WorldWideScience

Sample records for burkholderia cenocepacia j2315

  1. Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction

    Directory of Open Access Journals (Sweden)

    Panda Gurudutta

    2011-05-01

    Full Text Available Abstract Background Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. Results We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. Conclusions As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.

  2. Orderly Replication and Segregation of the Four Replicons of Burkholderia cenocepacia J2315.

    Science.gov (United States)

    Du, Wen-Li; Dubarry, Nelly; Passot, Fanny M; Kamgoué, Alain; Murray, Heath; Lane, David; Pasta, Franck

    2016-07-01

    Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315). It comprises an extra replicon (c2) of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1), another extra replicon(c3) of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the choreography of

  3. Orderly Replication and Segregation of the Four Replicons of Burkholderia cenocepacia J2315.

    Directory of Open Access Journals (Sweden)

    Wen-Li Du

    2016-07-01

    Full Text Available Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315. It comprises an extra replicon (c2 of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1, another extra replicon(c3 of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the

  4. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients

    DEFF Research Database (Denmark)

    Holden, Matthew T G; Seth-Smith, Helena M B; Crossman, Lisa C;

    2009-01-01

    Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradica...

  5. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS.

    Science.gov (United States)

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence. PMID:27597847

  6. Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Nelis Hans

    2010-02-01

    Full Text Available Abstract Background Burkholderia cepacia complex bacteria are opportunistic pathogens, which can cause severe respiratory tract infections in patients with cystic fibrosis (CF. As treatment of infected CF patients is problematic, multiple preventive measures are taken to reduce the infection risk. Besides a stringent segregation policy to prevent patient-to-patient transmission, clinicians also advise patients to clean and disinfect their respiratory equipment on a regular basis. However, problems regarding the efficacy of several disinfection procedures for the removal and/or killing of B. cepacia complex bacteria have been reported. In order to unravel the molecular mechanisms involved in the resistance of biofilm-grown Burkholderia cenocepacia cells against high concentrations of reactive oxygen species (ROS, the present study focussed on the transcriptional response in sessile B. cenocepacia J2315 cells following exposure to high levels of H2O2 or NaOCl. Results The exposure to H2O2 and NaOCl resulted in an upregulation of the transcription of 315 (4.4% and 386 (5.4% genes, respectively. Transcription of 185 (2.6% and 331 (4.6% genes was decreased in response to the respective treatments. Many of the upregulated genes in the NaOCl- and H2O2-treated biofilms are involved in oxidative stress as well as general stress response, emphasizing the importance of the efficient neutralization and scavenging of ROS. In addition, multiple upregulated genes encode proteins that are necessary to repair ROS-induced cellular damage. Unexpectedly, a prolonged treatment with H2O2 also resulted in an increased transcription of multiple phage-related genes. A closer inspection of hybridisation signals obtained with probes targeting intergenic regions led to the identification of a putative 6S RNA. Conclusion Our results reveal that the transcription of a large fraction of B. cenocepacia J2315 genes is altered upon exposure of sessile cells to ROS. These

  7. Protein engineering of a nitrilase from Burkholderia cenocepacia J2315 for efficient and enantioselective production of (R)-o-chloromandelic acid.

    Science.gov (United States)

    Wang, Hualei; Gao, Wenyuan; Sun, Huihui; Chen, Lifeng; Zhang, Lujia; Wang, Xuedong; Wei, Dongzhi

    2015-12-01

    The nitrilase-mediated pathway has significant advantages in the production of optically pure aromatic α-hydroxy carboxylic acids. However, low enantioselectivity and activity are observed on hydrolyzing o-chloromandelonitrile to produce optically pure (R)-o-chloromandelic acid. In the present study, a protein engineering approach was successfully used to enhance the performance of nitrilase obtained from Burkholderia cenocepacia strain J2315 (BCJ2315) in hydrolyzing o-chloromandelonitrile. Four hot spots (T49, I113, Y199, and T310) responsible for the enantioselectivity and activity of BCJ2315 were identified by random mutagenesis. An effective double mutant (I113M/Y199G [encoding the replacement of I with M at position 113 and Y with G at position 199]), which demonstrated remarkably enhanced enantioselectivity (99.1% enantiomeric excess [ee] compared to 89.2% ee for the wild type) and relative activity (360% of the wild type), was created by two rounds of site saturation mutagenesis, first at each of the four hot spots and subsequently at position 199 for combination with the selected beneficial mutation I113M. Notably, this mutant also demonstrated dramatically enhanced enantioselectivity and activity toward other mandelonitrile derivatives and, thus, broadened the substrate scope of this nitrilase. Using an ethyl acetate-water (1:9) biphasic system, o-chloromandelonitrile (500 mM) was completely hydrolyzed in 3 h by this mutant with a small amount of biocatalyst (10 g/liter wet cells), resulting in a high concentration of (R)-o-chloromandelic acid with 98.7% ee, to our knowledge the highest ever reported. This result highlights a promising method for industrial production of optically pure (R)-o-chloromandelic acid. Insight into the source of enantioselectivity and activity was gained by homology modeling and molecular docking experiments. PMID:26431972

  8. Burkholderia cenocepacia J2315 escapes to the cytosol and actively subverts autophagy in human macrophages.

    Science.gov (United States)

    Al-Khodor, Souhaila; Marshall-Batty, Kimberly; Nair, Vinod; Ding, Li; Greenberg, David E; Fraser, Iain D C

    2014-03-01

    Selective autophagy functions to specifically degrade cellular cargo tagged by ubiquitination, including bacteria. Strains of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that cause life-threatening infections in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD). While there is evidence that defective macrophage autophagy in a mouse model of CF can influence B. cenocepacia susceptibility, there have been no comprehensive studies on how this bacterium is sensed and targeted by the host autophagy response in human macrophages. Here, we describe the intracellular life cycle of B. cenocepacia J2315 and its interaction with the autophagy pathway in human cells. Electron and confocal microscopy analyses demonstrate that the invading bacteria interact transiently with the endocytic pathway before escaping to the cytosol. This escape triggers theselective autophagy pathway, and the recruitment of ubiquitin, the ubiquitin-binding adaptors p62 and NDP52 and the autophagosome membrane-associated protein LC3B, to the bacterial vicinity. However, despite recruitment of these key autophagy pathway effectors, B. cenocepacia blocks autophagosome completion and replicates in the host cytosol. We find that a pre-infection increase in cellular autophagy flux can significantly inhibit B. cenocepacia replication and that lower autophagy flux in macrophages from immunocompromised CGD patients could contribute to increased B. cenocepacia susceptibility, identifying autophagy manipulation as a potential therapeutic approach to reduce bacterial burden in B. cenocepacia infections. PMID:24119232

  9. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia.

    Directory of Open Access Journals (Sweden)

    Silvia Bazzini

    Full Text Available Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division efflux pumps are known to be among the mediators of multidrug resistance in gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16 has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9, and a double-mutant in both efflux pumps (named D4-D9, were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4-D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.

  10. Charakterisierung des Burkholderia cenocepacia Aquaglyceroporins

    OpenAIRE

    Wree, Dorothea

    2010-01-01

    In der vorliegenden Arbeit wurde ein Aquaglyceroporin des Krankenhausproblemkeims Burkholderia cenocepacia, BccGlpF, charakterisiert. Unter besonderer Beobachtung stand die Struktur-Funktionsbeziehung der eigentlich kochkonservierten NPA-Motive.

  11. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2009-09-01

    Full Text Available Abstract Background Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. Results To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. Conclusion Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic

  12. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome

    Directory of Open Access Journals (Sweden)

    Manina Giulia

    2006-07-01

    Full Text Available Abstract Background Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As Resistance-Nodulation-Division (RND efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance. Results Genome analysis and homology searches revealed 14 open reading frames encoding putative drug efflux pumps belonging to RND family in B. cenocepacia J2315 strain. By reverse transcription (RT-PCR analysis, it was found that orf3, orf9, orf11, and orf13 were expressed at detectable levels, while orf10 appeared to be weakly expressed in B. cenocepacia. Futhermore, orf3 was strongly induced by chloramphenicol. The orf2 conferred resistance to fluoroquinolones, tetraphenylphosphonium, streptomycin, and ethidium bromide when cloned and expressed in Escherichia coli KAM3, a strain lacking the multidrug efflux pump AcrAB. The orf2-overexpressing E. coli also accumulate low concentrations of ethidium bromide, which was restored to wild type level in the presence of CCCP, an energy uncoupler altering the energy of the drug efflux pump. Conclusion The 14 RND pumps gene we have identified in the genome of B. cenocepacia suggest that active efflux could be a major mechanism underlying antimicrobial resistance in this microorganism. We have characterized the ORF2 pump, one of these 14 potential RND efflux systems. Its overexpression in E. coli conferred resistance to several antibiotics and to ethidium bromide but it remains to be determined if this pump play a significant role in the antimicrobial intrinsic resistance of B. cenocepacia. The characterization of antibiotic efflux pumps in B

  13. Development of a multiple-locus variable-number tandem-repeat typing scheme for genetic fingerprinting of Burkholderia cenocepacia and application to nationwide epidemiological analysis.

    Science.gov (United States)

    Segonds, Christine; Thouverez, Michelle; Barthe, Antoine; Bossuet-Greif, Nadège; Tisseyre, Lenka; Plésiat, Patrick; Vergnaud, Gilles; Chabanon, Gérard; Pourcel, Christine

    2015-02-01

    Organisms of the Burkholderia cepacia complex are especially important pathogens in cystic fibrosis (CF), with a propensity for patient-to-patient spread and long-term respiratory colonization. B. cenocepacia and Burkholderia multivorans account for the majority of infections in CF, and major epidemic clones have been recognized throughout the world. The aim of the present study was to develop and evaluate a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) scheme for B. cenocepacia. Potential VNTR loci were identified upon analysis of the annotated genome sequences of B. cenocepacia strains AU1054, J2315, and MCO-3, and 10 of them were selected on the basis of polymorphisms and size. A collection of 100 B. cenocepacia strains, including epidemiologically related and unrelated strains, as well as representatives of the major epidemic lineages, was used to evaluate typeability, epidemiological concordance, and the discriminatory power of MLVA-10 compared with those of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Longitudinal stability was assessed by testing 39 successive isolates from 14 patients. Typeability ranged from 0.91 to 1, except for that of one marker, which was not amplified in 53% of the B. cenocepacia IIIA strains. The MLVA types were shown to be stable in chronically colonized patients and within outbreak-related strains, with excellent epidemiological concordance. Epidemic and/or globally distributed lineages (epidemic Edinburgh-Toronto electrophoretic type 12 [ET-12], sequence type 32 [ST-32], ST-122, ST-234, and ST-241) were successfully identified. Conversely, the discriminatory power of MLVA was lower than that of PFGE or MLST, although PFGE variations within the epidemic lineages sometimes masked their genetic relatedness. In conclusion, MLVA represents a promising cost-effective first-line tool in B. cenocepacia surveillance.

  14. Draft Genome Sequence of Burkholderia cenocepacia Strain CEIB S5-2, a Methyl Parathion- and p-Nitrophenol-Degrading Bacterium, Isolated from Agricultural Soils in Morelos, Mexico

    OpenAIRE

    Martínez-Ocampo, Fernando; Fernández López, Maikel Gilberto; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, M. Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando; Villalobos-López, Miguel A.; Dantán-González, Edgar

    2016-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2.

  15. Draft Genome Sequence of Burkholderia cenocepacia Strain CEIB S5-2, a Methyl Parathion- and p-Nitrophenol-Degrading Bacterium, Isolated from Agricultural Soils in Morelos, Mexico

    Science.gov (United States)

    Martínez-Ocampo, Fernando; Fernández López, Maikel Gilberto; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, M. Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando; Villalobos-López, Miguel A.

    2016-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2. PMID:27125479

  16. Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides.

    Science.gov (United States)

    Kooi, Cora; Sokol, Pamela A

    2009-09-01

    Burkholderia cenocepacia secretes two zinc-dependent metalloproteases, designated ZmpA and ZmpB. Previously, ZmpA and ZmpB have been shown to cleave several proteins important in host defence. In this study, the ability of ZmpA and ZmpB to digest and inactivate antimicrobial peptides involved in innate immunity was examined. ZmpB but not ZmpA cleaved beta-defensin-1. ZmpA but not ZmpB cleaved the cathelicidin LL-37. Both enzymes cleaved elafin and secretory leukocyte inhibitor, which are antimicrobial peptides as well as neutrophil elastase inhibitors. Both ZmpA and ZmpB cleaved protamine, a fish antimicrobial peptide, and a zmpA zmpB mutant was more sensitive to protamine killing than the parental strain. ZmpA or ZmpB cleavage of elafin inactivated its anti-protease activity. The effect of ZmpA and ZmpB on the neutrophil proteases elastase and cathepsin G was also examined but neither enzyme was active against these host proteases. These studies suggest that ZmpA and ZmpB may influence the resistance of B. cenocepacia to host antimicrobial peptides as well as alter the host protease/anti-protease balance in chronic respiratory infections.

  17. Genome Sequence of Burkholderia cenocepacia H111, a Cystic Fibrosis Airway Isolate

    OpenAIRE

    Carlier, A; Agnoli, K; Pessi, G; Suppiger, A; Jenul, C; Schmid, N; Tummler, B.; Pinto-Carbo, M; Eberl, L

    2014-01-01

    The Burkholderia cepacia complex (BCC) is a group of related bacterial species that are commonly isolated from environmental samples. Members of the BCC can cause respiratory infections in cystic fibrosis patients and immunocompromised individuals. We report here the genome sequence of Burkholderia cenocepacia H111, a well-studied model strain of the BCC.

  18. Antimicrobial Properties of an Oxidizer Produced by Burkholderia cenocepacia P525

    Science.gov (United States)

    A compound with both oxidizing properties and antibiotic properties was extracted and purified from broth cultures of Burkholderia cenocepacia strain P525. A four step purification procedure was used to increase its specific activity ~ 400 fold and to yield a HPLC- UV chromatogram containing a sing...

  19. Identification of Burkholderia cenocepacia strain H111 virulence factors using nonmammalian infection hosts

    DEFF Research Database (Denmark)

    Schwager, Stephan; Agnoli, Kirsty; Köthe, Manuela;

    2013-01-01

    Burkholderia cenocepacia H111, a strain isolated from a cystic fibrosis patient, has been shown to effectively kill the nematode Caenorhabditis elegans. We used the C. elegans model of infection to screen a mini-Tn5 mutant library of B. cenocepacia H111 for attenuated virulence....... Of the approximately 5,500 B. cenocepacia H111 random mini-Tn5 insertion mutants that were screened, 22 showed attenuated virulence in C. elegans. Except for the quorum-sensing regulator cepR, none of the mutated genes coded for the biosynthesis of classical virulence factors such as extracellular proteases...... or siderophores. Instead, the mutants contained insertions in metabolic and regulatory genes. Mutants attenuated in virulence in the C. elegans infection model were also tested in the Drosophila melanogaster pricking model, and those also attenuated in this model were further tested in Galleria mellonella. Six...

  20. Clinafloxacin for Treatment of Burkholderia cenocepacia Infection in a Cystic Fibrosis Patient.

    Science.gov (United States)

    Balwan, Akshu; Nicolau, David P; Wungwattana, Minkey; Zuckerman, Jonathan B; Waters, Valerie

    2016-01-01

    Respiratory infection with Burkholderia cenocepacia is associated with accelerated decline in lung function and increased mortality in cystic fibrosis (CF) patients (A. M. Jones, M. E. Dodd, J. R. W. Govan, V. Barcus, C. J. Doherty, J. Morris, and A. K. Webb, Thorax 59:948-951, 2004, http://dx.doi.org/10.1136/thx.2003.017210). B. cenocepacia often possesses innate resistance to multiple antimicrobial classes, making eradication uncommon in established infection (P. B. Davis, Am J Respir Crit Care Med 173:475-482, 2006, http://dx.doi.org/10.1164/rccm.200505-840OE). We report the use of clinafloxacin in a CF patient with advanced B. cenocepacia infection, present pharmacokinetic (PK) data, and discuss the potential therapeutic role of clinafloxacin in patients with this condition.

  1. Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma.

    Science.gov (United States)

    Alshraiedeh, Nida H; Higginbotham, Sarah; Flynn, Padrig B; Alkawareek, Mahmoud Y; Tunney, Michael M; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-06-01

    Chronic lung infection with bacteria from the Burkholderia cepacia complex (BCC), and in particular B. cenocepacia, is associated with significant morbidity and mortality in patients with cystic fibrosis (CF). B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance. Recently, atmospheric pressure non-thermal plasmas (APNTPs) have gained increasing attention as a novel approach to the prevention and treatment of a variety of hospital-acquired infections. In this study, we evaluated an in-house-designed kHz-driven plasma source for the treatment of biofilms of a number of clinical CF B. cenocepacia isolates. The results demonstrated that APNTP is an effective and efficient tool for the eradication of B. cenocepacia biofilms but that efficacy is highly variable across different isolates. Determination of phenotypic differences between isolates in an attempt to understand variability in plasma tolerance revealed that isolates which are highly tolerant to APNTP typically produce biofilms of greater biomass than their more sensitive counterparts. This indicates a potential role for biofilm matrix components in biofilm tolerance to APNTP exposure. Furthermore, significant isolate-dependent differences in catalase activity in planktonic bacteria positively correlated with phenotypic resistance to APNTP by isolates grown in biofilms. PMID:27179816

  2. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein

    OpenAIRE

    Ghequire, Maarten; De Canck, Evelien; Wattiau, Pierre; Van Winge, Iris; Loris, Remy; Coenye, Tom; De Mot, René

    2013-01-01

    Abstract Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombin...

  3. Cyanide toxicity to Burkholderia cenocepacia is modulated by polymicrobial communities and environmental factors

    Directory of Open Access Journals (Sweden)

    Steve P. Bernier

    2016-05-01

    Full Text Available Microbes within polymicrobial communities can establish positive and negative interactions that have the potential to influence the overall behaviour of the community. Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc can co-exist in the lower airways, however several studies have shown that P. aeruginosa can effectively kill the Bcc in vitro, for which hydrogen cyanide was recently proposed to play a critical role. Here we show that modification of the environment (i.e. culture medium, long-term genetic adaptation of P. aeruginosa to the cystic fibrosis (CF lung, or the addition of another bacterial species to the community can alter the sensitivity of Burkholderia cenocepacia to P. aeruginosa toxins. We specifically demonstrate that undefined rich media leads to higher susceptibility of B. cenocepacia to P. aeruginosa toxins like cyanide as compared to a synthetic medium (SCFM, that mimics the CF lung nutritional content. Overall, our study shows that the polymicrobial environment can have profound effects on negative interactions mediated by P. aeruginosa against B. cenocepacia. In fact, evolved P. aeruginosa or the presence of other species such as Staphylococcus aureus can directly abolish the direct competition mediated by cyanide and consequently maintaining a higher level of species diversity within the community.

  4. Cyanide Toxicity to Burkholderia cenocepacia Is Modulated by Polymicrobial Communities and Environmental Factors.

    Science.gov (United States)

    Bernier, Steve P; Workentine, Matthew L; Li, Xiang; Magarvey, Nathan A; O'Toole, George A; Surette, Michael G

    2016-01-01

    Microbes within polymicrobial communities can establish positive and negative interactions that have the potential to influence the overall behavior of the community. Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can co-exist in the lower airways, however several studies have shown that P. aeruginosa can effectively kill the Bcc in vitro, for which hydrogen cyanide (HCN) was recently proposed to play a critical role. Here we show that modification of the environment (i.e., culture medium), long-term genetic adaptation of P. aeruginosa to the cystic fibrosis (CF) lung, or the addition of another bacterial species to the community can alter the sensitivity of Burkholderia cenocepacia to P. aeruginosa toxins. We specifically demonstrate that undefined rich media leads to higher susceptibility of B. cenocepacia to P. aeruginosa toxins like cyanide as compared to a synthetic medium (SCFM), that mimics the CF lung nutritional content. Overall, our study shows that the polymicrobial environment can have profound effects on negative interactions mediated by P. aeruginosa against B. cenocepacia. In fact, evolved P. aeruginosa or the presence of other species such as Staphylococcus aureus can directly abolish the direct competition mediated by cyanide and consequently maintaining a higher level of species diversity within the community. PMID:27242743

  5. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo.

    Science.gov (United States)

    Scoffone, Viola C; Chiarelli, Laurent R; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  6. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo

    Science.gov (United States)

    Scoffone, Viola C.; Chiarelli, Laurent R.; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  7. Strains of Burkholderia cenocepacia genomovar IIIA possessing the cblA gene that are distinct from ET12.

    Science.gov (United States)

    Turton, Jane F; O'Brien, Emily; Megson, Brian; Kaufmann, Mary E; Pitt, Tyrone L

    2009-05-01

    Three strains of Burkholderia cenocepacia genomovar IIIA that were polymerase chain reaction positive for cblA, bcrA, and the epidemic strain marker, but were distinct from representatives of ET12 by pulsed-field gel electrophoresis, are described. One of these strains was shown to express cable pili by electron microscopy.

  8. A Complete Lipopolysaccharide Inner Core Oligosaccharide Is Required for Resistance of Burkholderia cenocepacia to Antimicrobial Peptides and Bacterial Survival In Vivo

    OpenAIRE

    Loutet, Slade A.; Flannagan, Ronald S.; Kooi, Cora; Sokol, Pamela A.; Valvano, Miguel A

    2006-01-01

    Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modific...

  9. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.

    Science.gov (United States)

    Yudistira, Harry; McClarty, Leigh; Bloodworth, Ruhi A M; Hammond, Sydney A; Butcher, Haley; Mark, Brian L; Cardona, Silvia T

    2011-09-01

    Synthetic cystic fibrosis sputum medium (SCFM) is rich in amino acids and supports robust growth of Burkholderia cenocepacia, a member of the Burkholderia cepacia complex (Bcc). Previous work demonstrated that B. cenocepacia phenylacetic acid (PA) catabolic genes are up-regulated during growth in SCFM and are required for full virulence in a Caenorhabditis elegans host model. In this work, we investigated the role of phenylalanine, one of the aromatic amino acids present in SCFM, as an inducer of the PA catabolic pathway. Phenylalanine degradation intermediates were used as sole carbon sources for growth and gene reporter experiments. In addition to phenylalanine and PA, phenylethylamine, phenylpyruvate, and 2-phenylacetamide were usable as sole carbon sources by wild type B. cenocepacia K56-2, but not by a PA catabolism-defective mutant. EMSA analysis showed that the binding of PaaR, the negative regulator protein of B. cenocepacia PA catabolism, to PA regulatory DNA could only be relieved by phenylacetyl-Coenzyme A (PA-CoA), but not by any of the putative phenylalanine degradation intermediates. Taken together, our results show that in B. cenocepacia, phenylalanine is catabolized to PA and induces PA catabolism through PA activation to PA-CoA. Thus, PaaR shares the same inducer with PaaX, the regulator of PA catabolism in Escherichia coli, despite belonging to a different protein family.

  10. Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages

    Directory of Open Access Journals (Sweden)

    Lynch Karlene H

    2012-06-01

    Full Text Available Abstract Background Genomic analysis of bacteriophages infecting the Burkholderia cepacia complex (BCC is an important preliminary step in the development of a phage therapy protocol for these opportunistic pathogens. The objective of this study was to characterize KL1 (vB_BceS_KL1 and AH2 (vB_BceS_AH2, two novel Burkholderia cenocepacia-specific siphoviruses isolated from environmental samples. Results KL1 and AH2 exhibit several unique phenotypic similarities: they infect the same B. cenocepacia strains, they require prolonged incubation at 30°C for the formation of plaques at low titres, and they do not form plaques at similar titres following incubation at 37°C. However, despite these similarities, we have determined using whole-genome pyrosequencing that these phages show minimal relatedness to one another. The KL1 genome is 42,832 base pairs (bp in length and is most closely related to Pseudomonas phage 73 (PA73. In contrast, the AH2 genome is 58,065 bp in length and is most closely related to Burkholderia phage BcepNazgul. Using both BLASTP and HHpred analysis, we have identified and analyzed the putative virion morphogenesis, lysis, DNA binding, and MazG proteins of these two phages. Notably, MazG homologs identified in cyanophages have been predicted to facilitate infection of stationary phase cells and may contribute to the unique plaque phenotype of KL1 and AH2. Conclusions The nearly indistinguishable phenotypes but distinct genomes of KL1 and AH2 provide further evidence of both vast diversity and convergent evolution in the BCC-specific phage population.

  11. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370.

    Science.gov (United States)

    Zaitseva, Julia; Granik, Vladimir; Belik, Alexandr; Koksharova, Olga; Khmel, Inessa

    2009-06-01

    Antibacterial drugs in the nitrofuran series, such as nitrofurazone, furazidin, nitrofurantoin and nifuroxazide, as well as the nitric oxide generators sodium nitroprusside and isosorbide mononitrate in concentrations that do not suppress bacterial growth, were shown to increase the capacity of pathogenic bacteria Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370 to form biofilms. At 25-100microg/ml, nitrofurans 2-2.5-fold enhanced biofilm formation of P. aeruginosa PAO1, and NO donors 3-6-fold. For B. cenocepacia 370, the enhancement was 2-5-fold (nitrofurans) and 4.5-fold (sodium nitroprusside), respectively. PMID:19460431

  12. Identification of functions linking quorum sensing with biofilm formation in Burkholderia cenocepacia H111.

    Science.gov (United States)

    Inhülsen, Silja; Aguilar, Claudio; Schmid, Nadine; Suppiger, Angela; Riedel, Kathrin; Eberl, Leo

    2012-06-01

    Burkholderia cenocepacia has emerged as an important pathogen for patients suffering from cystic fibrosis (CF). Previous work has shown that this organism employs the CepIR quorum-sensing (QS) system to control the expression of virulence factors as well as the formation of biofilms. To date, however, very little is known about the QS-regulated virulence factors and virtually nothing about the factors that link QS and biofilm formation. Here, we have employed a combined transcriptomic and proteomic approach to precisely define the QS regulon in our model strain B. cenocepacia H111, a CF isolate. Among the identified CepR-activated loci, three were analyzed in better detail for their roles in biofilm development: (i) a gene cluster coding for the BclACB lectins, (ii) the large surface protein BapA, and (iii) a type I pilus. The analysis of defined mutants revealed that BapA plays a major role in biofilm formation on abiotic surfaces while inactivation of the type I pilus showed little effect both in a static microtitre dish-based biofilm assay and in flow-through cells. Inactivation of the bclACB lectin genes resulted in biofilms containing hollow microcolonies, suggesting that the lectins are important for biofilm structural development. PMID:22950027

  13. Burkholderia cenocepacia Differential Gene Expression during Host–Pathogen Interactions and Adaptation to the Host Environment

    Science.gov (United States)

    O’Grady, Eoin P.; Sokol, Pamela A.

    2011-01-01

    Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host–pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections. PMID:22919581

  14. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein.

    Directory of Open Access Journals (Sweden)

    Laura A Novotny

    Full Text Available Cystic fibrosis (CF is the most common lethal inherited genetic disorder affection Caucasians. Even with medical advances, CF is life-shortening with patients typically surviving only to age 38. Infection of the CF lung by Burkholderia cenocepacia presents exceptional challenges to medical management of these patients as clinically this microbe is resistant to virtually all antibiotics, is highly transmissible and infection of CF patients with this microbe renders them ineligible for lung transplant, often the last lifesaving option. Here we have targeted two abundant components of the B. cenocepacia biofilm for immune intervention: extracellular DNA and DNABII proteins, the latter of which are bacterial nucleic acid binding proteins. Treatment of B. cenocepacia biofilms with antiserum directed at one of these DNABII proteins (integration host factor or IHF resulted in significant disruption of the biofilm. Moreover, when anti-IHF mediated destabilization of a B. cenocepacia biofilm was combined with exposure to traditional antibiotics, B. cenocepacia resident within the biofilm and thereby typically highly resistant to the action of antibiotics, were now rendered susceptible to killing. Pre-incubation of B. cenocepacia with anti-IHF serum prior to exposure to murine CF macrophages, which are normally unable to effectively degrade ingested B. cenocepacia, resulted in a statistically significant increase in killing of phagocytized B. cenocepacia. Collectively, these findings support further development of strategies that target DNABII proteins as a novel approach for treatment of CF patients, particularly those whose lungs are infected with B. cenocepacia.

  15. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia.

    Directory of Open Access Journals (Sweden)

    Carrie Selin

    Full Text Available Infections with the bacteria Burkholderia cepacia complex (Bcc are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery.

  16. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia.

    Science.gov (United States)

    Selin, Carrie; Stietz, Maria S; Blanchard, Jan E; Gehrke, Sebastian S; Bernard, Sylvain; Hall, Dennis G; Brown, Eric D; Cardona, Silvia T

    2015-01-01

    Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery. PMID:26053039

  17. The Crystal Structure of Burkholderia cenocepacia DfsA Provides Insights into Substrate Recognition and Quorum Sensing Fatty Acid Biosynthesis.

    Science.gov (United States)

    Spadaro, Francesca; Scoffone, Viola C; Chiarelli, Laurent R; Fumagalli, Marco; Buroni, Silvia; Riccardi, Giovanna; Forneris, Federico

    2016-06-14

    Burkholderia cenocepacia is a major concern among respiratory tract infections in cystic fibrosis patients. This pathogen is particularly difficult to treat because of its high level of resistance to the clinically relevant antimicrobial agents. In B. cenocepacia, the quorum sensing cell-cell communication system is involved in different processes that are important for bacterial virulence, such as biofilm formation and protease and siderophore production. Targeting the enzymes involved in this process represents a promising therapeutic approach. With the aim of finding effective quorum sensing inhibitors, we have determined the three-dimensional structure of B. cenocepacia diffusible factor synthase A, DfsA. This bifunctional crotonase (dehydratase/thioesterase) produces the characteristic quorum sensing molecule of B. cenocepacia, cis-2-dodecenoic acid or BDSF, starting from 3-hydroxydodecanoyl-acyl carrier protein. Unexpectedly, the crystal structure revealed the presence of a lipid molecule in the catalytic site of the enzyme, which was identified as dodecanoic acid. Our biochemical characterization shows that DfsA is able to use dodecanoyl-acyl carrier protein as a substrate, demonstrating that dodecanoic acid, the product of this reaction, is released very slowly from the DfsA active site, therefore acting as a DfsA inhibitor. This molecule shows an unprecedented conformational arrangement inside the DfsA active site. In contrast with previous hypotheses, our data illustrate how DfsA and closely related homologous enzymes can recognize long hydrophobic substrates without large conformational changes or assistance by additional regulator molecules. The elucidation of the substrate binding mode in DfsA provides the starting point for structure-based drug discovery studies targeting B. cenocepacia quorum sensing-assisted virulence. PMID:27198181

  18. Crystal structures of IspF from Plasmodium falciparum and Burkholderia cenocepacia: comparisons inform antimicrobial drug target assessment

    OpenAIRE

    O’Rourke, Patrick EF; Kalinowska-Tłuścik, Justyna; Fyfe, Paul K.; Dawson, Alice; Hunter, William N.

    2014-01-01

    Background 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF) catalyzes the conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol-2-phosphate to 2C-methyl-D-erythritol-2,4-cyclodiphosphate and cytidine monophosphate in production of isoprenoid-precursors via the methylerythritol phosphate biosynthetic pathway. IspF is found in the protozoan Plasmodium falciparum, a parasite that causes cerebral malaria, as well as in many Gram-negative bacteria such as Burkholderia cenocepacia. Isp...

  19. Saturation mutagenesis of a CepR binding site as a means to identify new quorum-regulated promoters in Burkholderia cenocepacia

    Science.gov (United States)

    Burkholderia cenocepacia, an opportunistic pathogen of humans, encodes the CepI and CepR proteins, which resemble the LuxI and LuxR quorum sensing proteins of Vibrio fischeri. CepI directs the synthesis of octanoylhomoserine lactone (OHL), while CepR is an OHL dependent transcription factor. In pr...

  20. Burkholderia cenocepacia type VI secretion system mediates escape of type II secreted proteins into the cytoplasm of infected macrophages.

    Directory of Open Access Journals (Sweden)

    Roberto Rosales-Reyes

    Full Text Available Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1β secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with B. cenocepacia employ the NLRP3 inflammasome to induce IL-1β secretion and pyroptosis. Moreover, IL-1β secretion by B. cenocepacia-infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS. We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1β secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.

  1. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

    DEFF Research Database (Denmark)

    Fazli, Mustafa; McCarthy, Yvonne; Givskov, Michael;

    2013-01-01

    In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide...... evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly...... matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330-Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c-di-GMP...

  2. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    International Nuclear Information System (INIS)

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn2+-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn2+, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate

  3. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    Energy Technology Data Exchange (ETDEWEB)

    Rimsa, Vadim; Eadsforth, Thomas C. [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Joosten, Robbie P. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom)

    2014-02-01

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn{sup 2+}-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn{sup 2+}, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate.

  4. Genomic sequence and activity of KS10, a transposable phage of the Burkholderia cepacia complex

    Directory of Open Access Journals (Sweden)

    Shrivastava Savita

    2008-12-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (BCC is a versatile group of Gram negative organisms that can be found throughout the environment in sources such as soil, water, and plants. While BCC bacteria can be involved in beneficial interactions with plants, they are also considered opportunistic pathogens, specifically in patients with cystic fibrosis and chronic granulomatous disease. These organisms also exhibit resistance to many antibiotics, making conventional treatment often unsuccessful. KS10 was isolated as a prophage of B. cenocepacia K56-2, a clinically relevant strain of the BCC. Our objective was to sequence the genome of this phage and also determine if this prophage encoded any virulence determinants. Results KS10 is a 37,635 base pairs (bp transposable phage of the opportunistic pathogen Burkholderia cenocepacia. Genome sequence analysis and annotation of this phage reveals that KS10 shows the closest sequence homology to Mu and BcepMu. KS10 was found to be a prophage in three different strains of B. cenocepacia, including strains K56-2, J2315, and C5424, and seven tested clinical isolates of B. cenocepacia, but no other BCC species. A survey of 23 strains and 20 clinical isolates of the BCC revealed that KS10 is able to form plaques on lawns of B. ambifaria LMG 19467, B. cenocepacia PC184, and B. stabilis LMG 18870. Conclusion KS10 is a novel phage with a genomic organization that differs from most phages in that its capsid genes are not aligned into one module but rather separated by approximately 11 kb, giving evidence of one or more prior genetic rearrangements. There were no potential virulence factors identified in KS10, though many hypothetical proteins were identified with no known function.

  5. Lack of MyD88 protects the immunodeficient host against fatal lung inflammation triggered by the opportunistic bacteria Burkholderia cenocepacia.

    Science.gov (United States)

    Ventura, Grasiella M de C; Balloy, Viviane; Ramphal, Reuben; Khun, Huot; Huerre, Michel; Ryffel, Bernhard; Plotkowski, Maria-Cristina M; Chignard, Michel; Si-Tahar, Mustapha

    2009-07-01

    Burkholderia cenocepacia is an opportunistic pathogen of major concern for cystic fibrosis patients as well as immunocompromised cancer patients and transplant recipients. The mechanisms by which B. cenocepacia triggers a rapid health deterioration of the susceptible host have yet to be characterized. TLR and their key signaling intermediate MyD88 play a central role in the detection of microbial molecular patterns and in the initiation of an effective immune response. We performed a study to better understand the role of TLR-MyD88 signaling in B. cenocepacia-induced pathogenesis in the immunocompromised host, using an experimental murine model. The time-course of several dynamic parameters, including animal survival, bacterial load, and secretion of critical inflammatory mediators, was compared in infected and immunosuppressed wild-type and MyD88(-/-) mice. Notably, when compared with wild-type mice, infected MyD88(-/-) animals displayed significantly reduced levels of inflammatory mediators (including KC, TNF-alpha, IL-6, MIP-2, and G-CSF) in blood and lung airspaces. Moreover, despite a higher transient bacterial load in the lungs, immunosuppressed mice deficient in MyD88 had an unexpected survival advantage. Finally, we showed that this B. cenocepacia-induced life-threatening infection of wild-type mice involved the proinflammatory cytokine TNF-alpha and could be prevented by corticosteroids. Altogether, our findings demonstrate that a MyD88-dependent pathway can critically contribute to a detrimental host inflammatory response that leads to fatal pneumonia. PMID:19535624

  6. Biochemical and functional studies on the Burkholderia cepacia complex bceN gene, encoding a GDP-D-mannose 4,6-dehydratase.

    Directory of Open Access Journals (Sweden)

    Sílvia A Sousa

    Full Text Available This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47. Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min(-1.mg(-1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis.

  7. The AHL- and BDSF-dependent quorum sensing systems control specific and overlapping sets of genes in Burkholderia cenocepacia H111.

    Directory of Open Access Journals (Sweden)

    Nadine Schmid

    Full Text Available Quorum sensing in Burkholderia cenocepacia H111 involves two signalling systems that depend on different signal molecules, namely N-acyl homoserine lactones (AHLs and the diffusible signal factor cis-2-dodecenoic acid (BDSF. Previous studies have shown that AHLs and BDSF control similar phenotypic traits, including biofilm formation, proteolytic activity and pathogenicity. In this study we mapped the BDSF stimulon by RNA-Seq and shotgun proteomics analysis. We demonstrate that a set of the identified BDSF-regulated genes or proteins are also controlled by AHLs, suggesting that the two regulons partially overlap. The detailed analysis of two mutually regulated operons, one encoding three lectins and the other one encoding the large surface protein BapA and its type I secretion machinery, revealed that both AHLs and BDSF are required for full expression, suggesting that the two signalling systems operate in parallel. In accordance with this, we show that both AHLs and BDSF are required for biofilm formation and protease production.

  8. Trimeric autotransporter adhesins in members of the Burkholderia cepacia complex: a multifunctional family of proteins implicated in virulence

    Directory of Open Access Journals (Sweden)

    Arsénio Mendes Fialho

    2011-12-01

    Full Text Available Trimeric autotransporter adhesins (TAAs are multimeric surface proteins, involved in various biological traits of pathogenic Gram-negative bacteria including adherence, biofilm formation, invasion, survival within eukaryotic cells, serum resistance and cytotoxicity. TAAs have a modular architecture composed by a conserved membrane-anchored C-terminal domain and a variable number of stalk and head domains. In this study, a bioinformatic approach has been used to analyze the distribution and architecture of TAAs among Burkholderia cepacia complex (Bcc genomes. Fifteen genomes were probed revealing a total of 74 encoding sequences. Compared with other bacterial species, the Bcc genomes contain a disproportionately large number of TAAs (two genes to up to 8 genes, such as in B.cenocepacia. Phylogenetic analysis showed that the TAAs grouped into at least eight distinct clusters. TAAs with serine-rich repeats are clearly well separated from others, thereby representing a different evolutionary lineage. Comparative gene mapping across Bcc genomes reveals that TAA genes are inserted within conserved synteny blocks. We further focused our analysis on the epidemic strain B. cenocepacia J2315 in which 7 TAAs were annotated. Among these, 3 TAA-encoding genes (BCAM019, BCAM0223 and BCAM0224 are organized into a cluster and are candidates for multifunctional virulence factors. Here we review the current insights into the functional role of BCAM0224 as a model locus.

  9. The Burkholderia cenocepacia OmpA-like protein BCAL2958: identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients.

    Science.gov (United States)

    Sousa, Sílvia A; Morad, Mostafa; Feliciano, Joana R; Pita, Tiago; Nady, Soad; El-Hennamy, Rehab E; Abdel-Rahman, Mona; Cavaco, José; Pereira, Luísa; Barreto, Celeste; Leitão, Jorge H

    2016-12-01

    Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc. PMID:27325348

  10. Characterization of the Poly-β-1,6-N-Acetylglucosamine Polysaccharide Component of Burkholderia Biofilms ▿

    OpenAIRE

    Yakandawala, Nandadeva; Gawande, Purushottam V.; LoVetri, Karen; Cardona, Silvia T.; Romeo, Tony; Nitz, Mark; Madhyastha, Srinivasa

    2011-01-01

    We demonstrated the production of poly-β-1,6-N-acetylglucosamine (PNAG) polysaccharide in the biofilms of Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia cepacia, and Burkholderia cenocepacia using an immunoblot assay for PNAG. These results were confirmed by further studies, which showed that the PNAG hydrolase, dispersin B, eliminated immunoreactivity of extracts from the species that were tested (B. cenocepacia and B. multivorans). Dispersin B als...

  11. Architecture of Burkholderia cepacia complex σ70 gene family: evidence of alternative primary and clade-specific factors, and genomic instability

    Directory of Open Access Journals (Sweden)

    Menard Aymeric

    2007-09-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (Bcc groups bacterial species with beneficial properties that can improve crop yields or remediate polluted sites but can also lead to dramatic human clinical outcomes among cystic fibrosis (CF or immuno-compromised individuals. Genome-wide regulatory processes of gene expression could explain parts of this bacterial duality. Transcriptional σ70 factors are components of these processes. They allow the reversible binding of the DNA-dependent RNA polymerase to form the holoenzyme that will lead to mRNA synthesis from a DNA promoter region. Bcc genome-wide analyses were performed to investigate the major evolutionary trends taking place in the σ70 family of these bacteria. Results Twenty σ70 paralogous genes were detected in the Burkholderia cenocepacia strain J2315 (Bcen-J2315 genome, of which 14 were of the ECF (extracytoplasmic function group. Non-ECF paralogs were related to primary (rpoD, alternative primary, stationary phase (rpoS, flagellin biosynthesis (fliA, and heat shock (rpoH factors. The number of σ70 genetic determinants among this genome was of 2,86 per Mb. This number is lower than the one of Pseudomonas aeruginosa, a species found in similar habitats including CF lungs. These two bacterial groups showed strikingly different σ70 family architectures, with only three ECF paralogs in common (fecI-like, pvdS and algU. Bcen-J2315 σ70 paralogs showed clade-specific distributions. Some paralogs appeared limited to the ET12 epidemic clone (ecfA2, particular Bcc species (sigI, the Burkholderia genus (ecfJ, ecfF, and sigJ, certain proteobacterial groups (ecfA1, ecfC, ecfD, ecfE, ecfG, ecfL, ecfM and rpoS, or were broadly distributed in the eubacteria (ecfI, ecfK, ecfH, ecfB, and rpoD-, rpoH-, fliA-like genes. Genomic instability of this gene family was driven by chromosomal inversion (ecfA2, recent duplication events (ecfA and RpoD, localized (ecfG and large scale deletions (sig

  12. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. PMID:27620956

  13. Species Distribution and Ribotype Diversity of Burkholderia cepacia Complex Isolates from French Patients with Cystic Fibrosis

    OpenAIRE

    Brisse, Sylvain; Cordevant, Christophe; Vandamme, Peter; Bidet, Philippe; Loukil, Chawki; Chabanon, Gérard; Lange, Marc; Bingen, Edouard

    2004-01-01

    A total of 153 Burkholderia cepacia strains obtained from 153 French patients with cystic fibrosis were identified as Burkholderia multivorans (51.6%) or Burkholderia cenocepacia (45.1%). Eighty-two genotypes were identified using PvuII and EcoRI ribotyping. B. multivorans genotype A (found in 32 French patients) and two other genotypes were also identified among isolates from Austrian, German, Italian, and Canadian patients.

  14. Polyphasic characterisation of Burkholderia cepacia complex species isolated from children with cystic fibrosis

    Science.gov (United States)

    Vicenzi, Fernando José; Pillonetto, Marcelo; de Souza, Helena Aguilar Peres Homem de Mello; Palmeiro, Jussara Kasuko; Riedi, Carlos Antônio; Rosario-Filho, Nelson Augusto; Dalla-Costa, Libera Maria

    2016-01-01

    Cystic fibrosis (CF) patients with Burkholderia cepacia complex (Bcc) pulmonary infections have high morbidity and mortality. The aim of this study was to compare different methods for identification of Bcc species isolated from paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain isolates of Bcc samples to evaluate six different tests for strain identification. Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction (PCR)-recA, restriction fragment length polymorphism-recA, recAsequencing, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied. Bacterial isolates were also tested for antimicrobial susceptibility. PCR-recA analysis showed that 36 out of the 54 isolates were Bcc. Kappa index data indicated almost perfect agreement between CPT and APT, CPT and PCR-recA, and APT and PCR-recA to identify Bcc, and MALDI-TOF and recAsequencing to identify Bcc species. The recAsequencing data and the MALDI-TOF data agreed in 97.2% of the isolates. Based on recA sequencing, the most common species identified were Burkholderia cenocepacia IIIA (33.4%),Burkholderia vietnamiensis (30.6%), B. cenocepaciaIIIB (27.8%), Burkholderia multivorans (5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool for identification of Bcc species obtained from CF patients, although it was not able to identify B. cenocepacia subtypes. PMID:26814642

  15. Single amino acid substitution in homogentisate 1,2-dioxygenase is responsible for pigmentation in a subset of Burkholderia cepacia complex isolates

    OpenAIRE

    Gonyar, Laura A.; Fankhauser, Sarah C.; Joanna B Goldberg

    2014-01-01

    The Burkholderia cepacia complex (Bcc) is a group of Gram-negative bacilli that are ubiquitous in the environment and have emerged over the past 30 years as opportunistic pathogens in immunocompromised populations, specifically individuals with cystic fibrosis (CF) and chronic granulomatous disease. This complex of at least 18 distinct species is phenotypically and genetically diverse. One phenotype observed in a subset of Burkholderia cenocepacia (a prominent Bcc pathogen) isolates is the ab...

  16. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation.

    Science.gov (United States)

    Aubert, Daniel F; Xu, Hao; Yang, Jieling; Shi, Xuyan; Gao, Wenqing; Li, Lin; Bisaro, Fabiana; Chen, She; Valvano, Miguel A; Shao, Feng

    2016-05-11

    Burkholderia cenocepacia is an opportunistic pathogen of the cystic fibrosis lung that elicits a strong inflammatory response. B. cenocepacia employs a type VI secretion system (T6SS) to survive in macrophages by disarming Rho-type GTPases, causing actin cytoskeletal defects. Here, we identified TecA, a non-VgrG T6SS effector responsible for actin disruption. TecA and other bacterial homologs bear a cysteine protease-like catalytic triad, which inactivates Rho GTPases by deamidating a conserved asparagine in the GTPase switch-I region. RhoA deamidation induces caspase-1 inflammasome activation, which is mediated by the familial Mediterranean fever disease protein Pyrin. In mouse infection, the deamidase activity of TecA is necessary and sufficient for B. cenocepacia-triggered lung inflammation and also protects mice from lethal B. cenocepacia infection. Therefore, Burkholderia TecA is a T6SS effector that modifies a eukaryotic target through an asparagine deamidase activity, which in turn elicits host cell death and inflammation through activation of the Pyrin inflammasome. PMID:27133449

  17. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  18. Susceptibility of Caenorhabditis elegans to Burkholderia infection depends on prior diet and secreted bacterial attractants.

