with normal serum amylase and lipase levels.

  19. Mechanism of bacteriophage conversion of lipase activity in Staphylococcus aureus.

    OpenAIRE

    Lee, C Y; Iandolo, J J

    1985-01-01

    Staphylococcus aureus PS54 harbors two temperate bacteriophages and manifests no lipase activity on egg yolk agar. Curing of one of the resident prophages (L54a) restores lipase activity. To study the mechanism of bacteriophage conversion, the prophage was cured, and the gene encoding lipase activity was cloned into pBR322 in Escherichia coli on a 2.9-kilobase DNA fragment of the chromosome. The fragment was subcloned into a shuttle vector and subsequently transformed into S. aureus and Bacil...

  20. Superparamagnetic nanotraps containing MIP based mimic lipase for biotransformations uses

    International Nuclear Information System (INIS)

    The nanoparticle comprises a superparamagnetic iron oxide nanoparticle core conjugated with trimethoxylsilyl propylmethacrylate (TMSPM) and methacryloylamido serine (MASE), methacryloylamido histidine (MAH), methacryloylamido glutamic acid (MAGA) monomers, and p-nitrophenyl palmitate (p-NPP) which is a substrate of lipase as a template molecule, which enables the creation of lipase active region. The resulting hybrid superparamagnetic nanotraps are magnetically separable, highly active, and stable under harsh conditions. In this study, the advantages of high selectivity of molecular imprinting technique have used to get mimic lipase for the synthesis of methyl jasmonate and methyl oleate.

  1. Ubiquity of Putative Type III Secretion Genes among Clinical and Environmental Burkholderia pseudomallei Isolates in Northern Australia

    OpenAIRE

    Smith-Vaughan, H C; Gal, D; Lawrie, P. M.; Winstanley, C.; Sriprakash, K S; Currie, B. J.

    2003-01-01

    Horseradish peroxidase-like type III secretion (TTS1) genes were present in all 116 Northern Australian Burkholderia pseudomallei isolates tested but were not detected in other common environmental Burkholderia species. PCR of TTS1 genes may prove valuable as a diagnostic test.

  2. A Possible Link between Infection with Burkholderia Bacteria and Systemic Lupus Erythematosus Based on Epitope Mimicry

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2008-01-01

    Full Text Available We previously demonstrated that purified polyclonal and monoclonal anti-dsDNA antibodies bind a 15-mer peptide ASPVTARVLWKASHV in ELISA and Dot blot. This 15-mer peptide partial sequence ARVLWKASH shares similarity with burkholderia bacterial cytochrome B 561 partial sequence ARVLWRATH. In this study, we show that purified anti-dsDNA antibodies react with burkholderia fungorum bacterial cell lysates in Western blot. We used anti-dsDNA antibodies to make an anti-dsDNA antibodies affinity column and used this column to purify the burkholderia fungorum bacterial protein. Purified anti-dsDNA antibodies bind specifically to purified bacterial antigen and purified bacterial antigen blocked the anti-dsDNA antibodies binding to dsDNA antigen. Sera with anti-dsDNA antibodies bind specifically to purified bacterial antigen. We obtained protein partial sequence of RAGTDEGFG which is shared with burkholderia bacterial transcription regulator protein sequence. Sera with anti-dsDNA antibodies bind to RAGTDEGFG peptide better than control groups. These data support our hypothesis that the origin of anti-dsDNA antibodies in SLE may be associated with burkholderia bacterial infection.

  3. Divergent homologs of the predicted small RNA BpCand697 in Burkholderia spp.

    Science.gov (United States)

    Damiri, Nadzirah; Mohd-Padil, Hirzahida; Firdaus-Raih, Mohd

    2015-09-01

    The small RNA (sRNA) gene candidate, BpCand697 was previously reported to be unique to Burkholderia spp. and is encoded at 3' non-coding region of a putative AraC family transcription regulator gene. This study demonstrates the conservation of BpCand697 sequence across 32 Burkholderia spp. including B. pseudomallei, B. mallei, B. thailandensis and Burkholderia sp. by integrating both sequence homology and secondary structural analyses of BpCand697 within the dataset. The divergent sequence of BpCand697 was also used as a discriminatory power in clustering the dataset according to the potential virulence of Burkholderia spp., showing that B. thailandensis was clearly secluded from the virulent cluster of B. pseudomallei and B. mallei. Finally, the differential co-transcript expression of BpCand697 and its flanking gene, bpsl2391 was detected in Burkholderia pseudomallei D286 after grown under two different culture conditions using nutrient-rich and minimal media. It is hypothesized that the differential expression of BpCand697-bpsl2391 co-transcript between the two standard prepared media might correlate with nutrient availability in the culture media, suggesting that the physical co-localization of BpCand697 in B. pseudomallei D286 might be directly or indirectly involved with the transcript regulation of bpsl2391 under the selected in vitro culture conditions.

  4. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae).

    Science.gov (United States)

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-06-25

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction. PMID:27265344

  5. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico.

    Science.gov (United States)

    Estrada, Paulina; Mavingui, Patrick; Cournoyer, Benoit; Fontaine, Fanette; Balandreau, Jacques; Caballero-Mellado, Jesus

    2002-04-01

    In the frame of a survey of potentially endophytic N2-fixing Burkholderia associated with maize in Mexico, its country of origin, the soil of an indigenous maize field near Oaxaca was studied. Under laboratory conditions, plant seedlings of two ancient maize varieties were used as a trap to select endophyte candidates from the soil sample. Among the N2 fixers isolated from inside plant tissues and able to grow on PCAT medium, the most abundant isolates belonged to genus Burkholderia (API 20NE, rrs sequences). Representative isolates obtained from roots and shoots of different plants appeared identical (rrs and nifH RFLP), showing that they were closely related. In addition, their 16S rDNA sequences differed from described Burkholderia species and, phylogenetically, they constituted a separate deep-branching new lineage in genus Burkholderia. This indicated that these isolates probably constituted a new species. An inoculation experiment confirmed that these N2-fixing Burkholderia isolates could densely colonize the plant tissues of maize. More isolates of this group were subsequently obtained from field-grown maize and teosinte plants. It was hypothesized that strains of this species had developed a sort of primitive symbiosis with one of their host plants, teosinte, which persisted during the domestication of teosinte into maize. PMID:12030700

  6. Adipose Triglyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) Deficiencies Affect Expression of Lipolytic Activities in Mouse Adipose Tissues*

    OpenAIRE

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N.; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-01-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patters of brown and white adipose tissue from ATGL (−/−) and HSL (−/−) mice using differential activity-based gel electrophoresis. This method is based on activity-r...

