WorldWideScience

Sample records for burkholderia cepacia lipase

  1. Hierarchical ZIF-8 toward Immobilizing Burkholderia cepacia Lipase for Application in Biodiesel Preparation

    Directory of Open Access Journals (Sweden)

    Miaad Adnan

    2018-05-01

    Full Text Available A hierarchical mesoporous zeolitic imidazolate framework (ZIF-8 was processed based on cetyltrimethylammonium bromide (CTAB as a morphological regulating agent and amino acid (l-histidine as assisting template agent. Burkholderia cepacia lipase (BCL was successfully immobilized by ZIF-8 as the carrier via an adsorption method (BCL-ZIF-8. The immobilized lipase (BCL showed utmost activity recovery up to 1279%, a 12-fold boost in its free counterpart. BCL-ZIF-8 was used as a biocatalyst in the transesterification reaction for the production of biodiesel with 93.4% yield. There was no significant lowering of conversion yield relative to original activity for BCL-ZIF-8 when continuously reused for eight cycles. This work provides a new outlook for biotechnological importance by immobilizing lipase on the hybrid catalyst (ZIF-8 and opens the door for its uses in the industrial field.

  2. MOLECULAR DYNAMICS SIMULATION OF KINETIC RESOLUTION OF RACEMIC ALCOHOL USING BURKHOLDERIA CEPACIA LIPASE IN ORGANIC SOLVENTS

    Directory of Open Access Journals (Sweden)

    A. C. Mathpati

    2018-03-01

    Full Text Available Lipases, a subclass of hydrolases, have gained a lot of importance as they can catalyze esterification, transesterification and hydrolysis reaction in non-aqueous media. Lipases are also widely used for kinetic resolution of racemic alcohols into enantiopure compounds. The lipase activity is affected by organic solvents due to changes in the conformational rigidity of enzymes, the active site, or altering the solvation of the transition state. The activity of lipases strongly depends on the logP value of solvents. Molecular dynamics (MD can help to understand the effect of solvents on lipase conformation as well as protein-ligand complex. In this work, MD simulations of Burkholderia cepacia lipase (BCL and complex between R and S conformation of acetylated form of 1-phenylethanol with BCL using gromacs have been carried in various organic solvents. The RMSD values were within the range of 0.15 to 0.20 nm and radius of gyration was found to be with 1.65 to 1.9 nm. Major changes in the B factor compared to reference structure were observed between residues 60 to 80, 120 to 150 and 240 to 260. Higher unfolding was observed in toluene and diethyl ether compared to hexane and acetonitrile. R acetylated complex was found to favorably bind BCL compared to S form. The predicted enantioselectivity were in good agreement with the experimental data.

  3. Extraction of lipase from Burkholderia cepacia by PEG/Phosphate ATPS and its biochemical characterization

    Directory of Open Access Journals (Sweden)

    Giovana da Silva Padilha

    2012-02-01

    Full Text Available This work aimed to study the partitioning of a lipase produced by Burkholderia cepacia in PEG/Phosphate aqueous two phase system (ATPS and its characterization. Lipase was produced by B. cepacia strains in a fermenter. Enzyme partitioning occurred at pH 6.0 and 8.0, using PEG 1500 and 6000 on two tie lines. Metal ions, pH and temperature effects on enzyme activity were evaluated. Five milliliter of 7.5% olive oil emulsion with 2.5% gumarabic in 0.1M sodium phosphate buffer at pH 8.0 and 37ºC were used for the activity determinations. Results showed that crude stratum from B. cepacia was partitioned by PEG1500/phosphate ATPS at pH 6.0 or 8.0 for, which the partitioning coefficients were 108-and 209-folds. Lipase presented optimal activity conditions at 37ºC and pH 8.0; it showed pH-stability for 4 h of incubation at different pH values at 37ºC. Metal ions such as Mn2+ , Co2+, I-and Ca2+ sustained enzymatic activities; however, it was inhibited by the presence of Fe2+, Hg2+ and Al3+ . Km and Vmax values were 0.258 U/mg and 43.90 g/L, respectively. A molecular weight of 33 kDa and an isoelectric point at pH 5.0 were determined by SDS-PAGE and IFS electrophoresis, respectively.

  4. Integration process of fermentation and liquid biphasic flotation for lipase separation from Burkholderia cepacia.

    Science.gov (United States)

    Sankaran, Revathy; Show, Pau Loke; Lee, Sze Ying; Yap, Yee Jiun; Ling, Tau Chuan

    2018-02-01

    Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optimization of olive oil hydrolysis process using immobilized Lipase from Burkholderia cepacia sp. in Polyurethane

    Directory of Open Access Journals (Sweden)

    Nádia Ligianara Dewes Nyari

    2017-09-01

    Full Text Available The aim of this study was to achieve the best conditions for the  olive oil hydrolysis process at optimal pH and temperature using Burkholderia cepacia lipase immobilized in situ in rigid polyurethane support. The influences of the temperature (13.85 to 56.5ºC and pH (4.18 to 9.82 were evaluated by a central composite rotational experimental design 22. The operational stability and storage conditions were also studied. The olive oil hydrolysis process was optimized in pH 7.0, at 40°C and 15 min of reaction, with 66 and 93 U g-1 of hydrolysis activity in free and immobilized lipase, respectively, with > 700% yield. The immobilized remained stable for up to 40 days of storage at temperatures of 60oC, and for 100 days from 4 to 25°C. The operational stability of the immobilized was 6 continuous cycles. In this way, immobilization showed to be a promising alternative for its application in olive oil hydrolysis, having storage stability and reuse capability.

  6. Immobilized Burkholderia cepacia Lipase on pH-Responsive Pullulan Derivatives with Improved Enantioselectivity in Chiral Resolution

    Directory of Open Access Journals (Sweden)

    Li Xu

    2018-01-01

    Full Text Available A kind of pH-responsive particle was synthesized using modified pullulan polysaccharide. The synthesized particle possessed a series of merits, such as good dispersity, chemical stability and variability of particle size, making it a suitable carrier for enzyme immobilization. Then, Burkholderia cepacia lipase (BCL, a promising biocatalyst in transesterification reaction, was immobilized on the synthesized particle. The highest catalytic activity and immobilization efficiency were achieved at pH 6.5 because the particle size was obviously enlarged and correspondingly the adsorption surface for BCL was significantly increased. The immobilization enzyme loading was further optimized, and the derivative lipase was applied in chiral resolution. Under the optimal reaction conditions, the immobilized BCL showed a very good performance and significantly shortened the reaction equilibrium time from 30 h of the free lipase to 2 h with a conversion rate of 50.0% and ees at 99.2%. The immobilized lipase also exhibited good operational stability; after being used for 10 cycles, it still retained over 80% of its original activity. Moreover, it could keep more than 80% activity after storage for 20 days at room temperature in a dry environment. In addition, to learn the potential mechanism, the morphology of the particles and the immobilized lipase were both characterized with a scanning electron microscope and confocal laser scanning microscopy. It was found that the enlarged spherical surface of the particle in low pH values probably led to high immobilized efficiency, resulting in the improvement of enantioselectivity activity in chiral resolution.

  7. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    Science.gov (United States)

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  8. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    Science.gov (United States)

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  9. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    Directory of Open Access Journals (Sweden)

    Takahashi Ryo

    2011-10-01

    Full Text Available Abstract Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w. Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design

  10. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    Science.gov (United States)

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  11. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Burkholderia cepacia complex. 725.1075... Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined as...

  12. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose.

    Science.gov (United States)

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2014-12-26

    In the present study, we have synthesized a biocompatible hybrid carrier of hypromellose (HY) and poly(vinyl alcohol) (PVA) for immobilization of Burkholderia cepacia lipase (BCL). The immobilized biocatalyst HY:PVA:BCL was subjected to determination of half-life time (τ) and deactivation rate constant (K(D)) in various organic solvents. Biocatalyst showed higher τ-value in a nonpolar solvent like cyclohexane (822 h) as compared to that of a polar solvent such as acetone (347 h), which signifies better compatibility of biocatalyst in the nonpolar solvents. Furthermore, the K(D)-value was found to be less in cyclohexane (0.843 × 10(-3)) as compared to acetone (1.997 × 10(-3)), indicating better stability in the nonpolar solvents. Immobilized-BCL (35 mg) was sufficient to achieve 99% conversion of phenethyl butyrate (natural constituent of essential oils and has wide industrial applications) using phenethyl alcohol (2 mmol) and vinyl butyrate (6 mmol) at 44 °C in 3 h. The activation energy (E(a)) was found to be lower for immobilized-BCL than crude-BCL, indicating better catalytic efficiency of immobilized lipase BCL. The immobilized-BCL reported 6-fold superior biocatalytic activity and 8 times recyclability as compared to crude-BCL. Improved catalytic activity of immobilized enzyme in nonpolar media was also supported by thermodynamic activation parameters such as enthalpy (ΔH(⧧)), entropy (ΔS(⧧)) and Gibb's free energy (ΔG(⧧)) study, which showed that phenethyl butyrate synthesis catalyzed by immobilized-BCL was feasible as compared to crude-BCL. The present work explains a thermodynamic investigation and superior biocatalytic activity for phenethyl butyrate synthesis using biocompatible immobilized HY:PVA:BCL in nonaqueous media for the first time.

  13. Solvent dielectric effect and side chain mutation on the structural stability of Burkholderia cepacia lipase active site: a quantum mechanical/molecular mechanics study.

    Science.gov (United States)

    Tahan, A; Monajjemi, M

    2011-12-01

    Quantum mechanical and molecular dynamics methods were used to analyze the structure and stability of neutral and zwitterionic configurations of the extracted active site sequence from a Burkholderia cepacia lipase, histidyl-seryl-glutamin (His86-Ser87-Gln88) and its mutated form, histidyl-cysteyl-glutamin (His86-Cys87-Gln88) in vacuum and different solvents. The effects of solvent dielectric constant, explicit and implicit water molecules and side chain mutation on the structure and stability of this sequence in both neutral and zwitterionic forms are represented. The quantum mechanics computations represent that the relative stability of zwitterionic and neutral configurations depends on the solvent structure and its dielectric constant. Therefore, in vacuum and the considered non-polar solvents, the neutral form of the interested sequences is more stable than the zwitterionic form, while their zwitterionic form is more stable than the neutral form in the aqueous solution and the investigated polar solvents in most cases. However, on the potential energy surfaces calculated, there is a barrier to proton transfer from the positively charged ammonium group to the negatively charged carboxylat group or from the ammonium group to the adjacent carbonyl oxygen and or from side chain oxygen and sulfur to negatively charged carboxylat group. Molecular dynamics simulations (MD) were also performed by using periodic boundary conditions for the zwitterionic configuration of the hydrated molecules in a box of water molecules. The obtained results demonstrated that the presence of explicit water molecules provides the more compact structures of the studied molecules. These simulations also indicated that side chain mutation and replacement of sulfur with oxygen leads to reduction of molecular flexibility and packing.

  14. Structural basis of the chiral selectivity of Pseudomonas cepacia lipase

    NARCIS (Netherlands)

    Lang, Dietmar A.; Mannesse, Maurice L.M.; Haas, Gerard H. de; Verheij, Hubertus M.; Dijkstra, Bauke W.

    1998-01-01

    To investigate the enantioselectivity of Pseudomonas cepacia lipase, inhibition studies were performed with S(c)-and R(c)-(R(p),S(p))-1,2-dialkylcarbamoylglycero-3-O-p-nitrophenyl alkylphosphonates of different alkyl chain lengths. P. cepacia lipase was most rapidly inactivated by

  15. More than skin deep: moisturizing body milk and Burkholderia cepacia.

    Science.gov (United States)

    Irwin, Amy E; Price, Connie Savor

    2008-01-01

    Alvarez-Lerma and colleagues observed over an 18-day period that five critically ill patients admitted to a multidisciplinary 18-bed intensive care unit contracted Burkholderia cepacia from unopened containers of moisturizing body milk, calling into question the use in critical care settings of cosmetic products that do not guarantee sterilization during the manufacturing process. Is this the answer to the problem, however, or should the use of lotions in such settings be re-examined?

  16. More than skin deep: moisturizing body milk and Burkholderia cepacia

    OpenAIRE

    Irwin, Amy E; Price, Connie Savor

    2008-01-01

    Alvarez-Lerma and colleagues observed over an 18-day period that five critically ill patients admitted to a multidisciplinary 18-bed intensive care unit contracted Burkholderia cepacia from unopened containers of moisturizing body milk, calling into question the use in critical care settings of cosmetic products that do not guarantee sterilization during the manufacturing process. Is this the answer to the problem, however, or should the use of lotions in such settings be re-examined?

  17. Microbiological assessment of Burkholderia cepacia complex (Bcc ...

    African Journals Online (AJOL)

    Nancy Omar

    2014-09-18

    Sep 18, 2014 ... tum 4/35 (11.4%) and urine 1/35 (2.9%). Other studies reported higher rates of isolation of B. cepa- cia complex from specimens other than those in our study. Gales et al. (2005)3 found that out of 176 NFGNB (83/176) belonging to Burkholderia spp.: 52/83 (62.7%) were from blood, 25/83 (30.1%) were from ...

  18. A case of native valve endocarditis caused by Burkholderia cepacia without predisposing factors

    Directory of Open Access Journals (Sweden)

    Han Seong

    2011-05-01

    Full Text Available Abstract Background Infective endocarditis is rarely caused by Burkholderia cepacia. This infection is known to occur particularly in immunocompromised hosts, intravenous heroin users, and in patients with prosthetic valve replacement. Most patients with Burkholderia cepacia endocarditis usually need surgical treatment in addition to antimicrobial treatment. Case Presentation Here, we report the case of a patient who developed Burkholderia cepacia-induced native valve endocarditis with consequent cerebral involvement without any predisposing factors; she was successfully treated by antimicrobial agents only. Conclusion In this report, we also present literature review of relevant cases.

  19. Recurrent urinary tract infection by burkholderia cepacia in a live related renal transplant recipient

    International Nuclear Information System (INIS)

    Zeshan, M.

    2012-01-01

    Burkholderia cepacia is high virulent organism usually causing lower respiratory tract infections especially in Cystic fibrosis (CF) patients and post lung transplant. Urinary tract infections with Burkholderia cepacia have been associated after bladder irrigation or use of contaminated hospital objects. Post renal transplant urinary tract infection (UTI) is the most common infectious complications. Recurrent urinary tract infection with Burkholderia cepacia is a rare finding. Complete anatomical evaluation is essential in case recurrent urinary tract infections (UTI) after renal transplant. Vesico-ureteric reflux (VUR) and neurogenic urinary bladder was found to be important risk factors. (author)

  20. Characterization of integrons in Burkholderia cepacia clinical isolates

    Directory of Open Access Journals (Sweden)

    Linda Furlanis

    2010-03-01

    Full Text Available Burkholderia cepacia is an opportunistic pathogen able to colonize the airways of Cystic Fibrosis (CF patients, frequently developing chronic infections. In 20% of cases these infections cause severe and poorly controlled pathological situations because of the intrinsic antibiotic resistance expressed by the microorganism. CF patients are often subjected to antibiotic therapy: this facilitates the acquisition of antibiotic resistance determinants by the infecting bacteria. Integrons are mobile genetic elements that are widespread in bacterial populations and favor the acquisition of gene cassettes coding for these determinants.The presence of class 1 integrons was investigated by PCR with primers specific for the 5’ and 3’ ends in Burkholderia isolates recovered from patients in treatment at the CF center of Friuli Venezia Giulia. The same integron, carrying an uncommon allelic form (Ib of the aacA4 gene in its cassette array and conferring resistance to some aminoglycosides, was found in two independent isolates (different RAPD profiles infecting two different patients. In both isolates the integron was carried by plasmids and was still present 3 and 6 years later the first finding. Despite the exchange of integrons between bacterial pathogens is fully described, these items were not frequently found in Burkholderia isolates. Although the clinical relevance of the integron we identified is low (a single gene cassette encoding a widespread resistance,we feel concerned that these genetic elements begin to circulate in this bacterial species, as this could make more and more troublesome the treatment of infections notoriously difficult to eradicate.

  1. BIOAUGMENTATION WITH BURKHOLDERIA CEPACIA PR1301 FOR IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE CONTAMINATED GROUNDWATER (RESEARCH BRIEF)

    Science.gov (United States)

    A pilot field study was conducted at the Moffett Federal Airfield, Mountain View, California, to determine whether effective in-situ aerobic cometabolic biodegradation of TCE could be accomplished through bioaugmentation with a genetically modified strain of Burkholderia cepacia ...

  2. AQUIFER PROTIST RESPONSE AND THE POTENTIAL FOR TCE BIOREMEDIATION WITH BURKHOLDERIA CEPACIA G4 PR1

    Science.gov (United States)

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of the persistence and activity of microbial population for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR123 and PR131 constitutive...

  3. Activity of Tobramycin against Cystic Fibrosis Isolates of Burkholderia cepacia Complex Grown as Biofilms.

    Science.gov (United States)

    Kennedy, Sarah; Beaudoin, Trevor; Yau, Yvonne C W; Caraher, Emma; Zlosnik, James E A; Speert, David P; LiPuma, John J; Tullis, Elizabeth; Waters, Valerie

    2016-01-01

    Pulmonary infection with Burkholderia cepacia complex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on mature B. cepacia complex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin for Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness of Burkholderia dolosa biofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for all Burkholderia species. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml for B. cepacia and B. dolosa (24 h) and ≥100 μg/ml for Burkholderia cenocepacia and B. dolosa (48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of all B. cepacia complex species with the exception of B. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only for B. multivorans compared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness of B. cepacia complex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Influence of neutrophil defects on Burkholderia cepacia complex pathogenesis

    Directory of Open Access Journals (Sweden)

    Laura A. Porter

    2011-11-01

    Full Text Available The Burkholderia cepacia complex (Bcc is a group of Gram-negative bacteria that are ubiquitous in the environment and have emerged as opportunistic pathogens in immunocompromised patients. The primary patient populations infected with Bcc include individuals with cystic fibrosis (CF, as well as those with chronic granulomatous disease (CGD. While Bcc infection in CF is better characterized than in CGD, these two genetic diseases are not obviously similar and it is currently unknown if there is any commonality in host immune defects that is responsible for the susceptibility to Bcc. CF is caused by mutations in the CF transmembrane conductance regulator, resulting in manifestations in various organ systems, however the major cause of morbidity and mortality is currently due to bacterial respiratory infections. CGD, on the other hand, is a genetic disorder that is caused by defects in phagocyte NADPH oxidase. Because of the defect in CGD, phagocytes in these patients are unable to produce reactive oxygen species, which results in increased susceptibility to bacterial and fungal infections. Despite this significant defect in microbial clearance, the spectrum of pathogens frequently implicated in infections in CGD is relatively narrow and includes some bacterial species that are considered almost pathognomonic for this disorder. Very little is known about the cause of the specific susceptibility to Bcc over other potential pathogens more prevalent in the environment, and a better understanding of specific mechanisms required for bacterial virulence has become a high priority. This review will summarize both the current knowledge and future directions related to Bcc virulence in immunocompromised individuals with a focus on the roles of bacterial factors and neutrophil defects in pathogenesis.

  5. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility

    DEFF Research Database (Denmark)

    Huber, B.; Riedel, K.; Hentzer, Morten

    2001-01-01

    Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported. It is demons......Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported...

  6. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K.; Hentzer, Morten; Geisenberger, O.

    2001-01-01

    Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co- ordinate expression of virulence factors with the form...

  7. Study of the mode of action of a polygalacturonase from the phytopathogen Burkholderia cepacia

    DEFF Research Database (Denmark)

    Massa, C.; Clausen, Mads Hartvig; Stojan, J.

    2007-01-01

    We have recently isolated and heterologously expressed BcPeh28A, an endopolygalacturonase from the phytopathogenic Gram-negative bacterium Burkholderia cepacia. Endopolygalacturonases belong to glycoside hydrolase family 28 and are responsible for the hydrolysis of the non-esterified regions...

  8. NOVEL ORGANIZATION OF THE GENES FOR PHTHALATE DEGRADATION FROM BURKHOLDERIA CEPACIA DBO1

    Science.gov (United States)

    Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthala...

  9. Characterization of Burkholderia cepacia genomovar I as a potential ...

    African Journals Online (AJOL)

    From the phylogenetic tree, UPM B3 is a specific strain within B. cepacia complex species that belong to genovomar I which is associated with strains nonpathogenic to humans. Thus, B. cepacia strain UPM B3 has the potential to be used against G. boninense, the causal pathogen of basal stem rot (BSR) in oil palm.

  10. Cell-bound lipases from Burkholderia sp. ZYB002: gene sequence analysis, expression, enzymatic characterization, and 3D structural model.

    Science.gov (United States)

    Shu, Zhengyu; Lin, Hong; Shi, Shaolei; Mu, Xiangduo; Liu, Yanru; Huang, Jianzhong

    2016-05-03

    The whole-cell lipase from Burkholderia cepacia has been used as a biocatalyst in organic synthesis. However, there is no report in the literature on the component or the gene sequence of the cell-bound lipase from this species. Qualitative analysis of the cell-bound lipase would help to illuminate the regulation mechanism of gene expression and further improve the yield of the cell-bound lipase by gene engineering. Three predictive cell-bound lipases, lipA, lipC21 and lipC24, from Burkholderia sp. ZYB002 were cloned and expressed in E. coli. Both LipA and LipC24 displayed the lipase activity. LipC24 was a novel mesophilic enzyme and displayed preference for medium-chain-length acyl groups (C10-C14). The 3D structural model of LipC24 revealed the open Y-type active site. LipA displayed 96 % amino acid sequence identity with the known extracellular lipase. lipA-inactivation and lipC24-inactivation decreased the total cell-bound lipase activity of Burkholderia sp. ZYB002 by 42 % and 14 %, respectively. The cell-bound lipase activity from Burkholderia sp. ZYB002 originated from a multi-enzyme mixture with LipA as the main component. LipC24 was a novel lipase and displayed different enzymatic characteristics and structural model with LipA. Besides LipA and LipC24, other type of the cell-bound lipases (or esterases) should exist.

  11. The Burkholderia cepacia rpoE gene is not involved in exopolysaccharide production and onion pathogenicity.

    Science.gov (United States)

    Devescovi, Giulia; Venturi, Vittorio

    2006-03-01

    Burkholderia cepacia was originally described as the causative agent of bacterial rot of onions, and it has now emerged as an important opportunistic pathogen causing severe chronic lung infections in patients having cystic fibrosis. Burkholderia cepacia is now classified into nine very closely related species (previously designated as genomovars), all of which have been isolated from both environmental and clinical sources and are collectively known as the B. cepacia complex. The alternative extracytoplasmic function sigma factor, sigmaE, has been determined in several bacterial species as making substantial contributions to bacterial survival under stress conditions. Here, we report the identification and characterization of the rpoE gene, encoding sigmaE, of B. cepacia. It is highly similar to sigmaE of other bacteria, including Escherichia coli and Pseudomonas aeruginosa. Studies using an rpoE knockout mutant of B. cepacia revealed that many stress adaptations, including osmotic, oxidative, desiccation, carbon, and nitrogen stress, were independent of sigmaE. Similarly, biofilm formation; production of exopolysaccharides, N-acyl homoserine lactones, and several exoenzymes; and onion pathogenicity were not affected by the absence of sigmaE. In contrast, sigmaE contributed to the adaptation to heat stress and phosphate starvation.

  12. Phosphorus uptake of an arbuscular mycorrhizal fungus is not effected by the biocontrol bacterium ¤Burkholderia cepacia¤

    DEFF Research Database (Denmark)

    Ravnskov, S.; Larsen, J.; Jakobsen, I.

    2002-01-01

    The biocontrol bacterium Burkholderia cepacia is known to suppress a broad range of root pathogenic fungi, while its impact on other beneficial non-target organisms such as arbuscular mycorrhizal (AM) fungi is unknown. Direct interactions between five B. cepacia strains and the AM fungus, Glomus ...

  13. Eradication of Burkholderia cepacia Using Inhaled Aztreonam Lysine in Two Patients with Bronchiectasis

    Directory of Open Access Journals (Sweden)

    A. Iglesias

    2014-01-01

    Full Text Available There are not many articles about the chronic bronchial infection/colonization in patients with underlying lung disease other than cystic fibrosis (CF, especially with non-CF bronchiectasis (NCFBQ. The prevalence of B. cepacia complex is not well known in NCFBQ. The vast majority of published clinical data on Burkholderia infection in individuals with CF is comprised of uncontrolled, anecdotal, and/or single center experiences, and no consensus has emerged regarding treatment. We present two cases diagnosed with bronchiectasis (BQ of different etiology, with early pulmonary infection by B. cepacia complex, which was eradicated with inhaled aztreonam lysine.

  14. Unusual distribution of Burkholderia cepacia complex species in Danish cystic fibrosis clinics may stem from restricted transmission between patients

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Niels; Johansen, Helle Krogh; Fenger, Mette G

    2010-01-01

    Forty-four of 48 Burkholderia cepacia complex strains cultured from Danish cystic fibrosis patients were Burkholderia multivorans, a distribution of species that has not been reported before. Although cases of cross infections were demonstrated, no major epidemic clone was found. The species...

  15. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.

    Science.gov (United States)

    Kang, Jun Won; Doty, Sharon Lafferty

    2014-07-01

    Trichloroethylene (TCE), a chlorinated organic solvent, is one of the most common and widespread groundwater contaminants worldwide. Among the group of TCE-degrading aerobic bacteria, Burkholderia cepacia G4 is the best-known representative. This strain requires the addition of specific substrates, including toluene, phenol, and benzene, to induce the enzymes to degrade TCE. However, the substrates are toxic and introducing them into the soil can result in secondary contamination. In this study, poplar leaf homogenate containing natural phenolic compounds was tested for the ability to induce the growth of and TCE degradation by B. cepacia G4. The results showed that the G4 strain could grow and degrade TCE well with the addition of phytochemicals. The poplar leaf homogenate also functioned as an inducer of the toluene-ortho-monooxygenase (TOM) gene in B. cepacia G4.

  16. Characterization of the Phthalate Permease OphD from Burkholderia cepacia ATCC 17616†

    OpenAIRE

    Chang, Hung-Kuang; Zylstra, Gerben J.

    1999-01-01

    The ophD gene, encoding a permease for phthalate transport, was cloned from Burkholderia cepacia ATCC 17616. Expression of the gene in Escherichia coli results in the ability to transport phthalate rapidly into the cell. Uptake inhibition experiments show that 4-hydroxyphthalate, 4-chlorophthalate, 4-methylphthalate, and cinchomeronate compete for the phthalate permease. An ophD knockout mutant of 17616 grows slightly more slowly on phthalate but is still able to take up phthalate at rates eq...

  17. Burkholderia cepacia infection at A university Teaching Hospital in ...

    African Journals Online (AJOL)

    Twenty five isolates of B. cepacia, representing 1.4% of all isolates, were obtained at the Microbiology Laboratory of a University Teaching Hospital in Lagos between January 1996 and December 1997. Identification of isolates was done using analytical profile index systems (Biomerieux, France) and sensitivity testing was ...

  18. Development of a multiplex PCR assay for the detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cepacia complex.

    Science.gov (United States)

    Zakharova, Irina; Teteryatnikova, Natalya; Toporkov, Andrey; Viktorov, Dmitry

    2017-10-01

    Two species of Burkholderia pseudomallei complex (Bpc), B. pseudomallei and B. mallei, can cause severe life-threatening infections. Rapidly discerning individual species within the group and separating them from other opportunistic pathogens of the Burkholderia cepacia complex (Bcc) is essential to establish a correct diagnosis and for epidemiological surveillance. In this study, a multiplex PCR assay based on the detection of an individual set of chromosomal beta-lactamase genes for single-step identification and differentiation of B. pseudomallei, B. mallei, B. thailandensis, and Bcc was developed. Two pairs of primers specific to a distinct class of B metallo-beta-lactamase genes and a pair of primers specific to the oxacillin-hydrolyzing class D beta-lactamase gene were demonstrated to successfully discriminate species within Bpc and from Bcc. The assay sensitivity was 9561 genomic equivalents (GE) for B. pseudomallei, 7827 GE for B. mallei, 8749 GE for B. thailandensis and 6023 GE for B. cepacia. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Investigation into the susceptibility of Burkholderia cepacia complex isolates to photodynamic antimicrobial chemotherapy (PACT)

    Science.gov (United States)

    Cassidy, C. M.; Watters, A. L.; Donnelly, R. F.; Tunney, M. M.

    2009-06-01

    The main cause of morbidity and mortality in cystic fibrosis (CF) sufferers is progressive pulmonary damage caused by recurrent and often unremitting respiratory tract infection. Causative organisms include Pseudomonas aeruginosa and Haemophilus influenzae, but in recent years the Burkholderia cepacia complex has come to the fore. This group of highly drug-resistant Gram-negative bacteria are associated with a rapid decline in lung function and the often fatal cepacia syndrome, with treatment limited to patient segregation and marginally effective antibacterial regimens. Thus, development of an effective treatment is of the upmost importance. PACT, a non-target specific therapy, has proven successful in killing both Gram-positive and Gram-negative bacteria. In this study, planktonic cultures of six strains of the B. cepacia complex were irradiated (635 nm, 200 J cm-2,10 minutes irradiation) following 30 seconds incubation with methylene blue (MB) or meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Rates of kill of > 99 % were achieved with MB- and TMP-PACT. A MB concentration of 50 μg ml-1 and TMP concentration of 500 μg ml-1 were associated with highest percentage kills for each photosensitizer. PACT is an attractive option for treatment of B.cepacia complex infection. Further study, involving biofilm culture susceptibility, delivery of light to the target and in vivo testing will be necessary before it PACT becomes a viable treatment option for CF patients who are colonised or infected with B. cepacia complex.

  20. The promise of bacteriophage therapy for Burkholderia cepacia complex respiratory infections.

    Directory of Open Access Journals (Sweden)

    Diana Dawn Semler

    2012-01-01

    Full Text Available In recent times, increased attention has been given to evaluating the efficacy of phage therapy, especially in scenarios where the bacterial infectious agent of interest is highly antibiotic resistant. In this regard, phage therapy is especially applicable to infections caused by the Burkholderia cepacia complex (BCC since members of the BCC are antibiotic pan-resistant. Current studies in BCC phage therapy are unique from many other avenues of phage therapy research in that the research is not only comprised of phage isolation, in vitro phage characterization and in vivo infection model efficacy, but also adapting aerosol drug delivery techniques to aerosol phage formulation delivery and storage.

  1. Study of class I integron in a Burkholderia cepacia complex strain isolated from blood colture

    Directory of Open Access Journals (Sweden)

    Linda Furlanis

    2011-06-01

    Full Text Available The Burkholderia cepacia complex (Bcc consists of several species that cause lung infections in patients with cystic fibrosis but are also capable to colonize immunocompromised patients. Once established, the infection is usually difficult to eradicate, as Bcc is intrinsically resistant to many antibiotics. Besides, the acquisition of additional resistance determinants by horizontal gene transfer makes very difficult the therapeutic approach to these infections. Among horizontally acquired DNAs, integrons have been frequently reported in many Gramnegative bacteria that affect human health, but they have not been found frequently in Burkholderia isolates until now. In the present work we report on a Bcc isolate, recovered from the blood of an immunocompromised patient, that carries a 2.3 kb class I integron already described in a Salmonella enterica isolate eight years ago, coding for aacA4, aadA1 and catB2 in its cassette array.

  2. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture

    NARCIS (Netherlands)

    Mars, Astrid E.; Houwing, Joukje; Dolfing, Jan; Janssen, Dick B.

    Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE), The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the

  3. Inactivation of Toluene 2-Monooxygenase in Burkholderia cepacia G4 by Alkynes

    Science.gov (United States)

    Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.; Hyman, Michael R.

    1999-01-01

    High concentrations of acetylene (10 to 50% [vol/vol] gas phase) were required to inhibit the growth of Burkholderia cepacia G4 on toluene, while 1% (vol/vol) (gas phase) propyne or 1-butyne completely inhibited growth. Low concentrations of longer-chain alkynes (C5 to C10) were also effective inhibitors of toluene-dependent growth, and 2- and 3-alkynes were more potent inhibitors than their 1-alkyne counterparts. Exposure of toluene-grown B. cepacia G4 to alkynes resulted in the irreversible loss of toluene- and o-cresol-dependent O2 uptake activities, while acetate- and 3-methylcatechol-dependent O2 uptake activities were unaffected. Toluene-dependent O2 uptake decreased upon the addition of 1-butyne in a concentration- and time-dependent manner. The loss of activity followed first-order kinetics, with apparent rate constants ranging from 0.25 min−1 to 2.45 min−1. Increasing concentrations of toluene afforded protection from the inhibitory effects of 1-butyne. Furthermore, oxygen, supplied as H2O2, was required for inhibition by 1-butyne. These results suggest that alkynes are specific, mechanism-based inactivators of toluene 2-monooxygenase in B. cepacia G4, although the simplest alkyne, acetylene, was relatively ineffective compared to longer alkynes. Alkene analogs of acetylene and propyne—ethylene and propylene—were not inactivators of toluene 2-monooxygenase activity in B. cepacia G4 but were oxidized to their respective epoxides, with apparent Ks and Vmax values of 39.7 μM and 112.3 nmol min−1 mg of protein−1 for ethylene and 32.3 μM and 89.2 nmol min−1 mg of protein−1 for propylene. PMID:9925593

  4. Transesterification of babassu oil catalyzed by Burkholderia cepacia encapsulated in sol-gel matrix employing protic ionic liquid as an additive

    Directory of Open Access Journals (Sweden)

    Maria Vanessa Souza Oliveira

    2014-02-01

    Full Text Available Enzymatic transesterification from non-edible vegetable oil (babassu oil and ethanol is provided. A set of seven experiments featuring a full 22 factorial design with three central points and different combinations of molar ratio and temperature as independent variables was employed. Transesterification reactions were catalyzed by Burkholderia cepacia lipase encapsulated in a hydrophobic matrix obtained by the sol-gel technique using protic ionic liquid (N-methylmonoethanolamine pentanoate as additive and with conventional heating (40 – 56°C. Ethyl esters highest yield (51.90% was obtained by experimental design with 1:7 molar ratio (oil:alcohol and temperature at 40°C during 48h reaction. The process with a 5-fold increase of enzymatic load provided 98.69% ethyl esters yield with 4.29 mm2 s-1 viscosity

  5. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    Science.gov (United States)

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  6. Molecular typing of Burkholderia cepacia complex isolated from patients attending an Italian Cystic Fibrosis Centre.

    Science.gov (United States)

    Teri, Antonio; Sottotetti, Samantha; Biffi, Arianna; Girelli, Daniela; D'Accico, Monica; Arghittu, Milena; Colombo, Carla; Corti, Fabiola; Pizzamiglio, Giovanna; Cariani, Lisa

    2018-04-01

    Bacteria from the Burkholderia cepacia complex (Bcc) are capable of causing severe infections in patients with cystic fibrosis (CF). Bcc infection is often extremely difficult to treat due to its intrinsic resistance to multiple antibiotics. In addition, it seems to speed up the decline of lung function and is considered a contraindication for lung transplantation in CF. This study investigates the species of the Bcc strains recovered from chronically infected CF subjects by means of: isolation, identification methods and complete recA nucleotide sequences of 151 samples. Molecular typing showed that B. cenocepacia III is the dominant strain found in the group of subjects being treated at the Milan CF Centre (Italy) and that the infection is chronically maintained by the same species. Defining species by means of molecular analysis yields important information for the clinician in order to establish the most appropriate therapy and implement correct measures for prevention of transmission among CF subjects.

  7. Burkholderia cepacia complex infection in an Adult Cystic Fibrosis unit in Madrid.

    Science.gov (United States)

    Correa-Ruiz, Ana; Girón, Rosa; Buendía, Buenaventura; Medina-Pascual, M José; Valenzuela, Claudia; López-Brea, Manuel; Sáez-Nieto, Juan Antonio

    2013-12-01

    Burkholderia cepacia complex have emerged as significant pathogens in cystic fibrosis (CF) patients due to the risk of cepacia syndrome and the innate multi-resistance of the microorganisms to antibiotics. The aim of this study was to describe the antimicrobial susceptibility profiles, the genotypes and subtypes of BCC, and the clinical evolution of CF patients with BCC. The lung function and Brasfield and Shwachman score were assessed in 12 patients. BCC were identified and susceptibility was studied by MicroScan (Siemens). Species and genospecies of BCC were confirmed by molecular methods in a Reference Centre (Majadahonda). BCC were identified in 12 of 70 patients (17.1%) over a ten year period. The mean age to colonization by BCC was 24.4 years (SD: 7.71). B. cenocepacia was isolated in 4 patients (33.3%), B. contaminans was isolated in 3 patients (25%), both B. vietnamiensis and B. stabilis were isolated in 2 patients (16.7%), and B. cepacia, B. multivorans and B. late were isolated in one patient (8.3%). Among the B. cenocepacia, subtype IIIa was identified in two strains, and subtype IIIb was identified in the other two strains. There was susceptibility to meropenem in 90% of BCC, 80% to cotrimoxazole, 60% to minocycline, 50% to ceftazidime, and 40% to levofloxacin. B. cenocepacia was the most prevalent species among the BCC isolated in CF adult patients, and subtypes IIIa and IIIb were identified in the 50% of the strains. Meropenem and cotrimoxazole showed the best activity. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  8. Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis

    Directory of Open Access Journals (Sweden)

    Isabel Maida

    2014-01-01

    Full Text Available In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc. These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF, and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members. However, three of them (i.e., Eugenia caryophyllata, Origanum vulgare, and Thymus vulgaris were particularly active versus the Bcc strains, including those exhibiting a high degree or resistance to ciprofloxacin, one of the most used antibiotics to treat Bcc infections. These three oils are also active toward both environmental and clinical strains (isolated from CF patients, suggesting that they might be used in the future to fight B. cepacia complex infections.

  9. Infection of Burkholderia cepacia induces homeostatic responses in the host for their prolonged survival: the microarray perspective.

    Directory of Open Access Journals (Sweden)

    Vanitha Mariappan

    Full Text Available Burkholderia cepacia is an opportunistic human pathogen associated with life-threatening pulmonary infections in immunocompromised individuals. Pathogenesis of B. cepacia infection involves adherence, colonisation, invasion, survival and persistence in the host. In addition, B. cepacia are also known to secrete factors, which are associated with virulence in the pathogenesis of the infection. In this study, the host factor that may be the cause of the infection was elucidated in human epithelial cell line, A549, that was exposed to live B. cepacia (mid-log phase and its secretory proteins (mid-log and early-stationary phases using the Illumina Human Ref-8 microarray platform. The non-infection A549 cells were used as a control. Expression of the host genes that are related to apoptosis, inflammation and cell cycle as well as metabolic pathways were differentially regulated during the infection. Apoptosis of the host cells and secretion of pro-inflammatory cytokines were found to be inhibited by both live B. cepacia and its secretory proteins. In contrast, the host cell cycle and metabolic processes, particularly glycolysis/glycogenesis and fatty acid metabolism were transcriptionally up-regulated during the infection. Our microarray analysis provided preliminary insights into mechanisms of B. cepacia pathogenesis. The understanding of host response to an infection would provide novel therapeutic targets both for enhancing the host's defences and repressing detrimental responses induced by the invading pathogen.

  10. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases

    DEFF Research Database (Denmark)

    Piyatheerawong, W.; Iwasaki, Y; Xu, Xuebing

    2004-01-01

    tested (Rhizomucor miehei lipase, Burkholderia cepacia lipase and Thermomyces lanuginosus lipase) required larger amounts of free water (ca. 7-9 wt.%) for their best performance and exhibited no ethanolysis reaction at low free water concentrations. The CALB's anomalous behavior was also observed...

  11. Bacteria of the Burkholderia cepacia complex are cyanogenic under biofilm and colonial growth conditions

    Directory of Open Access Journals (Sweden)

    Hoshino Saiko

    2008-06-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (Bcc is a collection of nine genotypically distinct but phenotypically similar species. They show wide ecological diversity and include species that are used for promoting plant growth and bio-control as well species that are opportunistic pathogens of vulnerable patients. Over recent years the Bcc have emerged as problematic pathogens of the CF lung. Pseudomonas aeruginosa is another important CF pathogen. It is able to synthesise hydrogen cyanide (HCN, a potent inhibitor of cellular respiration. We have recently shown that HCN production by P. aeruginosa may have a role in CF pathogenesis. This paper describes an investigation of the ability of bacteria of the Bcc to make HCN. Results The genome of Burkholderia cenocepacia has 3 putative HCN synthase encoding (hcnABC gene clusters. B. cenocepacia and all 9 species of the Bcc complex tested were able to make cyanide at comparable levels to P. aeruginosa, but only when grown surface attached as colonies or during biofilm growth on glass beads. In contrast to P. aeruginosa and other cyanogenic bacteria, cyanide was not detected during planktonic growth of Bcc strains. Conclusion All species in the Bcc are cyanogenic when grown as surface attached colonies or as biofilms.

  12. Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex.

    Science.gov (United States)

    Loveridge, E Joel; Jones, Cerith; Bull, Matthew J; Moody, Suzy C; Kahl, Małgorzata W; Khan, Zainab; Neilson, Louis; Tomeva, Marina; Adams, Sarah E; Wood, Andrew C; Rodriguez-Martin, Daniel; Pinel, Ingrid; Parkhill, Julian; Mahenthiralingam, Eshwar; Crosby, John

    2017-07-01

    Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the β-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization. IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted. Copyright © 2017

  13. An outbreak of Burkholderia cepacia complex in the paediatric unit of a tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Swapna Mali

    2017-01-01

    Full Text Available Introduction: Burkholderia cepacia complex (Bcc has emerged as a serious nosocomial pathogen worldwide especially in patients with indwelling catheters and cystic fibrosis. Bcc is a common contaminant of pharmaceutical products. We describe an outbreak of Bcc bacteraemia amongst children admitted in Paediatric Intensive Care Unit (PICU and paediatric ward at a tertiary care hospital, Mumbai, in Western India. Materials and Methods: Blood culture samples from paediatric patients yielded growth of non-fermenting, oxidase positive, motile, Gram negative bacilli (NFGNB (76/909 over a period of 8 months. Based on conventional biochemical tests and antimicrobial susceptibility testing, these isolates were provisionally identified as Bcc. The increased, repeated and continued isolation of Bcc alerted the possibility of an outbreak confined to PICU and paediatric ward. Active surveillance was undertaken to trace the source and contain the outbreak. Isolates were subjected to recA polymerase chain reaction (PCR and Expanded multilocus sequence typing (EMLST. Results: Surveillance revealed the presence of Bcc on the upper surface of rubber stopper of sealed multidose amikacin vials. Isolates from blood culture and rubber stoppers were confirmed as Bcc by recA PCR. EMLST revealed that these isolates shared an identical novel sequence type 824 proving clonality. Timely interventions instituted led to control of the outbreak. Conclusion: This study highlights the importance of identification and molecular characterization of Bcc to establish its role in infection and outbreak.

  14. An outbreak of Burkholderia cepacia complex in the paediatric unit of a tertiary care hospital.

    Science.gov (United States)

    Mali, Swapna; Dash, Lona; Gautam, Vikas; Shastri, Jayanthi; Kumar, Sunil

    2017-01-01

    Burkholderia cepacia complex (Bcc) has emerged as a serious nosocomial pathogen worldwide especially in patients with indwelling catheters and cystic fibrosis. Bcc is a common contaminant of pharmaceutical products. We describe an outbreak of Bcc bacteraemia amongst children admitted in Paediatric Intensive Care Unit (PICU) and paediatric ward at a tertiary care hospital, Mumbai, in Western India. Blood culture samples from paediatric patients yielded growth of non-fermenting, oxidase positive, motile, Gram negative bacilli (NFGNB) (76/909) over a period of 8 months. Based on conventional biochemical tests and antimicrobial susceptibility testing, these isolates were provisionally identified as Bcc. The increased, repeated and continued isolation of Bcc alerted the possibility of an outbreak confined to PICU and paediatric ward. Active surveillance was undertaken to trace the source and contain the outbreak. Isolates were subjected to recA polymerase chain reaction (PCR) and Expanded multilocus sequence typing (EMLST). Surveillance revealed the presence of Bcc on the upper surface of rubber stopper of sealed multidose amikacin vials. Isolates from blood culture and rubber stoppers were confirmed as Bcc by recA PCR. EMLST revealed that these isolates shared an identical novel sequence type 824 proving clonality. Timely interventions instituted led to control of the outbreak. This study highlights the importance of identification and molecular characterization of Bcc to establish its role in infection and outbreak.

  15. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    Science.gov (United States)

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  16. Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov.