    Directory of Open Access Journals (Sweden)

    Vaughn S Cooper

    Full Text Available The nematode Caenorhabditis elegans may be killed by certain pathogenic bacteria and thus is a model organism for studying interactions between bacteria and animal hosts. However, growing nematodes on prey bacteria may influence their susceptibility to potential pathogens. A method of axenic nematode culture was developed to isolate and quantify interactions between C. elegans and potentially pathogenic strains of the Burkholderia cepacia complex. Studying these dynamics in liquid solution rather than on agar surfaces minimized nematode avoidance behavior and resolved more differences among isolates. Most isolates of B. cenocepacia, B. ambifaria and B. cepacia caused 60-80% mortality of nematodes after 7 days, whereas isolates of B. multivorans caused less mortality (<25% and supported nematode reproduction. However, some B. cenocepacia isolates recovered from chronic infections were much less virulent (5-28% mortality. As predicted, prior diet altered the outcome of interactions between nematodes and bacteria. When given the choice between Burkholderia and E. coli as prey on agar, axenically raised nematodes initially preferred most lethal Burkholderia isolates to E. coli as a food source, but this was not the case for nematodes fed E. coli, which avoided toxic Burkholderia. This food preference was associated with the cell-free supernatant and thus secreted compounds likely mediated bacterial-nematode interactions. This model, which isolates interactions between bacteria and nematodes from the effects of prior feeding, demonstrates that bacteria can influence nematode behavior and their susceptibility to pathogens.

  19. Burkholderia fungorum Septicemia

    OpenAIRE

    Gerrits, G. Peter; Klaassen, Corné; Coenye, Tom; Vandamme, Peter; Meis, Jacques F

    2005-01-01

    We report the first case of community-acquired bacteremia with Burkholderia fungorum, a newly described member of the Burkholderia cepacia complex. A 9-year-old girl sought treatment with septic arthritis in her right knee and ankle with soft tissue involvement. Commercial identification systems did not identify the causative microorganism.

  20. Bacteria of the Burkholderia cepacia complex are cyanogenic under biofilm and colonial growth conditions

    Directory of Open Access Journals (Sweden)

    Hoshino Saiko

    2008-06-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (Bcc is a collection of nine genotypically distinct but phenotypically similar species. They show wide ecological diversity and include species that are used for promoting plant growth and bio-control as well species that are opportunistic pathogens of vulnerable patients. Over recent years the Bcc have emerged as problematic pathogens of the CF lung. Pseudomonas aeruginosa is another important CF pathogen. It is able to synthesise hydrogen cyanide (HCN, a potent inhibitor of cellular respiration. We have recently shown that HCN production by P. aeruginosa may have a role in CF pathogenesis. This paper describes an investigation of the ability of bacteria of the Bcc to make HCN. Results The genome of Burkholderia cenocepacia has 3 putative HCN synthase encoding (hcnABC gene clusters. B. cenocepacia and all 9 species of the Bcc complex tested were able to make cyanide at comparable levels to P. aeruginosa, but only when grown surface attached as colonies or during biofilm growth on glass beads. In contrast to P. aeruginosa and other cyanogenic bacteria, cyanide was not detected during planktonic growth of Bcc strains. Conclusion All species in the Bcc are cyanogenic when grown as surface attached colonies or as biofilms.

  1. Use of a Burkholderia cenocepacia ABTS Oxidizer in a Microbial Fuel Cell

    Science.gov (United States)

    Microbial fuel cells (MFCs) often use biological processes to generate electrons from organic material contained in the anode chamber and abiotic processes employing atmospheric oxygen as the oxidant in the cathode chamber. This study investigated the accumulation of an oxidant in bacterial cultures...

  2. Burkholderia cepacia complex in Serbian patients with cystic fibrosis: prevalence and molecular epidemiology.

    Science.gov (United States)

    Vasiljevic, Z V; Novovic, K; Kojic, M; Minic, P; Sovtic, A; Djukic, S; Jovcic, B

    2016-08-01

    The Burkholderia cepacia complex (Bcc) organisms remain significant pathogens in patients with cystic fibrosis (CF). This study was performed to evaluate the prevalence, epidemiological characteristics, and presence of molecular markers associated with virulence and transmissibility of the Bcc strains in the National CF Centre in Belgrade, Serbia. The Bcc isolates collected during the four-year study period (2010-2013) were further examined by 16 s rRNA gene, pulsed-field gel electrophoresis of genomic DNA, multilocus sequence typing analysis, and phylogenetic analysis based on concatenated sequence of seven alleles. Fifty out of 184 patients (27.2 %) were colonized with two Bcc species, B. cenocepacia (n = 49) and B. stabilis (n = 1). Thirty-four patients (18.5 %) had chronic colonization. Typing methods revealed a high level of similarity among Bcc isolates, indicating a person-to-person transmission or acquisition from a common source. New sequence types (STs) were identified, and none of the STs with an international distribution were found. One centre-specific ST, B. cenocepacia ST856, was highly dominant and shared by 48/50 (96 %) patients colonized by Bcc. This clone was characterized by PCR positivity for both the B. cepacia epidemic strain marker and cable pilin, and showed close genetic relatedness to the epidemic strain CZ1 (ST32). These results indicate that the impact of Bcc on airway colonization in the Serbian CF population is high and virtually exclusively limited to a single clone of B. cenocepacia. The presence of a highly transmissible clone and probable patient-to-patient spread was observed. PMID:27177755

  3. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    Science.gov (United States)

    Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter

    2016-01-01

    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG

  4. The melioidosis agent Burkholderia pseudomallei and related opportunistic pathogens detected in faecal matter of wildlife and livestock in northern Australia.

    Science.gov (United States)

    Höger, A C R; Mayo, M; Price, E P; Theobald, V; Harrington, G; Machunter, B; Choy, J Low; Currie, B J; Kaestli, M

    2016-07-01

    The Darwin region in northern Australia has experienced rapid population growth in recent years, and with it, an increased incidence of melioidosis. Previous studies in Darwin have associated the environmental presence of Burkholderia pseudomallei, the causative agent of melioidosis, with anthropogenic land usage and proximity to animals. In our study, we estimated the occurrence of B. pseudomallei and Burkholderia spp. relatives in faecal matter of wildlife, livestock and domestic animals in the Darwin region. A total of 357 faecal samples were collected and bacteria isolated through culture and direct DNA extraction after enrichment in selective media. Identification of B. pseudomallei, B. ubonensis, and other Burkholderia spp. was carried out using TTS1, Bu550, and recA BUR3-BUR4 quantitative PCR assays, respectively. B. pseudomallei was detected in seven faecal samples from wallabies and a chicken. B. cepacia complex spp. and Pandoraea spp. were cultured from wallaby faecal samples, and B. cenocepacia and B. cepacia were also isolated from livestock animals. Various bacteria isolated in this study represent opportunistic human pathogens, raising the possibility that faecal shedding contributes to the expanding geographical distribution of not just B. pseudomallei but other Burkholderiaceae that can cause human disease. PMID:26935879

  5. Burkholderia in gladiool lastige bacterie

    NARCIS (Netherlands)

    Kok, B.J.; Aanholt, van J.T.M.

    2009-01-01

    In de bollen- en bloementeelt van gladiolen komt de laatste jaren de bacterieziekte Burkholderia gladiola voor die onder vochtige warme omstandigheden veel uitval veroorzaken. PPO onderzocht een aantal maatregelen om de ziekte in kralen, pitten en knollen te bestrijden

  6. Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex.

    Science.gov (United States)

    Bartholdson, S Josefin; Brown, Alan R; Mewburn, Ben R; Clarke, David J; Fry, Stephen C; Campopiano, Dominic J; Govan, John R W

    2008-08-01

    The species that presently constitute the Burkholderia cepacia complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysaccharide (EPS) when onion tissue was provided as the sole nutrient. EPS production was not species-specific, was observed in isolates from both clinical and environmental sources, and did not correlate with the ability to cause maceration of onion tissue. Chemical analysis suggested that the onion components responsible for EPS induction were primarily the carbohydrates sucrose, fructose and fructans. Additional sugars were investigated, and all alcohol sugars tested were able to induce EPS production, in particular mannitol and glucitol. To investigate the molecular basis for EPS biosynthesis, we focused on the highly conserved bce gene cluster thought to be involved in cepacian biosynthesis. We demonstrated induction of the bce gene cluster by mannitol, and found a clear correlation between the inability of representatives of the Burkholderia cenocepacia ET12 lineage to produce EPS and the presence of an 11 bp deletion within the bceB gene, which encodes a glycosyltransferase. Insertional inactivation of bceB in Burkholderia ambifaria AMMD results in loss of EPS production on sugar alcohol media. These novel and surprising insights into EPS biosynthesis highlight the metabolic potential of the Bcc and show that a potential virulence factor may not be detected by routine laboratory culture. Our results also highlight a potential hazard in the use of inhaled mannitol as an osmolyte to improve mucociliary clearance in individuals with cystic fibrosis. PMID:18667584

  7. A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia

    DEFF Research Database (Denmark)

    McCarthy, Y.; Yang, Liang; Twomey, K.B.;

    2010-01-01

    the input domain of RpfC was active in BDSF signal perception when expressed in X. campestris. Mutation of BCAM0227 gave rise to reduced cytotoxicity to Chinese hamster ovary cells and reduced virulence to Wax moth larvae and in the agar-bead mouse model of pulmonary infection. The findings identify BCAM...

  8. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    Science.gov (United States)

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  9. Comparison of Ashdown's Medium, Burkholderia cepacia Medium, and Burkholderia pseudomallei Selective Agar for Clinical Isolation of Burkholderia pseudomallei

    OpenAIRE

    Peacock, Sharon J.; Chieng, Grace; Cheng, Allen C.; Dance, David A. B.; Amornchai, Premjit; Wongsuvan, Gumphol; Teerawattanasook, Nittaya; Chierakul, Wirongrong; Day, Nicholas P J; Wuthiekanun, Vanaporn

    2005-01-01

    Ashdown's medium, Burkholderia pseudomallei selective agar (BPSA), and a commercial Burkholderia cepacia medium were compared for their abilities to grow B. pseudomallei from 155 clinical specimens that proved positive for this organism. The sensitivity of each was equivalent; the selectivity of BPSA was lower than that of Ashdown's or B. cepacia medium.

  10. In Vitro Susceptibilities of Burkholderia mallei in Comparison to Those of Other Pathogenic Burkholderia spp.

    OpenAIRE

    Kenny, D J; Russell, P; Rogers, D.; Eley, S M; Titball, R W

    1999-01-01

    The in vitro antimicrobial susceptibilities of isolates of Burkholderia mallei to 16 antibiotics were assessed and compared with the susceptibilities of Burkholderia pseudomallei and Burkholderia cepacia. The antibiotic susceptibility profile of B. mallei resembled that of B. pseudomallei more closely than that of B. cepacia, which corresponds to their similarities in terms of biochemistry, antigenicity, and pathogenicity. Ceftazidime, imipenem, doxycycline, and ciprofloxacin were active agai...

  11. NCBI nr-aa BLAST: CBRC-CREM-01-1310 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1310 ref|YP_624641.1| acyltransferase 3 [Burkholderia cenocepacia AU 1...054] ref|YP_837010.1| acyltransferase 3 [Burkholderia cenocepacia HI2424] ref|ZP_01565190.1| acyltransferase 3 [Burkholder...ia cenocepacia MC0-3] gb|ABF79668.1| acyltransferase 3 [Burkholderia cenocepacia AU 1054] gb|A...BK10117.1| acyltransferase 3 [Burkholderia cenocepacia HI2424] gb|EAV56867.1| acyltransferase 3 [Burkholderia cenocepacia MC0-3] YP_624641.1 1e-65 56% ...

  12. PPO zoekt naar mogelijkheden aanpak Burkholderia

    OpenAIRE

    Dwarswaard, A.; Van Dam

    2014-01-01

    In de bloemen- en knollenteelt van gladiool komt de afgelopen decennia met enige regelmaat de bacterieziekte Burkholderia voor. Vorig jaar startte PPO met een onderzoek naar de mogelijkheden om deze ziekte aan te pakken. Een tussenstand.

  13. Molecular Procedure for Rapid Detection of Burkholderia mallei and Burkholderia pseudomallei

    OpenAIRE

    Bauernfeind, Adolf; Roller, Carsten; Meyer, Detlef; Jungwirth, Renate; Schneider, Ines

    1998-01-01

    A PCR procedure for the discrimination of Burkholderia mallei and Burkholderia pseudomallei was developed. It is based on the nucleotide difference T 2143 C (T versus C at position 2143) between B. mallei and B. pseudomallei detected in the 23S rDNA sequences. In comparison with conventional methods the procedure allows more rapid identification at reduced risk for infection of laboratory personnel.

  14. Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    Heiss, Christian; Burtnick, Mary N.; Roberts, Rosemary A.; Black, Ian; Azadi, Parastoo; Brett, Paul J.

    2013-01-01

    O-Polysaccharides (OPS) were isolated from purified Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharides by mild-acid hydrolysis and gel-permeation chromatography. 1-D and 2-D 1H and 13C NMR spectroscopy experiments revealed that the OPS antigens were unbranched heteropolymers with the following structures:

  15. Volatile-Sulfur-Compound Profile Distinguishes Burkholderia pseudomallei from Burkholderia thailandensis

    OpenAIRE

    Inglis, Timothy J J; Hahne, Dorothee R.; Merritt, Adam J.; Clarke, Michael W.

    2015-01-01

    Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced by Burkholderia pseudomallei is responsible for its unusual truffle-like smell and distinguishes the species from Burkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grown B. pseudomallei.

  16. rpsU-based discrimination within the genus Burkholderia

    OpenAIRE

    Frickmann, H.; Neubauer, H.; Loderstaedt, U.; Derschum, H.; Hagen, R. M.

    2014-01-01

    Sequencing of the gene rpsU reliably delineates saprophytic Burkholderia (B.) thailandensis from highly pathogenic B. mallei and B. pseudomallei. We analyzed the suitability of this technique for the delineation of the B. pseudomallei complex from other Burkholderia species.

  17. Novel Selective Medium for Isolation of Burkholderia pseudomallei

    OpenAIRE

    Howard, K; Inglis, T. J. J.

    2003-01-01

    Isolation of Burkholderia pseudomallei currently relies on the use of Ashdown's selective agar (ASA). We designed a new selective agar (Burkholderia pseudomallei selective agar [BPSA]) to improve recovery of the more easily inhibited strains of B. pseudomallei. B. pseudomallei, Burkholderia cepacia, and Pseudomonas aeruginosa were used to determine the selectivity and sensitivity of BPSA. BPSA was more inhibitory to P. aeruginosa and B. cepacia and should make recognition of Burkholderia spec...

  18. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Burkholderia cepacia complex. 725.1075... Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  19. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex

    Directory of Open Access Journals (Sweden)

    Dennis Jonathan J

    2010-10-01

    first BCC-specific phages to be identified as P2-like. As KS14 has previously been shown to be active against Burkholderia cenocepacia in vivo, genomic characterization of these phages is a crucial first step in the development of these and similar phages for clinical use against the BCC.

  20. Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei.

    Science.gov (United States)

    Duval, Brea D; Elrod, Mindy G; Gee, Jay E; Chantratita, Narisara; Tandhavanant, Sarunporn; Limmathurotsakul, Direk; Hoffmaster, Alex R

    2014-06-01

    Cases of melioidosis and glanders are rare in the United States, but the etiologic agents of each disease (Burkholderia pseudomallei and Burkholderia mallei, respectively) are classified as Tier 1 select agents because of concerns about their potential use as bioterrorism agents. A rapid, highly sensitive, and portable assay for clinical laboratories and field use is required. Our laboratory has further evaluated a latex agglutination assay for its ability to identify B. pseudomallei and B. mallei isolates. This assay uses a monoclonal antibody that specifically recognizes the capsular polysaccharide produced by B. pseudomallei and B. mallei, but is absent in closely related Burkholderia species. A total of 110 B. pseudomallei and B. mallei were tested, and 36 closely related Burkholderia species. The latex agglutination assay was positive for 109 of 110 (99.1% sensitivity) B. pseudomallei and B. mallei isolates tested.

  1. Autotransporters and Their Role in the Virulence of Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    Adler, Natalie R. Lazar; Stevens, Joanne M; Stevens, Mark P.; Galyov, Edouard E.

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs) comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases, and actin-nucleating factors. The B. pseudomallei K96243 genome contains 11 predicted ATs, eight of which share homologs in the B. mallei ATCC 23344 genome. Th...

  2. In Vitro Activity of Tigecycline against Burkholderia pseudomallei and Burkholderia thailandensis

    OpenAIRE

    Thamlikitkul, Visanu; Trakulsomboon, Suwanna

    2006-01-01

    Investigation of the in vitro activity of tigecycline against Burkholderia pseudomallei and Burkholderia thailandensis revealed that the inhibition zone diameters of tigecycline against all isolates were ≥20 mm and that the MIC50 values were 0.5 and 1 μg/ml and the MIC90 values were 2 and 1.5 μg/ml for B. pseudomallei and B. thailandensis, respectively.

  3. Autotransporters and their role in the virulence of Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    Lazar Adler, N.; Stevens, J; STEVENS, M.; Galyov, E

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs) comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases and actin-nucleating factors. The B. pseudomallei K96243 genome contains eleven predicted ATs, eight of which share homologues in the B. mallei ATCC 23344 genom...

  4. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei

    OpenAIRE

    Janse Ingmar; Hamidjaja Raditijo A; Hendriks Amber CA; van Rotterdam Bart J

    2013-01-01

    Abstract Background Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Methods Si...

  5. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    Science.gov (United States)

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  6. Burkholderia Vaccines: Are We Moving Forward?

    Directory of Open Access Journals (Sweden)

    Leang-Chung eChoh

    2013-02-01

    Full Text Available The genus Burkholderia consists of diverse species which includes both ‘friends’ and ‘foes’. Some of the ‘friendly’ Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.

  7. Natural Burkholderia mallei infection in Dromedary, Bahrain.

    Science.gov (United States)

    Wernery, Ulrich; Wernery, Renate; Joseph, Marina; Al-Salloom, Fajer; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Jose, Sherry; Tappendorf, Britta; Hornstra, Heidie; Scholz, Holger C

    2011-07-01

    We confirm a natural infection of dromedaries with glanders. Multilocus variable number tandem repeat analysis of a Burkholderia mallei strain isolated from a diseased dromedary in Bahrain revealed close genetic proximity to strain Dubai 7, which caused an outbreak of glanders in horses in the United Arab Emirates in 2004.

  8. Burkholderia vaccines: are we moving forward?

    Science.gov (United States)

    Choh, Leang-Chung; Ong, Guang-Han; Vellasamy, Kumutha M; Kalaiselvam, Kaveena; Kang, Wen-Tyng; Al-Maleki, Anis R; Mariappan, Vanitha; Vadivelu, Jamuna

    2013-01-01

    The genus Burkholderia consists of diverse species which includes both "friends" and "foes." Some of the "friendly" Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.

  9. Burkholderia pseudomallei Antibodies in Children, Cambodia

    OpenAIRE

    Wuthiekanun, Vanaporn; Pheaktra, Ngoun; Putchhat, Hor; Sin, Lina; Sen, Bun; Kumar, Varun; Langla, Sayan; Peacock, Sharon J.; Nicholas P. Day

    2008-01-01

    Antibodies to Burkholderia pseudomallei were detected in 16% of children in Siem Reap, Cambodia. This organism was isolated from 30% of rice paddies in the surrounding vicinity. Despite the lack of reported indigenous cases, melioidosis is likely to occur in Cambodia.

  10. Use of a Real-Time PCR TaqMan Assay for Rapid Identification and Differentiation of Burkholderia pseudomallei and Burkholderia mallei

    OpenAIRE

    U'Ren, Jana M.; Matthew N. Van Ert; James M Schupp; Easterday, W. Ryan; Simonson, Tatum S.; Okinaka, Richard T; Pearson, Talima; Keim, Paul

    2005-01-01

    A TaqMan allelic-discrimination assay designed around a synonymous single-nucleotide polymorphism was used to genotype Burkholderia pseudomallei and Burkholderia mallei isolates. The assay rapidly identifies and discriminates between these two highly pathogenic bacteria and does not cross-react with genetic near neighbors, such as Burkholderia thailandensis and Burkholderia cepacia.

  11. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia

    DEFF Research Database (Denmark)

    Fazli, Mustafa; O'Connell, Aileen; Nilsson, Martin;

    2011-01-01

    of a number of components, including cellulose and fimbriae. It was demonstrated that the Bcam1349 protein binds to the promoter region of the cellulose synthase genes, and that this binding is enhanced by the presence of c-di-GMP. The bcam1349 mutant showed reduced virulence in a Galleria mellonella wax moth...

  12. Sero-characterization of lipopolysaccharide from Burkholderia thailandensis

    OpenAIRE

    Qazi, Omar; Prior, Joann L.; Judy, Barbara M; Whitlock, Gregory C.; Kitto, G. Barrie; Torres, Alfredo G.; Estes, D. Mark; Brown, Katherine A

    2008-01-01

    We report the successful purification of lipopolysaccharide (LPS) from Burkholderia thailandesis, a Gram-negative bacterium, closely related to the highly pathogenic organisms Burkholderia pseudomallei and Burkholderia mallei. B. thailandensis LPS is shown to cross-react with rabbit and mouse sera obtained from inoculation with B. pseudomallei or B. mallei, respectively. These data suggest that B. thailandensis LPS shares similar structural features with LPS molecules from highly pathogenic B...

  13. Autotransporters and their role in the virulence of Burkholderia pseudomallei and Burkholderia mallei.

    Directory of Open Access Journals (Sweden)

    Natalie eLazar Adler

    2011-07-01

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases and actin-nucleating factors. The B. pseudomallei K96243 genome contains eleven predicted ATs, eight of which share homologues in the B. mallei ATCC 23344 genome. This review distils key findings from in silico, in vitro and in vivo studies on the ATs of B. pseudomallei and B. mallei. To date, the best characterized of the predicted ATs of B. pseudomallei and B. mallei is BimA, a predicted trimeric AT mediating actin-based motility which varies in sequence and mode of action between Burkholderia species. Of the remaining eight predicted B. pseudomallei trimeric autotransporters, five of which are also present in B. mallei, two (BoaA and BoaB, have been implicated in bacterial adhesion to epithelial cells. Several predicted Burkholderia ATs are recognized by human humoral and cell-mediated immunity, indicating that they are expressed during infection and may be useful for diagnosis and vaccine-mediated protection. Further studies on the mode of secretion and functions of Burkholderia ATs will facilitate the rational design of control strategies.

  14. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Janse Ingmar

    2013-02-01

    Full Text Available Abstract Background Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Methods Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. Results A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. Conclusions The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.

  15. Members of the genus Burkholderia: good and bad guys

    Science.gov (United States)

    Eberl, Leo; Vandamme, Peter

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains. PMID:27303639

  16. NCBI nr-aa BLAST: CBRC-BTAU-01-3033 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-BTAU-01-3033 ref|ZP_00977438.1| COG2207: AraC-type DNA-binding domain-containing proteins [Burkholder...ia cenocepacia PC184] ref|YP_623398.1| transcriptional regulator, AraC family [Burkholder...ia cenocepacia AU 1054] ref|YP_838462.1| transcriptional regulator, AraC family [Burkholderia cenocepaci...a HI2424] gb|ABF78425.1| transcriptional regulator, AraC family [Burkholderia cen...ocepacia AU 1054] gb|ABK11569.1| transcriptional regulator, AraC family [Burkholderia cenocepacia HI2424] gb

  17. Development of Burkholderia mallei and pseudomallei vaccines

    Directory of Open Access Journals (Sweden)

    Ediane Batista Silva

    2013-03-01

    Full Text Available B. mallei and B. pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. chronic infection develops after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult.B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms. Thefection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88 and pro-inflammatory cytokines such as IFN- and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for these microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently progress of Burkholderia vaccines has received renewed attention.This review will summarize current and past approaches to develop Burkholderia mallei and pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines.

  18. Survival of Burkholderia pseudomallei on Environmental Surfaces.

    Science.gov (United States)

    Shams, Alicia M; Rose, Laura J; Hodges, Lisa; Arduino, Matthew J

    2007-12-01

    The survival of the biothreat agent Burkholderia pseudomallei on the surfaces of four materials was measured by culture and esterase activity analyses. The culture results demonstrated that this organism persisted for <24 h to <7 days depending on the material, bacterial isolate, and suspension medium. The persistence determined by analysis of esterase activity, as measured with a ScanRDI solid-phase cytometer, was always longer than the persistence determined by culture analysis.

  19. Burkholderia mallei and Burkholderia pseudomallei: the causative micro-organisms of glanders and melioidosis.

    Science.gov (United States)

    Gilad, Jacob

    2007-11-01

    Burkholderia mallei and Burkholderia pseudomallei are the causative micro-organisms of Glanders and Melioidosis, respectively. Although now rare in Western countries, both micro-organisms have recently gained much interest because of their unique potential as bioterrorism agents. This paper reviews the epidemiology, pathogenesis, diagnosis and treatment of Melioidosis and Glanders. Recent patents relating to these micro-organisms, especially potential vaccines, are presented. Continued research and development is urgently needed, especially in regard to rapid and accurate diagnosis of melioidosis and glanders, efficacious therapy and primary and secondary prevention.

  20. Development of Burkholderia mallei and pseudomallei vaccines.

    Science.gov (United States)

    Silva, Ediane B; Dow, Steven W

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  1. Actin-binding proteins from Burkholderia mallei and Burkholderia thailandensis can functionally compensate for the actin-based motility defect of a Burkholderia pseudomallei bimA mutant

    OpenAIRE

    Stevens, J. M.; Ulrich, R L; Taylor, L A; Wood, M W; DeShazer, D; M.P. Stevens; Galyov, E. E.

    2005-01-01

    Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind ...

  2. Actin-Binding Proteins from Burkholderia mallei and Burkholderia thailandensis Can Functionally Compensate for the Actin-Based Motility Defect of a Burkholderia pseudomallei bimA Mutant

    OpenAIRE

    Stevens, Joanne M; Ulrich, Ricky L.; Taylor, Lowrie A.; Wood, Michael W.; DeShazer, David; Stevens, Mark P.; Galyov, Edouard E.

    2005-01-01

    Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind ...

  3. Two Novel Clinical Presentations of Burkholderia cepacia Infection

    OpenAIRE

    Mukhopadhyay, Chiranjoy; Bhargava, Anudita; Ayyagari, Archana

    2004-01-01

    We report two cases of multidrug-resistant Burkholderia cepacia (B. cepacia genomovar I) and Burkholderia multivorans causing multiple liver abscesses in a patient with bronchial asthma (case 1) and peritonitis in a patient with cirrhosis and hepatitis C virus disease (case 2), respectively. Both patients were treated successfully.

  4. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey

    Science.gov (United States)

    Daligault, H. E.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Coyne, S. R.; Frey, K. G.; Gibbons, H. S.; Jaissle, J.; Koroleva, G. I.; Ladner, J. T.; Lo, C.-C.; Munk, C.; Wolcott, M. J.; Palacios, G. F.; Redden, C. L.; Rosenzweig, C. N.; Scholz, M. B.; Chain, P. S.

    2016-01-01

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Although glanders has been eradicated from many parts of the world, the threat of B. mallei being used as a weapon is very real. Here we present draft genome assemblies of 8 Burkholderia mallei strains that were isolated in Turkey. PMID:26744368

  5. Complete Genome Sequence of the Fenitrothion-Degrading Burkholderia sp. Strain YI23

    OpenAIRE

    Lim, Jong Sung; Choi, Beom Soon; Choi, Ah Young; Kim, Kyung Duk; Kim, Dong In; Choi, Ik Young; Ka, Jong-Ok

    2012-01-01

    Burkholderia species are ubiquitous in soil environments. Many Burkholderia species isolated from various environments have the potential to biodegrade man-made chemicals. Burkholderia sp. strain YI23 was isolated from a golf course soil and identified as a fenitrothion-degrading bacterium. In this study, we report the complete genome sequence of Burkholderia sp. strain YI23.

  6. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    OpenAIRE

    Johnson, S. L.; Bishop-Lilly, Kimberly A.; Ladner, Jason T.; Daligault, Hajnalka E.; Davenport, Karen W.; Jaissle, James; Frey, Kenneth G.; Koroleva, Galina I.; Bruce, David C.; Coyne, Susan R.; Broomall, Stacey M.; Li, Po-E; Teshima, Hazuki; Gibbons, Henry S.; Palacios, Gustavo F.

    2015-01-01

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development.

  7. Draft Genome Sequences of Burkholderia contaminans, a Burkholderia cepacia Complex Species That Is Increasingly Recovered from Cystic Fibrosis Patients

    OpenAIRE

    Bloodworth, Ruhi A M; Selin, Carrie; López De Volder, Maria Agustina; Drevinek, Pavel; Galanternik, Laura; Degrossi, José; Cardona, Silvia T.

    2015-01-01

    Burkholderia contaminans belongs to the Burkholderia cepacia complex (BCC), a group of bacteria that are ubiquitous in the environment and capable of infecting the immunocompromised and people with cystic fibrosis. We report here draft genome sequences for the B. contaminans type strain LMG 23361 and an Argentinian cystic fibrosis sputum isolate.

  8. Genomic Sequence of Burkholderia multivorans NKI379, a Soil Bacterium That Inhibits the Growth of Burkholderia pseudomallei

    OpenAIRE

    Hsueh, Pei-Tan; Liu, Jong-Kang; Chen, Ya-Lei; Liu, Pei-Ju; Ni, Wen-Fan; Chen, Yao-Shen; Wu, Keh-Ming; Lin, Hsi-Hsun

    2015-01-01

    Burkholderia multivorans NKI379 is a soil bacterium that exhibits an antagonistic effect against the growth of Burkholderia pseudomallei, the causative agent of the infectious disease melioidosis. We report the draft genomic sequence of B. multivorans NKI379, which has a G+C content of 67% and 5,203 candidate protein-encoding genes.

  9. Role of phages in the pathogenesis of Burkholderia or “Where are the toxin genes in Burkholderia phages?”

    OpenAIRE

    Summer, Elizabeth J.; Gill, Jason J.; Upton, Chris; Gonzalez, Carlos F.; Young, Ry

    2007-01-01

    Most bacteria of the genus Burkholderia are soil- and rhizosphere- associated, noted for their metabolic plasticity in the utilization of a wide range of organic compounds as carbon sources. Many Burkholderia species are also opportunistic human and plant pathogens and the distinction between environmental, plant, and human pathogens is not always clear. Burkholderia phages are not uncommon and multiple cryptic prophages are identifiable in the sequenced Burkholderia genomes. Phages have play...

  10. Brain abscess caused by Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    Full text: Melioidosis, or infection with Burkholderia pseudomallei, is an important human disease in South East Asia and Northern Australia. Neurological manifestations are well recognized amongst its protean presentations, but direct focal central nervous system infection is infrequently described with only 9 adult and 5 paediatric cases reported in the English language literature. A case of brain abscess due to Burkholderia pseudomallei occurring in a 20 year old Dutch visitor to Australia which progressed despite antibiotic treatment is described. A review of the clinical manifestations, Magnetic Resonance (MR) appearance, diagnosis and treatment of melioidosis is presented, highlighting that: (i) physicians outside endernic areas should consider melioidosis in any patient with an appropriate travel history, (ii) MR imaging is more sensitive then CT in diagnosing early brain infection, especially of the brainstem; (iii) Bacterial culture, the mainstay of diagnosis, has many shortcomings; (iv)In vitro antibiotic sensitivity testing may not translate into clinical efficacy; and (v) Steroids appear to have little role, even in severe disease

  11. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis

    Science.gov (United States)

    Xu, Yao; Buss, Eileen A.; Boucias, Drion G.

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained. PMID:27548682

  12. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis.

    Science.gov (United States)

    Xu, Yao; Buss, Eileen A; Boucias, Drion G

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained. PMID:27548682

  13. Exploitation of host cells by Burkholderia pseudomallei.

    Science.gov (United States)

    Stevens, Mark P; Galyov, Edouard E

    2004-04-01

    Intracellular bacterial pathogens have evolved mechanisms to enter and exit eukaryotic cells using the power of actin polymerisation and to subvert the activity of cellular enzymes and signal transduction pathways. The proteins deployed by bacteria to subvert cellular processes often mimic eukaryotic proteins in their structure or function. Studies on the exploitation of host cells by the facultative intracellular pathogen Burkholderia pseudomallei are providing novel insights into the pathogenesis of melioidosis, a serious invasive disease of animals and humans that is endemic in tropical and subtropical areas. B. pseudomallei can invade epithelial cells, survive and proliferate inside phagocytes, escape from endocytic vesicles, form actin-based membrane protrusions and induce host cell fusion. Here we review current understanding of the molecular mechanisms underlying these processes.

  14. An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts

    OpenAIRE

    Kikuchi, Yoshitomo; Hosokawa, Takahiro; Fukatsu, Takema

    2010-01-01

    Here, we investigated 124 stinkbug species representing 20 families and 5 superfamilies for their Burkholderia gut symbionts, of which 39 species representing 6 families of the superfamilies Lygaeoidea and Coreoidea were Burkholderia-positive. Diagnostic PCR surveys revealed high frequencies of Burkholderia infection in natural populations of the stinkbugs, and substantial absence of vertical transmission of Burkholderia infection to their eggs. In situ hybridization confirmed localization of...

  15. Stable, Site-Specific Fluorescent Tagging Constructs Optimized for Burkholderia Species▿

    OpenAIRE

    Norris, Michael H.; Kang, Yun (Kenneth); Wilcox, Bruce; Hoang, Tung T.

    2010-01-01

    Several vectors that facilitate stable fluorescent labeling of Burkholderia pseudomallei and Burkholderia thailandensis were constructed. These vectors combined the effectiveness of the mini-Tn7 site-specific transposition system with fluorescent proteins optimized for Burkholderia spp., enabling bacterial tracking during cellular infection.

  16. Diagnostically and Experimentally Useful Panel of Strains from the Burkholderia cepacia Complex

    OpenAIRE

    Mahenthiralingam, Eshwar; Coenye, Tom; Chung, Jacqueline W.; Speert, David P.; Govan, John R. W.; Taylor, Peter; Vandamme, Peter

    2000-01-01

    Two new species, Burkholderia multivorans and Burkholderia vietnamiensis, and three genomovars (genomovars I, III, and IV) currently constitute the Burkholderia cepacia complex. A panel of 30 well-characterized strains representative of each genomovar and new species was assembled to assist with identification, epidemiological analysis, and virulence studies on this important group of opportunistic pathogens.

  17. Common duckweed (Lemna minor is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria.

    Directory of Open Access Journals (Sweden)

    Euan L S Thomson

    Full Text Available Members of the Burkholderia cepacia complex (Bcc have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R(2 = 0.81 was found between the strains' virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R(2 = 0.93 was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhB(Bc. Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial

  18. Differentiation of Species Combined into the Burkholderia cepacia Complex and Related Taxa on the Basis of Their Fatty Acid Patterns

    OpenAIRE

    Krejčí, Eva; Kroppenstedt, Reiner M.

    2006-01-01

    Using the established commercial system Sherlock (MIDI, Inc.), cellular fatty acid methyl ester analysis for differentiation among Burkholderia cepacia complex species was proven. The identification key based on the diagnostic fatty acids is able to discern phenotypically related Ralstonia pickettii and Pandoraea spp. and further distinguish Burkholderia pyrrocinia, Burkholderia ambifaria, and Burkholderia vietnamiensis.

  19. Oropharyngeal aspiration of Burkholderia mallei and Burkholderia pseudomallei in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Kevin L Schully

    Full Text Available Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure prophylaxis focus largely on inhalation models of infection. Here, we demonstrate a non-invasive and technically simple method for affecting the inhalational challenge of BALB/c mice with B. pseudomallei and B. mallei. In this model, two investigators utilized common laboratory tools such as forceps and a micropipette to conduct and characterize an effective and reproducible inhalational challenge of BALB/c mice with B. mallei and B. pseudomallei. Challenge by oropharyngeal aspiration resulted in acute disease. Additionally, 50% endpoints for B. pseudomallei K96243 and B. mallei ATCC 23344 were nearly identical to published aerosol challenge methods. Furthermore, the pathogens disseminated to all major organs typically targeted by these agents where they proliferated. The pro-inflammatory cytokine production in the proximal and peripheral fluids demonstrated a rapid and robust immune response comparable to previously described murine and human studies. These observations demonstrate that OA is a viable alternative to aerosol exposure.

  20. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus.

    Science.gov (United States)

    Partida-Martinez, Laila P; Groth, Ingrid; Schmitt, Imke; Richter, Walter; Roth, Martin; Hertweck, Christian

    2007-11-01

    Several strains of the fungus Rhizopus microsporus harbour endosymbiotic bacteria for the production of the causal agent of rice seedling blight, rhizoxin, and the toxic cyclopeptide rhizonin. R. microsporus and isolated endobacteria were selected for freeze-fracture electron microscopy, which allowed visualization of bacterial cells within the fungal cytosol by their two parallel-running envelope membranes and by the fine structure of the lipopolysaccharide layer of the outer membrane. Two representatives of bacterial endosymbionts were chosen for phylogenetic analyses on the basis of full 16S rRNA gene sequences, which revealed that the novel fungal endosymbionts formed a monophyletic group within the genus Burkholderia. Inter-sequence similarities ranged from 98.94 to 100%, and sequence similarities to members of the Burkholderia pseudomallei group, the closest neighbours, were 96.74-97.38%. In addition, the bacterial strains were distinguished from their phylogenetic neighbours by their fatty acid profiles and other biochemical characteristics. The phylogenetic studies based on 16S rRNA gene sequence data, together with conclusive DNA-DNA reassociation experiments, strongly support the proposal that these strains represent two novel species within the genus Burkholderia, for which the names Burkholderia rhizoxinica sp. nov. (type strain, HKI 454T=DSM 19002T=CIP 109453T) and Burkholderia endofungorum sp. nov. (type strain, HKI 456T=DSM 19003T=CIP 109454T) are proposed. PMID:17978222

  1. Experimental Phage Therapy for Burkholderia pseudomallei Infection.

    Science.gov (United States)

    Guang-Han, Ong; Leang-Chung, Choh; Vellasamy, Kumutha Malar; Mariappan, Vanitha; Li-Yen, Chang; Vadivelu, Jamuna

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen intrinsically resistant to a variety of antibiotics. Phages have been developed for use as an alternative treatment therapy, particularly for bacterial infections that do not respond to conventional antibiotics. In this study, we investigated the use of phages to treat cells infected with B. pseudomallei. Phage C34 isolated from seawater was purified and characterised on the basis of its host range and morphology using transmission electron microscopy (TEM). Phage C34 was able to lyse 39.5% of B. pseudomallei clinical strains. Due to the presence of contractile tail, phage C34 is classified as a member of the family Myoviridae, a tailed double-stranded DNA virus. When 2 × 105 A549 cells were exposed to 2 × 107 PFU of phage C34, 24 hours prior to infection with 2 × 106 CFU of B. pseudomallei, it was found that the survivability of the cells increased to 41.6 ± 6.8% as compared to 22.8 ± 6.0% in untreated control. Additionally, application of phage successfully rescued 33.3% of mice infected with B. pseudomallei and significantly reduced the bacterial load in the spleen of the phage-treated mice. These findings indicate that phage can be a potential antimicrobial agent for B. pseudomallei infections. PMID:27387381

  2. Burkholderia pseudomallei transcriptional adaptation in macrophages

    Directory of Open Access Journals (Sweden)

    Chieng Sylvia

    2012-07-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation. Results Here we report the expression profile of intracellular B. pseudomallei following infection of human macrophage-like U937 cells. During intracellular growth over the 6 h infection period, approximately 22 % of the B. pseudomallei genome showed significant transcriptional adaptation. B. pseudomallei adapted rapidly to the intracellular environment by down-regulating numerous genes involved in metabolism, cell envelope, motility, replication, amino acid and ion transport system and regulatory function pathways. Reduced expression in catabolic and housekeeping genes suggested lower energy requirement and growth arrest during macrophage infection, while expression of genes encoding anaerobic metabolism functions were up regulated. However, whilst the type VI secretion system was up regulated, expression of many known virulence factors was not significantly modulated over the 6hours of infection. Conclusions The transcriptome profile described here provides the first comprehensive view of how B. pseudomallei survives within host cells and will help identify potential virulence factors and proteins that are important for the survival and growth of B. pseudomallei within human cells.

  3. Prevalence of Burkholderia pseudomallei in Guangxi, China.

    Science.gov (United States)

    Ma, G; Zheng, D; Cai, Q; Yuan, Z

    2010-01-01

    Melioidosis, an infectious disease caused by the Gram-negative bacterium Burkholderia pseudomallei, is now recognized as an important public health problem in Southeast Asia and tropical northern Australia. Although B. pseudomallei has been detected in various water and soil samples in southeast China, the enviromental distribution of B. pseudomallei in China is unclear. In the winter months of 2007, 154 and 130 soil and water samples, respectively, were collected from several locations in Guangxi, China. The samples were screened for B. pseudomallei by bacterial culture and identification and confirmed by PCR for species-specific 16S rDNA and flagellin genes. B. pseudomallei was detected in 8.4% of the soil samples but in none of the water samples. All positive samples were confined to a single low-lying region from rice paddy fields. Counts of B. pseudomallei ranged from 23 to 521 c.f.u./g soil. This is the first geographical distribution survey of B. pseudomallei in soil in Guangxi, China, and the data are of importance for further evaluating the impact of this pathogen on melioidosis in this region. PMID:19538822

  4. Burkholderia pseudomallei musculoskeletal infections (melioidosis in India

    Directory of Open Access Journals (Sweden)

    Pandey Vivek

    2010-01-01

    Full Text Available Melioidosis, an infection due to gram negative Burkholderia pseudomallei, is an important cause of sepsis in east Asia especially Thailand and northern Australia. It usually causes abscesses in lung, liver, spleen, skeletal muscle and parotids especially in patients with diabetes, chronic renal failure and thalassemia. Musculoskeletal melioidosis is not common in India even though sporadic cases have been reported mostly involving soft tissues. During a two-year-period, we had five patients with musculoskeletal melioidosis. All patients presented with multifocal osteomyelitis, recurrent osteomyelitis or septic arthritis. One patient died early because of septicemia and multi-organ failure. All patients were diagnosed on the basis of positive pus culture. All patients were treated by surgical debridement followed by a combination of antibiotics; (ceftazidime, amoxy-clavulanic acid, co-trimoxazole and doxycycline for six months except for one who died due to fulminant septicemia. All other patients recovered completely with no recurrences. With increasing awareness and better diagnostic facilities, probably musculoskeletal melioidosis will be increasingly diagnosed in future.

  5. Strategies for Intracellular Survival of Burkholderia pseudomallei.

    Science.gov (United States)

    Allwood, Elizabeth M; Devenish, Rodney J; Prescott, Mark; Adler, Ben; Boyce, John D

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  6. Recent Advances in Burkholderia mallei and B. pseudomallei Research

    Science.gov (United States)

    Hatcher, Christopher L.; Muruato, Laura A.

    2015-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative organisms, which are etiological agents of glanders and melioidosis, respectively. Although only B. pseudomallei is responsible for a significant number of human cases, both organisms are classified as Tier 1 Select Agents and their diseases lack effective diagnosis and treatment. Despite a recent resurgence in research pertaining to these organisms, there are still a number of knowledge gaps. This article summarizes the latest research progress in the fields of B. mallei and B. pseudomallei pathogenesis, vaccines, and diagnostics. PMID:25932379

  7. Survival of Burkholderia pseudomallei in Water

    Directory of Open Access Journals (Sweden)

    Woods Donald E

    2008-05-01

    Full Text Available Abstract Background The ability of Burkholderia pseudomallei to survive in water likely contributes to its environmental persistence in endemic regions. To determine the physiological adaptations which allow B. pseudomallei to survive in aqueous environments, we performed microarray analyses of B. pseudomallei cultures transferred from Luria broth (LB to distilled water. Findings Increased expression of a gene encoding for a putative membrane protein (BPSL0721 was confirmed using a lux-based transcriptional reporter system, and maximal expression was noted at approximately 6 hrs after shifting cells from LB to water. A BPSL0721 deficient mutant of B. pseudomallei was able to survive in water for at least 90 days indicating that although involved, BPSL0721 was not essential for survival. BPSL2961, a gene encoding a putative phosphatidylglycerol phosphatase (PGP, was also induced when cells were shifted to water. This gene is likely involved in cell membrane biosynthesis. We were unable to construct a PGP mutant suggesting that the gene is not only involved in survival in water but is essential for cell viability. We also examined mutants of polyhydroxybutyrate synthase (phbC, lipopolysaccharide (LPS oligosaccharide and capsule synthesis, and these mutations did not affect survival in water. LPS mutants lacking outer core were found to lose viability in water by 200 days indicating that an intact LPS core provides an outer membrane architecture which allows prolonged survival in water. Conclusion The results from these studies suggest that B. pseudomallei survival in water is a complex process that requires an LPS molecule which contains an intact core region.

  8. Symbiotic ß-proteobacteria beyond legumes: Burkholderia in Rubiaceae.

    Directory of Open Access Journals (Sweden)

    Brecht Verstraete

    Full Text Available Symbiotic ß-proteobacteria not only occur in root nodules of legumes but are also found in leaves of certain Rubiaceae. The discovery of bacteria in plants formerly not implicated in endosymbiosis suggests a wider occurrence of plant-microbe interactions. Several ß-proteobacteria of the genus Burkholderia are detected in close association with tropical plants. This interaction has occurred three times independently, which suggest a recent and open plant-bacteria association. The presence or absence of Burkholderia endophytes is consistent on genus level and therefore implies a predictive value for the discovery of bacteria. Only a single Burkholderia species is found in association with a given plant species. However, the endophyte species are promiscuous and can be found in association with several plant species. Most of the endophytes are part of the plant-associated beneficial and environmental group, but others are closely related to B. glathei. This soil bacteria, together with related nodulating and non-nodulating endophytes, is therefore transferred to a newly defined and larger PBE group within the genus Burkholderia.