  7. Stability of immobilized candida sp. 99-125 Lipase for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing (China); Bioengineering Department, Zhengzhou University, Zhengzhou (China); Deng, L.; Nie, K.; Wang, F.; Tan, T. [Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing (China)

    2012-12-15

    The stability of the immobilized lipase from Candida sp. 99-125 during biodiesel production was investigated. The lipase was separately incubated in the presence of various reaction components such as soybean oil, oleic acid methyl ester, n-hexane, water, methanol, and glycerol, or the lipase was stored at 60, 80, 100 and 120 C. Thereafter the residual lipase activity was determined by methanolysis reaction. The results showed that the lipase was rather stable in the reaction media, except for methanol and glycerol. The stability study performed in a reciprocal shaker indicated that enzyme desorption from the immobilized lipase mainly contributed to the lipase inactivation in the water system. So the methanol and glycerol contents should be controlled more precisely to avoid lipase inactivation, and the immobilization method should be improved with regard to lipase desorption. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction

    Directory of Open Access Journals (Sweden)

    Jingjing Sun

    2015-01-01

    Full Text Available To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification, we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12. The free lipase lost most activity (35.3% and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h. Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7% after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition.

  9. Lipase catalyzed synthesis of epoxy-fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN, Qian; LI, Zu-Yi

    2000-01-01

    Lipase catalyzed synthesis of epoxy-fatty acidas from unsaturated carboxylic acids was investigated.Under mild conditions unsaturated arboxylic acids were convcveed to peroxide,then the unsaturated peroxycarboxylic acids epoxidised the C=C bond of themselves

  10. Preparation of 3-deacetyl cephalosporins by Aspergillus niger lipase.

    Science.gov (United States)

    Carrea, G; Corcelli, A; Palmisano, G; Riva, S

    1996-12-20

    Lipase from Aspergillus niger was used for the selective hydrolysis of the 3-O-acetate of cephalosporin C to give an intermediate useful for further chemical elaborations. This lipase was purified to homogeneity and its properties compared with previously published data that present some discrepancies. The lipase proved to be very effective in catalyzing 3-O-acetate hydrolysis and versatile toward substitution on the beta-lactamic ring. In fact, as an example, two other cephalosporinic derivatives, cephalotin and cefotaxime, were efficiently deacetylated. The lipase was immobilized on Eupergit C and employed continuously in either a column or a batch reactor for 2 months without appreciable loss of activity. (c) 1996 John Wiley & Sons, Inc. PMID:18629943

  11. Normal lipase drug-induced pancreatitis: a novel finding.

    Science.gov (United States)

    Shafqet, Muhammad A; Brown, Teresa V; Sharma, Ranita

    2015-03-01

    Acute pancreatitis (AP) in the setting of a normal serum amylase has been previously reported in the literature. Serum lipase on the other hand has a negative predictive value approaching 100% and therefore is an excellent test to rule out AP in the emergency department. The occurrence of AP with a normal lipase is extremely rare and has never been reported in the setting of drug-induced pancreatitis. Thiazide diuretics have been implicated as a cause of pancreatic injury via a number of proposed mechanisms. However, all such cases have been in the setting of elevated serum amylase or lipase. We report the first case of radiographically proven hydrochlorothiazide-induced pancreatitis with a normal lipase. PMID:25227976

  12. Lipase Activity among Bacteria Isolated from Amazonian Soils.

    Science.gov (United States)

    Willerding, André Luis; de Oliveira, Luiz Antonio; Moreira, Francisco Wesen; Germano, Mariana Gomes; Chagas, Aloísio Freitas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP). A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation. PMID:22007294

  13. Lipase Activity among Bacteria Isolated from Amazonian Soils

    Directory of Open Access Journals (Sweden)

    André Luis Willerding

    2011-01-01

    Full Text Available The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41% lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C. The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP. A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation.

  14. Lipase inactivation in wheat germ by gamma irradiation

    International Nuclear Information System (INIS)

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  15. An ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Douglas R.; Staker, Bart L.; Abendroth, Jan A.; Edwards, Thomas E.; Hartley, Robert; Leonard, Jess; Kim, Hidong; Rychel, Amanda L.; Hewitt, Stephen N.; Myler, Peter J.; Stewart, Lance J. (UWASH); (Emerald)

    2011-12-07

    Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and Northern Australia. Burkholderia is responsible for melioidosis, a serious infection of the skin. The enzyme 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (PGAM) catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate, a key step in the glycolytic pathway. As such it is an extensively studied enzyme and X-ray crystal structures of PGAM enzymes from multiple species have been elucidated. Vanadate is a phosphate mimic that is a powerful tool for studying enzymatic mechanisms in phosphoryl-transfer enzymes such as phosphoglycerate mutase. However, to date no X-ray crystal structures of phosphoglycerate mutase have been solved with vanadate acting as a substrate mimic. Here, two vanadate complexes together with an ensemble of substrate and fragment-bound structures that provide a comprehensive picture of the function of the Burkholderia enzyme are reported.

  16. [Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains].

    Science.gov (United States)

    Izmalkova, T Yu; Sazonova, O I; Kosheleva, I A; Boronin, A M

    2013-06-01

    The genetic systems responsible for naphthalene and phenanthrene catabolism have been analyzed in the five strains of Burkholderia sp. isolated from soil samples (West Siberia) contaminated by heavy residual fuel oil and in the strain Burkholderia sp. BS3702 from the laboratory collection isolated from soil samples of the coke gas works (Vidnoe, Moscow oblast). The results of this work demonstrate that naphthalene and phenanthrene degradation in the above strains is encoded by the sequences not homologous to the classical nah genes of pseudomonades. In the Burkholderia sp. BS3702 strain, the initial stages of phenanthrene degradation and the subsequent stages of salicylate degradation are controlled by the sequences of different evolutionary origins (phn and nag genes). PMID:24450193

  17. KINETICS OF HYDROLYSIS OF TRIBUTYRIN BY LIPASE

    Directory of Open Access Journals (Sweden)

    SULAIMAN AL-ZUHAIR

    2006-06-01

    Full Text Available Kinetics of the enzymatic hydrolysis of tributyrin using lipase has been investigated. The initial rate of reaction was determined experimentally at different substrate concentration by measuring the rate of butyric acid produced. Michaels-Menten kinetic model has been proposed to predict the initial rate of hydrolysis of tributyrin in micro-emulsion system. The kinetic parameters were estimated by fitting the data to the model using three methods, namely, the Lineweaver-Burk, Edie-Hofstee and Hanes methods. The Michaels-Menten model with the constant predicted by Edie-Hofstee and Hanes methods predicted the initial rate of reaction at various substrate concentrations better than the model with the constant predicted Lineweaver-Burk method, especially at high substrate concentrations.

  18. Applications of immobilized Thermomyces lanuginosa lipase in interesterification

    DEFF Research Database (Denmark)

    Yang, Tiankui; Fruekilde, Maj-Britt; Xu, Xuebing

    2003-01-01

    new immobilized T. lanuginosa lipase was used to produce HMFS from PPP by interesterification with EE. The optimization of major parameters was conducted with the assistance of RSM. The optimal conditions generated were a substrate molar ratio of 5 (EE/PPP), a lipase load of 20 wt% (on substrates......), and a reaction time of 20 h, with acyl incorporation up to 42%. The model generated significantly represented real relationships between the response (incorporation) and reaction parameters....