    Science.gov (United States)

    Bach, Evelise; Sant'Anna, Fernando Hayashi; Magrich Dos Passos, João Frederico; Balsanelli, Eduardo; de Baura, Valter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Passaglia, Luciane Maria Pereira

    2017-08-31

    The correct identification of bacteria from the Burkholderia cepacia complex (Bcc) is crucial for epidemiological studies and treatment of cystic fibrosis infections. However, genome-based identification tools are revealing many controversial Bcc species assignments. The aim of this work is to re-examine the taxonomic position of the soil bacterium B. cepacia 89 through polyphasic and genomic approaches. recA and 16S rRNA gene sequence analysis positioned strain 89 inside the Bcc group. However, based on the divergence score of seven concatenated allele sequences, and values of average nucleotide identity, and digital DNA:DNA hybridization, our results suggest that strain 89 is different from other Bcc species formerly described. Thus, we propose to classify Burkholderia sp. 89 as the novel species Burkholderia catarinensis sp. nov. with strain 89T (=DSM 103188T = BR 10601T) as the type strain. Moreover, our results call the attention to some probable misidentifications of Bcc genomes at the National Center for Biotechnology Information database. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava.

    Science.gov (United States)

    Dietrich, Diane; Illman, Barbara; Crooks, Casey

    2013-06-04

    The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides arabinose, xylose, glucose and mannose. We examined the sensitivity of seven polyhydroxyalkanoate producing bacteria: Azohydromonas lata, Bacillus megaterium, Bacillus cereus, Burkholderia cepacia, Pseudomonas olevorans, Pseudomonas pseudoflava and Ralstonia eutropha, against seven fermentation inhibitors produced by the saccharification of lignocellulose: acetic acid, levulinic acid, coumaric acid, ferulic acid, syringaldehyde, furfural, and hyroxymethyfurfural. There was significant variation in the sensitivity of these microbes to representative phenolics ranging from 0.25-1.5 g/L coumaric and ferulic acid and between 0.5-6.0 g/L syringaldehyde. Inhibition ranged from 0.37-4 g/L and 0.75-6 g/L with acetic acid and levulinic acid, respectively. B. cepacia and P. pseudoflava were selected for further analysis of polyhydroxyalkanoate production. We find significant differences in sensitivity to the fermentation inhibitors tested and find these variations to be over a relevant concentration range given the concentrations of inhibitors typically found in lignocellulosic hydrolysates. Of the seven bacteria tested, B. cepacia demonstrated the greatest inhibitor tolerance. Similarly, of two organisms examined for polyhydroxybutyrate production, B. cepacia was notably more efficient when fermenting pentose substrates.

  18. Case-crossover study of Burkholderia cepacia complex bloodstream infection associated with contaminated intravenous bromopride.

    Science.gov (United States)

    Martins, Ianick Souto; Pellegrino, Flávia Lúcia Piffano Costa; Freitas, Andrea d'Avila; Santos, Marisa da Silva; Ferraiuoli, Giovanna Ianini d'Alemeida; Vasques, Márcia Regina Guimarães; Amorim, Efigenia Lourdes Teixeira; Oliveira, Sandra; Nouér, Simone Aranha; Cardoso, Fernando Luiz Lopes; Mascarenhas, Luiz Affonso; Magalhães, Ana Cristina Gouveia; Cleinman, Isabella Barbosa; Figueiredo, Agnes Marie Sá; Moreira, Beatriz Meurer

    2010-05-01

    To investigate an outbreak of healthcare-associated Burkholderia cepacia complex (BCC) primary bloodstream infections (BCC-BSI). Case-crossover study in a public hospital, a university hospital and a private hospital in Rio de Janeiro, Brazil, from March 2006 to May 2006. Twenty-five patients with BCC-BSI. After determining the date BCC-BSI symptoms started for each patient, 3 time intervals of data collection were defined, each one with a duration of 3 days: the case period, starting just before BCC-BSI symptoms onset; the control period, starting 6 days before BCC-BSI symptoms onset; and the washout period, comprising the 3 days between the case period and the control period. Exposures evaluated were intravascular solutions and invasive devices and procedures. Potential risk factors were identified by using the McNemar chi(2) adjusted test. Cultures of samples of potentially contaminated solutions were performed. BCC strain typing was performed by pulsed-field gel electrophoresis using SpeI. The statistical analysis revealed that the use of bromopride and dipyrone was associated with BCC-BSI. A total of 21 clinical isolates from 17 (68%) of the 25 patients and an isolate obtained from the bromopride vial were available for strain typing. Six pulsotypes were detected. A predominant pulsotype (A) accounted for 11 isolates obtained from 11 patients (65%) in the 3 study hospitals. Our investigation, using a case-crossover design, of an outbreak of BCC-BSI infections concluded it was polyclonal but likely caused by infusion of contaminated bromopride. The epidemiological finding was validated by microbiological analysis. After recall of contaminated bromopride vials by the manufacturer, the outbreak was controlled.

  19. Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria.

    Science.gov (United States)

    Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G; Donoghue, Denise; Mahenthiralingam, Eshwar

    2013-07-01

    Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383(T) (LMG 22485(T)), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination.

  20. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex

    Czech Academy of Sciences Publication Activity Database

    Dryahina, Kseniya; Sovová, Kristýna; Nemec, A.; Španěl, Patrik

    2016-01-01

    Roč. 10, AUG 2016 (2016), s. 037102 ISSN 1752-7155 R&D Projects: GA ČR(CZ) GA14-14534S Institutional support: RVO:61388955 Keywords : Burkholderia cepacia complex * Pseudomonas aeruginosa * cystic fibrosis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.318, year: 2016

  1. Inoculation of Burkholderia cepacia and Gluconacetobacter diazotrophicus on phenotype and biomass of Triticum aestivum var. Nana-F2007 at 50% of nitrogen fertilizer

    Directory of Open Access Journals (Sweden)

    Jesús Jaime Hernández-Escareño

    2015-03-01

    Full Text Available Wheat (Triticum aestivum L consuming requires of nitrogen fertilizer (NF, as ammonium nitrate (NH4NO3, which one in excess causes lost soil productivity. An alternative to reduce and optimize NF to wheat is to inoculate with endophytic promoting growth bacteria (EPGB, as genus Burkholderia cepacia and Gluconacetobacter diazotrophicus able to improve radical uptake of NF, its suggesting by inducing synthesis of growth promoting vegetal substances (GPVS. The aim of this research was to evaluate the inoculation of Burkholderia cepacia and Gluconacetobacter diazotrophicus on phenology and biomass of T.aestivum at 50% dose of NF. A trial in greenhouse condition wasconducted inoculating seed T.aestivum´s with both EPGB by measuring its phenology: (PH plant height, (RL root length and biomass: total fresh weight (TFW and dry (TDW at seedling and flowering stages. Results showed a positive effect of B. cepacia in wheat on its TDW with 0.61g value statistically significant compared to 0.53g TDW of wheat used as relative control fed with NF 100% dose (RC. B. cepacia and G. diazotrophicus inoculated to wheat had a positive increased on its TDW with 4.23 g value statistically significant compared to 1.13 g TDW of wheat used as RC. Conclusion suggested that B. cepacia and G. diazotrophicus by synthetized GPVS had a positive effect on wheat growth at reduced dose of NF.

  2. Biostimulation of soil polluted by 40000 ppm of waste motor oil and phytoremediation with Cicer arietinum and Burkholderia cepacia

    Directory of Open Access Journals (Sweden)

    Meza-Ramírez Janitzi Yunuén

    2016-08-01

    Full Text Available Soil polluted by 40000 ppm of waste residual oil (WRO, is a relative high hydrocarbons mix concentration according to Mexican regulation related with as the well know NOM-138-SEMARNAT/SSA1-2003 (NOM-138. Due to cause lost soil´s fertility, inhibiting microbial life and reducing vegetal production. To NOM-138 the highest limit of hydrocarbons mix allowed in soil is equal to 4400 ppm/kg. Aims of this research were: i Biostimulation of soil polluted by 40000 ppm of WRO by vermicompost and/or bovine compost, ii Phytoremediation by Cicer arietinum and Burkholderia cepacia to reduce WRO at below value compared to highest according to NOM-138. Results showed that biostimulation of soil with bovine compost eliminated WRO at 24000 ppm in 49 days. Then phytoremediation by C. arietinum and B. cepacia decreased WRO at 2760 ppm value below to compare to highest concentration allowed to NOM-138. It´s concluded that biore-mediation of soil impacted by relatively high concentration of WRO, the best strategy was to apply both biostimulation/phytoremediation that separate.

  3. Biocontrol of Late Blight (Phytophthora capsici Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

    Directory of Open Access Journals (Sweden)

    Mao Sopheareth

    2013-03-01

    Full Text Available A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-ketogluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA and phenylacetic acid (PA. The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phytophthora capsici, pepper plants in pot trials were treated with modified medium only (M, M plus zoospore inoculation (MP, MPC-7 cultured broth (B and B plus zoospore inoculation (BP. With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.

  4. Biorremediation of soil polluted by 75000 ppm of waste motor oil applying biostimulation and phytoremediation with Sorghum vulgare and Bacillus cereus or Burkholderia cepacia

    OpenAIRE

    Balderas-León Iván; Sánchez-Yáñez Juan Manuel

    2015-01-01

    Waste motor oil (WMO) pollutes soil and causing lost soil fertility. An alternative to solve this problem its bioremediation (BR) by double and following biostimulation (BS) with mineral solution (MS) and a legume as green manure (GM) then using phytoremediation (PR) with growth promoting vegetal bacteria (GPVB) like Bacillus cereus and Burkholderia cepacia to minimize remaining WMO. The aims of this research were: a) bioremediation of polluted soil by 75000 ppm of WMO by biostimulation and t...

  5. Identification of Burkholderia cepacia in patients with cystic fibrosis by pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Soltan Dallal

    2014-05-01

    Conclusion: Application of PFGE and identification of pulse-type is a potential tool to enhance the investigation of apparent nosocomial outbreaks of B.cepacia. Similar type of pulse patterns was observed in this study means that all of infection has been from one source; therefore the hypothesis of transferring person to person will be rejected. Base on these results environmental sources sampling should be considered in future investigation.

  6. Agricultural Use of Burkholderia (Pseudomonas) Cepacia: A Threat to Human Health?

    Science.gov (United States)

    1998-06-01

    against fungal diseases and has potential as a bioremediation agent for breaking down recalcitrant herbicides and pesticides. However, B. cepacia is...need for pesticides and its ability to degrade complex herbicides and pesticides is harnessed for bioremediation . Molecular Epidemiology of B... sunflower wilt fungus and role of antifungal compounds in controlling disease. Appl Environ Microbiol 1992;58:1760-3. 36. Homma Y, Sato Z, Hirayama F

  7. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities

    Science.gov (United States)

    Fernandez, Lorena E.; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G.

    2013-01-01

    Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests. PMID:24096416

  8. Purification and characterization of vanillin dehydrogenases from alkaliphile Micrococcus sp. TA1 and neutrophile Burkholderia cepacia TM1.

    Science.gov (United States)

    Mitsui, Ryoji; Hirota, Mizuho; Tsuno, Takuo; Tanaka, Mitsuo

    2010-02-01

    Vanillin dehydrogenases (VDHs) were purified and characterized from two bacterial strains that have different pH dependencies for growth. The alkaliphile Micrococcus sp. TA1, isolated from an alkaline spa, can grow on several aromatic compounds such as ferulic acid, vanillin, vanillic acid, and protocatechuic acid under alkaline conditions. The neutrophile Burkholderia cepacia TM1, which was isolated previously, also grew on the above-mentioned compounds because they functioned as the sole carbon source under neutral conditions. Purified VDHs showed activities toward some aromatic aldehydes. These enzymes have the same subunit molecular mass of about 57 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but differed in some of their observed properties. Native molecular masses also differed between the purified enzymes. These were 250 kDa for the enzyme from alkaliphilic strain TA1 and 110 kDa for that from neutrophilic strain TM1, as determined by gel filtration. The enzyme from strain TA1 required NADP(+) as a coenzyme for its activity, but that from strain TM1 required NAD(+). These results are important because this is the first report of an alkaliphilic bacterium consuming lignin monomers.

  9. Outbreak of Burkholderia cepacia complex bacteremia in a chemotherapy day care unit due to intrinsic contamination of an antiemetic drug

    Directory of Open Access Journals (Sweden)

    T Singhal

    2015-01-01

    Full Text Available Background: In the end of 2009, a large number of patients with cancer undergoing chemotherapy at the day care unit of a private hospital in Mumbai, India developed Burkholderia cepacia complex (BCC blood stream infection (BSI. Objective: The objectives were to identify the source of the outbreak and terminate the outbreak as rapidly as possible. Materials and Methods: All infection control protocols and processes were reviewed. Intensive training was started for all nursing staff involved in patient care. Cultures were sent from the environment (surfaces, water, air, intravenous fluids, disinfectants and antiseptics and opened/unopened medication. Results: A total of 13 patients with cancer with tunneled catheters were affected with BCC BSI. The isolates were of similar antimicrobial sensitivity. No significant breach of infection control protocols could be identified. Cultures from the prepared intravenous medication bags grew BCC. Subsequently, culture from unused vials of the antiemetic granisetron grew BCC, whereas those from the unopened IV fluid bag and chemotherapy medication were negative. On review, it was discovered that the outbreak started when a new brand of granisetron was introduced. The result was communicated to the manufacturer and the brand was withdrawn. There were no further cases. Conclusions: This outbreak was thus linked to intrinsic contamination of medication vials. We acknowledge a delay in identifying the source as we were concentrating more on human errors in medication preparation and less on intrinsic contamination. We recommend that in an event of an outbreak, unopened vials be cultured at the outset.

  10. Trimeric autotransporter adhesins in members of the Burkholderia cepacia complex: a multifunctional family of proteins implicated in virulence

    Directory of Open Access Journals (Sweden)

    Arsénio Mendes Fialho

    2011-12-01

    Full Text Available Trimeric autotransporter adhesins (TAAs are multimeric surface proteins, involved in various biological traits of pathogenic Gram-negative bacteria including adherence, biofilm formation, invasion, survival within eukaryotic cells, serum resistance and cytotoxicity. TAAs have a modular architecture composed by a conserved membrane-anchored C-terminal domain and a variable number of stalk and head domains. In this study, a bioinformatic approach has been used to analyze the distribution and architecture of TAAs among Burkholderia cepacia complex (Bcc genomes. Fifteen genomes were probed revealing a total of 74 encoding sequences. Compared with other bacterial species, the Bcc genomes contain a disproportionately large number of TAAs (two genes to up to 8 genes, such as in B.cenocepacia. Phylogenetic analysis showed that the TAAs grouped into at least eight distinct clusters. TAAs with serine-rich repeats are clearly well separated from others, thereby representing a different evolutionary lineage. Comparative gene mapping across Bcc genomes reveals that TAA genes are inserted within conserved synteny blocks. We further focused our analysis on the epidemic strain B. cenocepacia J2315 in which 7 TAAs were annotated. Among these, 3 TAA-encoding genes (BCAM019, BCAM0223 and BCAM0224 are organized into a cluster and are candidates for multifunctional virulence factors. Here we review the current insights into the functional role of BCAM0224 as a model locus.

  11. POLYCLONAL OUTBREAK OF BLOODSTREAM INFECTIONS CAUSED BY Burkholderia cepacia COMPLEX IN HEMATOLOGY AND BONE MARROW TRANSPLANT OUTPATIENT UNITS

    Directory of Open Access Journals (Sweden)

    Icaro Boszczowski

    2014-01-01

    Full Text Available Aim: The objective was to describe an outbreak of bloodstream infections by Burkholderia cepacia complex (Bcc in bone marrow transplant and hematology outpatients. Methods: On February 15, 2008 a Bcc outbreak was suspected. 24 cases were identified. Demographic and clinical data were evaluated. Environment and healthcare workers' (HCW hands were cultured. Species were determined and typed. Reinforcement of hand hygiene, central venous catheter (CVC care, infusion therapy, and maintenance of laminar flow cabinet were undertaken. 16 different HCWs had cared for the CVCs. Multi-dose heparin and saline were prepared on counter common to both units. Findings: 14 patients had B. multivorans (one patient had also B. cenopacia, six non-multivorans Bcc and one did not belong to Bcc. Clone A B. multivorans occurred in 12 patients (from Hematology; in 10 their CVC had been used on February 11/12. Environmental and HCW cultures were negative. All patients were treated with meropenem, and ceftazidime lock-therapy. Eight patients (30% were hospitalized. No deaths occurred. After control measures (multidose vial for single patient; CVC lock with ceftazidime; cleaning of laminar flow cabinet; hand hygiene improvement; use of cabinet to store prepared medication, no new cases occurred. Conclusions: This polyclonal outbreak may be explained by a common source containing multiple species of Bcc, maybe the laminar flow cabinet common to both units. There may have been contamination by B. multivorans (clone A of multi-dose vials.

  12. Chronic infection of cystic fibrosis patient airways by a single clone of Burkholderia cepacia: replacement of non-mucoid to mucoid morphotype Infecção pulmonar crônica por um único clone de Burkholderia cepacia: substituição do morfotipo não mucóide por mucóide

    Directory of Open Access Journals (Sweden)

    Ana Paula D'Alincourt Carvalho

    2003-11-01

    Full Text Available Mucoid Burkholderia cepacia morphotype emerged within a nine year follow-up of a cystic fibrosis patient. Clinical data suggested a linkage between the mucoid phenotype isolation and the deterioration of the patient's condition. Despite of the phenotypic variation, molecular typing showed that the patient was chronically infected with B. cepacia complex isolates belonging to a same genetic clone.O presente trabalho descreve a emergência de cepas mucoides do complexo B. cepacia em um paciente com Fibrose Cística dentro de um acompanhamento bacteriológico prospectivo de nove anos. Os dados clínicos sugerem a associação entre o isolamento do morfotipo mucoide e a deterioração clínica do paciente. Apesar da variação fenotípica, os testes moleculares mostraram que o paciente manteve-se cronicamente infectado por cepas de mesma origem clonal.

  13. Bioremediation of soil contaminated by waste motor oil in 55000 and 65000 and phytoremediation by Sorghum bicolor inoculated with Burkholderia cepacia and Penicillium chrysogenum

    Directory of Open Access Journals (Sweden)

    Sánchez-Yáñez Juan Manuel

    2015-11-01

    Full Text Available In soil spill a high concentration of waste motor oil (WMO it´s causing lost soil fertility, which is solved by remediation, but is expensive and polluting, an ecological alternative is bioremediation (BR by biostimulation follow by phytoremediation (PY with Sorghum bicolor using Burkholderia cepacia and Penicillium chrysogenum, promoting growth plant microorganisms (PGPM at concentration value below to the maximum according to NOM-138 SEMARNAT/SS-2003 de 4400 ppm/Kg soil. The objectives of this research were a bioremediation of soil contaminated by high WMO concentrations by biostimulation with mineral solution and Vicia sativa as green manure (GM, and subsequent b phytoremediation by S. bicolor with B. cepacia and P. chrysogenum to reduce remaining WMO at concentration below to maximum according to NOM-138 SEMARNAT/SS-2003. The results showed that biostimulation with mineral solution and V. sativa reduced WMO from 55000 to 33400 ppm, and from 65000 to 24300 ppm. Follow by PY by S. bicolor with B. cepacia and P. chrysogenum decreased WMO from 33400 ppm to 210 ppm, and from 24300 ppm to 360 ppm, compared to soil as negative control in which WMO did not change by natural attenuation. This suggests that to integrate BR and PY is an ecological option instead to apply chemical technique expensive and causing environmental pollution.

  14. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.

    Science.gov (United States)

    Musson, Julie A; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen K Y; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M; Robinson, John H

    2014-12-15

    Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients. Copyright © 2014 by The American Association of Immunologists, Inc.

  15. Healthcare-associated respiratory tract infection and colonization in an intensive care unit caused by Burkholderia cepacia isolated in mouthwash

    Directory of Open Access Journals (Sweden)

    Jeannete Zurita

    2014-12-01

    Conclusions: Our findings strongly suggest that alcohol-free mouthwash solution intrinsically contaminated with B. cepacia was the source of these colonizations and infections involving adults in the ICU.

  16. Biochemical and Functional Studies on the Burkholderia cepacia Complex bceN Gene, Encoding a GDP-D-Mannose 4,6-Dehydratase

    Science.gov (United States)

    Pinheiro, Pedro F.; Leitão, Jorge H.

    2013-01-01

    This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47). Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min−1.mg−1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis. PMID:23460819

  17. Biochemical and functional studies on the Burkholderia cepacia complex bceN gene, encoding a GDP-D-mannose 4,6-dehydratase.

    Directory of Open Access Journals (Sweden)

    Sílvia A Sousa

    Full Text Available This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47. Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min(-1.mg(-1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis.

  18. Biorremediation of soil polluted by 75000 ppm of waste motor oil applying biostimulation and phytoremediation with Sorghum vulgare and Bacillus cereus or Burkholderia cepacia

    Directory of Open Access Journals (Sweden)

    Balderas-León Iván

    2015-02-01

    Full Text Available Waste motor oil (WMO pollutes soil and causing lost soil fertility. An alternative to solve this problem its bioremediation (BR by double and following biostimulation (BS with mineral solution (MS and a legume as green manure (GM then using phytoremediation (PR with growth promoting vegetal bacteria (GPVB like Bacillus cereus and Burkholderia cepacia to minimize remaining WMO. The aims of this research were: a bioremediation of polluted soil by 75000 ppm of WMO by biostimulation and then b Its phytoremediation for remaining WMO by Sorghum vulgare inoculated with B. cereus and B. cepacia. Soil polluted by high concentration WMO was biostimulated with MS, and then Phaseolus vulgaris treated by GPVB was incorporated as GM, finally to apply PR to eliminate WMO with S. vulgare with GPVB. Results indicate that soil bioremediated by biostimulation with MS, WMO decreased at 32500 ppm/30 days, and then with GM, WMO was reduced at 10100 ppm after/90 days. Finally, to apply phytoremediation using S. vulgare and GPVB at flowering, WMO was reduced from 2500 ppm to 800 ppm. For recovering soil impacted by high concentration WMO to apply both techniques double and following BS and PR are the best option than each technique separately.

  19. Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia

    DEFF Research Database (Denmark)

    Clausen, Lauge Peter Westergaard; Broholm, Mette Martina; Gosewinkel, Ulrich Bay

    2017-01-01

    . cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE...

  20. Biosorption of diethyl phthalate ester by living and nonliving Burkholderia cepacia and the role of its cell surface components.

    Science.gov (United States)

    Luo, Si; Li, Langlang; Chen, Anwei; Zeng, Qingru; Xia, Hao; Gu, Ji-Dong

    2017-07-01

    In this study, the dibutyl phthalate (DBP) binding properties of a DBP-tolerant bacterium (B. cepacia) were characterized in terms of adsorption kinetics and isotherm. Living and nonliving cells both exhibited rapid removal of DBP, achieving more than 80% of maximum sorption within 30 min of contact and reached the equilibrium after 3 h. The adsorption isotherms were well fitted with the Sips model and the nonliving cells have greater biosorption capacity and affinity for DBP than the living cells. Furthermore, the absence of an active mechanism dependent on metabolism implied that the DBP bioaccumulation by living cells was mainly attribute to passive surface binding. The optimum pH for DBP adsorption by living and nonliving cells were both observed to be 6.0. The biosorptive mechanism of DBP binding by B. cepacia was further confirmed by FTIR analysis and various chemical treatments. FTIR results indicated that the phosphate and CH 2 groups on B. cepacia were the main bounding sites for DBP. Furthermore, 2.28, 2.15, 1.93 and 0.87 g of pretreated cells were obtained from 2.40 g of native cells via extracellular polymeric substances (EPS), superficial layer-capsule, lipids components and cell membrane removal treatments, respectively. Total binding amount of DBP on the native cells, EPS-removed cells, capsule-removed cells, lipids-extracted cells and membrane-removed cells were 26.69, 24.84, 24.93, 16.11 and 10.80 mg, respectively, suggesting that the cell wall lipids, proteins or peptidoglycan might play important roles in the sorption of DBP by B. cepacia. The information could be applied in understanding on the mobility, transport and ultimate fate of PAEs in soil and related environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Physico-chemical, spectroscopical and thermal characterization of bio diesel obtained by enzymatic route as a tool to select the most efficient immobilized lipase

    International Nuclear Information System (INIS)

    Silva, G.A.M.; Ros, P.C.M. da; Souza, L.T.A.; Costa, A.P.O.; Castro, H.F. de

    2012-01-01

    Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degree C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and 1 H NMR spectroscopy, suggested that the bio diesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage. (author)

  2. Physico-chemical, spectroscopical and thermal characterization of bio diesel obtained by enzymatic route as a tool to select the most efficient immobilized lipase

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G.A.M.; Ros, P.C.M. da; Souza, L.T.A.; Costa, A.P.O.; Castro, H.F. de, E-mail: heizir@dequi.eel.usp.br [Engineering School of Lorena. University of Sao Paulo (EEL/USP), Lorena, SP (Brazil)

    2012-01-15

    Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degree C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and {sup 1}H NMR spectroscopy, suggested that the bio diesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage. (author)

  3. Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover.

    Science.gov (United States)

    Jin, Zhong Min; Sha, Wei; Zhang, Yan Fu; Zhao, Jing; Ji, Hongyang

    2013-07-01

    Phytoremediation combined with suitable microorganisms and biodegradable chelating agents can be a means of reclaiming lands contaminated by toxic heavy metals. We investigated the ability of a lead- and cadmium-resistant bacterial strain (JB12) and the biodegradable chelator ethylenediamine-N,N'-disuccinic acid (EDDS) to improve absorption of these metals from soil by tall fescue and red clover. Strain JB12 was isolated from contaminated soil samples, analysed for lead and cadmium resistance, and identified as Burkholderia cepacia. Tall fescue and red clover were grown in pots to which we added JB12, (S,S)-EDDS, combined JB12 and EDDS, or water only. Compared with untreated plants, the biomass of plants treated with JB12 was significantly increased. Concentrations of lead and cadmium in JB12-treated plants increased significantly, with few exceptions. Plants treated with EDDS responded variably, but in those treated with combined EDDS and JB12, heavy metal concentrations increased significantly in tall fescue and in the aboveground parts of red clover. We conclude that JB12 is resistant to lead and cadmium. Its application to the soil improved the net uptake of these heavy metals by experimental plants. The potential for viable phytoremediation of lead- and cadmium-polluted soils with tall fescue and red clover combined with JB12 was further enhanced by the addition of EDDS.

  4. Preliminary data on antibacterial activity of Echinacea purpurea-associated bacterial communities against Burkholderia cepacia complex strains, opportunistic pathogens of Cystic Fibrosis patients.

    Science.gov (United States)

    Chiellini, Carolina; Maida, Isabel; Maggini, Valentina; Bosi, Emanuele; Mocali, Stefano; Emiliani, Giovanni; Perrin, Elena; Firenzuoli, Fabio; Mengoni, Alessio; Fani, Renato

    2017-03-01

    Burkholderia cepacia complex bacteria (Bcc) represent a serious threat for immune-compromised patient affected by Cystic Fibrosis (CF) since they are resistant to many substances and to most antibiotics. For this reason, the research of new natural compounds able to inhibit the growth of Bcc strains has raised new interest during the last years. A source of such natural compounds is represented by medicinal plants and, in particular, by bacterial communities associated with these plants able to produce molecules with antimicrobial activity. In this work, a panel of 151 (endophytic) bacteria isolated from three different compartments (rhizospheric soil, roots, and stem/leaves) of the medicinal plant Echinacea purpurea were tested (using the cross-streak method) for their ability to inhibit the growth of 10 Bcc strains. Data obtained revealed that bacteria isolated from the roots of E. purpurea are the most active in the inhibition of Bcc strains, followed by bacteria isolated from the rhizospheric soil, and endophytes from stem/leaf compartment. At the same time, Bcc strains of environmental origin showed a higher resistance toward inhibition than the Bcc strains with clinical (i.e. CF patients) origin. Differences in the inhibition activity of E. purpurea-associated bacteria are mainly linked to the environment -the plant compartment- rather than to their taxonomical position. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.

    Science.gov (United States)

    Clausen, Lauge Peter Westergaard; Broholm, Mette Martina; Gosewinkel, Ulrich; Trapp, Stefan

    2017-08-01

    Trichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S. viminalis) and willows inoculated with three strains of B. cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE in solution were measured every 2-3 days and chloride and metabolite concentrations in plants were measured at test termination. Based on transpiration, no tree toxicity of TCE exposure was observed. However, trees grown in chloride-free solution showed severely inhibited transpiration. No or very little chloride was formed during the test, and levels of chloride in TCE-exposed trees were not elevated. Chloride concentrations in chloride containing TCE-free nutrient solution doubled within 23 days, indicating active exclusion of chloride by root cell membranes. Only traces of TCE-metabolites were detected in plant tissue. We conclude that TCE is not, or to a limited extent (less than 3%), aerobically degraded by the willow trees. The three strains of B. cepacia did not enhance TCE mineralization. Future successful application of rhizo- and phytodegradation of TCE requires measures to be taken to improve the degradation rates.

  6. Investigating the Role of the Host Multidrug Resistance Associated Protein Transporter Family in Burkholderia cepacia Complex Pathogenicity Using a Caenorhabditis elegans Infection Model.

    Science.gov (United States)

    Tedesco, Pietro; Visone, Marco; Parrilli, Ermenegilda; Tutino, Maria Luisa; Perrin, Elena; Maida, Isabel; Fani, Renato; Ballestriero, Francesco; Santos, Radleigh; Pinilla, Clemencia; Di Schiavi, Elia; Tegos, George; de Pascale, Donatella

    2015-01-01

    This study investigated the relationship between host efflux system of the non-vertebrate nematode Caenorhabditis elegans and Burkholderia cepacia complex (Bcc) strain virulence. This is the first comprehensive effort to profile host-transporters within the context of Bcc infection. With this aim, two different toxicity tests were performed: a slow killing assay that monitors mortality of the host by intestinal colonization and a fast killing assay that assesses production of toxins. A Virulence Ranking scheme was defined, that expressed the toxicity of the Bcc panel members, based on the percentage of surviving worms. According to this ranking the 18 Bcc strains were divided in 4 distinct groups. Only the Cystic Fibrosis isolated strains possessed profound nematode killing ability to accumulate in worms' intestines. For the transporter analysis a complete set of isogenic nematode single Multidrug Resistance associated Protein (MRP) efflux mutants and a number of efflux inhibitors were interrogated in the host toxicity assays. The Bcc pathogenicity profile of the 7 isogenic C. elegans MRP knock-out strains functionality was classified in two distinct groups. Disabling host transporters enhanced nematode mortality more than 50% in 5 out of 7 mutants when compared to wild type. In particular mrp-2 was the most susceptible phenotype with increased mortality for 13 out 18 Bcc strains, whereas mrp-3 and mrp-4 knock-outs had lower mortality rates, suggesting a different role in toxin-substrate recognition. The use of MRP efflux inhibitors in the assays resulted in substantially increased (>40% on average) mortality of wild-type worms.

  7. Common Duckweed (Lemna minor) Is a Versatile High-Throughput Infection Model For the Burkholderia cepacia Complex and Other Pathogenic Bacteria

    Science.gov (United States)

    Thomson, Euan L. S.; Dennis, Jonathan J.

    2013-01-01

    Members of the Burkholderia cepacia complex (Bcc) have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF) patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed) is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth) larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R2 = 0.81) was found between the strains’ virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC) and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R2 = 0.93) was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC) cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhBBc. Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial virulence

  8. Common duckweed (Lemna minor is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria.

    Directory of Open Access Journals (Sweden)

    Euan L S Thomson

    Full Text Available Members of the Burkholderia cepacia complex (Bcc have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R(2 = 0.81 was found between the strains' virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R(2 = 0.93 was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhB(Bc. Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial

  9. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase.

    Science.gov (United States)

    Tran, Dang-Thuan; Yeh, Kuei-Ling; Chen, Ching-Lung; Chang, Jo-Shu

    2012-03-01

    An indigenous microalga Chlorella vulgaris ESP-31 grown in an outdoor tubular photobioreactor with CO(2) aeration obtained a high oil content of up to 63.2%. The microalgal oil was then converted to biodiesel by enzymatic transesterification using an immobilized lipase originating from Burkholderia sp. C20. The conversion of the microalgae oil to biodiesel was conducted by transesterification of the extracted microalgal oil (M-I) and by transesterification directly using disrupted microalgal biomass (M-II). The results show that M-II achieved higher biodiesel conversion (97.3 wt% oil) than M-I (72.1 wt% oil). The immobilized lipase worked well when using wet microalgal biomass (up to 71% water content) as the oil substrate. The immobilized lipase also tolerated a high methanol to oil molar ratio (>67.93) when using the M-II approach, and can be repeatedly used for six cycles (or 288 h) without significant loss of its original activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. In vitro activity of fusidic acid (CEM-102, sodium fusidate) against Staphylococcus aureus isolates from cystic fibrosis patients and its effect on the activities of tobramycin and amikacin against Pseudomonas aeruginosa and Burkholderia cepacia.

    Science.gov (United States)

    McGhee, Pamela; Clark, Catherine; Credito, Kim; Beachel, Linda; Pankuch, Glenn A; Appelbaum, Peter C; Kosowska-Shick, Klaudia

    2011-05-01

    We tested the MICs of fusidic acid (CEM-102) plus other agents against 40 methicillin-resistant Staphylococcus aureus (MRSA) isolates from cystic fibrosis patients and the activities of fusidic acid with or without tobramycin or amikacin against Pseudomonas aeruginosa, MRSA, and Burkholderia cepacia isolates from cystic fibrosis patients in a 24-h time-kill study. Fusidic acid was potent (MICs, 0.125 to 0.5 μg/ml; a single 500-mg dose of fusidic acid at 8 h averaged 8 to 12. 5 μg/ml with 91 to 97% protein binding) against all MRSA strains. No antagonism was observed; synergy occurred for one MRSA strain treated with fusidic acid plus tobramycin.

  11. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.

    Science.gov (United States)

    Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E

    2014-05-02

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  12. Meropenem in cystic fibrosis patients infected with resistant Pseudomonas aeruginosa or Burkholderia cepacia and with hypersensitivity to beta-lactam antibiotics

    DEFF Research Database (Denmark)

    Ciofu, Oana; Jensen, Tim; Pressler, Tacjana

    1996-01-01

    in pulmonary function (as a percentage of the predictive values) was 5.6% for FEV1 (forced expiratory volume in the first second) and 8.6% for FVC (forced vital capacity). C-reactive protein and erythrocyte sedimentation rate (ESR) and leukocyte count decreased significantly. In courses administered...... for chronic infection with B. cepacia the post treatment FEV1 and FVC values were higher than the pre-treatment values, and all the inflammatory parameters decreased. The geometric means of minimal inhibitory concentration (MICs) (microg/mL) for P. aeruginosa (B. cepacia) were: tobramycin 6 (59......), ciprofloxacin 1.2 (9.7), piperacillin 49 (16.3), ceftazidime 26 (23), aztreonam 26 (35), imipenem 6.4 (not determined) and meropenem 5.1 (4.8). No statistically significant increase in the MICs of meropenem for either pathogen occurred during therapy. Of the 124 courses, 115 were tolerated without any clinical...

  13. 脱脂棉固定化脂肪酶的非水活性与稳定性%Nonaqueous Activity and Stability of Pseudomonas cepacia Lipase Immobilized on Absorbent Cotton Fiber

    Institute of Scientific and Technical Information of China (English)

    康洁; 王笑; 张莹; 周美娟; 丛方地; 邢克智

    2017-01-01

    Catalysis of lipases exists in nonaqueous media,but their catalysis with low activity and stability needs further improvement.That is one of bottleneck problems in nonaqueous enzymology.The desired strategy was that simulation on the interfacial activation of lipases,namely replacing water with macromolecule,to optimize,stabilize and disperse enzyme proteins so as to hold back denature in organic phases.Then the macromolecules should have numerous hydroxyl groups,large specific surface,inert and compatibility with enzyme proteins.Absorbent cotton fiber happened to own these characteristics and was employed as immobilization carrier to prepare immobilized Pseudomonas cepacia lipase in a mass ratio of 1 ∶ 0.9 (lipase:cotlon) by physical adsorption.In catalyzing transesterification between hexanol and vinyl acetate,the prepared cotton-lipase was 3.7 folds of native lipase in transformation ability of hexanol after 1 hour.In a catalytic cycle of 6 times and 6 hours once,the ability of immobilized and native lipases transforming substrate averagely was reduced by about 0.3% and 2.4%,respectively.It showed that cotton-lipase had obvious increase in the nonaqueous activity,especially the stability.This study presented a way for effective enhancement of nonaqueous catalysis of lipases by immobilization method so as to meet the requirements on their applications in industry.%脂肪酶具有非水催化作用,但其非水催化活性和稳定性需进一步提高,这是非水酶学的瓶颈问题之一.理想的策略是模拟脂肪酶的界面活化机制,以大分子代替水,优化、稳定化和有效分散酶蛋白,阻止其在有机相中变性.因此,选用多羟基、比表面积大、惰性、且与酶蛋白能兼容的大分子——脱脂棉纤维,作为固定化载体,以1∶0.9的质量比,通过物理吸附,将假单胞菌脂肪酶(Pseudomonas cepacia lipase)固定在脱脂棉纤维上.在催化己醇与乙酸乙烯酯的转酯反应中,反应1h,脱脂

  14. Biostimulation of soil impacted by 45000 ppm waste motor oil and Phytoremediation with Zea mays by Burkholderia cepacia and Rhizobium elti

    Directory of Open Access Journals (Sweden)

    Saucedo-Martínez Blanca Celeste

    2016-08-01

    Full Text Available Soil contaminated with 45000 ppm of waste motor oil (WMO is a relatively high concentration of a mixture of aliphatic and aromatic hydrocarbons (HC, inhibits mineralization of organic matter and its fertility. This WMO´ concentration is high according to mexican regulation: NOM-138-SEMARNAT/ SSA1-2012 (NOM-138 related to when it exceeds 4400 ppm/Kg of soil. The aims of the study were: i BS of contaminated soil by 45000 ppm of WMO with vermicompost and bovine compost 3%, and ii PR using Zea mays inoculated with B. cepacia and R. etli at value below the maximum allowable by NOM-138. The main response variable of the trial was initial and final concentration of WMO after BS. In PR by Z. mays and PGPB to reduce remain-ing WMO, were phenological response variables as: plant height and root length and biomass: aerial and root fresh and dry weight. Experimental data were analyzed by ANOVA and Tukey. Results showed that the BS of soil by 45000 ppm of WMO was reduced to 21000 ppm; subsequent FR sowing Z. mays inoculated by B. cepacia decreased to 1822.5 ppm, value below the maximum allowable by NOM-138. BS of contaminated soil by relatively high concentration of WMO and later FR sowing Z. mays and PGPR. Both are an alternative in its remediation that to apply each one alone.

  15. Use of a Real-Time PCR TaqMan Assay for Rapid Identification and Differentiation of Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    U'Ren, Jana M.; Van Ert, Matthew N.; Schupp, James M.; Easterday, W. Ryan; Simonson, Tatum S.; Okinaka, Richard T.; Pearson, Talima; Keim, Paul

    2005-01-01

    A TaqMan allelic-discrimination assay designed around a synonymous single-nucleotide polymorphism was used to genotype Burkholderia pseudomallei and Burkholderia mallei isolates. The assay rapidly identifies and discriminates between these two highly pathogenic bacteria and does not cross-react with genetic near neighbors, such as Burkholderia thailandensis and Burkholderia cepacia.

  16. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  18. Facile fabrication of a stable and recyclable lipase@amine-functionalized ZIF-8 nanoparticles for esters hydrolysis and transesterification

    Science.gov (United States)

    Cheong, Ling-Zhi; Wei, Yayu; Wang, Hongbin; Wang, Zhiying; Su, Xiurong; Shen, Cai

    2017-08-01

    Zeolitic imidazolate frameworks (ZIF) represent one of the metal organic frameworks (MOF) with high potential for enzyme immobilization due to their exceptional chemical and thermal stability, negligible cytotoxicity, and easy synthesis under mild biocompatible conditions. Amine-functionalized ZIF-8 (An-ZIF-8) are capable of forming multipoint attachment via hydrogen bonding with lipase which will immobilize and further enhance stabilization of lipase. In addition, increased hydrophilicity of An-ZIF-8 will increase partitioning of An-ZIF-8 immobilized lipase at the aqueous/organic interface which enable lipase to expose its active site and retain its catalytic activity at its highest. Present study reports the use of ZIF-8 and An-ZIF-8 nanoparticles as carrier for Burkholderia cepacia lipase (BCL), compares the ester hydrolysis and transesterification activities of immobilized lipase with those of free lipase, and evaluates the reusability and recovery rate of the immobilized lipase. An-ZIF-8 nanoparticles (average 130.42 ± 0.55 nm) were facilely synthesized via mixing ZIF-8 nanoparticles with ammonia hydroxide solution. Despite having similar characteristics of high crystallinity and forming cuboid-like particles, An-ZIF-8 demonstrated significantly ( P hydrolysis and transesterification activities with those of free BCL. BCL@An-ZIF-8 demonstrated superior catalytic stability in comparison to BCL@ZIF-8 with retainment of more than 80% of its initial hydrolysis and transesterification activity for at least 10 repeated runs. In addition, more than 80% of the BCL@An-ZIF-8 can be easily recovered during each cycle of the reusability test through simple centrifugation.

  19. Burkholderia Vaccines: Are We Moving Forward?

    Directory of Open Access Journals (Sweden)

    Leang-Chung eChoh

    2013-02-01

    Full Text Available The genus Burkholderia consists of diverse species which includes both ‘friends’ and ‘foes’. Some of the ‘friendly’ Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.

  20. Burkholderia vaccines: are we moving forward?

    Science.gov (United States)

    Choh, Leang-Chung; Ong, Guang-Han; Vellasamy, Kumutha M.; Kalaiselvam, Kaveena; Kang, Wen-Tyng; Al-Maleki, Anis R.; Mariappan, Vanitha; Vadivelu, Jamuna

    2013-01-01

    The genus Burkholderia consists of diverse species which includes both “friends” and “foes.” Some of the “friendly” Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines. PMID:23386999

  1. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    International Nuclear Information System (INIS)

    Hoffmann, Isabel; Silva, Vanessa D.; Nascimento, Maria da G.

    2011-01-01

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  2. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Isabel; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: graca@qmc.ufsc.b [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica

    2011-07-01

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  3. Structural investigations of the regio- and enantioselectivity of lipases

    NARCIS (Netherlands)

    Lang, Dietmar A.; Dijkstra, Bauke W.

    Although lipases are widely applied for the stereospecific resolution of racemic mixtures of esters, the atomic details of the factors that are responsible for their stereospecificity are largely obscure. We determined the X-ray structures of Pseudomonas cepacia lipase in complex with two

  4. Host evasion by Burkholderia cenocepacia

    Directory of Open Access Journals (Sweden)

    Shyamala eGanesan

    2012-01-01

    Full Text Available Burkholderia cenocepacia is an opportunistic respiratory pathogen of individuals with cystic fibrosis (CF. It is one of the highly transmissible species of Burkholderia cepacia complex and very resistant to almost all the antibiotics. Approximately 1/3rd of B. cenocepacia infected CF patients go on to develop fatal ‘cepacia syndrome’. During the last two decades, substantial progress has been made with regards to evasion of host innate defense mechanisms by B. cenocepacia. Almost all strains of B. cenocepacia has capacity to survive and replicate intracellularly in both airway epithelial cells and macrophages, which are primary centennials of the lung and play a pivotal role in clearance of infecting bacteria. Some strains of B. cenocepaica, which express cable pili and the associated 22kDa adhesin are also capable of transmigrating across airway epithelium and persist in mouse models of infection. In this review, we will discuss how this type of interaction between B. cenocepacia and host may lead to persistence of bacteria and contribute to lung inflammation in CF patients.

  5. Screening of thermophilic neutral lipase-producing Pseudomonas ...

    African Journals Online (AJOL)

    From oil-contaminated soil, three lipase-producing microorganisms were selected as good lipase producers using rhodamine B-olive oil plate agar and they were identified as from Pseudomonas, Burkholderia and Klebsiella genera by morphology, biochemical characterization and 16S rRNA gene sequencing. Among the ...

  6. Is Hydrogen Cyanide a Marker of Burkholderia cepacia Complex?

    Czech Academy of Sciences Publication Activity Database

    Gilchrist, F. J.; Sims, H.; Alcock, A.; Jones, A.M.; Bright-Thomas, R. J.; Smith, D.; Španěl, Patrik; Webb, A. K.; Lenney, W.

    2013-01-01

    Roč. 51, č. 11 (2013), s. 3849-3851 ISSN 0095-1137 Institutional support: RVO:61388955 Keywords : acetone * alcohol * hydrogen cyanide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.232, year: 2013

  7. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species.

    Science.gov (United States)

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  8. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    Science.gov (United States)

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  9. Molecular Signatures and Phylogenomic Analysis of the Genus Burkholderia: Proposal for Division of this Genus into the Emended Genus Burkholderia Containing Pathogenic Organisms and a New Genus Paraburkholderia gen. nov. Harboring Environmental Species

    Directory of Open Access Journals (Sweden)

    Aman eSawana

    2014-12-01

    Full Text Available The genus Burkholderia contains large number of diverse species which are not reliably distinguished by the available biochemical or molecular characteristics. We report here results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequences, Burkholderia species grouped into two major clades. Within these main clades a number of smaller clades were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs that are uniquely found in different clades of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I which contains all clinically relevant members of the genus as well as the phytopathogenic Burkholderia species. The second main clade (Clade II composed of the environmental Burkholderia species, is also distinguished by 2 of the identified CSIs. Additionally, our work has also identified 3 CSIs that are specific for the Burkholderia cepacia complex, 4 CSIs that are uniquely found in the Burkholderia pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and for development of novel diagnostic assays for the clinically important members of the group. Based upon the results from different lines of studies, a division of the genus Burkholderia into two genera is proposed. In this new proposal, the emended genus Burkholderia will contain only the clinically relevant and phytopathogenic Burkholderia species, whereas all other Burkholderia spp. are transferred to a new genus

  10. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.