  9. Novel lytic bacteriophages from soil that lyse Burkholderia pseudomallei.

    Science.gov (United States)

    Yordpratum, Umaporn; Tattawasart, Unchalee; Wongratanacheewin, Surasakdi; Sermswan, Rasana W

    2011-01-01

    Burkholderia pseudomallei is a Gram-negative saprophytic bacterium that causes severe sepsis with a high mortality rate in humans and a vaccine is not available. Bacteriophages are viruses of bacteria that are ubiquitous in nature. Several lysogenic phages of Burkholderia spp. have been found but information is scarce for lytic phages. Six phages, ST2, ST7, ST70, ST79, ST88 and ST96, which lyse B. pseudomallei, were isolated from soil in an endemic area. The phages belong to the Myoviridae family. The range of estimated genome sizes is 24.0-54.6 kb. Phages ST79 and ST96 lysed 71% and 67% of tested B. pseudomallei isolates and formed plaques on Burkholderia mallei but not other tested bacteria, with the exception of closely related Burkholderia thailandensis which was lysed by ST2 and ST96 only. ST79 and ST96 were observed to clear a mid-log culture by lysis within 6 h when infected at a multiplicity of infection of 0.1. As ST79 and ST96 phages effectively lysed B. pseudomallei, their potential use as a biocontrol of B. pseudomallei in the environment or alternative treatment in infected hosts could lead to benefits from phages that are available in nature. PMID:21091532

  10. Removal of Burkholderia cepacia biofilms with oxidants

    Science.gov (United States)

    Koenig, D. W.; Mishra, S. K.; Pierson, D. L.

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B

  11. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers.

    Science.gov (United States)

    Depoorter, Eliza; Bull, Matt J; Peeters, Charlotte; Coenye, Tom; Vandamme, Peter; Mahenthiralingam, Eshwar

    2016-06-01

    Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. PMID:27115756

  12. Development of a recA Gene-Based Identification Approach for the Entire Burkholderia Genus

    OpenAIRE

    Payne, George W.; Vandamme, Peter; Morgan, Sara H.; LiPuma, John J.; Coenye, Tom; Weightman, Andrew J.; Jones, T. Hefin; Mahenthiralingam, Eshwar

    2005-01-01

    Burkholderia is an important bacterial genus containing species of ecological, biotechnological, and pathogenic interest. With their taxonomy undergoing constant revision and the phenotypic similarity of several species, correct identification of Burkholderia is difficult. A genetic scheme based on the recA gene has greatly enhanced the identification of Burkholderia cepacia complex species. However, the PCR developed for the latter approach was limited by its specificity for the complex. By ...

  13. Molecular Method To Assess the Diversity of Burkholderia Species in Environmental Samples

    OpenAIRE

    Salles, J; Souza, de, H.R.; Elsas, van, J.D.

    2002-01-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a powerful tool for studying the diversity of microbial communities, for detection and analysis of the Burkholderia diversity in soil samples. Primers specific for the genus Burkholderia were developed ...

  14. Members of the genus Burkholderia: good and bad guys [version 1; referees: 3 approved

    OpenAIRE

    Leo Eberl; Peter Vandamme

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isol...

  15. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells

    Directory of Open Access Journals (Sweden)

    Hogan Robert J

    2010-09-01

    Full Text Available Abstract Background Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Results Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649 that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells and A549 (type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE. Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures. A second YadA-like gene product highly similar to BoaA (65% identity was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705. The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to

  16. Molecular Signatures and Phylogenomic Analysis of the Genus Burkholderia: Proposal for Division of this Genus into the Emended Genus Burkholderia Containing Pathogenic Organisms and a New Genus Paraburkholderia gen. nov. Harboring Environmental Species

    Directory of Open Access Journals (Sweden)

    Aman eSawana

    2014-12-01

    Full Text Available The genus Burkholderia contains large number of diverse species which are not reliably distinguished by the available biochemical or molecular characteristics. We report here results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequences, Burkholderia species grouped into two major clades. Within these main clades a number of smaller clades were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs that are uniquely found in different clades of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I which contains all clinically relevant members of the genus as well as the phytopathogenic Burkholderia species. The second main clade (Clade II composed of the environmental Burkholderia species, is also distinguished by 2 of the identified CSIs. Additionally, our work has also identified 3 CSIs that are specific for the Burkholderia cepacia complex, 4 CSIs that are uniquely found in the Burkholderia pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and for development of novel diagnostic assays for the clinically important members of the group. Based upon the results from different lines of studies, a division of the genus Burkholderia into two genera is proposed. In this new proposal, the emended genus Burkholderia will contain only the clinically relevant and phytopathogenic Burkholderia species, whereas all other Burkholderia spp. are transferred to a new genus

  17. The Burkholderia Genome Database: facilitating flexible queries and comparative analyses

    OpenAIRE

    Winsor, Geoffrey L.; Khaira, Bhavjinder; Van Rossum, Thea; Lo, Raymond; Whiteside, Matthew D.; Fiona S.L. Brinkman

    2008-01-01

    Summary: As the genome sequences of multiple strains of a given bacterial species are obtained, more generalized bacterial genome databases may be complemented by databases that are focused on providing more information geared for a distinct bacterial phylogenetic group and its associated research community. The Burkholderia Genome Database represents a model for such a database, providing a powerful, user-friendly search and comparative analysis interface that contains features not found in ...

  18. Cytotoxicity Associated with Trichloroethylene Oxidation in Burkholderia cepacia G4

    OpenAIRE

    Yeager, Chris M.; Bottomley, Peter J; Arp, Daniel J.

    2001-01-01

    The effects of trichloroethylene (TCE) oxidation on toluene 2-monooxygenase activity, general respiratory activity, and cell culturability were examined in the toluene-oxidizing bacterium Burkholderia cepacia G4. Nonspecific damage outpaced inactivation of toluene 2-monooxygenase in B. cepacia G4 cells. Cells that had degraded approximately 0.5 μmol of TCE (mg of cells−1) lost 95% of their acetate-dependent O2 uptake activity (a measure of general respiratory activity), yet toluene-dependent ...

  19. Burkholderia pseudomallei Capsular Polysaccharide Conjugates Provide Protection against Acute Melioidosis

    OpenAIRE

    Scott, Andrew E.; Mary N Burtnick; Stokes, Margaret G. M.; Whelan, Adam O.; Williamson, E. Diane; Atkins, Timothy P.; Prior, Joann L.; Brett, Paul J

    2014-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a CDC tier 1 select agent that causes severe disease in both humans and animals. Diagnosis and treatment of melioidosis can be challenging, and in the absence of optimal chemotherapeutic intervention, acute disease is frequently fatal. Melioidosis is an emerging infectious disease for which there are currently no licensed vaccines. Due to the potential malicious use of B. pseudomallei as well as its impact on public health in r...

  20. Dissecting novel virulent determinants in the Burkholderia cepacia complex

    OpenAIRE

    George P Tegos; Haynes, Mark K.; Schweizer, Herbert P.

    2012-01-01

    Prevention and control of infectious diseases remains a major public health challenge and a number of highly virulent pathogens are emerging both in and beyond the hospital setting. Despite beneficial aspects such as use in biocontrol and bioremediation exhibited by members of the Burkholderia cepacia complex (Bcc) some members of this group have recently gained attention as significant bacterial pathogens due to their high levels of intrinsic antibiotic resistance, transmissibility in nosoco...

  1. Burkholderia Pseudomallei Causing Bone and Joint Infections: A Clinical Update

    OpenAIRE

    Raja, Nadeem Sajjad; Scarsbrook, Christine

    2016-01-01

    Burkholderia pseudomallei (B. pseudomallei), a causative agent of an emerging infectious disease melioidosis, is endemic in the tropical regions of the world. Due to increased international travel, the infection is now also seen outside of the tropics. The majority of patients with identified risk factors such as diabetes mellitus, heavy alcohol use, malignancy, chronic lung and kidney disease, corticosteroid use, thalassemia, rheumatic heart disease, systemic lupus erythematosus and cardiac ...

  2. Symbiotic ß-Proteobacteria beyond Legumes: Burkholderia in Rubiaceae

    OpenAIRE

    Brecht Verstraete; Steven Janssens; Erik Smets; Steven Dessein

    2013-01-01

    Symbiotic ß-proteobacteria not only occur in root nodules of legumes but are also found in leaves of certain Rubiaceae. The discovery of bacteria in plants formerly not implicated in endosymbiosis suggests a wider occurrence of plant-microbe interactions. Several ß-proteobacteria of the genus Burkholderia are detected in close association with tropical plants. This interaction has occurred three times independently, which suggest a recent and open plant-bacteria association. The presence or a...

  3. Burkholderia pseudomallei: Its Detection in Soil and Seroprevalence in Bangladesh

    OpenAIRE

    Jilani, Md. Shariful Alam; Robayet, Jamshedul Alam Mohammad; Mohiuddin, Md.; Hasan, Md. Rokib; Ahsan, Chowdhury Rafiqul; Haq, Jalaluddin Ashraful

    2016-01-01

    Background Melioidosis, caused by Burkholderia pseudomallei, is an endemic disease in Bangladesh. No systematic study has yet been done to detect the environmental source of the organism and its true extent in Bangladesh. The present study attempted to isolate B. pseudomallei in soil samples and to determine its seroprevalence in several districts in Bangladesh. Methodology and Results Soil samples were collected from rural areas of four districts of Bangladesh from where culture confirmed me...

  4. Characterization of integrons in Burkholderia cepacia clinical isolates

    Directory of Open Access Journals (Sweden)

    Linda Furlanis

    2010-03-01

    Full Text Available Burkholderia cepacia is an opportunistic pathogen able to colonize the airways of Cystic Fibrosis (CF patients, frequently developing chronic infections. In 20% of cases these infections cause severe and poorly controlled pathological situations because of the intrinsic antibiotic resistance expressed by the microorganism. CF patients are often subjected to antibiotic therapy: this facilitates the acquisition of antibiotic resistance determinants by the infecting bacteria. Integrons are mobile genetic elements that are widespread in bacterial populations and favor the acquisition of gene cassettes coding for these determinants.The presence of class 1 integrons was investigated by PCR with primers specific for the 5’ and 3’ ends in Burkholderia isolates recovered from patients in treatment at the CF center of Friuli Venezia Giulia. The same integron, carrying an uncommon allelic form (Ib of the aacA4 gene in its cassette array and conferring resistance to some aminoglycosides, was found in two independent isolates (different RAPD profiles infecting two different patients. In both isolates the integron was carried by plasmids and was still present 3 and 6 years later the first finding. Despite the exchange of integrons between bacterial pathogens is fully described, these items were not frequently found in Burkholderia isolates. Although the clinical relevance of the integron we identified is low (a single gene cassette encoding a widespread resistance,we feel concerned that these genetic elements begin to circulate in this bacterial species, as this could make more and more troublesome the treatment of infections notoriously difficult to eradicate.

  5. The Tomato Rhizosphere, an Environment Rich in Nitrogen-Fixing Burkholderia Species with Capabilities of Interest for Agriculture and Bioremediation▿

    OpenAIRE

    Caballero-Mellado, Jesús; Onofre-Lemus, Janette; Estrada-De Los Santos, Paulina; Martínez-Aguilar, Lourdes

    2007-01-01

    Burkholderia strains are promising candidates for biotechnological applications. Unfortunately, most of these strains belong to species of the Burkholderia cepacia complex (Bcc) involved in human infections, hampering potential applications. Novel diazotrophic Burkholderia species, phylogenetically distant from the Bcc species, have been discovered recently, but their environmental distribution and relevant features for agro-biotechnological applications are little known. In this work, the oc...

  6. Recurrent Burkholderia Infection in Patients with Chronic Granulomatous Disease: 11-Year Experience at a Large Referral Center

    OpenAIRE

    Greenberg, David E.; Goldberg, Joanna B.; Stock, Frida; Murray, Patrick R.; Holland, Steven M.; LiPuma, John J.

    2009-01-01

    The epidemiology of Burkholderia infection in persons with chronic granulomatous disease is poorly understood. We used species-specific polymerase chain reaction–based assays and genotyping analyses to identify 32 strains representing 9 Burkholderia species among 50 isolates recovered from 18 patients with chronic granulomatous disease. We found that recurrent pulmonary infection with distinct Burkholderia strains is common in chronic granulomatous disease.

  7. Draft Genome Sequence of the Organophosphorus Compound-Degrading Burkholderia zhejiangensis Strain CEIB S4-3

    OpenAIRE

    Hernández-Mendoza, Armando; Martínez-Ocampo, Fernando; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, Laura; Sánchez-Salinas, Enrique; Dantán-González, Edgar

    2014-01-01

    Burkholderia species are widely distributed in the environment. A Burkholderia zhejiangensis strain was isolated from pesticide-contaminated soil from an agricultural field in Mexico and identified as an organophosphorus compound-degrading bacterium. In this study, we report the draft genome sequence of Burkholderia zhejiangensis strain CEIB S4-3.

  8. Draft Genome Sequence of the Lignin-Degrading Burkholderia sp. Strain LIG30, Isolated from Wet Tropical Forest Soil

    OpenAIRE

    Woo, Hannah L.; Utturkar, Sagar; Klingeman, Dawn; Simmons, Blake A.; DeAngelis, Kristen M; Brown, Steven D.; Hazen, Terry C.

    2014-01-01

    Burkholderia species are common soil Betaproteobacteria capable of degrading recalcitrant aromatic compounds and xenobiotics. Burkholderia sp. strain LIG30 was isolated from wet tropical forest soil and is capable of utilizing lignin as a sole carbon source. Here we report the draft genome sequence of Burkholderia sp. strain LIG30.

  9. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    Full Text Available Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc, a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  10. Draft Genome Sequence of Burkholderia dolosa PC543 Isolated from Cystic Fibrosis Airways

    OpenAIRE

    Workentine, Matthew L; Michael G Surette; Bernier, Steve P

    2014-01-01

    Burkholderia dolosa is a member of the Burkholderia cepacia complex, a group of opportunistic bacterial pathogens often associated with fatal chronic infections in the lungs of patients suffering from cystic fibrosis (CF). Here, we announce the draft genome sequence of B. dolosa PC543 (LMG 19468), a CF airway isolate.

  11. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria.

    Science.gov (United States)

    DiSalvo, Susanne; Haselkorn, Tamara S; Bashir, Usman; Jimenez, Daniela; Brock, Debra A; Queller, David C; Strassmann, Joan E

    2015-09-01

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.

  12. Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei

    NARCIS (Netherlands)

    S. Kanthawong; J.G.M. Bolscher; E.C.I. Veerman; J. van Marle; H.J.J. de Soet; K. Nazmi; S. Wongratanacheewin; S. Taweechaisupapong

    2012-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the aetiological agent of melioidosis, which is an endemic disease in tropical areas of Southeast Asia and Northern Australia. Burkholderia pseudomallei has intrinsic resistance to a number of commonly used antibiotics and has also been report

  13. Discrimination of Burkholderia mallei/pseudomallei from Burkholderia thailandensis by sequence comparison of a fragment of the ribosomal protein S21 (rpsU) gene

    OpenAIRE

    Frickmann, H.; Chantratita, N.; Gauthier, Y. P.; Neubauer, H.; Hagen, R. M.

    2012-01-01

    Discrimination of Burkholderia (B.) pseudomallei and B. mallei from environmental B. thailandensis is challenging. We describe a discrimination method based on sequence comparison of the ribosomal protein S21 (rpsU) gene.

  14. Use of a Safe, Reproducible, and Rapid Aerosol Delivery Method to Study Infection by Burkholderia pseudomallei and Burkholderia mallei in Mice

    OpenAIRE

    Eric R Lafontaine; Zimmerman, Shawn M.; Teresa L Shaffer; Frank Michel; Xiudan Gao; Hogan, Robert J.

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most comm...

  15. NCBI nr-aa BLAST: CBRC-PVAM-01-0739 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PVAM-01-0739 ref|YP_626364.1| PE-PGRS family protein [Burkholderia cenocepacia... AU 1054] gb|ABF81391.1| PE-PGRS family protein [Burkholderia cenocepacia AU 1054] YP_626364.1 5e-10 26% ...

  16. NCBI nr-aa BLAST: CBRC-XTRO-01-0143 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0143 ref|ZP_01564992.1| hypothetical protein Bcenmc03DRAFT_7449 [Burkholder...ia cenocepacia MC0-3] gb|EAV57107.1| hypothetical protein Bcenmc03DRAFT_7449 [Burkholderia cenocepacia MC0-3] ZP_01564992.1 0.002 23% ...

  17. NCBI nr-aa BLAST: CBRC-FRUB-02-0738 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FRUB-02-0738 ref|ZP_01567160.1| Haemagluttinin motif [Burkholderia cenocepacia... MC0-3] gb|EAV54748.1| Haemagluttinin motif [Burkholderia cenocepacia MC0-3] ZP_01567160.1 4e-24 29% ...

  18. NCBI nr-aa BLAST: CBRC-CREM-01-1362 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1362 ref|ZP_01564035.1| 200 kDa antigen p200, putative [Burkholderia c...enocepacia MC0-3] gb|EAV58079.1| 200 kDa antigen p200, putative [Burkholderia cenocepacia MC0-3] ZP_01564035.1 7e-36 33% ...

  19. NCBI nr-aa BLAST: CBRC-CJAC-01-1085 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1085 ref|ZP_01559985.1| conserved hypothetical protein [Burkholderia c...enocepacia MC0-3] gb|EAV61841.1| conserved hypothetical protein [Burkholderia cenocepacia MC0-3] ZP_01559985.1 2e-58 63% ...

  20. NCBI nr-aa BLAST: CBRC-DMEL-08-0031 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DMEL-08-0031 ref|YP_838849.1| Haemagluttinin domain protein [Burkholderia ceno...cepacia HI2424] gb|ABK11956.1| Haemagluttinin domain protein [Burkholderia cenocepacia HI2424] YP_838849.1 3e-09 31% ...

  1. NCBI nr-aa BLAST: CBRC-RNOR-23-0023 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-23-0023 ref|YP_840446.1| YadA C-terminal domain protein [Burkholderia cen...ocepacia HI2424] gb|ABK13553.1| YadA C-terminal domain protein [Burkholderia cenocepacia HI2424] YP_840446.1 1.0 31% ...

  2. NCBI nr-aa BLAST: CBRC-CBRE-01-0787 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CBRE-01-0787 ref|YP_840388.1| PE-PGRS family protein [Burkholderia cenocepacia... HI2424] gb|ABK13495.1| PE-PGRS family protein [Burkholderia cenocepacia HI2424] YP_840388.1 7e-04 28% ...

  3. NCBI nr-aa BLAST: CBRC-CJAC-01-0283 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0283 ref|YP_840388.1| PE-PGRS family protein [Burkholderia cenocepacia... HI2424] gb|ABK13495.1| PE-PGRS family protein [Burkholderia cenocepacia HI2424] YP_840388.1 2e-09 26% ...

  4. NCBI nr-aa BLAST: CBRC-DSIM-01-0065 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-01-0065 ref|ZP_01559985.1| conserved hypothetical protein [Burkholderia c...enocepacia MC0-3] gb|EAV61841.1| conserved hypothetical protein [Burkholderia cenocepacia MC0-3] ZP_01559985.1 8e-50 46% ...

  5. NCBI nr-aa BLAST: CBRC-CJAC-01-0227 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0227 ref|ZP_01566546.1| Collagen triple helix repeat [Burkholderia cen...ocepacia MC0-3] gb|EAV55423.1| Collagen triple helix repeat [Burkholderia cenocepacia MC0-3] ZP_01566546.1 2e-18 52% ...

  6. NCBI nr-aa BLAST: CBRC-GACU-01-0025 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-01-0025 ref|ZP_01566546.1| Collagen triple helix repeat [Burkholderia cen...ocepacia MC0-3] gb|EAV55423.1| Collagen triple helix repeat [Burkholderia cenocepacia MC0-3] ZP_01566546.1 8e-15 33% ...

  7. Burkholderia glumae EN EL CULTIVO DE ARROZ EN COSTA RICA

    Directory of Open Access Journals (Sweden)

    Andrea Quesada-Gonz\\u00E1lez

    2014-01-01

    Full Text Available Burkholderia glumae en el cultivo de arroz en Costa Rica. El objetivo de este trabajo fue determinar la presencia de Burkholderia glumae en arroz en Costa Rica. La bacteria Burkholderia glumae está asociada al cultivo del arroz en el que provoca la enfermedad llamada añublo bacterial. Bajo condiciones ambientales favorables, la densidad bacteriana aumenta, lo que provoca que, bajo un sistema de regulación denominado quorum sensing, se expresen sus mecanismos de virulencia mediante la activación de genes responsables para la síntesis de la toxoflavina, que bloquea el flujo de nutrientes, para la biogénesis de flagelos y la respuesta quimiotáctica, y la producción de la enzima catalasa. Las plantas desarrollan la sintomatología que finalmente conlleva a un vaneamiento del grano provocando pérdidas económicas importantes. Se investigó la situación referente a la contaminación del grano de arroz causado por esta bacteria en Costa Rica durante los años 2009 y 2010, mediante un convenio entre la Corporación Nacional Arrocera y el Laboratorio de Fitopatología del Centro de Investigación en Protección de Cultivos de la Universidad de Costa Rica. Se usó la metodología de PCR de punto final recomendada por investigadores del Centro Internacional de Agricultura Tropical en Colombia y se reforzó la identificación, por medio de técnicas de microbiología convencional. Se obtuvieron resultados que indican la presencia de la bacteria en Costa Rica, la primera información sobre la prevalencia de un fitopatógeno bacteriano de gran importancia para el sector arrocero.

  8. Recurrent urinary tract infection by burkholderia cepacia in a live related renal transplant recipient

    International Nuclear Information System (INIS)

    Burkholderia cepacia is high virulent organism usually causing lower respiratory tract infections especially in Cystic fibrosis (CF) patients and post lung transplant. Urinary tract infections with Burkholderia cepacia have been associated after bladder irrigation or use of contaminated hospital objects. Post renal transplant urinary tract infection (UTI) is the most common infectious complications. Recurrent urinary tract infection with Burkholderia cepacia is a rare finding. Complete anatomical evaluation is essential in case recurrent urinary tract infections (UTI) after renal transplant. Vesico-ureteric reflux (VUR) and neurogenic urinary bladder was found to be important risk factors. (author)

  9. A case of native valve endocarditis caused by Burkholderia cepacia without predisposing factors

    Directory of Open Access Journals (Sweden)

    Han Seong

    2011-05-01

    Full Text Available Abstract Background Infective endocarditis is rarely caused by Burkholderia cepacia. This infection is known to occur particularly in immunocompromised hosts, intravenous heroin users, and in patients with prosthetic valve replacement. Most patients with Burkholderia cepacia endocarditis usually need surgical treatment in addition to antimicrobial treatment. Case Presentation Here, we report the case of a patient who developed Burkholderia cepacia-induced native valve endocarditis with consequent cerebral involvement without any predisposing factors; she was successfully treated by antimicrobial agents only. Conclusion In this report, we also present literature review of relevant cases.

  10. Exploring the HME and HAE1 efflux systems in the genus Burkholderia

    Directory of Open Access Journals (Sweden)

    Pasca Maria

    2010-06-01

    Full Text Available Abstract Background The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii analyze their phylogenetic distribution, iii define the putative function(s that RND proteins perform within the Burkholderia genus and iv try tracing the evolutionary history of some of these genes in Burkholderia. Results BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins/heavy-metal (HME proteins] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE

  11. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    Science.gov (United States)

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry. PMID:27067648

  12. TRACKING THE RESPONSE OF BURKHOLDERIA CEPACIA G4 5223-PR1 IN AQUIFER MICROCOSMS

    Science.gov (United States)

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of microbial population dynamics to define persistence and activity from both efficacy and risk assessment perspectives, Burkholderia cepacia G4 5223-P...

  13. AQUIFER PROTIST RESPONSE AND THE POTENTIAL FOR TCE BIOREMEDIATION WITH BURKHOLDERIA CEPACIA G4 PR1

    Science.gov (United States)

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of the persistence and activity of microbial population for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR123 and PR131 constitutive...

  14. BIOAUGMENTATION WITH BURKHOLDERIA CEPACIA PR1301 FOR IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE CONTAMINATED GROUNDWATER (RESEARCH BRIEF)

    Science.gov (United States)

    A pilot field study was conducted at the Moffett Federal Airfield, Mountain View, California, to determine whether effective in-situ aerobic cometabolic biodegradation of TCE could be accomplished through bioaugmentation with a genetically modified strain of Burkholderia cepacia ...

  15. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  16. Identification of Burkholderia spp. in the clinical microbiology laboratory: comparison of conventional and molecular methods

    NARCIS (Netherlands)

    C. van Pelt (Cindy); C.M. Verduin (Cees); W.H.F. Goessens (Wil); M.C. Vos (Margreet); B. Tummler; C. Segonds; F. Reubsaet; A.F. van Belkum (Alex); H.A. Verbrugh (Henri)

    1999-01-01

    textabstractCystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situat

  17. Draft Genome Sequence of Burkholderia pseudomallei Strain 350105, Isolated in Hainan, China, in 1976

    OpenAIRE

    Song, Lihua; Yu, Yonghui; Feng, Le; He, Jun; WANG, Tao; Zhu, Hong; Duan, Qing

    2015-01-01

    Burkholderia pseudomallei is the etiological agent of the potentially fatal disease melioidosis. Here, we report the draft genome sequence of a virulent water isolate obtained from the Hainan Province of China in 1976, B. pseudomallei strain 350105.

  18. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    OpenAIRE

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concate...

  19. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    OpenAIRE

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widel...

  20. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale

    OpenAIRE

    AnastasiaBragina; ChristianBerg

    2013-01-01

    The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned...

  1. Multivariate Analyses of Burkholderia Species in Soil: Effect of Crop and Land Use History

    OpenAIRE

    Salles, J.F.; Veen, van, R.; Elsas, van, J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholderia. In a greenhouse experiment, different crops, i.e., maize, oat, barley, and grass, were planted in pots containing soils with different land use histories, i.e., maize monoculture, crop rotation...

  2. Characterization and Inference of Gene Gain/Loss Along Burkholderia Evolutionary History

    OpenAIRE

    Bo Zhu; Shengli Zhou; Miaomiao Lou; Jun Zhu; Bin Li; Guanlin Xie; GuLei Jin; René De Mot

    2011-01-01

    A comparative analysis of 60 complete Burkholderia genomes was conducted to obtain insight in the evolutionary history behind the diversity and pathogenicity at species level. A concatenated multiprotein phyletic pattern and a dataset with Burkholderia clusters of orthologous genes (BuCOGs) were constructed. The extent of horizontal gene transfer (HGT) was assessed using a Markov based probabilistic method. A reconstruction of the gene gains and losses history shows that more than half of the...

  3. Burkholderia ferrariae sp. nov., a novel bacterium isolated from an iron ore in Brazil.

    OpenAIRE

    Valverde, A; Delvasto, P.; Peix, A.; Velázquez, E; Santa Regina, I.; Ballester, A.; Rodríguez-Barrueco, C.; García-Balboa, C.; Igual, José Mariano

    2006-01-01

    A Gram-negative, non-spore-forming bacterial strain with the ability to solubilize highly insoluble phosphatic minerals was isolated from a high-phosphorous iron ore from Minas Gerais State, Brazil. This strain, designated FeGl01(T), was subjected to a polyphasic; taxonomic investigation. Comparative 16S rRNA gene sequence analysis indicated that it formed a distinct phylogenetic lineage within the genus Burkholderia together with several other species of the genus, e.g. Burkholderia sacchari...

  4. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles

    OpenAIRE

    Nandi, Tannistha; Holden, Matthew; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali

    2015-01-01

    This study was supported by a core grant to P.T. from the GIS, an A-STAR research institute. The sequencing of the Burkholderia pseudomallei strains was supported by Wellcome Trust grant 098051 to J.P. Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental ...

  5. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge

    OpenAIRE

    Whitlock, Gregory C.; Deeraksa, Arpaporn; Qazi, Omar; Judy, Barbara M.; Taylor, Katherine; Propst, Katie L.; Duffy, Angie J.; Johnson, Kate; Kitto, G. Barrie; Brown, Katherine A.; Dow, Steven W.; Torres, Alfredo G.; Estes, D. Mark

    2010-01-01

    Burkholderia mallei and B. pseudomallei are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these Burkholderia species. In this study, we aimed to identify protective proteins against these pathogens. Immunization with recombinant B. mallei Hcp1 (type VI secreted/structural protein), BimA (autotransporter protein), BopA (type III secreted protein), and B. pseudomallei LolC (ABC...

  6. Developing Peptide Mimotopes of Capsular Polysaccharides and Lipopolysaccharides Protective Antigens of Pathogenic Burkholderia Bacteria.

    Science.gov (United States)

    Guo, Pengfei; Zhang, Jing; Tsai, Shien; Li, Bingjie; Lo, Shyh-Ching

    2016-06-01

    Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are two species of pathogenic Burkholderia bacteria. Our laboratory previously identified four monoclonal antibodies (MAbs) that reacted against Burkholderia capsular polysaccharides (PS) and lipopolysaccharides (LPS) and effectively protected against a lethal dose of BP/BM infections in mice. In this study, we used phage display panning against three different phage peptide libraries to select phage clones specifically recognized by each of the four protective MAbs. After sequencing a total of 179 candidate phage clones, we examined in detail six selected phage clones carrying different peptide inserts for the specificity of binding by the respective target MAbs. Chemically synthesized peptides corresponding to those displayed by the six phage clones were conjugated to keyhole limpet hemocyanin carrier protein and tested for their binding specificity to the respective protective MAbs. The study revealed that four of the six peptides, all derived from the library displaying dodecapeptides, functioned well as "mimotopes" of Burkholderia PS and LPS as demonstrated by a high degree of specific competition against the binding of three protective MAbs to BP and BM. Our results suggest that the four selected peptide mimics corresponding to PS/LPS protective antigens of BP and BM could potentially be developed into peptide vaccines against pathogenic Burkholderia bacteria. PMID:27328059

  7. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  8. Comparative Genome Sequence Analysis Reveals the Extent of Diversity and Conservation for Glycan-Associated Proteins in Burkholderia spp.

    OpenAIRE

    Ong, Hui San; Mohamed, Rahmah; Firdaus-Raih, Mohd

    2012-01-01

    Members of the Burkholderia family occupy diverse ecological niches. In pathogenic family members, glycan-associated proteins are often linked to functions that include virulence, protein conformation maintenance, surface recognition, cell adhesion, and immune system evasion. Comparative analysis of available Burkholderia genomes has revealed a core set of 178 glycan-associated proteins shared by all Burkholderia of which 68 are homologous to known essential genes. The genome sequence compari...

  9. Glanders: off to the races with Burkholderia mallei.

    Science.gov (United States)

    Whitlock, Gregory C; Estes, D Mark; Torres, Alfredo G

    2007-12-01

    Burkholderia mallei, the etiologic agent of the disease known as glanders, is primarily a disease affecting horses and is transmitted to humans by direct contact with infected animals. The use of B. mallei as a biological weapon has been reported and currently, there is no vaccine available for either humans or animals. Despite the history and highly infective nature of B. mallei, as well as its potential use as a bio-weapon, B. mallei research to understand the pathogenesis and the host responses to infection remains limited. Therefore, this minireview will focus on current efforts to elucidate B. mallei virulence, the associated host immune responses elicited during infection and discuss the feasibility of vaccine development.

  10. Isolation and Identification of Burkholderia glumae from Symptomless Rice Seeds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A survey on isolation and detection of the casual organism of bacterial grain rot of rice was conducted during 1997-2006.In 2006,six pathogenic bacterial strains were isolated from two symptomiess seed samples of rice (Oryza sativa L.) originally produced in Hainan Province and then planted in Zhejiang Province,China.They were identified as Burkholderia glumae which is the causal organism of bacterial grain rot of rice by physiological characteristics,colony morphology,pathogenicity test,Biolog,fatty acid methyl ester (FAME) analysis and RAPD-PCR compared with the four standard reference strains.It is confirmed that there is the infection of B.glumae in so-called 'health looking seeds'.

  11. Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection

    Directory of Open Access Journals (Sweden)

    Sarovich DS

    2012-08-01

    Full Text Available Derek S Sarovich,1,2,* Erin P Price,1,2,* Direk Limmathurotsakul,3 James M Cook,1 Alex T Von Schulze,1 Spenser R Wolken,1 Paul Keim,1 Sharon J Peacock,3,4 Talima Pearson1 1Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA; 2Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Darwin, Australia; 3Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 4Department of Medicine, University of Cambridge, Cambridge, United Kingdom*These authors contributed equally to this workAbstract: Burkholderia pseudomallei, a bacterium that causes the disease melioidosis, is intrinsically resistant to many antibiotics. First-line antibiotic therapy for treating melioidosis is usually the synthetic β-lactam, ceftazidime (CAZ, as almost all B. pseudomallei strains are susceptible to this drug. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, which can lead to mortality if therapy is not switched to a different drug in a timely manner. Serial B. pseudomallei isolates obtained from an acute Thai melioidosis patient infected by a CAZ susceptible strain, who ultimately succumbed to infection despite being on CAZ therapy for the duration of their infection, were analyzed. Isolates that developed CAZ resistance due to a proline to serine change at position 167 in the β-lactamase PenA were identified. Importantly, these CAZ resistant isolates remained sensitive to the alternative melioidosis treatments; namely, amoxicillin-clavulanate, imipenem, and meropenem. Lastly, real-time polymerase chain reaction-based assays capable of rapidly identifying CAZ resistance in B. pseudomallei isolates at the position 167 mutation site were developed. The ability to rapidly identify the emergence of CAZ resistant B. pseudomallei populations in melioidosis patients will allow timely alterations in treatment strategies

  12. Use of the common marmoset to study Burkholderia mallei infection.

    Directory of Open Access Journals (Sweden)

    Tomislav Jelesijevic

    Full Text Available Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 10(4 to 2.5 X 10(5 bacteria developed acute lethal infection within 3-4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 10(3 bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 10(3 organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B

  13. Use of the common marmoset to study Burkholderia mallei infection.

    Science.gov (United States)

    Jelesijevic, Tomislav; Zimmerman, Shawn M; Harvey, Stephen B; Mead, Daniel G; Shaffer, Teresa L; Estes, D Mark; Michel, Frank; Quinn, Frederick D; Hogan, Robert J; Lafontaine, Eric R

    2015-01-01

    Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus) were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 10(4) to 2.5 X 10(5) bacteria developed acute lethal infection within 3-4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 10(3) bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 10(3) organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B. mallei.

  14. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII and macrophages.

    Directory of Open Access Journals (Sweden)

    Richard eLu

    2012-12-01

    Full Text Available Alveolar type II pneumocytes (ATII and alveolar macrophages (AM play a crucial role in the lung’s innate immune response. Burkholderia pseudomallei (BP and Burkholderia mallei (BM are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM. We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8 and macrophages (IL-6, TNFα at 6h post-infection compared to BM (p<0.05. Interestingly, BM induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6h post-infection, with delayed induction of inflammatory cytokines at 24h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens.

  15. Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements

    Directory of Open Access Journals (Sweden)

    Ulrich Ricky L

    2010-07-01

    Full Text Available Abstract Background Burkholderia species exhibit enormous phenotypic diversity, ranging from the nonpathogenic, soil- and water-inhabiting Burkholderia thailandensis to the virulent, host-adapted mammalian pathogen B. mallei. Genomic diversity is evident within Burkholderia species as well. Individual isolates of Burkholderia pseudomallei and B. thailandensis, for example, carry a variety of strain-specific genomic islands (GIs, including putative pathogenicity and metabolic islands, prophage-like islands, and prophages. These GIs may provide some strains with a competitive advantage in the environment and/or in the host relative to other strains. Results Here we present the results of analysis of 37 prophages, putative prophages, and prophage-like elements from six different Burkholderia species. Five of these were spontaneously induced to form bacteriophage particles from B. pseudomallei and B. thailandensis strains and were isolated and fully sequenced; 24 were computationally predicted in sequenced Burkholderia genomes; and eight are previously characterized prophages or prophage-like elements. The results reveal numerous differences in both genome structure and gene content among elements derived from different species as well as from strains within species, due in part to the incorporation of additional DNA, or 'morons' into the prophage genomes. Implications for pathogenicity are also discussed. Lastly, RNAseq analysis of gene expression showed that many of the genes in ϕ1026b that appear to contribute to phage and lysogen fitness were expressed independently of the phage structural and replication genes. Conclusions This study provides the first estimate of the relative contribution of prophages to the vast phenotypic diversity found among the Burkholderiae.

  16. Ubiquity of Putative Type III Secretion Genes among Clinical and Environmental Burkholderia pseudomallei Isolates in Northern Australia

    OpenAIRE

    Smith-Vaughan, H C; Gal, D; Lawrie, P. M.; Winstanley, C.; Sriprakash, K S; Currie, B. J.

    2003-01-01

    Horseradish peroxidase-like type III secretion (TTS1) genes were present in all 116 Northern Australian Burkholderia pseudomallei isolates tested but were not detected in other common environmental Burkholderia species. PCR of TTS1 genes may prove valuable as a diagnostic test.

  17. The art of persistence-the secrets to Burkholderia chronic infections.

    Science.gov (United States)

    Lewis, Eric R G; Torres, Alfredo G

    2016-08-01

    The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them. PMID:27440810

  18. A Possible Link between Infection with Burkholderia Bacteria and Systemic Lupus Erythematosus Based on Epitope Mimicry

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2008-01-01

    Full Text Available We previously demonstrated that purified polyclonal and monoclonal anti-dsDNA antibodies bind a 15-mer peptide ASPVTARVLWKASHV in ELISA and Dot blot. This 15-mer peptide partial sequence ARVLWKASH shares similarity with burkholderia bacterial cytochrome B 561 partial sequence ARVLWRATH. In this study, we show that purified anti-dsDNA antibodies react with burkholderia fungorum bacterial cell lysates in Western blot. We used anti-dsDNA antibodies to make an anti-dsDNA antibodies affinity column and used this column to purify the burkholderia fungorum bacterial protein. Purified anti-dsDNA antibodies bind specifically to purified bacterial antigen and purified bacterial antigen blocked the anti-dsDNA antibodies binding to dsDNA antigen. Sera with anti-dsDNA antibodies bind specifically to purified bacterial antigen. We obtained protein partial sequence of RAGTDEGFG which is shared with burkholderia bacterial transcription regulator protein sequence. Sera with anti-dsDNA antibodies bind to RAGTDEGFG peptide better than control groups. These data support our hypothesis that the origin of anti-dsDNA antibodies in SLE may be associated with burkholderia bacterial infection.

  19. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae).

    Science.gov (United States)

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-06-25

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction. PMID:27265344

  20. Burkholderia pseudomallei induces IL-23 production in primary human monocytes.

    Science.gov (United States)

    Kulsantiwong, Panthong; Pudla, Matsayapan; Boondit, Jitrada; Wikraiphat, Chanthiwa; Dunachie, Susanna J; Chantratita, Narisara; Utaisincharoen, Pongsak

    2016-06-01

    Burkholderia pseudomallei, a gram-negative intracellular bacterium, is a causative agent of melioidosis. The bacterium has been shown to induce the innate immune response, particularly pro-inflammatory cytokine production in several of both mouse and human cell types. In the present study, we investigate host immune response in B. pseudomallei-infected primary human monocytes. We discover that wild-type B. pseudomallei is able to survive and multiply inside the primary human monocytes. In contrast, B. pseudomallei LPS mutant, a less virulent strain, is susceptible to host killing during bacterial infection. Moreover, microarray result showed that wild-type B. pseudomallei but not B. pseudomallei LPS mutant is able to activate gene expression of IL-23 as demonstrated by the up-regulation of p19 and p40 subunit expression. Consistent with gene expression analysis, the secretion of IL-23 analyzed by ELISA also showed that wild-type B. pseudomallei induces a significantly higher level of IL-23 secretion than that of B. pseudomallei LPS mutant. These results implied that IL-23 may be an important cytokine for the innate immune response during B. pseudomallei infection. The regulation of IL-23 production may drive the different host innate immune responses between patients and may relate to the severity of melioidosis. PMID:26563410

  1. [Pharyngitis due to Burkholderia cepacia. Person-to-person transmission].

    Science.gov (United States)

    Fajardo Olivares, M; Cordero Carrasco, J L; Beteta López, A; Escobar Izquierdo, A B; Sacristán Enciso, B

    2004-06-01

    Burkholderia cepacia is a Gram-negative bacillus that is widely distributed in nature; it is isolated from the ground, water, plants and vegetables. Generally, it produces nosocomial infection due to contamination of disinfectants, medical equipment, prosthetic material and drugs, such as anesthetics or liquids used in urological irrigation. The most probable mechanism of transmission is through hospital material or through fomites among people after contact for several weeks or months. Recently, it has been considered as an important pathogen in immunocompromised patients, or in those with significant underlying diseases, such as chronic granulomastosis or cystic fibrosis. We present a case of pharyngitis due to B. cepacia and its transmission within a few days in two immunocompetent twin siblings without previous underlying diseases. The infection disappeared after specific treatment for this microorganism was started. We believe that samples should be taken from the pharynx and nasal pits in patients with acute upper respiratory tract processes that do not respond to empiric antibiotic treatment, before classifying them as viral infection without etiologic diagnosis.

  2. Molecular Characterization of Putative Virulence Determinants in Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Suat Moi Puah

    2014-01-01

    Full Text Available The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P=0.049 at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.

  3. Mouse model of sublethal and lethal intraperitoneal glanders (Burkholderia mallei).

    Science.gov (United States)

    Fritz, D L; Vogel, P; Brown, D R; Deshazer, D; Waag, D M

    2000-11-01

    Sixty male BALB/c mice were inoculated intraperitoneally with either a sublethal or a lethal dose of Burkholderia mallei China 7 strain, then killed at multiple time points postinoculation. Histopathologic changes were qualitatively similar in both groups and consisted of pyogranulomatous inflammation. In sublethal study mice, changes were first seen at 6 hours in mediastinal lymph nodes, then in spleen, liver, peripheral lymph nodes, and bone marrow at day 3. These changes generally reached maximal incidence and severity by day 4 but decreased by comparison in all tissues except the liver. Changes were first seen in lethal study mice also at 6 hours in mediastinal lymph nodes and in spleens. At day 1, changes were present in liver, peripheral lymph nodes, and bone marrow. The incidence and severity of these changes were maximal at day 2. In contrast to sublethal study mice, the incidence and severity of the changes did not decrease through the remainder of the study. The most significant difference between the two groups was the rapid involvement of the spleen in the lethal study mice. Changes indicative of impaired vascular perfusion were more frequently seen in the sublethal study mice. Our findings indicate that mice are susceptible to B. mallei infection and may serve as an appropriate model for glanders infection in a resistant host such as human beings. Additionally, by immunoelectron microscopy, we showed the presence of type I O-antigenic polysaccharide (capsular) antigen surrounding B. mallei.

  4. Incidence of Burkholderia mallei infection among indigenous equines in India

    Science.gov (United States)

    Malik, Praveen; Singha, Harisankar; Goyal, Sachin K; Khurana, Sandip K; Tripathi, Badri Naryan; Dutt, Abha; Singh, Dabal; Sharma, Neeraj; Jain, Sanjay

    2015-01-01

    Burkholderia mallei is the causative agent of glanders which is a highly contagious and fatal disease of equines. Considering the nature and severity of the disease in equines, and potential of transmission to human beings, glanders is recognised as a ‘notifiable’ disease in many countries. An increasing number of glanders outbreaks throughout the Asian continents, including India, have been noticed recently. In view of the recent re-emergence of the disease, the present study was undertaken to estimate the prevalence of glanders among indigenous equines from different parts of India. Serum samples were analysed by complement fixation test (CFT) and ELISA for the detection of B mallei specific antibodies. A total of 7794 equines, which included 4720 horses, 1881 donkeys and 1193 mules were sampled from April 2011 to December 2014 from 10 states of India. Serologically, 36 equines (pony=7, mules=10, horses=19) were found to be positive for glanders by CFT and indirect-ELISA. The highest number of cases were detected in Uttar Pradesh (n=31) followed by Himachal Pradesh (n=4) and Chhattisgarh (n=1). Isolation of B mallei was attempted from nasal and abscess swabs collected from seropositive equines. Four isolates of B mallei were cultured from nasal swabs of two mules and two ponies. Identity of the isolates was confirmed by PCR and sequencing of fliP gene fragment. The study revealed circulation of B mallei in northern India and the need for continued surveillance to support the eradication. PMID:26457190

  5. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Tiffany M. Mott

    2013-05-01

    Full Text Available Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.

  6. Burkholderia Pseudomallei Causing Bone and Joint Infections: A Clinical Update.

    Science.gov (United States)

    Raja, Nadeem Sajjad; Scarsbrook, Christine

    2016-03-01

    Burkholderia pseudomallei (B. pseudomallei), a causative agent of an emerging infectious disease melioidosis, is endemic in the tropical regions of the world. Due to increased international travel, the infection is now also seen outside of the tropics. The majority of patients with identified risk factors such as diabetes mellitus, heavy alcohol use, malignancy, chronic lung and kidney disease, corticosteroid use, thalassemia, rheumatic heart disease, systemic lupus erythematosus and cardiac failure acquire this organism through percutaneous inoculation or inhalation. The clinical manifestations are variable, ranging from localized abscess formation to septicemia. Melioidotic bone and joint infections are rarely reported but are an established entity. The knee joint is the most commonly affected joint in melioidosis, followed by the ankle, hip and shoulder joints. Melioidosis should be in the differential diagnosis of bone and joint infections in residents or returning travelers from the endemic area. Melioidosis diagnosis is missed in many parts of the world due to the lack of awareness of this infection and limited laboratory training and diagnostic techniques. It also mimics other diseases such as tuberculosis. Delay in the diagnosis, or the initiation of appropriate and effective treatment against melioidosis, could worsen the outcome. Initial therapy with ceftazidime, or carbapenem with or without cotrimoxazole is recommended, followed by the oral eradication therapy (based on the antimicrobial susceptibility) with amoxicillin/clavulanic acid or cotrimoxazole. Surgical intervention remains important. This paper reviews current literature on the epidemiology, clinical features, diagnosis, and management of melioidotic bone and joint infections. PMID:26728713

  7. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis.

    Science.gov (United States)

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-01-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria.

  8. An ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Douglas R.; Staker, Bart L.; Abendroth, Jan A.; Edwards, Thomas E.; Hartley, Robert; Leonard, Jess; Kim, Hidong; Rychel, Amanda L.; Hewitt, Stephen N.; Myler, Peter J.; Stewart, Lance J. (UWASH); (Emerald)

    2011-12-07

    Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and Northern Australia. Burkholderia is responsible for melioidosis, a serious infection of the skin. The enzyme 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (PGAM) catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate, a key step in the glycolytic pathway. As such it is an extensively studied enzyme and X-ray crystal structures of PGAM enzymes from multiple species have been elucidated. Vanadate is a phosphate mimic that is a powerful tool for studying enzymatic mechanisms in phosphoryl-transfer enzymes such as phosphoglycerate mutase. However, to date no X-ray crystal structures of phosphoglycerate mutase have been solved with vanadate acting as a substrate mimic. Here, two vanadate complexes together with an ensemble of substrate and fragment-bound structures that provide a comprehensive picture of the function of the Burkholderia enzyme are reported.