  19. Burkholderia pseudomallei: First case of melioidosis in Portugal.

    Science.gov (United States)

    Pelerito, Ana; Nunes, Alexandra; Coelho, Susana; Piedade, Cátia; Paixão, Paulo; Cordeiro, Rita; Sampaio, Daniel; Vieira, Luís; Gomes, João Paulo; Núncio, Sofia

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacillus and the causative agent of melioidosis, a serious infection associated with high mortality rate in humans. It can be naturally found as an environmental saprophyte in soil or stagnant water, and rice paddies that predominate in regions of endemicity such as Northeast Thailand. B. pseudomallei is a Biosafety Level 3 organism due to risks of aerosolization and severe disease and is now included in formal emergency preparedness plans and guidelines issued by various authorities in the United States and Europe. Here, we report the first case of imported melioidosis in Portugal. B. pseudomallei was isolated from the patient's blood as well as from a left gluteal abscess pus. The isolate strain showed the unusual resistance profile to first-line eradication therapy trimethroprim/sulfamethoxazole. Whole genome sequencing revealed its similarity with isolates from Southeast Asia, suggesting the Thai origin of this Portuguese isolate, which is in agreement with a recent patient's travel to Thailand. PMID:26962474

  20. Burkholderia pseudomallei: First case of melioidosis in Portugal

    Directory of Open Access Journals (Sweden)

    Ana Pelerito

    2016-01-01

    Full Text Available Burkholderia pseudomallei is a Gram-negative bacillus and the causative agent of melioidosis, a serious infection associated with high mortality rate in humans. It can be naturally found as an environmental saprophyte in soil or stagnant water, and rice paddies that predominate in regions of endemicity such as Northeast Thailand. B. pseudomallei is a Biosafety Level 3 organism due to risks of aerosolization and severe disease and is now included in formal emergency preparedness plans and guidelines issued by various authorities in the United States and Europe. Here, we report the first case of imported melioidosis in Portugal. B. pseudomallei was isolated from the patient's blood as well as from a left gluteal abscess pus. The isolate strain showed the unusual resistance profile to first-line eradication therapy trimethroprim/sulfamethoxazole. Whole genome sequencing revealed its similarity with isolates from Southeast Asia, suggesting the Thai origin of this Portuguese isolate, which is in agreement with a recent patient's travel to Thailand.

  1. Burkholderia pseudomallei induces IL-23 production in primary human monocytes.

    Science.gov (United States)

    Kulsantiwong, Panthong; Pudla, Matsayapan; Boondit, Jitrada; Wikraiphat, Chanthiwa; Dunachie, Susanna J; Chantratita, Narisara; Utaisincharoen, Pongsak

    2016-06-01

    Burkholderia pseudomallei, a gram-negative intracellular bacterium, is a causative agent of melioidosis. The bacterium has been shown to induce the innate immune response, particularly pro-inflammatory cytokine production in several of both mouse and human cell types. In the present study, we investigate host immune response in B. pseudomallei-infected primary human monocytes. We discover that wild-type B. pseudomallei is able to survive and multiply inside the primary human monocytes. In contrast, B. pseudomallei LPS mutant, a less virulent strain, is susceptible to host killing during bacterial infection. Moreover, microarray result showed that wild-type B. pseudomallei but not B. pseudomallei LPS mutant is able to activate gene expression of IL-23 as demonstrated by the up-regulation of p19 and p40 subunit expression. Consistent with gene expression analysis, the secretion of IL-23 analyzed by ELISA also showed that wild-type B. pseudomallei induces a significantly higher level of IL-23 secretion than that of B. pseudomallei LPS mutant. These results implied that IL-23 may be an important cytokine for the innate immune response during B. pseudomallei infection. The regulation of IL-23 production may drive the different host innate immune responses between patients and may relate to the severity of melioidosis. PMID:26563410

  2. Burkholderia Pseudomallei Causing Bone and Joint Infections: A Clinical Update.

    Science.gov (United States)

    Raja, Nadeem Sajjad; Scarsbrook, Christine

    2016-03-01

    Burkholderia pseudomallei (B. pseudomallei), a causative agent of an emerging infectious disease melioidosis, is endemic in the tropical regions of the world. Due to increased international travel, the infection is now also seen outside of the tropics. The majority of patients with identified risk factors such as diabetes mellitus, heavy alcohol use, malignancy, chronic lung and kidney disease, corticosteroid use, thalassemia, rheumatic heart disease, systemic lupus erythematosus and cardiac failure acquire this organism through percutaneous inoculation or inhalation. The clinical manifestations are variable, ranging from localized abscess formation to septicemia. Melioidotic bone and joint infections are rarely reported but are an established entity. The knee joint is the most commonly affected joint in melioidosis, followed by the ankle, hip and shoulder joints. Melioidosis should be in the differential diagnosis of bone and joint infections in residents or returning travelers from the endemic area. Melioidosis diagnosis is missed in many parts of the world due to the lack of awareness of this infection and limited laboratory training and diagnostic techniques. It also mimics other diseases such as tuberculosis. Delay in the diagnosis, or the initiation of appropriate and effective treatment against melioidosis, could worsen the outcome. Initial therapy with ceftazidime, or carbapenem with or without cotrimoxazole is recommended, followed by the oral eradication therapy (based on the antimicrobial susceptibility) with amoxicillin/clavulanic acid or cotrimoxazole. Surgical intervention remains important. This paper reviews current literature on the epidemiology, clinical features, diagnosis, and management of melioidotic bone and joint infections. PMID:26728713

  3. Methods for genetic manipulation of Burkholderia gladioli pathovar cocovenenans

    Directory of Open Access Journals (Sweden)

    Karkhoff-Schweizer RoxAnn R

    2010-11-01

    Full Text Available Abstract Background Burkholderia gladioli pathovar cocovenenans (BGC is responsible for sporadic food-poisoning outbreaks with high morbidity and mortality in Asian countries. Little is known about the regulation of virulence factor and toxin production in BGC, and studies in this bacterium have been hampered by lack of genetic tools. Findings Establishment of a comprehensive antibiotic susceptibility profile showed that BGC strain ATCC33664 is susceptible to a number of antibiotics including aminoglycosides, carbapenems, fluoroquinolones, tetracyclines and trimethoprim. In this study, we established that gentamicin, kanamycin and trimethoprim are good selection markers for use in BGC. Using a 10 min method for preparation of electrocompetent cells, the bacterium could be transformed by electroporation at high frequencies with replicative plasmids containing the pRO1600-derived origin of replication. These plasmids exhibited a copy number of > 100 in BGC. When co-conjugated with a transposase expressing helper plasmid, mini-Tn7 vectors inserted site- and orientation-specifically at a single glmS-associated insertion site in the BGC genome. Lastly, a Himar1 transposon was used for random transposon mutagenesis of BGC. Conclusions A series of genetic tools previously developed for other Gram-negative bacteria was adapted for use in BGC. These tools now facilitate genetic studies of this pathogen and allow establishment of toxin biosynthetic pathways and their genetic regulation.

  4. Molecular Characterization of Putative Virulence Determinants in Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Suat Moi Puah

    2014-01-01

    Full Text Available The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P=0.049 at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.

  5. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Tiffany M. Mott

    2013-05-01

    Full Text Available Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.

  6. Immobilization of Candida cylindracea lipase on PVC, chitin and agarose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.C.; Shaw, J.F.