    Science.gov (United States)

    de Souza, Ranyere Lucena; de Faria, Emanuelle Lima Pache; Figueiredo, Renan Tavares; Freitas, Lisiane dos Santos; Iglesias, Miguel; Mattedi, Silvana; Zanin, Gisella Maria; dos Santos, Onélia Aparecida Andreo; Coutinho, João A P; Lima, Álvaro Silva; Soares, Cleide Mara Faria

    2013-03-05

    Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The influence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with

  11. The phylogenetic distribution and ecological role of carbon monoxide oxidation in the genus Burkholderia.

    Science.gov (United States)

    Weber, Carolyn F; King, Gary M

    2012-01-01

    Burkholderia is a physiologically and ecologically diverse genus that occurs commonly in assemblages of soil and rhizosphere bacteria. Although Burkholderia is known for its heterotrophic versatility, we demonstrate that 14 distinct environmental isolates oxidized carbon monoxide (CO) and possessed the gene encoding the catalytic subunit of form I CO dehydrogenase (coxL). DNA from a Burkholderia isolate obtained from a passalid beetle also contained coxL as do the genomic sequences of species H160 and Ch1-1. Isolates were able to consume CO at concentrations ranging from 100 ppm (vol/vol) to sub-ambient ( 2.5 mM), but mixotrophic consumption of CO and pyruvate occurred when initial pyruvate concentrations were lower (c. 400 lM). With the exception of an isolate most closely related to Burkholderia cepacia, all CO-oxidizing isolates examined were members of a nonpathogenic clade and were most closely related to Burkholderia species, B. caledonica, B. fungorum, B. oxiphila, B. mimosarum, B. nodosa, B. sacchari, B. bryophila, B. ferrariae, B. ginsengesoli, and B. unamae. However, none of these type strains oxidized CO or contained coxL based on results from PCR analyses. Collectively, these results demonstrate that the presence of CO oxidation within members of the Burkholderia genus is variable but it is most commonly found among rhizosphere inhabitants that are not closely related to B. cepacia.

  12. Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils.

    Science.gov (United States)

    Castanheira, N; Dourado, A C; Kruz, S; Alves, P I L; Delgado-Rodríguez, A I; Pais, I; Semedo, J; Scotti-Campos, P; Sánchez, C; Borges, N; Carvalho, G; Barreto Crespo, M T; Fareleira, P

    2016-03-01

    To search for culturable Burkholderia species associated with annual ryegrass in soils from natural pastures in Portugal, with plant growth-promoting effects. Annual ryegrass seedlings were used to trap Burkholderia from two different soils in laboratory conditions. A combined approach using genomic fingerprinting and sequencing of 16S rRNA and recA genes resulted in the identification of Burkholderia strains belonging to the species Burkholderia graminis, Burkholderia fungorum and the Burkholderia cepacia complex. Most strains were able to solubilize mineral phosphate and to synthesize indole acetic acid; some of them could produce siderophores and antagonize the phytopathogenic oomycete, Phytophthora cinnamomi. A strain (G2Bd5) of B. graminis was selected for gnotobiotic plant inoculation experiments. The main effects were the stimulation of root growth and enhancement of leaf lipid synthesis and turnover. Fluorescence in situ hybridization and confocal laser microscopy evidenced that strain G2Bd5 is a rhizospheric and endophytic colonizer of annual ryegrass. This work revealed that annual ryegrass can naturally associate with members of the genus Burkholderia. A novel plant growth promoting strain of B. graminis was obtained. The novel strain belongs to the plant-associated Burkholderia cluster and is a promising candidate for exploitation as plant inoculant in field conditions. © 2015 The Society for Applied Microbiology.

  13. Designing Probes for Immunodiagnostics: Structural Insights into an Epitope Targeting Burkholderia Infections.

    Science.gov (United States)

    Capelli, Riccardo; Matterazzo, Elena; Amabili, Marco; Peri, Claudio; Gori, Alessandro; Gagni, Paola; Chiari, Marcella; Lertmemongkolchai, Ganjana; Cretich, Marina; Bolognesi, Martino; Colombo, Giorgio; Gourlay, Louise J

    2017-10-13

    Structure-based epitope prediction drives the design of diagnostic peptidic probes to reveal specific antibodies elicited in response to infections. We previously identified a highly immunoreactive epitope from the peptidoglycan-associated lipoprotein (Pal) antigen from Burkholderia pseudomallei, which could also diagnose Burkholderia cepacia infections. Here, considering the high phylogenetic conservation within Burkholderia species, we ask whether cross-reactivity can be reciprocally displayed by the synthetic epitope from B. cenocepacia. We perform comparative analyses of the conformational preferences and diagnostic performances of the corresponding epitopes from the two Burkholderia species when presented in the context of the full-length proteins or as isolated peptides. The effects of conformation on the diagnostic potential and cross-reactivity of Pal peptide epitopes are rationalized on the basis of the 1.8 Å crystal structure of B. cenocepacia Pal and through computational analyses. Our results are discussed in the context of designing new diagnostic molecules for the early detection of infectious diseases.

  14. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  15. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  16. Identification of Burkholderia spp. in the Clinical Microbiology Laboratory: Comparison of Conventional and Molecular Methods

    Science.gov (United States)

    van Pelt, Cindy; Verduin, Cees M.; Goessens, Wil H. F.; Vos, Margreet C.; Tümmler, Burkhard; Segonds, Christine; Reubsaet, Frans; Verbrugh, Henri; van Belkum, Alex

    1999-01-01

    Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR

  17. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jane E.S.; Jesus, Paulo C. [Universidade Regional de Blumenau, SC (Brazil). Dept. de Quimica]. E-mail: pcj@furb.rct-sc.br

    2003-06-01

    In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa) were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25 deg C in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester. (author)

  18. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    Directory of Open Access Journals (Sweden)

    Silva Jane E. S.

    2003-01-01

    Full Text Available In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25ºC in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester.

  19. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    International Nuclear Information System (INIS)

    Silva, Jane E.S.; Jesus, Paulo C.

    2003-01-01

    In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa) were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25 deg C in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester. (author)

  20. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species

    Science.gov (United States)

    Butt, Aaron T.; Thomas, Mark S.

    2017-01-01

    Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans. PMID:29164069

  1. Burkholderia glumae: next major pathogen of rice?

    Science.gov (United States)

    Ham, Jong Hyun; Melanson, Rebecca A; Rush, Milton C

    2011-05-01

    Burkholderia glumae causes bacterial panicle blight of rice, which is an increasingly important disease problem in global rice production. Toxoflavin and lipase are known to be major virulence factors of this pathogen, and their production is dependent on the TofI/TofR quorum-sensing system, which is mediated by N-octanoyl homoserine lactone. Flagellar biogenesis and a type III secretion system are also required for full virulence of B. glumae. Bacterial panicle blight is thought to be caused by seed-borne B. glumae; however, its disease cycle is not fully understood. In spite of its economic importance, neither effective control measures for bacterial panicle blight nor rice varieties showing complete resistance to the disease are currently available. A better understanding of the molecular mechanisms underlying B. glumae virulence and of the rice defence mechanisms against the pathogen would lead to the development of better methods of disease control for bacterial panicle blight. Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiaceae; Burkholderia. Gram-negative, capsulated, motile, lophotrichous flagella, pectolytic. Aborted seed, empty grains as a result of failure of grain filling, brown spots on panicles, seedling rot. Seed sterilization, planting partially resistant lines (no completely resistant line is available). KNOWN VIRULENCE FACTORS: Toxoflavin, lipase, type III effectors. © 2010 LSU AGCENTER. MOLECULAR PLANT PATHOLOGY © 2010 BSPP AND BLACKWELL PUBLISHING LTD.

  2. Diverse Burkholderia Species Isolated from Soils in the Southern United States with No Evidence of B. pseudomallei.

    Directory of Open Access Journals (Sweden)

    Carina M Hall

    Full Text Available The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4, Florida (n = 7, and Louisiana (n = 7. Using multi-locus sequence typing (MLST of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc, including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%, which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States.

  3. Diverse Burkholderia Species Isolated from Soils in the Southern United States with No Evidence of B. pseudomallei.

    Science.gov (United States)

    Hall, Carina M; Busch, Joseph D; Shippy, Kenzie; Allender, Christopher J; Kaestli, Mirjam; Mayo, Mark; Sahl, Jason W; Schupp, James M; Colman, Rebecca E; Keim, Paul; Currie, Bart J; Wagner, David M

    2015-01-01

    The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States.

  4. Burkholderia thailandensis: Genetic Manipulation.

    Science.gov (United States)

    Garcia, Erin C

    2017-05-16

    Burkholderia thailandensis is a Gram-negative bacterium endemic to Southeast Asian and northern Australian soils. It is non-pathogenic; therefore, it is commonly used as a model organism for the related human pathogens Burkholderia mallei and Burkholderia pseudomallei. B. thailandensis is relatively easily genetically manipulated and a variety of robust genetic tools can be used in this organism. This unit describes protocols for conjugation, natural transformation, mini-Tn7 insertion, and allelic exchange in B. thailandensis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members.

    Directory of Open Access Journals (Sweden)

    Graham G Willsey

    Full Text Available Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment.

  6. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae).

    Science.gov (United States)

    Itoh, Hideomi; Aita, Manabu; Nagayama, Atsushi; Meng, Xian-Ying; Kamagata, Yoichi; Navarro, Ronald; Hori, Tomoyuki; Ohgiya, Satoru; Kikuchi, Yoshitomo

    2014-10-01

    The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Distinct colicin M-like bacteriocin-immunity pairs in Burkholderia.

    Science.gov (United States)

    Ghequire, Maarten G K; De Mot, René

    2015-11-27

    The Escherichia coli bacteriocin colicin M (ColM) acts via degradation of the cell wall precursor lipid II in target cells. ColM producers avoid self-inhibition by a periplasmic immunity protein anchored in the inner membrane. In this study, we identified colM-like bacteriocin genes in genomes of several β-proteobacterial strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. Two selected Burkholderia ambifaria proteins, designated burkhocins M1 and M2, were produced recombinantly and showed antagonistic activity against Bcc strains. In their considerably sequence-diverged catalytic domain, a conserved aspartate residue equally proved pivotal for cytotoxicity. Immunity to M-type burkhocins is conferred upon susceptible strains by heterologous expression of a cognate gene located either upstream or downstream of the toxin gene. These genes lack homology with currently known ColM immunity genes and encode inner membrane-associated proteins of two distinct types, differing in predicted transmembrane topology and moiety exposed to the periplasm. The addition of burkhocins to the bacteriocin complement of Burkholderia reveals a wider phylogenetic distribution of ColM-like bacteriotoxins, beyond the γ-proteobacterial genera Escherichia, Pectobacterium and Pseudomonas, and illuminates the diversified nature of immunity-providing proteins.

  8. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases

    Directory of Open Access Journals (Sweden)

    Eva Vavříková

    2015-05-01

    Full Text Available A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22 of silychristin was accomplished by lipase PS (Pseudomonas cepacia immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/ n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule.

  9. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases

    Science.gov (United States)

    Vavříková, Eva; Gavezzotti, Paolo; Purchartová, Kateřina; Fuksová, Kateřina; Biedermann, David; Kuzma, Marek; Riva, Sergio; Křen, Vladimír

    2015-01-01

    A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22) of silychristin was accomplished by lipase PS (Pseudomonas cepacia) immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule. PMID:26016503

  10. An outbreak of Burkholderia stabilis colonization in a nasal ward.

    Science.gov (United States)

    Wang, Lijun; Wang, Mei; Zhang, Junyi; Wu, Wei; Lu, Yuan; Fan, Yanyan

    2015-04-01

    The aim of this study was to describe an outbreak of Burkholderia stabilis colonization among patients in a nasal ward. Multilocus sequence typing (MLST) was used for the molecular typing of B. stabilis isolates. Microbiological records were reviewed to delineate the colonization outbreak period. One hundred seventy-one cultures of environment and equipment samples from the nasal ward were performed to trace the source of contamination. Infection control measures were taken in order to end the outbreak. All B. stabilis isolates were identified as a new MLST type, ST821. A total of 53 patients carried this B. stabilis in the nasal ward between March and September 2013, which was defined as the outbreak period. The source of the colonization was not determined because all environment cultures were negative for Burkholderia cepacia complex. No further B. stabilis carriers have been found in the ward since the implementation of interventions. Attention must be paid to asymptomatic colonization in order to identify outbreaks early. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. PCR detection of Burkholderia multivorans in water and soil samples.

    Science.gov (United States)

    Peeters, Charlotte; Daenekindt, Stijn; Vandamme, Peter

    2016-08-12

    Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium).

  12. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia.

    Directory of Open Access Journals (Sweden)

    Jennifer L Ginther

    Full Text Available Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area.

  13. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia

    Science.gov (United States)

    Ginther, Jennifer L.; Mayo, Mark; Warrington, Stephanie D.; Kaestli, Mirjam; Mullins, Travis; Wagner, David M.; Currie, Bart J.; Tuanyok, Apichai; Keim, Paul

    2015-01-01

    Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area. PMID:26121041

  14. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    Science.gov (United States)

    Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter

    2016-01-01

    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG

  15. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis.

    Science.gov (United States)

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Hall, Carina M; Jaramillo, Sierra A; Sahl, Jason W; Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Baker, Anthony L; Sidak-Loftis, Lindsay C; Settles, Erik W; Lummis, Madeline; Schupp, James M; Gillece, John D; Tuanyok, Apichai; Warner, Jeffrey; Busch, Joseph D; Keim, Paul; Currie, Bart J; Wagner, David M

    2017-09-01

    The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc) species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4%) of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the "housekeeping" narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 μg/mL), a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species.

  16. Acid Lipase Disease

    Science.gov (United States)

    ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ...

  17. Agricultural Use of Burkholderia (Pseudomonas) Cepacia: A Threat to Human Health?

    National Research Council Canada - National Science Library

    Holmes, Alison

    1998-01-01

    .... Meanwhile, the organism has been developed as a biopesticide for protecting crops against fungal diseases and has potential as a bioremediation agent for breaking down recalcitrant herbicides and pesticides. However, B...

  18. CYTOTOXICITY ASSOCIATED WITH TRICHLOROETHYLENE OXIDATION IN BURKHOLDERIA CEPACIA G4. (R828772)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. CYTOTOXICITY ASSOCIATED WITH TRICHLOROETHYLENE OXIDATION IN BURKHOLDERIA CEPACIA G4. (R825689C027)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Energy Technology Data Exchange (ETDEWEB)

    I-Ching Kuan; Chia-Chi Lee; Bing-Hong Tsai; Shiow-Ling Lee; Wei-Ting Lee; Chi-Yang Yu [Department of Bioengineering, Tatung Univ., Taipei, Taiwan (China)

    2013-04-15

    We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil) and n-hexane content (w/w of oil) were evaluated using response surface methodology (RSM) combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 deg C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 deg C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 deg C or room temperature.

  1. Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor

    International Nuclear Information System (INIS)

    Tran, Dang-Thuan; Lin, Yi-Jan; Chen, Ching-Lung; Chang, Jo-Shu

    2014-01-01

    Highlights: • A Burkholderia lipase was immobilized on alkyl-grafted celite carriers. • Celite-alkyl-lipase catalyzed the methanolysis of triglyceride in packed-bed reactor. • The kinetics of the enzymatic transesterification follows Ping Pong Bi Bi mechanism. • Models were developed to discuss the mass transfer and enzyme kinetics in the PBR. - Abstract: A Burkholderia lipase was immobilized on celite grafted with long alkyl groups. The immobilized lipase-catalyzed methanolysis of sunflower oil in a packed-bed reactor (PBR) follows the Ping Pong Bi Bi mechanism. The external mass transfer and enzymatic reaction that simultaneously occurred in the PBR were investigated via the mathematical models. The overall biodiesel production in the PBR was verified to work in an enzymatic reaction-limited regime. Triglyceride conversion and biodiesel yield were higher under a lower reactant feeding rate, while a larger amount of biocatalyst would be required to achieve the designated conversion rate if a higher reactant feeding rate was employed. The PBR can achieve nearly complete conversion of triglyceride at a biocatalyst bed height of 60 cm (ca. 29 g biocatalyst) and a flow rate of 0.1 ml min −1 , whereas the biodiesel yield was lower than 67%, probably due to the positional specificity of Burkholderia lipase and the accumulation of glycerol

  2. An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia.

    Science.gov (United States)

    Shastri, Sravanthi; Spiewak, Helena L; Sofoluwe, Aderonke; Eidsvaag, Vigdis A; Asghar, Atif H; Pereira, Tyrone; Bull, Edward H; Butt, Aaron T; Thomas, Mark S

    2017-01-01

    To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Burkholderia tropica una bacteria con gran potencial parasu uso en la agricultura

    Directory of Open Access Journals (Sweden)

    Hernando José Bolívar-Anillo

    2016-01-01

    Full Text Available El género Burkholderia con más de 90 especies reportadas hasta la fecha, se encuentra dividido en dos grupos mayores filogenéticamente distantes. El primer grupo se encuentra constituido por especies patógenas donde destacan los patógenos oportunistas referidos como el complejo Burkholderia cepacia (Bcc;el otro grupo está conformado por especies no patógenas con habilidades para la promoción del crecimiento vegetal y la rizoremediación. Burkholderia tropica es unabacteria con capacidad de fijar nitrógeno; aislada de la rizósfera, rizoplano, tallo y la raíz de plantas de maíz y caña de azúcar. Además de su capacidad diazotrofa, B. tropica presenta características que permiten catalogarla como una bacteria promotora del crecimiento vegetal, por su capacidad de producir sideróforos, solubilizar fosfatos, producir exo-heteropolisacáridos, además de utilizarse como biocontrol para algunos fitoparásitos, lo que la convierte en una bacteria prometedora para su aplicación en el sector agrícola.

  4. Burkholderia in gladiool lastige bacterie

    NARCIS (Netherlands)

    Kok, B.J.; Aanholt, van J.T.M.

    2009-01-01

    In de bollen- en bloementeelt van gladiolen komt de laatste jaren de bacterieziekte Burkholderia gladiola voor die onder vochtige warme omstandigheden veel uitval veroorzaken. PPO onderzocht een aantal maatregelen om de ziekte in kralen, pitten en knollen te bestrijden

  5. Familial lipoprotein lipase deficiency

    Science.gov (United States)

    ... lack an enzyme called lipoprotein lipase. Without this enzyme, the body cannot break down fat from digested food. Fat particles called chylomicrons build up in the blood. Risk factors include a family history of lipoprotein lipase deficiency. The condition is usually ...

  6. IMMOBILIZED P. CEPACIA LIPASE FOR BIODIESEL FUEL PRODUCTION FROM SOYBEAN OIL. (R829479C008)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Bacterial lipases for biotechnological applications

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Schneidinger, Bernd; Rosenau, Frank; Werner, Michael; Lang, Dietmar; Dijkstra, Bauke W.; Schimossek, Klaus; Zonta, Albin; Reetz, Manfred T.

    1997-01-01

    Lipase genes originating from the Gram-negative bacteria Serrutiu marcescens and Pseudomonus urruginosa were cloned. S. marcescens lipase was overexpressed in Escherichia coli yielding inclusion bodies which were purified and finally refolded to give enzymatically active lipase. The lipase operon of

  8. Construction of a large-scale Burkholderia cenocepacia J2315 transposon mutant library

    Science.gov (United States)

    Wong, Yee-Chin; Pain, Arnab; Nathan, Sheila

    2014-09-01

    Burkholderia cenocepacia, a pathogenic member of the Burkholderia cepacia complex (Bcc), has emerged as a significant threat towards cystic fibrosis patients, where infection often leads to the fatal clinical manifestation known as cepacia syndrome. Many studies have investigated the pathogenicity of B. cenocepacia as well as its ability to become highly resistant towards many of the antibiotics currently in use. In addition, studies have also been undertaken to understand the pathogen's capacity to adapt and survive in a broad range of environments. Transposon based mutagenesis has been widely used in creating insertional knock-out mutants and coupled with recent advances in sequencing technology, robust tools to study gene function in a genome-wide manner have been developed based on the assembly of saturated transposon mutant libraries. In this study, we describe the construction of a large-scale library of B. cenocepacia transposon mutants. To create transposon mutants of B. cenocepacia strain J2315, electrocompetent bacteria were electrotransformed with the EZ-Tn5 transposome. Tetracyline resistant colonies were harvested off selective agar and pooled. Mutants were generated in multiple batches with each batch consisting of ˜20,000 to 40,000 mutants. Transposon insertion was validated by PCR amplification of the transposon region. In conclusion, a saturated B. cenocepacia J2315 transposon mutant library with an estimated total number of 500,000 mutants was successfully constructed. This mutant library can now be further exploited as a genetic tool to assess the function of every gene in the genome, facilitating the discovery of genes important for bacterial survival and adaptation, as well as virulence.

  9. Non-obligate predatory bacterium burkholderia casidaeand uses thereof

    OpenAIRE

    1998-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  10. Non-obligate predatory bacterium Burkholderia casidae and uses thereof

    OpenAIRE

    2001-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  11. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Saiman, L.; Cacalano, G.; Prince, A.

    1990-01-01

    Pseudomonas aeruginosa and Pseudomonas cepacia are both opportunistic pathogens of patients with cystic fibrosis. The binding characteristics of these two species were compared to determine if they use similar mechanisms to adhere to respiratory epithelial cells. P. cepacia 249 was shown to be piliated, but there was no detectable homology between P. aeruginosa pilin gene probes and P. cepacia genomic DNA. P. cepacia and P. aeruginosa did not appear to compete for epithelial receptors. In the presence of purified P. aeruginosa pili, the adherence of 35S-labeled strain 249 to respiratory epithelial monolayers was unaffected, while that of P. aeruginosa PAO1 was decreased by 55%. The binding of P. cepacia 249 and 715j was increased by 2.4-fold and 1.5-fold, respectively, in the presence of an equal inoculum of PAO1. Interbacterial agglutination contributed to the increased adherence of P. cepacia, as the binding of 249 was increased twofold in the presence of irradiated PAO1. PAO1 exoproducts had a marked effect in enhancing the ability of the P. cepacia strains to adhere to the epithelial monolayers. A PAO1 supernatant increased the binding of 249 by eightfold and that of 715j by fourfold. Thus, there appears to be a synergistic relationship between P. aeruginosa and P. cepacia in which PAO1 exoproducts modify the epithelial cell surface, exposing receptors and facilitating increased P. cepacia attachment

  12. Combining regio- and enantioselectivity of lipases for the preparation of (R)-4-chloro-2-butanol.

    Science.gov (United States)

    Méndez, Jonh J; Oromi, Mireia; Cervero, Maria; Balcells, Mercè; Torres, Mercè; Canela, Ramon

    2007-01-01

    Preparation of 98% ee (R)-4-chloro-2-butanol was carried out by the enzymatic hydrolysis of chlorohydrin esters, using fungal resting cells and commercial enzymes. Hydrolyzes were carried out using lipases from Candida antarctica (Novozym 435), C. rugosa, Rhizomucor miehei (Lipozyme IM), Burkolia cepacia, and resting cells of Rhizopus oryzae and Aspergillus flavus. The influence of the enzyme, the solvent, the temperature, and the alkyl chain length on the selectivity of hydrolyzes of isomeric mixtures of chlorohydrin esters is described. Regioselectivity was higher than 95% for some of the tested lipases. Novozym 435 allowed preparation of the (R)-4-chloro-2-butanol after 15 min of reaction at 30-40 degrees C. (c) 2006 Wiley-Liss, Inc.

  13. Lipase polystyrene giant amphiphiles.

    Science.gov (United States)

    Velonia, Kelly; Rowan, Alan E; Nolte, Roeland J M

    2002-04-24

    A new type of giant amphiphilic molecule has been synthesized by covalently connecting a lipase enzyme headgroup to a maleimide-functionalized polystyrene tail (40 repeat units). The resulting biohybrid forms catalytic micellar rods in water.

  14. Extensive cultivation of soil and water samples yields various pathogens in patients with cystic fibrosis but not Burkholderia multivorans.

    Science.gov (United States)

    Peeters, Charlotte; Depoorter, Eliza; Praet, Jessy; Vandamme, Peter

    2016-11-01

    While the epidemiology of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients suggests that Burkholderia multivorans is acquired from environmental sources, this species has rarely been isolated from soil and water samples. Multiple isolation strategies were applied to water and soil samples that were previously shown to be B. multivorans PCR positive. These included direct plating and liquid enrichment procedures and the use of selective media, acclimatizing recovery and co-cultivation with CF sputum. MALDI-TOF mass spectrometry and sequence analysis of 16S rRNA and housekeeping genes were used to identify all isolates. None of the approaches yielded B. multivorans isolates. Other Burkholderia species, several Gram-negative non-fermenting bacteria (including Cupriavidus, Inquilinus, Pandoraea, Pseudomonas and Stenotrophomonas) and rapidly growing mycobacteria (including Mycobacterium chelonae) were all isolated from water and soil samples. The use of Bcc isolation media yielded a surprisingly wide array of rare but often clinically relevant CF pathogens, confirming that soil and water are reservoirs of these infectious agents. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  15. Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia.

    Science.gov (United States)

    Stietz, Maria S; Lopez, Christina; Osifo, Osasumwen; Tolmasky, Marcelo E; Cardona, Silvia T

    2017-10-01

    There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.

  16. Cyanide toxicity to Burkholderia cenocepacia is modulated by polymicrobial communities and environmental factors

    Directory of Open Access Journals (Sweden)

    Steve P. Bernier

    2016-05-01

    Full Text Available Microbes within polymicrobial communities can establish positive and negative interactions that have the potential to influence the overall behaviour of the community. Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc can co-exist in the lower airways, however several studies have shown that P. aeruginosa can effectively kill the Bcc in vitro, for which hydrogen cyanide was recently proposed to play a critical role. Here we show that modification of the environment (i.e. culture medium, long-term genetic adaptation of P. aeruginosa to the cystic fibrosis (CF lung, or the addition of another bacterial species to the community can alter the sensitivity of Burkholderia cenocepacia to P. aeruginosa toxins. We specifically demonstrate that undefined rich media leads to higher susceptibility of B. cenocepacia to P. aeruginosa toxins like cyanide as compared to a synthetic medium (SCFM, that mimics the CF lung nutritional content. Overall, our study shows that the polymicrobial environment can have profound effects on negative interactions mediated by P. aeruginosa against B. cenocepacia. In fact, evolved P. aeruginosa or the presence of other species such as Staphylococcus aureus can directly abolish the direct competition mediated by cyanide and consequently maintaining a higher level of species diversity within the community.

  17. Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia

    Directory of Open Access Journals (Sweden)

    Viola Camilla eScoffone

    2015-08-01

    Full Text Available Burkholderia cenocepacia is a major concern for people suffering from Cystic Fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult.Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109, with a bactericidal effect and a MIC of 8 µg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known Burkholderia cepacia complex species.Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by qRT-PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance.

  18. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis.

    Science.gov (United States)

    Govan, J R; Brown, P H; Maddison, J; Doherty, C J; Nelson, J W; Dodd, M; Greening, A P; Webb, A K

    1993-07-03

    Pulmonary colonisation with Pseudomonas cepacia in patients with cystic fibrosis can be associated with increased morbidity and mortality. The modes of transmission of P cepacia are, however, unclear. We used selective media and phenotypic and genomic typing systems to investigate the acquisition of P cepacia by adults with cystic fibrosis. An analysis of isolates from 210 patients attending regional clinics in Edinburgh and Manchester between 1986 and 1992 showed that the main cause of increased isolations of P cepacia from 1989 was the emergence of an epidemic strain that had spread between patients in both clinics. Epidemiological evidence indicated that social contact was important in spread of the epidemic strain within and between clinics. We suggest that guidelines to limit the acquisition of P cepacia should not be restricted to patients in hospital, and that intimate or frequent social contact is associated with a high risk of cross-infection.

  19. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents.

    Science.gov (United States)

    Mine, Y; Fukunaga, K; Maruoka, N; Nakao, K; Sugimura, Y

    2000-01-01

    A novel method of preparing detergent-enzyme complexes that can be employed in organic media was developed utilizing newly synthesized water-soluble nonionic gemini-type detergents, N,N-bis(3-D-gluconamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIG2CnCA: n = 10,12,14,16,18) and N,N-bis(3-D-lactonamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIL2CnCA: n = 16,18), and nonionic twin-headed detergents, N,N-bis(3-D-gluconamidopropyl)alkanamides (BIG1Cn: n = 12,14,16,18,delta9). This method simply entails mixing a selected enzyme with an appropriate detergent in an aqueous solution followed by lyophilization, and it offers the advantages of enhanced enzymatic activity in organic solvents and eliminates both enzyme loss and the necessity for an organic solvent in the preparation stage. Using various modified lipases originating from Aspergillus niger (Lipase A), Candida rugosa (Lipase C), Pseudomonas cepacia (Lipase P), and porcine pancreas (PPL), prepared using the novel method and detergents, including conventional synthesized nonionic detergents such as dialkyl N-D-glucona-L-glutamates (2CnGE: n = 12,18delta9) and octanoyl-N-methylglucamide (MEGA-8), enantioselective transesterifications of 6-methyl-5-hepten-2-ol (sulcatol) and 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with a vinyl or isopropenyl carboxylate were carried out in an organic solvent. The modified lipase activity was influenced by both the lipases and the structure of the detergents. The value for the hydrophile-lipophile balance (HLB) of the detergent provided a means of correlating the structure and the obtained modified lipase activity. For detergents of the same class with a HLB value of approximately 9 and 12, the highest activity was obtained for Lipase A and Lipase P, and Lipase C and PPL, respectively. Among detergents of the same HLB value tested, the gemini-type detergents possessing the most bulky head and tail were most effective as a modifier for lipases of all

  20. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility.

    Science.gov (United States)

    Chain, Patrick S G; Denef, Vincent J; Konstantinidis, Konstantinos T; Vergez, Lisa M; Agulló, Loreine; Reyes, Valeria Latorre; Hauser, Loren; Córdova, Macarena; Gómez, Luis; González, Myriam; Land, Miriam; Lao, Victoria; Larimer, Frank; LiPuma, John J; Mahenthiralingam, Eshwar; Malfatti, Stephanie A; Marx, Christopher J; Parnell, J Jacob; Ramette, Alban; Richardson, Paul; Seeger, Michael; Smith, Daryl; Spilker, Theodore; Sul, Woo Jun; Tsoi, Tamara V; Ulrich, Luke E; Zhulin, Igor B; Tiedje, James M

    2006-10-17

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven "central aromatic" and twenty "peripheral aromatic" pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.

  1. Burkholderia xernovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility

    Energy Technology Data Exchange (ETDEWEB)

    Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Denef, Vincent [University of California, Berkeley; Konstantinidis, Konstantinos T [Michigan State University, East Lansing; Vergez, Lisa [Lawrence Livermore National Laboratory (LLNL); Agullo, Loreine [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Reyes, Valeria Latorre [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Hauser, Loren John [ORNL; Cordova, Macarena [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Gomez, Luis [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Gonzalez, Myriam [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Land, Miriam L [ORNL; Lao, Victoria [Lawrence Livermore National Laboratory (LLNL); Larimer, Frank W [ORNL; LiPuma, John J [University of Michigan; Mahenthiralingam, Eshwar [Cardiff University, Wales; Malfatti, Stephanie [Lawrence Livermore National Laboratory (LLNL); Marx, Christopher J [Harvard University; Parnell, J Jacob [Michigan State University, East Lansing; Ramette, Alban [Michigan State University, East Lansing; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Seeger, Michael [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Smith, Daryl [University of British Columbia, Vancouver; Spilker, Theodore [University of Michigan; Sul, Woo Jun [Michigan State University, East Lansing; Tsoi, Tamara V [Michigan State University, East Lansing; Zhulin, Igor B [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Tiedje, James M. [Michigan State University, East Lansing

    2006-01-01

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven 'central aromatic' and twenty 'peripheral aromatic' pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.

  2. Isolation of Pseudomonas cepacia in cystic fibrosis patient

    Directory of Open Access Journals (Sweden)

    Elizabeth de Andrade Marques

    1993-03-01

    Full Text Available Pulmonary infection on cystic fibrosis (CF patients are associated with a limited qualitative number of microorganisms. During the colonization process, Staphylococcus aureus usually preceedes Pseudomonas aeruginosa. This latter is at first non-mucoid, being replaced or associated to a mucoid morphotype which is rare in other diseases. In 1980, Pseudomonas cepacia appeared as an important agent in CF pulmonary infections with a mean frequency of about 6.1% isolations in different parts of the world. The primus colonization mainly occurs in the presence of pre-existent tissue lesions and the clinical progress of the disease is variable. In some patients it can be fulminant; in others it can cause a gradual and slow decrease in their pulmonary functions. The concern with this germ isolation is justified by its antibiotic multiple resistence and the possibility of direct transmission from a colonized patient to a non-colonized one. We reported the first case of P. cepacia infection in a CF patient in our area. The microbiological attendance to this patient had been made from 1986 to 1991 and the first positive culture appeared in 1988. The sensitivity profile showed that the primus colonization strain was sensitive to 9 of 17 tested antibiotics, however in the last culture the strain was resistent to all antibiotics. These data corroborate the need for monitoring the bacterial flora on CF patients respiratory system.

  3. Regulator LdhR and d-Lactate Dehydrogenase LdhA of Burkholderia multivorans Play Roles in Carbon Overflow and in Planktonic Cellular Aggregate Formation.

    Science.gov (United States)

    Silva, Inês N; Ramires, Marcelo J; Azevedo, Lisa A; Guerreiro, Ana R; Tavares, Andreia C; Becker, Jörg D; Moreira, Leonilde M

    2017-10-01

    LysR-type transcriptional regulators (LTTRs) are the most commonly found regulators in Burkholderia cepacia complex, comprising opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. Despite LTTRs being global regulators of pathogenicity in several types of bacteria, few have been characterized in Burkholderia Here, we show that gene ldhR of B. multivorans encoding an LTTR is cotranscribed with ldhA encoding a d-lactate dehydrogenase and evaluate their implication in virulence traits such as exopolysaccharide (EPS) synthesis and biofilm formation. A comparison of the wild type (WT) and its isogenic Δ ldhR mutant grown in medium with 2% d-glucose revealed a negative impact on EPS biosynthesis and on cell viability in the presence of LdhR. The loss of viability in WT cells was caused by intracellular acidification as a consequence of the cumulative secretion of organic acids, including d-lactate, which was absent from the Δ ldhR mutant supernatant. Furthermore, LdhR is implicated in the formation of planktonic cellular aggregates. WT cell aggregates reached 1,000 μm in size after 24 h in liquid cultures, in contrast to Δ ldhR mutant aggregates that never grew more than 60 μm. The overexpression of d-lactate dehydrogenase LdhA in the Δ ldhR mutant partially restored the formed aggregate size, suggesting a role for fermentation inside aggregates. Similar results were obtained for surface-attached biofilms, with WT cells producing more biofilm. A systematic evaluation of planktonic aggregates in Burkholderia CF clinical isolates showed aggregates in 40 of 74. As CF patients' lung environments are microaerophilic and bacteria are found as free aggregates/biofilms, LdhR and LdhA might have central roles in adapting to this environment. IMPORTANCE Cystic fibrosis patients often suffer from chronic respiratory infections caused by several types of microorganisms. Among them are the Burkholderia cepacia complex bacteria, which

  4. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava

    OpenAIRE

    Dietrich, Diane; Illman, Barbara; Crooks, Casey

    2013-01-01

    Background The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides arabinose, xylose, glucose and mannose. Findings We examined the sensitivity of seven polyhydroxyalkanoate producing ba...

  5. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava

    Science.gov (United States)

    Diane Dietrich; Barbara Illman; Casey Crooks

    2013-01-01

    The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides...

  6. MECHANISM-BASED INACTIVATION OF TOLUENE 2-MONOOXYGENASE IN BURKHOLDERIA CEPACIA G4 BY ALKYNES. (R825689C027)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. REQUIREMENT OF DNA REPAIR MECHANISMS FOR SURVIVAL OF BURKHOLDERIA CEPACIA G4 UPON DEGRADATION OF TRICHLOROETHYLENE. (R828772)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Stress conditions triggering mucoid morphotype variation in Burkholderia species and effect on virulence in Galleria mellonella and biofilm formation in vitro.

    Directory of Open Access Journals (Sweden)

    Inês N Silva

    Full Text Available Burkholderia cepacia complex (Bcc bacteria are opportunistic pathogens causing chronic respiratory infections particularly among cystic fibrosis patients. During these chronic infections, mucoid-to-nonmucoid morphotype variation occurs, with the two morphotypes exhibiting different phenotypic properties. Here we show that in vitro, the mucoid clinical isolate Burkholderia multivorans D2095 gives rise to stable nonmucoid variants in response to prolonged stationary phase, presence of antibiotics, and osmotic and oxidative stresses. Furthermore, in vitro colony morphotype variation within other members of the Burkholderia genus occurred in Bcc and non-Bcc strains, irrespectively of their clinical or environmental origin. Survival to starvation and iron limitation was comparable for the mucoid parental isolate and the respective nonmucoid variant, while susceptibility to antibiotics and to oxidative stress was increased in the nonmucoid variants. Acute infection of Galleria mellonella larvae showed that, in general, the nonmucoid variants were less virulent than the respective parental mucoid isolate, suggesting a role for the exopolysaccharide in virulence. In addition, most of the tested nonmucoid variants produced more biofilm biomass than their respective mucoid parental isolate. As biofilms are often associated with increased persistence of pathogens in the CF lungs and are an indicative of different cell-to-cell interactions, it is possible that the nonmucoid variants are better adapted to persist in this host environment.

  9. Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles.

    Science.gov (United States)

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-12-11

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively.

  10. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Directory of Open Access Journals (Sweden)

    Chi-Yang Yu

    2013-04-01

    Full Text Available We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil and n-hexane content (w/w of oil were evaluated using response surface methodology (RSM combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 °C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 °C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 °C or room temperature.

  11. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    OpenAIRE

    Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter

    2016-01-01

    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei Glade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extende...

  12. A putative lateral flagella of the cystic fibrosis pathogen Burkholderia dolosa regulates swimming motility and host cytokine production

    Science.gov (United States)

    Clark, Bradley S.; Weatherholt, Molly; Renaud, Diane; Scott, David; LiPuma, John J.; Priebe, Gregory; Gerard, Craig

    2018-01-01

    Burkholderia dolosa caused an outbreak in the cystic fibrosis clinic at Boston Children’s Hospital and was associated with high mortality in these patients. This species is part of a larger complex of opportunistic pathogens known as the Burkholderia cepacia complex (Bcc). Compared to other species in the Bcc, B. dolosa is highly transmissible; thus understanding its virulence mechanisms is important for preventing future outbreaks. The genome of one of the outbreak strains, AU0158, revealed a homolog of the lafA gene encoding a putative lateral flagellin, which, in other non-Bcc species, is used for movement on solid surfaces, attachment to host cells, or movement inside host cells. Here, we analyzed the conservation of the lafA gene and protein sequences, which are distinct from those of the polar flagella, and found lafA homologs to be present in numerous β-proteobacteria but notably absent from most other Bcc species. A lafA deletion mutant in B. dolosa showed a greater swimming motility than wild-type due to an increase in the number of polar flagella, but did not appear to contribute to biofilm formation, host cell invasion, or murine lung colonization or persistence over time. However, the lafA gene was important for cytokine production in human peripheral blood mononuclear cells, suggesting it may have a role in recognition by the human immune response. PMID:29346379

  13. Rapid emergence of a ceftazidime-resistant Burkholderia multivorans strain in a cystic fibrosis patient.

    Science.gov (United States)

    Stokell, Joshua R; Gharaibeh, Raad Z; Steck, Todd R

    2013-12-01

    Burkholderia multivorans poses a serious health threat to cystic fibrosis patients due to innate resistance to multiple antibiotics and acquisition of resistance to a range of antibiotics due to the frequent use of antibiotics to treat chronic infections. Monitoring antibiotic susceptibility is crucial to managing patient care. We identified the rapid emergence of a ceftazidime-resistant strain in a single patient within four days during a hospitalization for treatment of an exacerbation. B. multivorans was isolated from expectorated sputum samples using Burkholderia cepacia selective agar. A macrodilution assay was performed on all isolates to determine the minimum inhibitory concentration of ceftazidime. Approximately 4000 colonies were scored to identify the percent of ceftazidime-resistant colonies. Extracted DNA was used to determine the total bacterial counts and abundance of B. multivorans using quantitative PCR. An increase from no detectable B. multivorans ceftazidime-resistant colonies to over 75% of all colonies tested occurred within a four-day period. The resistant population remained dominant in 6 of the 8 samples in the following 17 months of the study. qPCR revealed an association between change in the percent of resistant colonies and abundance of B. multivorans, but not of total bacteria. No association was found between the acquisition of resistance to ceftazidime and other antibiotics commonly used to treat B. multivorans infections. The rapid emergence of a ceftazidime-resistant by B. multivorans strain occurred during a hospitalization while under selective pressure of antibiotics. The resistant strain maintained dominance in the B. multivorans population which resulted in an overall decline in a patient health and treatment efficacy. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  14. Fluorescence and NMR spectroscopy together with molecular simulations reveal amphiphilic characteristics of a Burkholderia biofilm exopolysaccharide.

    Science.gov (United States)

    Kuttel, Michelle M; Cescutti, Paola; Distefano, Marco; Rizzo, Roberto

    2017-06-30

    Biofilms are a collective mode of bacterial life in which a self-produced matrix confines cells in close proximity to each other. Biofilms confer many advantages, including protection from chemicals (including antibiotics), entrapment of useful extracellular enzymes and nutrients, as well as opportunities for efficient recycling of molecules from dead cells. Biofilm matrices are aqueous gel-like structures composed of polysaccharides, proteins, and DNA stabilized by intermolecular interactions that may include non-polar connections. Recently, polysaccharides extracted from biofilms produced by species of the Burkholderia cepacia complex were shown to possess clusters of rhamnose, a 6-deoxy sugar with non-polar characteristics. Molecular dynamics simulations are well suited to characterizing the structure and dynamics of polysaccharides, but only relatively few such studies exist of their interaction with non-polar molecules. Here we report an investigation into the hydrophobic properties of the exopolysaccharide produced by Burkholderia multivorans strain C1576. Fluorescence experiments with two hydrophobic fluorescent probes established that this polysaccharide complexes hydrophobic species, and NMR experiments confirmed these interactions. Molecular simulations to model the hydrodynamics of the polysaccharide and the interaction with guest species revealed a very flexible, amphiphilic carbohydrate chain that has frequent dynamic interactions with apolar molecules; both hexane and a long-chain fatty acid belonging to the quorum-sensing system of B. multivorans were tested. A possible role of the non-polar domains of the exopolysaccharide in facilitating the diffusion of aliphatic species toward specific targets within the biofilm aqueous matrix is proposed. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

    Science.gov (United States)

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A M; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  16. Influence of alcohol: oil molar ratio on the production of ethyl esters ...

    African Journals Online (AJOL)

    The influence of alcohol:oil molar ratio on the canola oil transesterification reaction in solvent-free medium using free lipase from Thermomyces lanuginosus and Burkholderia cepacia was studied. The experiments conducted in batch reactor for 72 h at 37°C in cosolvent-free reaction system with ethanol addition in three ...

  17. Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators.

    Science.gov (United States)

    Nock, Adam M; Wargo, Matthew J

    2016-09-15

    regulation of these components can help us understand both the evolution of these systems and the potential roles these pathways have in the biology of each bacterium. Here, we describe the transcriptome response of Burkholderia thailandensis to the eukaryote-enriched molecule choline, identify the regulatory pathway governing choline catabolism, and compare the pathway to that previously described for Pseudomonas aeruginosa These data support a multitiered regulatory network in B. thailandensis, with conserved orthologs in the select agents Burkholderia pseudomallei and Burkholderia mallei, as well as the opportunistic lung pathogens in the Burkholderia cepacia clade. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Polysaccharide microarray technology for the detection of Burkholderia pseudomallei and Burkholderia mallei antibodies.

    Science.gov (United States)

    Parthasarathy, Narayanan; DeShazer, David; England, Marilyn; Waag, David M

    2006-11-01

    A polysaccharide microarray platform was prepared by immobilizing Burkholderia pseudomallei and Burkholderia mallei polysaccharides. This polysaccharide array was tested with success for detecting B. pseudomallei and B. mallei serum (human and animal) antibodies. The advantages of this microarray technology over the current serodiagnosis of the above bacterial infections were discussed.

  19. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil.