  9. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis

    Science.gov (United States)

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-09-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria.

  10. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia.

    Directory of Open Access Journals (Sweden)

    Jennifer L Ginther

    Full Text Available Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area.

  11. Effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    International Nuclear Information System (INIS)

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased (P10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  12. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  13. Influence of neutrophil defects on Burkholderia cepacia complex pathogenesis

    Directory of Open Access Journals (Sweden)

    Laura A. Porter

    2011-11-01

    Full Text Available The Burkholderia cepacia complex (Bcc is a group of Gram-negative bacteria that are ubiquitous in the environment and have emerged as opportunistic pathogens in immunocompromised patients. The primary patient populations infected with Bcc include individuals with cystic fibrosis (CF, as well as those with chronic granulomatous disease (CGD. While Bcc infection in CF is better characterized than in CGD, these two genetic diseases are not obviously similar and it is currently unknown if there is any commonality in host immune defects that is responsible for the susceptibility to Bcc. CF is caused by mutations in the CF transmembrane conductance regulator, resulting in manifestations in various organ systems, however the major cause of morbidity and mortality is currently due to bacterial respiratory infections. CGD, on the other hand, is a genetic disorder that is caused by defects in phagocyte NADPH oxidase. Because of the defect in CGD, phagocytes in these patients are unable to produce reactive oxygen species, which results in increased susceptibility to bacterial and fungal infections. Despite this significant defect in microbial clearance, the spectrum of pathogens frequently implicated in infections in CGD is relatively narrow and includes some bacterial species that are considered almost pathognomonic for this disorder. Very little is known about the cause of the specific susceptibility to Bcc over other potential pathogens more prevalent in the environment, and a better understanding of specific mechanisms required for bacterial virulence has become a high priority. This review will summarize both the current knowledge and future directions related to Bcc virulence in immunocompromised individuals with a focus on the roles of bacterial factors and neutrophil defects in pathogenesis.

  14. Recovery efficiencies for Burkholderia thailandensis from various aerosol sampling media

    Directory of Open Access Journals (Sweden)

    Paul eDabisch

    2012-06-01

    Full Text Available Burkholderia thailandensis is used in the laboratory as a surrogate of the more virulent B. pseudomallei. Since inhalation is believed to be a natural route of infection for B. pseudomallei, many animal studies with B. pseudomallei and B. thailandensis utilize the inhalation route of exposure. The aim of the present study was to quantify the recovery efficiency of culturable B. thailandensis from several common aerosol sampling devices to ensure that collected microorganisms could be reliably recovered post-collection. The sampling devices tested included 25-mm gelatin filters, 25-mm stainless steel disks used in Mercer cascade impactors, and two types of glass impingers. The results demonstrate that while several processing methods tested resulted in significantly lower physical recovery efficiencies than other methods, it was possible to obtain culturable recovery efficiencies for B. thailandensis and physical recovery efficiencies for 1 μm fluorescent spheres of at least 0.95 from all of the sampling media tested given an appropriate sample processing procedure. The results of the present study also demonstrated that the bubbling action of liquid media in all-glass impingers (AGIs can result in physical loss of material from the collection medium, although additional studies are needed to verify the exact mechanisms involved. Overall, the results of this study demonstrate that the collection mechanism as well as the post-collection processing method can significantly affect the recovery from and retention of culturable microorganisms in sampling media, potentially affecting the calculated airborne concentration and any subsequent estimations of risk or dose derived from such data.

  15. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans

    OpenAIRE

    Kost, Thomas; Stopnisek, Nejc; Agnoli, Kirsty; Eberl, Leo; Weisskopf, Laure

    2014-01-01

    Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to ...

  16. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

    OpenAIRE

    Chen, Wen-Ming; de Faria, Sergio M.; Straliotto, Rosângela; Pitard, Rosa M.; Simões-Araùjo, Jean L.; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R; Geoffrey N Elliott; Sprent, Janet I.; J. Peter W. Young; James, Euan K.

    2005-01-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to t...

  17. The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62

    Science.gov (United States)

    Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...

  18. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K.; Hentzer, Morten; Geisenberger, O.;

    2001-01-01

    Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co- ordinate expression of virulence factors with the...

  19. Interaction of insulin with Burkholderia pseudomallei may be caused by a preservative

    OpenAIRE

    Simpson, A; Wuthiekanun, V

    2000-01-01

    Aim—To re-examine the previously reported in vitro interaction of insulin with Burkholderia pseudomallei, in the light of a suggestion that the interaction may have resulted from the presence of the preservative m-cresol in commercial preparations.

  20. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6.

    Science.gov (United States)

    D'haeseleer, Patrik; Johnson, Shannon L; Davenport, Karen W; Chain, Patrick S; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P; Peña, José; Branda, Steven S; El-Etr, Sahar

    2016-01-01

    Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long. PMID:27365360

  1. Burkholderia pseudomallei infection in a cystic fibrosis patient from the Caribbean: A case report

    OpenAIRE

    Dimas Mateos Corral; Allan L Coates; Yvonne CW Yau; Raymond Tellier; Mindy Glass; Jones, Steven M.; Waters, Valerie J.

    2008-01-01

    Burkholderia pseudomallei is a pathogen identified with increasing frequency in the respiratory tracts of cystic fibrosis (CF) patients from endemic areas such as Southeast Asia and northern Australia. The following report describes the first known reported case in a CF patient from the Caribbean attending a North American CF clinic.

  2. NOVEL ORGANIZATION OF THE GENES FOR PHTHALATE DEGRADATION FROM BURKHOLDERIA CEPACIA DBO1

    Science.gov (United States)

    Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthala...

  3. Draft Genome Sequence of Burkholderia gladioli Strain UCD-UG_CHAPALOTE (Phylum Proteobacteria)

    OpenAIRE

    Ettinger, CL; Shehata, HR; Johnston-Monje, D; Raizada, MN; Eisen, JA

    2015-01-01

    Here, we present the draft genome of Burkholderia gladioli strain UCD-UG_CHAPALOTE. This strain is an endophyte isolated from surface sterilized seeds of an ancient Mexican landrace of corn, Chapalote. The genome contains 8,527,129 bp in 109 scaffolds.

  4. Draft Genome Sequence of the Haloacid-Degrading Burkholderia caribensis Strain MBA4

    OpenAIRE

    Pan, Yanling; Kong, Ka Fai; Tsang, Jimmy S. H.

    2014-01-01

    Burkholderia caribensis MBA4 was isolated from soil for its ability to utilize 2-haloacid. An inducible haloacid operon, encoding for a dehalogenase and a permease, is mainly responsible for the biotransformation. Here, we report the draft genome sequence of this strain.

  5. Draft Genome Sequence of Burkholderia gladioli Strain UCD-UG_CHAPALOTE (Phylum Proteobacteria)

    Science.gov (United States)

    Ettinger, Cassandra L.; Shehata, Hanan R.; Johnston-Monje, David; Raizada, Manish N.

    2015-01-01

    Here, we present the draft genome of Burkholderia gladioli strain UCD-UG_CHAPALOTE. This strain is an endophyte isolated from surface sterilized seeds of an ancient Mexican landrace of corn, Chapalote. The genome contains 8,527,129 bp in 109 scaffolds. PMID:25614570

  6. Molecular method to assess the diversity of Burkholderia species in environmental samples

    NARCIS (Netherlands)

    Salles, J.; Souza, de F.A.; Elsas, van J.D.

    2002-01-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a pow

  7. Molecular method to assess the diversity of Burkholderia species in environmental samples

    NARCIS (Netherlands)

    Salles, J.F.; De Souza, F.A.; Van Elsas, J.D.

    2002-01-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient get electrophoresis (DGGE), a pow

  8. Study of the mode of action of a polygalacturonase from the phytopathogen Burkholderia cepacia

    DEFF Research Database (Denmark)

    Massa, C.; Clausen, Mads Hartvig; Stojan, J.;

    2007-01-01

    We have recently isolated and heterologously expressed BcPeh28A, an endopolygalacturonase from the phytopathogenic Gram-negative bacterium Burkholderia cepacia. Endopolygalacturonases belong to glycoside hydrolase family 28 and are responsible for the hydrolysis of the non-esterified regions...

  9. The symbiotic role of O-antigen of Burkholderia symbiont in association with host Riptortus pedestris.

    Science.gov (United States)

    Kim, Jiyeun Kate; Park, Ha Young; Lee, Bok Luel

    2016-07-01

    Riptortus pedestris harboring Burkholderia symbiont is a useful symbiosis model to study the molecular interactions between insects and bacteria. We recently reported that the lipopolysaccharide O-antigen is absent in the Burkholderia symbionts isolated from Riptortus guts. Here, we investigated the symbiotic role of O-antigen comprehensively in the Riptortus-Burkholderia model. Firstly, Burkholderia mutant strains deficient of O-antigen biosynthesis genes were generated and confirmed for their different patterns of the lipopolysaccharide by electrophoretic analysis. The O-antigen-deficient mutant strains initially exhibited a reduction of infectivity, having significantly lower level of symbiont population at the second-instar stage. However, both the wild-type and O-antigen mutant symbionts exhibited a similar level of symbiont population from the third-instar stage, indicating that the O-antigen deficiency did not affect the bacterial persistence in the host midgut. Taken together, we showed that the lipopolysaccharide O-antigen of gut symbiont plays an exclusive role in the initial symbiotic association. PMID:26875632

  10. Concomitant Cryptococcosis and Burkholderia Infection in an Asymptomatic Lung Transplant Patient with Cystic Fibrosis

    OpenAIRE

    2010-01-01

    Concomitant pulmonary infections with Cryptococcus neoformans and Burkholderia cepacia in lung transplant recipients are very rare and create unique diagnostic and therapeutic dilemmas. Herein, we present a double lung transplant patient with cystic fibrosis who was found to have coinfection with these two rare organisms, though he was completely asymptomatic.

  11. Multivariate Analyses of Burkholderia species in soil: effect of crop and land use history.

    NARCIS (Netherlands)

    Salles, J.F.; Veen, van J.A.; Elsas, van J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholder

  12. Multivariate analyses of Burkholderia species in soil : Effect of crop and land use history

    NARCIS (Netherlands)

    Salles, JF; van Veen, JA; van Elsas, JD

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholder

  13. Multivariate analyses of Burkholderia species in soil: effect of crop and land use history

    NARCIS (Netherlands)

    Salles, J.F.; Van Veen, J.A.; van Elsas, J.D.

    2004-01-01

    The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholder

  14. Distribution of Melioidosis Cases and Viable Burkholderia pseudomallei in Soil: Evidence for Emerging Melioidosis in Taiwan▿

    OpenAIRE

    Chen, Yao-Shen; Lin, Hsi-Hsun; Mu, Jung-Jung; Chiang, Chuen-Sheue; Chen, Chang-Hsun; Buu, Leh-Mia; Lin, Yusen E.; Chen, Ya-Lei

    2010-01-01

    A survey for the prevalence if Burkholderia pseudomallei in soil in Taiwan found that its incidence is comparable to that in other regions of the world where melioidosis is endemic. The presence of identical genetic patterns among the clinical and environmental isolates evaluated suggested a link between the pathogens present in contaminated soil and the emergence of indigenous melioidosis.

  15. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PLAT medium

    NARCIS (Netherlands)

    Salles, JF; Samyn, E; Vandamme, P; van Veen, JA; van Elsas, JD

    2006-01-01

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize monocultu

  16. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium

    NARCIS (Netherlands)

    Salles, J.F.; Samyn, E.; Vandamme, P.; Van Veen, J.A.; van Elsas, J.D.

    2006-01-01

    Abstract In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  17. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    Directory of Open Access Journals (Sweden)

    Mary N Burtnick

    Full Text Available Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1 expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G or minimal media plus casamino acids (M9CG facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  18. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei.

    Science.gov (United States)

    Godoy, Daniel; Randle, Gaynor; Simpson, Andrew J; Aanensen, David M; Pitt, Tyrone L; Kinoshita, Reimi; Spratt, Brian G

    2003-05-01

    A collection of 147 isolates of Burkholderia pseudomallei, B. mallei, and B. thailandensis was characterized by multilocus sequence typing (MLST). The 128 isolates of B. pseudomallei, the causative agent of melioidosis, were obtained from diverse geographic locations, from humans and animals with disease, and from the environment and were resolved into 71 sequence types. The utility of the MLST scheme for epidemiological investigations was established by analyzing isolates from captive marine mammals and birds and from humans in Hong Kong with melioidosis. MLST gave a level of resolution similar to that given by pulsed-field gel electrophoresis and identified the same three clones causing disease in animals, each of which was also associated with disease in humans. The average divergence between the alleles of B. thailandensis and B. pseudomallei was 3.2%, and there was no sharing of alleles between these species. Trees constructed from differences in the allelic profiles of the isolates and from the concatenated sequences of the seven loci showed that the B. pseudomallei isolates formed a cluster of closely related lineages that were fully resolved from the cluster of B. thailandensis isolates, confirming their separate species status. However, isolates of B. mallei, the causative agent of glanders, recovered from three continents over a 30-year period had identical allelic profiles, and the B. mallei isolates clustered within the B. pseudomallei group of isolates. Alleles at six of the seven loci in B. mallei were also present within B. pseudomallei isolates, and B. mallei is a clone of B. pseudomallei that, on population genetics grounds, should not be given separate species status.

  19. Genetic diversity of Burkholderia (Proteobacteria) species from the Caatinga and Atlantic rainforest biomes in Bahia, Brazil.

    Science.gov (United States)

    Santini, A C; Santos, H R M; Gross, E; Corrêa, R X

    2013-03-11

    The genus Burkholderia (β-Proteobacteria) currently comprises more than 60 species, including parasites, symbionts and free-living organisms. Several new species of Burkholderia have recently been described showing a great diversity of phenotypes. We examined the diversity of Burkholderia spp in environmental samples collected from Caatinga and Atlantic rainforest biomes of Bahia, Brazil. Legume nodules were collected from five locations, and 16S rDNA and recA genes of the isolated microorganisms were analyzed. Thirty-three contigs of 16S rRNA genes and four contigs of the recA gene related to the genus Burkholderia were obtained. The genetic dissimilarity of the strains ranged from 0 to 2.5% based on 16S rDNA analysis, indicating two main branches: one distinct branch of the dendrogram for the B. cepacia complex and another branch that rendered three major groups, partially reflecting host plants and locations. A dendrogram designed with sequences of this research and those designed with sequences of Burkholderia-type strains and the first hit BLAST had similar topologies. A dendrogram similar to that constructed by analysis of 16S rDNA was obtained using sequences of the fragment of the recA gene. The 16S rDNA sequences enabled sufficient identification of relevant similarities and groupings amongst isolates and the sequences that we obtained. Only 6 of the 33 isolates analyzed via 16S rDNA sequencing showed high similarity with the B. cepacia complex. Thus, over 3/4 of the isolates have potential for biotechnological applications.

  20. Burkholderia pseudomallei genome plasticity associated with genomic island variation

    Directory of Open Access Journals (Sweden)

    Currie Bart J

    2008-04-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a soil-dwelling saprophyte and the cause of melioidosis. Horizontal gene transfer contributes to the genetic diversity of this pathogen and may be an important determinant of virulence potential. The genome contains genomic island (GI regions that encode a broad array of functions. Although there is some evidence for the variable distribution of genomic islands in B. pseudomallei isolates, little is known about the extent of variation between related strains or their association with disease or environmental survival. Results Five islands from B. pseudomallei strain K96243 were chosen as representatives of different types of genomic islands present in this strain, and their presence investigated in other B. pseudomallei. In silico analysis of 10 B. pseudomallei genome sequences provided evidence for the variable presence of these regions, together with micro-evolutionary changes that generate GI diversity. The diversity of GIs in 186 isolates from NE Thailand (83 environmental and 103 clinical isolates was investigated using multiplex PCR screening. The proportion of all isolates positive by PCR ranged from 12% for a prophage-like island (GI 9, to 76% for a metabolic island (GI 16. The presence of each of the five GIs did not differ between environmental and disease-associated isolates (p > 0.05 for all five islands. The cumulative number of GIs per isolate for the 186 isolates ranged from 0 to 5 (median 2, IQR 1 to 3. The distribution of cumulative GI number did not differ between environmental and disease-associated isolates (p = 0.27. The presence of GIs was defined for the three largest clones in this collection (each defined as a single sequence type, ST, by multilocus sequence typing; these were ST 70 (n = 15 isolates, ST 54 (n = 11, and ST 167 (n = 9. The rapid loss and/or acquisition of gene islands was observed within individual clones. Comparisons were drawn between isolates obtained

  1. Complete genome sequence of Burkholderia sp. strain PAMC28687, a potential octopine-utilizing bacterium isolated from Antarctica lichen.

    Science.gov (United States)

    Han, So-Ra; Yu, Sang-Cheol; Ahn, Do-Hwan; Park, Hyun; Oh, Tae-Jin

    2016-05-20

    We report the complete genome sequence of Burkholderia sp. PAMC28687, which was isolated from the Antarctica lichen Useea sp., for better understanding of its catabolic traits in utilizing octopine as a source of carbon/nitrogen between Burkholderia and lichen. The genome consists of three circular chromosomes with five circular plasmids for the total 6,881,273bp sized genome with a G+C content of 58.14%. PMID:27034021

  2. Actin-Based Motility of Burkholderia thailandensis Requires a Central Acidic Domain of BimA That Recruits and Activates the Cellular Arp2/3 Complex▿

    OpenAIRE

    Sitthidet, Chayada; Stevens, Joanne M; Field, Terence R.; Layton, Abigail N.; Korbsrisate, Sunee; Stevens, Mark P.

    2010-01-01

    Burkholderia species use BimA for intracellular actin-based motility. Uniquely, Burkholderia thailandensis BimA harbors a central and acidic (CA) domain. The CA domain was required for actin-based motility, binding to the cellular Arp2/3 complex, and Arp2/3-dependent polymerization of actin monomers. Our data reveal distinct strategies for actin-based motility among Burkholderia species.

  3. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice.

    Directory of Open Access Journals (Sweden)

    Eric R Lafontaine

    Full Text Available Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 10(2, 10(3 and 10(4 organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 10(3 and 10(4 B. pseudomallei cells, animals infected with 10(2 organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses

  4. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice.

    Science.gov (United States)

    Lafontaine, Eric R; Zimmerman, Shawn M; Shaffer, Teresa L; Michel, Frank; Gao, Xiudan; Hogan, Robert J

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 10(2), 10(3) and 10(4) organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 10(3) and 10(4) B. pseudomallei cells, animals infected with 10(2) organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate

  5. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice.

    Science.gov (United States)

    Lafontaine, Eric R; Zimmerman, Shawn M; Shaffer, Teresa L; Michel, Frank; Gao, Xiudan; Hogan, Robert J

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 10(2), 10(3) and 10(4) organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 10(3) and 10(4) B. pseudomallei cells, animals infected with 10(2) organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate

  6. Properties of Polyhydroxyalkanoate Granules and Bioemulsifiers from Pseudomonas sp. and Burkholderia sp. Isolates Growing on Glucose.

    Science.gov (United States)

    Sacco, Laís Postai; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-03-01

    A Burkholderia and Pseudomonas species designated as AB4 and AS1, respectively, were isolated from soil containing decomposing straw or sugar cane bagasse collected from Brazil. This study sought to evaluate the capacities of culture media, cell-free medium, and crude lysate preparations (containing PHB inclusion bodies) from bacterial cell cultures to stabilize emulsions with several hydrophobic compounds. Four conditions showed good production of bioemulsifiers (E24 ≥ 50 %), headed by substantially cell-free media from bacterial cell cultures in which bacterial isolates from Burkholderia sp. strain AB4 and Pseudomonas sp. strain AS1 were grown. Our results revealed that the both isolates (AB4 and AS1 strains) exhibited high emulsification indices (indicating usefulness in bioremediation) and good stabilities. PMID:26578147

  7. Study of class I integron in a Burkholderia cepacia complex strain isolated from blood colture

    Directory of Open Access Journals (Sweden)

    Linda Furlanis

    2011-06-01

    Full Text Available The Burkholderia cepacia complex (Bcc consists of several species that cause lung infections in patients with cystic fibrosis but are also capable to colonize immunocompromised patients. Once established, the infection is usually difficult to eradicate, as Bcc is intrinsically resistant to many antibiotics. Besides, the acquisition of additional resistance determinants by horizontal gene transfer makes very difficult the therapeutic approach to these infections. Among horizontally acquired DNAs, integrons have been frequently reported in many Gramnegative bacteria that affect human health, but they have not been found frequently in Burkholderia isolates until now. In the present work we report on a Bcc isolate, recovered from the blood of an immunocompromised patient, that carries a 2.3 kb class I integron already described in a Salmonella enterica isolate eight years ago, coding for aacA4, aadA1 and catB2 in its cassette array.

  8. Distinct human antibody response to the biological warfare agent Burkholderia mallei.

    Science.gov (United States)

    Varga, John J; Vigil, Adam; DeShazer, David; Waag, David M; Felgner, Philip; Goldberg, Joanna B

    2012-10-01

    The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections.

  9. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010.

    Science.gov (United States)

    Lipsitz, Rebecca; Garges, Susan; Aurigemma, Rosemarie; Baccam, Prasith; Blaney, David D; Cheng, Allen C; Currie, Bart J; Dance, David; Gee, Jay E; Larsen, Joseph; Limmathurotsakul, Direk; Morrow, Meredith G; Norton, Robert; O'Mara, Elizabeth; Peacock, Sharon J; Pesik, Nicki; Rogers, L Paige; Schweizer, Herbert P; Steinmetz, Ivo; Tan, Gladys; Tan, Patrick; Wiersinga, W Joost; Wuthiekanun, Vanaporn; Smith, Theresa L

    2012-12-01

    The US Public Health Emergency Medical Countermeasures Enterprise convened subject matter experts at the 2010 HHS Burkholderia Workshop to develop consensus recommendations for postexposure prophylaxis against and treatment for Burkholderia pseudomallei and B. mallei infections, which cause melioidosis and glanders, respectively. Drugs recommended by consensus of the participants are ceftazidime or meropenem for initial intensive therapy, and trimethoprim/sulfamethoxazole or amoxicillin/clavulanic acid for eradication therapy. For postexposure prophylaxis, recommended drugs are trimethoprim/sulfamethoxazole or co-amoxiclav. To improve the timely diagnosis of melioidosis and glanders, further development and wide distribution of rapid diagnostic assays were also recommended. Standardized animal models and B. pseudomallei strains are needed for further development of therapeutic options. Training for laboratory technicians and physicians would facilitate better diagnosis and treatment options.

  10. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids.

    Directory of Open Access Journals (Sweden)

    Arvin Nickzad

    Full Text Available Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour.

  11. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids.

    Science.gov (United States)

    Nickzad, Arvin; Lépine, François; Déziel, Eric

    2015-01-01

    Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour. PMID:26047513

  12. Enhanced bioconversion of ethylene glycol to glycolic acid by a newly isolated Burkholderia sp. EG13.

    Science.gov (United States)

    Gao, Xiaoxin; Ma, Zhengfei; Yang, Limin; Ma, Jiangquan

    2014-10-01

    Burkholderia sp. EG13 with high ethylene glycol-oxidizing activity was isolated from soil, which could be used for the synthesis of glycolic acid from the oxidation of ethylene glycol. Using the resting cells of Burkholderia sp. EG13 as biocatalysts, the optimum reaction temperature and pH were 30 °C and 6.0, respectively. After 24 h of biotransformation, the yield of glycolic acid from 200 mM ethylene glycol was 98.8 %. Furthermore, an integrated bioprocess for the production of glycolic acid which involved in situ product removal (ISPR) was investigated. Using fed-batch method with ISPR, a total of 793 mM glycolic acid has been accumulated in the reaction mixture after the 4th feed.

  13. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India

    Science.gov (United States)

    Peddayelachagiri, Bhavani V.; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H.; Batra, Harsh V.

    2016-01-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  14. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India.

    Science.gov (United States)

    Peddayelachagiri, Bhavani V; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H; Batra, Harsh V

    2016-09-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  15. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100.

    OpenAIRE

    Xun, L

    1996-01-01

    Burkholderia (formerly Pseudomonas) cepacia AC1100 mineralizes the herbicide 2,4,5-trichlorophenoxyacetate (2,4,5-T), and the first intermediate of 2,4,5-T degradation is 2,4,5-trichlorophenol. Chlorophenol 4-monooxygenase activity responsible for 2,4,5-trichlorophenol degradation was detected in the cell extract. The enzyme consisted of two components separated during purification, and both were purified to more than 95% homogeneity. The reconstituted enzyme catalyzed the hydroxylation of se...

  16. Isolation and characterization of Burkholderia sp. strain CCA53 exhibiting ligninolytic potential

    OpenAIRE

    Akita, Hironaga; Kimura, Zen-ichiro; Mohd Yusoff, Mohd Zulkhairi; Nakashima, Nobutaka; Hoshino, Tamotsu

    2016-01-01

    Microbial degradation of lignin releases fermentable sugars, effective utilization of which could support biofuel production from lignocellulosic biomass. In the present study, a lignin-degrading bacterium was isolated from leaf soil and identified as Burkholderia sp. based on 16S rRNA gene sequencing. This strain was named CCA53, and its lignin-degrading capability was assessed by observing its growth on medium containing alkali lignin or lignin-associated aromatic monomers as the sole carbo...

  17. An objective approach for Burkholderia pseudomallei strain selection as challenge material for medical countermeasures efficacy testing

    OpenAIRE

    Kristopher E Van Zandt; Apichai eTuanyok; Paul eKeim; Warren, Richard L.; H. Carl eGelhaus

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a rare disease of biodefense concern with high mortality and extreme difficulty in treatment. No human vaccines are available that protect against B. pseudomallei infection, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. Although clinical trials could be used to test the efficacy of new medical countermeasures (MCMs), the high mortality rate...

  18. An Objective Approach for Burkholderia pseudomallei Strain Selection as Challenge Material for Medical Countermeasures Efficacy Testing

    OpenAIRE

    Kristopher E Van Zandt; Tuanyok, Apichai; Paul S Keim; Warren, Richard L.; Gelhaus, H. Carl

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a rare disease of biodefense concern with high mortality and extreme difficulty in treatment. No human vaccines are available that protect against B. pseudomallei infection, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. Although clinical trials could be used to test the efficacy of new medical countermeasures (MCMs), the high mortality rate...

  19. Comparison of different PCR approaches for characterization of Burkholderia (Pseudomonas) cepacia isolates.

    OpenAIRE

    Liu, P. Y.; Shi, Z Y; Lau, Y J; HU, B S; Shyr, J M; Tsai, W S; Lin, Y. H.; Tseng, C Y

    1995-01-01

    In this study, we evaluated three PCR methods for epidemiological typing of Burkholderia (Pseudomonas) cepacia--PCR-ribotyping, arbitrarily primed PCR (AP-PCR) and enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR)--and compared them with pulsed-field gel electrophoresis. The analysis was performed with 31 isolates of B. cepacia, comprising 23 epidemiologically unrelated isolates and 8 isolates collected from the same patient during two episodes of bacteremia. Pulsed-fiel...

  20. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Directory of Open Access Journals (Sweden)

    Loren Baugh

    Full Text Available The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite.We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq. We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail.This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against

  1. In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi

    OpenAIRE

    Elshafie, Hazem S.; Ippolito Camele; Rocco Racioppi; Laura Scrano; Iacobellis, Nicola S.; Bufo, Sabino A.

    2012-01-01

    The trend to search novel microbial natural biocides has recently been increasing in order to avoid the environmental pollution from use of synthetic pesticides. Among these novel natural biocides are the bioactive secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga). The aim of this study is to determine antifungal activity of Bga strains against some phytopathogenic fungi. The fungicidal tests were carried out using cultures and cell-free culture filtrates against Botrytis c...

  2. A Burkholderia pseudomallei Toxin Inhibits Helicase Activity of Translation Factor eIF4A

    OpenAIRE

    Cruz, Abimael; Hautbergue, Guillaume M.; Artymiuk, Peter J.; Baker, Patrick J.; Bokori-Brown, Monika; Chang, Chung-Te; Dickman, Mark J.; Essex-Lopresti, Angela; Harding, Sarah V.; Mahadi, Nor Muhammad; Marshall, Laura E.; Mobbs, George W.; Mohamed, Rahmah; Nathan, Sheila; Ngugi, Sarah A.

    2011-01-01

    The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei reveals a similarity to E. coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of Gln339 of the translation initiation factor eIF4A, abolishing its helicase activity and inh...

  3. Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT.

    OpenAIRE

    Haigler, B E; Suen, W C; Spain, J C

    1996-01-01

    4-Methyl-5-nitrocatechol (MNC) is an intermediate in the degradation of 2,4-dinitrotoluene by Burkholderia sp. strain DNT. In the presence of NADPH and oxygen, MNC monooxygenase catalyzes the removal of the nitro group from MNC to form 2-hydroxy-5-methylquinone. The gene (dntB) encoding MNC monooxygenase has been previously cloned and characterized. In order to examine the properties of MNC monooxygenase and to compare it with other enzymes, we sequenced the gene encoding the MNC monooxygenas...

  4. Hexadecane and Tween 80 Stimulate Lipase Production in Burkholderia glumae by Different Mechanisms▿

    OpenAIRE

    Boekema, Bouke K. H. L.; Beselin, Anke; Breuer, Michael; Hauer, Bernhard; Koster, Margot; Rosenau, Frank; Jaeger, Karl-Erich; Tommassen, Jan

    2007-01-01

    Burkholderia glumae strain PG1 produces a lipase of biotechnological relevance. Lipase production by this strain and its derivative LU8093, which was obtained through classical strain improvement, was investigated under different conditions. When 10% hexadecane was included in the growth medium, lipolytic activity in both strains could be increased ∼7-fold after 24 h of growth. Hexadecane also stimulated lipase production in a strain containing the lipase gene fused to the tac promoter, indic...

  5. CD4+ T cell immunity to the Burkholderia pseudomallei ABC transporter LolC in melioidosis

    OpenAIRE

    Chu, Karen K.; Tippayawat, Patcharaporn; Walker, Nicola J.; Harding, Sarah V.; Atkins, Helen S.; Maillere, Bernard; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Altmann, Daniel M

    2010-01-01

    Burkholderia pseudomallei (Bp) causes melioidosis, a disease with a wide range of possible outcomes, from seroconversion and dormancy to sepsis and death. This spectrum of host-pathogen interactions poses challenging questions about heterogeneity in immunity to Bp. Models show protection to be dependent on CD4+ cells and IFNγ, but little is known about specific target antigens. Having previously implicated the ABC transporter, LolC, in protective immunity, we here use epitope prediction, HLA ...

  6. Identification of a LolC Homologue in Burkholderia pseudomallei, a Novel Protective Antigen for Melioidosis▿

    OpenAIRE

    Harland, David N; Chu, Karen; Haque, Ashraful; Nelson, Michelle; Walker, Nicola J.; Sarkar-Tyson, Mitali; Atkins, Timothy P.; Moore, Benjamin; Brown, Katherine A.; Bancroft, Gregory; Titball, Richard W.; Atkins, Helen S.

    2007-01-01

    Melioidosis is an emerging disease of humans in Southeast Asia and tropical Australia. The bacterium causing this disease, Burkholderia pseudomallei, is also considered a bioterrorism agent, and as yet there is no licensed vaccine for preventing B. pseudomallei infection. In this study, we evaluated selected proteins (LolC, PotF, and OppA) of the ATP-binding cassette systems of B. pseudomallei as candidate vaccine antigens. Nonmembrane regions of the B. pseudomallei proteins were expressed an...

  7. Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex

    OpenAIRE

    Bartholdson, S. Josefin; Brown, Alan R.; Mewburn, Ben R.; Clarke, David J.; Fry, Stephen C; Campopiano, Dominic J.; Govan, John R. W.

    2008-01-01

    The species that presently constitute the Burkholderia cepacia complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysa...

  8. Outbreak of Subclinical Mastitis in a Flock of Dairy Sheep Associated with Burkholderia cepacia Complex Infection

    OpenAIRE

    Berriatua, E.; Ziluaga, I.; Miguel-Virto, C.; Uribarren, P.; Juste, R.; Laevens, S.; Vandamme, P.; Govan, J. R. W.

    2001-01-01

    An outbreak of subclinical mastitis in a flock of 620 milking sheep was investigated. Microbiological and epidemiological analyses identified the causative agent as belonging to the Burkholderia cepacia complex (formerly Pseudomonas cepacia). Every ewe in the milking flock was individually tested for subclinical mastitis on two separate occasions, 6 weeks apart, by the California (rapid) mastitis test (CMT). The proportion of CMT-positive ewes was 69 of 393 (17.6%) on the first sampling and 2...

  9. Burkholderia cepacia and cystic fibrosis: do natural environments present a potential hazard?

    OpenAIRE

    Butler, S. L.; DOHERTY, C.J; Hughes, J. E.; Nelson, J W; Govan, J R

    1995-01-01

    An environmental survey of 55 sites yielded only 12 Burkholderia cepacia isolates, none of which displayed the phenotypic properties of a multiresistant epidemic strain associated with pulmonary colonization in patients with cystic fibrosis. Although the environment probably poses a low risk for patients with cystic fibrosis as a source of B. cepacia, the pathogenic potential of individual environmental strains remains unclear. We advise caution in the development of B. cepacia as a biocontro...

  10. Evaluation of six commercial DNA extraction kits for recovery of Burkholderia pseudomallei DNA.

    Science.gov (United States)

    Marques, Maria Angela de Mello; Zimmermann, Pia; Messelhäußer, Ute; Sing, Andreas

    2012-12-01

    Six commercially available DNA extraction kits, as well as thermal lysis and proteinase K DNA extraction were evaluated regarding bacterial inactivation, DNA yield and purity, and their use in a Burkholderia pseudomallei real-time PCR. While all methods successfully inactivated the bacteria, by measuring DNA purity and the level of detection by real-time PCR, the proteinase K method was the most sensitive.

  11. Bioremediation of refinery wastewater using immobilised Burkholderia cepacia and Corynebacterium sp and their transconjugants

    OpenAIRE

    Abdullahi T. Ajao; Sabo E. Yakubu; Veronica J. Umoh; Joseph B. Ameh

    2013-01-01

    When oil spill occurs, it poses serious toxic hazards to all forms of life. Mixed culture of Burkholderia cepacia and Corynebacterium sp isolated from refinery sludge using selective enrichment technique was used for bioremediation of refinery wastewater in a laboratoryscale bioreactor. Physicochemical parameters of both raw and treated water were as determined and compared with Federal Environ - mental Protection Agency (FEPA-limit, Abuja, Nigeria) to asses the efficiency of the bioremediati...

  12. An Effect of Biofield Treatment on Multidrug-resistant Burkholderia cepacia: A Multihost Pathogen

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. The analysis was done after 10 days of treatment and compared with con...

  13. Draft Genome Sequence of Burkholderia sp. Strain CCA53, Isolated from Leaf Soil

    Science.gov (United States)

    Kimura, Zen-ichiro; Yusoff, Mohd Zulkhairi Mohd; Nakashima, Nobutaka; Hoshino, Tamotsu

    2016-01-01

    Burkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.0% and comprising 9,329 predicted coding sequences. PMID:27389268

  14. Antimicrobial Drug–Selection Markers for Burkholderia pseudomallei and B. mallei

    OpenAIRE

    Schweizer, Herbert P.; Peacock, Sharon J.

    2008-01-01

    Genetic research into the select agents Burkholderia pseudomallei and B. mallei is currently hampered by a paucity of approved antimicrobial drug–selection markers. The strict regulations imposed on researchers in the United States but not in other parts of the world lead to discrepancies in practice, hinder distribution of genetically modified strains, and impede progress in the field. Deliberation and decisions regarding alternative selection markers (antimicrobial and nonantimicrobial drug...

  15. Survival, Sublethal Injury, and Recovery of Environmental Burkholderia pseudomallei in Soil Subjected to Desiccation

    OpenAIRE

    Larsen, Eloise; Smith, James J.; Norton, Robert; Corkeron, Maree

    2013-01-01

    Environmental Burkholderia pseudomallei isolated from sandy soil at Castle Hill, Townsville, in the dry tropic region of Queensland, Australia, was inoculated into sterile-soil laboratory microcosms subjected to variable soil moisture. Survival and sublethal injury of the B. pseudomallei strain were monitored by recovery using culture-based methods. Soil extraction buffer yielded higher recoveries as an extraction agent than sterile distilled water. B. pseudomallei was not recoverable when in...

  16. Fatal Burkholderia pseudomallei Infection Initially Reported as a Bacillus Species, Ohio, 2013

    OpenAIRE

    Doker, Thomas J.; Quinn, Celia L.; Salehi, Ellen D.; Sherwood, Joshua J.; Benoit, Tina J.; Elrod, Mindy Glass; Gee, Jay E.; Shadomy, Sean V.; Bower, William A.; Hoffmaster, Alex R.; Walke, Henry T.; Blaney, David D.; DiOrio, Mary S.

    2014-01-01

    A fatal case of melioidosis was diagnosed in Ohio one month after culture results were initially reported as a Bacillus species. To identify a source of infection and assess risk in patient contacts, we abstracted patient charts; interviewed physicians and contacts; genetically characterized the isolate; performed a Burkholderia pseudomallei antibody indirect hemagglutination assay on household contacts and pets to assess seropositivity; and collected household plant, soil, liquid, and insect...

  17. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments

    Directory of Open Access Journals (Sweden)

    T. Revathy

    2015-01-01

    Full Text Available The polycyclic aromatic hydrocarbons (PAHs pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2–5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%. However, naphthalene and aniline were degraded only at lower concentration (0.1% and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs.

  18. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments.

    Science.gov (United States)

    Revathy, T; Jayasri, M A; Suthindhiran, K

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2-5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  19. Effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 580-185 (Korea, Republic of); Choi, Kyoung-Hee [Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, Jeollabuk 570-749 (Korea, Republic of); Lee, Ju-Woon, E-mail: sjwlee@kaeri.re.k [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 580-185 (Korea, Republic of)

    2010-04-15

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D{sub 10} values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased (P<0.05) as irradiation dose increased, and no differences (P>=0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D{sub 10} values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  20. Effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    Science.gov (United States)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-04-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( Pbacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  1. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids

    Directory of Open Access Journals (Sweden)

    Woods Donald E

    2009-12-01

    Full Text Available Abstract Background Rhamnolipids are surface active molecules composed of rhamnose and β-hydroxydecanoic acid. These biosurfactants are produced mainly by Pseudomonas aeruginosa and have been thoroughly investigated since their early discovery. Recently, they have attracted renewed attention because of their involvement in various multicellular behaviors. Despite this high interest, only very few studies have focused on the production of rhamnolipids by Burkholderia species. Results Orthologs of rhlA, rhlB and rhlC, which are responsible for the biosynthesis of rhamnolipids in P. aeruginosa, have been found in the non-infectious Burkholderia thailandensis, as well as in the genetically similar important pathogen B. pseudomallei. In contrast to P. aeruginosa, both Burkholderia species contain these three genes necessary for rhamnolipid production within a single gene cluster. Furthermore, two identical, paralogous copies of this gene cluster are found on the second chromosome of these bacteria. Both Burkholderia spp. produce rhamnolipids containing 3-hydroxy fatty acid moieties with longer side chains than those described for P. aeruginosa. Additionally, the rhamnolipids produced by B. thailandensis contain a much larger proportion of dirhamnolipids versus monorhamnolipids when compared to P. aeruginosa. The rhamnolipids produced by B. thailandensis reduce the surface tension of water to 42 mN/m while displaying a critical micelle concentration value of 225 mg/L. Separate mutations in both rhlA alleles, which are responsible for the synthesis of the rhamnolipid precursor 3-(3-hydroxyalkanoyloxyalkanoic acid, prove that both copies of the rhl gene cluster are functional, but one contributes more to the total production than the other. Finally, a double ΔrhlA mutant that is completely devoid of rhamnolipid production is incapable of swarming motility, showing that both gene clusters contribute to this phenotype. Conclusions Collectively, these

  2. Draft genome sequence of Burkholderia sordidicola S170, a potential plant growth promoter isolated from coniferous forest soil in the Czech Republic

    DEFF Research Database (Denmark)

    Lladó, Salvador; Xu, Zhuofei; Sørensen, Søren Johannes;

    2014-01-01

    Burkholderia species are key players in the accumulation of carbon from cellulose decomposition in coniferous forest ecosystems. We report here the draft genome of Burkholderia sordidicola strain S170, containing features associated with known genes involved in plant growth promotion, the biologi...

  3. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  4. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    Science.gov (United States)

    Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  5. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    Science.gov (United States)

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. PMID:26774501

  6. Rhizonin A from Burkholderia sp. KCTC11096 and Its Growth Promoting Role in Lettuce Seed Germination

    Directory of Open Access Journals (Sweden)

    Sang-Mo Kang

    2012-07-01

    Full Text Available We isolated and identified a gibberellin-producing Burkholderia sp. KCTC 11096 from agricultural field soils. The culture filtrate of plant growth promoting rhizobacteria (PGPR significantly increased the germination and growth of lettuce and Chinese cabbage seeds. The ethyl acetate extract of the PGPR culture showed significantly higher rate of lettuce seed germination and growth as compared to the distilled water treated control. The ethyl acetate fraction of the Burkholderia sp. was subjected to bioassay-guided isolation and we obtained for the first time from a Burkholderia sp. the plant growth promoting compound rhizonin A (1, which was characterized through NMR and MS techniques. Application of various concentrations of 1 significantly promoted the lettuce seed germination as compared to control.

  7. Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase from Burkholderia sp. strain RASC.

    OpenAIRE

    Suwa, Y.; Wright, A D; Fukimori, F; Nummy, K A; Hausinger, R P; Holben, W E; Forney, L J

    1996-01-01

    The findings of previous studies indicate that the genes required for metabolism of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) are typically encoded on broad-host-range plasmids. However, characterization of plasmid-cured strains of Burkholderia sp. strain RASC, as well as mutants obtained by transposon mutagenesis, suggested that the 2,4-D catabolic genes were located on the chromosome of this strain. Mutants of Burkholderia strain RASC unable to degrade 2,4-D (2,4-D- strains) were...

  8. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  9. Detection of Burkholderia pseudomallei O-antigen serotypes in near-neighbor species

    Directory of Open Access Journals (Sweden)

    Stone Joshua K

    2012-11-01

    Full Text Available Abstract Background Burkholderia pseudomallei is the etiological agent of melioidosis and a CDC category B select agent with no available effective vaccine. Previous immunizations in mice have utilized the lipopolysaccharide (LPS as a potential vaccine target because it is known as one of the most important antigenic epitopes in B. pseudomallei. Complicating this strategy are the four different B. pseudomallei LPS O-antigen types: A, B, B2, and rough. Sero-crossreactivity is common among O-antigens of Burkholderia species. Here, we identified the presence of multiple B. pseudomallei O-antigen types and sero-crossreactivity in its near-neighbor species. Results PCR screening of O-antigen biosynthesis genes, phenotypic characterization using SDS-PAGE, and immunoblot analysis showed that majority of B. mallei and B. thailandensis strains contained the typical O-antigen type A. In contrast, most of B. ubonensis and B. thailandensis-like strains expressed the atypical O-antigen types B and B2, respectively. Most B. oklahomensis strains expressed a distinct and non-seroreactive O-antigen type, except strain E0147 which expressed O-antigen type A. O-antigen type B2 was also detected in B. thailandensis 82172, B. ubonensis MSMB108, and Burkholderia sp. MSMB175. Interestingly, B. thailandensis-like MSMB43 contained a novel serotype B positive O-antigen. Conclusions This study expands the number of species which express B. pseudomallei O-antigen types. Further work is required to elucidate the full structures and how closely these are to the B. pseudomallei O-antigens, which will ultimately determine the efficacy of the near-neighbor B serotypes for vaccine development.

  10. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation.

    Directory of Open Access Journals (Sweden)

    Bruno Cuzzi

    Full Text Available The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained

  11. The promise of bacteriophage therapy for Burkholderia cepacia complex respiratory infections.

    Directory of Open Access Journals (Sweden)

    Diana Dawn Semler

    2012-01-01

    Full Text Available In recent times, increased attention has been given to evaluating the efficacy of phage therapy, especially in scenarios where the bacterial infectious agent of interest is highly antibiotic resistant. In this regard, phage therapy is especially applicable to infections caused by the Burkholderia cepacia complex (BCC since members of the BCC are antibiotic pan-resistant. Current studies in BCC phage therapy are unique from many other avenues of phage therapy research in that the research is not only comprised of phage isolation, in vitro phage characterization and in vivo infection model efficacy, but also adapting aerosol drug delivery techniques to aerosol phage formulation delivery and storage.

  12. Identification and cloning of four riboswitches from Burkholderia pseudomallei strain K96243

    Science.gov (United States)

    Munyati-Othman, Noor; Fatah, Ahmad Luqman Abdul; Piji, Mohd Al Akmarul Fizree Bin Md; Ramlan, Effirul Ikhwan; Raih, Mohd Firdaus

    2015-09-01

    Structured RNAs referred as riboswitches have been predicted to be present in the genome sequence of Burkholderia pseudomallei strain K96243. Four of the riboswitches were identified and analyzed through BLASTN, Rfam search and multiple sequence alignment. The RNA aptamers belong to the following riboswitch classifications: glycine riboswitch, cobalamin riboswitch, S-adenosyl-(L)-homocysteine (SAH) riboswitch and flavin mononucleotide (FMN) riboswitch. The conserved nucleotides for each aptamer were identified and were marked on the secondary structure generated by RNAfold. These riboswitches were successfully amplified and cloned for further study.

  13. Eradication of Burkholderia cepacia Using Inhaled Aztreonam Lysine in Two Patients with Bronchiectasis

    Directory of Open Access Journals (Sweden)

    A. Iglesias

    2014-01-01

    Full Text Available There are not many articles about the chronic bronchial infection/colonization in patients with underlying lung disease other than cystic fibrosis (CF, especially with non-CF bronchiectasis (NCFBQ. The prevalence of B. cepacia complex is not well known in NCFBQ. The vast majority of published clinical data on Burkholderia infection in individuals with CF is comprised of uncontrolled, anecdotal, and/or single center experiences, and no consensus has emerged regarding treatment. We present two cases diagnosed with bronchiectasis (BQ of different etiology, with early pulmonary infection by B. cepacia complex, which was eradicated with inhaled aztreonam lysine.