    1987-01-01

    Candida cylindracea lipase was covalently coupled to PVC, chitin and agarose, which are abundant in Taiwan by several different methods. The agarose-dodecylene-diamine-glutaraldehyde (A-DDA-GA) system showed the highest relative loading enzyme activity, 118 mg soluble lipase per gram support. The chitosan-carbodiimide glutaraldehyde (CN-EDC-GA) systems immobilized 67 mg soluble lipase per gram support. The optimal pH of immobilized lipase was 8.5, which was one pH unit higher than that of soluble lipase. The optimal temperatures were in the range between 52-64/sup 0/C. The CN-EDC-GA system was the highest (64/sup 0/C), which was 27/sup 0/C higher than soluble lipase. The CH-EDC-GA system also had the best thermal stability (the half life at 55/sup 0/C was 29 h.) and operational stability at higher temperature (the half life at 40/sup 0/C was 495 h). However, the PVC-ethylenediamine-GA system appeared to have the best stability at lower temperature, the projected half life at 20/sup 0/C from Arrhenius plot was 31,802 h.

  7. Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes*

    OpenAIRE

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M.; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-01-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS ...

  8. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    Directory of Open Access Journals (Sweden)

    Patrícia de O. Carvalho

    2005-08-01

    Full Text Available Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL and was highly thermostable, retaining 90% and 60% activity at 50 ºC and 60 ºC after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S-active acid (ee = 6.1% and conversion value (c = 20% in the esterification of (R,S-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (R,S-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2 and commercial lipase from Candida antarctica (E = 20 were employed.

  9. Effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    International Nuclear Information System (INIS)

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased (P10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  10. Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B

    DEFF Research Database (Denmark)

    Fedosov, Sergey; Brask, Jesper; Pedersen, Anders K.;

    2013-01-01

    We have designed a kinetic model of biodiesel production using Novozym 435 (Nz435) with immobilized Candida antarctica lipase B (CALB) as a catalyst. The scheme assumed reversibility of all reaction steps and imitated phase effects by introducing various molecular species of water and methanol....... Residual enzymatic activity in biodiesel of standard quality causes increase of D above its specification level because of the reaction 2M↔D+G. Filtration or alkaline treatment of the product prior to storage resolves this problem. The optimal field of Nz435 application appears to be decrease of F, M, D...

  11. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans

    OpenAIRE

    Kost, Thomas; Stopnisek, Nejc; Agnoli, Kirsty; Eberl, Leo; Weisskopf, Laure

    2014-01-01

    Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to ...

  12. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans.

    OpenAIRE

    LaureWeisskopf; ThomasKost; NejcStopnisek

    2014-01-01

    Plant roots and shoots harbour complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e. the ability to ...

  13. Attachment of Lipase on Amino Functionalized Titania Submicrospheres via Covalent Binding

    Institute of Scientific and Technical Information of China (English)

    WU Hong; LIANG Yan-peng; SHI Jia-fu; WANG Xiao-li

    2013-01-01

    A facile and effective method for immobilized lipase was presented.The titania submicrospheres were synthesized via a modified sol-gel method followed by amino functionalization through the chelation between dopamine and titania.Lipase was covalently attached on the functionalized titania surface using glutaraldehyde as the cross linking agent.The loading ratio and relative activity of the immobilized lipase were 230 mg/g titania submicrospheres and 65%,respectively.The kinetic parameters including the Michaelis constant (Km) and the maximum reaction rate (Vmax) changed slightly after immobilization.Compared to free lipase,the immobilized lipase showed favorable pH stability,thermostability,recycling stability and storage stability.The immobilized lipase retained 90% activity after incubation at 50 ℃ for 2 h,while the free lipase retained only 60% activity.The immobilized lipase retained more than 80% activity after 8 batches.

  14. Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification.

    Science.gov (United States)

    Xie, Rong; Cui, Caixia; Chen, Biqiang; Tan, Tianwei

    2015-10-01

    The purpose of this study was to investigate the feasibility of immobilizing Yarrowia lipolytica lipase lip2 on epoxy microspheres with or without gelatin modifications. The activity of lipase immobilized on gelatin-modified supports was twofold higher than those immobilized on native supports. There was no significant difference in the Michaelis-Menten constant (K M ) between the two immobilized lipases. However, lipase immobilized on gelatin modified supports showed an approximately fourfold higher V max than lipase immobilized on native supports. Lipase immobilization on the gelatin-modified support exhibited a significantly improved operational stability in an esterification system. After it was reused for a total of 35 batches, the ester conversion of lipase immobilized on gelatin-modified and native microspheres was 83 and 60 %, respectively. Furthermore, the immobilized lipase could be stored at 4 °C for 12 months without any loss of activity. PMID:26245260

  15. Isolation and characterization of some moderately halophilic bacteria with lipase activity.

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Kazemi, A; Zarrinic, G; Morowvat, M H; Kargar, M

    2011-01-01

    Lipases are an important class of enzymes which catalyze the hydrolysis of long chain triglycerides and constitute the most prominent group ofbiocatalysts for biotechnological applications. There are a number of lipases, produced by some halophilic microorganisms. In this study, some lipase producing bacteria from Maharlu salt lake located in south of Iran were isolated. All isolates were screened for true lipase activity on plates containing olive oil. The lipase activity was measured using titrimetric methods. Among thirty three isolates, thirteen strains demonstrating orange zone around colonies under UV light, were selected for identification using the molecular methods and some morphological characteristics. The bacterium Bacillus vallismortis BCCS 007 with 3.41 +/- 0.14 U/mL lipase activity was selected as the highest lipase producing isolate. This is the first report of isolation and molecular identification of lipase producing bacteria from Maharlu lake. PMID:22073547

  16. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

    OpenAIRE

    Chen, Wen-Ming; de Faria, Sergio M.; Straliotto, Rosângela; Pitard, Rosa M.; Simões-Araùjo, Jean L.; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R; Geoffrey N Elliott; Sprent, Janet I.; J. Peter W. Young; James, Euan K.

    2005-01-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to t...

  17. Burkholderia pseudomallei is spatially distributed in soil in northeast Thailand.

    Directory of Open Access Journals (Sweden)

    Direk Limmathurotsakul

    Full Text Available BACKGROUND: Melioidosis is a frequently fatal infectious disease caused by the soil dwelling Gram-negative bacterium Burkholderia pseudomallei. Environmental sampling is important to identify geographical distribution of the organism and related risk of infection to humans and livestock. The aim of this study was to evaluate spatial distribution of B. pseudomallei in soil and consider the implications of this for soil sampling strategies. METHODS AND FINDINGS: A fixed-interval sampling strategy was used as the basis for detection and quantitation by culture of B. pseudomallei in soil in two environmental sites (disused land covered with low-lying scrub and rice field in northeast Thailand. Semivariogram and indicator semivariogram were used to evaluate the distribution of B. pseudomallei and its relationship with range between sampling points. B. pseudomallei was present on culture of 80/100 sampling points taken from the disused land and 28/100 sampling points from the rice field. The median B. pseudomallei cfu/gram from positive sampling points was 378 and 700 for the disused land and the rice field, respectively (p = 0.17. Spatial autocorrelation of B. pseudomallei was present, in that samples taken from areas adjacent to sampling points that were culture positive (negative for B. pseudomallei were also likely to be culture positive (negative, and samples taken from areas adjacent to sampling points with a high (low B. pseudomallei count were also likely to yield a high (low count. Ranges of spatial autocorrelation in quantitative B. pseudomallei count were 11.4 meters in the disused land and 7.6 meters in the rice field. CONCLUSIONS: We discuss the implications of the uneven distribution of B. pseudomallei in soil for future environmental studies, and describe a range of established geostatistical sampling approaches that would be suitable for the study of B. pseudomallei that take account of our findings.