    Science.gov (United States)

    Lee, Jae-Chan; Whang, Kyung-Sook

    2015-09-01

    Strains Y-12(T) and Y-47(T) were isolated from mountain forest soil and strain WR43(T) was isolated from rhizosphere soil, at Daejeon, Korea. The three strains grew at 10-55 °C (optimal growth at 28-30 °C), at pH 3.0-8.0 (optimal growth at pH 6.0) and in the presence of 0-4.0% (w/v) NaCl, growing optimally in the absence of added NaCl. On the basis of 16S rRNA gene sequence analysis, the three strains were found to belong to the genus Burkholderia, showing the closest phylogenetic similarity to Burkholderia diazotrophica JPY461(T) (97.2-97.7%); the similarity between the three sequences ranged from 98.3 to 98.7%. Additionally, the three strains formed a distinct group in phylogenetic trees based on the housekeeping genes recA and gyrB. The predominant ubiquinone was Q-8, the major fatty acids were C16 : 0 and C17  : 0 cyclo and the DNA G+C content of the novel isolates was 61.6-64.4 mol%. DNA-DNA relatedness among the three strains and the type strains of the closest species of the genus Burkholderia was less than 50%. On the basis of 16S rRNA, recA and gyrB gene sequence similarities, chemotaxonomic and phenotypic data, the three strains represent three novel species within the genus Burkholderia, for which the names Burkholderia humisilvae sp. nov. (type strain Y-12(T)= KACC 17601(T) = NBRC 109933(T) = NCAIM B 02543(T)), Burkholderia solisilvae sp. nov. (type strain Y-47(T) = KACC 17602(T)= NBRC 109934(T) = NCAIM B 02539(T)) and Burkholderia rhizosphaerae sp. nov. (type strain WR43(T) = KACC 17603(T) = NBRC 109935(T) = NCAIM B 02541(T)) are proposed.

  20. Literature Review of DNA-Based Subspecies Analysis of Bacillus Anthracis Burkholderia Pseudomallel Burkholderia Mallei, and Yersinia Pestis

    National Research Council Canada - National Science Library

    Harvey, Steven

    1999-01-01

    ...; Bacillus anthracis, Burkholderia pseudomallei, Burkholderia mallei, and Yersinia pestis. Considerable research has been accomplished for the identification of polymorphisms from the strains B. anthracis and B. pseudomallei. The B...

  1. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India.

    Science.gov (United States)

    Ghosh, Ranjan; Barman, Soma; Mukherjee, Rajib; Mandal, Narayan C

    2016-02-01

    Profuse growth of Lycpodium cernuum L. was found in phosphate deficient red lateritic soil of West Bengal, India. Interaction of vesicular-arbuscular mycorrhiza (VAM) with Lycopodium rhizoids were described earlier but association of PGPR with their rhizoids were not studied. Three potent phosphate solubilizing bacterial strains (P4, P9 and P10) associated with L. cernuum rhizoids were isolated and identified by 16S rDNA homologies on Ez-Taxon database as Burkholderia tropica, Burkholderia unamae and Burkholderia cepacia respectively. Day wise kinetics of phosphate solubilization against Ca3(PO4)2 suggested P4 (580.56±13.38 μg ml(-1)) as maximum mineral phosphate solubilizer followed by P9 (517.12±17.15 μg ml(-1)) and P10 (485.18±14.23 μg ml(-1)) at 28 °C. Release of bound phosphates by isolated strains from ferric phosphate (FePO4), aluminum phosphate (AlPO4) and four different complex rock phosphates indicated their very good phosphate solubilizng efficacy. Nitrogen independent solubilizition also supports their nitrogen fixing capabilities. Inhibition of P solubilization by calcium salts and induction by EDTA suggested pH dependent chelation of metal cations by all of the isolates. Rhizoidal colonization potentials of Burkholderia spp. were confirmed by in planta experiment and also using scanning electron microscope (SEM). Increases of total phosphate content in Lycopodium plants upon soil treatment with these isolates were also recorded. In addition siderophore production on CAS agar medium, tryptophan dependent IAA production and antifungal activities against pathogenic fungi by rhizospheric isolates deep-rooted that they have definite role in nutrient mobilization for successful colonization of L. cernuum in nutrient deficient lateritic soil. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    KAUST Repository

    Wong, Yee-Chin

    2016-08-22

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  3. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    KAUST Repository

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  4. Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model

    KAUST Repository

    Wong, Yee-Chin

    2018-05-29

    A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.

  5. Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model

    KAUST Repository

    Wong, Yee-Chin; Abd El Ghany, Moataz; Ghazzali, Raeece N. M.; Yap, Soon-Joo; Hoh, Chee-Choong; Pain, Arnab; Nathan, Sheila

    2018-01-01

    A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.

  6. Candidate essential genes in Burkholderia cenocepacia J2315 identified by genome-wide TraDIS

    Directory of Open Access Journals (Sweden)

    Yee-Chin Wong

    2016-08-01

    Full Text Available Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  7. Biodiesel production with immobilized lipase: A review.

    Science.gov (United States)

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Development of a Polymerase Chain Reaction Assay for the Specific Identification of Burkholderia mallei and Differentiation from Burkholderia pseudomallei and Other Closely Related Burkholderiaceae

    National Research Council Canada - National Science Library

    Ulrich, Ricky L; Ulrich, Melanie P; Schell, Mark A; Kim, H. S; DeShazer, David

    2005-01-01

    Burkholderia mallei and Burkholderia pseudomallei, the etiologic agents responsible for glanders and melioidosis, respectively, are genetically and phenotypically similar and are category B biothreat agents...

  9. Burkholderia cordobensis sp. nov., from agricultural soils.

    Science.gov (United States)

    Draghi, Walter O; Peeters, Charlotte; Cnockaert, Margo; Snauwaert, Cindy; Wall, Luis G; Zorreguieta, Angeles; Vandamme, Peter

    2014-06-01

    Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain. © 2014 IUMS.

  10. Comparative analyses of lipoprotein lipase, hepatic lipase, and endothelial lipase, and their binding properties with known inhibitors.

    Directory of Open Access Journals (Sweden)

    Ziyun Wang

    Full Text Available The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investigated the kinetic characteristics for the catalytic residues using a molecular dynamics simulation strategy. To elucidate the molecular interactions and determine potential key residues involved in the binding to lipase inhibitors, we analyzed the binding pockets and binding poses of known inhibitors of the three lipases. We identified the spatial consensus catalytic triad "Ser-Asp-His", a characteristic motif in all three lipases. Furthermore, we found that the spatial characteristics of the binding pockets of the lipase molecules play a key role in ligand recognition, binding poses, and affinities. To the best of our knowledge, this is the first report that systematically builds homology models of all the triglyceride lipase gene subfamily members. Our data provide novel insights into the molecular structures of lipases and their structure-function relationship, and thus provides groundwork for functional probe design towards lipase-based therapeutic inhibitors for the treatment of hyperlipidemia and atherosclerosis.

  11. Burkholderia humi sp nov., Burkholderia choica sp nov., Burkholderia telluris sp nov., Burkholderia terrestris sp nov and Burkholderia udeis sp nov. : Burkholderia glathei-like bacteria from soil and rhizosphere soil

    NARCIS (Netherlands)

    Vandamme, Peter; De Brandt, Evie; Houf, Kurt; Salles, Joana Falcao; van Elsas, Jan Dirk; Spilker, Theodore; LiPuma, John J.

    2013-01-01

    Analysis of partial gyrB gene sequences revealed six taxa in a group of 17 Burkholderia glathei-like isolates which were further examined by (GTG)(5)-PCR fingerprinting, 16S rRNA gene sequence analysis, DNA-DNA hybridizations, determination of the DNA G+C content, whole-cell fatty acid analysis and

  12. Burkholderia humptydooensis sp. nov., a New Species Related to Burkholderia thailandensis and the Fifth Member of the Burkholderia pseudomallei Complex.

    Science.gov (United States)

    Tuanyok, Apichai; Mayo, Mark; Scholz, Holger; Hall, Carina M; Allender, Christopher J; Kaestli, Mirjam; Ginther, Jennifer; Spring-Pearson, Senanu; Bollig, Molly C; Stone, Joshua K; Settles, Erik W; Busch, Joseph D; Sidak-Loftis, Lindsay; Sahl, Jason W; Thomas, Astrid; Kreutzer, Lisa; Georgi, Enrico; Gee, Jay E; Bowen, Richard A; Ladner, Jason T; Lovett, Sean; Koroleva, Galina; Palacios, Gustavo; Wagner, David M; Currie, Bart J; Keim, Paul

    2017-03-01

    During routine screening for Burkholderia pseudomallei from water wells in northern Australia in areas where it is endemic, Gram-negative bacteria (strains MSMB43 T , MSMB121, and MSMB122) with a similar morphology and biochemical pattern to B. pseudomallei and B. thailandensis were coisolated with B. pseudomallei on Ashdown's selective agar. To determine the exact taxonomic position of these strains and to distinguish them from B. pseudomallei and B. thailandensis , they were subjected to a series of phenotypic and molecular analyses. Biochemical and fatty acid methyl ester analysis was unable to distinguish B. humptydooensis sp. nov. from closely related species. With matrix-assisted laser desorption ionization-time of flight analysis, all isolates grouped together in a cluster separate from other Burkholderia spp. 16S rRNA and recA sequence analyses demonstrated phylogenetic placement for B. humptydooensis sp. nov. in a novel clade within the B. pseudomallei group. Multilocus sequence typing (MLST) analysis of the three isolates in comparison with MLST data from 3,340 B. pseudomallei strains and related taxa revealed a new sequence type (ST318). Genome-to-genome distance calculations and the average nucleotide identity of all isolates to both B. thailandensis and B. pseudomallei , based on whole-genome sequences, also confirmed B. humptydooensis sp. nov. as a novel Burkholderia species within the B. pseudomallei complex. Molecular analyses clearly demonstrated that strains MSMB43 T , MSMB121, and MSMB122 belong to a novel Burkholderia species for which the name Burkholderia humptydooensis sp. nov. is proposed, with the type strain MSMB43 T (American Type Culture Collection BAA-2767; Belgian Co-ordinated Collections of Microorganisms LMG 29471; DDBJ accession numbers CP013380 to CP013382). IMPORTANCE Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The genus Burkholderia consists of a diverse group of species, with

  13. Biodegradable products by lipase biocatalysis.

    Science.gov (United States)

    Linko, Y Y; Lämsä, M; Wu, X; Uosukainen, E; Seppälä, J; Linko, P

    1998-11-18

    The interest in the applications of biocatalysis in organic syntheses has rapidly increased. In this context, lipases have recently become one of the most studied groups of enzymes. We have demonstrated that lipases can be used as biocatalyst in the production of useful biodegradable compounds. A number of examples are given. 1-Butyl oleate was produced by direct esterification of butanol and oleic acid to decrease the viscosity of biodiesel in winter use. Enzymic alcoholysis of vegetable oils without additional organic solvent has been little investigated. We have shown that a mixture of 2-ethyl-1-hexyl esters can be obtained in a good yield by enzymic transesterification from rapeseed oil fatty acids for use as a solvent. Trimethylolpropane esters were also similarly synthesized as lubricants. Finally, the discovery that lipases can also catalyze ester syntheses and transesterification reactions in organic solvent systems has opened up the possibility of enzyme catalyzed production of biodegradable polyesters. In direct polyesterification of 1,4-butanediol and sebacic acid, polyesters with a mass average molar mass of the order of 56,000 g mol-1 or higher, and a maximum molar mass of about 130,000 g mol-1 were also obtained by using lipase as biocatalyst. Finally, we have demonstrated that also aromatic polyesters can be synthesized by lipase biocatalysis, a higher than 50,000 g mol-1 mass average molar mass of poly(1,6-hexanediyl isophthalate) as an example.

  14. Burkholderia monticola sp. nov., isolated from mountain soil.

    Science.gov (United States)

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Yi, Hana; Chun, Jongsik

    2015-02-01

    An ivory/yellow, Gram-stain-negative, short-rod-shaped, aerobic bacterial strain, designated JC2948(T), was isolated from a soil sample taken from Gwanak Mountain, Republic of Korea. 16S rRNA gene sequence analysis indicated that strain JC2948(T) belongs to the genus Burkholderia. The test strain showed highest sequence similarities to Burkholderia tropica LMG 22274(T) (97.6 %), Burkholderia acidipaludis NBRC 101816(T) (97.5 %), Burkholderia tuberum LMG 21444(T) (97.5 %), Burkholderia sprentiae LMG 27175(T) (97.4 %), Burkholderia terricola LMG 20594(T) (97.3 %) and Burkholderia diazotrophica LMG 26031(T) (97.1 %). Based on average nucleotide identity (ANI) values, the new isolate represents a novel genomic species as it shows less than 90 % ANI values with other closely related species. Also, other phylosiological and biochemical comparisons allowed the phenotypic differentiation of strain JC2948(T) from other members of the genus Burkholderia. Therefore, we suggest that this strain should be classified as the type strain of a novel species of the genus Burkholderia. The name Burkholderia monticola sp. nov. (type strain, JC2948(T) = JCM 19904(T) = KACC 17924(T)) is proposed. © 2015 IUMS.

  15. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    Science.gov (United States)

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  16. 21 CFR 184.1415 - Animal lipase.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Animal lipase. 184.1415 Section 184.1415 Food and... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme preparation obtained from edible forestomach tissue of calves, kids, or lambs, or from animal pancreatic...

  17. Burkholderia in gladiolen: voortgezet diagnostisch onderzoek 2007

    NARCIS (Netherlands)

    Vink, P.; Hollinger, T.C.

    2008-01-01

    In 2006 is middels een infectieproef bekend geworden dat de bacterie Burkholderia gladioli in staat is een ziekte bij gladiolen te veroorzaken waardoor de sier- en handelswaarde zeer negatief worden beïnvloed. In 2007 is in het kader van het voortgezet diagnostisch onderzoek nagegaan of de bacterie

  18. Human Infection with Burkholderia thailandensis, China, 2013.

    Science.gov (United States)

    Chang, Kai; Luo, Jie; Xu, Huan; Li, Min; Zhang, Fengling; Li, Jin; Gu, Dayong; Deng, Shaoli; Chen, Ming; Lu, Weiping

    2017-08-01

    Burkholderia thailandensis infection in humans is uncommon. We describe a case of B. thailandensis infection in a person in China, a location heretofore unknown for B. thailandensis. We identified the specific virulence factors of B. thailandensis, which may indicate a transition to a new virulent form.

  19. Burkholderia pseudomallei septicaemia - A case report

    Directory of Open Access Journals (Sweden)

    Dias M

    2004-01-01

    Full Text Available Burkholderia pseudomallei, a natural saprophyte widely distributed in soil, stagnant waters of endemic areas, is said to infect humans through breaks in the skin or through inhalation causing protean clinical manifestations including fatal septicaemia. A case of septicaemia in a elderly female diabetic due to B. pseudomallei following a history of fall is being reported with complete details.

  20. Burkholderia pseudomallei Antibodies in Children, Cambodia

    Science.gov (United States)

    Pheaktra, Ngoun; Putchhat, Hor; Sin, Lina; Sen, Bun; Kumar, Varun; Langla, Sayan; Peacock, Sharon J.; Day, Nicholas P.

    2008-01-01

    Antibodies to Burkholderia pseudomallei were detected in 16% of children in Siem Reap, Cambodia. This organism was isolated from 30% of rice paddies in the surrounding vicinity. Despite the lack of reported indigenous cases, melioidosis is likely to occur in Cambodia. PMID:18258125

  1. Crystallization and crystal manipulation of a steric chaperone in complex with its lipase substrate

    International Nuclear Information System (INIS)

    Pauwels, Kris; Loris, Remy; Vandenbussche, Guy; Ruysschaert, Jean-Marie; Wyns, Lode; Van Gelder, Patrick

    2005-01-01

    Crystals of the lipase of B. glumae in complex with its specific foldase were obtained in two forms. Crystallization, crystal manipulation and preliminary X-ray diffraction analysis are described. Bacterial lipases that are secreted via the type II secretion pathway require a lipase-specific foldase in order to obtain their native and biologically active conformation in the periplasmic space. The lipase–foldase complex from Burkholderia glumae (319 and 333 residues, respectively) was crystallized in two crystal forms. One crystal form belongs to space group P3 1 21 (P3 2 21), with unit-cell parameters a = b = 122.3, c = 98.2 Å. A procedure is presented which improved the diffraction of these crystals from ∼5 to 2.95 Å. For the second crystal form, which belonged to space group C2 with unit-cell parameters a = 183.0, b = 75.7, c = 116.6 Å, X-ray data were collected to 1.85 Å

  2. Burkholderia cenocepacia K56-2 trimeric autotransporter adhesin BcaA binds TNFR1 and contributes to induce airway inflammation.

    Science.gov (United States)

    Mil-Homens, Dalila; Pinto, Sandra N; Matos, Rute G; Arraiano, Cecília; Fialho, Arsenio M

    2017-04-01

    Chronic lung disease caused by persistent bacterial infections is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). CF pathogens acquire antibiotic resistance, overcome host defenses, and impose uncontrolled inflammation that ultimately may cause permanent damage of lungs' airways. Among the multiple CF-associated pathogens, Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria have become prominent contributors of disease progression. Here, we demonstrate that BcaA, a trimeric autotransporter adhesin (TAA) from the epidemic strain B. cenocepacia K56-2, is a tumor necrosis factor receptor 1-interacting protein able to regulate components of the tumor necrosis factor signaling pathway and ultimately leading to a significant production of the proinflammatory cytokine IL-8. Notably, this study is the first to demonstrate that a protein belonging to the TAA family is involved in the induction of the inflammatory response during B. cenocepacia infections, contributing to the success of the pathogen. Moreover, our results reinforce the relevance of the TAA BcaA as a multifunctional protein with a major role in B. cenocepacia virulence. © 2016 John Wiley & Sons Ltd.

  3. Síntese de derivados acilados da D-ribono-1,4-lactona catalisada por lipases

    OpenAIRE

    Sebrão, Damianni

    2005-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas. Programa de Pós-Graduação em Química. A lipase de Pseudomonas cepacia (LPS) foi imobilizada em filmes de caseinato de sódio-CS, o sistema caracterizado por MEV, e a quantidade de água determinada por titulação de Karl-Fisher. O sistema LPS/CS foi usado como catalisador na preparação do oleato de n-pentila, avaliando o efeito do solvente orgânico. Os solventes com log P > 2,5 foram os ...

  4. Burkholderia megalochromosomata sp. nov., isolated from grassland soil.

    Science.gov (United States)

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Lee, Kihyun; Park, Sang-Cheol; Yi, Hana; Chun, Jongsik

    2015-03-01

    A Gram-stain negative, rod-shaped, non-spore-forming, obligate aerobic bacterial strain, JC2949(T), was isolated from grassland soil in Gwanak Mountain, Seoul, Republic of Korea. Phylogenetic analysis, based on 16S rRNA sequences, indicated that strain JC2949(T) belongs to the genus Burkholderia, showing highest sequence similarities with Burkholderia grimmiae R27(T) (98.8 %), Burkholderia cordobensis LMG 27620(T) (98.6 %), Burkholderia jiangsuensis MP-1T(T) (98.6 %), Burkholderia zhejiangensis OP-1(T) (98.5 %), Burkholderia humi LMG 22934(T) (97.5 %), Burkholderia terrestris LMG 22937(T) (97.3 %), Burkholderia telluris LMG 22936(T) (97.2 %) and Burkholderia glathei ATCC 29195(T) (97.0 %). The major fatty acids of strain JC2949(T) were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. Its predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unknown amino phospholipid. The dominant isoprenoid quinone was ubiquinone Q-8. The pairwise average nucleotide identity values between strain JC2949(T) and the genomes of 30 other species of the genus Burkholderia ranged from 73.4-90.4 %, indicating that the isolate is a novel genomic species within this genus. Based on phenotypic and chemotaxonomic comparisons, it is clear that strain JC2949(T) represents a novel species of the genus Burkholderia. We propose the name for this novel species to be Burkholderia megalochromosomata sp. nov. The type strain is JC2949(T) ( = KACC 17925(T) = JCM 19905(T)). © 2015 IUMS.

  5. Members of the genus Burkholderia: good and bad guys

    Science.gov (United States)

    Eberl, Leo; Vandamme, Peter

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains. PMID:27303639

  6. Structural studies on lipoprotein lipase

    International Nuclear Information System (INIS)

    Socorro, L.

    1985-01-01

    The structure of lipoprotein lipase is not known. The lack of information on its primary sequence has been due to the inability of preparing it in homogeneous and stable form. This research has focused on the structural characterization of lipoprotein lipase. The first approach taken was to develop a purification method using bovine milk and affinity chromatography on heparin-Sepharose. The protein obtained was a heterogeneous peak with the activity shifted towards the trailing edge fractions. These fractions only presented a 55 Kdalton band on polyacrylamide gel electrophoresis. Monoclonal antibodies against this band detected an endogenous, phenyl methane sulfonyl fluoride-sensitive protease responsible for the presence of lower molecular weight fragments. The second approach was to label the lipoprotein lipase with a radioactive, active site, directed probe. After incubation and affinity chromatography a complex [ 3 H]inhibitor enzyme was isolated with a stoichiometry of 1.00 +/- 0.2. The complex was digested with CNBr and the insoluble peptides at low ionic strength (>90% [ 3 H]dpm) were used for further purification. Differential extraction of the [ 3 H]-peptide, digestion with S. aureus V8 protease, and high performance liquid chromatography yielded a hexapeptide with a composition consistent with the consensus sequence of the active site peptides of many serine-esterase. This and the kinetic data imply this being the mechanism of action for lipoprotein lipase

  7. Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons.

    Science.gov (United States)

    Majerczyk, Charlotte D; Brittnacher, Mitchell J; Jacobs, Michael A; Armour, Christopher D; Radey, Matthew C; Bunt, Richard; Hayden, Hillary S; Bydalek, Ryland; Greenberg, E Peter

    2014-11-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Cross-Species Comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei Quorum-Sensing Regulons

    Science.gov (United States)

    Majerczyk, Charlotte D.; Brittnacher, Mitchell J.; Jacobs, Michael A.; Armour, Christopher D.; Radey, Matthew C.; Bunt, Richard; Hayden, Hillary S.; Bydalek, Ryland

    2014-01-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei. PMID:25182491

  9. Burkholderia thailandensis: Growth and Laboratory Maintenance.

    Science.gov (United States)

    Garcia, Erin C; Cotter, Peggy A

    2016-08-12

    Burkholderia thailandensis is a nonpathogenic Gram-negative bacterium found in tropical soils. Closely related to several human pathogens, its ease of genetic manipulation, rapid growth in the laboratory, and low virulence make B. thailandensis a commonly used model organism. This unit describes the fundamental protocols for in vitro growth and maintenance of B. thailandensis in the laboratory. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. In Vitro Activity of Fusidic Acid (CEM-102, Sodium Fusidate) against Staphylococcus aureus Isolates from Cystic Fibrosis Patients and Its Effect on the Activities of Tobramycin and Amikacin against Pseudomonas aeruginosa and Burkholderia cepacia▿

    Science.gov (United States)

    McGhee, Pamela; Clark, Catherine; Credito, Kim; Beachel, Linda; Pankuch, Glenn A.; Appelbaum, Peter C.; Kosowska-Shick, Klaudia

    2011-01-01

    We tested the MICs of fusidic acid (CEM-102) plus other agents against 40 methicillin-resistant Staphylococcus aureus (MRSA) isolates from cystic fibrosis patients and the activities of fusidic acid with or without tobramycin or amikacin against Pseudomonas aeruginosa, MRSA, and Burkholderia cepacia isolates from cystic fibrosis patients in a 24-h time-kill study. Fusidic acid was potent (MICs, 0.125 to 0.5 μg/ml; a single 500-mg dose of fusidic acid at 8 h averaged 8 to 12. 5 μg/ml with 91 to 97% protein binding) against all MRSA strains. No antagonism was observed; synergy occurred for one MRSA strain treated with fusidic acid plus tobramycin. PMID:21343445

  11. RsaM: a transcriptional regulator of Burkholderia spp. with novel fold

    Energy Technology Data Exchange (ETDEWEB)

    Michalska, Karolina [Midwest Center for Structural Genomics, Argonne National Laboratory, IL USA; Structural Biology Center, Biosciences Division, Argonne National Laboratory, IL USA; Chhor, Gekleng [Midwest Center for Structural Genomics, Argonne National Laboratory, IL USA; Clancy, Shonda [Midwest Center for Structural Genomics, Argonne National Laboratory, IL USA; Jedrzejczak, Robert [Midwest Center for Structural Genomics, Argonne National Laboratory, IL USA; Babnigg, Gyorgy [Midwest Center for Structural Genomics, Argonne National Laboratory, IL USA; Winans, Stephen C. [Department of Microbiology, Cornell University, Ithaca NY USA; Joachimiak, Andrzej [Midwest Center for Structural Genomics, Argonne National Laboratory, IL USA; Structural Biology Center, Biosciences Division, Argonne National Laboratory, IL USA; Department of Biochemistry and Molecular Biology, University of Chicago, IL USA

    2014-07-04

    Burkholderia cepacia complex (Bcc) is a set of closely related bacterial species that are notorious pathogens of cystic fibrosis patients, responsible for life-threatening lung infections. Expression of several virulence factors of Bcc is controlled by a mechanism known as quorum sensing (QS). QS is a means of bacterial communication used to coordinate gene expression in a cell-density-dependent manner. The system involves the production of diffusible signaling molecules (N-acyl-L-homoserine lactones, AHLs), that bind to cognate transcriptional regulators and influence their ability to regulate gene expression. One such system that is highly conserved in Bcc consists of CepI and CepR. CepI is AHL synthase, while CepR is an AHL-dependent transcription factor. In most members of the Bcc group, the cepI and cepR genes are divergently transcribed and separated by additional genes. One of them, bcam1869, encodes the BcRsaM protein, which was recently postulated to modulate the abundance or activity of CepI or CepR. Here we show the crystal structure of BcRsaM from B. cenocepacia J2315. It is a single-domain protein with unique topology and presents a novel fold. The protein is a dimer in the crystal and in solution. This regulator has no known DNA binding motifs and direct binding of BcRsaM to the cepI promoter could not be detected in in vitro assays. Therefore, we propose that the modulatory action of RsaM might result from interactions with other components of the QS machinery rather than from direct association with the DNA promoter.

  12. Lipase Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/lipasetest.html Lipase Test To use the sharing features on this page, please enable JavaScript. What is a lipase test? Lipase is a type of protein made by ...

  13. Isolation and characterization of dihydrofolate reductase from trimethoprim-susceptible and trimethoprim-resistant Pseudomonas cepacia.

    OpenAIRE

    Burns, J L; Lien, D M; Hedin, L A

    1989-01-01

    Trimethoprim resistance was investigated in cystic fibrosis isolates of Pseudomonas cepacia. Determination of the MIC of trimethoprim for 111 strains revealed at least two populations of resistant organisms, suggesting the presence of more than one mechanism of resistance. Investigation of the antibiotic target, dihydrofolate reductase, was undertaken in both a susceptible strain and a strain with high-level resistance (MIC, greater than 1,000 micrograms/ml). The enzyme was purified by using ...

  14. Development of Burkholderia mallei and pseudomallei vaccines

    Science.gov (United States)

    Silva, Ediane B.; Dow, Steven W.

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  15. Lipase H, a new member of the triglyceride lipase family synthesized by the intestine

    NARCIS (Netherlands)

    Jin, Weijun; Broedl, Uli C.; Monajemi, Houshang; Glick, Jane M.; Rader, Daniel J.

    2002-01-01

    We report here the molecular cloning of a novel member of the triglyceride lipase family, a 2.4-kb cDNA encoding human lipase H (LIPH) and the mouse ortholog (Liph). The human LIPH cDNA encodes a 451-amino-acid protein with a lipase domain. Mouse Liph shows 85% amino acid identity and 75% nucleotide

  16. Structure and Function of Lipase

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob

    .e. the waterlipidinterface. For Thermomyces lanuginosus lipase (TlL) and related lipases, activation of the enzymeinvolves a rearrangement of a structural domain, called the “lid”, which covers the active site inhomogenous aqueous solution. At the water-lipid interface, the lid is displaced from the active site andmoves...... the water-lipid interface, structural movements occurring during activation have been difficult to probeexperimentally. In this work, novel variants of TlL were constructed based on rational design with amutated lid-region in order to elucidate the impact of the lid-residue composition and characteristics...... onthe activation mechanism. From characterization studies of these variants we have shown (Paper I) thatthe lid-region plays a crucial role in governing interfacial activation and enzymatic activity. Specifically,using a combination of spectroscopic and enzymatic activity-based methods we have...

  17. Identification and characterization of Burkholderia multivorans CCA53.

    Science.gov (United States)

    Akita, Hironaga; Kimura, Zen-Ichiro; Yusoff, Mohd Zulkhairi Mohd; Nakashima, Nobutaka; Hoshino, Tamotsu

    2017-07-06

    A lignin-degrading bacterium, Burkholderia sp. CCA53, was previously isolated from leaf soil. The purpose of this study was to determine phenotypic and biochemical features of Burkholderia sp. CCA53. Multilocus sequence typing (MLST) analysis based on fragments of the atpD, gltD, gyrB, lepA, recA and trpB gene sequences was performed to identify Burkholderia sp. CCA53. The MLST analysis revealed that Burkholderia sp. CCA53 was tightly clustered with B. multivorans ATCC BAA-247 T . The quinone and cellular fatty acid profiles, carbon source utilization, growth temperature and pH were consistent with the characteristics of B. multivorans species. Burkholderia sp. CCA53 was therefore identified as B. multivorans CCA53.

  18. Membrane-active mechanism of LFchimera against Burkholderia pseudomallei and Burkholderia thailandensis

    NARCIS (Netherlands)

    Kanthawong, S.; Puknun, A.; Bolscher, J.G.M.; Nazmi, K.; van Marle, J.; de Soet, J.J.; Veerman, E.C.I.; Wongratanacheewin, S.; Taweechaisupapong, S.

    2014-01-01

    LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265-284 and lactoferricin17-30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study

  19. Mutation induced enhanced biosynthesis of lipase | Bapiraju ...

    African Journals Online (AJOL)

    The purpose of the present investigation is to enhance production of biomedically important enzyme lipase by subjecting the indigenous lipase producing strain Rhizopus sp. BTS-24 to improvement by natural selection and random mutagenesis (UV and N-methyl-N'-nitro-N-nitroso guanidine, NTG). The isolation of mutants ...

  20. Genetics Home Reference: lysosomal acid lipase deficiency

    Science.gov (United States)

    ... lipase deficiency develop multi-organ failure and severe malnutrition and generally do not survive past 1 year. In the later-onset form of lysosomal acid lipase deficiency , signs and symptoms vary and usually begin in mid-childhood, although they can appear anytime up to late ...

  1. Lipase in milk, curd and cheese

    NARCIS (Netherlands)

    Geurts, T.J.; Lettink, F.J.; Wouters, J.T.M.

    2003-01-01

    Presence of lipase in milk, curd, whey and cheese was studied. A small amount of the product was added to a large volume of lipase-free whole milk that had been made sensitive to lipolysis by homogenization. Increase of the acidity of the fat in the mixture, determined after incubation, was

  2. Organic Solvent Tolerant Lipases and Applications

    Directory of Open Access Journals (Sweden)

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  3. PPARγ regulates exocrine pancreas lipase.

    Science.gov (United States)

    Danino, Hila; Naor, Ronny Peri-; Fogel, Chen; Ben-Harosh, Yael; Kadir, Rotem; Salem, Hagit; Birk, Ruth

    2016-12-01

    Pancreatic lipase (triacylglycerol lipase EC 3.1.1.3) is an essential enzyme in hydrolysis of dietary fat. Dietary fat, especially polyunsaturated fatty acids (PUFA), regulate pancreatic lipase (PNLIP); however, the molecular mechanism underlying this regulation is mostly unknown. As PUFA are known to regulate expression of proliferator-activated receptor gamma (PPARγ), and as we identified in-silico putative PPARγ binding sites within the putative PNLIP promoter sequence, we hypothesized that PUFA regulation of PNLIP might be mediated by PPARγ. We used in silico bioinformatics tools, reporter luciferase assay, PPARγ agonists and antagonists, PPARγ overexpression in exocrine pancreas AR42J and primary cells to study PPARγ regulation of PNLIP. Using in silico bioinformatics tools we mapped PPARγ binding sites (PPRE) to the putative promoter region of PNLIP. Reporter luciferase assay in AR42J rat exocrine pancreas acinar cells transfected with various constructs of the putative PNLIP promoter showed that PNLIP transcription is significantly enhanced by PPARγ dose-dependently, reaching maximal levels with multi PPRE sites. This effect was significantly augmented in the presence of PPARγ agonists and reduced by PPARγ antagonists or mutagenesis abrogating PPRE sites. Over-expression of PPARγ significantly elevated PNLIP transcript and protein levels in AR42J cells and in primary pancreas cells. Moreover, PNLIP expression was up-regulated by PPARγ agonists (pioglitazone and 15dPGJ2) and significantly down-regulated by PPARγ antagonists in non-transfected rat exocrine pancreas AR42J cell line cells. PPARγ transcriptionally regulates PNLIP gene expression. This transcript regulation resolves part of the missing link between dietary PUFA direct regulation of PNLIP. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Brain abscess caused by Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    Padigione, A.; Spelman, D.; Ferris, N.

    1997-01-01

    Full text: Melioidosis, or infection with Burkholderia pseudomallei, is an important human disease in South East Asia and Northern Australia. Neurological manifestations are well recognized amongst its protean presentations, but direct focal central nervous system infection is infrequently described with only 9 adult and 5 paediatric cases reported in the English language literature. A case of brain abscess due to Burkholderia pseudomallei occurring in a 20 year old Dutch visitor to Australia which progressed despite antibiotic treatment is described. A review of the clinical manifestations, Magnetic Resonance (MR) appearance, diagnosis and treatment of melioidosis is presented, highlighting that: (i) physicians outside endernic areas should consider melioidosis in any patient with an appropriate travel history, (ii) MR imaging is more sensitive then CT in diagnosing early brain infection, especially of the brainstem; (iii) Bacterial culture, the mainstay of diagnosis, has many shortcomings; (iv)In vitro antibiotic sensitivity testing may not translate into clinical efficacy; and (v) Steroids appear to have little role, even in severe disease

  5. Competition between Burkholderia pseudomallei and B. thailandensis.

    Science.gov (United States)

    Ngamdee, Wikanda; Tandhavanant, Sarunporn; Wikraiphat, Chanthiwa; Reamtong, Onrapak; Wuthiekanun, Vanaporn; Salje, Jeanne; Low, David A; Peacock, Sharon J; Chantratita, Narisara

    2015-03-03

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, an often fatal disease in tropical countries. Burkholderia thailandensis is a non-virulent but closely related species. Both species are soil saprophytes but are almost never isolated together. We identified two mechanisms by which B. pseudomallei affects the growth of B. thailandensis. First, we found that six different isolates of B. pseudomallei inhibited the growth of B. thailandensis on LB agar plates. Second, our results indicated that 55% of isolated strains of B. pseudomallei produced a secreted compound that inhibited the motility but not the viability of B. thailandensis. Analysis showed that the active compound was a pH-sensitive and heat-labile compound, likely a protein, which may affect flagella processing or facilitate their degradation. Analysis of bacterial sequence types (STs) demonstrated an association between this and motility inhibition. The active compound was produced from B. pseudomallei during the stationary growth phase. Taken together, our results indicate that B. pseudomallei inhibits both the growth and motility of its close relative B. thailandensis. The latter phenomenon appears to occur via a previously unreported mechanism involving flagellar processing or degradation.

  6. Evaluation of cellulose-binding domain fused to a lipase for the lipase immobilization.

    Science.gov (United States)

    Hwang, Sangpill; Ahn, Jungoh; Lee, Sumin; Lee, Tai Gyu; Haam, Seungjoo; Lee, Kangtaek; Ahn, Ik-Sung; Jung, Joon-Ki

    2004-04-01

    A cellulose-binding domain (CBD) fragment of a cellulase gene of Trichoderma hazianum was fused to a lipase gene of Bacillus stearothermophilus L1 to make a gene cluster for CBD-BSL lipase. The specific activity of CBD-BSL lipase for oil hydrolysis increased by 33% after being immobilized on Avicel (microcrystalline cellulose), whereas those of CBD-BSL lipase and BSL lipase decreased by 16% and 54%, respectively, after being immobilized on silica gel. Although the loss of activity of an enzyme immobilized by adsorption has been reported previously, the loss of activity of the CBD-BSL lipase immobilized on Avicel was less than 3% after 12 h due to the irreversible binding of CBD to Avicel.

  7. Membrane-active mechanism of LFchimera against Burkholderia pseudomallei and Burkholderia thailandensis.

    Science.gov (United States)

    Kanthawong, Sakawrat; Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; van Marle, Jan; de Soet, Johannes J; Veerman, Enno C I; Wongratanacheewin, Surasakdi; Taweechaisupapong, Suwimol

    2014-10-01

    LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265-284 and lactoferricin17-30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study we analyzed the killing activity of LFchimera on the category B pathogen Burkholderia pseudomallei in comparison to the lesser virulent Burkholderia thailandensis often used as a model for the highly virulent B. pseudomallei. Killing kinetics showed that B. thailandensis E264 was more susceptible for LFchimera than B. pseudomallei 1026b. Interestingly the bactericidal activity of LFchimera appeared highly pH dependent; B. thailandensis killing was completely abolished at and below pH 6.4. FITC-labeled LFchimera caused a rapid accumulation within 15 min in the cytoplasm of both bacterial species. Moreover, freeze-fracture electron microscopy demonstrated extreme effects on the membrane morphology of both bacterial species within 1 h of incubation, accompanied by altered membrane permeability monitored as leakage of nucleotides. These data indicate that the mechanism of action of LFchimera is similar for both species and encompasses disruption of the plasma membrane and subsequently leakage of intracellular nucleotides leading to cell dead.

  8. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis.

    Science.gov (United States)

    Xu, Yao; Buss, Eileen A; Boucias, Drion G

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained.

  9. Activity and stability of immobilized lipases in lipase-catalyzed modification of peanut oil

    OpenAIRE

    Soumanou Mohamed M.; Edorh Aleodjrodo P.; Bornscheuer Uwe T.

    2004-01-01

    Fatty acid release during lipolysis of peanut oil using microbial free and immobilized lipases in aqueous media was developed. Immobilized lipase from Rhizomucor miehei (RML) gave the best result from its ability to clive different fatty acids from peanut oil in such media. In organic solvent, interesterification of peanut oil with tricaprylin using immobilized lipases from RML, Chromobacterium viscosum (CVL) and Candida rugosa (CRL) was performed. The best substrate molar ratio of tricapryli...

  10. A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia

    Directory of Open Access Journals (Sweden)

    Klinger-Strobel M

    2016-02-01

    Full Text Available Mareike Klinger-Strobel,1,2,* Julia Ernst,3,* Christian Lautenschläger,4 Mathias W Pletz,1,2 Dagmar Fischer,3,5 Oliwia Makarewicz1,2 1Center for Infectious Diseases and Infection’s Control, 2Center for Sepsis Control and Care, Jena University Hospital, 3Department of Pharmaceutical Technology, Friedrich Schiller University Jena, 4Department of Internal Medicine IV, Jena University Hospital, 5Jena Center for Soft Matter (JCSM, Friedrich Schiller University Jena, Jena, Germany*These authors contributed equally to this work Abstract: Strategies that target and treat biofilms are widely applied to bacterial cultures using popular live/dead staining techniques with mostly red or green fluorescent markers (eg, with SYTO® 9, propidium iodide, fluorescein. Therefore, visualizing drugs or micro- and nanoparticulate delivery systems to analyze their distribution and effects in biofilms requires a third fluorescent dye that does not interfere with the properties of the live/dead markers. The present study establishes and evaluates a model for tracking polymeric particles in fluorescently stained biological material. To this end, poly(D,L-lactide-co-glycolide (PLGA-based micro- and nanoparticles were used as well-established model systems, which, because of their favorable safety profiles, are expected to play important future roles with regard to drug delivery via inhalation. PLGA was covalently and stably labeled with 7-amino-4-methyl-3-coumarinylacetic acid (AMCA, after which blue fluorescent poly(ethylene glycol-block-PLGA (PEG-PLGA particles were prepared using a mixture of fluorescent AMCA-PLGA and PEG-PLGA. Because chitosan is known to reduce negative surface charge, blue fluorescent PEG-PLGA-particles with chitosan were also prepared. These micro- and nanoparticles were physicochemically characterized and could be clearly distinguished from live/dead stained bacteria in biofilms using confocal laser scanning microscopy. Keywords: 7-amino-4-methyl-3-coumarinylacetic acid, PLGA, PEG, confocal laser scanning microscopy, cystic fibrosis, chitosan, hydrodynamic diameter

  11. Respuesta del garbanzo (Cicer arietinum L. a la inoculación con Azotobacter vineladii y Burkholderia cepacia a dosis reducida de fertilizante nitrogenado

    Directory of Open Access Journals (Sweden)

    Juan Manuel Sánchez-Yáñez

    2014-01-01

    Full Text Available ResumenEl cultivo de garbanzo “Cicer arietinumL.” demanda fertilizante nitrogenado (FN, que aplicado en excesoprovoca pérdida de fertilidad del suelo y contaminación ambiental. Una alternativa para este problema es lareducción y optimización de la dosis de FN, con inoculantes a base de bacteriaspromotoras de crecimientovegetal (BPCV.Así, el objetivo de este trabajo fue analizar la respuesta del garbanzo a la inoculación conAzotobactervinelandiiyBurkholderiacepaciaa la dosis 50% del FN. Para ello se utilizó un diseñoexperimental de bloques al azar. Con nitrato de amonio (NO3NH4 como FN a las dosis 100% (10g/L y 50 %(5g/L para el garbanzo inoculado con las BPCV; con las variables/respuesta en su semilla: por ciento (% degerminación; luego su fenotípia y biomasa aérea y radical, los datos experimentales se analizaron por ANOVAy Tukey. Los resultados indicaron una respuesta positiva de la semilla de garbanzo a la doble inoculación conambas BPCV, al igual que aplántula y floración, donde el garbanzo alcanzo un peso seco total (PST de 0,82g, valor estadísticamente diferente y significativo, comparado con los 0,71g de PST del garbanzo sin inocularcon el FN al 100% o control relativo (CR. Lo anterior sugiereuna respuesta positiva del garbanzo queoptimizó la dosis 50% del FN, por una acción sinérgica de los dos géneros de BPCV en sus raíces, lo quepodría evitar en parte la perdida de fertilidad del suelo y la contaminación ambiental, por la aplicación enexceso del FN.

  12. Gene expression profiling of Burkholderia cenocepacia at the time of cepacia syndrome: loss of motility as a marker of poor prognosis?

    Czech Academy of Sciences Publication Activity Database

    Kalferstová, L.; Kolář, Michal; Fila, L.; Vávrová, J.; Dřevínek, P.

    2015-01-01

    Roč. 53, č. 5 (2015), s. 1515-1522 ISSN 0095-1137 Grant - others:GA MŠk(CZ) LD11029; GA MZd(CZ) NT12405 Institutional support: RVO:68378050 Keywords : CYSTIC-FIBROSIS PATIENTS * COMPLEX * VIRULENCE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.631, year: 2015

  13. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF TRANSPORT PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    Science.gov (United States)

    Transport of bacteria through geologic media may be viewed as being governed by sorption-desorption reactions. In this investigation, four facets of the process were examined: (I) the impact of sorption on bacterial transport under typical ground water flow velocities and a diffe...

  14. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010

    NARCIS (Netherlands)

    Lipsitz, Rebecca; Garges, Susan; Aurigemma, Rosemarie; Baccam, Prasith; Blaney, David D.; Cheng, Allen C.; Currie, Bart J.; Dance, David; Gee, Jay E.; Larsen, Joseph; Limmathurotsakul, Direk; Morrow, Meredith G.; Norton, Robert; O'Mara, Elizabeth; Peacock, Sharon J.; Pesik, Nicki; Rogers, L. Paige; Schweizer, Herbert P.; Steinmetz, Ivo; Tan, Gladys; Tan, Patrick; Wiersinga, W. Joost; Wuthiekanun, Vanaporn; Smith, Theresa L.

    2012-01-01

    The US Public Health Emergency Medical Countermeasures Enterprise convened subject matter experts at the 2010 HHS Burkholderia Workshop to develop consensus recommendations for postexposure prophylaxis against and treatment for Burkholderia pseudomallei and B. mallei infections, which cause

  15. Cometabolic Degradation of Trichloroethylene by Pseudomonas cepacia G4 in a Chemostat with Toluene as the Primary Substrate

    NARCIS (Netherlands)

    Landa, Andrew S.; Sipkema, E. Marijn; Weijma, Jan; Beenackers, Antonie A.C.M.; Dolfing, Jan; Janssen, Dick B.