  14. A rare case of community acquired Burkholderia cepacia infection presenting as pyopneumothorax in an immunocompetent individual

    Institute of Scientific and Technical Information of China (English)

    Suman S Karanth; Hariharan Regunath; Kiran Chawla; Mukhyaprana Prabhu

    2012-01-01

    Burkholderia cepacia (B. cepacia) infection is rarely reported in an immunocompetent host. It is a well known occurence in patients with cystic fibrosis and chronic granulomatous disease where it increases both morbidity and mortality. It has also been included in the list of organisms causing nosocomial infections in an immunocompetent host, most of them transmitted from the immunocompromised patient in which this organism harbors. We report a rare case of isolation of B. cepacia from the bronchoalveolar lavage fluid of an immunocompetent agriculturist who presented with productive cough and fever associated with a pyopneumothorax. This is the first case of community acquired infection reported in an immunocompetent person in India.

  15. A rare case of community acquired Burkholderia cepacia infection presenting as pyopneumothorax in an immunocompetent individual

    Directory of Open Access Journals (Sweden)

    Suman S Karanth

    2012-02-01

    Full Text Available Burkholderia cepacia (B. cepacia infection is rarely reported in an immunocompetent host. It is a well known occurence in patients with cystic fibrosis and chronic granulomatous disease where it increases both morbidity and mortality. It has also been included in the list of organisms causing nosocomial infections in an immunocompetent host, most of them transmitted from the immunocompromised patient in which this organism harbors. We report a rare case of isolation of B. cepacia from the bronchoalveolar lavage fluid of an immunocompetent agriculturist who presented with productive cough and fever associated with a pyopneumothorax. This is the first case of community acquired infection reported in an immunocompetent person in India.

  16. Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13

    OpenAIRE

    Rezende Graminho, Eduardo; Takaya, Naoki; Nakamura, Akira; Hoshino, Takayuki

    2015-01-01

    A phytase-producing bacterium, Burkholderia sp. a13 (JCM 30421), was isolated from Lake Kasumigaura by enrichment cultivation using minimum medium containing phytic acid as the sole phosphorus source. The phytase production by strain a13 was induced by the presence of phytic acid and repressed by the addition of glucose. The purified enzyme had a molecular weight of 44 kDa and a phytase activity of 174 μmol min–1 mg–1. The enzyme showed broad substrate specificity, but the highest activity wa...

  17. Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species

    Science.gov (United States)

    Johansson, Leena-Sisko; Saastamoinen, Tuomas

    1999-04-01

    We have investigated the interactions of an exopolymer-producing bacteria, Burkholderia sp. with polished AISI 304 stainless steel substrates using X-ray photoelectron spectroscopy (XPS). Steel coupons were exposed to the pure bacteria culture in a specially designed flowcell for 6 h during which the experiment was monitored in situ with an optical microscope. XPS results verified the formation of biofilm containing extracellular polymer on all the samples exposed to bacteria. Sputter results indicated that some ions needed for metabolic processes were trapped within the biofilm. Changes in the relative Fe concentration and Fe 2p peak shape indicated that also iron had accumulated into the biofilm.

  18. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis.

    Science.gov (United States)

    Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M; Showmaker, Kurt C; Smith, Leif; Peterson, Daniel G; Lu, Shien

    2016-06-01

    Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14

  19. Use of a recombinant burkholderia intracellular motility a protein for immunodiagnosis of glanders.

    Science.gov (United States)

    Kumar, Subodh; Malik, Praveen; Verma, Shailendra Kumar; Pal, Vijai; Gautam, Vandana; Mukhopadhyay, Chiranjay; Rai, Ganga Prasad

    2011-09-01

    Glanders, caused by the Gram-negative, nonmotile bacterium Burkholderia mallei, is a contagious and highly fatal disease of equines. During the last decade, the number of glanders outbreaks has increased steadily. The disease also has high zoonotic significance and B. mallei is listed biological warfare agent. The complement fixation test (CFT) is a routinely used and internationally recognized test to screen equine sera for the glanders. However, discrepant results have been observed using the CFT. The low sensitivity and specificity of the CFT and enzyme-linked immunosorbent assay (ELISA) have been linked to the use of crude test antigens. We expressed a novel recombinant Burkholderia intracellular motility A (rBimA) protein in Escherichia coli for the diagnosis of equine glanders. Purified rBimA was used in an indirect ELISA format. All of the 21 true-positive serum samples used in the study tested positive, whereas only 17 of the 1,524 potentially negative sera tested positive by indirect ELISA, thus exhibiting 100% sensitivity and 98.88% specificity. Also, rBimA protein did not react with melioidosis patient and normal healthy human serum samples, showing its high specificity. The developed assay can be used as a simple and rapid tool for diagnosis of glanders in equine serum samples. An Indian patent (1328/DEL/2010) has been filed for the reagent. PMID:21752949

  20. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera; Taciro, Marilda Keico; Mendonça, Thatiane Teixeira; Silva, Luiziana Ferreira

    2014-09-01

    Burkholderia sp. F24, originally isolated from soil, was capable of growth on xylose and removed organic inhibitors present in a hemicellulosic hydrolysate and simultaneously produced poly-3-hydroxybutyrate (P3HB). Using non-detoxified hydrolysate, Burkholderia sp. F24 reached a cell dry weight (CDW) of 6.8 g L(-1), containing 48 % of P3HB and exhibited a volumetric productivity (PP3HB) of 0.10 g L(-1) h(-1). Poly-3-hydroxybutyrate-co-3-hydroxyvalerate copolymers (P3HB-co-3HV) were produced using xylose and levulinic acid (LA) as carbon sources. In shake flask cultures, the 3HV content in the copolymer increased from 9 to 43 mol% by adding LA from 1.0 to 5.0 g L(-1). In high cell density cultivation using concentrated hemicellulosic hydrolysate F24 reached 25.04 g L(-1) of CDW containing 49 % of P3HB and PP3HB of 0.28 g L(-1 )h(-1). Based on these findings, second-generation ethanol and bioplastics from sugarcane bagasse is proposed. PMID:25059637

  1. Interbacterial signaling via Burkholderia contact-dependent growth inhibition system proteins.

    Science.gov (United States)

    Garcia, Erin C; Perault, Andrew I; Marlatt, Sara A; Cotter, Peggy A

    2016-07-19

    In prokaryotes and eukaryotes, cell-cell communication and recognition of self are critical to coordinate multicellular functions. Although kin and kind discrimination are increasingly appreciated to shape naturally occurring microbe populations, the underlying mechanisms that govern these interbacterial interactions are insufficiently understood. Here, we identify a mechanism of interbacterial signal transduction that is mediated by contact-dependent growth inhibition (CDI) system proteins. CDI systems have been characterized by their ability to deliver a polymorphic protein toxin into the cytoplasm of a neighboring bacterium, resulting in growth inhibition or death unless the recipient bacterium produces a corresponding immunity protein. Using the model organism Burkholderia thailandensis, we show that delivery of a catalytically active CDI system toxin to immune (self) bacteria results in gene expression and phenotypic changes within the recipient cells. Termed contact-dependent signaling (CDS), this response promotes biofilm formation and other community-associated behaviors. Engineered strains that are isogenic with B. thailandensis, except the DNA region encoding the toxin and immunity proteins, did not display CDS, whereas a strain of Burkholderia dolosa producing a nearly identical toxin-immunity pair induced signaling in B. thailandensis Our data indicate that bcpAIOB loci confer dual benefits; they direct antagonism toward non-self bacteria and promote cooperation between self bacteria, with self being defined by the bcpAIOB allele and not by genealogic relatedness. PMID:27335458

  2. Inhibition of Burkholderia multivorans Adhesion to Lung Epithelial Cells by Bivalent Lactosides

    Directory of Open Access Journals (Sweden)

    Trinidad Velasco-Torrijos

    2012-08-01

    Full Text Available Burkholderia cepacia complex (Bcc is an opportunistic pathogen in cystic fibrosis patients which is inherently resistant to antimicrobial agents. The mechanisms of attachment and pathogenesis of Bcc, a group of 17 species, are poorly understood. The most commonly identified Bcc species in newly colonised patients, Burkholderia multivorans, continues to be acquired from the environment. Development of therapies which can prevent or reduce the risk of colonization on exposure to Bcc in the environment would be a better alternative to antimicrobial agents. Previously, it has been shown that Bcc strains bound to many glycolipid receptors on lung epithelia. Using a real-time PCR method to quantify the levels of binding of B. multivorans to the lung epithelial cells, we have examined glycoconjugate derivatives for their potential to inhibit host cell attachment. Bivalent lactosides previously shown to inhibit galectin binding significantly reduced the attachment of B. multivorans to CF lung epithelial cells at micromolar concentrations. This was in contrast to monosaccharides and lactose, which were only effective in the millimolar range. Development of glycoconjugate therapies such as these, which inhibit attachment to lung epithelial cells, represent an alternative means of preventing infection with inherently antimicrobially resistant pathogens such as B. multivorans.

  3. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis.

    Science.gov (United States)

    Casey, William T; Spink, Natasha; Cia, Felipe; Collins, Cassandra; Romano, Maria; Berisio, Rita; Bancroft, Gregory J; McClean, Siobhán

    2016-05-17

    Burkholderia pseudomallei is the causative agent of melioidosis, which is associated with a range of clinical manifestations, including sepsis and fatal pneumonia and is endemic in Southeast Asia and Northern Australia. Treatment can be challenging and control of infection involves prolonged antibiotic therapy, yet there are no approved vaccines available to prevent infection. Our aim was to develop and assess the potential of a prophylactic vaccine candidate targeted against melioidosis. The identified candidate is the 22kDa outer membrane protein, OmpW. We previously demonstrated that this protein was immunoprotective in mouse models of Burkholderia cepacia complex (Bcc) infections. We cloned Bp_ompW in Escherichia coli, expressed and purified the protein. Endotoxin free protein administered with SAS adjuvant protected Balb/C mice (75% survival) relative to controls (25% survival) (p<0.05). A potent serological response was observed with IgG2a to IgG1 ratio of 6.0. Furthermore C57BL/6 mice were protected for up to 80 days against a lethal dose of B. pseudomallei and surpassed the efficacy of the live attenuated 2D2 positive control. BpompW is homologous across thirteen sequenced B. pseudomallei strains, indicating that it should be broadly protective against B. pseudomallei. In conclusion, we have demonstrated that BpOmpW is able to induce protective immunity against melioidosis and is likely to be an effective vaccine antigen, possibly in combination with other subunit antigens. PMID:27091689

  4. Genomovars of Burkholderia cepacia Complex from Rice Rhizosphere and Clinic in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Burkholderia cepacia is regarded as a genetically distinct but phenotypically similar bacteria group referring to Burkholderia cepacia complex (Bcc), which is found not only in clinic but also in rice growing environment. It is very important in microbial safety of rice for us to understand the genomovar status of Bcc. Genomovar analysis was performed among 87 Bcc isolates by means of Hae Ⅲ-recA RFLP assays and species-specific PCR tests. Three genomovars were found from the rice rhizosphere including Ⅰ, ⅢB and Ⅴ, and genomovar Ⅴ was predominant. Genomovars Ⅰ, ⅢA and ⅢB existed in the clinical samples, and genomovar ⅢA was the most popular. It showed that genomovar composition was different between the Bcc strains from the rice rhizosphere and clinical environment. Simultaneously, the results revealed the genetic diversity of Bcc strains from the rice rhizosphere, and genomovar Ⅲ referred as virulent species in clinic also existed in the rice rhizosphere.

  5. Chronic suppurative joint effusion due to burkholderia pseudomallei: A case report

    Directory of Open Access Journals (Sweden)

    Madhavi Deshmukh

    2013-01-01

    Full Text Available Burkholderia pseudomallei, a Gram-negative bacillus is the causative agent of Melioidosis, a glanders-like disease, primarily a disease of animals. Melioidosis has been only a rare and sporadic disease in humans outside its endemic region. Currently, diagnosis of B. pseudomallei in the clinical laboratory is very difficult, owing to low awareness of physicians to the nonspecific clinical manifestations, lack of responsiveness among microbiologists outside endemic areas, identification systems in the average sentinel laboratory, and the biosafety conditions necessary to process these organisms. We report a case of chronic left hip joint effusion in a known case of diabetes mellitus. Gram stain of computed tomography (CT-guided aspirate from the joint revealed Gram-negative bacilli along with pus cells. Culture was confirmed as Burkholderia pseudomallei on Vitek2C, which was sensitive to ceftazidime and trimethoprim/sulfmethoxazole. Unfortunately, patient could not be started on appropriate antibiotics due to delay in detection and patient succumbed to severe septicemia. This case is reported to highlight importance of automated identification and sensitivity especially in nonendemic areas and unusual antibiogram of this organism for which disc diffusion method is not standardized.

  6. Use of a recombinant burkholderia intracellular motility a protein for immunodiagnosis of glanders.

    Science.gov (United States)

    Kumar, Subodh; Malik, Praveen; Verma, Shailendra Kumar; Pal, Vijai; Gautam, Vandana; Mukhopadhyay, Chiranjay; Rai, Ganga Prasad

    2011-09-01

    Glanders, caused by the Gram-negative, nonmotile bacterium Burkholderia mallei, is a contagious and highly fatal disease of equines. During the last decade, the number of glanders outbreaks has increased steadily. The disease also has high zoonotic significance and B. mallei is listed biological warfare agent. The complement fixation test (CFT) is a routinely used and internationally recognized test to screen equine sera for the glanders. However, discrepant results have been observed using the CFT. The low sensitivity and specificity of the CFT and enzyme-linked immunosorbent assay (ELISA) have been linked to the use of crude test antigens. We expressed a novel recombinant Burkholderia intracellular motility A (rBimA) protein in Escherichia coli for the diagnosis of equine glanders. Purified rBimA was used in an indirect ELISA format. All of the 21 true-positive serum samples used in the study tested positive, whereas only 17 of the 1,524 potentially negative sera tested positive by indirect ELISA, thus exhibiting 100% sensitivity and 98.88% specificity. Also, rBimA protein did not react with melioidosis patient and normal healthy human serum samples, showing its high specificity. The developed assay can be used as a simple and rapid tool for diagnosis of glanders in equine serum samples. An Indian patent (1328/DEL/2010) has been filed for the reagent.

  7. Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders.

    Science.gov (United States)

    Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A; Sbrana, Elena; Torres, Alfredo G

    2016-08-01

    Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain.

  8. A comparison of virulence of intraperitoneal infection of Burkholderia mallei strains in guinea-pigs

    Directory of Open Access Journals (Sweden)

    Eslampanah, M.

    2015-12-01

    Full Text Available Male guinea pigs show high susceptibility to Burkholderia mallei and have been used as animal models in glanders studies. The purpose of our study was to elucidate glanders comparative pathogenesis in guinea pigs. We present here the histological changes and bacterial isolation that develop over time in guinea pigs inoculated intraperitoneally (IP with two strain of B. mallei. Ten male guinea pigs were inoculated intraperitoneally with either the standard strain of Burkholderia mallei or B. mallei strain from Siberian tiger at the Tehran zoo individually, then euthanized at multiple time points post inoculation. Histopathologic changes were similar in both groups and consisted of pyogranulomatous inflammation. In the standard strain study guinea pigs, changes were first seen at 48 hours in liver and heart then in spleen, lung, and kidney at day 3. These changes generally reached maximal incidence and severity by day 3 but decreased by comparison in all tissues except the liver, lung and kidney. Changes were first seen in Siberian tiger strain study guinea pigs also at 48 hours in lung, liver and spleen. At day 3, changes were present in liver, spleen and mediastinal lymph nodes. These changes were maximal at day 4 and 5. In contrast there are differences in incidence and severity between the two strain study guinea pigs. Our findings based on histopathological study indicate that Siberian tiger strain has more severity in gross and necropsy examination but in pathologic lesion was qualitatively similar generally. Additionally, by bacterial isolation, we confirmed the presence of B. mallei.

  9. Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates.

    Science.gov (United States)

    Verstraete, Brecht; Peeters, Charlotte; van Wyk, Braam; Smets, Erik; Dessein, Steven; Vandamme, Peter

    2014-05-01

    The best-known interaction between bacteria and plants is the Rhizobium-legume symbiosis, but other bacteria-plant interactions exist, such as between Burkholderia and Rubiaceae (coffee family). A number of bacterial endophytes in Rubiaceae are closely related to the soil bacterium Burkholderia caledonica. This intriguing observation is explored by investigating isolates from different geographic regions (Western Europe vs. sub-Saharan Africa) and from different niches (free-living bacteria in soil vs. endophytic bacteria in host plants). The multilocus sequence analysis shows five clades, of which clade 1 with two basal isolates deviates from the rest and is therefore not considered further. All other isolates belong to the species B. caledonica, but two genetically different groups are identified. Group A holds only European isolates and group B holds isolates from Africa, with the exception of one European isolate. Although the European and African isolates are considered one species, some degree of genetic differentiation is evident. Endophytic isolates of B. caledonica are found in certain members of African Rubiaceae, but only in group B. Within this group, the endophytes cannot be distinguished from the soil isolates, which indicates a possible exchange of bacteria between soil and host plant. PMID:24433672

  10. Outbreak of Subclinical Mastitis in a Flock of Dairy Sheep Associated with Burkholderia cepacia Complex Infection

    Science.gov (United States)

    Berriatua, E.; Ziluaga, I.; Miguel-Virto, C.; Uribarren, P.; Juste, R.; Laevens, S.; Vandamme, P.; Govan, J. R. W.

    2001-01-01

    An outbreak of subclinical mastitis in a flock of 620 milking sheep was investigated. Microbiological and epidemiological analyses identified the causative agent as belonging to the Burkholderia cepacia complex (formerly Pseudomonas cepacia). Every ewe in the milking flock was individually tested for subclinical mastitis on two separate occasions, 6 weeks apart, by the California (rapid) mastitis test (CMT). The proportion of CMT-positive ewes was 69 of 393 (17.6%) on the first sampling and 27 of 490 (5.5%) on the second sampling. Pure B. cepacia cultures identified with the API 20 NE system were grown from 64 of 96 (66.7%) CMT-positive ewes and from 1 of 33 (3.0%) CMT-negative ewes. Statistical analysis confirmed the significant association between a positive CMT result and a positive culture result for B. cepacia complex. Additional polyphasic taxonomic analyses of eight isolates showed that seven belonged to B. cepacia genomovar III; the remaining isolate was identified as Burkholderia vietnamiensis (formerly B. cepacia genomovar V). Bacteriological investigation of samples from milking equipment and other environmental sites failed to identify “B. cepacia” in any of the samples taken. To our knowledge, this is the first report of an outbreak of natural infection in animals caused by B. cepacia complex and the first description of B. cepacia complex infection in sheep. PMID:11230416

  11. Maize responds to Azotobacter sp and Burkholderia sp inoculation at reduced dose of nitrogen fertilizer

    Directory of Open Access Journals (Sweden)

    Juan Manuel Sánchez-Yáñez

    2014-03-01

    Full Text Available The positive maize response to inoculation with plant growth promoting bacteria (PGPB as Azotobacter sp and Burkholderia sp an endophytic type, are an alternative to reduced and optimize nitrogen fertilizer (NF dose, recommended for this plant, without adversely affect its growth. The aim of this study was to analyze maize respond to inoculation with Azotobacter sp and Burkholderia sp at the dose 50% of FN. Used an experimental design of randomized blocks. By response variables: percent germination (%, the shoot and root phenology: plant height (PH, root length (RL and biomass: shoot fresh weight (SFW and root fresh weight (RFW, the shoot dry weight (SDW and root dry weight (RDW. The results indicated a positive maize respond to PGPB inoculation at germination, seedling and flowering level, reached a RDW of 7.03 g, statistically significant value compared with 2.60 g of RDW non inoculated maize feed with NF dose recommended regard as relative control (RC. This suggests a synergistic interaction among these PGPB in synthesis of plant growth promoting substances (PGPS on maize, to optimize the reduced NF dose.

  12. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.

    Science.gov (United States)

    Mello Bueno, Pabline Rafaella; de Oliveira, Tatianne Ferreira; Castiglioni, Gabriel Luis; Soares Júnior, Manoel Soares; Ulhoa, Cirano Jose

    2015-01-01

    This study aimed to analyze the physical and chemical characteristics of Amano PS commercial lipase - Burkholderia cepacia and lipase produced by Burkholderia cepacia strain ATCC 25416, in addition to studying the hydrolysis of agro-industrial effluent collected in a fried potato industry. The optimum temperature for increasing lipase activity was 37 °C. The temperature increase caused a decrease in thermostability of lipase, and the commercial lipase was less stable, with values of 10.5, 4.6 and 4.9%, respectively, lower than those obtained by lipase from strain ATCC 25416, at temperatures of 40, 50 and 60 °C. The enzymatic activity was higher in alkaline conditions, achieving better results at pH 8.0. The pH was the variable that most influenced the hydrolysis of triacylglycerides of the agro-industrial effluent, followed by enzyme concentration, and volume of gum arabic used in the reaction medium. Thus, it can be observed that the enzymatic hydrolytic process of the studied effluent presents a premising contribution to reduction of environmental impacts of potato chip processing industries. PMID:25860696

  13. Synthesis of a selective inhibitor of a fucose binding bacterial lectin from Burkholderia ambifaria.

    Science.gov (United States)

    Richichi, Barbara; Imberty, Anne; Gillon, Emilie; Bosco, Rosa; Sutkeviciute, Ieva; Fieschi, Franck; Nativi, Cristina

    2013-06-28

    Burkholderia ambifaria is a bacterium member of the Burkholderia cepacia complex (BCC), a closely related group of Gram-negative bacteria responsible for "cepacia syndrome" in immunocompromised patients. B. ambifaria produces BambL, a fucose-binding lectin that displays fine specificity to human fucosylated epitopes. Here, we report the first example of a synthetic ligand able to selectively bind, in the micromolar range, the pathogen-lectin BambL. The synthetic routes for the preparation of the α conformationally constrained fucoside are described, focusing on a totally diastereoselective inverse electron demand [4 + 2] Diels-Alder reaction. Isothermal titration calorimetry (ITC) demonstrated that this compound binds to the pathogen-associated lectin BambL with an affinity comparable to that of natural fucose-containing oligosaccharides. No binding was observed by LecB, a fucose-binding lectin from Pseudomonas aeruginosa, and the differences in affinity between the two lectins could be rationalized by modeling. Furthermore, SPR analyses showed that this fucomimetic does not bind to the human fucose-binding lectin DC-SIGN, thus supporting the selective binding profile towards B. ambifaria lectin.

  14. Research Status and Prospect ofBurkholderia glumae, the Pathogen Causing Bacterial Panicle Blight

    Institute of Scientific and Technical Information of China (English)

    CUI Zhou-qi; ZHU Bo; XIE Guan-lin; LI Bin; HUANG Shi-wen

    2016-01-01

    Bacterial panicle blight caused by Burkholderia glumae is one of the most severe seed-borne bacterial diseases of rice in the world. Currently, this disease has affected many countries of Asia, Africa, South and North America. It is a typical example of the shifting from minor plant disease to major disease due to the changes of environmental conditions. Some virulent factors of B. glumae have been identified, including toxoflavins and lipases, whose productions are dependent on the TofI/TofR quorum-sensing system, and type III effectors. In spite of its economic significance, neither effective control measure for this disease nor resistant rice variety is currently available. In recent years, genomics, transcriptomics and other molecular methods have provided useful information for better understanding the molecular mechanisms underlyingB. glumaevirulence and the rice defence mechanisms against pathogens. For the prevention of this pathogen, our laboratory has developed a rapid and sensitive multiplex PCR assay for detecting and distinguishingB. glumae from otherBurkholderia species. This improved understanding ofB. glumae will shed new light on bacterial panicle blight disease management.

  15. The genome of the fungal-interactive soil bacterium Burkholderia terrae BS001 : A plethora of outstanding interactive capabilities unveiled

    NARCIS (Netherlands)

    Haq, Irshad Ul; Graupner, Katharina; Nazir, Rashid; van Elsas, Jan Dirk

    2014-01-01

    Burkholderia terrae strain BS001, obtained as an inhabitant of the mycosphere of Laccaria proxima (a close relative of Lyophyllum sp. strain Karsten), actively interacts with Lyophyllum sp. strain Karsten. We here summarize the remarkable ecological behavior of B. terrae BS001 in the mycosphere and

  16. Screening a mushroom extract library for activity against Acinetobacter baumannii and Burkholderia cepacia and the identification of a compound with anti-Burkholderia activity

    Directory of Open Access Journals (Sweden)

    Rott Marc

    2010-01-01

    Full Text Available Abstract Background Acinetobacter baumannii and species within the Burkholderia cepacia complex (BCC are significant opportunistic bacterial pathogens of humans. These species exhibit a high degree of antibiotic resistance, and some clinical isolates are resistant to all currently available antimicrobial drugs used for treatment. Thus, new drugs are needed to treat infections by these species. Mushrooms could be a potential source for new drugs to treat A. baumannii and BCC infections. Methods The aim of this study was to screen a library of crude extracts from 330 wild mushrooms by disk diffusion assays for antibacterial activity against A. baumannii and Burkholderia cepacia in the hope of identifying a novel natural drug that could be used to treat infections caused by these species. Once positive hits were identified, the extracts were subjected to bioassay-guided separations to isolate and identify the active drug molecules. MICs were performed to gauge the in vitro activity of the purified compounds. Results Only three crude extracts (0.9% had activity against A. baumannii and B. cepacia. Compounds from two of these extracts had MICs greater than 128 μg/ml, and further analyses were not performed. From the third extract, prepared from Leucopaxillus albissimus, 2-aminoquinoline (2-AQ was isolated. This compound exhibited a modest MIC in vitro against strains from nine different BCC species, including multi-drug resistant clinical isolates (MIC = 8-64 μg/ml, and a weak MIC (128 μg/ml against A baumannii. The IC50 against a murine monocyte line was 1.5 mg/ml. Conclusion The small number of positive hits in this study suggests that finding a new drug from mushrooms to treat Gram-negative bacterial infections may be difficult. Although 2-AQ was identified in one mushroom, and it was shown to inhibit the growth of multi-drug resistant BCC isolates, the relatively high MICs (8-128 μg/ml for both A. baumannii and BCC strains suggests that 2-AQ

  17. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    Science.gov (United States)

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  18. Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability

    OpenAIRE

    Uroz, Stéphane; Oger, Phil

    2015-01-01

    We report the draft genome sequence of Burkholderia sp. PML1(12), a soil bacterium isolated from the Oak-Scleroderma citrinum ectomycorrhizosphere in the experimental forest site of Breuil-Chenue (France).

  19. ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase Activity, a Widespread Trait in Burkholderia Species, and Its Growth-Promoting Effect on Tomato Plants▿

    OpenAIRE

    Onofre-Lemus, Janette; Hernández-Lucas, Ismael; Girard, Lourdes; Caballero-Mellado, Jesús

    2009-01-01

    The genus Burkholderia includes pathogens of plants and animals and some human opportunistic pathogens, such as the Burkholderia cepacia complex (Bcc), but most species are nonpathogenic, plant associated, and rhizospheric or endophytic. Since rhizobacteria expressing ACC (1-aminocyclopropane-1-carboxylate) deaminase may enhance plant growth by lowering plant ethylene levels, in this work we investigated the presence of ACC deaminase activity and the acdS gene in 45 strains, most of which are...

  20. Burkholderia novacaledonica sp. nov. and B. ultramafica sp. nov. isolated from roots of Costularia spp. pioneer plants of ultramafic soils in New Caledonia.

    Science.gov (United States)

    Guentas, Linda; Gensous, Simon; Cavaloc, Yvon; Ducousso, Marc; Amir, Hamid; De Georges de Ledenon, Benjamin; Moulin, Lionel; Jourand, Philippe

    2016-05-01

    The taxonomic status of eleven rhizospheric bacterial strains belonging to the genus Burkholderia and isolated from roots of Costularia (Cyperaceae), tropical herbaceous pioneer plants growing on ultramafic soils in New Caledonia, was investigated using a polyphasic taxonomic approach. The genetic analyses (16S rRNA genes, gyrB, recA, nreB and cnr) confirmed that all strains are Burkholderia and cluster into two separated groups. The DNA hybridization results showed low relatedness values to the closest relatives Burkholderia species. The phenotypic analyses confirmed that the two groups of strains could be differentiated from each other and from other known Burkholderia species. This polyphasic study revealed that these two groups of strains represent each a novel species of Burkholderia, for which the names Burkholderia novacaledonica sp. nov. (type strain STM10272(T)=LMG28615(T)=CIP110887(T)) and B. ultramafica sp. nov. (type strain STM10279(T)=LMG28614(T)=CIP110886(T)) are proposed, respectively. These strains of Burkholderia presented specific ecological traits such as the tolerance to the extreme edaphic constraints of ultramafic soils: they grew at pH between 4 and 8 and tolerate the strong unbalanced Ca/Mg ratio (1/19) and the high concentrations of heavy metals i.e. Co, Cr, Mn and Ni. Noteworthy B. ultramafica tolerated nickel until 10mM and B. novacaledonica up to 5mM. The presence of the nickel (nreB) and cobalt/nickel (cnr) resistance determinants encoding for protein involved in metal tolerance was found in all strains of both groups. Moreover, most of the strains were able to produce plant growth promoting molecules (ACC, IAA, NH3 and siderophores). Such ecological traits suggest that these new species of Burkholderia might be environmentally adaptable plant-associated bacteria and beneficial to plants. PMID:27049869

  1. Comparative genome‐wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis

    OpenAIRE

    Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M.; Showmaker, Kurt C.; Smith, Leif; Peterson, Daniel G.; Lu, Shien

    2016-01-01

    Abstract Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth‐promoting bacteria and the pathogenic bacteria. The complete MS14 genome wa...

  2. Phylogenetic and degradation characterization of Burkholderia cepacia WZ1 degrading herbicide quinclorac.

    Science.gov (United States)

    Lü, Zhenmei; Min, Hang; Wu, Shuwen; Ruan, Aidong

    2003-11-01

    Strain WZI capable of degrading quinclorac was isolated from a pesticide manufactory soil and considered to be Burkholderia cepacia, belonged to bacteria, Proteobacteria, beta-Proteobacteria, based on morphology, physio-biochemical properties, whole cell fatty acid analysis and a partial sequencing of 16S rDNA. Strain WZ1 decomposed 90% of quinclorac at original concentration of 1000 mg L(-1) within 11 days. GC/MS analysis showed that the strain degraded quinclorac to 3,7-dichloro-8-quinoline and the cracked residue 2-chloro, 1,4-benzenedicarboxylic acid, indicating that the metabolic pathway was initiated by process of decarboxylation followed by cleavage of the aromatic ring. Stain WZ1 was also able to degrade some other herbicides and aromatic compounds, including 2,4,5-T, phenol, naphthalene and hydrochinone etc. This paper describes for the first time Phylogenetic and degradation characterization of a pure bacterium which, is able to mineralize quinclorac.

  3. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions

    DEFF Research Database (Denmark)

    Schwarz, Sandra; West, T Eoin; Boyer, Frédéric;

    2010-01-01

    Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial....... From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas...... fluorescens and Serratia proteamaculans-leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly...

  4. Mycotic aneurysm caused by Burkholderia pseudomallei in a previously healthy returning traveller

    Science.gov (United States)

    Bodilsen, Jacob; Vammen, Sten; Fuursted, Kurt; Hjort, Ulla

    2014-01-01

    Burkholderia pseudomallei is a common cause of serious, difficult to treat infections in South-East Asia and Northern Australia, but is a rare imported pathogen in the USA and Europe. We report a case of a patient with a mycotic aneurysm caused by B. pseudomallei in a previously healthy returning traveller. The patient presented with 4 weeks of abdominal pain and intermittent fever after a brief vacation in Thailand. The aneurysm was excised and replaced by an autologous deep vein graft, and the patient was treated for 6 months with antibiotics adjusted according to postoperative renal impairment. Twenty-four months after surgery the patient is well and without relapse. PMID:25246454

  5. Ceftazidime resistance inBurkholderia pseudomallei:First report from India

    Institute of Scientific and Technical Information of China (English)

    Bijayini Behera; TLVD Prasad Babu; A Kamalesh; Gangadhar Reddy

    2012-01-01

    ABSTRACT Melioidosis, a disease of public health importance in Southeast Asia and Northern Australia, of late has shown an increasing trend in India, particularly Southern India. We describe a case of a39-year-old diabetic patient with left elbow septic arthritis, multiple liver, splenic abscesses, pneumonia, pleural effusion, followed by sepsis syndrome. Blood cultures and culture of the joint aspirate yielded pure growth ofBurkholderia pseudomallei (B. pesudomallei), sensitive to carbapenem, co-trimoxazole and resistant to ceftazidime. The patient was successfully treated with imipenem- cilastin.He was discharged on co-trimoxazole to complete the24 weeks course and follow-up has continued to date. The patient continues to remain asymptomatic. The case re-emphasizes the need to monitor the trend ofB. pseudomallei in India, particularly the development of ceftazidime resistance, which incidentally is the drug of choice.

  6. Cloning, purification and crystallographic analysis of a hypothetical protein, BPSL1549, from Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    B. pseudomallei BPSL1549 has been overexpressed in E. coli, purified and crystallized. Burkholderia pseudomallei BPSL1549, a putative protein of unknown function, has been overexpressed in Escherichia coli, purified and subsequently crystallized by the hanging-drop vapour-diffusion method using PEG as a precipitant to give crystals with overall dimensions of 0.15 × 0.15 × 0.1 mm. Native data were collected to 1.47 Å resolution at the European Synchrotron Radiation Facility (ESRF). The crystals belonged to space group P212121, with unit-cell parameters a = 37.1, b = 45.4, c = 111.9 Å and with a single polypeptide chain in the asymmetric unit

  7. Fatal Burkholderia pseudomallei infection initially reported as a Bacillus species, Ohio, 2013.

    Science.gov (United States)

    Doker, Thomas J; Quinn, Celia L; Salehi, Ellen D; Sherwood, Joshua J; Benoit, Tina J; Glass Elrod, Mindy; Gee, Jay E; Shadomy, Sean V; Bower, William A; Hoffmaster, Alex R; Walke, Henry T; Blaney, David D; DiOrio, Mary S

    2014-10-01

    A fatal case of melioidosis was diagnosed in Ohio one month after culture results were initially reported as a Bacillus species. To identify a source of infection and assess risk in patient contacts, we abstracted patient charts; interviewed physicians and contacts; genetically characterized the isolate; performed a Burkholderia pseudomallei antibody indirect hemagglutination assay on household contacts and pets to assess seropositivity; and collected household plant, soil, liquid, and insect samples for culturing and real-time polymerase chain reaction testing. Family members and pets tested were seronegative for B. pseudomallei. Environmental samples were negative by real-time polymerase chain reaction and culture. Although the patient never traveled internationally, the isolate genotype was consistent with an isolate that originated in Southeast Asia. This investigation identified the fifth reported locally acquired non-laboratory melioidosis case in the contiguous United States. Physicians and laboratories should be aware of this potentially emerging disease and refer positive cultures to a Laboratory Response Network laboratory. PMID:25092821

  8. Colonization or spontaneous resolution:Expanding the role for Burkholderia pseudomallei

    Institute of Scientific and Technical Information of China (English)

    Kushal Naha; Barkur Ananthakrishna Shastry; Kavitha Saravu

    2014-01-01

    A 19-year-old Asian Indian female presented with productive cough since the past one month and low grade fever since the past two weeks. She was diagnosed with pulmonary tuberculosis and treated with antitubercular drugs. Subsequently, delayed cultures of bronchoalveolar lavage fluid grewBurkholderia pseudomallei (B. pseudomallei). On follow up the patient reported significant subjective improvement and ESR progressively returned to normal. In summary, this case report raises two distinct and equally intriguing roles forB. pseudomallei,i.e. respiratory colonization and spontaneously resolving pulmonary infection. The pathogenic potential ofB. pseudomallei, the etiologic agent of melioidosis, is well known. Confirmation of either colonization or spontaneous resolution, would potentially spare many patients unnecessary and expensive therapy with broad-spectrum antibiotics, and contribute to more rational usage of antibiotics, especially in co-infection withMycobacterium tuberculosis andB. pseudomallei-two bacterial diseases with closely similar clinical, radiologic and histopathologic features.

  9. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite.

    Science.gov (United States)

    You, Qinghong; Yin, Xiulian; Zhao, Yuping; Zhang, Yan

    2013-11-01

    Lipase from Burkholderia cepacia was immobilized on modified attapulgite by cross-linking reaction for biodiesel production with jatropha oil as feedstock. Effects of various factors on biodiesel production were studied by single-factor experiment. Results indicated that the best conditions for biodiesel preparation were: 10 g jatropha oil, 2.4 g methanol (molar ratio of oil to methanol is 1:6.6) being added at 3h intervals, 7 wt% water, 10 wt% immobilized lipase, temperature 35°C, and time 24h. Under these conditions, the maximum biodiesel yield reached 94%. The immobilized lipase retained 95% of its relative activity during the ten repeated batch reactions. The half-life time of the immobilized lipase is 731 h. Kinetics was studied and the Vmax of the immobilized lipases were 6.823 mmol L(-1). This immobilized lipase catalyzed process has potential industrial use for biodiesel production to replace chemical-catalyzed method.

  10. Burkholderia dabaoshanensis sp. nov., a heavy-metal-tolerant bacteria isolated from Dabaoshan mining area soil in China.

    Directory of Open Access Journals (Sweden)

    Honghui Zhu

    Full Text Available Heavy-metal-tolerant bacteria, GIMN1.004(T, was isolated from mine soils of Dabaoshan in South China, which were acidic (pH 2-4 and polluted with heavy metals. The isolation was Gram-negative, aerobic, non-spore-forming, and rod-shaped bacteria having a cellular width of 0.5-0.6 µm and a length of 1.3-1.8 µm. They showed a normal growth pattern at pH 4.0-9.0 in a temperature ranging from 5 °C to 40 °C.The organism contained ubiquinone Q-8 as the predominant isoprenoid quinine, and C(16:0, summed feature 8 (C(18:1ω7c and C(18:1ω6c, C(18:0, summed feature 3 (C(16:1ω7c or iso-C(15:0 2-OH, C(17:0 cyclo, C(18:1ω9c, C(19:0 cyclo ω8c, C(14:0 as major fatty acid. These profiles were similar to those reported for Burkholderia species. The DNA G+C % of this strain was 61.6%. Based on the similarity to 16S rRNA gene sequence, GIMN1.004(T was considered to be in the genus Burkholderia. The similarities of 16S rRNA gene sequence between strain GIMN1.004(T and members of the genus Burkholderia were 96-99.4%, indicating that this novel strain was phylogenetically related to members of that genus. The novel strain showed the highest sequence similarities to Burkholderia soli DSM 18235(T (99.4%; Levels of DNA-DNA hybridization with DSM 18235(T was 25%. Physiological and biochemical tests including cell wall composition analysis, differentiated phenotype of this strain from that closely related Burkholderia species. The isolation had great tolerance to cadmium with MIC of 22 mmol/L, and adsorbability of 144.94 mg/g cadmium,and it was found to exhibit antibiotic resistance characteristics. The adsorptive mechanism of GIMN1.004(T for cadmium depended on the action of the amide,carboxy and phosphate of cell surface and producing low-molecular-weight (LMW organic acids to complex or chelated Cd(2+.Therefore, the strain GIMN1.004(T represented a new cadmium resistance species, which was tentatively named as Burkholderia dabaoshanensis sp. nov. The strain type

  11. Systematic review and consensus guidelines for environmental sampling of Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Direk Limmathurotsakul

    Full Text Available BACKGROUND: Burkholderia pseudomallei, a Tier 1 Select Agent and the cause of melioidosis, is a Gram-negative bacillus present in the environment in many tropical countries. Defining the global pattern of B. pseudomallei distribution underpins efforts to prevent infection, and is dependent upon robust environmental sampling methodology. Our objective was to review the literature on the detection of environmental B. pseudomallei, update the risk map for melioidosis, and propose international consensus guidelines for soil sampling. METHODS/PRINCIPAL FINDINGS: An international working party (Detection of Environmental Burkholderia pseudomallei Working Party (DEBWorP was formed during the VIth World Melioidosis Congress in 2010. PubMed (January 1912 to December 2011 was searched using the following MeSH terms: pseudomallei or melioidosis. Bibliographies were hand-searched for secondary references. The reported geographical distribution of B. pseudomallei in the environment was mapped and categorized as definite, probable, or possible. The methodology used for detecting environmental B. pseudomallei was extracted and collated. We found that global coverage was patchy, with a lack of studies in many areas where melioidosis is suspected to occur. The sampling strategies and bacterial identification methods used were highly variable, and not all were robust. We developed consensus guidelines with the goals of reducing the probability of false-negative results, and the provision of affordable and 'low-tech' methodology that is applicable in both developed and developing countries. CONCLUSIONS/SIGNIFICANCE: The proposed consensus guidelines provide the basis for the development of an accurate and comprehensive global map of environmental B. pseudomallei.

  12. Quantitative proteomic analysis of Burkholderia pseudomallei Bsa type III secretion system effectors using hypersecreting mutants.

    Science.gov (United States)

    Vander Broek, Charles W; Chalmers, Kevin J; Stevens, Mark P; Stevens, Joanne M

    2015-04-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS "gatekeeper" family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei.

  13. Using multispectral imaging flow cytometry to assess an in vitro intracellular Burkholderia thailandensis infection model.

    Science.gov (United States)

    Jenner, Dominic; Ducker, Catherine; Clark, Graeme; Prior, Jo; Rowland, Caroline A

    2016-04-01

    The use of in vitro models to understand the interaction of bacteria with host cells is well established. In vitro bacterial infection models are often used to quantify intracellular bacterial load by lysing cell populations and subsequently enumerating the bacteria. Modern established techniques employ the use of fluorescence technologies such as flow cytometry, fluorescent microscopy, and/or confocal microscopy. However, these techniques often lack either the quantification of large data sets (microscopy) or use of gross fluorescence signal which lacks the visual confirmation that can provide additional confidence in data sets. Multispectral imaging flow cytometry (MIFC) is a novel emerging field of technology. This technology captures a bright field and fluorescence image of cells in a flow using a charged coupled device camera. It allows the analysis of tens of thousands of single cell images, making it an extremely powerful technology. Here MIFC was used as an alternative method of analyzing intracellular bacterial infection using Burkholderia thailandensis E555 as a model organism. It has been demonstrated that the data produced using traditional enumeration is comparable to data analyzed using MIFC. It has also been shown that by using MIFC it is possible to generate other data on the dynamics of the infection model rather than viable counts alone. It has been demonstrated that it is possible to inhibit the uptake of bacteria into mammalian cells and identify differences between treated and untreated cell populations. The authors believe this to be the first use of MIFC to analyze a Burkholderia bacterial species during intracellular infection. © 2016 Crown copyright. Published by Wiley Periodicals Inc. on behalf of ISAC. PMID:26841315

  14. Characterization of the Burkholderia thailandensis SOS response by using whole-transcriptome shotgun sequencing.

    Science.gov (United States)

    Ulrich, Ricky L; Deshazer, David; Kenny, Tara A; Ulrich, Melanie P; Moravusova, Anna; Opperman, Timothy; Bavari, Sina; Bowlin, Terry L; Moir, Donald T; Panchal, Rekha G

    2013-10-01

    The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNA-Seq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is ∼4-fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (P SOS response were induced and include lexA, uvrA, dnaE, dinB, recX, and recA. At the genome-wide level, we found an overall decrease in gene expression, especially for genes involved in amino acid and carbohydrate transport and metabolism, following both CIP and MMC exposure. Interestingly, we observed the upregulation of several genes involved in bacterial motility and enhanced transcription of a B. thailandensis genomic island encoding a Siphoviridae bacteriophage designated E264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage.

  15. Comparison of the in vitro and in vivo susceptibilities of Burkholderia mallei to Ceftazidime and Levofloxacin

    Directory of Open Access Journals (Sweden)

    Torres Alfredo G

    2009-05-01

    Full Text Available Abstract Background Burkholderia mallei is a zoonotic Gram negative bacterium which primarily infects solipeds but can cause lethal disease in humans if left untreated. The effect of two antibiotics with different modes of action on Burkholderia mallei strain ATCC23344 was investigated by using in vitro and in vivo studies. Results Determination of minimal inhibitory concentrations (MICs in vitro was done by the agar diffusion method and the dilution method. The MICs of levofloxacin and ceftazidime were in the similar range, 2.5 and 5.0 μg/ml, respectively. Intracellular susceptibility of the bacterium to these two antibiotics in J774A.1 mouse macrophages in vitro was also investigated. Macrophages treated with antibiotics demonstrated uptake of the drugs and reduced bacterial loads in vitro. The efficacy of ceftazidime and levofloxacin were studied in BALB/c mice as post-exposure treatment following intranasal B. mallei infection. Intranasal infection with 5 × 105 CFUs of B. mallei resulted in 90% death in non-treated control mice. Antibiotic treatments 10 days post-infection proved to be effective in vivo with all antibiotic treated mice surviving to day 34 post-infection. The antibiotics did not result in complete clearance of the bacterial infection and presence of the bacteria was found in lungs and spleens of the survivors, although bacterial burden recovered from levofloxacin treated animals appeared reduced compared to ceftazidime. Conclusion Both antibiotics demonstrated utility for the treatment of glanders, including the ability for intracellular penetration and clearance of organisms in vitro.

  16. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis

    Science.gov (United States)

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A. M.; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T.; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  17. The multiple roles of hypothetical gene BPSS1356 in Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Hokchai Yam

    Full Text Available Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes.