  18. Recovery efficiencies for Burkholderia thailandensis from various aerosol sampling media

    Directory of Open Access Journals (Sweden)

    Paul eDabisch

    2012-06-01

    Full Text Available Burkholderia thailandensis is used in the laboratory as a surrogate of the more virulent B. pseudomallei. Since inhalation is believed to be a natural route of infection for B. pseudomallei, many animal studies with B. pseudomallei and B. thailandensis utilize the inhalation route of exposure. The aim of the present study was to quantify the recovery efficiency of culturable B. thailandensis from several common aerosol sampling devices to ensure that collected microorganisms could be reliably recovered post-collection. The sampling devices tested included 25-mm gelatin filters, 25-mm stainless steel disks used in Mercer cascade impactors, and two types of glass impingers. The results demonstrate that while several processing methods tested resulted in significantly lower physical recovery efficiencies than other methods, it was possible to obtain culturable recovery efficiencies for B. thailandensis and physical recovery efficiencies for 1 μm fluorescent spheres of at least 0.95 from all of the sampling media tested given an appropriate sample processing procedure. The results of the present study also demonstrated that the bubbling action of liquid media in all-glass impingers (AGIs can result in physical loss of material from the collection medium, although additional studies are needed to verify the exact mechanisms involved. Overall, the results of this study demonstrate that the collection mechanism as well as the post-collection processing method can significantly affect the recovery from and retention of culturable microorganisms in sampling media, potentially affecting the calculated airborne concentration and any subsequent estimations of risk or dose derived from such data.

  19. Less is more: Burkholderia pseudomallei and chronic melioidosis.

    Science.gov (United States)

    Nandi, Tannistha; Tan, Patrick

    2013-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. Once considered an esoteric tropical disease confined to Southeast Asia and northern Australia, research on B. pseudomallei has recently gained global prominence due to its classification as a potential bioterrorism agent by countries such as the United States and also by increasing numbers of case reports from regions where it is not endemic. An environmental bacterium typically found in soil and water, assessing the true global prevalence of melioidosis is challenged by the fact that clinical symptoms associated with B. pseudomallei infection are extremely varied and may be confused with diverse conditions such as lung cancer, tuberculosis, or Staphyloccocus aureus infection. These diagnostic challenges, coupled with lack of awareness among clinicians, have likely contributed to underdiagnosis and the high mortality rate of melioidosis, as initial treatment is often either inappropriate or delayed. Even after antibiotic treatment, relapses are frequent, and after resolution of acute symptoms, chronic melioidosis can also occur, and the symptoms can persist for months to years. In a recent article, Price et al. [mBio 4(4):e00388-13, 2013, doi:10.1128/mBio.00388-13] demonstrate how comparative genomic sequencing can reveal the repertoire of genetic changes incurred by B. pseudomallei during chronic human infection. Their results have significant clinical ramifications and highlight B. pseudomallei's ability to survive in a wide range of potential niches within hosts, through the acquisition of genetic adaptations that optimize fitness and resource utilization. PMID:24065633

  20. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  1. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia.

    Directory of Open Access Journals (Sweden)

    Silvia Bazzini

    Full Text Available Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division efflux pumps are known to be among the mediators of multidrug resistance in gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16 has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9, and a double-mutant in both efflux pumps (named D4-D9, were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4-D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.

  2. Comparative Study for Lipase Production by Using Pseudomonas Aeruginosa and Pseudomonas Fluorescens

    OpenAIRE

    Priyam Vandana; Jyotsna Kiran Peter

    2014-01-01

    Lipases occur widely in nature, but only microbial lipases are commercially significant. The present work focuses on screening and production of extracellular laccases by Pseudomonas aeruginosa and Pseudomonas fluorescens. The lipase was assayed by tirbutyrin agar plate method and the activity of the enzyme was further confirmed by titrimetric method. The uses of lipases are enormous and increasing and so there is need to screen and isolate potential species capable of producing l...

  3. Gene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase

    OpenAIRE

    Palanisamy Kanmani; Kuppamuthu Kumaresan; Jeyaseelan Aravind

    2015-01-01

    Abstract Lipases are enzymes of immense industrial relevance, and, therefore, are being intensely investigated. In an attempt to characterize lipases at molecular level from novel sources, a lipase gene from Bacillus amyloliquefaciens PS35 was cloned, heterologously expressed in Escherichia coli DH5α cells and sequenced. It showed up to 98% homology with other lipase sequences in the NCBI database. The recombinant enzyme was then purified from E. coli culture, resulting in a 19.41-fold purifi...

  4. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110

    OpenAIRE

    E Mobarak-Qamsari; R Kasra-Kermanshahi; Moosavi-nejad, Z

    2011-01-01

    Background and Objectives: Lipases are particularly important due to the fact that they specifically hydrolyze acyl glycerol, oils and greases, which is of great interest for different industrial applications.Materialst and Methods: In this study, several lipase-producing bacteria were isolated from wastewater of an oil processing plant. The strain possessing the highest lipase activity was identified both biochemically and sequencing of 16S rRNA gene. Then we increase lipase activity by impr...

  5. Isolation and Characterization of a New Thermoalkalophilic Lipase from Soil Bacteria

    OpenAIRE

    Rabbani, Mohammad; Shafiee, Fatemeh; Shayegh, Zahra; MirMohammadSadeghi, Hamid; Samsam Shariat, Ziaedin; Etemadifar, Zahra; Moazen, Fatemeh

    2015-01-01

    Lipases are diversified enzymes in their properties and substrate specificity, which make them attractive tools for various industrial applications. In this study, an alkalinethermostable lipase producing bacteria were isolated from soil of different regions of Isfahan province (Iran) and its lipase was purified by ammonium sulfate precipitation and ion exchange chromatography. To select a thermoalkalophil lipase producing bacterium, Rhodamine B and Horikoshi media were used and the strain th...

  6. Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation

    OpenAIRE

    Rodriguez, J. A.; Mateos, J.C.; Nungaray, J.; Gonzalez, V.; Bhagnagar, T.; Roussos, Sevastianos; Cordova, J.; Baratti, J

    2006-01-01

    Rhizopus homothallicus (IRD13a) was cultivated for lipase production in solid state fermentation (SSF) using sugarcane bagasse as a support and impregnated with a liquid medium. The production of an extracellular lipase from Rh. homothallicus was improved by modification of media nutrients. The nutrients that mainly influenced growth and lipase production were urea, olive oil and oligo-elements. Kinetics of growth and lipase production were carried out using the improved medium. A correlation...