    Pseudomonas cepacia G4 is capable of cometabolic degradation of trichloroethylene (TCE) if the organism is grown on certain aromatic compounds. To obtain more insight into the kinetics of TCE degradation and the effect of TCE transformation products, we have investigated the simultaneous conversion

  16. Structural characterization of MAPLE deposited lipase biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Ausanio, Giovanni; Bloisi, Francesco [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Calabria, Raffaela [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Califano, Valeria, E-mail: v.califano@im.cnr.it [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Massoli, Patrizio [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Vicari, Luciano R.M. [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy)

    2014-11-30

    Highlights: • Lipase from Candida Rugosa was deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on KBr pellets, mica and glass substrate. • The deposited film was characterized morphologically and structurally by optical microscopy, SEM and FTIR analysis. • Results of characterization underlined a phenomenon of aggregation taking place. • The aggregation phenomenon was reversible since lipase showed activity in the transesterification reaction between soybean oil and isopropyl alcohol once detached from the substrate. - Abstract: Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography–mass spectrometry gave results consistent with undamaged deposition of lipase.

  17. Optimization of lipase production by Staphylococcus sp. Lp12

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... an enormous attention because of their biotechnological applications. Lipases remain ... selective transformations. The exponential increase in .... mass) lipase production and pH at regular intervals of time 24, 48 and 72 h on ...

  18. Immobilization of Isolated Lipase From Moldy Copra (Aspergillus Oryzae

    Directory of Open Access Journals (Sweden)

    Seniwati Dali

    2011-01-01

    Full Text Available Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase from Aspergillus oryzae. Lipase was partially purified from the culture supernatant of Aspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of optimum pH, optimum temperature, thermal stability and reusability were carried out. The results showed that free lipase had optimum pH 8,2 and optimum temperature 35 °C while the immobilized lipase had optimum 8,2 and optimum temperature 45 °C. The thermal stability of the immobilized lipase, relative to that of the free lipase, was markedly increased. The immobilized lipase can be reused for at least six times.

  19. Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov.

    Science.gov (United States)

    Dobritsa, Anatoly P; Linardopoulou, Elena V; Samadpour, Mansour

    2017-10-01

    A recent study of a group of Burkholderia glathei-like bacteria resulted in the description of 13 novel species of the genus Burkholderia. However, our analysis of phylogenetic positions of these species and their molecular signatures (conserved protein sequence indels) showed that they belong to the genus Caballeronia, and we propose to transfer them to this genus. The reclassified species names are proposed as Caballeroniaarationis comb. nov., Caballeroniaarvi comb. nov., Caballeroniacalidae comb. nov., Caballeroniacatudaia comb. nov., Caballeroniaconcitans comb. nov., Caballeroniafortuita comb. nov., Caballeroniaglebae comb. nov., Caballeroniahypogeia comb. nov., Caballeroniapedi comb. nov., Caballeroniaperedens comb. nov., Caballeroniaptereochthonis comb. nov., Caballeroniatemeraria comb. nov. and Caballeronia turbans comb. nov. It is also proposed to reclassify Burkholderia jirisanensis as Paraburkholderiajirisanensis comb. nov. Based on the results of the polyphasic study, B. jirisanensis had been described as a member of the A-group of the genus Burkholderiaand the most closely related to Burkholderia rhizosphaerae, Burkholderia humisilvae and Burkholderia solisilvae currently classified as belonging to the genus Paraburkholderia.

  20. Monoacylglycerol Lipase Regulates Fever Response.

    Directory of Open Access Journals (Sweden)

    Manuel Sanchez-Alavez

    Full Text Available Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2. Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL, through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system.

  1. Realm of Thermoalkaline Lipases in Bioprocess Commodities.

    Science.gov (United States)

    Lajis, Ahmad Firdaus B

    2018-01-01

    For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.

  2. Realm of Thermoalkaline Lipases in Bioprocess Commodities

    Directory of Open Access Journals (Sweden)

    Ahmad Firdaus B. Lajis

    2018-01-01

    Full Text Available For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network, and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT, and aeration rate. Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization are also highlighted in this article.

  3. The Effect of Tallow As Lipase Inducer on Total of Aspergillus Niger, Lipolitic Activity and Lipase Yield

    Directory of Open Access Journals (Sweden)

    Manik Eirry Sawitri

    2012-02-01

    Full Text Available The objectives of this research was to determined of tallow addition with different concentration as lipase Aspergillus niger inducer to total of A. niger, lipolitic activity and lipase yield. The result showed that tallow addition as inducer in the lipase A. niger production gave no significant effect on total of A. niger (5.3 x 107 – 1.7 x 108 cfu/gram in the medium. Tallow addition gave a highly significant effect on lipolytic activity and yield of lipase A. niger. Lipolytic activity ranged between 32.0354 – 53.1197 U/mg protein, while the yield of lipase was 6.6418–7.8941 µg/ml. The conclusion of this research was the addition of tallow for 8% as the lipase inducer of A. niger on lipase production was  more effective to obtain the optimal result. Keywords : Tallow, lipase, inducer, Aspergillus niger

  4. Role of Hepatic Lipase and Endothelial Lipase in High-Density Lipoprotein-Mediated Reverse Cholesterol Transport

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.

    Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall

  5. Biochemical Characterization of Lipases Obtained from Acinetobacter psychrotolerans Strains

    Directory of Open Access Journals (Sweden)

    Şule SEREN

    2017-12-01

    Full Text Available In this study, extracellular lipases obtained from Acinetobacter psychrotolerans strains (Xg1 and Xg2 were characterized. The effects of varying pH values (3.0-10.0 and various temperatures (10-90 °C on lipase activities were examined. Also the effects of different metal ions, organic solvents and detergents on lipases were studied. The extracellular crude lipases were concentrated using ultrafiltration. Zymogram analysis of these lipases was performed. Lipases exhibited maximum activity at pH 8 and 30 °C.  While lipase obtained from the Xg1 strain exhibited the highest stability in the presence of various organic solvents, including hexane, ethyl acetate, chloroform and N,N dietil formamide, lipase obtained from the Xg2 strain was sensitive in the presence of isopropanol, acetonitrile, and butan-1-ol. The lipases of the Xg1 and Xg2 strains were inhibited in the presence of Cu2+ and Zn2+. Also, the lipase of the Xg1 strain was inhibited in the presence of Fe3+. In the presence of EDTA, the lipase activities of the Xg1 and Xg2 strains were partially inhibited. In presence of SDS, they were exactly inhibited. According to the zymogram results, the molecular weights of the lipases obtained from the Acinetobacter psychrotolerans Xg1 and Xg2 strains have been found approximately 37 and 30 kDa, respectively.

  6. Prevalence of Burkholderia pseudomallei in Guangxi, China.

    Science.gov (United States)

    Ma, G; Zheng, D; Cai, Q; Yuan, Z

    2010-01-01

    Melioidosis, an infectious disease caused by the Gram-negative bacterium Burkholderia pseudomallei, is now recognized as an important public health problem in Southeast Asia and tropical northern Australia. Although B. pseudomallei has been detected in various water and soil samples in southeast China, the enviromental distribution of B. pseudomallei in China is unclear. In the winter months of 2007, 154 and 130 soil and water samples, respectively, were collected from several locations in Guangxi, China. The samples were screened for B. pseudomallei by bacterial culture and identification and confirmed by PCR for species-specific 16S rDNA and flagellin genes. B. pseudomallei was detected in 8.4% of the soil samples but in none of the water samples. All positive samples were confined to a single low-lying region from rice paddy fields. Counts of B. pseudomallei ranged from 23 to 521 c.f.u./g soil. This is the first geographical distribution survey of B. pseudomallei in soil in Guangxi, China, and the data are of importance for further evaluating the impact of this pathogen on melioidosis in this region.

  7. Burkholderia pseudomallei transcriptional adaptation in macrophages

    Directory of Open Access Journals (Sweden)

    Chieng Sylvia

    2012-07-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation. Results Here we report the expression profile of intracellular B. pseudomallei following infection of human macrophage-like U937 cells. During intracellular growth over the 6 h infection period, approximately 22 % of the B. pseudomallei genome showed significant transcriptional adaptation. B. pseudomallei adapted rapidly to the intracellular environment by down-regulating numerous genes involved in metabolism, cell envelope, motility, replication, amino acid and ion transport system and regulatory function pathways. Reduced expression in catabolic and housekeeping genes suggested lower energy requirement and growth arrest during macrophage infection, while expression of genes encoding anaerobic metabolism functions were up regulated. However, whilst the type VI secretion system was up regulated, expression of many known virulence factors was not significantly modulated over the 6hours of infection. Conclusions The transcriptome profile described here provides the first comprehensive view of how B. pseudomallei survives within host cells and will help identify potential virulence factors and proteins that are important for the survival and growth of B. pseudomallei within human cells.

  8. A Quantitative Fluorescence-Based Lipase Assay

    Directory of Open Access Journals (Sweden)

    Giovanna Lomolino

    2012-01-01

    Full Text Available An easy and fast gel diffusion assay for detecting and monitoring lipase activity by quantification of fluorescein is described. By measuring the intensity of fluorescein, it is possible to obtain a calibration curve with a regression coefficient better than by using the radius of fluorescent haloes. Through the quantification of fluorescence intensity of fluorescein released after the hydrolysis of a fluorescent ester, fluorescein dibutyrate, used as substrate in agar plates, commercial and skimmed milk lipase activity were studied. Moreover, with this method, lipase activity can be monitored in reaction medium that contains compounds which are affected by turbidity or cause measurement interference for UV-spectrophotometer and fluorimeter. In this experiment, boiled skimmed milk was dispersed in the agar gel with fluorescein dibutyrate, and it was used as a reaction medium to mimic natural conditions. The development of such an assay has a potential for applications in industries ranging from pharmaceuticals to food production and monitoring.

  9. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice.

    Science.gov (United States)

    Bernhards, R C; Cote, C K; Amemiya, K; Waag, D M; Klimko, C P; Worsham, P L; Welkos, S L

    2017-03-01

    Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3-180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.

  10. Lipase kinetics: hydrolysis of triacetin by lipase from Candida cylindracea in a hollow-fiber membrane reactor

    NARCIS (Netherlands)

    Guit, R.P.M.; Kloosterman, M.; Meindersma, G.W.; Mayer, M.; Meijer, E.M.

    1991-01-01

    The aptitude of a hollow-fiber membrane reactor to det. lipase kinetics was investigated using the hydrolysis of triacetin catalyzed by lipase from C. cylindracea as a model system. The binding of the lipase to the membrane appears not to be very specific (surface adsorption), and probably its

  11. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y.Y.; Wang, Zhuo Lin; Uosukainen, E.; Seppaelae, J. [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M. [Raisio Group Oil Milling Industry, Raisio (Finland)

    1996-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  12. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y Y; Wang, Zhuo Lin; Uosukainen, E; Seppaelae, J [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M [Raisio Group Oil Milling Industry, Raisio (Finland)

    1997-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  13. Photoreactivation of Pseudomonas cepacia after ultraviolet exposure: a potential source of contamination in ultraviolet-treated waters

    International Nuclear Information System (INIS)

    Carson, L.A.; Petersen, N.J.

    1975-01-01

    Cells of a naturally occurring strain of Pseudomonas cepacia grown in distilled water were exposed to ultraviolet radiation. Irradiated samples incubated on membrane filters or in fluid recovery media in the absence of light showed no evidence of dark repair mechanisms. When samples were exposed to fluorescent light ranging from 50 to 950 foot candles (538 to 10,222 lux) of illumination, apparent photo-induced repair of ultraviolet injury resulted in 1- to 4-log increases in viable cells recovered

  14. Burkholderia pseudomallei isolates in 2 pet iguanas, California, USA.

    Science.gov (United States)

    Zehnder, Ashley M; Hawkins, Michelle G; Koski, Marilyn A; Lifland, Barry; Byrne, Barbara A; Swanson, Alexandra A; Rood, Michael P; Gee, Jay E; Elrod, Mindy Glass; Beesley, Cari A; Blaney, David D; Ventura, Jean; Hoffmaster, Alex R; Beeler, Emily S

    2014-02-01

    Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection.

  15. Burkholderia pseudomallei traced to water treatment plant in Australia.

    Science.gov (United States)

    Inglis, T J; Garrow, S C; Henderson, M; Clair, A; Sampson, J; O'Reilly, L; Cameron, B

    2000-01-01

    Burkholderia pseudomallei was isolated from environmental specimens 1 year after an outbreak of acute melioidosis in a remote coastal community in northwestern Australia. B. pseudomallei was isolated from a water storage tank and from spray formed in a pH-raising aerator unit. Pulsed-field gel electrophoresis confirmed the aerator and storage tank isolates were identical to the outbreak strain, WKo97.

  16. Burkholderia pseudomallei Isolates in 2 Pet Iguanas, California, USA

    OpenAIRE

    Zehnder, Ashley M.; Hawkins, Michelle G.; Koski, Marilyn A.; Lifland, Barry; Byrne, Barbara A.; Swanson, Alexandra A.; Rood, Michael P.; Gee, Jay E.; Elrod, Mindy Glass; Beesley, Cari A.; Blaney, David D.; Ventura, Jean; Hoffmaster, Alex R.; Beeler, Emily S.

    2014-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection.

  17. Frozen Microemulsions for MAPLE Immobilization of Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2017-12-01

    Full Text Available Candida rugosa lipase (CRL was deposited by matrix assisted pulsed laser evaporation (MAPLE in order to immobilize the enzyme with a preserved native conformation, which ensures its catalytic functionality. For this purpose, the composition of the MAPLE target was optimized by adding the oil phase pentane to a water solution of the amino acid 3-(3,4-dihydroxyphenyl-2-methyl-l-alanine (m-DOPA, giving a target formed by a frozen water-lipase-pentane microemulsion. Fourier transform infrared (FTIR spectroscopy and atomic force microscopy (AFM were used to investigate the structure of MAPLE deposited lipase films. FTIR deconvolution of amide I band indicated a reduction of unfolding and aggregation, i.e., a better preserved lipase secondary structure in the sample deposited from the frozen microemulsion target. AFM images highlighted the absence of big aggregates on the surface of the sample. The functionality of the immobilized enzyme to promote transesterification was determined by thin layer chromatography, resulting in a modified specificity.

  18. Lipase and phospholipase activities of Hymenoptera venoms ...

    African Journals Online (AJOL)

    native gel), Polistes flavis venom has four major protein bands, one of which has lipase activity; with sodium dodecyl sulfate (SDS-PAGE), the venom had eighteen bands with molecular weights ranging from a maximum of 94 kD and a minimum of ...

  19. Biotechnological applications of halophilic lipases and thioesterases.

    Science.gov (United States)

    Schreck, Steven D; Grunden, Amy M

    2014-02-01

    Lipases and esterases are enzymes which hydrolyze ester bonds between a fatty acid moiety and an esterified conjugate, such as a glycerol or phosphate. These enzymes have a wide spectrum of use in industrial applications where their high activity, broad substrate specificity, and stability under harsh conditions have made them integral in biofuel production, textile processing, waste treatment, and as detergent additives. To date, these industrial applications have mainly leveraged enzymes from mesophilic and thermophilic organisms. However, increasingly, attention has turned to halophilic enzymes as catalysts in environments where high salt stability is desired. This review provides a brief overview of lipases and esterases and examines specific structural motifs and evolutionary adaptations of halophilic lipases. Finally, we examine the state of research involving these enzymes and provide an in-depth look at an exciting algal-based biofuel production system. This system uses a recombinant halophilic lipase to increase oil production efficiency by cleaving algal fatty acids from the acyl carrier protein, which eliminates feedback inhibition of fatty acid synthesis.

  20. Production and characterization of lipase from Bacillus ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... properties of fats at high temperature and increased ..... Effect of growth medium pH on lipase activity, protein concentration and B. stearothermophilus growth. .... inactivation after 30 min of incubation in 10 mM Cu+2 ions.

  1. Lipase and protease extraction from activated sludge

    DEFF Research Database (Denmark)

    Gessesse, Amare; Dueholm, Thomas; Petersen, Steffen B.

    2003-01-01

    of gentle and efficient enzyme extraction methods from environmental samples is very important. In this study we present a method for the extraction of lipases and proteases from activated sludge using the non-ionic detergent Triton X-100, EDTA, and cation exchange resin (CER), alone or in combination...

  2. Enantioselective properties of induced lipases from Geotrichum

    Czech Academy of Sciences Publication Activity Database

    Zarevúcka, Marie; Kejík, Z.; Šaman, David; Wimmer, Zdeněk; Demnerová, K.

    2005-01-01

    Roč. 37, - (2005), s. 481-486 ISSN 0141-0229 R&D Projects: GA MŠk(CZ) OC D30.001; GA MŠk(CZ) OC D13.10 Institutional research plan: CEZ:AV0Z40550506 Keywords : Geotrichum * lipase * enantioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 1.705, year: 2005

  3. Clinical Features of Lysosomal Acid Lipase Deficiency

    NARCIS (Netherlands)

    Burton, Barbara K.; Deegan, Patrick B.; Enns, Gregory M.; Guardamagna, Ornella; Horslen, Simon; Hovingh, Gerard K.; Lobritto, Steve J.; Malinova, Vera; McLin, Valerie A.; Raiman, Julian; Di Rocco, Maja; Santra, Saikat; Sharma, Reena; Sykut-Cegielska, Jolanta; Whitley, Chester B.; Eckert, Stephen; Valayannopoulos, Vassili; Quinn, Anthony G.

    2015-01-01

    The aim of this study was to characterize key clinical manifestations of lysosomal acid lipase deficiency (LAL D) in children and adults. Investigators reviewed medical records of LAL D patients ages ≥5 years, extracted historical data, and obtained prospective laboratory and imaging data on living

  4. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  5. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  6. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers.

    Science.gov (United States)

    Depoorter, Eliza; Bull, Matt J; Peeters, Charlotte; Coenye, Tom; Vandamme, Peter; Mahenthiralingam, Eshwar

    2016-06-01

    Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.

  7. Kinetic mechanism and isotope effects of Pseudomonas cepacia 3-hydroxybenzoate-t-hydroxylase

    International Nuclear Information System (INIS)

    Wang, L.H.; Yu, Y.; Hamzah, R.Y.; Tu, S.C.

    1986-01-01

    The kinetic mechanism of Pseudomonas cepacia 3-hydroxybenzoate-6-hydroxylase has been delineated. Double reciprocal plots of initial rate versus m-hydroxybenzoate concentration at a constant level of oxygen and several fixed concentrations of NADH yielded a set of converging lines. Similar reciprocal plots of velocity versus NADH concentration at a constant oxygen level and several fixed m-hydroxybenzoate concentrations also showed converging lines. In contrast, double reciprocal plots of initial rate versus NADH concentration at a fixed m-hydroxybenzoate level and several oxygen concentrations showed a series of parallel lines. Parallel lines were also obtained from double reciprocal plots of initial rate versus m-hydroxybenzoate concentration at a fixed NADH level and varying oxygen concentrations. These results suggest a sequential binding of m-hydroxybenzoate and NADH by the hydroxylase. The enzyme-bound FAD is reduced and NAD is released. The reduced enzyme subsequently reacts with oxygen leading to the formation of other products. This hydroxylase exhibited a primary isotope effect of /sup D/V = 3.5 for (4R)-[4- 2 H] NADH but no isotope effect was observed with (4S)-[4- 2 H]NADH. An isotope effect of /sup T/V/K = 5.0 was also observed using (4R)-[4- 3 H]NADH. This tritium isotope effect was apparently independent of m-hydroxybenzoate concentration

  8. FRAKSINASI ENZIM LIPASE DARI ENDOSPERM KELAPA DENGAN METODE SALTING OUT (Lipase fractionation of Coconut Endosperm by Salting out Method

    Directory of Open Access Journals (Sweden)

    Moh. Su'i

    2014-02-01

    Full Text Available This research learns about fractionation of lipases activity from coconut endosperm by using ammonium sulphate of 0–15%; 15-30 %, 30–45 %, 45–60 %, 60–75 % and 75–90 %. The results showed that the fractions of 0–15% ; 30–45 %, 45–60 % and 60–75 % have lipase activity. Meanwhile, the highest activity was fractions of 60-75%. fractions of 15-30% and 75-90%  have no lipase enzym activity. Molecule weigh of lipase enzyme was 72 kDa. Keywords: Lipases, endosperm, coconut, fractionation, ammonium sulphate   ABSTRAK Penelitian ini mempelajari fraksinasi enzim lipase dari endosperm kelapa menggunakan ammonium sulfat. fraksinasi dilakukan dengan variasi konsentrasi ammonium sulfat 0–15% ; 15-30%; 30–45 %, 45–60 %, 60–75 % dan 75–90 %. Hasil penelitian menunjukkan bahwa enzim lipase terdapat pada fraksi 0–15% ; 30–45 %, 45–60 % dan fraksi 60–75 % dengan aktivitas enzim tertinggi pada fraksi 60-75%. Sedangkan fraksi 15-30% dan 75-90% tidak ada enzim lipase. Berat molekul enzim lipase pada semua fraksi 72 kDa. Kata kunci: Lipase, endosperm, fraksinasi, ammonium sulfat

  9. Differential effect of combined lipase deficiency (cld/cld) on human hepatic lipase and lipoprotein lipase secretion.

    Science.gov (United States)

    Boedeker, J C; Doolittle, M H; White, A L

    2001-11-01

    Combined lipase deficiency (cld) is a recessively inherited disorder in mice associated with a deficiency of LPL and hepatic lipase (HL) activity. LPL is synthesized in cld tissues but is retained in the endoplasmic reticulum (ER), whereas mouse HL (mHL) is secreted but inactive. In this study we investigated the effect of cld on the secretion of human HL (hHL) protein mass and activity. Differentiated liver cell lines were derived from cld mice and their normal heterozygous (het) littermates by transformation of hepatocytes with SV40 large T antigen. After transient transfection with lipase expression constructs, secretion of hLPL activity from cld cells was only 12% of that from het cells. In contrast, the rate of secretion of hHL activity and protein mass per unit of expressed hHL mRNA was identical for the two cell lines. An intermediate effect was observed for mHL, with a 46% reduction in secretion of activity from cld cells. The ER glucosidase inhibitor, castanospermine, decreased secretion of both hLPL and hHL from het cells by approximately 70%, but by only approximately 45% from cld cells. This is consistent with data suggesting that cld may result from a reduced concentration of the ER chaperone calnexin. In conclusion, our results demonstrate a differential effect of cld on hLPL, mHL, and hHL secretion, suggesting differential requirements for activation and exit of the enzymes from the ER.

  10. Gastric lipase: localization of the enzyme in the stomach

    International Nuclear Information System (INIS)

    DeNigris, S.J.; Hamosh, M.; Hamosh, P.; Kasbekar, D.K.

    1986-01-01

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using 3 H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined

  11. Engineering Lipases: walking the fine line between activity and stability

    Science.gov (United States)

    Dasetty, Siva; Blenner, Mark A.; Sarupria, Sapna

    2017-11-01

    Lipases are enzymes that hydrolyze lipids and have several industrial applications. There is a tremendous effort in engineering the activity, specificity and stability of lipases to render them functional in a variety of environmental conditions. In this review, we discuss the recent experimental and simulation studies focused on engineering lipases. Experimentally, mutagenesis studies have demonstrated that the activity, stability, and specificity of lipases can be modulated by mutations. It has been particularly challenging however, to elucidate the underlying mechanisms through which these mutations affect the lipase properties. We summarize results from experiments and molecular simulations highlighting the emerging picture to this end. We end the review with suggestions for future research which underscores the delicate balance of various facets in the lipase that affect their activity and stability necessitating the consideration of the enzyme as a network of interactions.

  12. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells

    Directory of Open Access Journals (Sweden)

    Hogan Robert J

    2010-09-01

    Full Text Available Abstract Background Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Results Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649 that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells and A549 (type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE. Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures. A second YadA-like gene product highly similar to BoaA (65% identity was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705. The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to

  13. Immobilization of Isolated Lipase From Moldy Copra (Aspergillus Oryzae)

    OpenAIRE

    Dali, Seniwati; Patong, A. B. D. Rauf; Jalaluddin, M. Noor; Pirman; Hamzah, Baharuddin

    2011-01-01

    Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase from Aspergillus oryzae. Lipase was partially purified from the culture supernatant of Aspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of optimum pH, optimum ...

  14. Biosensor Applications of MAPLE Deposited Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2014-10-01

    Full Text Available Matrix Assisted Pulsed Laser Evaporation (MAPLE is a thin film deposition technique derived from Pulsed Laser Deposition (PLD for deposition of delicate (polymers, complex biological molecules, etc. materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest molecules to be deposited in a volatile substance (matrix. Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis.

  15. Immobilised lipases in the cosmetics industry.

    Science.gov (United States)

    Ansorge-Schumacher, Marion B; Thum, Oliver

    2013-08-07

    Commercial products for personal care, generally perceived as cosmetics, have an important impact on everyday life worldwide. Accordingly, the market for both consumer products and specialty chemicals comprising their ingredients is considerable. Lipases have started to play a minor role as active ingredients in so-called 'functional cosmetics' as well as a major role as catalysts for the industrial production of various specialty esters, aroma compounds and active agents. Interestingly, both applications almost always require preparation by appropriate immobilisation techniques. In addition, for catalytic use special reactor concepts often have to be employed due to the mostly limited stability of these preparations. Nevertheless, these processes show distinct advantages based on process simplification, product quality and environmental footprint and are therefore apt to more and more replace traditional chemical processes. Here, for the first time a review on the various aspects of using immobilised lipases in the cosmetics industry is given.

  16. Lipoprotein lipase deficiency with visceral xanthomas

    Energy Technology Data Exchange (ETDEWEB)

    Servaes, Sabah; Bellah, Richard [Department of Radiology, Philadelphia, PA (United States); Verma, Ritu [Department of Gastroenterology, Philadelphia, PA (United States); Pawel, Bruce [Department of Pathology, Philadelphia, PA (United States)

    2010-08-15

    Lipoprotein lipase deficiency (LLD) is a rare metabolic disorder that typically presents with skin xanthomas and pancreatitis in childhood. We report a case of LLD in an infant who presented with jaundice caused by a pancreatic head mass. Abdominal imaging also incidentally revealed hyperechoic renal masses caused by renal xanthomas. This appearance of the multiple abdominal masses makes this a unique infantile presentation of LLD. (orig.)

  17. Lipoprotein lipase: genetics, lipid uptake, and regulation.

    Science.gov (United States)

    Merkel, Martin; Eckel, Robert H; Goldberg, Ira J

    2002-12-01

    Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.

  18. Efficient utilization of xylanase and lipase producing thermophilic ...

    African Journals Online (AJOL)

    Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes ( Streptomyces albus and Streptomyces hygroscopicus ) in the production of ecofriendly alternative energy from waste.

  19. Applications of immobilized Thermomyces lanuginosa lipase in interesterification

    DEFF Research Database (Denmark)

    Yang, Tiankui; Fruekilde, Maj-Britt; Xu, Xuebing

    2003-01-01

    (RSM). Thermomyces lanuginosa lipase had an activity similar to that of immobilized Rhizomucor miehei lipase (Lipozyme RM IM) in the glycerolysis of sunflower oil, but the former had higher activity at a low reaction temperature (5degreesC). Thermomyces lanuginosa lipase was found to have much lower...... catalytic activity than Lipozyme RM IM in the acidolysis of sunflower oil with caprylic acid. However, the activity of T. lanuginosa lipase was only slightly lower than that of Lipozyme RM IM in the ester-ester exchange between tripalmitin (PPP) and the ethyl esters of EPA and DHA (EE). For this reason...

  20. Seed lipases: sources, applications and properties - a review

    Directory of Open Access Journals (Sweden)

    M. Barros

    2010-03-01

    Full Text Available This paper provides an overview regarding the main aspects of seed lipases, such as the reactions catalyzed, physiological functions, specificities, sources and applications. Lipases are ubiquitous in nature and are produced by several plants, animals and microorganisms. These enzymes exhibit several very interesting features, such as low cost and easy purification, which make their commercial exploitation as industrial enzymes a potentially attractive alternative. The applications of lipases in food, detergents, oils and fats, medicines and fine chemistry, effluent treatment, biodiesel production and in the cellulose pulp industry, as well as the main sources of oilseed and cereal seed lipases, are reviewed.

  1. Endothelial lipase is a major determinant of HDL level

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  2. Study of enzymatic reactors with microencapsulated lipase. Doctoral thesis. Estudo de reactores enzimaticos com lipase microencapsulada

    Energy Technology Data Exchange (ETDEWEB)

    de Franca Teixeira dos Prazeres, D.M.

    1992-10-01

    The work reports the development of a membrane reactor for the hydrolysis of triglycerides catalyzed by lipase B from Chromobacterium viscosum in AOT/isooctane reversed miceller system. In a preliminary phase the potential of the organic system was evaluated with comparative studies on the activity and stability of lipase B in aqueous media (emulsion) and in the alternative miceller media. A tubular ceramic membrane reactor with recirculation was selected for the olive oil hydrolysis in a reversed miceller system. The influence of the hydration degree, recirculation rate, AOT, olive oil and lipase concentration in the operation of the reactor were investigated in a batch mode. The hydration degree was identified as a critical parameter due to its influence in the separation process and in the kinetics of the reaction.

  3. Biodiesel production by transesterification using immobilized lipase.

    Science.gov (United States)

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  4. Immune Recognition of the Epidemic Cystic Fibrosis Pathogen Burkholderia dolosa.

    Science.gov (United States)

    Roux, Damien; Weatherholt, Molly; Clark, Bradley; Gadjeva, Mihaela; Renaud, Diane; Scott, David; Skurnik, David; Priebe, Gregory P; Pier, Gerald; Gerard, Craig; Yoder-Himes, Deborah R

    2017-06-01

    Burkholderia dolosa caused an outbreak in the cystic fibrosis (CF) clinic at Boston Children's Hospital from 1998 to 2005 and led to the infection of over 40 patients, many of whom died due to complications from infection by this organism. To assess whether B. dolosa significantly contributes to disease or is recognized by the host immune response, mice were infected with a sequenced outbreak B. dolosa strain, AU0158, and responses were compared to those to the well-studied CF pathogen Pseudomonas aeruginosa In parallel, mice were also infected with a polar flagellin mutant of B. dolosa to examine the role of flagella in B. dolosa lung colonization. The results showed a higher persistence in the host by B. dolosa strains, and yet, neutrophil recruitment and cytokine production were lower than those with P. aeruginosa The ability of host immune cells to recognize B. dolosa was then assessed, B. dolosa induced a robust cytokine response in cultured cells, and this effect was dependent on the flagella only when bacteria were dead. Together, these results suggest that B. dolosa can be recognized by host cells in vitro but may avoid or suppress the host immune response in vivo through unknown mechanisms. B. dolosa was then compared to other Burkholderia species and found to induce similar levels of cytokine production despite being internalized by macrophages more than Burkholderia cenocepacia strains. These data suggest that B. dolosa AU0158 may act differently with host cells and is recognized differently by immune systems than are other Burkholderia strains or species. Copyright © 2017 American Society for Microbiology.

  5. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Yuecel, Yasin; Demir, Cevdet; Dizge, Nadir; Keskinler, Buelent

    2011-01-01

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L ® and Novozym 388 ® , were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 o C and total reaction time 6 h. Lipozyme TL-100L ® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  6. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Flitter, S.J.; Mcintyre, Mhairi

    2004-01-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different...... shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall....

  7. Lipase - Catalyzed glycerolysis of sunflower oil to produce partial glycerides.

    Directory of Open Access Journals (Sweden)

    Zaher, F. A.

    1998-12-01

    Full Text Available Partial glycerides were prepared by glycerolysis of sunflower oil in presence of lipase enzyme as catalyst. Six lipases of different origins were used and compared for their catalytic activity. These include Chromobacterium lipase, pancreatic lipase, Rhizopus arrhizus lipase, lyophilized lipase (plant lipase in addition to two lipase preparations derived from Rhizopus japonicas; Lilipase A-10 and Lilipase B-2. Chromobacterium lipase was found to be the most active as glycerolysis catalyst whereas lyophilized lipase; a plant preparation from wheat germ was the least active. The results have also shown that the lipase type affects also the product polarity and hence its field of application as a food emulsifier. Less polar products can be obtained using Chromobacterium lipase whereas the more polar ones using a fungal lipase preparation «Lipase A-10». The product polarity is also influenced by the process temperature but the mode of its effect is different for different lipases.

    Se prepararon glicéridos parciales mediante glicerolisis de aceite de girasol en presencia de lipasa como catalizador. Seis lipasas de orígenes diferentes se utilizaron y compararon en función de su actividad catalítica. Estas incluyeron lipasa de Chromobacterium, lipasa pancreática, lipasa de Rhizopus arrhizus, lipasa liofilizada (lipasa vegetal además de dos preparaciones de lipasa derivadas de Rhizopus japonicus: lilipase A-10 y lilipase B-2. Se encontró que la lipasa de Chromobacterium fue la más activa como catalizador en la glicerolisis mientras que la lipasa liofilizada, preparación vegetal a partir de germen de trigo, fue la menos activa. Los resultados mostraron que los tipos de lipasa afectan también a la polaridad de los productos y por tanto a los rendimientos en su aplicación como emulsificantes alimentarios. Los productos menos polares pueden obtenerse usando lipasa de

  8. Butyl acetate synthesis using immobilized lipase in calcium alginate beads

    International Nuclear Information System (INIS)

    Mohd Zulkhairi Abdul Rahim; Lee, Pat M.; Lee, Kong H.

    2008-01-01

    The esterification reaction of acetic acid and n-butanol using immobilized lipase encapsulated in calcium alginate beads (Lipase - CAB) and in chitosan coated calcium alginate beads (Lipase-CCAB) in n-hexane under mild reaction conditions were studied. Effects of temperature and substrate concentration (acetic acid and n-butanol) using Lipase - CAB, Lipase - CCAB and free lipase on the esterification reaction and their thermal stability towards esterification reaction were investigated. Results of temperature studies showed that the butyl acetate conversion increased with increase of temperature and reached the highest yield of about 70% around 50 degree Celsius for both immobilized systems but the yield of product catalyzed by free enzyme decreased as temperature was increased. Thermal stabilities studies showed that the Lipase-CCAB and Lipase-CAB were stable throughout the temperature range of 30-60 degree Celsius. However, free lipase became less stable at temperatures higher than 50 degree Celsius. The substrates, n-butanol and acetic acid exerted different effects on the esterification reaction and the reaction was favoured by higher acetic acid concentration than butanol. Kinetics parameters, Km and Vmax values for both substrates and the specific activities of the three enzyme system were also determined. The beads morphology was examined using SEM. Batch-wise operational stability studies for both immobilized systems demonstrated that the immobilized lipase performed better in the batch wise reactor system than the continuous bioreactor system and that the immobilized lipase remained active for at least 5 cycles of batch wise esterification reactions. (author)

  9. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years' experience.

    Science.gov (United States)

    Zlosnik, James E A; Zhou, Guohai; Brant, Rollin; Henry, Deborah A; Hird, Trevor J; Mahenthiralingam, Eshwar; Chilvers, Mark A; Wilcox, Pearce; Speert, David P

    2015-01-01

    We have been collecting Burkholderia species bacteria from patients with cystic fibrosis (CF) for the last 30 years. During this time, our understanding of their multispecies taxonomy and infection control has evolved substantially. To evaluate the long-term (30 year) epidemiology and clinical outcome of Burkholderia infection in CF, and fully define the risks associated with infection by each species. Isolates from Burkholderia-positive patients (n=107) were speciated and typed annually for each infected patient. Microbiological and clinical data were evaluated by thorough review of patient charts, and statistical analyses performed to define significant epidemiological factors. Before 1995, the majority of new Burkholderia infections were caused by epidemic clones of Burkholderia cenocepacia. After implementation of new infection control measures in 1995, Burkholderia multivorans became the most prevalent species. Survival analysis showed that patients with CF infected with B. cenocepacia had a significantly worse outcome than those with B. multivorans, and a novel finding was that, after Burkholderia infection, the prognosis for females was significantly worse than for males. B. multivorans and B. cenocepacia have been the predominant Burkholderia species infecting people with CF in Vancouver. The implementation of infection control measures were successful in preventing new acquisition of epidemic strains of B. cenocepacia, leaving nonclonal B. multivorans as the most prevalent species. Historically, survival after infection with B. cenocepacia has been significantly worse than B. multivorans infection, and, of new significance, we show that females tend toward worse clinical outcomes.

  10. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria.

    Science.gov (United States)

    DiSalvo, Susanne; Haselkorn, Tamara S; Bashir, Usman; Jimenez, Daniela; Brock, Debra A; Queller, David C; Strassmann, Joan E

    2015-09-08

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.

  11. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    Science.gov (United States)

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  12. In silico modeling of lipase H | Jabeen | African Journal of ...

    African Journals Online (AJOL)

    LAH 2 is a type of autosomal recessive hypotrichosis that affect hairs, eyebrows, scalp and eyelashes. Mutations in Lipase H gene result in LAH 2. Changes that result from mutation on physiochemical properties, post-translational modifications, functional sites, secondary structure and tertiary structure lipase H gene (LIPH) ...

  13. Plant latex lipase as biocatalysts for biodiesel production | Mazou ...

    African Journals Online (AJOL)

    Plant latex lipase as biocatalysts for biodiesel production. ... This paper provides an overview regarding the main aspects of latex, such as the reactions catalyzed, physiological functions, specificities, sources and their industrial applications. Keywords: Plant latex, lipase, Transesterification, purification, biodiesel ...

  14. Production of extracellular lipase by a new strain Staphylococcus ...

    African Journals Online (AJOL)

    Based on morphological, biochemical and 16S rRNA sequence analysis, the potent isolate was identified as Staphylococcus aureus. The lipase production of the isolate was increased by improving the conditions of production medium. Maximum lipase production (8.11 U/ml) was achieved when 2% punnakka oil was ...

  15. Isolation and characterization of lipase-producing Bacillus strains ...

    African Journals Online (AJOL)

    Bacillus strains (B1 - B5) producing extra cellular lipase were isolated from the soil sample of coconut oil industry. The strains were identified by morphological and biochemical characters. Growth of the organisms and lipase production were measured with varying pH (4 - 9) temperature (27, 37 and 47ºC) and various ...

  16. Enzymes used in detergents: Lipases | Hasan | African Journal of ...

    African Journals Online (AJOL)

    This review describes the applications of microbial lipases in detergents. Enzymes can reduce the environmental load of detergent products as the chemicals used in conventional detergents are reduced; they are biodegradable, non-toxic and leave no harmful residues. Besides lipases, other enzymes are widely used in ...

  17. Chicken fat and inorganic nitrogen source for lipase production by ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... for lipase production, the production cost was $US 518.00/million Units of lipase. Key words: ... energetics, fine chemicals and pulp and paper industries. ... for enzyme production is extremely important in dictating ... fat is waste product of poultry processing industry ... Economic Research Service,” 2013).

  18. Purification and Characterization of Lipase from Aspergillus flavus ...

    African Journals Online (AJOL)

    USER

    Abstract. Lipase from Aspergillus flavus was purified in a single step purification using MnFeO4 magnetic nano particles to achieve a 20.53- fold purification with specific activity of. 11.29 U/mg and a 59% recovery yield. SDS-PAGE of lipase showed a single pure band with corresponding molecular weight of 35 kDa.

  19. Lipase Activity in Fermented Oil Seeds of Africa Locust Bean ...

    African Journals Online (AJOL)

    acer

    was determined. The peak lipase activity for fermented Africa locust bean, Castor seed, and African ..... Lipase by Penicillium restrictum in solid state ... sp. Rev. Microbiol. 28(2): 90-95. Martinek, G.H. (1969). Microbiology and amino acid ...

  20. Optimization of lipase production by Staphylococcus sp. Lp12

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... of the genera Pseudomonas, Bacillus, Staphylococcus,. Achromobacter have been cloned and characterized. Bacterial lipases are mostly inducible enzymes and require some form of oil, fatty acid, fatty acid alcohol or fatty acid ester and surfactants for induction (Immanuel et al., 2008). Lipase biosynthesis ...

  1. Characteristics of lipase isolated from coconut (Cocos nucifera linn ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... Lipase from coconut plant grown under complete nutrient conditions showed ... 35°C and had a broad optimum pH of 7.5 – 8.5. Key words: Lipase .... inhibited by the ex- cess of substrate concentration or change of physio-.

  2. Endothelial and lipoprotein lipases in human and mouse placenta

    DEFF Research Database (Denmark)

    Lindegaard, Marie L S; Olivecrona, Gunilla; Christoffersen, Christina

    2005-01-01

    Placenta expresses various lipase activities. However, a detailed characterization of the involved genes and proteins is lacking. In this study, we compared the expression of endothelial lipase (EL) and LPL in human term placenta. When placental protein extracts were separated by heparin-Sepharos...

  3. Effect of Ascorbic Acid on Lipoprotein Lipase Activity | Kotze | South ...

    African Journals Online (AJOL)

    Baboons kept on hypovitaminotic C diets, but without clinical signs of scurvy, had significantly higher heart muscle lipoprotein lipase activity than baboons on vitamin C 34 mg/kg body mass/day. When the serum vitamin C levels were above 0,35 mg/100 ml the heart muscle lipoprotein lipase was repressed. Serum vitamin C ...

  4. Selection and optimization of extracellular lipase production using ...

    African Journals Online (AJOL)

    The aim of this study was to isolate and select lipase-producing microorganisms originated from different substrates, as well as to optimize the production of microbial lipase by submerged fermentation under different nutrient conditions. Of the 40 microorganisms isolated, 39 showed a halo around the colonies and 4 were ...

  5. Activity and stability of immobilized lipases in lipase-catalyzed modification of peanut oil

    Directory of Open Access Journals (Sweden)

    Soumanou Mohamed M.

    2004-11-01

    Full Text Available Fatty acid release during lipolysis of peanut oil using microbial free and immobilized lipases in aqueous media was developed. Immobilized lipase from Rhizomucor miehei (RML gave the best result from its ability to clive different fatty acids from peanut oil in such media. In organic solvent, interesterification of peanut oil with tricaprylin using immobilized lipases from RML, Chromobacterium viscosum (CVL and Candida rugosa (CRL was performed. The best substrate molar ratio of tricaprylin to peanut oil found was in the range 0.7 to 0.8. Using substrate molar ratio 0.7, high amount of structured triglyceride ST (about 35% MLM, 44% LML triglyceride fractions was obtained with lipase from RML in n-hexane. The results found in solvent free system were in some cases quite similar to that obtained in organic solvent. In nine successive batch interesterification in solvent free medium using immobilized RML and CRL, no significant loss of amount of both produced triacylglycerol fractions until batch 7 was observed with RML.

  6. Lipoprotein lipase and endothelial lipase in human testis and in germ cell neoplasms

    DEFF Research Database (Denmark)

    Nielsen, J E; Lindegaard, M L; Friis-Hansen, L

    2009-01-01

    . The results suggest that both EL and LPL participate in the supply of nutrients and steroidogenesis in the testes, and that especially EL may be important for the supply of cholesterol for testosterone production in the Leydig cells. The partial cellular separation of the expression of the two lipases...

  7. Characterisation of the simultaneous molybdenum reduction and glyphosate degradation by Burkholderia vietnamiensis AQ5-12 and Burkholderia sp. AQ5-13.

    Science.gov (United States)

    Manogaran, Motharasan; Ahmad, Siti Aqlima; Yasid, Nur Adeela; Yakasai, Hafeez Muhammad; Shukor, Mohd Yunus

    2018-02-01

    In this novel study, we report on the use of two molybdenum-reducing bacteria with the ability to utilise the herbicide glyphosate as the phosphorus source. The bacteria reduced sodium molybdate to molybdenum blue (Mo-blue), a colloidal and insoluble product, which is less toxic. The characterisation of the molybdenum-reducing bacteria was carried out using resting cells immersed in low-phosphate molybdenum media. Two glyphosate-degrading bacteria, namely Burkholderia vietnamiensis AQ5-12 and Burkholderia sp. AQ5-13, were able to use glyphosate as a phosphorous source to support molybdenum reduction to Mo-blue. The bacteria optimally reduced molybdenum between the pHs of 6.25 and 8. The optimum concentrations of molybdate for strain Burkholderia vietnamiensis strain AQ5-12 was observed to be between 40 and 60 mM, while for Burkholderia sp. AQ5-13, the optimum molybdate concentration occurred between 40 and 50 mM. Furthermore, 5 mM of phosphate was seen as the optimum concentration supporting molybdenum reduction for both bacteria. The optimum temperature aiding Mo-blue formation ranged from 30 to 40 °C for Burkholderia vietnamiensis strain AQ5-12, whereas for Burkholderia sp. AQ5-13, the range was from 35 to 40 °C. Glucose was the best electron donor for supporting molybdate reduction, followed by sucrose, fructose and galactose for both strains. Ammonium sulphate was the best nitrogen source in supporting molybdenum reduction. Interestingly, increasing the glyphosate concentrations beyond 100 and 300 ppm for Burkholderia vietnamiensis strain AQ5-12 and Burkholderia sp. AQ5-13, respectively, significantly inhibited molybdenum reduction. The ability of these bacteria to reduce molybdenum while degrading glyphosate is a useful process for the bioremediation of both toxicants.

  8. Beneficial effects of adding lipase enzyme to broiler diet

    International Nuclear Information System (INIS)

    Elbarkouky, E.M.A.