  18. Postinfection Biological Control of Oomycete Pathogens of Pea by Burkholderia cepacia AMMDR1.

    Science.gov (United States)

    Heungens, K; Parke, J L

    2001-04-01

    ABSTRACT Burkholderia cepacia AMMDR1 is a biocontrol agent that reduces Pythium damping-off and Aphanomyces root rot severity on peas in the field. We studied the effect of B. cepacia AMMDR1 on post-infection stages in the life cycles of these pathogens, including mycelial colonization of the host, production of oogonia, and production of secondary zoospore inoculum. We used Burkholderia cepacia 1324, a seed and rootcolonizing but antibiosis-deficient Tn5 mutant of B. cepacia AMMDR1, to study mechanisms of biological control other than antibiosis. B. cepacia AMMDR1 significantly reduced Pythium aphanidermatum postinfection colonization and damping-off of pea seeds, even when the bacteria were applied 12 h after zoospore inoculation. B. cepacia AMMDR1 also significantly reduced colonization of taproots by Aphanomyces euteiches mycelium, but only when the bacteria were applied at high population densities at the site of zoospore inoculation. The antibiosisdeficient mutant, B. cepacia 1324, had no effect on mycelial colonization of seeds or roots by Pythium aphanidermatum nor A. euteiches, suggesting that antibiosis is the primary mechanism of biological control. B. cepacia AMMDR1, but not B. cepacia 1324, reduced production of A. euteiches oogonia. This effect occurred even when the population size of B. cepacia AMMDR1 was too small to cause a reduction in lesion length early on in the infection process and may result from in situ antibiotic production. B. cepacia AMMDR1 had no effect on the production of secondary zoospores of A. euteiches from infected roots. The main effects of B. cepacia AMMDR1 on postinfection stages in the life cycles of these pathogens therefore were reductions in mycelial colonization by Pythium aphanidermatum and in formation of oogonia by A. euteiches. No mechanism other than antibiosis could be identified. PMID:18943851

  19. Transports of acetate and haloacetate in Burkholderia species MBA4 are operated by distinct systems

    Directory of Open Access Journals (Sweden)

    Su Xianbin

    2012-11-01

    Full Text Available Abstract Background Acetate is a commonly used substrate for biosynthesis while monochloroacetate is a structurally similar compound but toxic and inhibits cell metabolism by blocking the citric acid cycle. In Burkholderia species MBA4 haloacetate was utilized as a carbon and energy source for growth. The degradation of haloacid was mediated by the production of an inducible dehalogenase. Recent studies have identified the presence of a concomitantly induced haloacetate-uptake activity in MBA4. This uptake activity has also been found to transport acetate. Since acetate transporters are commonly found in bacteria it is likely that haloacetate was transported by such a system in MBA4. Results The haloacetate-uptake activity of MBA4 was found to be induced by monochloroacetate (MCA and monobromoacetate (MBA. While the acetate-uptake activity was also induced by MCA and MBA, other alkanoates: acetate, propionate and 2-monochloropropionate (2MCPA were also inducers. Competing solute analysis showed that acetate and propionate interrupted the acetate- and MCA- induced acetate-uptake activities. While MCA, MBA, 2MCPA, and butyrate have no effect on acetate uptake they could significantly quenched the MCA-induced MCA-uptake activity. Transmembrane electrochemical potential was shown to be a driving force for both acetate- and MCA- transport systems. Conclusions Here we showed that acetate- and MCA- uptake in Burkholderia species MBA4 are two transport systems that have different induction patterns and substrate specificities. It is envisaged that the shapes and the three dimensional structures of the solutes determine their recognition or exclusion by the two transport systems.

  20. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis.

    Directory of Open Access Journals (Sweden)

    Ryan J Blower

    Full Text Available Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly "highly resistant" to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense peptides. In this study, a number of cationic antimicrobial peptides (CAMPs were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2 and a short beta-defensin-derived peptide (Peptide 4 of hBD-3 were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis.

  1. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis.

    Science.gov (United States)

    Blower, Ryan J; Barksdale, Stephanie M; van Hoek, Monique L

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly "highly resistant" to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  2. Determining the Biochemical Properties of the Oxalate Biosynthetic Component (Obc)1 from Burkholderia mallei.

    Science.gov (United States)

    Lambert, Peter M; Nakata, Paul A

    2016-01-01

    Oxalic acid is produced by a variety of organisms ranging from simple microbes to complex animals. This acid has been proposed to fulfill various physiological and pathological functions which vary between organisms. In bacteria from the Burkholderia genus, oxalate secretion has been shown to be quorum sensing dependent and to support pathogenicity and cell viability. In light of the critical roles of oxalate in Burkholderia as well as other organisms, it is surprising that our understanding of how this simple dicarboxylate is biosynthesized remains incomplete. Here we report the expression, purification, and partial characterization of the first intact bacterial oxalate biosynthetic enzyme, Obc1, from B. mallei. An N-terminal His-tagged Bmobc1 was cloned into pDUET, expressed in E. coli BLR (DE3), and the recombinant enzyme purified by affinity chromatography. Oxalate biosynthetic enzyme assays coupled with HPLC analysis revealed that BmObc1 catalyzed the biosynthesis of oxalate, acetoacetate, and free CoA from oxaloacetate and a short chain acyl-CoA following Michaelis-Menten kinetics. Optimal enzyme activity was measured at pH 8.0 and a temperature around 44°C. Kinetic analysis conducted under conditions of saturating acetyl-CoA and varying oxaloacetate concentrations resulted in a calculated Km value for oxaloacetate of 94.3± 9.2 μM (mean ± SE). Under conditions of saturating oxaloacetate concentration and varying acyl-CoA (acetyl- or propionyl-CoA) concentrations kinetic analysis generated a calculated Km value of 26.8 ± 2.3 μM (mean ± SE) for acetyl-CoA and 104.4 ± 12.7 μM for propionyl-CoA. The significantly lower Km for acetyl-CoA suggests that it is strongly favored as a substrate over propionyl-CoA. PMID:27643499

  3. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil Solubilização de fosfato inorgânico insolúvel por Burkholderia cepacea DA23 isolada de solo cultivado

    Directory of Open Access Journals (Sweden)

    Ok-Ryul Song

    2008-03-01

    Full Text Available A mineral phosphate solubilizing bacterium, Burkholderia cepacia DA23 has been isolated from cultivated soils. Phosphate-solubilizing activities of the strain against three types of insoluble phosphate were quantitatively determined. When 3% of glucose concentration was used for carbon source, the strain had a marked mineral phosphate-solubilizing activity. Mineral phosphate solubilization was directly related to the pH drop by the strain. Analysis of the culture medium by high pressure liquid chromatography identified gluconic acid as the main organic acid released by Burkholderia cepacia DA23. Gluconic acid production was apparently the result of the glucose dehydrogenase activity and glucose dehydrogenase was affected by phosphate regulation.Uma bactéria capaz de solubilizar fosfato mineral, Burkholderia cepacea DA23, foi isolada de solo cultivado. A capacidade dessa bactéria solubilizar o fosfato de três tipos de fosfato insolúvel foi quantificada. Quando foi utilizada glicose a 3% como fonte de carbono, a bactéria apresentou uma intensa atividade solubilizante de fosfato, sendo a solubilização diretamente relacionada com a queda de pH causada pela bactéria. A análise do meio de cultura por cromatografia líquida de alta pressão indicou o ácido glicônico como principal ácido produzido por Burkholderia cepacea DA23. Aparentemente, a produção de ácido glicônico foi causada pela atividade da glicose desidrogenase. A enzima foi afetada pela regulação do fosfato.

  4. Unusual Multiple Production of N-Acylhomoserine Lactones a by Burkholderia sp. Strain C10B Isolated from Dentine Caries

    Directory of Open Access Journals (Sweden)

    Share Yuan Goh

    2014-05-01

    Full Text Available Bacteria realize the ability to communicate by production of quorum sensing (QS molecules called autoinducers, which regulate the physiological activities in their ecological niches. The oral cavity could be a potential area for the presence of QS bacteria. In this study, we report the isolation of a QS bacterial isolate C10B from dentine caries. Preliminary screening using Chromobacterium violaceum CV026 biosensor showed that isolate C10B was able to produce N-acylhomoserine lactones (AHLs. This bacterium was further identified as a member of Burkholderia, an opportunistic pathogen. The isolated Burkholderia sp. was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL, N-octanoyl-L-homoserine lactone (C8-HSL, N-decanoyl-L-homoserine lactone (C10-HSL and N-dodecanoyl-L-homoserine lactone (C12-HSL.

  5. Genomic Characterization of Burkholderia pseudomallei Isolates Selected for Medical Countermeasures Testing: Comparative Genomics Associated with Differential Virulence

    OpenAIRE

    Sahl, Jason W.; Allender, Christopher J.; Colman, Rebecca E.; Califf, Katy J.; Schupp, James M.; Currie, Bart J.; Van Zandt, Kristopher E.; H Carl Gelhaus; Paul Keim; Apichai Tuanyok

    2015-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA) animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were seque...

  6. In vitro antibiotic susceptibilities of Burkholderia mallei (causative agent of glanders) determined by broth microdilution and E-test.

    Science.gov (United States)

    Heine, H S; England, M J; Waag, D M; Byrne, W R

    2001-07-01

    In vitro susceptibilities to 28 antibiotics were determined for 11 strains of Burkholderia mallei by the broth microdilution method. The B. mallei strains demonstrated susceptibility to aminoglycosides, macrolides, quinolones, doxycycline, piperacillin, ceftazidime, and imipenem. For comparison and evaluation, 17 antibiotic susceptibilities were also determined by the E-test. E-test values were always lower than the broth dilution values. Establishing and comparing antibiotic susceptibilities of specific B. mallei strains will provide reference information for assessing new antibiotic agents.

  7. Role for the Burkholderia pseudomallei Type Three Secretion System Cluster 1 bpscN Gene in Virulence ▿

    OpenAIRE

    D'Cruze, Tanya; Gong, Lan; Treerat, Puthayalai; Ramm, Georg; John D Boyce; Prescott, Mark; Adler, Ben; Rodney J. Devenish

    2011-01-01

    Burkholderia pseudomallei, the causal agent of melioidosis, employs a number of virulence factors during its infection of mammalian cells. One such factor is the type three secretion system (TTSS), which is proposed to mediate the transport and secretion of bacterial effector molecules directly into host cells. The B. pseudomallei genome contains three TTSS gene clusters (designated TTSS1, TTSS2, and TTSS3). Previous research has indicated that neither TTSS1 nor TTSS2 is involved in B. pseudo...

  8. Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis.

    Science.gov (United States)

    Esmaeel, Qassim; Pupin, Maude; Kieu, Nam Phuong; Chataigné, Gabrielle; Béchet, Max; Deravel, Jovana; Krier, François; Höfte, Monica; Jacques, Philippe; Leclère, Valérie

    2016-06-01

    Burkholderia is an important genus encompassing a variety of species, including pathogenic strains as well as strains that promote plant growth. We have carried out a global strategy, which combined two complementary approaches. The first one is genome guided with deep analysis of genome sequences and the second one is assay guided with experiments to support the predictions obtained in silico. This efficient screening for new secondary metabolites, performed on 48 gapless genomes of Burkholderia species, revealed a total of 161 clusters containing nonribosomal peptide synthetases (NRPSs), with the potential to synthesize at least 11 novel products. Most of them are siderophores or lipopeptides, two classes of products with potential application in biocontrol. The strategy led to the identification, for the first time, of the cluster for cepaciachelin biosynthesis in the genome of Burkholderia ambifaria AMMD and a cluster corresponding to a new malleobactin-like siderophore, called phymabactin, was identified in Burkholderia phymatum STM815 genome. In both cases, the siderophore was produced when the strain was grown in iron-limited conditions. Elsewhere, the cluster for the antifungal burkholdin was detected in the genome of B. ambifaria AMMD and also Burkholderia sp. KJ006. Burkholderia pseudomallei strains harbor the genetic potential to produce a novel lipopeptide called burkhomycin, containing a peptidyl moiety of 12 monomers. A mixture of lipopeptides produced by Burkholderia rhizoxinica lowered the surface tension of the supernatant from 70 to 27 mN·m(-1) . The production of nonribosomal secondary metabolites seems related to the three phylogenetic groups obtained from 16S rRNA sequences. Moreover, the genome-mining approach gave new insights into the nonribosomal synthesis exemplified by the identification of dual C/E domains in lipopeptide NRPSs, up to now essentially found in Pseudomonas strains. PMID:27060604

  9. Dicty_cDB: Contig-U12414-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available osa strain LMG 189... 82 3e-14 EU240564_1( EU240564 |pid:none) Burkholderia vietnamiensis ...strain ... 82 3e-14 AY996914_1( AY996914 |pid:none) Burkholderia vietnamiensis st...eria cenocepacia strain FC... 82 3e-14 AY996913_1( AY996913 |pid:none) Burkholderia vietnamiensis strain ......um serovar 1... 82 3e-14 CP000614_3( CP000614 |pid:none) Burkholderia vietnam...240563_1( EU240563 |pid:none) Burkholderia vietnamiensis strain ... 82 3e-14 AB032577_1( AB032577 |pid:none)

  10. Production and characterization of chimeric monoclonal antibodies against Burkholderia pseudomallei and B. mallei using the DHFR expression system.

    Directory of Open Access Journals (Sweden)

    Hyung-Yong Kim

    Full Text Available Burkholderia pseudomallei (BP and B. mallei (BM are closely related gram-negative, facultative anaerobic bacteria which cause life-threatening melioidosis in human and glanders in horse, respectively. Our laboratory has previously generated and characterized more than 100 mouse monoclonal antibodies (MAbs against BP and BM, according to in vitro and in vivo assay. In this study, 3 MAbs (BP7 10B11, BP7 2C6, and BP1 7F7 were selected to develop into chimeric mouse-human monoclonal antibodies (cMAbs against BP and/or BM. For the stable production of cMAbs, we constructed 4 major different vector systems with a dihydrofolate reductase (DHFR amplification marker, and optimized transfection/selection conditions in mammalian host cells with the single-gene and/or double-gene expression system. These 3 cMAbs were stably produced by the DHFR double mutant Chinese hamster ovarian (CHO-DG44 cells. By ELISA and Western blot analysis using whole bacterial antigens treated by heat (65°C/90 min, sodium periodate, and proteinase K, the cMAb BP7 10B11 (cMAb CK1 reacted with glycoproteins (34, 38, 48 kDa in BP; 28, 38, 48 kDa in BM. The cMAb BP7 2C6 (cMAb CK2 recognized surface-capsule antigens with molecular sizes of 38 to 52 kDa, and 200 kDa in BM. The cMAb CK2 was weakly reactive to 14∼28, 200 kDa antigens in BP. The cMAb BP1 7F7 (cMAb CK3 reacted with lipopolysaccharides (38∼52 kDa in BP; 38∼60 kDa in B. thailandensis. Western blot results with the outer surface antigens of the 3 Burkholderia species were consistent with results with the whole Burkholderia cell antigens, suggesting that these immunodominant antigens reacting with the 3 cMAbs were primarily present on the outer surface of the Burkholderia species. These 3 cMAbs would be useful for analyzing the role of the major outer surface antigens in Burkholderia infection.

  11. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis

    Directory of Open Access Journals (Sweden)

    Fisher Nathan A

    2012-06-01

    Full Text Available Abstract Background Burkholderia pseudomallei and Burkholderia mallei are gram-negative pathogens responsible for the diseases melioidosis and glanders, respectively. Both species cause disease in humans and animals and have been designated as category B select agents by the Centers for Disease Control and Prevention (CDC. Burkholderia thailandensis is a closely related bacterium that is generally considered avirulent for humans. While it can cause disease in rodents, the B. thailandensis 50% lethal dose (LD50 is typically ≥ 104-fold higher than the B. pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species. Results Madagascar hissing cockroaches (MH cockroaches possess a number of qualities that make them desirable for use as a surrogate host, including ease of breeding, ease of handling, a competent innate immune system, and the ability to survive at 37°C. MH cockroaches were highly susceptible to infection with B. pseudomallei, B. mallei and B. thailandensis and the LD50 was 50 for Escherichia coli in MH cockroaches was >105 cfu. B. pseudomallei, B. mallei, and B. thailandensis cluster 1 type VI secretion system (T6SS-1 mutants were all attenuated in MH cockroaches, which is consistent with previous virulence studies conducted in rodents. B. pseudomallei mutants deficient in the other five T6SS gene clusters, T6SS-2 through T6SS-6, were virulent in both MH cockroaches and hamsters. Hemocytes obtained from MH cockroaches infected with B. pseudomallei harbored numerous intracellular bacteria, suggesting that this facultative intracellular pathogen can survive and replicate inside of MH cockroach phagocytic cells. The hemolymph extracted from these MH cockroaches also contained multinuclear giant cells (MNGCs with intracellular B. pseudomallei, which indicates that infected hemocytes can

  12. A new bacterial disease of carnation in Portugal caused by Burkholderia andropogonis

    Directory of Open Access Journals (Sweden)

    Madalena Eloy

    2008-12-01

    Full Text Available The occurrence of a leaf spot disease of carnation caused by Burkholderia andropogonis is recorded for the first time in Portugal. Symptoms consisted of ‘eyespot’ lesions on all aerial plant parts, often bordered by water-soaked halos on the leaves. As the disease progressed lesions became dark brown and affected areas dried out. Phenotypic studies and Polymerase Chain Reaction using specific primers Pf/Pr targeted to 16S rDNA of B. andropogonis were used to identify the pathogen. Pathogenicity tests on china pink plants, re-isolation of the pathogen from inoculated plants and further PCR testing confirmed the identification of the bacterium. Infected plants came from an open air nursery and the whole production was destroyed to avoid dissemination of the pathogen.A ocorrência da mancha bacteriana do craveiro causada por Burkholderia andropogonis é pela primeira vez assinalada em Portugal. Os sintomas observados consistiam em manchas em forma de olho-de-perdiz em todos os órgãos aéreos das plantas afectadas, frequentemente circundadas por halos hidrópicos nas folhas. À medida que a doença progredia, as lesões adquiriam uma coloração castanha escura, acabando os órgãos afectados por secar. A identificação do agente causal da doença baseou-se no estudo dos seus caracteres fenotípicos e na Reacção em Cadeia da Polimerase (PCR, utilizando os iniciadores específicos Pf/Pr dirigidos à região 16S rDNA de B. andropogonis. A identificação foi confirmada por ensaios de patogenicidade em cravinas, reisolamento do agente causal da doença a partir das plantas inoculadas e novos ensaios PCR. As plantas infectadas provinham de um viveiro ao ar livre e toda a produção foi destruída a fim de evitar a disseminação do patogéneo.

  13. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing

    Directory of Open Access Journals (Sweden)

    Karger Axel

    2012-10-01

    Full Text Available Abstract Background Burkholderia (B. pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. Results A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343 was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Conclusions Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS

  14. A preliminary X-ray study of transketolase from Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    The transketolase TktA from B. pseudomallei has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were collected to 2.0 Å resolution. TktA is the most critical enzyme in the nonoxidative pentose phosphate pathway. It catalyzes the conversion of xylulose 5-phosphate and ribose 5-phosphate into sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate, and its products are used in the biosynthesis of acetyl-CoA, aromatic amino acids, nucleic acids and ADP-l-glycero-β-d-manno-heptose. TktA also has an unexpected role in chromosome structure that is independent of its metabolic responsibilities. Therefore, it is a new potent antibiotic target. In this study, TktA from Burkholderia pseudomallei has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 2.0 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 146.2, b = 74.6, c = 61.6 Å, β = 113.0°. A full structural determination is under way in order to provide insight into the structure–function relationship of this protein

  15. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    Science.gov (United States)

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. PMID:27190294

  16. A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    Sedoheptulose-7-phosphate isomerase (GmhA) from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Sedoheptulose-7-phosphate isomerase (GmhA) converts d-sedoheptulose 7-phosphate to d,d-heptose 7-phosphate. This is the first step in the biosynthesis pathway of NDP-heptose, which is responsible for the pleiotropic phenotype. This biosynthesis pathway is the target of inhibitors to increase the membrane permeability of Gram-negative pathogens or of adjuvants working synergistically with known antibiotics. Burkholderia pseudomallei is the causative agent of melioidosis, a seriously invasive disease in animals and humans in tropical and subtropical areas. GmhA from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 1.9 Å resolution. The crystal belonged to the primitive orthorhombic space group P212121, with unit-cell parameters a = 61.3, b = 84.2, c = 142.3 Å. A full structural determination is under way in order to provide insights into the structure–function relationships of this protein

  17. Host immunity in the protective response to vaccination with heat-killed Burkholderia mallei

    Directory of Open Access Journals (Sweden)

    Paessler Slobodan

    2008-09-01

    Full Text Available Abstract Background We performed initial cell, cytokine and complement depletion studies to investigate the possible role of these effectors in response to vaccination with heat-killed Burkholderia mallei in a susceptible BALB/c mouse model of infection. Results While protection with heat-killed bacilli did not result in sterilizing immunity, limited protection was afforded against an otherwise lethal infection and provided insight into potential host protective mechanisms. Our results demonstrated that mice depleted of either B cells, TNF-α or IFN-γ exhibited decreased survival rates, indicating a role for these effectors in obtaining partial protection from a lethal challenge by the intraperitoneal route. Additionally, complement depletion had no effect on immunoglobulin production when compared to non-complement depleted controls infected intranasally. Conclusion The data provide a basis for future studies of protection via vaccination using either subunit or whole-organism vaccine preparations from lethal infection in the experimental BALB/c mouse model. The results of this study demonstrate participation of B220+ cells and pro-inflammatory cytokines IFN-γ and TNF-α in protection following HK vaccination.

  18. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    Energy Technology Data Exchange (ETDEWEB)

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J. (UWASH); (Emerald)

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  19. Multilocus sequence typing of 102 Burkholderia pseudomallei strains isolated from China.

    Science.gov (United States)

    Fang, Y; Zhu, P; Li, Q; Chen, H; Li, Y; Ren, C; Hu, Y; Tan, Z; Gu, J; Mao, X

    2016-07-01

    The phylogenetic and epidemiological relationships of 102 Burkholderia pseudomallei clinical isolates from different geographical and population sources in China were investigated by multilocus sequence typing (MLST). The MLST data were analysed using the e-BURST algorithm, and an unweighted pair-group method with arithmetic mean dendrogram was constructed based on the pair-wise differences in the allelic profiles of the strains. Forty-one sequence types (STs) were identified, of which eight were novel (ST1341, ST1345, ST1346, ST1347, ST1348, ST1349, ST1350, ST1351). No geographical-specific or host population-specific phylogenetic lineages were identified. ST46, ST50, ST55, ST58, ST70 and ST1095 predominated, but ~44% of isolates were assigned to 45 STs illustrating high genetic diversity in the strain collection. Additionally, the phylogenetic relationships of the dominant STs in China showed significant linkeage with B. pseudomallei isolates from Thailand. Analysis of the gmhD allele suggests high genetic variation in B. pseudomallei in China. PMID:26744829

  20. Physicochemical Properties Influencing Presence of Burkholderia pseudomallei in Soil from Small Ruminant Farms in Peninsular Malaysia

    Science.gov (United States)

    Panchadcharam, Chandrawathani; Zakaria, Zunita; Abdul Aziz, Saleha

    2016-01-01

    Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00–1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05–1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15–2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent’s biological processes and clay retains water and nutrients. PMID:27635652

  1. Transmission and prevalence of Burkholderia cepacia in Welsh cystic fibrosis patients.

    Science.gov (United States)

    Millar-Jones, L; Ryley, H C; Paull, A; Goodchild, M C

    1998-02-01

    From 1987 to 1994, 16 of 162 cystic fibrosis (CF) patients attending CF clinics at three different hospitals in South Wales, U.K. were found to have respiratory secretions colonized with Burkholderia cepacia (B. cepacia). Bacteriological typing by polymerase chain reaction (PCR) ribotyping demonstrated seven strains of B. cepacia among these 16 CF patients. This typing confirmed that cross-infection was the mechanism of colonization in six of the nine patients who were colonized at the paediatric CF clinic at the University Hospital of Wales in Cardiff, and in three of the six patients who were colonized at the adult CF clinic at Llandough Hospital in Cardiff (cross-infection rate nine of 16 patients or 56%). A search was made for a nosocomial source, with screening of wards and clinics. Swabs from fomites produced four positive cultures for B. cepacia. Two isolates had the same PCR ribotype as that of the previous CF room occupant. To establish prevalence of B. cepacia among CF children living throughout Wales, respiratory secretions were cultured from 151 of 186 CF children (age < 16 years). This failed to demonstrate B. cepacia colonization other than in the CF patients already identified.

  2. Pivotal role of anthranilate dioxygenase genes in the adaptation of Burkholderia multivorans ATCC 17616 in soil.

    Science.gov (United States)

    Nishiyama, Eri; Ohtsubo, Yoshiyuki; Yamamoto, Yasuhiro; Nagata, Yuji; Tsuda, Masataka

    2012-05-01

    In our recent screen for soil-induced genes, the expression of andA operon (andAcAdAbAa) for anthranilate catabolism in Burkholderia multivorans ATCC 17616 was found to increase dramatically in a soil sample (Nishiyama et al., Environ Microbiol 12: 2539, 2010). The operon was preceded by andR encoding a putative transcriptional regulator for the andA operon. In this study, the andA promoter was induced by tryptophan and anthranilate in an andR-dependent manner. The andA promoter in a deletion mutant lacking tryptophan dioxygenase (one of enzymes for the catabolism of tryptophan to anthranilate) did not respond to tryptophan, indicating that not tryptophan but anthranilate is the effector of AndR. Although both anthranilate and tryptophan were under the detection levels in the soil sample, andA promoter showed higher activity in the soil sample than in a laboratory medium. Such induction required andR and was moderately dependent on the ferric uptake regulator (Fur). The proliferation ability of andAc mutant in the sterile soil was low compared with the co-incubated wild-type cells. These findings suggested that in the soil environment, anthranilate dioxygenase genes are induced by AndR and Fur, and play a pivotal role in the proliferation in the soil environment. PMID:22360670

  3. Real-time Fluorescence PCR Method for Detection of Burkholderia glumae from Rice

    Institute of Scientific and Technical Information of China (English)

    FANG Yuan; XU Li-hui; TIAN Wen-xiao; HUAI Yan; YU Shan-hong; LOU Miao-miao; XIE Guan-lin

    2009-01-01

    Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further dispersal of this disease. The present study combined the real-time PCR method with classical PCR to increase the detecting efficiency, and to develop an accurate, rapid and sensitive method to detect the pathogen in the seed quarantine for effective management of the disease. The results showed that all the tested strains of B. glumae produced about 139 bp specific fragments by the real-time PCR and the general PCR methods, while others showed negative PCR result. The bacteria could be detected at the concentrations of 1×104 CFU/mL by general PCR method and at the concentrations below 100 CFU/mL by real-time fluorescence PCR method. B. glumae could be detected when the inoculated and healthy seeds were mixed with a proportion of 1:100.

  4. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    Science.gov (United States)

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  5. lux-Marking and application of carbofuran degrader Burkholderia cepacia PCL3.

    Science.gov (United States)

    Plangklang, Pensri; Reungsang, Alissara

    2011-10-01

    A luxAB-mutant of the carbofuran degrading bacterium Burkholderia cepacia PCL3 was successfully constructed with the capability to emit a luminescence signal of 1.6×10(-3)RLUcfu(-1). The mutant has a growth pattern and carbofuran degradation ability similar to PCL3 wild-type. The luminescent emission by PCL3:luxAB1 directly correlated with the metabolic activity of the cells. The optimal pH, temperature and n-decanal concentration for luminescence emission are 7.0, 35°C and 0.01%, respectively. PCL3:luxAB1 was used to assess the toxicity of carbofuran and carbofuran phenol in basal salt medium (BSM) in which the different sensitivity of the cells is dependent on the biomass concentration. With the luciferase system, the degradative fraction of the augmented PCL3:luxAB1 and the difference between the active augmented PCL3:luxAB1 and indigenous microorganisms at the contaminated site could be indicated.

  6. Antimicrobial Susceptibility and Genetic Characterisation of Burkholderia pseudomallei Isolated from Malaysian Patients

    Directory of Open Access Journals (Sweden)

    Yalda Khosravi

    2014-01-01

    Full Text Available Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ, the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B.

  7. [GENOTYPING OF THE BURKHOLDERIA MALLEI STRAINS BASED ON DIFFERENT REGION ANALYSIS].

    Science.gov (United States)

    Bondareva, O S; Savchenko, S S; Tkachenko, G A; Ledeneva, M L; Lemasova, L V; Antonov, V A

    2016-01-01

    Development of the genotyping methods of glanders agent is urgent due to its high pathogenicity, lack of effective preventive measures and threat of the use of Burkholderia mallei as a biological weapon. In this work we proposed a scheme for the typing of the B. mallei strains based on different region analysis (DFR). The choice of variable loci differentially presented in various strains of glanders agents was performed by analyzing annotated whole-genome sequences of the B. mallei strains. Primers and fluorescence probes were designed for 9 selected loci. The amplification conditions for different regions were optimized in two variants: with electrophoretic detection and hybridization-fluorescence detection in the strip format. The possibility of applying the DFR analysis to genetic characterization of strains was assessed in 14 B. mallei strains. The genetic profiles of the studied B. mallei strains revealed that the developed DFR-typing scheme was characterized by high discrimination power (Hunter-Gaston index value was 0.92), reproducibility, rapidity, easy interpretation, and applicability for epidemiological surveillance of glanders.

  8. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice.

    Science.gov (United States)

    Ulrich, Ricky L; Amemiya, Kei; Waag, David M; Roy, Chad J; DeShazer, David

    2005-03-14

    Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders. Two live attenuated B. mallei strains, a capsule mutant and a branched-chain amino acid auxotroph, were evaluated for use as vaccines against aerosol-initiated glanders in mice. Animals were aerogenically vaccinated and serum samples were obtained before aerosol challenge with a high-dose (>300 times the LD50) of B. mallei ATCC 23344. Mice vaccinated with the capsule mutant developed a Th2-like Ig subclass antibody response and none survived beyond 5 days. In comparison, the auxotrophic mutant elicited a Th1-like Ig subclass antibody response and 25% of the animals survived for 1 month postchallenge. After a low-dose (5 times the LD50) aerosol challenge, the survival rates of auxotroph-vaccinated and unvaccinated animals were 50 and 0%, respectively. Thus, live attenuated strains that promote a Th1-like Ig response may serve as promising vaccine candidates against aerosol infection with B. mallei.

  9. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility

    Science.gov (United States)

    Benanti, Erin L.; Nguyen, Catherine M.; Welch, Matthew D.

    2015-01-01

    Summary Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, while their close relative B. thailandensis is nonpathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection. PMID:25860613

  10. Evaluation of recombinant proteins of Burkholderia mallei for serodiagnosis of glanders.

    Science.gov (United States)

    Pal, Vijai; Kumar, Subodh; Malik, Praveen; Rai, Ganga Prasad

    2012-08-01

    Glanders is a contagious disease caused by the Gram-negative bacillus Burkholderia mallei. The number of equine glanders outbreaks has increased steadily during the last decade. The disease must be reported to the Office International des Epizooties, Paris, France. Glanders serodiagnosis is hampered by the considerable number of false positives and negatives of the internationally prescribed tests. The major problem leading to the low sensitivity and specificity of the complement fixation test (CFT) and enzyme-linked immunosorbent assay (ELISA) has been linked to the test antigens currently used, i.e., crude preparations of whole cells. False-positive results obtained from other diagnostic tests utilizing crude antigens lead to financial losses to animal owners, and false-negative results can turn a risk into a possible threat. In this study, we report on the identification of diagnostic targets using bioinformatics tools for serodiagnosis of glanders. The identified gene sequences were cloned and expressed as recombinant proteins. The purified recombinant proteins of B. mallei were used in an indirect ELISA format for serodiagnosis of glanders. Two recombinant proteins, 0375H and 0375TH, exhibited 100% sensitivity and specificity for glanders diagnosis. The proteins also did not cross-react with sera from patients with the closely related disease melioidosis. The results of this investigation highlight the potential of recombinant 0375H and 0375TH proteins in specific and sensitive diagnosis of glanders.

  11. Molecular phylogeny of Burkholderia pseudomallei from a remote region of Papua New Guinea.

    Directory of Open Access Journals (Sweden)

    Anthony Baker

    Full Text Available BACKGROUND: The island of New Guinea is located midway between the world's two major melioidosis endemic regions of Australia and Southeast Asia. Previous studies in Papua New Guinea have demonstrated autochthonous melioidosis in Balimo, Western province. In contrast to other regions of endemicity, isolates recovered from both environmental and clinical sources demonstrate narrow genetic diversity over large spatial and temporal scales. METHODOLOGY/PRINCIPAL FINDINGS: We employed molecular typing techniques to determine the phylogenetic relationships of these isolates to each other and to others worldwide to aid in understanding the origins of the Papua New Guinean isolates. Multi-locus sequence typing of the 39 isolates resolved three unique sequence types. Phylogenetic reconstruction and Structure analysis determined that all isolates were genetically closer to those from Australia than those from Southeast Asia. Gene cluster analysis however, identified a Yersinia-like fimbrial gene cluster predominantly found among Burkholderia pseudomallei derived from Southeast Asia. Higher resolution VNTR typing and phylogenetic reconstruction of the Balimo isolates resolved 24 genotypes with long branch lengths. These findings are congruent with long term persistence in the region and a high level of environmental stability. CONCLUSIONS/SIGNIFICANCE: Given that anthropogenic influence has been hypothesized as a mechanism for the dispersal of B. pseudomallei, these findings correlate with limited movement of the indigenous people in the region. The palaeogeographical and anthropogenic history of Australasia and the results from this study indicate that New Guinea is an important region for the further study of B. pseudomallei origins and dissemination.

  12. Landscape changes influence the occurrence of the melioidosis bacterium Burkholderia pseudomallei in soil in northern Australia.

    Directory of Open Access Journals (Sweden)

    Mirjam Kaestli

    Full Text Available BACKGROUND: The soil-dwelling saprophyte bacterium Burkholderia pseudomallei is the cause of melioidosis, a severe disease of humans and animals in southeast Asia and northern Australia. Despite the detection of B. pseudomallei in various soil and water samples from endemic areas, the environmental habitat of B. pseudomallei remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We performed a large survey in the Darwin area in tropical Australia and screened 809 soil samples for the presence of these bacteria. B. pseudomallei were detected by using a recently developed and validated protocol involving soil DNA extraction and real-time PCR targeting the B. pseudomallei-specific Type III Secretion System TTS1 gene cluster. Statistical analyses such as multivariable cluster logistic regression and principal component analysis were performed to assess the association of B. pseudomallei with environmental factors. The combination of factors describing the habitat of B. pseudomallei differed between undisturbed sites and environmentally manipulated areas. At undisturbed sites, the occurrence of B. pseudomallei was found to be significantly associated with areas rich in grasses, whereas at environmentally disturbed sites, B. pseudomallei was associated with the presence of livestock animals, lower soil pH and different combinations of soil texture and colour. CONCLUSIONS/SIGNIFICANCE: This study contributes to the elucidation of environmental factors influencing the occurrence of B. pseudomallei and raises concerns that B. pseudomallei may spread due to changes in land use.

  13. In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Hazem S. Elshafie

    2012-12-01

    Full Text Available The trend to search novel microbial natural biocides has recently been increasing in order to avoid the environmental pollution from use of synthetic pesticides. Among these novel natural biocides are the bioactive secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga. The aim of this study is to determine antifungal activity of Bga strains against some phytopathogenic fungi. The fungicidal tests were carried out using cultures and cell-free culture filtrates against Botrytis cinerea, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Sclerotinia sclerotiorum and Phytophthora cactorum. Results demonstrated that all tested strains exert antifungal activity against all studied fungi by producing diffusible metabolites which are correlated with their ability to produce extracellular hydrolytic enzymes. All strains significantly reduced the growth of studied fungi and the bacterial cells were more bioactive than bacterial filtrates. All tested Bulkholderia strains produced volatile organic compounds (VOCs, which inhibited the fungal growth and reduced the growth rate of Fusarium oxysporum and Rhizoctonia solani. GC/MS analysis of VOCs emitted by strain Bga 11096 indicated the presence of a compound that was identified as 1-methyl-4-(1-methylethenyl-cyclohexene, a liquid hydrocarbon classified as cyclic terpene. This compound could be responsible for the antifungal activity, which is also in agreement with the work of other authors.

  14. Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway.

    Science.gov (United States)

    Chauhan, A; Samanta, S K; Jain, R K

    2000-05-01

    Pseudomonas cepacia RKJ200 (now described as Burkholderia cepacia) has been shown to utilize p-nitrophenol (PNP) as sole carbon and energy source. The present work demonstrates that RKJ200 utilizes 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy, and is degraded with concomitant release of nitrite ions. Several lines of evidence, including thin layer chromatography, gas chromatography, 1H-nuclear magnetic resonance, gas chromatography-mass spectrometry, spectral analyses and quantification of intermediates by high performance liquid chromatography, have shown that NC is degraded via 1,2, 4-benzenetriol (BT) and hydroquinone (HQ) formation. Studies carried out on a PNP- derivative and a PNP+ transconjugant also demonstrate that the genes for the NC degradative pathway reside on the plasmid present in RKJ200; the same plasmid had earlier been shown to encode genes for PNP degradation, which is also degraded via HQ formation. It is likely, therefore, that the same sets of genes encode the further metabolism of HQ in NC and PNP degradation.

  15. Land use and soil type determine the presence of the pathogen Burkholderia pseudomallei in tropical rivers.

    Science.gov (United States)

    Ribolzi, Olivier; Rochelle-Newall, Emma; Dittrich, Sabine; Auda, Yves; Newton, Paul N; Rattanavong, Sayaphet; Knappik, Michael; Soulileuth, Bounsamai; Sengtaheuanghoung, Oloth; Dance, David A B; Pierret, Alain

    2016-04-01

    Burkholderia pseudomallei is the bacterium that causes melioidosis in humans. While B. pseudomallei is known to be endemic in South East Asia (SEA), the occurrence of the disease in other parts of the tropics points towards a potentially large global distribution. We investigated the environmental factors that influence the presence (and absence) of B. pseudomallei in a tropical watershed in SEA. Our main objective was to determine whether there is a link between the presence of the organism in the hydrographic network and the upstream soil and land-use type. The presence of B. pseudomallei was determined using a specific quantitative real-time PCR assay following enrichment culture. Land use, soil, geomorphology, and environmental data were then analyzed using partial least squares discriminant analysis (PLSDA) to compare the B. pseudomallei positive and negative sites. Soil type in the surrounding catchment and turbidity had a strong positive influence on the presence (acrisols and luvisols) or absence (ferralsols) of B. pseudomallei. Given the strong apparent links between soil characteristics, water turbidity, and the presence/absence of B. pseudomallei, actions to raise public awareness about factors increasing the risk of exposure should be undertaken in order to reduce the incidence of melioidosis in regions of endemicity.

  16. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant.

  17. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates.

    Science.gov (United States)

    Wang, Yuanzhen; Liu, Shijie

    2014-01-01

    (R)-hydroxyalkanoic acids (R-HAs) are valuable building blocks for the synthesis of fine chemicals and biopolymers because of the chiral center and the two active functional groups. Hydroxyalkanoic acids fermentation can revolutionize the polyhydroxyalkanoic acids (PHA) production by increasing efficiency and enhancing product utility. Modifying the fermentation conditions that promotes the in vivo depolymerization and secretion to fermentation broth in wild type bacteria is a novel and promising approach to produce R-HAs. Wood extract hydrolysate (WEH) was found to be a suitable substrate for R-3-hydroxybutyric acid (R-3-HB) production by Burkholderia cepacia. Using Paulownia elongate WEH as a feedstock, the R-3-HB concentration in fermentation broth reached as high as 14.2 g/L after 3 days of batch fermentation and the highest concentration of 16.8 g/L was obtained at day 9. Further investigation indicated that the composition of culture medium contributed to the enhanced R-3-HB production. PMID:24949263

  18. A family history of deoxyribonuclease II: surprises from Trichinella spiralis and Burkholderia pseudomallei.

    Science.gov (United States)

    MacLea, Kyle S; Krieser, Ronald J; Eastman, Alan

    2003-02-13

    Deoxyribonuclease IIalpha (DNase IIalpha) is an acidic endonuclease found in lysosomes and nuclei, and it is also secreted. Though its Caenorhabditis elegans homolog, NUC-1, is required for digesting DNA of apoptotic cell corpses and dietary DNA, it is not required for viability. However, DNase IIalpha is required in mice for correct development and viability, because undigested cell corpses lead to lesions throughout the body. Recently, we showed that, in contrast to previous reports, active DNase IIalpha consists of one contiguous polypeptide. To better analyze DNase II protein structure and determine residues important for activity, extensive database searches were conducted to find distantly related family members. We report 29 new partial or complete homologs from 21 species. Four homologs with differences at the purported active site histidine residue were detected in the parasitic nematodes Trichinella spiralis and Trichinella pseudospiralis. When these mutations were reconstructed in human DNase IIalpha, the expressed proteins were inactive. DNase II homologs were also identified in non-metazoan species. In particular, the slime-mold Dictyostelium, the protozoan Trichomonas vaginalis, and the bacterium Burkholderia pseudomallei all contain sequences with significant similarity and identity to previously cloned DNase II family members. We report an analysis of their sequences and implications for DNase II protein structure and evolution. PMID:12594037

  19. Investigation into the susceptibility of Burkholderia cepacia complex isolates to photodynamic antimicrobial chemotherapy (PACT)

    Science.gov (United States)

    Cassidy, C. M.; Watters, A. L.; Donnelly, R. F.; Tunney, M. M.

    2009-06-01

    The main cause of morbidity and mortality in cystic fibrosis (CF) sufferers is progressive pulmonary damage caused by recurrent and often unremitting respiratory tract infection. Causative organisms include Pseudomonas aeruginosa and Haemophilus influenzae, but in recent years the Burkholderia cepacia complex has come to the fore. This group of highly drug-resistant Gram-negative bacteria are associated with a rapid decline in lung function and the often fatal cepacia syndrome, with treatment limited to patient segregation and marginally effective antibacterial regimens. Thus, development of an effective treatment is of the upmost importance. PACT, a non-target specific therapy, has proven successful in killing both Gram-positive and Gram-negative bacteria. In this study, planktonic cultures of six strains of the B. cepacia complex were irradiated (635 nm, 200 J cm-2,10 minutes irradiation) following 30 seconds incubation with methylene blue (MB) or meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Rates of kill of > 99 % were achieved with MB- and TMP-PACT. A MB concentration of 50 μg ml-1 and TMP concentration of 500 μg ml-1 were associated with highest percentage kills for each photosensitizer. PACT is an attractive option for treatment of B.cepacia complex infection. Further study, involving biofilm culture susceptibility, delivery of light to the target and in vivo testing will be necessary before it PACT becomes a viable treatment option for CF patients who are colonised or infected with B. cepacia complex.

  20. Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production.

    Science.gov (United States)

    Dean, Scott N; Chung, Myung-Chul; van Hoek, Monique L

    2015-10-01

    In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation. PMID:26231649

  1. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant. PMID:26348147

  2. Screening for potential anti-infective agents towards Burkholderia pseudomallei infection

    Science.gov (United States)

    Eng, Su Anne; Nathan, Sheila

    2014-09-01

    The established treatment for melioidosis is antibiotic therapy. However, a constant threat to this form of treatment is resistance development of the causative agent, Burkholderia pseudomallei, towards antibiotics. One option to circumvent this threat of antibiotic resistance is to search for new alternative anti-infectives which target the host innate immune system and/or bacterial virulence. In this study, 29 synthetic compounds were evaluated for their potential to increase the lifespan of an infected host. The nematode Caenorhabditis elegans was adopted as the infection model as its innate immune pathways are homologous to humans. Screens were performed in a liquid-based survival assay containing infected worms exposed to individual compounds and survival of untreated and compound-treated worms were compared. A primary screen identified nine synthetic compounds that extended the lifespan of B. pseudomallei-infected worms. Subsequently, a disc diffusion test was performed on these selected compounds to delineate compounds into those that enhanced the survival of worms via antimicrobial activity i.e. reducing the number of infecting bacteria, or into those that did not target pathogen viability. Out of the nine hits selected, two demonstrated antimicrobial effects on B. pseudomallei. Therefore, the findings from this study suggest that the other seven identified compounds are potential anti-infectives which could protect a host against B. pseudomallei infection without developing the risk of drug resistance.

  3. Burkholderia pseudomallei is frequently detected in groundwater that discharges to major watercourses in northern Australia.

    Science.gov (United States)

    Baker, Anthony L; Warner, Jeffrey M

    2016-07-01

    Burkholderia pseudomallei is the environmental bacterium that causes the serious disease melioidosis. Recently, a high prevalence of viable B. pseudomallei was reported from natural groundwater seeps around Castle Hill, a clinical focus of melioidosis in Townsville, Australia. This study sought to expand previous findings to determine the extent of B. pseudomallei in more diverse natural groundwater seeps in northern Queensland to ascertain if the presence of the organism in groundwater on Castle Hill was an isolated occurrence. Analysis of water samples (n = 26) obtained from natural groundwater seeps following an intensive rainfall event in the Townsville region determined the presence of B. pseudomallei DNA in duplicates of 18 samples (69.2 % [95 % CI, 51.5 to 87.0]). From 26 water samples, a single isolate of B. pseudomallei was recovered despite plating of both pre-enriched samples and original water samples onto selective media, indicating that the sensitivity of these molecular techniques far exceeds culture-based methods. Furthermore, the identification of new environments endemic for melioidosis may be more effectively determined by analysing surface groundwater seeps than by the analysis of random soil samples. This study suggests that a higher incidence of melioidosis following monsoonal rains may be partially the result of exposure to groundwater sources carrying B. pseudomallei, and that modifications to public health messages in endemic regions may be warranted. Moreover, these findings have implications for predictive models of melioidosis, effective models requiring consideration of topographical and surface hydrological data. PMID:26620184

  4. Bioremediation of refinery wastewater using immobilised Burkholderia cepacia and Corynebacterium sp and their transconjugants

    Directory of Open Access Journals (Sweden)

    Abdullahi T. Ajao

    2013-07-01

    Full Text Available When oil spill occurs, it poses serious toxic hazards to all forms of life. Mixed culture of Burkholderia cepacia and Corynebacterium sp isolated from refinery sludge using selective enrichment technique was used for bioremediation of refinery wastewater in a laboratoryscale bioreactor. Physicochemical parameters of both raw and treated water were as determined and compared with Federal Environ - mental Protection Agency (FEPA-limit, Abuja, Nigeria to asses the efficiency of the bioremediation process. Each of the bacterium was screened for the presence of plasmid DNA and for the involvement or otherwise of plasmid in the bioremediation of wastewater. The immobilised cells showed percentage decrease in chemical oxygen demand (97%, biochemical oxygen demand (94%, phenol (98%, total petroleum hydrocarbon (79%, oil and grease (90% of the refinery waste water after 20 days of treatment while their transconjugants showed the multiplicative effect by achieving the same percentage after 10 days of treatment. Therefore, the findings revealed that bioaugmentation of wastewater using transmissible catabolic plasmid will enhance efficiency of the bioremediation by spreading the plasmid among indigenous microbial community either through horizontal gene transfer or transformation.

  5. Physicochemical Properties Influencing Presence of Burkholderia pseudomallei in Soil from Small Ruminant Farms in Peninsular Malaysia.