  7. OPTIMASI, PRODUKSI DAN UJI AKTIVITAS ENZIM LIPASE DARI Aspergillus oryzae GALUR LOKAL

    OpenAIRE

    Seniwati Dali; AP, Pirman; Zaraswati

    2007-01-01

    Lipase (triasilgliserol hidrolase, EC.3.1.1.3) adalah enzim yang aktif mengkatalisis hidrolisis ikatan ester trigliserida antar permukaan air-lemak. Dalam kondisi tertentu, lipase juga dapat mengkatalisis reaksi sebaliknya (sintesis, reaksi esterfikasi) membentuk gliserida dari asam lemak dan gliserol. Telah dilakukan penelitian produksi enzim lipasedengan tahap-tahap riset sebagai berikut : Skreening dan identifikasi isolat jamur penghasil enzim lipase, uji aktivitas enzim lipase, optimasi p...

  8. Optimization of Extracellular Lipase Production by Penicillium chrysogenum Using Factorial Design

    OpenAIRE

    Shafei, M. S.; Mohamed, T. A.; Abd Elsalam, I. S.

    2011-01-01

    The effect of oxygen on lipase production by Penicillium chrysogenum was studied under two operating modes, controlled aeration rate tested and controlled agitation at dissolved oxygen concentration (DO) 1.00 vvm. Lipase production and cell dry weight were tested in a stirred batch fermenter 5 L. Improvement in oxygen transfer rate (OTR) either by aeration or agitation resulted in an increase in lipase production. Growth curves and lipase activities of P.chrysogenum were examined at agitation...

  9. Optimization of Immobilization Conditions of Candida antarctica Lipase Based on Response Surface Methodology

    OpenAIRE

    Liu, J.-H.; Zhang, Y.-Y; Xia, Y.-M.; Su, F

    2010-01-01

    The conditions, including mass ratio of PEG4000 to lipase, pH, and mass ratio of diatomites to lipase, for immobilization of Candida antarctica lipase with PEG non-covalent modification were optimized by means of the response surface methodology (RSM). The immobilized lipase specific activity in the reaction of transesterification was selected as the response value. A mathematical model was developed to investigate the influences of various immobilization parameters and to predict the optimum...

  10. The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62

    Science.gov (United States)

    Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...

  11. Interaction of insulin with Burkholderia pseudomallei may be caused by a preservative

    OpenAIRE

    Simpson, A; Wuthiekanun, V

    2000-01-01

    Aim—To re-examine the previously reported in vitro interaction of insulin with Burkholderia pseudomallei, in the light of a suggestion that the interaction may have resulted from the presence of the preservative m-cresol in commercial preparations.

  12. Antimicrobial Properties of an Oxidizer Produced by Burkholderia cenocepacia P525

    Science.gov (United States)

    A compound with both oxidizing properties and antibiotic properties was extracted and purified from broth cultures of Burkholderia cenocepacia strain P525. A four step purification procedure was used to increase its specific activity ~ 400 fold and to yield a HPLC- UV chromatogram containing a sing...

  13. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6.

    Science.gov (United States)

    D'haeseleer, Patrik; Johnson, Shannon L; Davenport, Karen W; Chain, Patrick S; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P; Peña, José; Branda, Steven S; El-Etr, Sahar

    2016-01-01

    Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long. PMID:27365360

  14. Burkholderia pseudomallei infection in a cystic fibrosis patient from the Caribbean: A case report

    OpenAIRE

    Dimas Mateos Corral; Allan L Coates; Yvonne CW Yau; Raymond Tellier; Mindy Glass; Jones, Steven M.; Waters, Valerie J.

    2008-01-01

    Burkholderia pseudomallei is a pathogen identified with increasing frequency in the respiratory tracts of cystic fibrosis (CF) patients from endemic areas such as Southeast Asia and northern Australia. The following report describes the first known reported case in a CF patient from the Caribbean attending a North American CF clinic.

  15. Draft Genome Sequence of Burkholderia gladioli Strain UCD-UG_CHAPALOTE (Phylum Proteobacteria)

    OpenAIRE

    Ettinger, CL; Shehata, HR; Johnston-Monje, D; Raizada, MN; Eisen, JA

    2015-01-01

    Here, we present the draft genome of Burkholderia gladioli strain UCD-UG_CHAPALOTE. This strain is an endophyte isolated from surface sterilized seeds of an ancient Mexican landrace of corn, Chapalote. The genome contains 8,527,129 bp in 109 scaffolds.

  16. Draft Genome Sequence of the Haloacid-Degrading Burkholderia caribensis Strain MBA4

    OpenAIRE

    Pan, Yanling; Kong, Ka Fai; Tsang, Jimmy S. H.

    2014-01-01

    Burkholderia caribensis MBA4 was isolated from soil for its ability to utilize 2-haloacid. An inducible haloacid operon, encoding for a dehalogenase and a permease, is mainly responsible for the biotransformation. Here, we report the draft genome sequence of this strain.

  17. Multivariate Analyses of Burkholderia species in soil: effect of crop and land use history.

    NARCIS (Netherlands)

    Salles, J.F.; Veen, van J.A.; Elsas, van J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholder

  18. Multivariate analyses of Burkholderia species in soil : Effect of crop and land use history

    NARCIS (Netherlands)

    Salles, JF; van Veen, JA; van Elsas, JD

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholder

  19. Multivariate analyses of Burkholderia species in soil: effect of crop and land use history

    NARCIS (Netherlands)

    Salles, J.F.; Van Veen, J.A.; van Elsas, J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholder

  20. Effectiveness of a Simplified Method for Isolation of Burkholderia pseudomallei from Soil

    OpenAIRE

    Limmathurotsakul, Direk; Wuthiekanun, Vanaporn; Amornchai, Premjit; Wongsuwan, Gumphol; Day, Nicholas P. J.; Peacock, Sharon J.

    2012-01-01

    Detection of environmental Burkholderia pseudomallei indicates a risk for melioidosis and is important for the development of a global risk map. We describe a simple method for detecting B. pseudomallei using direct culture of soil in enrichment broth. This gives a rate of positivity comparable to that obtained with a standard method but is cheaper and labor saving.

  1. The symbiotic role of O-antigen of Burkholderia symbiont in association with host Riptortus pedestris.

    Science.gov (United States)

    Kim, Jiyeun Kate; Park, Ha Young; Lee, Bok Luel

    2016-07-01

    Riptortus pedestris harboring Burkholderia symbiont is a useful symbiosis model to study the molecular interactions between insects and bacteria. We recently reported that the lipopolysaccharide O-antigen is absent in the Burkholderia symbionts isolated from Riptortus guts. Here, we investigated the symbiotic role of O-antigen comprehensively in the Riptortus-Burkholderia model. Firstly, Burkholderia mutant strains deficient of O-antigen biosynthesis genes were generated and confirmed for their different patterns of the lipopolysaccharide by electrophoretic analysis. The O-antigen-deficient mutant strains initially exhibited a reduction of infectivity, having significantly lower level of symbiont population at the second-instar stage. However, both the wild-type and O-antigen mutant symbionts exhibited a similar level of symbiont population from the third-instar stage, indicating that the O-antigen deficiency did not affect the bacterial persistence in the host midgut. Taken together, we showed that the lipopolysaccharide O-antigen of gut symbiont plays an exclusive role in the initial symbiotic association. PMID:26875632

  2. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6

    Science.gov (United States)

    Davenport, Karen W.; Chain, Patrick S.; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P.; Peña, José; El-Etr, Sahar

    2016-01-01

    Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long. PMID:27365360

  3. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    Science.gov (United States)

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  4. Distribution of Melioidosis Cases and Viable Burkholderia pseudomallei in Soil: Evidence for Emerging Melioidosis in Taiwan▿

    OpenAIRE

    Chen, Yao-Shen; Lin, Hsi-Hsun; Mu, Jung-Jung; Chiang, Chuen-Sheue; Chen, Chang-Hsun; Buu, Leh-Mia; Lin, Yusen E.; Chen, Ya-Lei

    2010-01-01

    A survey for the prevalence if Burkholderia pseudomallei in soil in Taiwan found that its incidence is comparable to that in other regions of the world where melioidosis is endemic. The presence of identical genetic patterns among the clinical and environmental isolates evaluated suggested a link between the pathogens present in contaminated soil and the emergence of indigenous melioidosis.