    2005-01-01

    A total number of 300 Ross broiler chicks were obtained from commercial hatchery at one day of age. The chicks were divided into three groups (50 males and 50 females in each). The first and second groups were supplemented with 3000 and 2000 lU/kg diet of lipase enzyme, respectively, while the third group served as control and fed on basal diet. Birds fed on diets that supplemented with lipase enzyme showed significant increase in body weight and dry matter intake, as well as fats and protein content dry matters. The serum lipase activity showed significant increase in treated groups compared to the control. Non-significant changes were determined in serum total lipids, T3, T4 and ash content. Birds supplemented with lipase showed significant decrease in cholesterol concentration. It could be concluded that birds fed diets containing 2000 or 3000 lU/kg diet of lipase enzyme exhibited improvement in broiler performance

  9. Production of lipase free of citrinin by Penicillium citrinum.

    Science.gov (United States)

    Pimentel, M C; Melo, E H; Lima Filho, J L; Durán, N

    1996-02-01

    Lipase (Glycerol ester hydrolase E.G. 3.1.1.3) from a Brazilian strain of Penicillium citrinum free of the mycotoxin citrinin has been investigated. Citrinin production was inhibited by using culture medium containing olive oil, soybean oil and corn oil as carbon sources. Potassium concentration and pH play an important role in citrinin production. Potassium concentration lower than 30 mM and pH below 4.5 inhibited the mycotoxin production. P. citrinum produced lipase free of extraneous proteins and citrinin when cultured using, as nitrogen source, ammonium sulphate (lipase activity of 7.88 U/mg) and yeast extract (lipase activity of 4.95 U/mg) with olive oil as carbon source. This data is relevant to the larger scale production of lipases for food technology applications, from Penicillium citrinum.

  10. Altering the activation mechanism in Thermomyces lanuginosus lipase

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob; Vind, Jesper; Svendsen, Allan

    2014-01-01

    It is shown by rational site-directed mutagenesis of the lid region in Thermomyces lanuginosus lipase that it is possible to generate lipase variants with attractive features, e.g., high lipase activity, fast activation at the lipid interface, ability to act on water-soluble substrates......, and enhanced calcium independence. The rational design was based on the lid residue composition in Aspergillus niger ferulic acid esterase (FAEA). Five constructs included lipase variants containing the full FAEA lid, a FAEA-like lid, an intermediate lid of FAEA and TlL character, and the entire lid region...... from Aspergillus terreus lipase (AtL). To investigate an altered activation mechanism for each variant compared to that of TlL, a combination of activity- and spectroscopic-based measurements were applied. The engineered variant with a lid from AtL displayed interfacial activation comparable...

  11. CHARACTERIZATION AND NUCLEOTIDE SEQUENCE DETERMINATION OF A REPEAT ELEMENT ISOLATED FROM A 2,4,5,-T DEGRADING STRAIN OF PSEUDOMONAS CEPACIA

    Science.gov (United States)

    Pseudomonas cepacia strain AC1100, capable of growth on 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), was mutated to the 2,4,5-T− strain PT88 by a ColE1 :: Tn5 chromosomal insertion. Using cloned DNA from the region flanking the insertion, a 1477-bp sequence (designated RS1100) wa...

  12. CLONING AND CHARACTERIZATION OF A CHROMOSOMAL DNA REGION REQUIRED FOR GROWTH ON 2,4,5-T BY PSEUDOMONAS CEPACIA AC1100

    Science.gov (United States)

    A series of spontaneous 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) nonmetabolizing mutants of Pseudomonas cepacia AC1100 were characterized to be defective in either 2,4,5-T uptake or conversion of this compound to 2,4,5-trichlorophenol (2,4,5-TCP). Two of these mutants, RHC22 a...

  13. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    Directory of Open Access Journals (Sweden)

    Jaeger Karl E

    2011-02-01

    Full Text Available Abstract Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the

  14. Screening and identification of Lipase Producing Bacterium

    Science.gov (United States)

    Zheng, Chaocheng

    2018-01-01

    55 samples from different regions were selected and screened by Rhodamine B flat transparent circle method to observe lipase producing effect, among which, LHY-1, identified as Serratia sp. has the characteristics of fast growth, high enzyme production and stable ability. The colony of this strain is white, the edge is smooth and tidy, the surface is moist, the cell is straight, rod-shaped, gram negative, 0.1-0.2 μm in diameter and, length 0.3-0.5 μm in length.

  15. Characterization of Cross-Linked Lipase Aggregates

    DEFF Research Database (Denmark)

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2009-01-01

    . Precipitants were found to have a profound influence on both specific activities and total activity recovery of CLEAs, as exemplified by Candida antarctica lipase B (CALB). Among the CLEAs of CALB studied, those obtained using PEG600, ammonium sulfate, PEG200 and acetone as precipitants were observed to attain...... over 200% total activity recovery in comparison with acetone powder directly precipitated from the liquid solution by acetone. PEG200 precipitated CLEA gave the best specific activity (139% relative to acetone powder). The results of kinetic studies showed that V (max)/K (m) does not significantly...

  16. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg. No...

  17. Purification and characterization of a new cold active lipase, EnL A ...

    African Journals Online (AJOL)

    Search of lipase engineering data base (LED) revealed that this protein belongs to a newly introduced super family of Candida antarctica lipase A like and to the homologous family of Aspergillus lipase like. Key words: Cold active lipase, Emericella nidulans, hydrophobic interaction chromatography, Candida antarctica ...

  18. Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2

    Directory of Open Access Journals (Sweden)

    R. Sangeetha

    2014-06-01

    Full Text Available Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The lip gene consisted of 650 bp. The experimental molecular weight of SG2 lipase was nearly double that of its theoretical molecular weight, thus suggesting the existence of the functional lipase as a covalent dimer. The proteolytic cleavage sites of the lipase would have been made inaccessible by dimerisation, thus rendering the lipase resistant to protease.

  19. Burkholderia glumae EN EL CULTIVO DE ARROZ EN COSTA RICA

    Directory of Open Access Journals (Sweden)

    Andrea Quesada-Gonz\\u00E1lez

    2014-01-01

    Full Text Available Burkholderia glumae en el cultivo de arroz en Costa Rica. El objetivo de este trabajo fue determinar la presencia de Burkholderia glumae en arroz en Costa Rica. La bacteria Burkholderia glumae está asociada al cultivo del arroz en el que provoca la enfermedad llamada añublo bacterial. Bajo condiciones ambientales favorables, la densidad bacteriana aumenta, lo que provoca que, bajo un sistema de regulación denominado quorum sensing, se expresen sus mecanismos de virulencia mediante la activación de genes responsables para la síntesis de la toxoflavina, que bloquea el flujo de nutrientes, para la biogénesis de flagelos y la respuesta quimiotáctica, y la producción de la enzima catalasa. Las plantas desarrollan la sintomatología que finalmente conlleva a un vaneamiento del grano provocando pérdidas económicas importantes. Se investigó la situación referente a la contaminación del grano de arroz causado por esta bacteria en Costa Rica durante los años 2009 y 2010, mediante un convenio entre la Corporación Nacional Arrocera y el Laboratorio de Fitopatología del Centro de Investigación en Protección de Cultivos de la Universidad de Costa Rica. Se usó la metodología de PCR de punto final recomendada por investigadores del Centro Internacional de Agricultura Tropical en Colombia y se reforzó la identificación, por medio de técnicas de microbiología convencional. Se obtuvieron resultados que indican la presencia de la bacteria en Costa Rica, la primera información sobre la prevalencia de un fitopatógeno bacteriano de gran importancia para el sector arrocero.

  20. Hydrolysis of diacylglycerols by lipoprotein lipase.

    Science.gov (United States)

    Morley, N H; Kuksis, A; Buchnea, D; Myher, J J

    1975-05-10

    Enantiomeric diacylglycerols were emulsified, mole for mole, with lyso(1-acyl) lecithin and were hydrolyzed with lipoprotein lipase in NH4Cl-beef serum albumin buffer at pH 8.6 after a brief incubation with delipidated rat serum. The enzyme was prepared from lyophilized and dialyzed bovine skim milk in a 4 percent solution. The course of hydrolysis for each set of enantiomers was determined by gas-liquid chromatography of the masses of the diacylglycerols remaining or monoacylglycerols released in the medium between 0 and 15 min. The majority of sets of sn-1,2- and 2,3-diacylglycerols, including an isotope-labeled true enantiomeric set which was assessed by mass spectrometry, demonstrated preference by the enzyme for lipolysis at position 1 but with less specificity than previously was shown in sn-triacylglycerol hydrolysis. The results preclude the possibility that the predominance of sn-2,3-diacylglycerol intermediates during triacylglycerol hydrolysis is due solely to a preferential breakdown of the 1,2-isomers and reinforce the conclusion that lipoprotein lipase is specific for position 1.

  1. Burkholderia species associated with legumes of Chiapas, Mexico, exhibit stress tolerance and growth in aromatic compounds.

    Science.gov (United States)

    de León-Martínez, José A; Yañez-Ocampo, Gustavo; Wong-Villarreal, Arnoldo

    Leguminous plants have received special interest for the diversity of β-proteobacteria in their nodules and are promising candidates for biotechnological applications. In this study, 15 bacterial strains were isolated from the nodules of the following legumes: Indigofera thibaudiana, Mimosa diplotricha, Mimosa albida, Mimosa pigra, and Mimosa pudica, collected in 9 areas of Chiapas, Mexico. The strains were grouped into four profiles of genomic fingerprints through BOX-PCR and identified based on their morphology, API 20NE biochemical tests, sequencing of the 16S rRNA, nifH and nodC genes as bacteria of the Burkholderia genus, genetically related to Burkholderia phenoliruptrix, Burkholderia phymatum, Burkholderia sabiae, and Burkholderia tuberum. The Burkholderia strains were grown under stress conditions with 4% NaCl, 45°C, and benzene presence at 0.1% as the sole carbon source. This is the first report on the isolation of these nodulating species of the Burkholderia genus in legumes in Mexico. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. In Vitro Activity of Ceftolozane-Tazobactam against Burkholderia pseudomallei.

    Science.gov (United States)

    Slack, Andrew; Parsonson, Fiona; Cronin, Katie; Engler, Kathy; Norton, Robert

    2018-06-25

    We investigated the in vitro activity of a novel fifth-generation cephalosporin-tazobactam combination, ceftolozane-tazobactam against Burkholderia pseudomallei , the etiological agent of melioidosis. Using both disc diffusion and minimum inhibitory concentration (MIC) strip techniques against 56 clinical isolates and an NCTC strain, the MIC to ceftolozane-tazobactam was found to be between 0.75 and 4 mcg/mL. The MIC50 was found to be 1.5 mcg/mL and MIC90 was 2.0 mcg/mL. This study provides initial evidence of ceftolozane-tazobactam as a novel agent in the management of melioidosis.

  3. Bioremediation of cooking oil waste using lipases from wastes.

    Directory of Open Access Journals (Sweden)

    Clarissa Hamaio Okino-Delgado

    Full Text Available Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  4. ENZYMATIC BIODIESEL SYNTHESIS FROM ACID OIL USING A LIPASE MIXTURE

    Directory of Open Access Journals (Sweden)

    Kelly C. N. R. Pedro

    Full Text Available The conventional biodiesel production process has some disadvantages. It is necessary to use refined vegetable oils with low free fatty acids (FFAs content. An alternative route is to use low-cost acid oils in an enzymatic process. The use of lipases allows simultaneous esterification of FFAs and transesterification of triglycerides present in raw material forming alkyl esters. The aim of this work was to study the production of biodiesel using soybean oils with different acid contents (Acid Value of 8.5, 50, 90 and ethanol catalyzed by commercial immobilized lipases (Novozym 435, Lipozyme RM IM and Lipozyme TL IM. A significant decrease of acid value was observed mainly with Novozym 435 and Lipozyme RM IM. The use of a mixture of two immobilized lipases was also investigated to decrease catalyst cost and increase the amount of ester produced. The three commercial immobilized lipases were mixed in a dual system and tested for biodiesel synthesis from acid oil (AV of 8.5, 50 and 90. A positive synergistic effect occurred mainly for Lipozyme TL IM (1,3-specific lipase and Novozym 435 (non-specific lipase blend. The ester content doubled when this lipase mixture was used in ethanolysis of acid oil with AV of 90.

  5. Lipase or amylase for the diagnosis of acute pancreatitis?

    Science.gov (United States)

    Ismail, Ola Z; Bhayana, Vipin

    2017-12-01

    Acute pancreatitis is a rapid onset of inflammation of the pancreas causing mild to severe life threatening conditions [1, 2]. In Canada, acute pancreatitis is the 5th most expensive digestive disease in Canada with a considerable economic burden on the health care system [3]. The diagnosis of acute pancreatitis is usually based on the presence of abdominal pain and elevated levels of serum amylase and/or lipase. Many health care centers use either serum amylase, lipase or both to diagnose acute pancreatitis without considering which one could provide a better diagnostic accuracy. The aim of this review is to investigate whether serum lipase alone is a sufficient biomarker for the diagnosis of acute pancreatitis. We have examined various studies looking at the utilization, sensitivity, specificity and cost associated savings of lipase and amylase in the diagnosis of acute pancreatitis. When comparing different studies, serum lipase offers a higher sensitivity than serum amylase in diagnosing acute pancreatitis. Lipase also offers a larger diagnostic window than amylase since it is elevated for a longer time, thus allowing it to be a useful diagnostic biomarker in early and late stages of acute pancreatitis. Several recent evidence-based guidelines recommend the use of lipase over amylase. Nevertheless, both lipase and amylase alone lack the ability to determine the severity and etiology of acute pancreatitis. The co-ordering of both tests has shown little to no increase in the diagnostic sensitivity and specificity. Thus, unnecessary testing and laboratory expenditures can be reduced by testing lipase alone. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Exploring the HME and HAE1 efflux systems in the genus Burkholderia

    Directory of Open Access Journals (Sweden)

    Pasca Maria

    2010-06-01

    Full Text Available Abstract Background The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii analyze their phylogenetic distribution, iii define the putative function(s that RND proteins perform within the Burkholderia genus and iv try tracing the evolutionary history of some of these genes in Burkholderia. Results BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins/heavy-metal (HME proteins] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE

  7. Gamma-irradiation sterilization of lipases for cheese making

    Energy Technology Data Exchange (ETDEWEB)

    Umanskij, M S; Borovkova, Yu A; Odegov, N I [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Maslodel' noj i Syrodel' noj Promyshlennosti, Uglich (USSR)

    1979-03-01

    The possibility of sterilizing the enzyme compounds of lipases from Oospora fragrans strains by gamma irradiation was studied. The enzyme compounds were exposed to gamma irradiation at the doses from 0.1 to 0.8 Mrad with the discreteness of 0.1 Mrad and at the dose of 2.0 Mrad. After the radiation treatment the lipases were investigated for bacterial invasion by the cultivation method and for the lipolytic activity by the titrometrical method. It is shown that the sterilization effect is achieved without losses of lipase activity and the radiation dose necessary for sterilization depends on initial invasion levels in the enzyme compounds.

  8. Production of Cold Active Lipase from Bacillus sp.

    OpenAIRE

    Yasemin, Sara; Arabacı, Nihan; Korkmaz Güvenmez, Hatice

    2018-01-01

    A cold active lipase producing Bacillus sp. strains were isolated from sewage of oil. Bacillus sp. strain SY-7 was determined as the best lipase producing isolate. The highest enzyme production was found at 20°C and pH 8.0 on tributyrin media. Analyses of molecular mass of the partial purified lipase was carried out by SDS-PAGE which revealed a single band as 110.5 kDa. The enzyme activity and stability were determined by spectrophotometric and titrimetric methods. The enzyme was active betwe...

  9. Rat lingual lipase: partial purification, hydrolytic properties, and comparison with pancreatic lipase.

    Science.gov (United States)

    Roberts, I M; Montgomery, R K; Carey, M C

    1984-10-01

    We have partially purified lingual lipase from the serous glands of rat tongue. With a combination of Triton X-100 extraction or Triton X-114 phase-separation techniques, Bio-Bead SM-2 treatment, dialysis, and gel filtration on Sephadex G-200 or Sephacryl S-300, we obtained a sparingly soluble lipid-free protein demonstrating hydrolytic activity against triglycerides and negligible phospholipase or cholesteryl esterase activities. Compared with homogenate, specific activities of the enzyme were enriched 3- to 5-fold prior to gel filtration and 10-fold after gel filtration. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration under denaturing conditions (6 M guanidine X HCl or 0.1% sodium dodecyl sulfate) revealed one major glycoprotein band with Mr approximately 50,000. Gel filtration of the active enzyme in 0.1% Triton X-100 gave an Mr approximately 270,000-300,000, suggesting extensive self-aggregation. With both tributyrin and triolein, the pH optimum of the purified enzyme was 4.0 and activity extended from pH 2.0 to 8.0. In contrast to purified human pancreatic lipase, lingual lipase hydrolyzed triglyceride emulsions and mixed micelles stabilized with both short-chain (dihexanoyl) and long-chain (egg) lecithin and were inhibited only slightly (18-25%) by micellar concentrations of two common bile salts, taurodeoxycholate and taurocholate. Our results suggest that the hydrolysis of dietary fat by lingual lipase may extend from the pharynx through the esophagus and stomach and into the upper small intestine.

  10. Maximization of Intracellular Lipase Production in a Lipase-Overproducing Mutant Derivative of Rhizopus oligosporus DGM 31: A Kinetic Study

    Directory of Open Access Journals (Sweden)

    Tehreema Iftikhar

    2008-01-01

    Full Text Available Regulation and maximization of lipase production in a mutant derivative of R. oligosporus has been investigated using different substrates, inoculum sizes, pH of the medium, temperature, and nitrogen sources in shake flask experiments and batch fermentation in a fermentor. The production of intracellular lipase was improved 3 times following medium optimization involving one-at-a-time approach and aeration in the fermentor. Interestingly, intracellular lipase was poorly induced by oils, instead its production was induced by sugars, mainly starch, lactose, sucrose, xylose, glucose and glycerol. Dependent variables studied were cell mass, lipase activity, lipase yield, lipase specific and volumetric rate of formation. It was confirmed that lipase production in the derepressed mutant is sufficiently uncoupled from catabolite repression. The results of average specific productivities at various temperatures worked out according to the Arrhenius equation revealed that mutation decreased the magnitude of enthalpy and entropy demand in the inactivation equilibrium during product formation, suggesting that mutation made the metabolic network of the organism thermally more stable. The highest magnitudes of volumetric productivity (QP=490 IU/(L·h and other product attributes of lipase formation occurring on optimized medium in the fermentor are greater than the values reported by other workers. The purified enzyme is monomeric in nature and exhibits stability up to 80 °C and pH=6.0–8.0. Activation energy, enthalpy and entropy of catalysis at 50 °C, and magnitudes of Gibbs free energy for substrate binding, transition state stabilization and melting point indicated that this lipase is highly thermostable.

  11. Hepatic lipase: a pro- or anti-atherogenic protein?

    NARCIS (Netherlands)

    H. Jansen (Hans); A.J.M. Verhoeven (Adrie); E.J.G. Sijbrands (Eric)

    2002-01-01

    textabstractHepatic lipase (HL) plays a role in the metabolism of pro- and anti-atherogenic lipoproteins affecting their plasma level and composition. However, there is controversy regarding whether HL accelerates or retards atherosclerosis. Its effects on different

  12. Production of extracellular lipase by a new strain Staphylococcus ...

    African Journals Online (AJOL)

    SAM

    2014-07-09

    Jul 9, 2014 ... mesophilic and solvent tolerant lipase with industrial potential. Key words: ..... amount of enzyme production indicating the inducible nature of the .... biodiesel production, oleochemical industry, polymer syn- thesis and ...

  13. Lipase inactivation in wheat germ by gamma irradiation

    International Nuclear Information System (INIS)

    Jha, Pankaj Kumar; Kudachikar, V.B.; Kumar, Sourav

    2013-01-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  14. synthesis, DNA interaction and comparison of lipase inhibition propert

    Indian Academy of Sciences (India)

    GÜNAY KAYA KANTAR

    diseases, such as type II diabetes, hypertension, arte- riosclerosis and ... lipase are used as therapeutic agents to treat obesity.18. Orlistat is an .... Table 1. Crystal data and structure refinement parameters for compounds 1 and 2. Crystal data.

  15. Selection and optimization of extracellular lipase production using ...

    African Journals Online (AJOL)

    Pedro

    2014-01-22

    Jan 22, 2014 ... Erlenmeyer flasks containing 50 ml medium cultive solution of (g L-1 of distilled water): yeast ..... screening of alkaline lipase-production fungi from Brazil savanna soil. World J. Microb. Biot. ... rhamnosus. Int. J. Food Microbiol.

  16. Could Lipoprotein Lipase Play a Role in Alzheimer's Disease?

    Directory of Open Access Journals (Sweden)

    Jean-Francois Blain

    2004-01-01

    Full Text Available This paper reviews recent literature on the role of lipoprotein lipase in the central nervous system with a focus on its recently described role in synaptic remodeling. This novel role could have implication for Alzheimer's disease treatment.

  17. Solvent free lipase catalyzed synthesis of butyl caprylate

    Indian Academy of Sciences (India)

    MEERA T SOSE

    2017-11-10

    Nov 10, 2017 ... Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), ... study for the synthesis of butyl caprylate in presence of bio-catalyst. ..... −1 with Thermomyces lanuginosus lipase.26 The relation.

  18. Stability of immobilized candida sp. 99-125 Lipase for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing (China); Bioengineering Department, Zhengzhou University, Zhengzhou (China); Deng, L.; Nie, K.; Wang, F.; Tan, T. [Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing (China)

    2012-12-15

    The stability of the immobilized lipase from Candida sp. 99-125 during biodiesel production was investigated. The lipase was separately incubated in the presence of various reaction components such as soybean oil, oleic acid methyl ester, n-hexane, water, methanol, and glycerol, or the lipase was stored at 60, 80, 100 and 120 C. Thereafter the residual lipase activity was determined by methanolysis reaction. The results showed that the lipase was rather stable in the reaction media, except for methanol and glycerol. The stability study performed in a reciprocal shaker indicated that enzyme desorption from the immobilized lipase mainly contributed to the lipase inactivation in the water system. So the methanol and glycerol contents should be controlled more precisely to avoid lipase inactivation, and the immobilization method should be improved with regard to lipase desorption. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. A lipase with broad temperature range from an alkaliphilic gamma-proteobacterium isolated in Greenland

    DEFF Research Database (Denmark)

    Schmidt, Mariane; Larsen, Dorte Møller; Stougaard, Peter

    2010-01-01

    A gamma-proteobacterium related to the genera Alteromonadales and Pseudomonadales , isolated from a cold and alkaline environment in Greenland, has been shown to produce a lipase active between 5 ° C and 80 ° C, with optimal activity at 55 ° C and pH 8. PCR-based screening of genomic DNA from...... the isolated bacterium, followed by genome walking, resulted in two complete open reading frames, which were predicted to encode a lipase and its helper protein, a lipase foldase. The amino acid sequence derived for the lipase showed resemblance to lipases from Pseudomonas , Rhodoferax, Aeromonas and Vibrio...... . The two genes were cloned into different expression systems in E. coli with or without a putative secretion sequence, but despite the fact that both recombinant lipase and lipase foldase were observed on SDS–PAGE, no recombinant lipase activity was detected. Attempts to refold the recombinant lipase...

  20. Type VI Secretion is a Major Virulence Determinant in Burkholderia Mallei

    National Research Council Canada - National Science Library

    Schell, Mark A; Ulrich, Ricky L; Ribot, Wilson J; Brueggemann, Ernst E; Hines, Harry B; Chen, Dan; Lipscomb, Lyla; Kim, H. S; Mrazek, Jan; Nierman, William C; DeShazer, David

    2007-01-01

    Burkholderia mallei is a host-adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two-component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown...

  1. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PLAT medium

    NARCIS (Netherlands)

    Salles, JF; Samyn, E; Vandamme, P; van Veen, JA; van Elsas, JD

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  2. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium

    NARCIS (Netherlands)

    Salles, J.F.; Samyn, E.; Vandamme, P.A.; Veen, van J.A.; Elsas, van J.D.

    2006-01-01

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  3. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  4. Sequential Detection of Thermophilic Lipase and Protease by Zymography.

    Science.gov (United States)

    Kurz, Liliana; Hernández, Zully; Contreras, Lellys M; Wilkesman, Jeff

    2017-01-01

    Lipase and protease present in cell-free fractions of thermophilic Bacillus sp. cultures were analyzed by polyacrylamide gel (PAG) electrophoresis. After run, the gel is electrotransferred to another PAG copolymerized with glycerol tributyrate, olive oil, and gelatin. This multi-substrate gel was incubated first for lipase detection, until bands appeared, and then stained with Coomassie for protease detection. Advantages of this sequential procedure are the detection of two different enzyme activities on a single PAG, beside time and resource saving.

  5. Purification and Characterization of Lipase from Aspergillus flavus ...

    African Journals Online (AJOL)

    Lipase from Aspergillus flavus was purified in a single step purification using MnFeO4 magnetic nano particles to achieve a 20.53- fold purification with specific activity of 11.29 U/mg and a 59% recovery yield. SDS-PAGE of lipase showed a single pure band with corresponding molecular weight of 35 kDa. The optimal ...

  6. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    Science.gov (United States)

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)). © 2015 IUMS.

  7. [The Effect of Introduction of the Heterologous Gene Encoding the N-acyl-homoserine Lactonase (aiiA) on the Properties of Burkholderia cenocepacia 370].

    Science.gov (United States)

    Plyuta, V A; Lipasova, V A; Koksharova, O A; Veselova, M A; Kuznetsov, A E; Khmel, I A

    2015-08-01

    To study the role of Quorum Sensing (QS) regulation in the control of the cellular processes of Burkholderia cenocepacia 370, plasmid pME6863 was transferred into its cells. The plasmid contains a heterologous gene encoding for AiiA N-acyl-homoserine lactonase, which degrades the signaling molecules of the QS system of N-acyl-homoserine lactones (AHL). An absence or reduction of AHL in the culture was revealed with the biosensors Chromobacterium violaceum CV026 and Agrobacterium tumifaciens NT1/pZLR4, respectively. The presence of the aiiA gene, which was cloned from Bacillus sp. A24 in the cells of B. cenocepacia 370, resulted in a lack of hemolytic activity, which reduced the extracellular proteolytic activity and decreased the cells' ability to migration in swarms on the surface of the agar medium. The introduction of the aiiA gene did not affect lipase activity, fatty acids synthesis, HCN synthesis, or biofilm formation. Hydrogen peroxide was shown to stimulate biofilm formation by B. cenocepacia 370 in concentrations that inhibited or weakly suppressed bacterial growth. The introduction of the aiiA gene into the cells did not eliminate this effect but it did reduce it.

  8. Catalytic Properties of Lipase Extracts from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Cintia M. Romero

    2006-01-01

    Full Text Available Screening of lipolytic strains using Rhodamine-B/olive oil plate technique allowed the selection of Aspergillus niger MYA 135. Lipase production in submerged culture containing 2 % olive oil was enhanced by more than 50 % compared to basal cultural conditions. Optimal catalytic conditions for olive oil-induced lipase were pH=6.5 and 30–35 °C. These values were shifted to the acid region (4.0–6.5 and 35–37 °C when lipase extract was produced under basal conditions. Slight changes of the residual lipase activity against the pH were found. However, preincubation at either 37 or 40 °C caused an increase in the olive oil-inducible lipolytic activity. On the contrary, lipase residual activity decreases in the 30–55 °C range when it was produced in basal medium. Lipolytic extracts were almost not deactivated in presence of 50 % water-miscible organic solvents. However, water-immiscible aliphatic solvents reduced the lipase activity between 20 and 80 %.

  9. Karakterisasi ekstrak kasar lipase Rhizopus stolonifer UICC 137

    Directory of Open Access Journals (Sweden)

    Sri Sumiarsih

    2001-12-01

    Full Text Available There is an increasing commercial interest in enzymatic production of biologically active component, because there are a number of well-known advantages compared to chemical synthesis. One of the most valuable synthetic features of enzyme is their ability to discriminate between enantiomers of racemic substrates. Lipase have become of great interest to the chemical industries wing their usefulness in both hydrolytic and synthesis reactions. The aim of this work was to study the production of lipase by Rhizopus stolonifer UICC 137, and determine the crude lipase preparation characteristics. The lipolytic activity was determined by titrimetric method toward oil-arabic gum emultion as a substrate. The strain produced lipase at appreciable lipolytic when cultivated for 72 hours in medium containing 3% glucose and 1% olive oil. Our data suggest that the strain produced lipase since the exponential phase of its growth. Lipase with optimum lipolytic activity was obtained at late stationary phase. The optimum condition for lipolytic activity measurement were pH of 7.5 and temperature 37oC, the crude enzyme had a specific activity 20.2 unit/ mg protein, the Vmax was 15.1 mol/ min and KM was 12.5 mg/ ml. The crude enzyme retained 79.9%, 68.0% and 52.6% of its lipolytic activity, when incubated for 90 minutes at temperature of 40, 50, and 60oC respectively.

  10. OPTIMASI ISOLASI LIPASE INDIGENOUS BIJI KAKAO (Theobroma cacao L. The Optimizing of Isolation of Cocoa Bean Indogenous Lipase (Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    I D. G. Mayun Permana

    2012-05-01

    Full Text Available The aim of the research is to optimize the isolation method of cocoa bean lipase. The research is held by determining the position of lipase on cocoa bean, varying extraction medium and isolation process. The result shows that the lipase of cocoa bean is   cytosolic enzyme. The defatting process do not increase the lipase activity. Polyphenols inhibit the lipase activity, so that removal of the polyphenol will increase the activity. Blocking the polyphenol with polyvinilpolypirrolidone (PVPP will also increase the activity.The optimum consentration of PVPP is 8 %. The lipase activity will reach the highest when homogenized for 10 menit at 10,000 rpm. The best medium extraction for lipase isolation is 0.15 M phosphate buffer pH 7.5 containing sucrose 0.6 M and CaCl  1.0 mM.   ABSTRAK Penelitian ini bertujuan untuk mengoptimasi isolasi lipase indigenous biji kakao. Optimasi diawali dengan menentukan keberadaan lipase kemudian optimasi medium ekstraksi dan proses ekstraksi. Hasil penelitian menunjukkan bahwa lipase berada dalam sitosol. Penghilangan lemak tidak meningkatkan aktivitas lipase. Senyawa polifenol menghambat aktivitas lipase dan penghilangan polifenol dapat meningkatkan aktivitas lipase. Polyvinilpolypirrolidone (PVPP dapat menghambat polifenol sehingga dapat meningkatkan aktivitas lipase. Konsentrasi PVPP optimum adalah 8 % dari berat biji kakao. Proses homogenisasi optimum diperoleh dalam waktu 10 menit pada kecepatan 10.000 rpm. Medium ekstraksi untuk isolasi lipase biji kakao terbaik adalah bufer fosfat 0,15 M  dan pH 7,5 yang mengandung sukrosa 0,6 M dan 1,0 mM CaCl .

  11. Molecular mechanisms underlying the close association between soil Burkholderia and fungi

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  12. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.

  13. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    Science.gov (United States)

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Yeoh, Yun Kit; Donose, Bogdan C.; Webb, Richard I.; Parsons, Jeremy; Liao, Webber; Sagulenko, Evgeny; Lakshmanan, Prakash; Hugenholtz, Philip; Schmidt, Susanne; Ragan, Mark A.

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere. PMID:27869215

  14. Inhibition of lipases from Chromobacterium viscosum and Rhizopus oryzae by tetrahydrolipstatin.

    Science.gov (United States)

    Potthoff, A P; Haalck, L; Spener, F

    1998-01-15

    Tetrahydrolipstatin is known as an inhibitor for pancreatic lipase but not for microbial lipases. In this paper we demonstrate that in the presence of water-insoluble substrates like tributyrin or olive oil, tetrahydrolipstatin inhibits the lipases of Chromobacterium viscosum and Rhizopus oryzae, although with different potency. In contrast to porcine pancreatic lipase, which forms an irreversible and covalent enzyme-inhibitor complex with tetrahydrolipstatin, the inhibition of the microbial lipases is reversible as the inhibitor can be removed from the enzyme-inhibitor complex by solvent extraction. Moreover, after inhibition of Chromobacterium viscosum lipase tetrahydrolipstatin remains chemically unchanged.

  15. Emulsifying triglycerides with dairy phospholipids instead of soy lecithin modulates gut lipase activity

    DEFF Research Database (Denmark)

    Mathiassen, Jakob Hovalt; Nejrup, Rikke Guldhammer; Frøkiær, Hanne

    2015-01-01

    in particular to limit fatty acid absorption in babies given infant formulas. Since interaction between the lipid droplet and the gastric and duodenal lipases occur through the hydrophobic/hydrophilic interface, the composition of the emulsifier may be crucial for efficient hydrolysis. We therefore determined...... hydrolytic rate of gastric lipase and pancreatic lipase, on their own or pancreatic lipase after gastric lipase on TAG droplets of similar size emulsified in either soy lecithin (SL) or in bovine milk phospholipids (MPL), more similar to human milk globule membrane lipids than soy lecithin. Gastric lipase...... for formulas for term-born infants....

  16. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    Directory of Open Access Journals (Sweden)

    Patrícia de O. Carvalho

    2005-08-01

    Full Text Available Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL and was highly thermostable, retaining 90% and 60% activity at 50 ºC and 60 ºC after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S-active acid (ee = 6.1% and conversion value (c = 20% in the esterification of (R,S-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (R,S-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2 and commercial lipase from Candida antarctica (E = 20 were employed.

  17. Draft genome sequence of Burkholderia sordidicola S170, a potential plant growth promoter isolated from coniferous forest soil in the Czech Republic

    DEFF Research Database (Denmark)

    Lladó, Salvador; Xu, Zhuofei; Sørensen, Søren Johannes

    2014-01-01

    Burkholderia species are key players in the accumulation of carbon from cellulose decomposition in coniferous forest ecosystems. We report here the draft genome of Burkholderia sordidicola strain S170, containing features associated with known genes involved in plant growth promotion...

  18. Isolation and Identification of Burkholderia glumae from Symptomless Rice Seeds

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2008-06-01

    Full Text Available A survey on isolation and detection of the casual organism of bacterial grain rot of rice was conducted during 1997–2006. In 2006, six pathogenic bacterial strains were isolated from two symptomless seed samples of rice (Oryza sativa L. originally produced in Hainan Province and then planted in Zhejiang Province, China. They were identified as Burkholderia glumae which is the causal organism of bacterial grain rot of rice by physiological characteristics, colony morphology, pathogenicity test, Biolog, fatty acid methyl ester (FAME analysis and RAPD-PCR compared with the four standard reference strains. It is confirmed that there is the infection of B. glumae in so-called ‘health looking seeds’.

  19. Global and regional dissemination and evolution of Burkholderia pseudomallei

    Science.gov (United States)

    Chewapreecha, Claire; Holden, Matthew T. G.; Vehkala, Minna; Välimäki, Niko; Yang, Zhirong; Harris, Simon R; Mather, Alison E.; Tuanyok, Apichai; De Smet, Birgit; Le Hello, Simon; Bizet, Chantal; Mayo, Mark; Wuthiekanun, Vanaporn; Limmathurotsakul, Direk; Phetsouvanh, Rattanaphone; Spratt, Brian G; Corander, Jukka; Keim, Paul; Dougan, Gordon; Dance, David A. B.; Currie, Bart J; Parkhill, Julian; Peacock, Sharon J.

    2017-01-01

    The environmental bacterium Burkholderia pseudomallei causes an estimated 165,000 cases of human melioidosis per year worldwide, and is also classified as a biothreat agent. We used whole genome sequences of 469 B. pseudomallei isolates from 30 countries collected over 79 years to explore its geographic transmission. Our data point to Australia as an early reservoir, with transmission to Southeast Asia followed by onward transmission to South Asia, and East Asia. Repeated reintroduction was observed within the Malay Peninsula, and between countries bordered by the Mekong river. Our data support an African origin of the Central and South American isolates with introduction of B. pseudomallei into the Americas between 1650 and 1850, providing a temporal link with the slave trade. We also identified geographically distinct genes/variants in Australasian or Southeast Asian isolates alone, with virulence-associated genes being among those overrepresented. This provides a potential explanation for clinical manifestations of melioidosis that are geographically restricted. PMID:28112723

  20. Study the effect of F17S mutation on the chimeric Bacillus thermocatenulatus lipase

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Khaleghinejad

    2016-06-01

    Full Text Available Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3 are one of the highest value commercial enzymes as they have potential applications in biotechnology for detergents, food, pharmaceuticals, leather, textiles, cosmetics, and paper industries; and are currently receiving considerable attention because of their potential applications in biotechnology. Bacillus thermocatenulatus Lipase 2 (BTL2 is one of the most important research targets, because of its potential industrial applications. In this study, the effect of substitution Phe17 with Ser in mutated BTL2 lipase, which conserved pentapeptide (112Ala-His-Ser-Gln-Gly116 was replaced with similar sequences (207Gly-Glu-Ser-Ala-Gly211 of Candida rugosa lipase (CLR at the nucleophilic elbow region. Docking results confirmed the mutated lipase to be better than the chimeric lipase. So, cloning was conducted, and the mutated and chimeric btl2 genes were expressed in Escherichia coli, and then the enzymes were purified by anion exchange chromatography. The mutation increased lipase lipolytic activity against most of the applied substrates, with the exception of tributyrin when compared with chimeric lipase. Further, the mutated lipase exhibited higher activity than the chimeric lipase at all temperatures. Optimum pH of the mutated lipase was obtained at pH 9.5, which was more than the chimeric one. Enzyme activity of the mutated lipase in the presence of organic solvents, detergents, and metal ions was also improved than the chimeric lipase.

  1. Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection

    Directory of Open Access Journals (Sweden)

    Sarovich DS

    2012-08-01

    Full Text Available Derek S Sarovich,1,2,* Erin P Price,1,2,* Direk Limmathurotsakul,3 James M Cook,1 Alex T Von Schulze,1 Spenser R Wolken,1 Paul Keim,1 Sharon J Peacock,3,4 Talima Pearson1 1Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA; 2Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Darwin, Australia; 3Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 4Department of Medicine, University of Cambridge, Cambridge, United Kingdom*These authors contributed equally to this workAbstract: Burkholderia pseudomallei, a bacterium that causes the disease melioidosis, is intrinsically resistant to many antibiotics. First-line antibiotic therapy for treating melioidosis is usually the synthetic β-lactam, ceftazidime (CAZ, as almost all B. pseudomallei strains are susceptible to this drug. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, which can lead to mortality if therapy is not switched to a different drug in a timely manner. Serial B. pseudomallei isolates obtained from an acute Thai melioidosis patient infected by a CAZ susceptible strain, who ultimately succumbed to infection despite being on CAZ therapy for the duration of their infection, were analyzed. Isolates that developed CAZ resistance due to a proline to serine change at position 167 in the β-lactamase PenA were identified. Importantly, these CAZ resistant isolates remained sensitive to the alternative melioidosis treatments; namely, amoxicillin-clavulanate, imipenem, and meropenem. Lastly, real-time polymerase chain reaction-based assays capable of rapidly identifying CAZ resistance in B. pseudomallei isolates at the position 167 mutation site were developed. The ability to rapidly identify the emergence of CAZ resistant B. pseudomallei populations in melioidosis patients will allow timely alterations in treatment strategies

  2. A genetic programming approach for Burkholderia Pseudomallei diagnostic pattern discovery

    Science.gov (United States)

    Yang, Zheng Rong; Lertmemongkolchai, Ganjana; Tan, Gladys; Felgner, Philip L.; Titball, Richard

    2009-01-01

    Motivation: Finding diagnostic patterns for fighting diseases like Burkholderia pseudomallei using biomarkers involves two key issues. First, exhausting all subsets of testable biomarkers (antigens in this context) to find a best one is computationally infeasible. Therefore, a proper optimization approach like evolutionary computation should be investigated. Second, a properly selected function of the antigens as the diagnostic pattern which is commonly unknown is a key to the diagnostic accuracy and the diagnostic effectiveness in clinical use. Results: A conversion function is proposed to convert serum tests of antigens on patients to binary values based on which Boolean functions as the diagnostic patterns are developed. A genetic programming approach is designed for optimizing the diagnostic patterns in terms of their accuracy and effectiveness. During optimization, it is aimed to maximize the coverage (the rate of positive response to antigens) in the infected patients and minimize the coverage in the non-infected patients while maintaining the fewest number of testable antigens used in the Boolean functions as possible. The final coverage in the infected patients is 96.55% using 17 of 215 (7.4%) antigens with zero coverage in the non-infected patients. Among these 17 antigens, BPSL2697 is the most frequently selected one for the diagnosis of Burkholderia Pseudomallei. The approach has been evaluated using both the cross-validation and the Jack–knife simulation methods with the prediction accuracy as 93% and 92%, respectively. A novel approach is also proposed in this study to evaluate a model with binary data using ROC analysis. Contact: z.r.yang@ex.ac.uk PMID:19561021

  3. Use of the common marmoset to study Burkholderia mallei infection.

    Directory of Open Access Journals (Sweden)

    Tomislav Jelesijevic

    Full Text Available Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 10(4 to 2.5 X 10(5 bacteria developed acute lethal infection within 3-4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 10(3 bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 10(3 organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B

  4. Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B

    DEFF Research Database (Denmark)

    Fedosov, Sergey; Brask, Jesper; Pedersen, Anders K.

    2013-01-01

    We have designed a kinetic model of biodiesel production using Novozym 435 (Nz435) with immobilized Candida antarctica lipase B (CALB) as a catalyst. The scheme assumed reversibility of all reaction steps and imitated phase effects by introducing various molecular species of water and methanol....... Residual enzymatic activity in biodiesel of standard quality causes increase of D above its specification level because of the reaction 2M↔D+G. Filtration or alkaline treatment of the product prior to storage resolves this problem. The optimal field of Nz435 application appears to be decrease of F, M, D...

  5. Lipase production from a wild (LPF-5) and a mutant (HN1) strain of ...

    African Journals Online (AJOL)

    Lipase production from a wild (LPF-5) and a mutant (HN1) strain of Aspergillus niger. ... Several physical parameters (carbon source, nitrogen source, pH, ... for the development of industrial biotechnology for production of extracellular lipase.

  6. Purification and characterization of a new cold active lipase, EnL A ...

    African Journals Online (AJOL)

    SONU

    2015-06-03

    Jun 3, 2015 ... palm oil mill effluent dump sites, Pedavegi, West Godavari Dist, A.P. India and was ... carried out with the lipase production medium optimized using ..... Non edible Castor Oil by Immobilized Lipase from Bacillus aerius.

  7. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis.

    Science.gov (United States)

    Micheva-Viteva, Sofiya N; Shou, Yulin; Ganguly, Kumkum; Wu, Terry H; Hong-Geller, Elizabeth

    2017-01-01

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis , we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host

  8. Enzymatic Cellulose Palmitate Synthesis Using Immobilized Lipase

    Directory of Open Access Journals (Sweden)

    Anna Roosdiana

    2017-06-01

    Full Text Available Bacterial cellulose can be modified by esterification using palmitic acid and Mucor miehei  lipase  as catalyst. The purpose of this research was to determine the optimum conditions of esterification reaction of cellulose and palmitic acid . The esterification reaction was carried out at the time variation  of  6, 12, 18, 24 and 30 hours and the mass ratio of cellulose: palmitic acid (1: 11: 2, 1: 3, 1: 4, 1: 5,1:6 at 50 °C. The   cellulose palmitate  was examined  its  physical and chemical properties by using FTIR spectrophotometer, XRD, bubble point test and saponification  apparatus. The results showed that the optimum reaction time of esterification reaction of cellulose and palmitic acid occurred within 24 hours and the mass ratio of cellulose: palmitic acid was 1: 3 resulting in DS of  0.376 with  swelling index of 187 %, crystallinity index of 61.95%,  and Φ porous of 2.40 μm. Identification of functional groups using FTIR spectrophotometer showed that C=O ester group  was observed at 1737.74 cm-1 and strengthened  by  the appearance of C-O ester peak at 1280 cm-1. The conclusion of this study is reaction time and reactant ratio influence significantly the DS of cellulose ester.

  9. Estolides Synthesis Catalyzed by Immobilized Lipases

    Directory of Open Access Journals (Sweden)

    Erika C. G. Aguieiras

    2011-01-01

    Full Text Available Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil, using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C, viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C, and viscosity index (153.

  10. Transport of lipoprotein lipase across endothelial cells

    International Nuclear Information System (INIS)

    Saxena, U.; Klein, M.G.; Goldberg, I.J.