    Science.gov (United States)

    Musa, Hassan Ismail; Hassan, Latiffah; Shamsuddin, Zulkifli Hj; Panchadcharam, Chandrawathani; Zakaria, Zunita; Abdul Aziz, Saleha

    2016-01-01

    Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00-1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05-1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15-2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent's biological processes and clay retains water and nutrients. PMID:27635652

  6. Development and validation of Burkholderia pseudomallei-specific real-time PCR assays for clinical, environmental or forensic detection applications.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    Full Text Available The bacterium Burkholderia pseudomallei causes melioidosis, a rare but serious illness that can be fatal if untreated or misdiagnosed. Species-specific PCR assays provide a technically simple method for differentiating B. pseudomallei from near-neighbor species. However, substantial genetic diversity and high levels of recombination within this species reduce the likelihood that molecular signatures will differentiate all B. pseudomallei from other Burkholderiaceae. Currently available molecular assays for B. pseudomallei detection lack rigorous validation across large in silico datasets and isolate collections to test for specificity, and none have been subjected to stringent quality control criteria (accuracy, precision, selectivity, limit of quantitation (LoQ, limit of detection (LoD, linearity, ruggedness and robustness to determine their suitability for environmental, clinical or forensic investigations. In this study, we developed two novel B. pseudomallei specific assays, 122018 and 266152, using a dual-probe approach to differentiate B. pseudomallei from B. thailandensis, B. oklahomensis and B. thailandensis-like species; other species failed to amplify. Species specificity was validated across a large DNA panel (>2,300 samples comprising Burkholderia spp. and non-Burkholderia bacterial and fungal species of clinical and environmental relevance. Comparison of assay specificity to two previously published B. pseudomallei-specific assays, BurkDiff and TTS1, demonstrated comparable performance of all assays, providing between 99.7 and 100% specificity against our isolate panel. Last, we subjected 122018 and 266152 to rigorous quality control analyses, thus providing quantitative limits of assay performance. Using B. pseudomallei as a model, our study provides a framework for comprehensive quantitative validation of molecular assays and provides additional, highly validated B. pseudomallei assays for the scientific research community.

  7. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren;

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately...... 11.5-Mb (G+C content, 61.52 draft genome sequence of B. terrae BS001 with the aim of providing insight into the genomic basis of its ecological success in fungus-affected soil settings....

  8. Extraction of lipase from Burkholderia cepacia by PEG/Phosphate ATPS and its biochemical characterization

    Directory of Open Access Journals (Sweden)

    Giovana da Silva Padilha

    2012-02-01

    Full Text Available This work aimed to study the partitioning of a lipase produced by Burkholderia cepacia in PEG/Phosphate aqueous two phase system (ATPS and its characterization. Lipase was produced by B. cepacia strains in a fermenter. Enzyme partitioning occurred at pH 6.0 and 8.0, using PEG 1500 and 6000 on two tie lines. Metal ions, pH and temperature effects on enzyme activity were evaluated. Five milliliter of 7.5% olive oil emulsion with 2.5% gumarabic in 0.1M sodium phosphate buffer at pH 8.0 and 37ºC were used for the activity determinations. Results showed that crude stratum from B. cepacia was partitioned by PEG1500/phosphate ATPS at pH 6.0 or 8.0 for, which the partitioning coefficients were 108-and 209-folds. Lipase presented optimal activity conditions at 37ºC and pH 8.0; it showed pH-stability for 4 h of incubation at different pH values at 37ºC. Metal ions such as Mn2+ , Co2+, I-and Ca2+ sustained enzymatic activities; however, it was inhibited by the presence of Fe2+, Hg2+ and Al3+ . Km and Vmax values were 0.258 U/mg and 43.90 g/L, respectively. A molecular weight of 33 kDa and an isoelectric point at pH 5.0 were determined by SDS-PAGE and IFS electrophoresis, respectively.

  9. Survey of Bartonella spp. in U.S. bed bugs detects Burkholderia multivorans but not Bartonella.

    Directory of Open Access Journals (Sweden)

    Virna L Saenz

    Full Text Available Bed bugs (Cimex lectularius L. have resurged in the United States and globally. Bed bugs are hematophagous ectoparasites of humans and other animals, including domestic pets, chickens, and bats, and their blood feeding habits contribute to their potential as disease vectors. Several species of Bartonella are re-emergent bacterial pathogens that also affect humans, domestic pets, bats and a number of other wildlife species. Because reports of both bed bugs and Bartonella have been increasing in the U.S., and because their host ranges can overlap, we investigated whether the resurgences of these medically important pathogens and their potential vector might be linked, by screening for Bartonella spp. in bed bugs collected from geographic areas where these pathogens are prevalent and from bed bugs that have been in culture in the laboratory for several years. We screened a total of 331 bed bugs: 316 bed bugs from 36 unique collections in 29 geographic locations in 13 states, 10 bed bugs from two colonies maintained in the laboratory for 3 yr, and 5 bed bugs from a colony that has been in culture since before the recent resurgence of bed bugs. Bartonella spp. DNA was screened using a polymerase chain reaction assay targeting the 16S-23S rRNA intergenic transcribed spacer region. Bartonella DNA was not amplified from any bed bug, but five bed bugs from four different apartments of an elderly housing building in North Carolina contained DNA sequences that corresponded to Burkholderia multivorans, an important pathogen in nosocomial infections that was not previously linked to an arthropod vector.

  10. An objective approach for Burkholderia pseudomallei strain selection as challenge material for medical countermeasures efficacy testing.

    Science.gov (United States)

    Van Zandt, Kristopher E; Tuanyok, Apichai; Keim, Paul S; Warren, Richard L; Gelhaus, H Carl

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a rare disease of biodefense concern with high mortality and extreme difficulty in treatment. No human vaccines are available that protect against B. pseudomallei infection, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. Although clinical trials could be used to test the efficacy of new medical countermeasures (MCMs), the high mortality rates associated with melioidosis raises significant ethical issues concerning treating individuals with new compounds with unknown efficacies. The US Food and Drug Administration (FDA) has formulated a set of guidelines for the licensure of new MCMs to treat diseases in which it would be unethical to test the efficacy of these drugs in humans. The FDA "Animal Rule" 21 CFR 314 calls for consistent, well-characterized B. pseudomallei strains to be used as challenge material in animal models. In order to facilitate the efficacy testing of new MCMs for melioidosis using animal models, we intend to develop a well-characterized panel of strains for use. This panel will comprise of strains that were isolated from human cases, have a low passage history, are virulent in animal models, and are well-characterized phenotypically and genotypically. We have reviewed published and unpublished data on various B. pseudomallei strains to establish an objective method for selecting the strains to be included in the panel of B. pseudomallei strains with attention to five categories: animal infection models, genetic characterization, clinical and passage history, and availability of the strain to the research community. We identified 109 strains with data in at least one of the five categories, scored each strain based on the gathered data and identified six strains as candidate for a B. pseudomallei strain panel. PMID:23057010

  11. An objective approach for Burkholderia pseudomallei strain selection as challenge material for medical countermeasures efficacy testing

    Directory of Open Access Journals (Sweden)

    Kristopher E. Van Zandt

    2012-09-01

    Full Text Available Burkholderia pseudomallei is the causative agent of melioidosis, a rare disease of biodefense concern with high mortality and extreme difficulty in treatment. No human vaccines are available that protect against B. pseudomallei infection, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. Although clinical trials could be used to test the efficacy of new medical countermeasures (MCMs, the high mortality rates associated with melioidosis raises significant ethical issues concerning treating individuals with new compounds with unknown efficacies. The US Food and Drug Administration (FDA has formulated a set of guidelines for the licensure of new MCMs to treat diseases in which it would be unethical to test the efficacy of these drugs in humans. The FDA Animal Rule 21 CFR 314 calls for consistent, well-characterized B. pseudomallei strains to be used as challenge material in animal models. In order to facilitate the efficacy testing of new MCMs for melioidosis using animal models, we intend to develop a well-characterized panel of strains for use. This panel will comprise of strains that were isolated from human cases, have a low passage history, are virulent in animal models, and are well characterized phenotypically and genotypically. We have reviewed published and unpublished data on various B. pseudomallei strains to establish an objective method for selecting the strains to be included in the panel of B. pseudomallei strains with attention to five categories: animal infection models, genetic characterization, clinical and passage history, and availability of the strain to the research community. We identified 109 strains with data in at least one of the five categories, scored each strain based on the gathered data and identified 6 strains as candidate for a B. pseudomallei strain panel.

  12. Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from Australia.

    Directory of Open Access Journals (Sweden)

    Derek S Sarovich

    Full Text Available Burkholderia pseudomallei is a gram-negative bacterium that causes the serious human disease, melioidosis. There is no vaccine against melioidosis and it can be fatal if not treated with a specific antibiotic regimen, which typically includes the third-generation cephalosporin, ceftazidime (CAZ. There have been several resistance mechanisms described for B. pseudomallei, of which the best described are amino acid changes that alter substrate specificity in the highly conserved class A β-lactamase, PenA. In the current study, we sequenced penA from isolates sequentially derived from two melioidosis patients with wild-type (1.5 µg/mL and, subsequently, resistant (16 or ≥256 µg/mL CAZ phenotypes. We identified two single-nucleotide polymorphisms (SNPs that directly increased CAZ hydrolysis. One SNP caused an amino acid substitution (C69Y near the active site of PenA, whereas a second novel SNP was found within the penA promoter region. In both instances, the CAZ resistance phenotype corresponded directly with the SNP genotype. Interestingly, these SNPs appeared after infection and under selection from CAZ chemotherapy. Through heterologous cloning and expression, and subsequent allelic exchange in the native bacterium, we confirmed the role of penA in generating both low-level and high-level CAZ resistance in these clinical isolates. Similar to previous studies, the amino acid substitution altered substrate specificity to other β-lactams, suggesting a potential fitness cost associated with this mutation, a finding that could be exploited to improve therapeutic outcomes in patients harboring CAZ resistant B. pseudomallei. Our study is the first to functionally characterize CAZ resistance in clinical isolates of B. pseudomallei and to provide proven and clinically relevant signatures for monitoring the development of antibiotic resistance in this important pathogen.

  13. Drug susceptibility and biofilm formation of Burkholderia pseudomallei in nutrient-limited condition.

    Science.gov (United States)

    Anutrakunchai, C; Sermswan, R W; Wongratanacheewin, S; Puknun, A; Taweechaisupapong, S

    2015-06-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which can form biofilms and microcolonies in vivo and in vitro. One of the hallmark characteristics of the biofilm-forming bacteria is that they can be up to 1,000 times more resistant to antibiotics than their free-living counterpart. Bacteria also become highly tolerant to antibiotics when nutrients are limited. One of the most important causes of starvation induced tolerance in vivo is biofilm growth. However, the effect of nutritional stress on biofilm formation and drug tolerance of B. pseudomallei has never been reported. Therefore, this study aims to determine the effect of nutrient-limited and enriched conditions on drug susceptibility of B. pseudomallei in both planktonic and biofilm forms in vitro using broth microdilution method and Calgary biofilm device, respectively. The biofilm formation of B. pseudomallei in nutrient-limited and enriched conditions was also evaluated by a modified microtiter-plate test. Six isolates of ceftazidime (CAZ)-susceptible and four isolates of CAZ-resistant B. pseudomallei were used. The results showed that the minimum bactericidal concentrations of CAZ against B. pseudomallei in nutrient-limited condition were higher than those in enriched condition. The drug susceptibilities of B. pseudomallei biofilm in both enriched and nutrient-limited conditions were more tolerant than those of planktonic cells. Moreover, the quantification of biofilm formation by B. pseudomallei in nutrient-limited condition was significantly higher than that in enriched condition. These data indicate that nutrient-limited condition could induce biofilm formation and drug tolerance of B. pseudomallei.

  14. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Messiaen

    Full Text Available Due to the intrinsic resistance of Burkholderia cepacia complex (Bcc to many antibiotics and the production of a broad range of virulence factors, lung infections by these bacteria, primarily occurring in cystic fibrosis (CF patients, are very difficult to treat. In addition, the ability of Bcc organisms to form biofilms contributes to their persistence in the CF lung. As Bcc infections are associated with poor clinical outcome, there is an urgent need for new effective therapies to treat these infections. In the present study, we investigated whether liposomal tobramycin displayed an increased anti-biofilm effect against Bcc bacteria compared to free tobramycin. Single particle tracking (SPT was used to study the transport of positively and negatively charged nanospheres in Bcc biofilms as a model for the transport of liposomes. Negatively charged nanospheres became immobilized in close proximity of biofilm cell clusters, while positively charged nanospheres interacted with fiber-like structures, probably eDNA. Based on these data, encapsulation of tobramycin in negatively charged liposomes appeared promising for targeted drug delivery. However, the anti-biofilm effect of tobramycin encapsulated into neutral or anionic liposomes did not increase compared to that of free tobramycin. Probably, the fusion of the anionic liposomes with the negatively charged bacterial surface of Bcc bacteria was limited by electrostatic repulsive forces. The lack of a substantial anti-biofilm effect of tobramycin encapsulated in neutral liposomes could be further investigated by increasing the liposomal tobramycin concentration. However, this was hampered by the low encapsulation efficiency of tobramycin in these liposomes.

  15. In vivo bioluminescence imaging of Burkholderia mallei respiratory infection and treatment in the mouse model

    Directory of Open Access Journals (Sweden)

    Shane eMassey

    2011-08-01

    Full Text Available Bioluminescent imaging (BLI technology is a powerful tool for monitoring infectious disease progression and treatment approaches. BLI is particularly useful for tracking fastidious intracellular pathogens that might be difficult to recover from certain organs. Burkholderia mallei, the causative agent of glanders, is a facultative intracellular pathogen and has been classified by the CDC as a Category B select agent due to its highly infectious nature and potential use as a biological weapon. Very little is known regarding pathogenesis or treatment of glanders. We investigated the use of bioluminescent reporter constructs to monitor the dynamics of infection as well as the efficacy of therapeutics for B. mallei in real time. A stable luminescent reporter B. mallei strain was created using the pUTmini-Tn5::luxKm2 plasmid and used to monitor glanders in the BALB/c murine model. Mice were infected via the intranasal route with 5x103 bacteria and monitored by BLI at 24, 48 and 72 h. We verified that our reporter construct maintained similar virulence and growth kinetics compared to wild-type B. mallei and confirmed that it maintains luminescent stability in the presence or absence of antibiotic selection. The luminescent signal was initially seen in the lungs, and progressed to the liver and spleen over the course of infection. We demonstrated that antibiotic treatment 24 h post-infection resulted in reduction of bioluminescence that can be attributed to decreased bacterial burden in target organs. These findings suggest that BLI can be used to monitor disease progression and efficacy of therapeutics during glanders infections. Finally, we report an alternative method to mini-Tn5::luxKm2 transposon using mini-Tn7-lux elements that insert site-specifically at known genomic attachment sites and that can also be used to tag bacteria.

  16. Genotyping of Burkholderia mallei from an outbreak of glanders in Bahrain suggests multiple introduction events.

    Directory of Open Access Journals (Sweden)

    Holger C Scholz

    2014-09-01

    Full Text Available Glanders, caused by the gram-negative bacterium Burkholderia mallei, is a highly infectious zoonotic disease of solipeds causing severe disease in animals and men. Although eradicated from many Western countries, it recently emerged in Asia, the Middle-East, Africa, and South America. Due to its rareness, little is known about outbreak dynamics of the disease and its epidemiology.We investigated a recent outbreak of glanders in Bahrain by applying high resolution genotyping (multiple locus variable number of tandem repeats, MLVA and comparative whole genome sequencing to B. mallei isolated from infected horses and a camel. These results were compared to samples obtained from an outbreak in the United Arab Emirates in 2004, and further placed into a broader phylogeographic context based on previously published B. mallei data. The samples from the outbreak in Bahrain separated into two distinct clusters, suggesting a complex epidemiological background and evidence for the involvement of multiple B. mallei strains. Additionally, the samples from Bahrain were more closely related to B. mallei isolated from horses in the United Arab Emirates in 2004 than other B. mallei which is suggestive of repeated importation to the region from similar geographic sources.High-resolution genotyping and comparative whole genome analysis revealed the same phylogenetic patterns among our samples. The close relationship of the Dubai/UAE B. mallei populations to each other may be indicative of a similar geographic origin that has yet to be identified for the infecting strains. The recent emergence of glanders in combination with worldwide horse trading might pose a new risk for human infections.

  17. The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates.

    Directory of Open Access Journals (Sweden)

    Nur Siti K Ramli

    Full Text Available Burkholderia pseudomallei, a Gram-negative saprophytic bacterium, is the causative agent of the potentially fatal melioidosis disease in humans. In this study, environmental parameters including temperature, nutrient content, pH and the presence of glucose were shown to play a role in in vitro biofilm formation by 28 B. pseudomallei clinical isolates, including four isolates with large colony variants (LCVs and small colony variants (SCVs morphotypes. Enhanced biofilm formation was observed when the isolates were tested in LB medium, at 30 °C, at pH 7.2, and in the presence of as little as 2 mM glucose respectively. It was also shown that all SVCs displayed significantly greater capacity to form biofilms than the corresponding LCVs when cultured in LB at 37 °C. In addition, octanoyl-homoserine lactone (C(8-HSL, a quorum sensing molecule, was identified by mass spectrometry analysis in bacterial isolates referred to as LCV CTH, LCV VIT, SCV TOM, SCV CTH, 1 and 3, and the presence of other AHL's with higher masses; decanoyl-homoserine lactone (C(10-HSL and dodecanoyl-homoserine lactone (C(12-HSL were also found in all tested strain in this study. Last but not least, we had successfully acquired two Bacillus sp. soil isolates, termed KW and SA respectively, which possessed strong AHLs degradation activity. Biofilm formation of B. pseudomallei isolates was significantly decreased after treated with culture supernatants of KW and SA strains, demonstrating that AHLs may play a role in B. pseudomallei biofilm formation.

  18. Profiling of Burkholderia cepacia secretome at mid-logarithmic and early-stationary phases of growth.

    Directory of Open Access Journals (Sweden)

    Vanitha Mariappan

    Full Text Available BACKGROUND: Burkholderia cepacia is a Gram-negative pathogen that causes serious respiratory infections in immunocompromised patients and individuals with cystic fibrosis. This bacterium is known to release extracellular proteins that may be involved in virulence. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, B. cepacia grown to mid-logarithmic and early-stationary phases were investigated on their ability to invade and survive intracellularly in A549 lung epithelial cells in order to discern the fate of these bacteria in the pathogenesis of B. cepacia lung infections in in vitro condition. The early-stationary phase B. cepacia was demonstrated to be more invasive than mid-logarithmic phase. In addition, culture supernatants of B. cepacia obtained from these phases of growth were also demonstrated to cause different cytotoxic potency on the A549 human lung epithelial cells. Profiling of the supernatants using the gel-based proteomics approach identified 43 proteins that were commonly released in both the growth phases and 40 proteins newly-released at the early-stationary phase. The latter proteins may account for the higher cytotoxic activity of the early-stationary culture supernatant compared to that obtained at the mid-logarithmic phase. Among the newly-released proteins in the early-stationary phase supernatant were flagellar hook-associated domain protein (FliD, flagellar hook-associated protein (FlgK, TonB-dependent siderophore (Fiu, Elongation factor G (FusA, phosphoglycerate kinase (Pgk and sulfatase (AslA which are known for their virulence. CONCLUSION/SIGNIFICANCE: Differences in the ability of B. cepacia to invade and survive intracellularly inside the epithelial cells at different phases of growth may improve our understanding of the varied disease progressions associated with B. cepacia infections. In addition, the identified culture supernatant proteins may be used as targets for the development of new strategies to

  19. Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei.

    Science.gov (United States)

    Zhang, Lingling; Wang, Yu; Picking, Wendy L; Picking, William D; De Guzman, Roberto N

    2006-06-01

    Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens. PMID:16631790

  20. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance.

    Directory of Open Access Journals (Sweden)

    Chakrit Sawasdidoln

    Full Text Available BACKGROUND: Burkholderia pseudomallei, a gram-negative bacterium that causes melioidosis, was reported to produce biofilm. As the disease causes high relapse rate when compared to other bacterial infections, it therefore might be due to the reactivation of the biofilm forming bacteria which also provided resistance to antimicrobial agents. However, the mechanism on how biofilm can provide tolerance to antimicrobials is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The change in resistance of B. pseudomallei to doxycycline, ceftazidime, imipenem, and trimethoprim/sulfamethoxazole during biofilm formation were measured as minimum biofilm elimination concentration (MBEC in 50 soil and clinical isolates and also in capsule, flagellin, LPS and biofilm mutants. Almost all planktonic isolates were susceptible to all agents studied. In contrast, when they were grown in the condition that induced biofilm formation, they were markedly resistant to all antimicrobial agents even though the amount of biofilm production was not the same. The capsule and O-side chains of LPS mutants had no effect on biofilm formation whereas the flagellin-defective mutant markedly reduced in biofilm production. No alteration of LPS profiles was observed when susceptible form was changed to resistance. The higher amount of N-acyl homoserine lactones (AHLs was detected in the high biofilm-producing isolates. Interestingly, the biofilm mutant which produced a very low amount of biofilm and was sensitive to antimicrobial agents significantly resisted those agents when grown in biofilm inducing condition. CONCLUSIONS/SIGNIFICANCE: The possible drug resistance mechanism of biofilm mutants and other isolates is not by having biofilm but rather from some factors that up-regulated when biofilm formation genes were stimulated. The understanding of genes related to this situation may lead us to prevent B. pseudomallei biofilms leading to the relapse of melioidosis.

  1. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Anis Rageh Al-Maleki

    Full Text Available Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV] to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk, ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.

  2. Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Patcharaporn Tippayawat

    Full Text Available BACKGROUND: Infection with the Gram-negative bacterium Burkholderia pseudomallei is an important cause of community-acquired lethal sepsis in endemic regions in southeast Asia and northern Australia and is increasingly reported in other tropical areas. In animal models, production of interferon-gamma (IFN-gamma is critical for resistance, but in humans the characteristics of IFN-gamma production and the bacterial antigens that are recognized by the cell-mediated immune response have not been defined. METHODS: Peripheral blood from 133 healthy individuals who lived in the endemic area and had no history of melioidosis, 60 patients who had recovered from melioidosis, and 31 other patient control subjects were stimulated by whole bacteria or purified bacterial proteins in vitro, and IFN-gamma responses were analyzed by ELISPOT and flow cytometry. FINDINGS: B. pseudomallei was a potent activator of human peripheral blood NK cells for innate production of IFN-gamma. In addition, healthy individuals with serological evidence of exposure to B. pseudomallei and patients recovered from active melioidosis developed CD4(+ (and CD8(+ T cells that recognized whole bacteria and purified proteins LolC, OppA, and PotF, members of the B. pseudomallei ABC transporter family. This response was primarily mediated by terminally differentiated T cells of the effector-memory (T(EMRA phenotype and correlated with the titer of anti-B. pseudomallei antibodies in the serum. CONCLUSIONS: Individuals living in a melioidosis-endemic region show clear evidence of T cell priming for the ability to make IFN-gamma that correlates with their serological status. The ability to detect T cell responses to defined B. pseudomallei proteins in large numbers of individuals now provides the opportunity to screen candidate antigens for inclusion in protein or polysaccharide-conjugate subunit vaccines against this important but neglected disease.

  3. The biofilm produced by Burkholderia cepacia complex: molecular aspects and relationship with exopolysaccharides

    Directory of Open Access Journals (Sweden)

    Lucia Corich

    2010-12-01

    Full Text Available Introduction. In cystic fibrosis patients, Burkholderia cepacia complex (Bcc can cause serious pulmonary chronic infections thanks in part to the ability to form biofilm, matrix rich in exopolysaccharides. In Bcc grown in the planktonic state, the main exopolysaccharide is cepacian while in biofilm its presence is controversial. Methods and Results. Two clinical isolates, named BTS7 and BTS2, were studied. BTS7 produces abundant cepacian but not much biofilm (quantified by colorimetric method.At least two of the genes involved in cepacian biosynthesis are not necessary for biofilm production as two BTS7 derivatives, bceB and bceQ knocked out by transposon mutagenesis, produce biofilm levels comparable to the wild-type. BTS2 sinthesyzes cepacian only if cultured on a specific medium. It has been colonizing a patient for almost ten years, showing a significant reduction of biofilm production during this period. This reduction did not appear together with the lack of factors required for the initial adhesion to the surface, or to differences in some of the Bcc genes involved in biofilm formation. Moreover, sequencing of its bce locus revealed a bceX gene, absent in BTS7, coding for a trascriptional regulator. Its product may negatively regulate the production of cepacian but not the one of other polysaccharides, promoting the formation of biofilm. Conclusions. Cepacian seems to be marginal in the production of biofilm.The reduced ability to produce biofilm of BTS2 suggests possible gene mutations occurred over time. Using custom arrays we will compare the gene expression of the BTS2 isolates, to identify the genes responsible for the observed phenotypic changes.

  4. Cloning, expression, and characterization of a peptidoglycan hydrolase from the Burkholderia pseudomallei phage ST79.

    Science.gov (United States)

    Khakhum, Nittaya; Yordpratum, Umaporn; Boonmee, Atcha; Tattawasart, Unchalee; Rodrigues, Jorge L M; Sermswan, Rasana W

    2016-12-01

    The lytic phage ST79 of Burkholderia pseudomallei can lyse a broad range of its host including antibiotic resistant isolates from within using a set of proteins, holin, lysB, lysC and endolysin, a peptidoglycan (PG) hydrolase enzyme. The phage ST79 endolysin gene identified as peptidase M15A was cloned, expressed and purified to evaluate its potential to lyse pathogenic bacteria. The molecular size of the purified enzyme is approximately 18 kDa and the in silico study cited here indicated the presence of a zinc-binding domain predicted to be a member of the subfamily A of a metallopeptidase. Its activity, however, was reduced by the presence of Zn(2+). When Escherichia coli PG was used as a substrate and subjected to digestion for 5 min with 3 μg/ml of enzyme, the peptidase M15A showed 2 times higher in lysis efficiency when compared to the commercial lysozyme. The enzyme works in a broad alkaligenic pH range of 7.5-9.0 and temperatures from 25 to 42 °C. The enzyme was able to lyse 18 Gram-negative bacteria in which the outer membrane was permeabilized by chloroform treatment. Interestingly, it also lysed Enterococcus sp., but not other Gram-positive bacteria. In general, endolysin cannot lyse Gram-negative bacteria from outside, however, the cationic amphipathic C-terminal in some endolysins showed permeability to Gram-negative outer membranes. Genetically engineered ST79 peptidase M15A that showed a broad spectrum against Gram-negative bacterial PG or, in combination with an antibiotic the same way as combined drug methodology, could facilitate an effective treatment of severe or antibiotic resistant cases. PMID:27637947

  5. Burkholderia phytofirmans PsJN reduces damages to freezing temperature in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fan eSU

    2015-10-01

    Full Text Available Several plant growth-promoting rhizobacteria (PGPR are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN, on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers.Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyllImpact of inoculation modes (either on seeds or by soil irrigation and their effects overnight at 0, -1 or -3°C, were investigated by following photosystem II (PSII activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A

  6. Biosynthetic engineering and fermentation media development leads to gram-scale production of spliceostatin natural products in Burkholderia sp.

    Science.gov (United States)

    Eustáquio, Alessandra S; Chang, Li-Ping; Steele, Greg L; O'Donnell, Christopher J; Koehn, Frank E

    2016-01-01

    A key challenge in natural products drug discovery is compound supply. Hundreds of grams of purified material are needed to advance a natural product lead through preclinical development. Spliceostatins are polyketide-nonribosomal peptide natural products that bind to the spliceosome, an emerging target in cancer therapy. The wild-type bacterium Burkholderia sp. FERM BP-3421 produces a suite of spliceostatin congeners with varying biological activities and physiological stabilities. Hemiketal compounds such as FR901464 were the first to be described. Due to its improved properties, we were particularly interested in a carboxylic acid precursor analog that was first reported from Burkholderia sp. MSMB 43 and termed thailanstatin A. Inactivation of the iron/α-ketoglutarate-dependent dioxygenase gene fr9P had been shown to block hemiketal biosynthesis. However, a 4-deoxy congener of thailanstatin A was the main product seen in the dioxygenase mutant. We show here that expression of the cytochrome P450 gene fr9R is a metabolic bottle neck, as use of an l-arabinose inducible system led to nearly complete conversion of the 4-deoxy analog to the target molecule. By integrating fermentation media development approaches with biosynthetic engineering, we were able to improve production titers of the target compound >40-fold, going from the starting ~60 mg/L to 2.5 g/L, and to achieve what is predominantly a single component production profile. These improvements were instrumental in enabling preclinical development of spliceostatin analogs as chemotherapy. PMID:26620532

  7. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  8. Complete genome sequence of Burkholderia caribensis Bcrs1W (NBRC110739), a strain co-residing with phenanthrene degrader Mycobacterium sp. EPa45.

    Science.gov (United States)

    Ohtsubo, Yoshiyuki; Nonoyama, Shouta; Ogawa, Natsumi; Kato, Hiromi; Nagata, Yuji; Tsuda, Masataka

    2016-06-20

    Complete genome sequence of Burkholderia caribensis Bcrs1W, isolated from a phenanthrene-degrading mixed culture, was determined. The genomic information of Bcrs1W will be beneficial to elucidating the mechanisms of its positive effects on phenanthrene degradation by co-residing Mycobacterium sp. Epa45, and to exploiting their degradation potentials. PMID:27130496

  9. Genome sequencing and transposon mutagenesis of Burkholderia seminalis TC3.4.2R3 identify genes contributing to suppression of orchid necrosis caused by B. gladioli

    Science.gov (United States)

    Thirty six strains of Burkholderia spp. isolated from sugarcane were evaluated for biological control of leaf and pseudobulb necrosis of orchid caused by B. gladioli. Twenty nine of the sugarcane strains suppressed the disease in greenhouse assays. We generated a draft genomic sequence of one suppr...

  10. Draft Genome Sequence of Burkholderia ambifaria RZ2MS16, a Plant Growth-Promoting Rhizobacterium Isolated from Guarana, a Tropical Plant.

    Science.gov (United States)

    Batista, Bruna Durante; Taniguti, Lucas Mitsuo; Monteiro-Vitorello, Claudia Barros; Azevedo, João Lúcio; Quecine, Maria Carolina

    2016-01-01

    Burkholderia ambifaria strain RZ2MS16 was isolated from the rhizosphere of Amazon guarana in Brazil. This bacterium exhibits a remarkable capacity to promote the growth of corn and soybean. Here, we report the draft genome sequence of RZ2MS16 and some genes related to multiple traits involved in plant growth promotion. PMID:26988044

  11. Characterization of the papilionoid-Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae).

    Science.gov (United States)

    Lemaire, Benny; Van Cauwenberghe, Jannick; Verstraete, Brecht; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Sprent, Janet; James, Euan K; Muasya, A Muthama

    2016-02-01

    The South African Fynbos soils are renowned for nitrogen-fixing Burkholderia associated with diverse papilionoid legumes of the tribes Crotalarieae, Hypocalypteae, Indigofereae, Phaseoleae and Podalyrieae. However, despite numerous rhizobial studies in the region, the symbiotic diversity of Burkholderia has not been investigated in relation to a specific host legume and its geographical provenance. This study analyzed the diversity of nodulating strains of Burkholderia from the legume species Podalyria calyptrata. Diverse lineages were detected that proved to be closely related to Burkholderia taxa, originating from hosts in other legume tribes. By analyzing the genetic variation of chromosomal (recA) and nodulation (nodA) sequence data in relation to the sampling sites we assessed the geographical distribution patterns of the P. calyptrata symbionts. Although we found a degree of genetically differentiated rhizobial populations, a correlation between genetic (recA and nodA) and geographic distances among populations was not observed, suggesting high rates of dispersal and rhizobial colonization within Fynbos soils. PMID:26689612

  12. Direct Detection of Burkholderia cepacia in Susceptible Pharmaceutical Products Using Semi-Nested PCR.

    Science.gov (United States)

    Attia, Mohamed A; Ali, Amal E; Essam, Tamer M; Amin, Magdy A

    2016-01-01

    Burkholderia cepaciahas recently received a considerable attention as one of the major risks in susceptible pharmaceutical products. This microorganism can easily propagate and cause vast and severe contamination, especially to the water supplies for pharmaceutical companies. Moreover, it proliferates within the products and can cause severe infections for humans. Therefore, fast and sensitive detection of these bacteria is of a great demand. The present study introduces improved application of a polymerase chain reaction assay with relatively high sensitivity and specificity for the direct detection ofB. cepaciafrom the aqueous pharmaceutical products. A semi-nested polymerase chain reaction approach using the primer set BCR1/BCR2 followed by BCR1/Mr yielding a 465 bp fragment of the recA gene was applied and tested using both crude lysate from isolated colonies and DNA directly extracted from artificially prepared and spiked reference syrup. The polymerase chain reaction assay showed no interference with other bacterial reference and environmental strains tested, includingStaphylococcus aureusATCC® 6538,Pseudomonas aeruginosaATCC® 9027,Escherichia coliATCC® 8739,Salmonella abonyNCTC® 6017,Bacillus subtilisATCC® 6633,Micrococcus luteus, Staphylococcus warneri, Pseudomonas fluorescens, Pseudomonas putida, andRalstonia pickettii Moreover, this semi-nested assay showed a detection limit of around 10 colony-forming units per sample and could detectB. cepaciastrains isolated from a municipal pre-treated potable water tank. Comparing the results for detection ofB. cepaciain 100 randomly collected commercial syrup preparations using both conventional standard method and polymerase chain reaction assay revealed thatB. cepaciawas detected in two samples using polymerase chain reaction assay while all samples showed negative results by conventional culturing and biochemical methods. These results highlight the advantage of using this polymerase chain reaction assay to

  13. Biochemical Characterization of 3-Methyl-4-nitrophenol Degradation in Burkholderia sp. Strain SJ98

    Science.gov (United States)

    Min, Jun; Lu, Yang; Hu, Xiaoke; Zhou, Ning-Yi

    2016-01-01

    Several strains have been reported to grow on 3-methyl-4-nitrophenol (3M4NP), the primary breakdown product of the excessively used insecticide fenitrothion. However, the microbial degradation of 3M4NP at molecular and biochemical levels remains unknown. Here, methyl-1,4-benzoquinone (MBQ) and methylhydroquinone (MHQ), rather than catechol proposed previously, were identified as the intermediates before ring cleavage during 3M4NP degradation by Burkholderia sp. strain SJ98. Real-time quantitative PCR analysis indicated that the pnpABA1CDEF cluster involved in para-nitrophenol (PNP) and 2-chloro-4-nitrophenol (2C4NP) catabolism was also likely responsible for 3M4NP degradation in this strain. Purified PNP 4-monooxygenase (PnpA) is able to catalyze the monooxygenation of 3M4NP to MBQ and exhibited an apparent Km value of 20.3 ± 2.54 μM for 3M4NP, and pnpA is absolutely necessary for the catabolism of 3M4NP by gene knock-out and complementation. PnpB, a 1,4-benzoquinone reductase catalyzes the reduction of MBQ to MHQ, and also found to enhance PnpA activity in vitro in the conversion of 3M4NP to MBQ. By sequential catalysis assays, PnpCD, PnpE, and PnpF were likely involved in the lower pathway of 3M4NP catabolism. Although NpcCD, NpcE, and NpcF are able to catalyze the sequential conversion of MHQ in vitro, these enzymes are unlikely involved in 3M4NP catabolism because their coding genes were not upregulated by 3M4NP induction in vivo. These results revealed that the enzymes involved in PNP and 2C4NP catabolism were also responsible for 3M4NP degradation in strain SJ98. This fills a gap in our understanding of the microbial degradation of 3M4NP at molecular and biochemical levels and also provides another example to illustrate the adaptive flexibility in microbial catabolism for structurally similar compounds. PMID:27252697

  14. Production of p-hydroxybenzoic acid from p-coumaric acid by Burkholderia glumae BGR1.

    Science.gov (United States)

    Jung, Da-Hye; Kim, Eun-Jung; Jung, Eunok; Kazlauskas, Romas J; Choi, Kwon-Young; Kim, Byung-Gee

    2016-07-01

    p-Coumaric acid (pCA) is abundant in biomass with low lignin content, such as straw and stubble from rye, wheat, and barley. pCA can be isolated from biomass and used for the synthesis of aromatic hydrocarbons. Here, we report engineering of the natural pathway for conversion of pCA into p-hydroxybenzoic acid (pHBA) to increase the amount of pHBA that accumulates more than 100-fold. Burkholderia glumae strain BGR1 (BGR1) grows efficiently on pCA as a sole carbon source via a CoA-dependent non-β-oxidation pathway. This pathway removes two carbons from pCA as acetyl-CoA yielding p-hydroxybenzaldehyde and subsequently oxidizes it to pHBA. To increase the amount of accumulated pHBA in BGR1, we first deleted two genes encoding enzymes that degrade pHBA in the β-ketoadipate pathway. At 10 mM of pCA, the double deletion mutant BGR1_PB4 (Δphb3hΔbcl) accumulated pHBA with 95% conversion, while the control BGR1 accumulated only with 11.2% conversion. When a packed bed reactor containing immobilized BGR1_PB4 cells was operated at a dilution rate 0.2 h(-1) , the productivity of pHBA was achieved at 9.27 mg/L/h for 134 h. However, in a batch reactor at 20 mM pCA, growth of BGR1_PB4 was strongly inhibited, resulting in a low conversion of 19.3%. To further increase the amount of accumulated pCA, we identified the first enzyme in the pathway, p-hydroxcinnmaoyl-CoA synthetase II (phcs II), as the rate-limiting enzyme. Over expression of phcs II using a Palk promoter in a batch reaction at 20 mM of pCA yielded 99.0% conversion to pHBA, which is the highest concentration of pHBA ever reported using a biological process. Biotechnol. Bioeng. 2016;113: 1493-1503. © 2015 Wiley Periodicals, Inc. PMID:26693833

  15. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.

    Directory of Open Access Journals (Sweden)

    Sandra Schwarz

    Full Text Available Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs of Burkholderia thailandensis (B. thai in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans-leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.

  16. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping

    Directory of Open Access Journals (Sweden)

    Harvey Steven P

    2007-03-01

    Full Text Available Abstract Background The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. Results B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation to that of the most diverse tandemly repeated regions found in other less diverse bacteria. Conclusion The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were

  17. Diversidade de bactérias diazotróficas endofíticas dos gêneros Herbaspirillum e Burkholderia na cultura do arroz inundado Diversity of endophytic diazotrophic bacteria of the genus Herbaspirillum and Burkholderia in wetland rice

    OpenAIRE

    Luciana da Silva Rodrigues; Vera Lucia Divan Baldani; Veronica Massena Reis; José Ivo Baldani

    2006-01-01

    O objetivo deste trabalho foi avaliar a diversidade de bactérias diazotróficas endofíticas, dos gêneros Herbaspirillum e Burkholderia, em duas variedades de arroz, consideradas de alta (IR 42) e baixa (IAC 4440) eficiência de fixação biológica de nitrogênio. Foram realizados dois experimentos em casa de vegetação, em vasos com dois tipos de solos, provenientes dos Estados de Goiás e do Rio de Janeiro. Foi feita a contagem do número de bactérias e o isolamento em diferentes partes e estágios d...

  18. Effect of Azospirillum brasilense and Burkholderia unamae Bacteria on Maize Photosynthetic Activity Evaluated Using the Photoacoustic Technique

    Science.gov (United States)

    Gordillo-Delgado, F.; Marín, E.; Calderón, A.

    2016-09-01

    In this work, the photosynthetic process of maize plants ( Zea mays), which were grown using seeds inoculated with plant growth promoting bacteria Azospirillum brasilense and Burkholderia unamae, was monitored. Photothermal and photobaric signals obtained by a time-resolved photoacoustic measurement configuration were used for measuring the oxygen evolution rate in situ. A frequency-resolved configuration of the method was utilized to determine the oxygen diffusion coefficient and the thermal diffusivity of the maize leaves. The latter parameters, which can be used as indicators of the photosynthetic activity of maize, are found to vary according to the plant-microbe interaction. Treatment with plant growth promoting bacteria induced a decrease in the oxygen diffusion coefficient of about 20 %.

  19. Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseudomallei by Use of Laser Light Scattering Technology.

    Science.gov (United States)

    Bugrysheva, Julia V; Lascols, Christine; Sue, David; Weigel, Linda M

    2016-06-01

    Rapid methods to determine antimicrobial susceptibility would assist in the timely distribution of effective treatment or postexposure prophylaxis in the aftermath of the release of bacterial biothreat agents such as Bacillus anthracis, Yersinia pestis, or Burkholderia pseudomallei Conventional susceptibility tests require 16 to 48 h of incubation, depending on the bacterial species. We evaluated a method that is based on laser light scattering technology that measures cell density in real time. We determined that it has the ability to rapidly differentiate between growth (resistant) and no growth (susceptible) of several bacterial threat agents in the presence of clinically relevant antimicrobials. Results were available in 10 h of incubation. Use of laser scattering technology decreased the time required to determine antimicrobial susceptibility by 50% to 75% for B. anthracis, Y. pestis, and B. pseudomallei compared to conventional methods. PMID:26984973

  20. Expression, purification, crystallization and preliminary X-ray analysis of maleylacetate reductase from Burkholderia sp. strain SJ98

    International Nuclear Information System (INIS)

    Purification and preliminary X-ray crystallographic analysis of maleylacetate reductase encoded by the pnpD gene is reported. Maleylacetate reductase (EC 1.3.1.32) is an important enzyme that is involved in the degradation pathway of aromatic compounds and catalyzes the reduction of maleylacetate to 3-oxoadipate. The gene pnpD encoding maleylacetate reductase in Burkholderia sp. strain SJ98 was cloned, expressed in Escherichia coli and purified by affinity chromatography. The enzyme was crystallized in both native and SeMet-derivative forms by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant at 293 K. The crystals belonged to space group P21212, with unit-cell parameters a = 72.91, b = 85.94, c = 53.07 Å. X-ray diffraction data for the native and SeMet-derivative crystal were collected to 2.7 and 2.9 Å resolution, respectively

  1. Identification and Antagonism Study of a Novel Chitinase-producing Bacterium Burkholderia Sp.C3 against Phytopathogenic Fungi

    Institute of Scientific and Technical Information of China (English)

    金虹; TAO Yong

    2006-01-01

    Through a modified agar well diffusion assay, antagonism of a novel chitinase-producing strain C3 against the phytopathogenic fungi including Phoma wasabiae Yokogi,Heterostrophus, Exserohilum Turcicum, Curwularia (Walk) Boed, Thantephorus cucumris, Fusarium graminearum was tested. The data showed that the crude cxtracts of strain C3 had stable antifungal activity in the range of pH 5.0 to pH 8.0. The active components were heat labile and sensitive to proteinase K. A series of experiments supported that the compound responsible for inhibitory activity appeared to be ehitinase. The 16s rDNA analysis indicated that C3 was subject to genus Burkholderia. Pbenotypic characterization of C3 was also consisted with the result of molecular identification.

  2. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility

    DEFF Research Database (Denmark)

    Huber, B.; Riedel, K.; Hentzer, Morten;

    2001-01-01

    Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported......, were constructed in which cepI and cepR, respectively, had been inactivated. These mutants were used to demonstrate that biofilm formation by B. cepacia H111 requires a functional cep quorum-sensing system. A detailed quantitative analysis of the biofilm structures formed by wild-type and mutant...... formation was not significantly increased. This result suggests that swarming motility per se is not essential for biofilm formation on abiotic surfaces....

  3. Cloning, purification, crystallization and preliminary X-ray analysis of the Burkholderia pseudomallei L1 ribosomal protein

    International Nuclear Information System (INIS)

    The L1 ribosomal protein from B. pseudomallei has been overexpressed, purified and crystallized in a form suitable for X-ray analysis. The gene encoding the L1 ribosomal protein from Burkholderia pseudomallei strain D286 has been cloned into the pETBLUE-1 vector system, overexpressed in Escherichia coli and purified. Crystals of the native protein were grown by the hanging-drop vapour-diffusion technique using PEG 3350 as a precipitant and diffracted to beyond 1.65 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 53.6, b = 127.1, c = 31.8 Å and with a single molecule in the asymmetric unit

  4. Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-12-01

    Full Text Available The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

  5. Variant of X-Linked Chronic Granulomatous Disease Revealed by a Severe Burkholderia cepacia Invasive Infection in an Infant

    Directory of Open Access Journals (Sweden)

    Saul Oswaldo Lugo Reyes

    2013-01-01

    Full Text Available Chronic granulomatous disease (CGD is a primary immunodeficiency characterized by increased susceptibility to bacteria and fungi since early in life, caused by mutations in any of the five genes coding for protein subunits in NADPH oxidase. X-linked variant CGD can be missed during routine evaluation or present later in life due to hypomorphic mutations and a residual superoxide production. The case of a 10-month-old boy who died of pneumonia is reported. The isolation of Burkholderia cepacia from his lung, together with a marginally low nitroblue tetrazolium reduction assay (NBT, made us suspect and pursue the molecular diagnosis of CGD. A postmortem genetic analysis finally demonstrated CGD caused by a hypomorphic missense mutation with normal gp91phox expression. In a patient being investigated for unusually severe or recurrent infection, a high index of suspicion of immunodeficiency must be maintained.

  6. Enhancing plant disease suppression by Burkholderia vietnamiensis through chromosomal integration of Bacillus subtilis chitinase gene chi113.

    Science.gov (United States)

    Zhang, Xinjian; Huang, Yujie; Harvey, Paul R; Ren, Yan; Zhang, Guangzhi; Zhou, Hongzi; Yang, Hetong

    2012-02-01

    Burkholderia vietnamiensis P418 is a plant growth-promoting rhizobacteria. A chitinase gene from Bacillus subtilis was cloned and stably integrated into the chromosome of using the transposon delivery vector, pUTkm1. Chitinase activity was detected in recombinant P418-37 but not in wild type P418. Recombinant P418-37 retained the in vitro growth rate, N(2)-fixation and phosphate and potassium-solubilizing characteristics of the wild type. P418-37 significantly (P Bipolaris sorokiniana, Verticillium dahliae and Gaeumannomyces graminis var. tritici compared with P418. In planta disease suppression assays indicated that P418-37 significantly (P < 0.05) enhanced suppression of wheat sheath blight (R. cerealis), cotton Fusarium wilt (F. oxysporium f.sp. vasinfectum) and tomato gray mould (Botrytis cinerea), relative to the wild type.

  7. Modification biological activity of S and R forms of Proteus mirabilis and Burkholderia cepacia lipopolysaccharides by carrageenans.