  5. Draft Genome Sequence of Burkholderia gladioli Strain UCD-UG_CHAPALOTE (Phylum Proteobacteria).

    Science.gov (United States)

    Ettinger, Cassandra L; Shehata, Hanan R; Johnston-Monje, David; Raizada, Manish N; Eisen, Jonathan A

    2015-01-01

    Here, we present the draft genome of Burkholderia gladioli strain UCD-UG_CHAPALOTE. This strain is an endophyte isolated from surface sterilized seeds of an ancient Mexican landrace of corn, Chapalote. The genome contains 8,527,129 bp in 109 scaffolds. PMID:25614570

  6. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium.

    Science.gov (United States)

    Reis, V M; Estrada-de los Santos, P; Tenorio-Salgado, S; Vogel, J; Stoffels, M; Guyon, S; Mavingui, P; Baldani, V L D; Schmid, M; Baldani, J I; Balandreau, J; Hartmann, A; Caballero-Mellado, J

    2004-11-01

    In an ecological survey of nitrogen-fixing bacteria isolated from the rhizosphere and as endophytes of sugarcane, maize and teosinte plants in Brazil, Mexico and South Africa, a new phylogenetically homogeneous group of N(2)-fixing bacteria was identified within the genus Burkholderia. This polyphasic taxonomic study included microscopic and colony morphology, API 20NE tests and growth on different culture media at different pH and temperatures, as well as carbon source assimilation tests and whole-cell protein pattern analysis. Analysis of 16S rRNA gene sequences showed 99.2-99.9 % similarity within the novel species and 97.2 % similarity to the closest related species, Burkholderia sacchari. The novel species was composed of four distinct amplified 16S rDNA restriction analysis groups. The DNA-DNA reassociation values within the novel species were greater than 70 % and less than 42 % for the closest related species, B. sacchari. Based on these results and on many phenotypic characteristics, a novel N(2)-fixing species is proposed for the genus Burkholderia, Burkholderia tropica sp. nov., with the type strain Ppe8(T) (=ATCC BAA-831(T)=LMG 22274(T)=DSM 15359(T)). B. tropica was isolated from plants grown in geographical regions with climates ranging from temperate subhumid to hot humid. PMID:15545451

  7. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp.

    Science.gov (United States)

    Ali, Shimaila; Duan, Jin; Charles, Trevor C; Glick, Bernard R

    2014-02-21

    The vast majority of plants harbor endophytic bacteria that colonize a portion of the plant's interior tissues without harming the plant. Like plant pathogens, endophytes gain entry into their plants hosts through various mechanisms. Bacterial endophytes display a broad range of symbiotic interactions with their host plants. The molecular bases of these plant-endophyte interactions are currently not fully understood. In the present study, a set of genes possibly responsible for endophytic behavior for genus Burkholderia was predicted and then compared and contrasted with a number (nine endophytes from different genera) of endophytes by comparative genome analysis. The nine endophytes included Burkholderia phytofirmans PsJN, Burkholderia spp. strain JK006, Azospirillum lipoferum 4B, Enterobacter cloacae ENHKU01, Klebsiella pneumoniae 342, Pseudomonas putida W619, Enterobacter spp. 638, Azoarcus spp. BH72, and Serratia proteamaculans 568. From the genomes of the analyzed bacterial strains, a set of bacterial genes orthologs was identified that are predicted to be involved in determining the endophytic behavior of Burkholderia spp. The genes and their possible functions were then investigated to establish a potential connection between their presence and the role they play in bacterial endophytic behavior. Nearly all of the genes identified by this bioinformatics procedure encode function previously suggested in other studies to be involved in endophytic behavior. PMID:24513137

  8. Anaerobic biodegradability of dairy wastewater pretreated with porcine pancreas lipase

    Directory of Open Access Journals (Sweden)

    Adriano Aguiar Mendes

    2010-12-01

    Full Text Available Lipids-rich wastewater was partial hydrolyzed with porcine pancreas lipase and the efficiency of the enzymatic pretreatment was verified by the comparative biodegradability tests (crude and treated wastewater. Alternatively, simultaneous run was carried out in which hydrolysis and digestion was performed in the same reactor. Wastewater from dairy industries and low cost lipase preparation at two concentrations (0.05 and 0.5% w.v-1 were used. All the samples pretreated with enzyme showed a positive effect on organic matter removal (Chemical Oxygen Demand-COD and formation of methane. The best results were obtained when hydrolysis and biodegradation were performed simultaneously, attaining high COD and color removal independent of the lipase concentration. The enzymatic treatment considerably improved the anaerobic operational conditions and the effluent quality (lower content of suspended solids and less turbidity. Thus, the use of enzymes such as lipase seemed to be a very promising alternative for treating the wastewaters having high fat and grease contents, such as those from the dairy industry.O presente trabalho teve como objetivo o pré-tratamento de efluente da indústria de laticínios na hidrólise de lipídeos, empregando lipase de fonte de células animais de baixo custo disponível comercialmente (pâncreas de porco na formação de gás metano por biodegradabilidade anaeróbia empregando diferentes concentrações de lipase (0,05 e 0,5 % w.v-1. A utilização de lipase no pré-tratamento do efluente acelerou a hidrólise de lipídeos e, conseqüentemente, auxiliou o tratamento biológico resultando na redução da matéria orgânica em termos de Demanda Química de Oxigênio (DQO, cor e sólidos em suspensão como lipídeos. Os melhores resultados em termos de remoção de DQO e cor foram obtidos quando a hidrólise e biodigestão foram realizadas simultaneamente, independente da concentração de lipase empregada. Estes resultados

  9. Psychrotrophic lipase producers from Arctic soil and sediment samples.

    Science.gov (United States)

    Rasol, R; Rashidah, A R; Nazuha, R Siti Nur; Smykla, J; Maznah, W O Wan; Alias, S A