    1991-01-01

    Lipoprotein lipase (LPL), synthesized in muscle and fat, hydrolyzes plasma triglycerides primarily while bound to luminal endothelial cell surfaces. To obtain information about the movement of LPL from the basal to the luminal endothelial cell surface, the authors studied the transport of purified bovine milk LPL across bovine aortic endothelial cell monolayers. 125 I-labeled LPL ( 125 I-LPL) added to the basal surface of the monolayers was detected on the apical side of the cells in two compartments: (1) in the medium of the upper chamber, and (2) bound to the apical cell surface. The amount of 125 I-LPL on the cell surface, but not in the medium, reached saturation with time and LPL dose. Catalytically active LPL was transported to the apical surface but very little LPL activity appeared in the medium. Heparinase treatment of the basal cell surface and addition of dextran sulfate to the lower chamber decreased the amount of 125 I-LPL appearing on the apical surface. Similarly, the presence of increasing molar ratios of oleic acid/bovine serum albumin at the basal surface decreased the transport of active LPL across the monolayer. Thus, a saturable transport system, which requires haparan sulfate proteoglycans and is inhibited by high concentrations of free fatty acids on the basal side of the cells, appears to exist for passage of enzymatically active LPL across endothelial cells. They postulate that regulation of LPL transport to the endothelial luminal surface modulates the physiologically active pool of LPL in vivo

  11. Anaerobic biodegradability of dairy wastewater pretreated with porcine pancreas lipase

    Directory of Open Access Journals (Sweden)

    Adriano Aguiar Mendes

    2010-12-01

    Full Text Available Lipids-rich wastewater was partial hydrolyzed with porcine pancreas lipase and the efficiency of the enzymatic pretreatment was verified by the comparative biodegradability tests (crude and treated wastewater. Alternatively, simultaneous run was carried out in which hydrolysis and digestion was performed in the same reactor. Wastewater from dairy industries and low cost lipase preparation at two concentrations (0.05 and 0.5% w.v-1 were used. All the samples pretreated with enzyme showed a positive effect on organic matter removal (Chemical Oxygen Demand-COD and formation of methane. The best results were obtained when hydrolysis and biodegradation were performed simultaneously, attaining high COD and color removal independent of the lipase concentration. The enzymatic treatment considerably improved the anaerobic operational conditions and the effluent quality (lower content of suspended solids and less turbidity. Thus, the use of enzymes such as lipase seemed to be a very promising alternative for treating the wastewaters having high fat and grease contents, such as those from the dairy industry.O presente trabalho teve como objetivo o pré-tratamento de efluente da indústria de laticínios na hidrólise de lipídeos, empregando lipase de fonte de células animais de baixo custo disponível comercialmente (pâncreas de porco na formação de gás metano por biodegradabilidade anaeróbia empregando diferentes concentrações de lipase (0,05 e 0,5 % w.v-1. A utilização de lipase no pré-tratamento do efluente acelerou a hidrólise de lipídeos e, conseqüentemente, auxiliou o tratamento biológico resultando na redução da matéria orgânica em termos de Demanda Química de Oxigênio (DQO, cor e sólidos em suspensão como lipídeos. Os melhores resultados em termos de remoção de DQO e cor foram obtidos quando a hidrólise e biodigestão foram realizadas simultaneamente, independente da concentração de lipase empregada. Estes resultados

  12. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    International Nuclear Information System (INIS)

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A.

    1990-01-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans

  13. Lipase from a Brazilian strain of Penicillium citrinum.

    Science.gov (United States)

    Pimentel, M C; Krieger, N; Coelho, L C; Fontana, J O; Melo, E H; Ledingham, W M; Lima Filho, J L

    1994-10-01

    A lipases (glycerol ester hydrolases E. C. 3.1.1.3) from a brazilian strain of Penicillium citrinum has been investigated. When the microorganism was cultured in the simple medium (1.0% olive oil and 0.5% yeast extract), using olive oil in as carbon source in the inocula, the enzyme extracted showed maximum activity (409 IU/mL). In addition, decrease of yeast extract concentration also reduces the lipase activity. Nevertheless, when yeast extract was replaced by ammonium sulfate, no activity was detected. Purification by precipitation with ammonium sulfate showed best activity in the 40-60% fraction. The optimum temperature for enzyme activity was found in the range of 34-37 degrees C. However, after 30 min at 60 degrees C, the enzyme was completely inactivated. The enzyme showed optimum at pH 8.0. The dried concentrated fraction (after dialysis and lyophilization) maintained its lipase activity at room temperature (28 degrees C) for 8 mo. This result in lipase stability suggests an application of lipases from P. citrinum in detergents and other products that require a high stability at room temperature.

  14. Effect of fermentation conditions on lipase production by Candida utilis

    Directory of Open Access Journals (Sweden)

    SANJA Z. GRBAVCIC

    2007-08-01

    Full Text Available A wild yeast strain isolated from spoiled soybean oil and identified as Candida utilis initially presented rather low lipase activity (approximately 4 IU dm-3 in submerged culture in a universal yeast medium containing 2 % malt extract. Stu­dies were undertaken to improve the lipase production. The best yields of lipase were obtained with a medium supplemented with caprylic and oleic acids as indu­cers, but higher concentrations of the former (> 0.5 % had a negative effect on the lipase production and cell growth. The type of nitrogen source seemed also to be very important. The highest lipolytic activity of 284 IU dm-3 was achieved after 5 days of fermentation in a medium containing oleic acid and hydrolyzed casein as carbon and nitrogen sources, respectively, and supplemented with Tween 80®. It was shown that optimization of the fermentation conditions can lead to a significant improvement in the lipase production (more than 70-fold higher compared to the initial value obtained in the non-optimized medium.

  15. New lipases by mining of Pleurotus ostreatus genome.

    Directory of Open Access Journals (Sweden)

    Alessandra Piscitelli

    Full Text Available The analysis of Pleurotus ostreatus genome reveals the presence of automatically annotated 53 lipase and 34 carboxylesterase putative coding-genes. Since no biochemical or physiological data are available so far, a functional approach was applied to identify lipases from P. ostreatus. In the tested growth conditions, four lipases were found expressed, with different patterns depending on the used C source. Two of the four identified proteins (PleoLip241 and PleoLip369, expressed in both analysed conditions, were chosen for further studies, such as an in silico analysis and their molecular characterization. To overcome limits linked to native production, a recombinant expression approach in the yeast Pichia pastoris was applied. Different expression levels were obtained: PleoLip241 reached a maximum activity of 4000 U/L, whereas PleoLip369 reached a maximum activity of 700 U/L. Despite their sequence similarity, these enzymes exhibited different substrate specificity and diverse stability at pH, temperature, and presence of metals, detergents and organic solvents. The obtained data allowed classifying PleoLip241 as belonging to the "true lipase" family. Indeed, by phylogenetic analysis the two proteins fall in different clusters. PleoLip241 was used to remove the hydrophobic layer from wool surface in order to improve its dyeability. The encouraging results obtained with lipase treated wool led to forecast PleoLip241 applicability in this field.

  16. Comparative Genomics of Burkholderia singularis sp. nov., a Low G+C Content, Free-Living Bacterium That Defies Taxonomic Dissection of the Genus Burkholderia

    Directory of Open Access Journals (Sweden)

    Peter Vandamme

    2017-09-01

    Full Text Available Four Burkholderia pseudomallei-like isolates of human clinical origin were examined by a polyphasic taxonomic approach that included comparative whole genome analyses. The results demonstrated that these isolates represent a rare and unusual, novel Burkholderia species for which we propose the name B. singularis. The type strain is LMG 28154T (=CCUG 65685T. Its genome sequence has an average mol% G+C content of 64.34%, which is considerably lower than that of other Burkholderia species. The reduced G+C content of strain LMG 28154T was characterized by a genome wide AT bias that was not due to reduced GC-biased gene conversion or reductive genome evolution, but might have been caused by an altered DNA base excision repair pathway. B. singularis can be differentiated from other Burkholderia species by multilocus sequence analysis, MALDI-TOF mass spectrometry and a distinctive biochemical profile that includes the absence of nitrate reduction, a mucoid appearance on Columbia sheep blood agar, and a slowly positive oxidase reaction. Comparisons with publicly available whole genome sequences demonstrated that strain TSV85, an Australian water isolate, also represents the same species and therefore, to date, B. singularis has been recovered from human or environmental samples on three continents.

  17. Comparative Genomics of Burkholderia singularis sp. nov., a Low G+C Content, Free-Living Bacterium That Defies Taxonomic Dissection of the Genus Burkholderia

    Science.gov (United States)

    Vandamme, Peter; Peeters, Charlotte; De Smet, Birgit; Price, Erin P.; Sarovich, Derek S.; Henry, Deborah A.; Hird, Trevor J.; Zlosnik, James E. A.; Mayo, Mark; Warner, Jeffrey; Baker, Anthony; Currie, Bart J.; Carlier, Aurélien

    2017-01-01

    Four Burkholderia pseudomallei-like isolates of human clinical origin were examined by a polyphasic taxonomic approach that included comparative whole genome analyses. The results demonstrated that these isolates represent a rare and unusual, novel Burkholderia species for which we propose the name B. singularis. The type strain is LMG 28154T (=CCUG 65685T). Its genome sequence has an average mol% G+C content of 64.34%, which is considerably lower than that of other Burkholderia species. The reduced G+C content of strain LMG 28154T was characterized by a genome wide AT bias that was not due to reduced GC-biased gene conversion or reductive genome evolution, but might have been caused by an altered DNA base excision repair pathway. B. singularis can be differentiated from other Burkholderia species by multilocus sequence analysis, MALDI-TOF mass spectrometry and a distinctive biochemical profile that includes the absence of nitrate reduction, a mucoid appearance on Columbia sheep blood agar, and a slowly positive oxidase reaction. Comparisons with publicly available whole genome sequences demonstrated that strain TSV85, an Australian water isolate, also represents the same species and therefore, to date, B. singularis has been recovered from human or environmental samples on three continents. PMID:28932212

  18. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    OpenAIRE

    Borrelli, Grazia M.; Trono, Daniela

    2015-01-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile bioc...

  19. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  20. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Science.gov (United States)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  1. Rat liver contains a limited number of binding sites for hepatic lipase

    NARCIS (Netherlands)

    G.C. Schoonderwoerd (Kees); A.J.M. Verhoeven (Adrie); H. Jansen (Hans)

    1994-01-01

    textabstractThe binding of hepatic lipase to rat liver was studied in an ex vivo perfusion model. The livers were perfused with media containing partially purified rat hepatic lipase or bovine milk lipoprotein lipase. The activity of the enzymes was determined in the

  2. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Esterase-lipase derived from Mucor miehei. 173.140... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by...

  3. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia.

    Science.gov (United States)

    Schönmann, Susan; Loy, Alexander; Wimmersberger, Céline; Sobek, Jens; Aquino, Catharine; Vandamme, Peter; Frey, Beat; Rehrauer, Hubert; Eberl, Leo

    2009-04-01

    For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.

  4. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis

    Czech Academy of Sciences Publication Activity Database

    Nunvář, J.; Kalferstová, L.; Bloodworth, R.A.M.; Kolář, Michal; Degrossi, J.; Lubovich, S.; Cardona, S.T.; Dřevínek, P.

    2016-01-01

    Roč. 11, č. 8 (2016), č. článku e0160975. E-ISSN 1932-6203 R&D Projects: GA MZd(CZ) NT12405; GA MZd(CZ) NV15-28017A Institutional support: RVO:68378050 Keywords : quorum sensing systems * cepacia complex * pseudomonas-aeruginosa * strain ms14 * spontaneous mutations * molecular-spectrum * escherichia-coli * structural basis * sequence data * cenocepacia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  5. Enhancement of lipase catalyzed-fatty acid methyl esters production from waste activated bleaching earth by nullification of lipase inhibitors.

    Science.gov (United States)

    Dwiarti, Lies; Ali, Ehsan; Park, Enoch Y

    2010-01-01

    This study sought to identify inhibitory factors of lipase catalyzed-fatty acid methyl esters (FAME) production from waste activated bleaching earth (wABE). During the vegetable oil refinery process, activated bleaching earth (ABE) is used for removing the impure compounds, but adsorbs vegetable oil up to 35-40% as on a weight basis, and then the wABE is discarded as waste material. The impurities were extracted from the wABE with methanol and evaluated by infra-red (IR) spectroscopy, which revealed that some were chlorophyll-plant pigments. The chlorophylls inhibited the lipase during FAME conversion from wABE. The inhibition by a mixture of chlorophyll a and b was found to be competitive. The inhibition of the enzymatic hydrolysis of waste vegetable oil contained in wABE by chlorophyll a alone was competitive, while the inhibition by chlorophyll b alone was non-competitive. Furthermore, the addition of a small amount of alkali nullified this inhibitory effect and accelerated the FAME production rate. When 0.9% KOH (w/w wABE) was added to the transesterification reaction with only 0.05% lipase (w/w wABE), the maximum FAME production rate improved 120-fold, as compared to that without the addition of KOH. The alkali-combined lipase significantly enhanced the FAME production rate from wABE, in spite of the presence of the plant pigments, and even when a lower amount of lipase was used as a catalyst.

  6. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  7. Screening of supports for immobilization of commercial porcine pancreatic lipase

    Directory of Open Access Journals (Sweden)

    Robison Scherer

    2011-12-01

    Full Text Available The aim of this work is to report the performance of different supports for the immobilization of commercial porcine pancreatic lipase. The immobilization tests were carried out in several types of Accurel, activated alumina, kaolin, montmorillonite, ion exchange resins and zeolites. The characterization of the supports showed differences in terms of specific area and morphology. The characteristics of the supports influenced the amount of enzyme adsorbed, yield of immobilization and esterification activity of the resulting immobilized catalyst. The clays KSF and natural and pillared montmorillonites presented potential for use as support for lipase immobilization in terms of yield and esterification activity. Yields of immobilization of 76.32 and 52.01% were achieved for clays KSF and natural montmorillonite, respectively. Esterification activities of 754.03, 595.51, 591.88 and 515.71 U.g-1 were obtained for lipases immobilized in Accurel MP-100, Amberlite XAD-2, mordenite and pillared montmorillonite, respectively.

  8. Dependence of PERT endpoint on endogenous lipase activity.

    Science.gov (United States)

    Gao, Wen-Yi; Mulberg, Andrew E

    2014-11-01

    To clarify and to understand the potential for misinterpretation of change in fecal fat quantitation during pancreatic enzyme replacement therapy (PERT) trials for treatment of exocrine pancreatic insufficiency. Analysis of clinical trials submitted to the U.S. Food and Drug Administration (FDA) for approval of PERT that enrolled 123 cystic fibrosis adult and pediatric patients treated with Creon, Pertzye, Ultresa, and Zenpep. The CFA% defines lipase activity as a percentage of converting substrate of "Total Daily Dietary Fat Intake." PERT trials performed to date have modified the definition to converting the "Shared Daily Fat Intake," generating "Partial CFA" for the exogenous lipase: the higher the activity of coexisting endogenous lipase, the lower the "Partial CFA" of exogenous measured. This review shows that "Partial CFA" is not CFA. Enrollment of patients with low HPLA during treatment may improve the interpretability of "Partial CFA" measured by PERT trials.

  9. The Organization of the Quorum Sensing luxI/R Family Genes in Burkholderia

    Directory of Open Access Journals (Sweden)

    Sándor Pongor

    2013-07-01

    Full Text Available Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/.

  10. Burkholderia sp. KCTC 11096BP modulates pepper growth and resistance against Phytophthora capsici

    International Nuclear Information System (INIS)

    Kang, S.M.; Hamayun, M.; Shinwari, Z.K.

    2016-01-01

    Biological control of crop diseases is desirable for sustainable agriculture as it minimizes chemical inputs in the agricultural system and promotes eco-friendly environment. We analyzed the favorable role of Burkholderia sp. KCTC 11096BP against the pathogen Phytophthora capsici in pepper. We screen thirty rhizobateria for their anti-pathogen activity, and found that Burkholderia sp. KCTC 11096BP exhibits maximum growth inhibition of the pathogen P. capsici. The bacterium inoculation to pepper plants significantly enhanced growth attributes of pepper in infected and control treatments. The total proteins (10.9%), and the amino acids viz. glycine (4.08 ug/g), leucine (3.3 ug/g), and alanine (3.26 ug/g) were preset in considerably higher quantities in Burkholderia sp. applied treatments as compare to control. The systemic acquired resistance (SAR) of the host plant was up-regulated by Burkholderia sp. KCTC, as endogenous salicylic acid (235.5 ng/g) and jasmonic acid (22.8 ng/g) levels were found higher in such treatments. It was concluded that Burkholderia sp. KCTC 11096BP mitigates the adverse effects of P. capsici on pepper crop and can improve crop productivity at the field level. (author)

  11. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis

    Science.gov (United States)

    Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; de Faria, Sergio M.; Dakora, Felix D.; Weinstock, George; Hirsch, Ann M.

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low. PMID:24416172

  12. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae).

    Science.gov (United States)

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-06-25

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction.

  13. A Possible Link between Infection with Burkholderia Bacteria and Systemic Lupus Erythematosus Based on Epitope Mimicry

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2008-01-01

    Full Text Available We previously demonstrated that purified polyclonal and monoclonal anti-dsDNA antibodies bind a 15-mer peptide ASPVTARVLWKASHV in ELISA and Dot blot. This 15-mer peptide partial sequence ARVLWKASH shares similarity with burkholderia bacterial cytochrome B 561 partial sequence ARVLWRATH. In this study, we show that purified anti-dsDNA antibodies react with burkholderia fungorum bacterial cell lysates in Western blot. We used anti-dsDNA antibodies to make an anti-dsDNA antibodies affinity column and used this column to purify the burkholderia fungorum bacterial protein. Purified anti-dsDNA antibodies bind specifically to purified bacterial antigen and purified bacterial antigen blocked the anti-dsDNA antibodies binding to dsDNA antigen. Sera with anti-dsDNA antibodies bind specifically to purified bacterial antigen. We obtained protein partial sequence of RAGTDEGFG which is shared with burkholderia bacterial transcription regulator protein sequence. Sera with anti-dsDNA antibodies bind to RAGTDEGFG peptide better than control groups. These data support our hypothesis that the origin of anti-dsDNA antibodies in SLE may be associated with burkholderia bacterial infection.

  14. The Organization of the Quorum Sensing luxI/R Family Genes in Burkholderia

    Science.gov (United States)

    Choudhary, Kumari Sonal; Hudaiberdiev, Sanjarbek; Gelencsér, Zsolt; Coutinho, Bruna Gonçalves; Venturi, Vittorio; Pongor, Sándor

    2013-01-01

    Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology) of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/. PMID:23820583

  15. Divergent homologs of the predicted small RNA BpCand697 in Burkholderia spp.

    Science.gov (United States)

    Damiri, Nadzirah; Mohd-Padil, Hirzahida; Firdaus-Raih, Mohd

    2015-09-01

    The small RNA (sRNA) gene candidate, BpCand697 was previously reported to be unique to Burkholderia spp. and is encoded at 3' non-coding region of a putative AraC family transcription regulator gene. This study demonstrates the conservation of BpCand697 sequence across 32 Burkholderia spp. including B. pseudomallei, B. mallei, B. thailandensis and Burkholderia sp. by integrating both sequence homology and secondary structural analyses of BpCand697 within the dataset. The divergent sequence of BpCand697 was also used as a discriminatory power in clustering the dataset according to the potential virulence of Burkholderia spp., showing that B. thailandensis was clearly secluded from the virulent cluster of B. pseudomallei and B. mallei. Finally, the differential co-transcript expression of BpCand697 and its flanking gene, bpsl2391 was detected in Burkholderia pseudomallei D286 after grown under two different culture conditions using nutrient-rich and minimal media. It is hypothesized that the differential expression of BpCand697-bpsl2391 co-transcript between the two standard prepared media might correlate with nutrient availability in the culture media, suggesting that the physical co-localization of BpCand697 in B. pseudomallei D286 might be directly or indirectly involved with the transcript regulation of bpsl2391 under the selected in vitro culture conditions.

  16. Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae).

    Science.gov (United States)

    Takeshita, Kazutaka; Matsuura, Yu; Itoh, Hideomi; Navarro, Ronald; Hori, Tomoyuki; Sone, Teruo; Kamagata, Yoichi; Mergaert, Peter; Kikuchi, Yoshitomo

    2015-01-01

    A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the "plant-associated beneficial and environmental (PBE)" group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution.

  17. Comparison of immunoreactive serum trypsinogen and lipase in Cystic Fibrosis

    International Nuclear Information System (INIS)

    Lloyd-Still, J.D.; Weiss, S.; Wessel, H.; Fong, L.; Conway, J.J.

    1984-01-01

    The incidence of Cystic Fibrosis (CF) is 1 in 2,000. Early detection and treatment of CF may necessitate newborn screening with a reliable and cost-effective test. Serum immunoreactive trypsinogen (IRT) an enzyme produced by the pancreas, is detectable by radioimmunoassay (RIA) techniques. Recently, it has been shown that IRT is elevated in CF infants for the first few months of life and levels become subnormal as pancreatic insufficiency progresses. Other enzymes produced by the pancreas, such as lipase, are also elevated during this time. The author's earlier work confirmed previous reports of elevated IRT levels in CF infants. The development of a new RIA for lipase (nuclipase) has enabled comparison of these 2 pancreatic enzymes in C.F. Serum IRT and lipase determinations were performed on 2 groups of CF patients; infants under 1 year of age, and children between 1 and 18 years of age. Control populations of the same age groups were included. The results showed that both trypsin (161 +- 92 ng/ml, range 20 to 400) and lipase (167 +- 151 ng/ml, range 29 to 500) are elevated in CF in the majority of infants. Control infants had values of IRT ranging from 20 to 29.5 ng/ml and lipase values ranging from 23 to 34 ng/ml. IRT becomes subnormal in most CF patients by 8 years of age as pancreatic function insufficiency increases. Lipase levels and IRT levels correlate well in infancy, but IRT is a more sensitive indicator of pancreatic insufficiency in older patients with CF

  18. Draft Genome Sequence of Pseudomonas sp. Strain Ep R1 Isolated from Echinacea purpurea Roots and Effective in the Growth Inhibition of Human Opportunistic Pathogens Belonging to the Burkholderia cepacia Complex.

    Science.gov (United States)

    Maggini, Valentina; Presta, Luana; Miceli, Elisangela; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena; Fani, Renato

    2017-05-18

    In this announcement, we detail the draft genome sequence of the Pseudomonas sp. strain Ep R1, isolated from the roots of the medicinal plant Echinacea purpurea The elucidation of this genome sequence may allow the identification of genes associated with the production of antimicrobial compounds. Copyright © 2017 Maggini et al.

  19. The specificity of Several Kinds Lipases on n-3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jenny Elisabeth, T Yuliani, P M Tambunan, J M Purba

    2001-04-01

    Full Text Available Several lipases from microbial and plant, i.e Rhizomucor miehei, Pseudomonas sp., Candida antartica, rice bran, and Carica papaya latex (CPL were examined for synthesis of omega-3 (n-3 PUFA-rich glyceride by hydrolysis and acidolysis reaction. Tuna oil was used in hydrolysis reaction, whereas tuna and palm oils were used as source of triglyceride (TAG molecules and n-3 PUFA concentrate from tuna oil as source of EPA and DHA in acidolysis reaction.For hydrolysis reaction, the rice bran and CPL lipases showed the lowest hydrolytic activity of the tuna oil, whereas the R. miehei lipase showed the highest hydrolytic activity but was unable to hydrolyze EPA and DHA. On the contrary, the C. antartica and Pseudomonas sp. lipases acted stronger on hydrolysis of DHA ester bond than EPA.For acidolysis reaction, all the lipases showed ability to incorporate n-3 PUFA into tuna and palm oils. C. antartica lipase had the maximum DHA incorporation into tuna and palm oils, rice bran lipase had relatively similar ability with R. miehei lipase, and the CPL lipase had the lowest ability. This study proved that rice bran and CPL lipases also had transesterification activity and showed the feasibility of the rice bran lipase to be a biocatalyst for n-3 PUFA-rich glyceride production. Increasing the substrate ratio, of n-3 PUFA concentrate and tuna or palm oil, could increase the EPA and DHA incorporation. The R. miehei, rice bran, and CPL lipases unabled to incorporate DHA into DHA-containing glyceride molecule, whereas C. antartica lipase had the capability in high ratio of n-3 PUFA concentrate to oil. Therefore, the lipases were easier to incorporate n-3 PUFA into palm oil than tuna oil, since the TAG molecules of palm oil was not as complex as tuna oil. It could be suggested that the lipases did not only have acyl chain and positional specificity, but also the whole glyceride structure specificity.

  20. Lipases: particularly effective biocatalysts for cosmetic active ingredients

    Directory of Open Access Journals (Sweden)

    Yvergnaux Florent

    2017-07-01

    Full Text Available Enzymes are the tools of choice in the on-going quest for non-pollutant processes to discover molecules for use in skin products. Amongst these biocatalysts, lipases offer considerable potential in terms of ingredient development and are of interest in skin dermocosmetic formulations possessing sensory or biological activities. Lipases have been studied for around thirty years and, in most cases, these enzymes function under what are deemed to be mild conditions, displaying remarkable efficacy particularly in terms of selectivity. This particularly effective strategy will be illustrated through typical synthesis, demonstrating how ester or amide active ingredients are obtained.

  1. Enzymatic Production of FAME Biodiesel with Soluble Lipases

    DEFF Research Database (Denmark)

    T. Gundersen, Maria; Heltborg, Carsten Kirstejn; Yang, V

    Biodiesel is a viable alternative to fossil fuels, and biocatalysis is gaining interest as a greener process. We focus on converting oils to Fatty Acid Methyl Ester (FAME) using soluble lipases, which offer an advantage compared to immobilized enzymes by cost efficiency and ease of implementation...... the defined operating space concerning: temperature, water content, initial methanol concentration and enzyme content. The identified optimum range was experimentally evaluated, and model findings were confirmed. Another barrier in lipase use in biodiesel production is the higher melting point (m...

  2. A Burkholderia pseudomallei colony variant necessary for gastric colonization.

    Science.gov (United States)

    Austin, C R; Goodyear, A W; Bartek, I L; Stewart, A; Sutherland, M D; Silva, E B; Zweifel, A; Vitko, N P; Tuanyok, A; Highnam, G; Mittelman, D; Keim, P; Schweizer, H P; Vázquez-Torres, A; Dow, S W C; Voskuil, M I

    2015-02-03

    Diverse colony morphologies are a hallmark of Burkholderia pseudomallei recovered from infected patients. We observed that stresses that inhibit aerobic respiration shifted populations of B. pseudomallei from the canonical white colony morphotype toward two distinct, reversible, yet relatively stable yellow colony variants (YA and YB). As accumulating evidence supports the importance of B. pseudomallei enteric infection and gastric colonization, we tested the response of yellow variants to hypoxia, acidity, and stomach colonization. Yellow variants exhibited a competitive advantage under hypoxic and acidic conditions and alkalized culture media. The YB variant, although highly attenuated in acute virulence, was the only form capable of colonization and persistence in the murine stomach. The accumulation of extracellular DNA (eDNA) was a characteristic of YB as observed by 4',6-diamidino-2-phenylindole (DAPI) staining of gastric tissues, as well as in an in vitro stomach model where large amounts of eDNA were produced without cell lysis. Transposon mutagenesis identified a transcriptional regulator (BPSL1887, designated YelR) that when overexpressed produced the yellow phenotype. Deletion of yelR blocked a shift from white to the yellow forms. These data demonstrate that YB is a unique B. pseudomallei pathovariant controlled by YelR that is specifically adapted to the harsh gastric environment and necessary for persistent stomach colonization. Seemingly uniform populations of bacteria often contain subpopulations that are genetically identical but display unique characteristics which offer advantages when the population is faced with infrequent but predictable stresses. The pathogen Burkholderia pseudomallei is capable of forming several reversible colony types, and it interconverted between one white type and two yellow types under certain environmental stresses. The two yellow forms exhibited distinct advantages in low-oxygen and acidic environments. One yellow

  3. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts.

    Science.gov (United States)

    Seo, Young-Su; Lim, Jae Yun; Park, Jungwook; Kim, Sunyoung; Lee, Hyun-Hee; Cheong, Hoon; Kim, Sang-Mok; Moon, Jae Sun; Hwang, Ingyu

    2015-05-06

    In addition to human and animal diseases, bacteria of the genus Burkholderia can cause plant diseases. The representative species of rice-pathogenic Burkholderia are Burkholderia glumae, B. gladioli, and B. plantarii, which primarily cause grain rot, sheath rot, and seedling blight, respectively, resulting in severe reductions in rice production. Though Burkholderia rice pathogens cause problems in rice-growing countries, comprehensive studies of these rice-pathogenic species aiming to control Burkholderia-mediated diseases are only in the early stages. We first sequenced the complete genome of B. plantarii ATCC 43733T. Second, we conducted comparative analysis of the newly sequenced B. plantarii ATCC 43733T genome with eleven complete or draft genomes of B. glumae and B. gladioli strains. Furthermore, we compared the genome of three rice Burkholderia pathogens with those of other Burkholderia species such as those found in environmental habitats and those known as animal/human pathogens. These B. glumae, B. gladioli, and B. plantarii strains have unique genes involved in toxoflavin or tropolone toxin production and the clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bacterial immune system. Although the genome of B. plantarii ATCC 43733T has many common features with those of B. glumae and B. gladioli, this B. plantarii strain has several unique features, including quorum sensing and CRISPR/CRISPR-associated protein (Cas) systems. The complete genome sequence of B. plantarii ATCC 43733T and publicly available genomes of B. glumae BGR1 and B. gladioli BSR3 enabled comprehensive comparative genome analyses among three rice-pathogenic Burkholderia species responsible for tissue rotting and seedling blight. Our results suggest that B. glumae has evolved rapidly, or has undergone rapid genome rearrangements or deletions, in response to the hosts. It also, clarifies the unique features of rice pathogenic Burkholderia species relative to other

  4. Diagnostic value of post-heparin lipase testing in detecting common genetic variants in the LPL and LIPC genes

    NARCIS (Netherlands)

    van Hoek, Mandy; Dallinga-Thie, Geesje M.; Steyerberg, Ewout W.; Sijbrands, Eric J. G.

    2009-01-01

    Post-heparin lipoprotein lipase and hepatic lipase activities are used to identify primary disorders of triglyceride and HDL-cholesterol metabolism. Their ability to identify common variants in the lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes is unclear. To investigate the ability of

  5. Liver lipase and high-density lipoprotein. Lipoprotein changes after incubation of human serum with rat liver lipase.

    Science.gov (United States)

    Groot, P H; Scheek, L M; Jansen, H

    1983-05-16

    Human sera were incubated with rat liver lipase after inactivation of lecithin:cholesterol acyltransferase, and the changes in serum lipoprotein composition were measured. In the presence of liver lipase serum triacylglycerol and phosphatidylcholine were hydrolyzed. The main changes in the concentrations of these lipids were found in the high-density lipoprotein fraction. Subfractionation of high-density lipoprotein by rate-zonal ultracentrifugation showed a prominent decrease in all constituents of high-density lipoprotein2, a smaller decrease in the 'light' high-density lipoprotein3 and an increase in the 'heavy' high-density lipoprotein3. These data support a concept in which liver lipase is involved in high-density lipoprotein2 phospholipid and triacylglycerol catabolism and suggest that as a result of this action high-density lipoprotein2 is converted into high-density lipoprotein3.

  6. Enzymatic production of alkyl esters through alcoholysis: A critical evaluation of lipases and alcohols

    DEFF Research Database (Denmark)

    Li, Deng; Xu, Xuebing; Gudmundur G, Haraldsson

    2005-01-01

    This paper focuses on a detailed evaluation of commercially available immobilized lipases and simple monohydric alcohols for the production of alkyl esters from sunflower oil by enzymatic alcoholysis. Six lipases were tested with seven alcohols, including straight and branched-chain primary...... in an increased degree of conversion for all lipases except Novozym 435. The secondary alcohol 2-propanol significantly reduced the alcoholysis reaction with all lipases; however, the branch-chain isobutanol was more advantageous than linear 1-butanol for Novozym 435, Lipozyme RM IM, and Lipase PS-C. Many...

  7. Process Technology for Immobilized LipaseProcess Technology for Immobilized Lipase-catalyzed

    DEFF Research Database (Denmark)

    Xu, Yuan

    Biocatalysis has attracted significant attention recently, mainly due to its high selectivity and potential benefits for sustainability. Applications can be found in biorefineries, turning biomass into energy and chemicals, and also for products in the food and pharmaceutical industries. However......, most applications remain in the production of high-value fine chemicals, primarily because of the expense of introducing new technology. In particular lipasecatalyzed synthesis has already achieved efficient operations for high-value products and more interesting now is to establish opportunities......-down experimental work is described in this thesis. The methodology uses economic targets to test options characterized via a set of tools. In order to validate the methodology, two processes based on immobilized lipase-catalysis have been studied: transesterification and esterification of vegetable oils...

  8. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut.

    Science.gov (United States)

    Lee, Jun Beom; Byeon, Jin Hee; Jang, Ho Am; Kim, Jiyeun Kate; Yoo, Jin Wook; Kikuchi, Yoshitomo; Lee, Bok Luel

    2015-09-14

    We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations.

    Science.gov (United States)

    Takeshita, Kazutaka; Kikuchi, Yoshitomo

    2017-04-01

    A number of insects establish symbiotic associations with beneficial microorganisms in various manners. The bean bug Riptortus pedestris and allied stink bugs possess an environmentally acquired Burkholderia symbiont in their midgut crypts. Unlike other insect endosymbionts, the Burkholderia symbiont is easily culturable and genetically manipulatable outside the host. In conjunction with the experimental advantages of the host insect, the Riptortus-Burkholderia symbiosis is an ideal model system for elucidating the molecular bases underpinning insect-microbe symbioses, which opens a new window in the research field of insect symbiosis. This review summarizes current knowledge of this system and discusses future perspectives. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. An ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Douglas R.; Staker, Bart L.; Abendroth, Jan A.; Edwards, Thomas E.; Hartley, Robert; Leonard, Jess; Kim, Hidong; Rychel, Amanda L.; Hewitt, Stephen N.; Myler, Peter J.; Stewart, Lance J. (UWASH); (Emerald)

    2011-12-07

    Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and Northern Australia. Burkholderia is responsible for melioidosis, a serious infection of the skin. The enzyme 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (PGAM) catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate, a key step in the glycolytic pathway. As such it is an extensively studied enzyme and X-ray crystal structures of PGAM enzymes from multiple species have been elucidated. Vanadate is a phosphate mimic that is a powerful tool for studying enzymatic mechanisms in phosphoryl-transfer enzymes such as phosphoglycerate mutase. However, to date no X-ray crystal structures of phosphoglycerate mutase have been solved with vanadate acting as a substrate mimic. Here, two vanadate complexes together with an ensemble of substrate and fragment-bound structures that provide a comprehensive picture of the function of the Burkholderia enzyme are reported.

  11. Burkholderia Species Are the Most Common and Preferred Nodulating Symbionts of the Piptadenia Group (Tribe Mimoseae)

    Science.gov (United States)

    Bournaud, Caroline; de Faria, Sergio Miana; dos Santos, José Miguel Ferreira; Tisseyre, Pierre; Silva, Michele; Chaintreuil, Clémence; Gross, Eduardo; James, Euan K.; Prin, Yves; Moulin, Lionel

    2013-01-01

    Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the “Piptadenia group”. We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from β to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species. PMID:23691052

  12. Burkholderia pseudomallei: Challenges for the Clinical Microbiology Laboratory.

    Science.gov (United States)

    Hemarajata, Peera; Baghdadi, Jonathan D; Hoffman, Risa; Humphries, Romney M

    2016-12-01

    Melioidosis is a potentially fatal infection caused by the bacterium Burkholderia pseudomallei Clinical diagnosis of melioidosis can be challenging since there is no pathognomonic clinical syndrome, and the organism is often misidentified by methods used routinely in clinical laboratories. Although the disease is more prevalent in Thailand and northern Australia, sporadic cases may be encountered in areas where it is not endemic, including the United States. Since the organism is considered a tier 1 select agent according to the Centers for Disease Control and Prevention and the U.S. Department of Agriculture Animal and Plant Health Inspection Service, clinical laboratories must be proficient at rapidly recognizing isolates suspicious for B. pseudomallei, be able to safely perform necessary rule-out tests, and to refer suspect isolates to Laboratory Response Network reference laboratories. In this minireview, we report a case of melioidosis encountered at our institution and discuss the laboratory challenges encountered when dealing with clinical isolates suspicious for B. pseudomallei or clinical specimens from suspected melioidosis cases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Genetic diversity and microevolution of Burkholderia pseudomallei in the environment.

    Directory of Open Access Journals (Sweden)

    Narisara Chantratita

    2008-02-01

    Full Text Available The soil dwelling Gram-negative pathogen Burkholderia pseudomallei is the cause of melioidosis. The diversity and population structure of this organism in the environment is poorly defined.We undertook a study of B. pseudomallei in soil sampled from 100 equally spaced points within 237.5 m(2 of disused land in northeast Thailand. B. pseudomallei was present on direct culture of 77/100 sampling points. Genotyping of 200 primary plate colonies from three independent sampling points was performed using a combination of pulsed field gel electrophoresis (PFGE and multilocus sequence typing (MLST. Twelve PFGE types and nine sequence types (STs were identified, the majority of which were present at only a single sampling point. Two sampling points contained four STs and the third point contained three STs. Although the distance between the three sampling points was low (7.6, 7.9, and 13.3 meters, respectively, only two STs were present in more than one sampling point. Each of the three samples was characterized by the localized expansion of a single B. pseudomallei clone (corresponding to STs 185, 163, and 93. Comparison of PFGE and MLST results demonstrated that two STs contained strains with variable PFGE banding pattern types, indicating geographic structuring even within a single MLST-defined clone.We discuss the implications of this extreme structuring of genotype and genotypic frequency in terms of micro-evolutionary dynamics and ecology, and how our results may inform future sampling strategies.

  14. Molecular Characterization of Putative Virulence Determinants in Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Suat Moi Puah

    2014-01-01

    Full Text Available The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P=0.049 at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.

  15. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    Science.gov (United States)

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform

  16. The role of siderophores in metal homeostasis of members of the genus Burkholderia.

    Science.gov (United States)

    Mathew, Anugraha; Jenul, Christian; Carlier, Aurelien L; Eberl, Leo

    2016-02-01

    Although members of the genus Burkholderia can utilize a high-affinity iron uptake system to sustain growth under iron-limiting conditions, many strains also produce siderophores, suggesting that they may serve alternative functions. Here we demonstrate that the two Burkholderia siderophores pyochelin and ornibactin can protect the cells from metal toxicity and thus play an alternative role in metal homeostasis. We also demonstrate that metals such as copper and zinc induce the production of ornibactin. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    Science.gov (United States)

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  18. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil.

    Science.gov (United States)

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Van An, Hoang; Sukweenadhi, Johan; Singh, Priyanka; Huq, Md Amdadul; Yang, Deok-Chun

    2015-04-01

    Strain DCY85(T) and DCY85-1(T), isolated from rhizosphere of ginseng, were rod-shaped, Gram-reaction-negative, strictly aerobic, catalase positive and oxidase negative. 16S rRNA gene sequence analysis revealed that strain DCY85(T) as well as DCY85-1(T) belonged to the genus Burkholderia and were closely related to Burkholderia fungorum KACC 12023(T) (98.1 and 98.0 % similarity, respectively). The major polar lipids of strain DCY85(T) and DCY85-1(T) were phosphatidylethanolamine, one unidentified aminolipid and two unidentified phospholipids. The major fatty acids of both strains are C16:0, C18:1 ω7c and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The predominant isoprenoid quinone of each strain DCY85(T) and DCY85-1(T) was ubiquinone (Q-8) and the G+C content of their genomic DNA was 66.0 and 59.4 mol%, respectively, which fulfill the characteristic range of the genus Burkholderia. The polyamine content of both DCY85(T) and DCY85-1(T) was putrescine. Although both DCY85(T) and DCY85-1(T) have highly similar 16S rRNA and identical RecA and gyrB sequences, they show differences in phenotypic and chemotaxonomic characteristics. DNA-DNA hybridization results proved the consideration of both strains as two different species. Based on the results from our polyphasic characterization, strain DCY85(T) and DCY85-1(T) are considered novel Burkholderia species for which the name Burkholderia ginsengiterrae sp. nov and Burkholderia panaciterrae sp. nov are, respectively, proposed. An emended description of those strains is also proposed. DCY85(T) and DCY85-1(T) showed antagonistic activity against the common root rot pathogen of ginseng, Cylindrocarpon destructans. The proposed type strains are DCY85(T) (KCTC 42054(T) = JCM 19888(T)) and DCY85-1(T) (KCTC 42055(T) = JCM 19889(T)).

  19. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  20. Structure of the human hepatic triglyceride lipase gene

    International Nuclear Information System (INIS)

    Cai, Shengjian; Wong, D.M.; Chen, Sanhwan; Chan, L.

    1989-01-01

    The structure of the human hepatic triglyceride lipase gene was determined from multiple cosmid clones. All the exons, exon-intron junctions, and 845 bp of the 5' and 254 bp of the 3' flanking DNA were sequenced. Comparison of the exon sequences to three previously published cDNA sequences revealed differences in the sequence of the codons for residue 133, 193, 202, and 234 that may represent sequence polymorphisms. By primer extension, hepatic lipase mRNA initiates at an adenine 77 bases upstream of the translation initiation site. The hepatic lipase gene spans over 60 kb containing 9 exons and 8 introns, the latter being all located within the region encoding the mature protein. The exons are all of average size (118-234 bp). Exon 1 encodes the signal peptide, exon 4, a region that binds to the lipoprotein substrate, and exon 5, an evolutionarily highly conserved region of potential catalytic function, and exons 6 and 9 encode sequences rich in basic amino acids thought to be important in anchoring the enzyme to the endothelial surface by interacting with acidic domains of the surface glycosaminoglycans. The human lipoprotein lipase gene has been recently reported to have an identical exon-intron organization containing the analogous structural domains. The observations strongly support the common evolutionary origin of these two lipolytic enzymes

  1. Lipase inhibition and antiobesity effect of Atractylodes lancea.

    Science.gov (United States)

    Jiao, Ping; Tseng-Crank, Julie; Corneliusen, Brandon; Yimam, Mesfin; Hodges, Mandee; Hong, Mei; Maurseth, Catherine; Oh, Misun; Kim, Hyunjin; Chu, Min; Jia, Qi

    2014-05-01

    The ethanol extract of Atractylodes lancea rhizome displayed significant lipase inhibition with an IC50 value of 9.06 µg/mL in a human pancreatic lipase assay from high-throughput screening. Bioassay-guided isolation led to the identification of one new polyacetylene, syn-(5E,11E)-3-acetoxy-4-O-(3-methylbutanoyl)-1,5,11-tridecatriene-7,9-diyne-3,4-diol (7), along with six known compounds (1-6). The structure of compound 7 was determined based on the analysis of NMR and MS data. Among these seven lipase inhibitors, the major compound atractylodin (1) showed the highest lipase inhibitory activity (IC50 = 39.12 µM). The antiobesity effect of the ethanol extract of Atractylodes lancea rhizome was evaluated in a high-fat diet-induced obesity mice model at daily dosages of 250 mg/kg and 500 mg/kg body weight for 4 weeks, and treatment with this extract demonstrated a moderate efficacy at the 500 mg/kg dose level. Georg Thieme Verlag KG Stuttgart · New York.

  2. Comparison of lipase-catalyzed synthesis of cyclopentadecanolide ...

    African Journals Online (AJOL)

    Methyl 15-hydroxy-pentadecanate, which is made from Malana oleifera chum oil, is an ideal material to synthesize cyclopentadecanolide, an important macrocycle musk, with wide applications in the fields of perfume, cosmetic, food and medicine, etc. One kind of screened lipase from Candida sp.GXU08 strain was used to ...

  3. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    The use of fungal biomass as a lipase biocatalyst represents an attractive approach for the treatments of oil wastewater as well as for the production of biodiesel from oil and residual grease, due to its greater stability, possibility of reuse, and lower cost. In this work, 20 filamentous fungi were isolated from the grease trap ...

  4. High regioselective acetylation of vitamin A precursors using lipase ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... High regioselective acetylation of vitamin A precursors using lipase B from Candida antarctica in organic media. Jingpeng Sun, Keju Jing* and Yinghua Lu. Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen. University, Xiamen 361005, P. R. ...

  5. Fatty Acid Signaling: The New Function of Intracellular Lipases

    Directory of Open Access Journals (Sweden)

    Zuzana Papackova

    2015-02-01

    Full Text Available Until recently, intracellular triacylglycerols (TAG stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.

  6. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-05-04

    May 4, 2016 ... food, chemical, and pharmaceutical industry means the current global ... be the most convenient biosystem for industrial applications ... Fungi are capable of producing several enzymes for ... strains, and the process results in losses to the isolation ..... technical and economic burdens of lipase production.

  7. High regioselective acetylation of vitamin A precursors using lipase ...

    African Journals Online (AJOL)

    The effect of different reaction parameters was explored on the acylation of primary hydroxyl group of 1,6-diol by lipase B from Candida antarctica catalysis in organic solvent. First, the effect of the organic solvents was investigated, and the highest conversion rate was obtained in n-hexane. Then, the effect of the acyl donor ...

  8. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    Science.gov (United States)

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  9. Improvement of lipase production from Geotrichum sp. in shaken flasks

    Directory of Open Access Journals (Sweden)

    Maldonadoa Resende Rafael

    2012-01-01

    Full Text Available This work is focused on the study of different variables on inoculum build-up aiming to improve the lipase production by Geotrichum sp. by means a sequential strategy of experimental design. The effects of inoculum size, corn steep liquor concentration, volume of inoculum, pH of medium, age of inoculum and soybean oil concentration on lipase activity were assessed by means of two factorial experimental designs. A maximum lipase activity of 35.20±0.8 U/mL was obtained with a inoculum composed of one circular area of 0.78cm2 containing spores, 50 mL of inoculum volume medium, 12 hours of inoculum age, 15% w/v of corn steep liquor concentration, 1.0%w/v of soybean oil concentration and initial pH 5.0 at 30°C and 150 rpm in flasks. This work showed that an enhancement of lipase activity can be obtained using a sequential statistical factorial approach to define the variables for inoculum build-up.

  10. Metabolic fate of rat heart endothelial lipoprotein lipase

    International Nuclear Information System (INIS)

    Chajek-Shaul, T.; Bengtsson-Olivecrona, G.; Peterson, J.; Olivecrona, T.

    1988-01-01

    When isolated rat hearts were perfused with medium containing 125I-labeled bovine lipoprotein lipase (LPL), they bound both lipase activity and radioactivity. More than 80% of the bound lipase could be rapidly released by heparin. Low concentrations of bovine LPL displaced 50-60% of the endogeneous, endothelial-bound LPL. Higher concentrations caused additional binding. Both binding and exchange were rapid processes. The hearts continuously released endogenous LPL into the medium. An antiserum that inhibited bovine but not rat LPL was used to differentiate endogeneous and exogeneous LPL activity. When the pool of endothelial LPL was labeled with bovine 125I-labeled LPL and then chased with unlabeled bovine LPL, approximately 50% of the labeled lipase was rapidly displaced. During chase perfusion with medium only, catalytically active bovine LPL appeared in the perfusate. The rate of release was similar to that observed for endogeneous LPL activity and amounted to 10-13% of the heparin-releasable fraction in the first 5 min of perfusion. There was little or no degradation of bovine 125I-labeled LPL to fragments or acid-soluble products. These results indicate that endothelial LPL is accessible for exchange with exogeneous LPL and that detachment rather than degradation may be the pathway for catabolism of endothelial LPL

  11. Isolation and Screening of Lipase Producing Microorganisms from Natural Sources

    Czech Academy of Sciences Publication Activity Database

    Singh, M. G.; Chandraveer, C.; Tripathi, Abishek

    2017-01-01

    Roč. 44, č. 1 (2017), s. 19-23 ISSN 0304-5250 Institutional support: RVO:67179843 Keywords : lipase assay * natural sources * screening * submerged fermentation Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  12. Dual bioimprinting of Thermomyces lanuginosus lipase for synthesis of biodiesel

    Directory of Open Access Journals (Sweden)

    Joyeeta Mukherjee

    2016-06-01

    Full Text Available Use of biodiesel as an alternative to non-renewable sources of energy has become an attractive option in recent years. The enzymatic synthesis of biodiesel by transesterification of fats/oils with an alcohol is a much more sustainable route than the chemical method. However, cost effectiveness of the enzymatic route is a major barrier in its commercialization. In this work, a high activity biocatalyst design of Thermomyces lanuginosus lipase is made by dually bioimprinting it with substrate and a surfactant (which is believed to open up the lid covering the active site of the lipase during precipitation of the lipase in organic solvent. When the lipase was bioimprinted with only the surfactants, 28 U of the enzyme/g of oil could yield 99% biodiesel from soybean oil in about 4 h. However, when dually bioimprinted even very low enzyme load 1.4 U/g of oil, yielded 99% biodiesel within 48 h.

  13. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  14. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, A.; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-01-01

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial

  15. Regioselective alcoholysis of silychristin acetates catalyzed by lipases

    Czech Academy of Sciences Publication Activity Database

    Vavříková, Eva; Gavezzotti, P.; Purchartová, Kateřina; Fuksová, Kateřina; Biedermann, David; Kuzma, Marek; Riva, S.; Křen, Vladimír

    2015-01-01

    Roč. 16, č. 6 (2015), s. 11983-11995 E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GA15-03037S; GA MŠk(CZ) LD14096; GA MŠk LH13097 Institutional support: RVO:61388971 Keywords : acetylation * alcoholysis * lipase Subject RIV: CC - Organic Chemistry Impact factor: 3.257, year: 2015

  16. High-level lipase production by Aspergillus candidus URM 5611 ...

    African Journals Online (AJOL)

    The current study evaluated lipase production by Aspergillus candidus URM 5611 through solid state fermentation (SSF) by using almond bran licuri as a new substrate. The microorganism produced high levels of the enzyme (395.105 U gds-1), thus surpassing those previously reported in the literature. The variable ...

  17. Isolation and characterization of lipase-producing Bacillus strains ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... many industrial processes leading to the development of ... streaked on tributyrin (Hi media 071) agar plates and the formation .... 3d. At pH 7.0. 3e. At pH 8.0. 3f. At pH 9.0. Figure 3. Effect of olive oil on lipase activity of Bacillus ...

  18. Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea pseudokoningii

    Directory of Open Access Journals (Sweden)

    Marita G. Pereira

    2017-09-01

    Full Text Available Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr, glyoxyl-agarose (GX, MANAE-agarose activated with glutaraldehyde (GA and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr, at 50 °C, 60 °C and 70 °C. Moreover, all derivatives were stabilized when incubated with organic solvents at 50%, such as ethanol, methanol, n-propanol and cyclohexane. Furthermore, lipase was highly activated (4-fold in the presence of cyclohexane. GA-crosslinked and GA derivatives were more stable than the CNBr one in the presence of organic solvents. All derivatives were able to hydrolyze sardine, açaí (Euterpe oleracea, cotton seed and grape seed oils. However, during the hydrolysis of sardine oil, GX derivative showed to be 2.3-fold more selectivity (eicosapentaenoic acid (EPA/docosahexaenoic acid (DHA ratio than the control. Additionally, the types of immobilization interfered with the lipase enantiomeric preference. Unlike the control, the other three derivatives preferably hydrolyzed the R-isomer of 2-hydroxy-4-phenylbutanoic acid ethyl ester and the S-isomer of 1-phenylethanol acetate racemic mixtures. On the other hand, GX and CNBr derivatives preferably hydrolyzed the S-isomer of butyryl-2-phenylacetic acid racemic mixture while the GA and GA-crosslink derivatives preferably hydrolyzed the R-isomer. However, all derivatives, including the control, preferably hydrolyzed the methyl mandelate S-isomer. Moreover, the derivatives could be used for eight consecutive cycles retaining more than 50% of their residual activity. This work shows the importance of immobilization as a tool to increase the lipase stability to temperature and organic solvents, thus enabling the possibility of

  19. GDSL lipases modulate immunity through lipid homeostasis in rice.

    Science.gov (United States)

    Gao, Mingjun; Yin, Xin; Yang, Weibing; Lam, Sin Man; Tong, Xiaohong; Liu, Jiyun; Wang, Xin; Li, Qun; Shui, Guanghou; He, Zuhua

    2017-11-01

    Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity.

  20. Serum amylase and lipase activities after exploratory laparotomy in dogs.

    Science.gov (United States)

    Bellah, J R; Bell, G

    1989-09-01

    Serum amylase and lipase activities and creatinine concentration were determined before surgery, and at 1 and 2 days after exploratory laparotomy in 24 dogs. Examination of all viscera was done during each laparotomy, but a surgical procedure was not performed. The mean serum activities for lipase were: before surgery, 0.71 (0.0 to 2.0) Cherry Crandall units (CCU)/L; 1 day after surgery, 2.1 (0.0 to 4.5) CCU/L; and 2 days after surgery, 1.19 (0.0 to 3.9) CCU/L. The mean serum activities for amylase were: before surgery, 1,958 (1,027 to 3,426) IU/L; 1 day after surgery, 1,538 (937 to 2,659) IU/L; and 2 days after surgery, 1,663 (1,066 to 2,274) IU/L. Serum creatinine concentrations before surgery, 1 day after surgery, and 2 days after surgery were 0.88 (0.2 to 1.7) mg/dl, 0.78 (0.4 to 1.3) mg/dl, and 0.78 (0.3 to 1.3) mg/dl, respectively. Mean preoperative, day-1, and day-2 serum amylase activities and serum creatinine concentrations did not differ significantly from each other. Mean preoperative and day-2 serum lipase activities did not differ significantly; however, mean serum lipase activity was significantly greater when day 1 activities were compared with preoperative activities (P = 0.0002). Post-mortem examinations revealed no gross or histologic evidence of pancreatitis in any dog. The results of this study show that a 3 or more fold increase in serum lipase activity may occur after routine exploratory laparotomy in dogs without clinical signs or gross evidence of pancreatitis. Histologic evidence of pancreatitis was not found in the right pancreatic lobes in any dog.

  1. Lipase activity in vesiclular systems: characterization of candida cylindracea lipase and its activity in polymerizable dialkylammonium surfactant vesicles

    NARCIS (Netherlands)

    Mosmuller, E.W.J.; Franssen, M.C.R.; Engbersen, Johannes F.J.

    1993-01-01

    Lipase from Candida cylindracea (CCL) was incorporated into polymerizable positively charged dialkylammonium bromide surfactant vesicles. The enzyme was incorporated by the use of the dehydration-rehydration method or by incubation. In the latter case, trapping efficiencies of up to 100% could be

  2. Effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    International Nuclear Information System (INIS)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-01-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D 10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased (P 10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  3. KARAKTERISASI SIFAT-SIFAT BIOKIMIA EKSTRAK KASAR LIPASE EKSTRASELULER BAKTERI Azospirillum sp.PRD1

    Directory of Open Access Journals (Sweden)

    Santi Nur Handayani

    2011-11-01

    Full Text Available Enzim lipase mempunyai peranan penting dalam katalis berbagai reaksi industri satu diantaranya pembuatan flavor melalui reaksi esterifikasi. Lipase adalah biokatalis yang berperan besar dalam aplikasi bioteknologi, seperti dalam sintesis biopolimer, biodiesel, produksi obat, dan produksi flavor. Peningkatan penggunaan lipase untuk industri mendorong dilakukan penelitian untuk mendapatkan sumber-sumber lipase baru. Sumber lipase yang potensial salah satunya adalah bakteri Azospirillum sp.PRD1 dari isolat lokal Laboratorium Mikrobiologi, Fakultas Biologi Universitas Jenderal Soedirman. Tujuan penelitian adalah untuk mendapatkan ekstrak kasar lipase dan menentukan karakteristik sifat-sifat biokimiawinya. Metode yang digunakan antara lain peremajaan bakteri Azospirillum sp.PRD1, dan produksi inokulum, penentuan waktu produksi optimum dan fase pertumbuhan bakteri, ekstraksi dan produksi ekstrak kasar lipase dan penentuan karakteristik sifat-sifat biokimiawinya. Hasil penelitian diperoleh ekstrak kasar lipase dari inokulum berumur 7 jam dan medium produksi dengan induser minyak zaitun yang diinkubasi selama 3 jam memiliki aktivitas spesifik 7,0547 Unit/mg. Lipase ekstrak kasar optimum pada pH 7, suhu 40 oC dan waktu inkubasi selama 25 menit. Lipase merupakan metaloenzim dengan kofaktor Zn2+ , Mn2+, Hg2+, Ca2+, Co2+ and Mg2+.

  4. Structure of product-bound SMG1 lipase: active site gating implications.

    Science.gov (United States)

    Guo, Shaohua; Xu, Jinxin; Pavlidis, Ioannis V; Lan, Dongming; Bornscheuer, Uwe T; Liu, Jinsong; Wang, Yonghua

    2015-12-01

    Monoacylglycerol and diacylglycerol lipases are industrially interesting enzymes, due to the health benefits that arise from the consumption of diglycerides compared to the traditional triglyceride oils. Most lipases possess an α-helix (lid) directly over the catalytic pocket which regulates the activity of the enzyme. Generally, lipases exist in active and inactive conformations, depending on the positioning of this lid subdomain. However, lipase SMG1, a monoacylglycerol and diacylglycerol specific lipase, has an atypical activation mechanism. In the present study we were able to prove by crystallography, in silico analysis and activity tests that only two positions, residues 102 and 278, are responsible for a gating mechanism that regulates the active and inactive states of the lipase, and that no significant structural changes take place during activation except for oxyanion hole formation. The elucidation of the gating effect provided data enabling the rational design of improved lipases with 6-fold increase in the hydrolytic activity toward diacylglycerols, just by providing additional substrate stabilization with a single mutation (F278N or F278T). Due to the conservation of F278 among the monoacylglycerol and diacylglycerol lipases in the Rhizomucor miehei lipase-like family, the gating mechanism described herein might represent a general mechanism applicable to other monoacylglycerol and diacylglycerol lipases as well. Database: Structural data are available in the Protein Data Bank under the accession numbers 4ZRE (F278D mutant) and 4ZRD (F278N mutant). © 2015 FEBS.

  5. Alanine racemase mutants of Burkholderia pseudomallei and Burkholderia mallei and use of alanine racemase as a non-antibiotic-based selectable marker.

    Directory of Open Access Journals (Sweden)

    Sheryl L W Zajdowicz

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711, and B. mallei ATCC 23344 has one (bma1575. Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine

  6. Alanine Racemase Mutants of Burkholderia pseudomallei and Burkholderia mallei and Use of Alanine Racemase as a Non-Antibiotic-Based Selectable Marker

    Science.gov (United States)

    Zajdowicz, Sheryl L. W.; Jones-Carson, Jessica; Vazquez-Torres, Andres; Jobling, Michael G.; Gill, Ronald E.; Holmes, Randall K.

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous d-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for d-alanine. During log phase growth without d-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages

  7. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    Science.gov (United States)

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  8. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  9. Adaptation and Antibiotic Tolerance of Anaerobic Burkholderia pseudomallei ▿ †

    Science.gov (United States)

    Hamad, Mohamad A.; Austin, Chad R.; Stewart, Amanda L.; Higgins, Mike; Vázquez-Torres, Andrés; Voskuil, Martin I.

    2011-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the etiological agent of melioidosis and is remarkably resistant to most classes of antibacterials. Even after months of treatment with antibacterials that are relatively effective in vitro, there is a high rate of treatment failure, indicating that this pathogen alters its patterns of antibacterial susceptibility in response to cues encountered in the host. The pathology of melioidosis indicates that B. pseudomallei encounters host microenvironments that limit aerobic respiration, including the lack of oxygen found in abscesses and in the presence of nitric oxide produced by macrophages. We investigated whether B. pseudomallei could survive in a nonreplicating, oxygen-deprived state and determined if this physiological state was tolerant of conventional antibacterials. B. pseudomallei survived initial anaerobiosis, especially under moderately acidic conditions similar to those found in abscesses. Microarray expression profiling indicated a major shift in the physiological state of hypoxic B. pseudomallei, including induction of a variety of typical anaerobic-environment-responsive genes and genes that appear specific to anaerobic B. pseudomallei. Interestingly, anaerobic B. pseudomallei was unaffected by antibacterials typically used in therapy. However, it was exquisitely sensitive to drugs used against anaerobic pathogens. After several weeks of anaerobic culture, a significant loss of viability was observed. However, a stable subpopulation that maintained complete viability for at least 1 year was established. Thus, during the course of human infection, if a minor subpopulation of bacteria inhabited an oxygen-restricted environment, it might be indifferent to traditional therapy but susceptible to antibiotics frequently used to treat anaerobic infections. PMID:21537012

  10. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    Science.gov (United States)

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  11. Recovery efficiencies for Burkholderia thailandensis from various aerosol sampling media

    Directory of Open Access Journals (Sweden)

    Paul eDabisch

    2012-06-01

    Full Text Available Burkholderia thailandensis is used in the laboratory as a surrogate of the more virulent B. pseudomallei. Since inhalation is believed to be a natural route of infection for B. pseudomallei, many animal studies with B. pseudomallei and B. thailandensis utilize the inhalation route of exposure. The aim of the present study was to quantify the recovery efficiency of culturable B. thailandensis from several common aerosol sampling devices to ensure that collected microorganisms could be reliably recovered post-collection. The sampling devices tested included 25-mm gelatin filters, 25-mm stainless steel disks used in Mercer cascade impactors, and two types of glass impingers. The results demonstrate that while several processing methods tested resulted in significantly lower physical recovery efficiencies than other methods, it was possible to obtain culturable recovery efficiencies for B. thailandensis and physical recovery efficiencies for 1 μm fluorescent spheres of at least 0.95 from all of the sampling media tested given an appropriate sample processing procedure. The results of the present study also demonstrated that the bubbling action of liquid media in all-glass impingers (AGIs can result in physical loss of material from the collection medium, although additional studies are needed to verify the exact mechanisms involved. Overall, the results of this study demonstrate that the collection mechanism as well as the post-collection processing method can significantly affect the recovery from and retention of culturable microorganisms in sampling media, potentially affecting the calculated airborne concentration and any subsequent estimations of risk or dose derived from such data.

  12. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia.

    Directory of Open Access Journals (Sweden)

    Silvia Bazzini

    Full Text Available Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division efflux pumps are known to be among the mediators of multidrug resistance in gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16 has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9, and a double-mutant in both efflux pumps (named D4-D9, were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4-D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.

  13. The G-250A polymorphism in the hepatic lipase gene promoter is associated with changes in hepatic lipase activity and LDL cholesterol: The KANWU Study

    DEFF Research Database (Denmark)

    Lindi, Virpi; Schwab, Ursula; Louheranta, Anne

    2007-01-01

    BACKGROUND AND AIMS: Hepatic lipase (HL) catalyzes the hydrolysis of triglycerides and phospholipids from lipoproteins, and promotes the hepatic uptake of lipoproteins. A common G-250A polymorphism in the promoter of the hepatic lipase gene (LIPC) has been described. The aim was to study...

  14. Post-heparin plasma lipoprotein lipase, but not hepatic lipase activity, is related to plasma adiponectin in type 2 diabetic patients and healthy subjects

    NARCIS (Netherlands)

    De Vries, R; Wolffenbuttel, BHR; Sluiter, WJ; Van Tol, A; Dullaart, RPF

    2005-01-01

    The aim of this study was to determine the relationships of plasma adiponectin with post-heparin plasma lipoprotein lipase (LPL) and hepatic lipase (HL) activities, and to evaluate whether plasma adiponectin contributes to diabetes-associated dyslipidaemia. Plasma adiponectin, post-heparin plasma

  15. Lipase catalyzed ester synthesis for food processing industries

    Directory of Open Access Journals (Sweden)

    Aravindan Rajendran

    2009-02-01

    Full Text Available Lipases are one of the most important industrial biocatalyst which catalyzes the hydrolysis of lipids. It can also reverse the reaction at minimum water activity. Because of this pliable nature, it is widely exploited to catalyze the diverse bioconversion reactions, such as hydrolysis, esterification, interesterification, alcoholysis, acidolysis and aminolysis. The property to synthesize the esters from the fatty acids and glycerol promotes its use in various ester synthesis. The esters synthesized by lipase finds applications in numerous fields such as biodiesel production, resolution of the recemic drugs, fat and lipid modification, flavour synthesis, synthesis of enantiopure pharmaceuticals and nutraceuticals. It plays a crucial role in the food processing industries since the process is unaffected by the unwanted side products. Lipase modifications such as the surfactant coating, molecular imprinting to suit for the non-aqueous ester synthesis have also been reported. This review deals with lipase catalyzed ester synthesis, esterification strategies, optimum conditions and their applications in food processing industries.Lipases são catalizadores industriais dos mais importantes, os quais catalizam a hidrólise de lipídeos. Também podem reverter a reação a um mínimo de atividade de água. Devido sua natureza flexível, é amplamente explorada para catalizar uma diversidade de reações de bioconversão como hidrólise, esterificação, interesterificação, alcoólise, acidólise e aminólise. A propriedade de síntese de esteres a partir de ácidos graxos e glicerol promoveu seu uso em várias sínteses de esteres. Os esteres sintetizados por lipases encontram aplicação em numerosos campos como a produção de biodiesel, resolução de drogas racêmicas, modificação de gorduras e lipídios, sintese de aromas, síntese de produtos farmacêuticos enantiopuro e nutracêuticos. As lipases possuem um papel crucial nas indústrias de

  16. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei

    NARCIS (Netherlands)

    Puknun, A.; Bolscher, J.G.M.; Nazmi, K.; Veerman, E.C.I.; Tungpradabkul, S.; Wongratanacheewin, S.; Kanthawong, S.; Taweechaisupapong, S.

    2013-01-01

    Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin

  17. Monoclonal antibodies passively protect BALB/c mice against Burkholderia mallei aerosol challenge.

    Science.gov (United States)

    Treviño, Sylvia R; Permenter, Amy R; England, Marilyn J; Parthasarathy, Narayanan; Gibbs, Paul H; Waag, David M; Chanh, Tran C

    2006-03-01

    Glanders is a debilitating disease with no vaccine available. Murine monoclonal antibodies were produced against Burkholderia mallei, the etiologic agent of glanders, and were shown to be effective in passively protecting mice against a lethal aerosol challenge. The antibodies appeared to target lipopolysaccharide. Humoral antibodies may be important for immune protection against B. mallei infection.

  18. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application

    NARCIS (Netherlands)

    Lankelma, Jacqueline M.; Wagemakers, Alex; Birnie, Emma; Haak, Bastiaan W.; Trentelman, Jos J. A.; Weehuizen, Tassili A. F.; Ersöz, Jasmin; Roelofs, Joris J. T. H.; Hovius, Joppe W.; Wiersinga, W. Joost; Bins, Adriaan D.

    2017-01-01

    Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror weapon due to its high virulence and potential for easy dissemination. Currently, there is

  19. Burkholderia cenocepacia Vaginal Infection in Patient with Smoldering Myeloma and Chronic Hepatitis C

    OpenAIRE

    Petrucca, Andrea; Cipriani, Paola; Sessa, Rosa; Teggi, Antonella; Pustorino, Rosalia; Santapaola, Daniela; Nicoletti, Mauro

    2004-01-01

    We report a case of a vaginal infection caused by a strain of Burkholderia cenocepacia. The strain was isolated from vaginal swab specimens from a 68-year-old woman with smoldering myeloma and chronic hepatitis C virus infection who was hospitalized for abdominal abscess. Treatment with piperacillin/tazobactam eliminated B. cenocepacia infection and vaginal symptoms.

  20. Burkholderia pseudomallei Infection in a Cystic Fibrosis Patient from the Caribbean: A Case Report

    Directory of Open Access Journals (Sweden)

    Dimas Mateos Corral

    2008-01-01

    Full Text Available Burkholderia pseudomallei is a pathogen identified with increasing frequency in the respiratory tracts of cystic fibrosis (CF patients from endemic areas such as Southeast Asia and northern Australia. The following report describes the first known reported case in a CF patient from the Caribbean attending a North American CF clinic.

  1. Burkholderia pseudomallei infection in a cystic fibrosis patient from the Caribbean: A case report

    Science.gov (United States)

    Corral, Dimas Mateos; Coates, Allan L; Yau, Yvonne CW; Tellier, Raymond; Glass, Mindy; Jones, Steven M; Waters, Valerie J

    2008-01-01

    Burkholderia pseudomallei is a pathogen identified with increasing frequency in the respiratory tracts of cystic fibrosis (CF) patients from endemic areas such as Southeast Asia and northern Australia. The following report describes the first known reported case in a CF patient from the Caribbean attending a North American CF clinic. PMID:18716683

  2. Multivariate analyses of Burkholderia species in soil: effect of crop and land use history

    NARCIS (Netherlands)

    Salles, Joanna; Van Veen, J.A.; van Elsas, J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus

  3. Multivariate analyses of Burkholderia species in soil : Effect of crop and land use history

    NARCIS (Netherlands)

    Salles, JF; van Veen, JA; van Elsas, JD

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus

  4. Molecular method to assess the diversity of Burkholderia species in environmental samples

    NARCIS (Netherlands)

    Salles, J.; Souza, de F.A.; Elsas, van J.D.

    2002-01-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a

  5. The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62

    Science.gov (United States)

    Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...

  6. Determining the biochemical properties of the Oxalate Biosynthetic Component (Obc)1 from Burkholderia mallei

    Science.gov (United States)

    Oxalic acid is produced by a variety of organisms ranging from simple microbes to complex animals. This acid has been proposed to fulfill various physiological and pathological functions which vary between organisms. In bacteria from the Burkholderia genus, oxalate secretion has been shown to be quo...

  7. Multivariate Analyses of Burkholderia species in soil: effect of crop and land use history.

    NARCIS (Netherlands)

    Salles, J.F.; Veen, van J.A.; Elsas, van J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus

  8. Effect of agricultural management regimes on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, Joanna; van Elsas, J.D.; Van Veen, J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  9. Assessing the potential for Burkholderia pseudomallei in the southeastern United States

    Science.gov (United States)

    Burkholderia pseudomallei, the causative agent of melioidosis, is an underreported zoonosis in many countries where environmental conditions may be favorable for B. pseudomallei. This soil saprophyte is most often detected in tropical areas such as Southeast Asia and Northern Australia where the cas...

  10. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J.F.; Elsas, van J.D.; Veen, van J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  11. Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2.

    Science.gov (United States)

    Wang, X Q; Liu, A X; Guerrero, A; Liu, J; Yu, X Q; Deng, P; Ma, L; Baird, S M; Smith, L; Li, X D; Lu, S E

    2016-03-01

    To identify the taxonomy of tobacco rhizosphere-isolated strain Lyc2 and investigate the mechanisms of the antifungal activities, focusing on antimicrobials gene clusters identification and function analysis. Multilocus sequence typing and 16S rRNA analyses indicated that strain Lyc2 belongs to Burkholderia pyrrocinia. Bioassay results indicated strain Lyc2 showed significant antifungal activities against a broad range of plant and animal fungal pathogens and control efficacy on seedling damping off disease of cotton. A 55·2-kb gene cluster which was homologous to ocf gene clusters in Burkholderia contaminans MS14 was confirmed to be responsible for antifungal activities by random mutagenesis; HPLC was used to verify the production of antifungal compounds. Multiple antibiotic and secondary metabolized biosynthesis gene clusters predicated by antiSMASH revealed the broad spectrum of antimicrobials activities of the strain. Our results revealed the mechanisms of antifungal activities of strain Lyc2 and expand our knowledge about production of occidiofungin in the bacteria Burkholderia. Understanding the mechanisms of antifungal activities of strain Lyc2 has contributed to discovery of new antibiotics and expand our knowledge of production of occidiofungin in the bacteria Burkholderia. © 2015 The Society for Applied Microbiology.

  12. Identification of putative noncoding RNA genes in the Burkholderia cenocepacia J2315 genome

    DEFF Research Database (Denmark)

    Coenye, T.; Drevinek, P.; Mahenthiralingam, E.

    2007-01-01

    Noncoding RNA (ncRNA) genes are not involved in the production of mRNA and proteins, but produce transcripts that function directly as structural or regulatory RNAs. In the present study, the presence of ncRNA genes in the genome of Burkholderia cenocepacia J2315 was evaluated by combining...

  13. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J. F.; van Elsas, J. D.; van Veen, J. A.

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  14. Antimicrobial Properties of an Oxidizer Produced by Burkholderia cenocepacia P525

    Science.gov (United States)

    A compound with both oxidizing properties and antibiotic properties was extracted and purified from broth cultures of Burkholderia cenocepacia strain P525. A four step purification procedure was used to increase its specific activity ~ 400 fold and to yield a HPLC- UV chromatogram containing a sing...

  15. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium

    NARCIS (Netherlands)

    Salles, Joanna; Samyn, E.; Vandamme, P.; Van Veen, J.A.; van Elsas, J.D.

    2006-01-01

    Abstract In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  16. Molecular method to assess the diversity of Burkholderia species in environmental samples

    NARCIS (Netherlands)

    Salles, Joanna; De Souza, F.A.; Van Elsas, J.D.

    2002-01-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient get electrophoresis (DGGE), a

  17. Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis)

    NARCIS (Netherlands)

    de Jong, Hanna K.; Koh, Gavin C. K. W.; Achouiti, Ahmed; van der Meer, Anne J.; Bulder, Ingrid; Stephan, Femke; Roelofs, Joris J. T. H.; Day, Nick P. J.; Peacock, Sharon J.; Zeerleder, Sacha; Wiersinga, W. Joost

    2014-01-01

    Neutrophil extracellular traps (NETs) are a central player in the host response to bacteria: neutrophils release extracellular DNA (nucleosomes) and neutrophil elastase to entrap and kill bacteria. We studied the role of NETs in Burkholderia pseudomallei infection (melioidosis), an important cause

  18. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases.

    Directory of Open Access Journals (Sweden)

    Malihe Masomian

    Full Text Available Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.

  19. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs.

    Science.gov (United States)

    Tago, Kanako; Kikuchi, Yoshitomo; Nakaoka, Sinji; Katsuyama, Chie; Hayatsu, Masahito

    2015-07-01

    Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance. © 2015 John Wiley & Sons Ltd.

  20. Enzymatic interesterification of palm stearin and coconut oil by a dual lipase system

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Guo, Zheng; Xu, Xuebing

    2008-01-01

    greater than 100% over the theoretical value when the reaction proceeds for 2 h. The co-immobilization action of the carrier of the immobilized lipases towards the free lipase was proposed as being one of the reasons leading to the synergistic effect and this has been experimentally verified by a reaction......Enzymatic interesterification of palm stearin with coconut oil was conducted by applying a dual lipase system in comparison with individual lipase-catalyzed reactions. The results indicated that a synergistic effect occurred for many lipase combinations, but largely depending on the lipase species...... mixed and their ratios. The combination of Lipozyme TL IM and RM IM was found to generate a positive synergistic action at all test mixing ratios. Only equivalent amount mixtures of Lipozyme TL IM with Novozym 435 or Lipozyme RM IM with Novozym 435 produced a significant synergistic effect as well...

  1. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.

    Science.gov (United States)

    Liu, Ying; Guo, Chen; Liu, Chun-Zhao

    2015-03-01

    Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates. © 2014 Wiley Periodicals, Inc.

  2. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China); Zhang, Yimei [Suzhou Research Academy of North China Electric Power University (China); Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao, E-mail: zhuhao07@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2016-02-15

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu{sup 2+}, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  3. Influence of dietary recombinant microbial lipase on performance and quality characteristics of rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Samuelsen, Troels; Isaksen, Mai; McLean, Ewen

    2001-01-01

    In order to assess whether supplementary lipase affected growth and body composition of trout, four diets were produced, consisting of (A) feed containing high (2083 mg kg(-1)), (B) low (208.3 mg kg(-1)) concentrations of lipase, (C) heat-treated (inactivated) lipase (2083 mg kg(-1)), and (D......) a basal control diet. Rainbow trout (n = 40/tank; initial wt. 23.22 +/- 4.81 g; length 124.7 +/- 6.35 mm) were fed, according to commercial feed tables, 6 days/week for 202 days. Retained activity of supplemental lipase was verified by monitoring free fatty acid appearance (FAA), which was significantly...... higher(P Lipase addition had no effect(P > 0.05) on growth, fillet proximate composition, hepatosomatic, cardiac, or gut indices, and carcass percentage. However, lipase supplementation influenced the mono-unsaturated fatty acid profiles of the fillet (P

  4. Hormone-sensitive lipase (HSL) expression and regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Langfort, J; Ploug, T; Ihlemann, J

    1998-01-01

    Because the enzymatic regulation of muscle triglyceride metabolism is poorly understood we explored the character and activation of neutral lipase in muscle. Western blotting of isolated rat muscle fibers demonstrated expression of hormone-sensitive lipase (HSL). In incubated soleus muscle...... epinephrine increased neutral lipase activity by beta-adrenergic mechanisms involving cyclic AMP-dependent protein kinase (PKA). The increase was paralleled by an increase in glycogen phosphorylase activity and could be abolished by antiserum against HSL. Electrical stimulation caused a transient increase...... in activity of both neutral lipase and glycogen phosphorylase. The increase in lipase activity during contractions was not influenced by sympathectomy or propranolol. Training diminished the epinephrine induced lipase activation in muscle but enhanced the activation as well as the overall concentration...

  5. Streptomyces rimosus GDS(L Lipase: Production, Heterologous Overexpression and Structure-Stability Relationship

    Directory of Open Access Journals (Sweden)

    Marija Abramić

    2003-01-01

    Full Text Available Streptomyces rimosus lipase gene has been overexpressed in a heterologous host, S. lividans TK23. The maximal lipase activity was determined in the culture filtrates of the late stationary phase. Time course of lipase production was monitored by a modified plate assay. S. rimosus lipase gene has been located on the AseI B fragment approximately 2 Mb far from the left end of the S. rimosus linear chromosome. Out of eight examined streptomycetes, the presence of this rare type of bacterial lipase gene was detected in two belonging to the S. rimosus taxonomic cluster, and in one non-related species. Comparison of protein sequences of the Streptomyces lipolytic enzymes was performed. The result indicated the best structural stability of the putative S. coelicolor lipase-2.

  6. Secoiridoids from the stem barks of Fraxinus rhynchophylla with pancreatic lipase inhibitory activity.

    Science.gov (United States)

    Ahn, Jong Hoon; Shin, Eunjin; Liu, Qing; Kim, Seon Beom; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-01-01

    Pancreatic lipase digests dietary fats by hydrolysis, which is a key enzyme for lipid absorption. Therefore, reduction of fat absorption by the inhibition of pancreatic lipase is suggested to be a therapeutic strategy for obesity. From the EtOAc-soluble fraction of the stem barks of Fraxinus rhynchophylla (Oleaceae), four secoiridoids such as ligstroside (1), oleuropein (2), 2"-hydroxyoleuropein (3) and hydroxyframoside B (4) were isolated. The inhibitory activity of these compounds on pancreatic lipase was assessed using porcine pancreatic lipase as an in vitro assay system. Compound 4 showed the strongest inhibition on pancreatic lipase, which followed by compounds 1-3. In addition, compound 4 exerted inhibitory effect on pancreatic lipase in a mixed mechanism of competitive and noncompetitive manner. Taken together, F. rhynchophylla and its constituents might be beneficial to obesity.

  7. Application of alkaline thermo-stable lipase(s) enzyme produced from irradiated microbial isolate in the field of detergent technology

    International Nuclear Information System (INIS)

    Ahmed, O.E.A.M.S

    2010-01-01

    Due to continuous demand for manufacture of high quality, low coast industrial detergents containing lipolytic enzymes and due to continuous accumulation of enviro-agro-industrial wastes which are good and suitable conditions for growth and reproduction of pathogenic microorganisms, our study aims at isolating thermoalkalophilic lipase producer microorganisms from enviro-agro-industrial wastes and selection of the most potent isolate for studying physiological conditions controlling enzyme formation also purification characterization and some applications on purified and crude enzyme as bio-detergent. Some environmental and industrial wastes were collected from different places. The industrial wastes include, cotton seed, soyabean, sun flower, lin seed and olive oil wastes. Environmental wastes include poultry and fish wastes, all these wastes were dried at 70 degree C, grounded and used for isolation of microorganisms and lipase(s) production.Nine thermoalkalophilic bacterial isolates were isolated from enviro-agro-industrial wastes at ph 11.5 and 70 degree C. They were purified and screening for their ability of thermoalkalo-stable lipase(s) formation, this is followed by examining the effect of different nutritional media and exposure of bacterial isolates to different doses of gamma irradiation and the influence of these radiation on lipase(s) productivity by these isolates. From the results it was found that.1- The most potent lipase(s) forming bacterial isolates were isolates number B 2 and B 3 which cultivated on medium A amended with fish-wastes as being the best nutritional medium for enzyme formation. 2-Bacterial isolate B 2 finally was selected as being the most potent lipase(s) forming bacterial isolate cultivated on fish-wastes and yeast extract (in tap water) and identified according to key's of Bergey Manual of Systematic Bacteriology (1984) as being Bacillus brevis B 2 .The optimum culture conditions for maximum biosynthesis of extracellular lipase(s

  8. Complete Genome Sequence of a Burkholderia pseudomallei Strain Isolated from a Pet Green Iguana in Prague, Czech Republic

    Science.gov (United States)

    Thomas, Prasad; El-Adawy, Hosny; Mertens, Katja; Melzer, Falk; Hnizdo, Jan; Stamm, Ivonne

    2017-01-01

    ABSTRACT Burkholderia pseudomallei was isolated from pus from an abscess of a pet iguana living in a private household in Prague, Czech Republic. This paper presents the complete genome sequence of B. pseudomallei strain VB976100. PMID:28280033

  9. New member of the hormone-sensitive lipase family from the permafrost microbial community.

    Science.gov (United States)

    Petrovskaya, Lada E; Novototskaya-Vlasova, Ksenia A; Gapizov, Sultan Sh; Spirina, Elena V; Durdenko, Ekaterina V; Rivkina, Elizaveta M

    2017-07-04

    Siberian permafrost is a unique environment inhabited with diverse groups of microorganisms. Among them, there are numerous producers of biotechnologically relevant enzymes including lipases and esterases. Recently, we have constructed a metagenomic library from a permafrost sample and identified in it several genes coding for potential lipolytic enzymes. In the current work, properties of the recombinant esterases obtained from this library are compared with the previously characterized lipase from Psychrobacter cryohalolentis and other representatives of the hormone-sensitive lipase family.

  10. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry

    OpenAIRE

    Abol Fotouh, Deyaa M.; Bayoumi, Reda A.; Hassan, Mohamed A.

    2016-01-01

    Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase pr...

  11. The genotypic diversity and lipase production of some thermophilic bacilli from different genera

    OpenAIRE

    Koc, Melih; Cokmus, Cumhur; Cihan, Arzu Coleri

    2015-01-01

    Abstract Thermophilic 32 isolates and 20 reference bacilli were subjected to Rep-PCR and ITS-PCR fingerprinting for determination of their genotypic diversity, before screening lipase activities. By these methods, all the isolates and references could easily be differentiated up to subspecies level from each other. In screening assay, 11 isolates and 7 references were found to be lipase producing. Their extracellular lipase activities were measured quantitatively by incubating in both tributy...

  12. Isolation and analysis of lipase-overproducing mutants of Serratia marcescens.

    Science.gov (United States)

    Kawai, E; Akatsuka, H; Sakurai, N; Idei, A; Matsumae, H; Shibatani, T; Komatsubara, S; Omori, K

    2001-01-01

    We have isolated a lipase-overproducing mutant, GE14, from Serratia marcescens 8000 after three rounds of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutant GE14 produced 95 kU/ml of extracellular lipase in the lipase medium, which was about threefold higher than that of produced by the original strain 8000. Enzymatic characteristics including specific activity of purified lipases from culture supernatants of GE14 and 8000 were almost same. The lipase gene (lipA) of GE14 contained two base substitutions; one in the promoter region and another in the N-terminal region of the lipA gene without an amino acid substitution. Promoter analysis using lipA-lacZ fusion plasmids revealed that these substitutions were responsible for the increase in the lipA expression level, independently. In contrast, no base substitution was found in the genes encoding the lipase secretion device, the Lip system. In addition, the genes coding for metalloprotease and the cell surface layer protein which are both secreted through the Lip system and associated with extracellular lipase production, also contained no base substitution. The strain GE14 carrying a high-copy-number lipA plasmid produced a larger amount of the extracellular lipase than the recombinant strains of 8000 and other mutants also did, indicating that GE14 was not only a lipase-overproducing strain, but also an advantageous host strain for overproducing the lipase by a recombinant DNA technique. These results suggest that the lipase-overproducing mutant GE14 and its recombinant strains are promising candidates for the industrial production of the S. marcescens lipase.

  13. Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate.

    Science.gov (United States)

    Gumel, A M; Annuar, M S M; Chisti, Y; Heidelberg, T

    2012-05-01

    Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ~1.44 compared to a value of ~2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ~16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Triglyceride selectivity of immobilized Thermomyces lanuginosa lipase in interesterification

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Pedersen, Lars S.; Xu, Xuebing

    2005-01-01

    from tri-C4:0 to tri-C20:0, except for tri-C6:0, and in a series of unsaturated FA from tri-C18:1 to tri-C18:3. The quantification was performed by HPLC, and different methods of selectivity evaluation were used. None of the methods used showed any significant differences between the performances......The triglyceride (fatty acid) selectivity of an immobilized lipase from Thermomyces lanuginosa (Lipozyme TL IM) was investigated in lipase-catalyzed interesterification reactions between two mono-acid TG in n-hexane. Tristearin (tri-C18:0) was used as a reference in a series of TG with saturated FA...

  15. Radiochemical methods for studying lipase-catalyzed interesterification of lipids

    International Nuclear Information System (INIS)

    Schuch, R.; Mukherjee, K.D.

    1987-01-01

    Reactions involving lipase-catalyzed interesterification of lipids, which are of commendable interest in biotechnology, have been monitored and assayed by radiochemical methods using 14 C-labeled substrates. Medium chain (C 12 plus C 14 ) triacylglycerols were reacted in the presence of an immobilized lipase from Mucor miehei and hexane at 45 0 C with methyl [1- 14 C]oleate, [1- 14 C]oleic acid, [carboxyl- 14 C]trioleoylglycerol, [1- 14 C]octadecenyl alcohol, and [U- 14 C]glycerol, each of known specific activity. The reactions were monitored and the rate of interesterification determined by radio thin layer chromatography from the incorporation of radioactivity into acyl moieties of triacylglycerols (from methyl oleate, oleic acid, and trioleoylglycerol), alkyl moieties of wax esters (from octadecenyl alcohol), and into glycerol backbone of monoacylglycerols and diacylglycerols (from glycerol). (orig.)

  16. Comparison of lipases for in vitro models of gastric digestion

    DEFF Research Database (Denmark)

    Sassene, P J; Fanø, M; Mu, H

    2016-01-01

    Lipase (ROL), Rabbit Gastric Lipase (RGL) and recombinant HGL (rHGL), were used to catalyze the in vitro digestion of two infant formulas (a medium-chain triacylglyceride enriched formula (MC-IF) and a predominantly long-chain triacylglyceride formula (LC-IF)). Digesta were withdrawn after 0, 5, 15, 30......, 60 min of gastric digestion and after 90 or 180 min of intestinal digestion with or without the presence of pancreatic enzymes, respectively. The digesta were analyzed by scanning electron microscopy and gas chromatography to quantify the release of fatty acids (FAs). Digestions of both formulas......, catalyzed by ROL, showed that the extent of gastric digestion was higher than expected from previously published in vivo data. ROL was furthermore insensitive to FA chain length and all FAs were released at the same pace. RGL and rHGL favoured the release of MC-FAs in both formulas, but rHGL did also...

  17. Biodiesel production with special emphasis on lipase-catalyzed transesterification.

    Science.gov (United States)

    Bisen, Prakash S; Sanodiya, Bhagwan S; Thakur, Gulab S; Baghel, Rakesh K; Prasad, G B K S

    2010-08-01

    The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

  18. Complete genome sequence of Burkholderia sp. strain PAMC28687, a potential octopine-utilizing bacterium isolated from Antarctica lichen.

    Science.gov (United States)

    Han, So-Ra; Yu, Sang-Cheol; Ahn, Do-Hwan; Park, Hyun; Oh, Tae-Jin

    2016-05-20

    We report the complete genome sequence of Burkholderia sp. PAMC28687, which was isolated from the Antarctica lichen Useea sp., for better understanding of its catabolic traits in utilizing octopine as a source of carbon/nitrogen between Burkholderia and lichen. The genome consists of three circular chromosomes with five circular plasmids for the total 6,881,273bp sized genome with a G+C content of 58.14%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants.

    Science.gov (United States)

    Jang, Ho Am; Seo, Eun Sil; Seong, Min Young; Lee, Bok Luel

    2017-02-01

    Riptortus pedestris, a common pest in soybean fields, harbors a symbiont Burkholderia in a specialized posterior midgut region of insects. Every generation of second nymphs acquires new Burkholderia cells from the environment. We compared in vitro cultured Burkholderia with newly in vivo colonized Burkholderia in the host midgut using biochemical approaches. The bacterial cell envelope of in vitro cultured and in vivo Burkholderia differed in structure, as in vivo bacteria lacked lipopolysaccharide (LPS) O-antigen. The LPS O-antigen deficient bacteria had a reduced colonization rate in the host midgut compared with that of the wild-type Burkholderia. To determine why LPS O-antigen-deficient bacteria are less able to colonize the host midgut, we examined in vitro survival rates of three LPS O-antigen-deficient Burkholderia mutants and lysates of five different midgut regions. The LPS O-antigen-deficient mutants were highly susceptible when cultured with the lysate of a specific first midgut region (M1), indicating that the M1 lysate contains unidentified substance(s) capable of killing LPS O-antigen-deficient mutants. We identified a 17 kDa protein from the M1 lysate, which was enriched in the active fractions. The N-terminal sequence of the protein was determined to be a soybean Kunitz-type trypsin inhibitor. These data suggest that the 17 kDa protein, which was originated from a main soybean source of the R. pedestris host, has antibacterial activity against the LPS O-antigen deficient (rough-type) Burkholderia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Screening for lipase-producing Enterobacter agglomerans for ...

    African Journals Online (AJOL)

    Olive oil, sesame oil and tea oil as raw materials can be catalyzed to biodiesel by the lipase of this strain at 30°C and 180 rpm. And the yield reached 54.51% with sesame oil as raw material, even when they contained 92.4% (w/v) water in the starting materials. This strain will potentially serve as a promising alternative ...