    2014-01-01

    Culturable microorganisms were successfully isolated from soil and sediment samples collected in 2011 on the northern coast of Hornsund, West Spitsbergen. A total of 63 single colony isolates from three sampling sites obtained were subjected to temperature dependence study to assess whether they are obligate psychrophilic or psychrotrophic strains. From initial temperature screening, only 53 psychrotrophic isolates were selected that are capable of growing between 4-28 degrees C. The rest that were capable of tolerating higher temperatures up to 37 degrees C were not included in this study. These isolates were chosen for lipase enzyme screening confirmation with the standard plate assay of olive oil and fluorescent dye Rhodamine B. Six lipase positive isolates were also subjected for subsequent lipase enzyme plate screening on tributyrin, triolein, olive oil and palm oil agar. Lipase production by these six isolates was further assayed by using colorimetric method with palm oil and olive oil as the substrate. These isolates with promising lipase activity ranging from 20 U/ml up to 160 U/ml on palm oil and olive oil substrate were successfully identified. Molecular identification by using 16S rRNA revealed that five out of six isolates were Gram-negative Proteobacteria and the other one was a Gram-positive Actinobacteria. PMID:25033666

  10. Surface adhesion fermentation for lipase production by Mucor griseocyanus

    Directory of Open Access Journals (Sweden)

    K. Cruz-Aldaco

    2014-01-01

    Full Text Available The lipase production by Mucor griseocyanus was evaluated using surface adhesion fermentation. Plastic particles, covered with fungal biomass, were produced in the first experimental step. Erlenmeyer flasks (250 ml were used with whey as culture medium, polystyrene foam as support for fungal growth, and olive oil as inducer for lipase activity. Kinetics were monitored during 72 h of culture time. In a second experimental step, an airlift bioreactor was packed with the plastic particles covered with fungal biofilm and used for production of lipases in batch conditions employing whey supplemented with olive oil. Evaluation of operational conditions indicated that the maximum level of activity was obtained at 60 C and at pH 6.0. It was demonstrated that the fungus grown by adhesion on plastic particles produced the highest activity level (133 U L-1 at 60 h, however, fungal biofilms obtained at 72 h of surface adhesion fermentation had a lipolytic activity at 94 U L-1. For this reason, under these culture conditions, the fungal particles were produced and then packed into the airlift bioreactor where the lipase activity was enhanced. Two sequential batches were evaluated using the same particles of polystyrene foam covered by fungal biomass. The fungal covered particles can be used and reused to produce lipases.

  11. Effect of fermentation conditions on lipase production by Candida utilis

    Directory of Open Access Journals (Sweden)

    SANJA Z. GRBAVCIC

    2007-08-01

    Full Text Available A wild yeast strain isolated from spoiled soybean oil and identified as Candida utilis initially presented rather low lipase activity (approximately 4 IU dm-3 in submerged culture in a universal yeast medium containing 2 % malt extract. Stu­dies were undertaken to improve the lipase production. The best yields of lipase were obtained with a medium supplemented with caprylic and oleic acids as indu­cers, but higher concentrations of the former (> 0.5 % had a negative effect on the lipase production and cell growth. The type of nitrogen source seemed also to be very important. The highest lipolytic activity of 284 IU dm-3 was achieved after 5 days of fermentation in a medium containing oleic acid and hydrolyzed casein as carbon and nitrogen sources, respectively, and supplemented with Tween 80®. It was shown that optimization of the fermentation conditions can lead to a significant improvement in the lipase production (more than 70-fold higher compared to the initial value obtained in the non-optimized medium.

  12. Influence of dietary recombinant microbial lipase on performance and quality characteristics of rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Samuelsen, Troels; Isaksen, Mai; McLean, Ewen

    In order to assess whether supplementary lipase affected growth and body composition of trout, four diets were produced, consisting of (A) feed containing high (2083 mg kg(-1)), (B) low (208.3 mg kg(-1)) concentrations of lipase, (C) heat-treated (inactivated) lipase (2083 mg kg(-1)), and (D) a b...... Elsevier Science B.V. All rights reserved....

  13. Cloning and characterization of a salivary digestive lipase from Hessian fly (Diptera: Cecidomyiidae)

    Science.gov (United States)

    Secreted digestive lipases have been reported to be virulence factors in fungal pathogens. Here, we report the identification of a putative secreted digestive lipase from larval Hessian fly. Analysis by quantitative real-time PCR of temporal and spatial mRNA levels indicates the lipase is expresse...

  14. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Science.gov (United States)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  15. Estolides Synthesis Catalyzed by Immobilized Lipases

    Science.gov (United States)

    Aguieiras, Erika C. G.; Veloso, Cláudia O.; Bevilaqua, Juliana V.; Rosas, Danielle O.; da Silva, Mônica A. P.; Langone, Marta A. P.

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  16. Structure of the human lipoprotein lipase gene

    International Nuclear Information System (INIS)

    Human genomic clones that span the entire lipoprotein lipase (LPL) gene have been isolated and used to determine its structure. The gene is approximately 30 kilobase (kb) pairs in length in which the mRNA specifying sequence is divided into 10 exons. Exons 1-9 are of average size (105-276 bp) whereas exon 10, which specifies the entire 3' uncoding sequence, is 1,948 bp in length. Exon 1 codes for the signal peptide, exon 2 includes the protein domain that was shown to bind to the lipoprotein substrate, and exons 6 and 9 code for sequences that are relatively rich in basic amino acids and therefore likely to be involved in anchoring of the enzyme to the capillary endothelium by interaction with the acidic domain of heparan sulfate. Four closely spaced mRNA 5' termini were observed, indicating multiple transcription initiation sites, one of which seems to be favored. Two potential enhancer sequence motifs in the 5' upstream region were observed. One may specify expression in response to intracellular Ca2+ mobilization, and the other may be responsible for expression in adipocytes

  17. Estolides Synthesis Catalyzed by Immobilized Lipases

    Directory of Open Access Journals (Sweden)

    Erika C. G. Aguieiras

    2011-01-01

    Full Text Available Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil, using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C, viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C, and viscosity index (153.

  18. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    International Nuclear Information System (INIS)

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans

  19. Synthesis of Wax Esters by Lipase-catalyzed Esterification with Immobilized Lipase from Candida sp. 99-125

    Institute of Scientific and Technical Information of China (English)

    邓利; 王晓静; 聂开立; 王芳; 刘军峰; 王璞; 谭天伟

    2011-01-01

    Wax esters were synthesized in a solvent free system catalyzed by immobilized lipase from Candida sp. 99-125, with oleic acid and cetyl alcohol. The effects of substrate molar ratio, lipase dosage and water removal were investigated in a 50 ml flask incubated in a thermostatic cultivation cabinet. The optimized conditions were: temperature 40 ℃, shaking at 170 r·min-1, acid/alcohol molar ratio 1:0.9, lipase dosage in 10% (by mass) of oleic acid, and open reaction for water removal. As a result, the conversion rate reached 98% for reaction of 8 h. The volume of reactor was scaled up to 1 L three-neck flask. The optimized parameters were: 200 r·min-1 agitation speed, 2.5% (by mass) lipase dosage, others were the same as the parameters described above. The conversion rate reached 95% for reaction of 24 h. The lipase retained 46% conversion rate after reuse for 6, 7 batches. The products were purified by removing remained cetyl alcohol and fatty acids with ethanol and saturated sodium carbonate so-lution, respectively. The purity of the wax ester, cetyl oleate, was 96%. The physical and chemical properties of cetyl oleate were tested and compared with those of jojoba oil. The results show that the product cetyl oleate has great potential to use as the substitute of natural jojoba oil.

  20. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.