    Science.gov (United States)

    Arabski, Michał; Barabanova, Anna; Gałczyńska, Katarzyna; Węgierek-Ciuk, Aneta; Dzidowska, Kamila; Augustyniak, Daria; Drulis-Kawa, Zuzanna; Lankoff, Anna; Yermak, Irina; Molinaro, Antonio; Kaca, Wiesław

    2016-09-20

    The modification of biological features of S and R forms of Proteus mirabilis and Burkholderia cepacia LPS by kappa/iota and kappa/beta carrageenans was shown in Limulus activation test, ELISA, human complement activation and apoptotic assay. The role of positively charged substituent Ara4N in lipid A was evaluated as a suspected major domain for interactions with sulphate groups of carrageenans.The experiments obtained by three serological methods indicated that not only lipid A part of LPS but also polysaccharide elements such as core and O-specific chain are involved in interaction with carrageenes. Carrageenans turned out to be non-cytotoxic for A549 cells and were able to inhibit the apoptotic effect caused by lipid A of P. mirabilis and B. cepacia. PMID:27261765

  8. Fucose-binding lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes.

    Science.gov (United States)

    Audfray, Aymeric; Claudinon, Julie; Abounit, Saïda; Ruvoën-Clouet, Nathalie; Larson, Göran; Smith, David F; Wimmerová, Michaela; Le Pendu, Jacques; Römer, Winfried; Varrot, Annabelle; Imberty, Anne

    2012-02-01

    Burkholderia ambifaria is generally associated with the rhizosphere of plants where it has biocontrol effects on other microorganisms. It is also a member of the Burkholderia cepacia complex, a group of closely related bacteria that cause lung infections in immunocompromised patients as well as in patients with granulomatous disease or cystic fibrosis. Our previous work indicated that fucose on human epithelia is a frequent target for lectins and adhesins of lung pathogens (Sulák, O., Cioci, G., Lameignère, E., Balloy, V., Round, A., Gutsche, I., Malinovská, L., Chignard, M., Kosma, P., Aubert, D. F., Marolda, C. L., Valvano, M. A., Wimmerová, M., and Imberty, A. (2011) PLoS Pathog. 7, e1002238). Analysis of the B. ambifaria genome identified BambL as a putative fucose-binding lectin. The 87-amino acid protein was produced recombinantly and demonstrated to bind to fucosylated oligosaccharides with a preference for αFuc1-2Gal epitopes. Crystal structures revealed that it associates as a trimer with two fucose-binding sites per monomer. The overall fold is a six-bladed β-propeller formed by oligomerization as in the Ralstonia solanacearum lectin and not by sequential domains like the fungal fucose lectin from Aleuria aurantia. The affinity of BambL for small fucosylated glycans is very high as demonstrated by microcalorimetry (K(D) < 1 μM). Plant cell wall oligosaccharides and human histo-blood group oligosaccharides H-type 2 and Lewis Y are bound with equivalent efficiency. Binding to artificial glycosphingolipid-containing vesicles, human saliva, and lung tissues confirmed that BambL could recognize a wide spectrum of fucosylated epitopes, albeit with a lower affinity for biological material from nonsecretor individuals.

  9. φX216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity

    Directory of Open Access Journals (Sweden)

    Kvitko Brian H

    2012-12-01

    Full Text Available Abstract Background Burkholderia pseudomallei and B. mallei are closely related Category B Select Agents of bioterrorism and the causative agents of the diseases melioidosis and glanders, respectively. Rapid phage-based diagnostic tools would greatly benefit early recognition and treatment of these diseases. There is extensive strain-to-strain variation in B. pseudomallei genome content due in part to the presence or absence of integrated prophages. Several phages have previously been isolated from B. pseudomallei lysogens, for example φK96243, φ1026b and φ52237. Results We have isolated a P2-like bacteriophage, φX216, which infects 78% of all B. pseudomallei strains tested. φX216 also infects B. mallei, but not other Burkholderia species, including the closely related B. thailandensis and B. oklahomensis. The nature of the φX216 host receptor remains unclear but evidence indicates that in B. mallei φX216 uses lipopolysaccharide O-antigen but a different receptor in B. pseudomallei. The 37,637 bp genome of φX216 encodes 47 predicted open reading frames and shares 99.8% pairwise identity and an identical strain host range with bacteriophage φ52237. Closely related P2-like prophages appear to be widely distributed among B. pseudomallei strains but both φX216 and φ52237 readily infect prophage carrying strains. Conclusions The broad strain infectivity and high specificity for B. pseudomallei and B. mallei indicate that φX216 will provide a good platform for the development of phage-based diagnostics for these bacteria.

  10. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-13

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the third quarter of the third year, F344 rats vaccinated with adjuvanted NLP formulations were challenged with F. tularensis SCHU S4 at Battelle. Preliminary data indicate that up to 65% of females vaccinated intranasally with an NLP-based formulation survived this challenge, compared to only 20% survival of naïve animals. In addition, NLPs were successfully formulated with Burkholderia protein antigens. IACUC approval for immunological assessments in BALB/c mice was received and we anticipate that these assessments will begin by March 2015, pending ACURO approval.

  11. Metabolomic profiling of Burkholderia pseudomallei using UHPLC-ESI-Q-TOF-MS reveals specific biomarkers including 4-methyl-5-thiazoleethanol and unique thiamine degradation pathway

    OpenAIRE

    Lau, Susanna K. P.; Lam, Ching-Wan; Curreem, Shirly O. T.; Lee, Kim-Chung; Chow, Wang-Ngai; Lau, Candy C. Y.; Sridhar, Siddharth; Wong, Sally C. Y.; Martelli, Paolo; Hui, Suk-Wai; Yuen, Kwok-Yung; Woo, Patrick C. Y.

    2015-01-01

    Background Burkholderia pseudomallei is an emerging pathogen that causes melioidosis, a serious and potentially fatal disease which requires prolonged antibiotics to prevent relapse. However, diagnosis of melioidosis can be difficult, especially in culture-negative cases. While metabolomics represents an uprising tool for studying infectious diseases, there were no reports on its applications to B. pseudomallei. To search for potential specific biomarkers, we compared the metabolomics profile...

  12. The Burkholderia pseudomallei Δasd Mutant Exhibits Attenuated Intracellular Infectivity and Imparts Protection against Acute Inhalation Melioidosis in Mice ▿

    OpenAIRE

    Michael H. Norris; Propst, Katie L.; Kang, Yun; Dow, Steven W.; Schweizer, Herbert P.; Hoang, Tung T.

    2011-01-01

    Burkholderia pseudomallei, the cause of serious and life-threatening diseases in humans, is of national biodefense concern because of its potential use as a bioterrorism agent. This microbe is listed as a select agent by the CDC; therefore, development of vaccines is of significant importance. Here, we further investigated the growth characteristics of a recently created B. pseudomallei 1026b Δasd mutant in vitro, in a cell model, and in an animal model of infection. The mutant was typified b...

  13. Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes.

    Science.gov (United States)

    De Meyer, Sofie E; Briscoe, Leah; Martínez-Hidalgo, Pilar; Agapakis, Christina M; de-Los Santos, Paulina Estrada; Seshadri, Rekha; Reeve, Wayne; Weinstock, George; O'Hara, Graham; Howieson, John G; Hirsch, Ann M

    2016-08-01

    Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.

  14. Burkholderia pseudomallei Type III Secretion System Cluster 3 ATPase BsaS, a Chemotherapeutic Target for Small-Molecule ATPase Inhibitors

    OpenAIRE

    Gong, Lan; Lai, Shu-Chin; Treerat, Puthayalai; Prescott, Mark; Adler, Ben; John D Boyce; Rodney J. Devenish

    2015-01-01

    Melioidosis is an infectious disease of high mortality for humans and other animal species; it is prevalent in tropical regions worldwide. The pathogenesis of melioidosis depends on the ability of its causative agent, the Gram-negative bacterium Burkholderia pseudomallei, to enter and survive in host cells. B. pseudomallei can escape from the phagosome into the cytosol of phagocytic cells where it replicates and acquires actin-mediated motility, avoiding killing by the autophagy-dependent pro...

  15. Beclin 1 Is Required for Starvation-Enhanced, but Not Rapamycin-Enhanced, LC3-Associated Phagocytosis of Burkholderia pseudomallei in RAW 264.7 Cells

    OpenAIRE

    Li, Xuelei; Prescott, Mark; Adler, Ben; John D Boyce; Rodney J. Devenish

    2013-01-01

    LC3-associated phagocytosis (LAP) of Burkholderia pseudomallei by murine macrophage (RAW 264.7) cells is an intracellular innate defense mechanism. Beclin 1, a protein with several roles in autophagic processes, is known to be recruited to phagosomal membranes as a very early event in LAP. We sought to determine whether knockdown of Beclin 1 by small interfering RNA (siRNA) would affect recruitment of LC3 and subsequent LAP of infecting B. pseudomallei. Both starvation and rapamycin treatment...

  16. Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction

    OpenAIRE

    Zhao, Shuai; Wei, Hui; Lin, Chien-Yuan; Zeng, Yining; Tucker, Melvin P.; Himmel, Michael E.; Ding, Shi-You

    2016-01-01

    It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present...

  17. Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and iron accumulation reveal novel components of Arabidopsis-endophyte interaction that can benefit downstream biomass deconstruction

    OpenAIRE

    Shuai eZhao; Hui eWEI; Chien-Yuan eLin; Yining eZeng; Tucker, Melvin P.; Himmel, Michael E.; Shi-You eDing

    2016-01-01

    It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our presen...

  18. Real-time PCR Method for the Quantification of Burkholderia Cepacia Complex Attached to Lung Epithelial Cells and Inhibitionn of that Attachment

    OpenAIRE

    Wight, Ciara; Herbert, Gillian; Pilkington, Ruth; Callaghan, Máire; McClean, Siobhan

    2010-01-01

    To develop a rapid method to quantify the attachment of the cystic fibrosis pathogen, Burkholderia multivorans, to lung epithelial cells (16HBE14o(-)) using real-time PCR with a view to monitoring potential inhibition of lung cell attachment. Mammalian and bacterial DNA were purified from bacteria attached to lung epithelial cells. The relative amount of bacteria attached was determined by amplification of the recA gene relative to the human GAPDH gene, in the presence of SYBR Green. The meth...

  19. Degradation of Aroclor 1242 Dechlorination Products in Sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. Strain RHA1(fcb)

    OpenAIRE

    Rodrigues, Jorge L. M.; Kachel, C. Alan; Aiello, Michael R.; Quensen, John F.; Maltseva, Olga V.; Tsoi, Tamara V.; Tiedje, James M.

    2006-01-01

    Burkholderia xenovorans strain LB400, which possesses the biphenyl pathway, was engineered to contain the oxygenolytic ortho dehalogenation (ohb) operon, allowing it to grow on 2-chlorobenzoate and to completely mineralize 2-chlorobiphenyl. A two-stage anaerobic/aerobic biotreatment process for Aroclor 1242-contaminated sediment was simulated, and the degradation activities and genetic stabilities of LB400(ohb) and the previously constructed strain RHA1(fcb), capable of growth on 4-chlorobenz...

  20. Zoospore Homing and Infection Events: Effects of the Biocontrol Bacterium Burkholderia cepacia AMMDR1 on Two Oomycete Pathogens of Pea (Pisum sativum L.)

    OpenAIRE

    Heungens, K; Parke, J. L.

    2000-01-01

    Burkholderia cepacia AMMDR1 is a biocontrol agent that protects pea and sweet corn seeds from Pythium damping-off in field experiments. The goal of this work was to understand the effect of B. cepacia AMMDR1 on Pythium aphanidermatum and Aphanomyces euteiches zoospore homing events and on infection of pea seeds or roots. In vitro, B. cepacia AMMDR1 caused zoospore lysis, prevented cyst germination, and inhibited germ tube growth of both oomycetes. B. cepacia AMMDR1 also reduced the attractive...

  1. Revised approach for identification of isolates within the Burkholderia cepacia complex and description of clinical isolates not assigned to any of the known genomovars.

    Science.gov (United States)

    Turton, Jane F; Arif, Nazia; Hennessy, Daneeta; Kaufmann, Mary E; Pitt, Tyrone L

    2007-09-01

    One hundred thirty-eight clinical isolates of the Burkholderia cepacia complex (Bcc) were identified using a modified strategy that involved PCR detection of the cblA gene for the ET12 lineage simultaneously with detection of the Bcc recA PCR product; recA sequence cluster analysis also was part of the strategy. Four strains could not be assigned to any of the known genomovars.

  2. Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions

    OpenAIRE

    Stephen, Joseph; Shabanamol, S.; Rishad, K. S.; Jisha, M. S.

    2015-01-01

    Two indigenous rhizospheric phosphate solubilizing isolates PSB 12 identified as Gluconacetobacter sp. (MTCC 8368) and PSB 73 identified as Burkholderia sp. (MTCC 8369) were examined for their growth enhancement potential of rice (Jyothi PTB 39) under pot culture assays. The results showed significant impact on microbial count and PSB population, phosphatase and dehydrogenase activity, available phosphorous in the soil, plant nutrient uptake and yield parameters. Gluconacetobacter sp. + RP60 ...

  3. Enhancement of Chilling Resistance of Inoculated Grapevine Plantlets with a Plant Growth-Promoting Rhizobacterium, Burkholderia phytofirmans Strain PsJN▿

    OpenAIRE

    Ait Barka, Essaid; Nowak, Jerzy; Clément, Christophe

    2006-01-01

    In vitro inoculation of Vitis vinifera L. cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN, increased grapevine growth and physiological activity at a low temperature. There was a relationship between endophytic bacterial colonization of the grapevine plantlets and their growth at both ambient (26°C) and low (4°C) temperatures and their sensitivities to chilling. The major benefits of bacterization were observed on root growth (11.8- ...

  4. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Annual Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-04-16

    The goal of this proposal is to demonstrate that co-localization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of recombinant subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. NLPs are are biocompatible, high-density lipoprotein mimetics that are amenable to the incorporation of multiple, chemically-disparate adjuvant and antigen molecules. We hypothesize that the ability to co-localize optimized adjuvant formulations with subunit antigens within a single particle will enhance the stimulation and activation of key immune effector cells, increasing the protective efficacy of subunit antigen-based vaccines. While Burkholderia spp. and F. tularensis subunit antigens are the focus of this proposal, we anticipate that this approach is applicable to a wide range of DOD-relevant biothreat agents. The F344 rat aerosol challenge model for F. tularensis has been successfully established at Battelle under this contract, and Year 3 efficacy studies performed at Battelle demonstrated that an NLP vaccine formulation was able to enhance survival of female F344 rats relative to naïve animals. In addition, Year 3 focused on the incorporation of multiple Burkholderia antigens (both polysaccharides and proteins) onto adjuvanted NLPs, with immunological analysis poised to begin in the next quarter.

  5. Stress conditions triggering mucoid morphotype variation in Burkholderia species and effect on virulence in Galleria mellonella and biofilm formation in vitro.

    Directory of Open Access Journals (Sweden)

    Inês N Silva

    Full Text Available Burkholderia cepacia complex (Bcc bacteria are opportunistic pathogens causing chronic respiratory infections particularly among cystic fibrosis patients. During these chronic infections, mucoid-to-nonmucoid morphotype variation occurs, with the two morphotypes exhibiting different phenotypic properties. Here we show that in vitro, the mucoid clinical isolate Burkholderia multivorans D2095 gives rise to stable nonmucoid variants in response to prolonged stationary phase, presence of antibiotics, and osmotic and oxidative stresses. Furthermore, in vitro colony morphotype variation within other members of the Burkholderia genus occurred in Bcc and non-Bcc strains, irrespectively of their clinical or environmental origin. Survival to starvation and iron limitation was comparable for the mucoid parental isolate and the respective nonmucoid variant, while susceptibility to antibiotics and to oxidative stress was increased in the nonmucoid variants. Acute infection of Galleria mellonella larvae showed that, in general, the nonmucoid variants were less virulent than the respective parental mucoid isolate, suggesting a role for the exopolysaccharide in virulence. In addition, most of the tested nonmucoid variants produced more biofilm biomass than their respective mucoid parental isolate. As biofilms are often associated with increased persistence of pathogens in the CF lungs and are an indicative of different cell-to-cell interactions, it is possible that the nonmucoid variants are better adapted to persist in this host environment.

  6. Genome Sequencing and Transposon Mutagenesis of Burkholderia seminalis TC3.4.2R3 Identify Genes Contributing to Suppression of Orchid Necrosis Caused by B. gladioli.

    Science.gov (United States)

    Araújo, Welington L; Creason, Allison L; Mano, Emy T; Camargo-Neves, Aline A; Minami, Sonia N; Chang, Jeff H; Loper, Joyce E

    2016-06-01

    From a screen of 36 plant-associated strains of Burkholderia spp., we identified 24 strains that suppressed leaf and pseudobulb necrosis of orchid caused by B. gladioli. To gain insights into the mechanisms of disease suppression, we generated a draft genome sequence from one suppressive strain, TC3.4.2R3. The genome is an estimated 7.67 megabases in size, with three replicons, two chromosomes, and the plasmid pC3. Using a combination of multilocus sequence analysis and phylogenomics, we identified TC3.4.2R3 as B. seminalis, a species within the Burkholderia cepacia complex that includes opportunistic human pathogens and environmental strains. We generated and screened a library of 3,840 transposon mutants of strain TC3.4.2R3 on orchid leaves to identify genes contributing to plant disease suppression. Twelve mutants deficient in suppression of leaf necrosis were selected and the transposon insertions were mapped to eight loci. One gene is in a wcb cluster that is related to synthesis of extracellular polysaccharide, a key determinant in bacterial-host interactions in other systems, and the other seven are highly conserved among Burkholderia spp. The fundamental information developed in this study will serve as a resource for future research aiming to identify mechanisms contributing to biological control. PMID:26959838

  7. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the ifeld

    Institute of Scientific and Technical Information of China (English)

    GAO Miao; ZHOU Jian-jiao; WANG En-tao; CHEN Qian; XU Jing; SUN Jian-guang

    2015-01-01

    Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identiifed as Burkholderia sp. based on 16S rDNA sequence analysis, as wel as phenotypic and biochemical characterizations. This bacterium presented nitrogenase activity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and phosphate solubilizing ability;inhibited the growth of Sclerotinia sclerotiorum, Gibberel a zeae and Verticil ium dahliae;and produced smal quantities of indole acetic acid (IAA). In green house experiments, signiifcant increases in shoot height and weight, root length and weight, and stem diameter were observed on tomato plants in 30 d after inoculation with strain 7016. Result of 16S rDNA PCR-DGGE showed that 7016 survived in the rhizosphere of tomato seedlings. In the ifeld experiments, Burkholderia sp. 7016 enhanced the tomato yield and signiifcantly promoted activities of soil urease, phosphatase, sucrase, and catalase. Al these results demonstrated Burkholderia sp. 7016 as a valuable PGPR and a candidate of biofertilizer.

  8. Burkholderia Hep_Hag autotransporter (BuHA proteins elicit a strong antibody response during experimental glanders but not human melioidosis

    Directory of Open Access Journals (Sweden)

    Foster Simon J

    2007-03-01

    Full Text Available Abstract Background The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei. Results Using bacteriophage-mediated immunoscreening we identified genes expressed in vivo during experimental equine glanders infection. A family of immunodominant antigens were identified that share protein domain architectures with hemagglutinins and invasins. These have been designated Burkholderia Hep_Hag autotransporter (BuHA proteins. A total of 110/207 positive clones (53% of a B. mallei expression library screened with sera from two infected horses belonged to this family. This contrasted with 6/189 positive clones (3% of a B. pseudomallei expression library screened with serum from 21 patients with culture-proven melioidosis. Conclusion Members of the BuHA proteins are found in other Gram-negative bacteria and have been shown to have important roles related to virulence. Compared with other bacterial species, the genomes of both B. mallei and B. pseudomallei contain a relative abundance of this family of proteins. The domain structures of these proteins suggest that they function as multimeric surface proteins that modulate interactions of the cell with the host and environment. Their effect on the cellular immune response to B. mallei and their potential as diagnostics for glanders requires further study.

  9. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp, 7016 and its effect on tomato growth in the field

    Institute of Scientific and Technical Information of China (English)

    GAO Miao[1; ZHOU Jian-jiao[1; WANG En-tao[2; CHEN Qian[1; XU Jing[1; SUN Jian-guana[1

    2015-01-01

    Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identified as Burkholderia sp. based on 16S rDNA sequence analysis, as well as phenotypic and biochemical characterizations. This bacterium presented nitrogenase activity, 1-aminocyclopropane-l-carboxylic acid (ACC) deaminase activity and phosphate solubilizing ability; inhibited the growth of Sclerotinia sclerotiorum, Gibberella zeae and Verticillium dahliae; and produced small quantities of indole acetic acid (IAA). In green house experiments, significant increases in shoot height and weight, root length and weight, and stem diameter were observed on tomato plants in 30 d after inoculation with strain 7016. Result of 16S rDNA PCR-DGGE showed that 7016 survived in the rhizosphere of tomato seedlings. In the field experiments, Burkholderia sp. 7016 enhanced the tomato yield and significantly promoted activities of soil urease, phosphatase, sucrase, and catalase. All these results demonstrated Burkholderia sp. 7016 as a valuable PGPR and a candidate of biofertilizer.

  10. The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis.

    Science.gov (United States)

    Carlier, Aurelien; Fehr, Linda; Pinto-Carbó, Marta; Schäberle, Till; Reher, Raphael; Dessein, Steven; König, Gabriele; Eberl, Leo

    2016-09-01

    A majority of Ardisia species harbour Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted hereditarily and have not yet been cultured outside of their host. Because the plants cannot develop beyond the seedling stage without their symbionts, the symbiosis is considered obligatory. We sequenced for the first time the genome of Candidatus Burkholderia crenata (Ca. B. crenata), the leaf nodule symbiont of Ardisia crenata. The genome of Ca. B. crenata is the smallest Burkholderia genome to date. It contains a large amount of insertion sequences and pseudogenes and displays features consistent with reductive genome evolution. The genome does not encode functions commonly associated with plant symbioses such as nitrogen fixation and plant hormone metabolism. However, we identified unique genes with a predicted role in secondary metabolism in the genome of Ca. B. crenata. Specifically, we provide evidence that the bacterial symbionts are responsible for the synthesis of compound FR900359, a cyclic depsipeptide with biomedical properties previously isolated from leaves of A. crenata. PMID:26663534

  11. Dicty_cDB: Contig-U05760-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available clone SSL335. 408 e-110 1 ( DX489133 ) Cpl30925 Papaya Genomic DNA BAC Library Carica pa... 50 0.079 1 ( CP000852 ) Caldivirga maqui...-20 CP000960_695( CP000960 |pid:none) Burkholderia cenocepacia MC0-3 c... 100 2e-20 CP000852_722( CP000852 |pid:none) Caldivirga maqu

  12. Caracterização fenotípica e molecular de amostras de Burkholderia mallei isoladas na Região Nordeste do Brasil Phenotypic and molecular characterization of Burkholderia mallei isolated in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Karla P.C. Silva

    2009-05-01

    Full Text Available Objetivou-se com este trabalho realizar o estudo bioquímico e molecular de amostras de Burkholderia mallei isoladas de eqüídeos com diagnóstico clínico e sorológico para o mormo e provenientes da Região Metropolitana do Recife-PE e Zona da Mata dos Estados de Alagoas e Pernambuco. Foram realizadas as técnicas microbiológicas para o isolamento e identificação fenotípica de B. mallei e as técnicas moleculares de ribotipagem-PCR e RAPD-PCR. Das oito amostras estudadas, quatro apresentaram pequenas variações fenotípicas. Nas técnicas moleculares, as amostras formaram quatro grupos de diferentes perfis ribotípicos, demonstrando também quatro perfis genotípicos. Houve associação nos resultados da Ribotipagem-PCR e RAPD-PCR. As variações nos perfis ribotípicos e genotípicos foram associadas às diferentes regiões estudadas. De acordo com os resultados obtidos, conclui-se que as pequenas variações bioquímicas não estão associadas aos diferentes perfis moleculares e que essas diferenças demonstram uma heterogeneidade que está associada à procedência das amostras, indicando que a infecção nos animais ocorre por clones diferentes das amostras analisadas.The objective of this paper was to study the molecular performance and phenotypic characterization of Burkholderia mallei isolated from horses with clinical and serological diagnosis of glanders, originating from the Metropolitan District of Recife and Zona da Mata of Pernambuco and Alagoas. The isolation and biochemical identification of B. mallei was carried out by microbiological and molecular techniques of PCR-fingerprinting and RAPD-PCR. From the eight samples studied, four showed little phenotype variations. In the molecular tests, the samples formed 4 groups of different ribotype profiles and 4 genotype profiles. There was some association of PCR-fingerprinting with RAPD-PCR results. It was concluded that the slight biochemical variations were not associated with

  13. The Cloning and Cell Surface Display of a Lipase from Burkholderia cepacia XYU-6%Burkholderia cepacia XYU-6脂肪酶的克隆及其细胞表面展示

    Institute of Scientific and Technical Information of China (English)

    黎小军; 林陈水

    2015-01-01

    通过分析GenBank中Burkholderia cepacia脂肪酶的序列,设计简并引物,采用同源克隆的策略,成功地从B. cepacia XYU-6菌株中克隆到脂肪酶基因bcl,其大小为1095 bp,编码364个氨基酸( GenBank登陆号KR233260).将bcl基因与质粒pET-28b(+)连接并转化大肠杆菌,使脂肪酶BCL的大肠杆菌胞内过表达,其活力是野生菌的12.9倍.通过将bcl基因克隆到细胞表面展示载体pZXL中,构建脂肪酶BCL的细胞表面展示工程菌,使BCL在Lpp-OmpA引导下定位于大肠杆菌细胞表面,其活力是野生菌的3.9倍.研究结果为脂肪酶BCL后续的分子改造和应用奠定基础.%The lipase gene bcl was isolated from Burkholderia cepacia XYU-6 by homologous cloning method using degenerate primers,which was design based on the analyzing the sequences of lipases from B. cepacia. The gene bcl contained a 1 095 bp open reading frame encoding a protein of 364 amino acids( GenBank accession number:KR233260 ). The gene bcl was cloned into the expression vector pET-28 b( +),and intracellular overexpressed in biologically active in Escherichia coli. Meanwhile,the gene bcl was cloned into the cell-surface display vector pZXL and transformed into E. coli. The lipase BCL was successfully achieved on the cell surface of engineering strain using the anchoring motif Lpp-OmpA. The two recombinant strains demonstrated 12. 9-fold and 3. 9-fold of lipase activity compared to the wild B. cepacia XYU-6,respectively. This study paves the way for the further research of the lipase for protein engineering and application in the industry.

  14. Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis.

    Science.gov (United States)

    St John, James A; Ekberg, Jenny A K; Dando, Samantha J; Meedeniya, Adrian C B; Horton, Rachel E; Batzloff, Michael; Owen, Suzzanne J; Holt, Stephanie; Peak, Ian R; Ulett, Glen C; Mackay-Sim, Alan; Beacham, Ifor R

    2014-01-01

    ABSTRACT Melioidosis is a potentially fatal disease that is endemic to tropical northern Australia and Southeast Asia, with a mortality rate of 14 to 50%. The bacterium Burkholderia pseudomallei is the causative agent which infects numerous parts of the human body, including the brain, which results in the neurological manifestation of melioidosis. The olfactory nerve constitutes a direct conduit from the nasal cavity into the brain, and we have previously reported that B. pseudomallei can colonize this nerve in mice. We have now investigated in detail the mechanism by which the bacteria penetrate the olfactory and trigeminal nerves within the nasal cavity and infect the brain. We found that the olfactory epithelium responded to intranasal B. pseudomallei infection by widespread crenellation followed by disintegration of the neuronal layer to expose the underlying basal layer, which the bacteria then colonized. With the loss of the neuronal cell bodies, olfactory axons also degenerated, and the bacteria then migrated through the now-open conduit of the olfactory nerves. Using immunohistochemistry, we demonstrated that B. pseudomallei migrated through the cribriform plate via the olfactory nerves to enter the outer layer of the olfactory bulb in the brain within 24 h. We also found that the bacteria colonized the thin respiratory epithelium in the nasal cavity and then rapidly migrated along the underlying trigeminal nerve to penetrate the cranial cavity. These results demonstrate that B. pseudomallei invasion of the nerves of the nasal cavity leads to direct infection of the brain and bypasses the blood-brain barrier. IMPORTANCE Melioidosis is a potentially fatal tropical disease that is endemic to northern Australia and Southeast Asia. It is caused by the bacterium Burkholderia pseudomallei, which can infect many organs of the body, including the brain, and results in neurological symptoms. The pathway by which the bacteria can penetrate the brain is unknown, and

  15. The effect of methanolic extract of Tamarindus indica Linn. on the growth of clinical isolates of Burkholderia pseudomallei.

    Science.gov (United States)

    Muthu, Shankar Esaki; Nandakumar, Subhadra; Rao, Usha Anand

    2005-12-01

    Burkholderia pseudomallei (Pseudomonas pseudomallei) causes melioidosis, a life-threatening infection common among paddy cultivators in Southeast Asian countries. No plant materials have been investigated for its activity against B. pseudomallei. Therefore, a preliminary study was carried out using disc diffusion and minimum inhibitory concentration (MIC) methods to evaluate the anti-B. pseudomallei activity of five Indian medicinal plants documented to have been used for several ailments in the ancient Indian scriptures. The leaf extracts of Tamarindus indica, Lawsonia inermis, and Hibiscus rosa-sinensis, the rhizome extracts of Curcuma longa and the seeds of Vigna radiata were prepared using methanol as solvent. The disc diffusion and MIC methods were used to assess the anti-B. pseudomallei activity of the plants tested. Only methanol leaf extracts of Tamarindus indica exhibited anti-B. pseudomallei activity starting from disc concentrations of 150 mug by the disc diffusion method. The other plants failed to show any zone of inhibition. MIC assay revealed that the MIC and minimum bactericidal concentration (MBC) for B. pseudomallei were 125 mug/ml. Our preliminary finding showed that methanolic extracts of Tamarindus indica has anti-B. pseudomallei inhibitory potentials under in vitro conditions. Extensive animal studies may be required before investigating the role of Tamarindus indica for treating melioidosis.

  16. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt-29 biosensor.

    Science.gov (United States)

    Wong, Rui-Rui; Kong, Cin; Lee, Song-Hua; Nathan, Sheila

    2016-01-01

    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis. PMID:27273550

  17. Biotransformation of Cholesterol and 16α,17α-Epoxypregnenolone and Isolation of Hydroxylase in Burkholderia cepacia SE-1

    Science.gov (United States)

    Zhu, XiangDong; Pang, CuiPing; Cao, Yuting; Fan, Dan

    2016-01-01

    The metabolism of cholesterol is critical in eukaryotes as a precursor for vitamins, steroid hormones, and bile acids. Some steroid compounds can be transformed into precursors of steroid medicine by some microorganisms. In this study, the biotransformation products of cholesterol and 16α,17α-epoxypregnenolone produced by Burkholderia cepacia SE-1 were investigated, and a correlative enzyme, hydroxylase, was also studied. The biotransformation products, 7β-hydroxycholesterol, 7-oxocholesterol, and 20-droxyl-16α,17α-epoxypregn-1,4-dien-3-one, were purified by silica gel and Sephadex LH-20 column chromatography and identified by nuclear magnetic resonance and mass spectroscopy. The hydroxylase was isolated from the bacterium and the partial sequences of the hydroxylase, which belong to the catalases/peroxidase family, were analyzed using MS/MS analyses. The enzyme showed activity toward cholesterol and had a specific activity of 37.2 U/mg of protein at 30°C and pH 7.0. PMID:27340662

  18. Redefining the PF06864 Pfam family based on Burkholderia pseudomallei PilO2(Bp S-SAD crystal structure.

    Directory of Open Access Journals (Sweden)

    Patricia Lassaux

    Full Text Available Type IV pili are surface-exposed filaments and bacterial virulence factors, represented by the Tfpa and Tfpb types, which assemble via specific machineries. The Tfpb group is further divided into seven variants, linked to heterogeneity in the assembly machineries. Here we focus on PilO2(Bp, a protein component of the Tfpb R64 thin pilus variant assembly machinery from the pathogen Burkholderia pseudomallei. PilO2(Bp belongs to the PF06864 Pfam family, for which an improved definition is presented based on newly derived Hidden Markov Model (HMM profiles. The 3D structure of the N-terminal domain of PilO2(Bp (N-PilO2(Bp, here reported, is the first structural representative of the PF06864 family. N-PilO2(Bp presents an actin-like ATPase fold that is shown to be present in BfpC, a different variant assembly protein; the new HMM profiles classify BfpC as a PF06864 member. Our results provide structural insight into the PF06864 family and on the Type IV pili assembly machinery.

  19. Infection of Burkholderia cepacia induces homeostatic responses in the host for their prolonged survival: the microarray perspective.

    Directory of Open Access Journals (Sweden)

    Vanitha Mariappan

    Full Text Available Burkholderia cepacia is an opportunistic human pathogen associated with life-threatening pulmonary infections in immunocompromised individuals. Pathogenesis of B. cepacia infection involves adherence, colonisation, invasion, survival and persistence in the host. In addition, B. cepacia are also known to secrete factors, which are associated with virulence in the pathogenesis of the infection. In this study, the host factor that may be the cause of the infection was elucidated in human epithelial cell line, A549, that was exposed to live B. cepacia (mid-log phase and its secretory proteins (mid-log and early-stationary phases using the Illumina Human Ref-8 microarray platform. The non-infection A549 cells were used as a control. Expression of the host genes that are related to apoptosis, inflammation and cell cycle as well as metabolic pathways were differentially regulated during the infection. Apoptosis of the host cells and secretion of pro-inflammatory cytokines were found to be inhibited by both live B. cepacia and its secretory proteins. In contrast, the host cell cycle and metabolic processes, particularly glycolysis/glycogenesis and fatty acid metabolism were transcriptionally up-regulated during the infection. Our microarray analysis provided preliminary insights into mechanisms of B. cepacia pathogenesis. The understanding of host response to an infection would provide novel therapeutic targets both for enhancing the host's defences and repressing detrimental responses induced by the invading pathogen.

  20. Purification and crystallization of a putative transcriptional regulator of the benzoate oxidation pathway in Burkholderia xenovorans LB400

    International Nuclear Information System (INIS)

    The X-ray diffraction and preliminary phasing of the putative transcriptional regulator Bxe-C0898 from B. xenovorans LB400 are reported. Burkholderia xenovorans LB400 harbours two paralogous copies of the recently discovered benzoate oxidation (box) pathway. While both copies are functional, the paralogues are differentially regulated and flanked by putative transcriptional regulators from distinct families. The putative LysR-type transcriptional regulator (LTTR) adjacent to the megaplasmid-encoded box enzymes, Bxe-C0898, has been produced recombinantly in Escherichia coli and purified to homogeneity. Gel-filtration studies show that Bxe-C0898 is a tetramer in solution, consistent with previously characterized LTTRs. Bxe-C0898 crystallized with four molecules in the asymmetric unit of the P43212/P41212 unit cell with a solvent content of 61.19%, as indicated by processing of the X-ray diffraction data. DNA-protection assays are currently under way in order to identify potential operator regions for this LTTR and to define its role in regulation of the box pathway

  1. Burkholderia glumae ToxA Is a Dual-Specificity Methyltransferase That Catalyzes the Last Two Steps of Toxoflavin Biosynthesis.

    Science.gov (United States)

    Fenwick, Michael K; Philmus, Benjamin; Begley, Tadhg P; Ealick, Steven E

    2016-05-17

    Toxoflavin is a major virulence factor of the rice pathogen Burkholderia glumae. The tox operon of B. glumae contains five putative toxoflavin biosynthetic genes toxABCDE. ToxA is a predicted S-adenosylmethionine-dependent methyltransferase, and toxA knockouts of B. glumae are less virulent in plant infection models. In this study, we show that ToxA performs two consecutive methylations to convert the putative azapteridine intermediate, 1,6-didemethyltoxoflavin, to toxoflavin. In addition, we report a series of crystal structures of ToxA complexes that reveals the molecular basis of the dual methyltransferase activity. The results suggest sequential methylations with initial methylation at N6 of 1,6-didemethyltoxoflavin followed by methylation at N1. The two azapteridine orientations that position N6 or N1 for methylation are coplanar with a 140° rotation between them. The structure of ToxA contains a class I methyltransferase fold having an N-terminal extension that either closes over the active site or is largely disordered. The ordered conformation places Tyr7 at a position of a structurally conserved tyrosine site of unknown function in various methyltransferases. Crystal structures of ToxA-Y7F consistently show a closed active site, whereas structures of ToxA-Y7A consistently show an open active site, suggesting that the hydroxyl group of Tyr7 plays a role in opening and closing the active site during the multistep reaction. PMID:27070241

  2. Synthesis of a trisaccharide repeating unit of the O-antigen from Burkholderia anthina and its dimer.

    Science.gov (United States)

    Geng, Xueyun; Wang, Lizhen; Gu, Guofeng; Guo, Zhongwu

    2016-06-01

    A trisaccharide repeating unit of the O-antigen from Burkholderia anthina, α-L-Rha-(1→2)-α-L-Rha-(1→2)-β-D-Gal-O(CH2)3NH2 (1), and its dimer, α-L-Rha-(1→2)-α-L-Rha-(1→2)-α-D-Gal-(1→3)-α-L-Rha-(1→2)-α-L-Rha-(1→2)-β-D-Gal-O(CH2)3NH2 (2), were synthesized via a highly convergent and efficient assembly strategy. Sequential glycosylation of galactosyl acceptor 6 with rhamnosyl thioglycoside 7, followed by condensation of the resulting disaccharide acceptor 9 with rhamnosyl imidate donor 10, gave the title molecule 1 after global deprotection. The title hexasaccharide 2 was assembled in a convergent [2+2+2] manner, in which α-1,2-linked disaccharide 12 was initially obtained by the coupling reaction of disarmed thiorhamnoside acceptor 15 with armed thiogalactoside donor 14. Sequential glycosylation of disaccharide acceptor 9 with thioglycoside donors 12 and 13 afforded the target compound 2 after global deprotection. PMID:27085165

  3. Biocontrol of Late Blight (Phytophthora capsici Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

    Directory of Open Access Journals (Sweden)

    Mao Sopheareth

    2013-03-01

    Full Text Available A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-ketogluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA and phenylacetic acid (PA. The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phytophthora capsici, pepper plants in pot trials were treated with modified medium only (M, M plus zoospore inoculation (MP, MPC-7 cultured broth (B and B plus zoospore inoculation (BP. With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.

  4. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt–29 biosensor

    Science.gov (United States)

    Wong, Rui-Rui; Kong, Cin; Lee, Song-Hua; Nathan, Sheila

    2016-01-01

    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host’s attempt to clear bacterial toxic molecules. One of these genes, ugt–29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt–29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt–29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT–29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt–29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis. PMID:27273550

  5. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection

    Science.gov (United States)

    Lim, Mei-Perng; Firdaus-Raih, Mohd; Nathan, Sheila

    2016-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs) have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of nematodes. RNA interference (RNAi)-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators. PMID:27672387

  6. Selection of support materials for immobilization of Burkholderia cepacia PCL3 in treatment of carbofuran-contaminated water.

    Science.gov (United States)

    Laocharoen, S; Plangklang, P; Reungsang, A

    2013-01-01

    This study investigated the utilization of agricultural matrices as the support materials for cell immobilization to improve the technique of bioremediation. Coir, bulrush, banana stem and water hyacinth stem in both delignified and undelignified forms were used to immobilize Burkholderia cepacia PCL3 in bioremediation of carbofuran at 5 mg l(-1) in synthetic wastewater. Undelignified coir was found to be the most suitable support material for cell immobilization, giving the short half-life of carbofuran of 3.40 d (2.8 times shorter than the treatments with free cells). In addition, it could be reused three times without a loss in ability to degrade carbofuran. The growth and degradation ability of free cells were completely inhibited at the initial carbofuran concentrations of 250 mg l(-1), while there was no inhibitory effect of carbofuran on the immobilized cells. The results indicated a great potential for using the agricultural matrices as support material for cell immobilization to improve the overall efficiency of carbofuran bioremediation in contaminated water by B. cepacia PCL3.

  7. Development of a Polymerase Chain Reaction Assay for Detection of Burkholderia mallei, a Potent Biological Warfare Agent

    Directory of Open Access Journals (Sweden)

    Vijai Pal

    2016-09-01

    Full Text Available Burkholderia mallei is the etiological agent of glanders, primarily a disease of equines. B. mallei is closely related to B. pseudomallei, the causative agent of melioidosis. Therefore, detection of B. mallei and its differentiation from B. pseudomallei, has always been troublesome. In present investigation, a B. mallei specific DNA sequence was identified by performing BLASTn search using ~3000 ORFs of B. mallei NCTC 10229. A polymerase chain reaction (PCR assay with internal amplification control (IAC was developed for detection of B. mallei and its differentiation from B. pseudomallei. The PCR assay could amplify a specific 224-bp fragment from all the six B. mallei strains used in the study, whereas other closely related organisms were tested negative. The detection limit of the assay was found to be 10 pg of purified DNA of B. mallei. Incorporation of IAC in the assay makes the results reliable as false negative results which may arise due to presence of PCR inhibitors, can be avoided. For validation, the assay was tested on tap water, Bengal gram and grass artificially spiked with B. mallei. The developed assay can be used as a simple and rapid tool for detection of B. mallei.

  8. A novel nucleoside kinase from Burkholderia thailandensis: a member of the phosphofructokinase B-type family of enzymes.

    Science.gov (United States)

    Ota, Hiroko; Sakasegawa, Shin-Ichi; Yasuda, Yuko; Imamura, Shigeyuki; Tamura, Tomohiro

    2008-12-01

    The genome of the mesophilic Gram-negative bacterium Burkholderia thailandensis contains an open reading frame (i.e. the Bth_I1158 gene) that has been annotated as a putative ribokinase and PFK-B family member. Notably, although the deduced amino acid sequence of the gene showed only 29% similarity to the recently identified nucleoside kinase from hyperthermophilic archaea Methanocaldococcus jannaschii, 15 of 17 residues reportedly involved in the catalytic activity of M. jannaschii nucleoside kinase were conserved. The gene was cloned and functionally overexpressed in Rhodococcus erythropolis, and the purified enzyme was characterized biochemically. The substrate specificity of the enzyme was unusually broad for a bacterial PFK-B protein, and the specificity extended not only to purine and purine-analog nucleosides but also to uridine. Inosine was the most effective phosphoryl acceptor, with the highest k(cat)/K(m) value (80 s(-1).mm(-1)) being achieved when ATP served as the phosphoryl donor. By contrast, this enzyme exhibited no activity toward ribose, indicating that the recombinant enzyme was a nucleoside kinase rather than a ribokinase. To our knowledge, this is the first detailed analysis of a bacterial nucleoside kinase in the PFK-B family.

  9. Selection of support materials for immobilization of Burkholderia cepacia PCL3 in treatment of carbofuran-contaminated water.

    Science.gov (United States)

    Laocharoen, S; Plangklang, P; Reungsang, A

    2013-01-01

    This study investigated the utilization of agricultural matrices as the support materials for cell immobilization to improve the technique of bioremediation. Coir, bulrush, banana stem and water hyacinth stem in both delignified and undelignified forms were used to immobilize Burkholderia cepacia PCL3 in bioremediation of carbofuran at 5 mg l(-1) in synthetic wastewater. Undelignified coir was found to be the most suitable support material for cell immobilization, giving the short half-life of carbofuran of 3.40 d (2.8 times shorter than the treatments with free cells). In addition, it could be reused three times without a loss in ability to degrade carbofuran. The growth and degradation ability of free cells were completely inhibited at the initial carbofuran concentrations of 250 mg l(-1), while there was no inhibitory effect of carbofuran on the immobilized cells. The results indicated a great potential for using the agricultural matrices as support material for cell immobilization to improve the overall efficiency of carbofuran bioremediation in contaminated water by B. cepacia PCL3. PMID:24527620

  10. A genomic survey of positive selection in Burkholderia pseudomallei provides insights into the evolution of accidental virulence.

    Directory of Open Access Journals (Sweden)

    Tannistha Nandi

    2010-04-01

    Full Text Available Certain environmental microorganisms can cause severe human infections, even in the absence of an obvious requirement for transition through an animal host for replication ("accidental virulence". To understand this process, we compared eleven isolate genomes of Burkholderia pseudomallei (Bp, a tropical soil microbe and causative agent of the human and animal disease melioidosis. We found evidence for the existence of several new genes in the Bp reference genome, identifying 282 novel genes supported by at least two independent lines of supporting evidence (mRNA transcripts, database homologs, and presence of ribosomal binding sites and 81 novel genes supported by all three lines. Within the Bp core genome, 211 genes exhibited significant levels of positive selection (4.5%, distributed across many cellular pathways including carbohydrate and secondary metabolism. Functional experiments revealed that certain positively selected genes might enhance mammalian virulence by interacting with host cellular pathways or utilizing host nutrients. Evolutionary modifications improving Bp environmental fitness may thus have indirectly facilitated the ability of Bp to colonize and survive in mammalian hosts. These findings improve our understanding of the pathogenesis of melioidosis, and establish Bp as a model system for studying the genetics of accidental virulence.

  11. Outbreak of Burkholderia cepacia complex bacteremia in a chemotherapy day care unit due to intrinsic contamination of an antiemetic drug

    Directory of Open Access Journals (Sweden)

    T Singhal

    2015-01-01

    Full Text Available Background: In the end of 2009, a large number of patients with cancer undergoing chemotherapy at the day care unit of a private hospital in Mumbai, India developed Burkholderia cepacia complex (BCC blood stream infection (BSI. Objective: The objectives were to identify the source of the outbreak and terminate the outbreak as rapidly as possible. Materials and Methods: All infection control protocols and processes were reviewed. Intensive training was started for all nursing staff involved in patient care. Cultures were sent from the environment (surfaces, water, air, intravenous fluids, disinfectants and antiseptics and opened/unopened medication. Results: A total of 13 patients with cancer with tunneled catheters were affected with BCC BSI. The isolates were of similar antimicrobial sensitivity. No significant breach of infection control protocols could be identified. Cultures from the prepared intravenous medication bags grew BCC. Subsequently, culture from unused vials of the antiemetic granisetron grew BCC, whereas those from the unopened IV fluid bag and chemotherapy medication were negative. On review, it was discovered that the outbreak started when a new brand of granisetron was introduced. The result was communicated to the manufacturer and the brand was withdrawn. There were no further cases. Conclusions: This outbreak was thus linked to intrinsic contamination of medication vials. We acknowledge a delay in identifying the source as we were concentrating more on human errors in medication preparation and less on intrinsic contamination. We recommend that in an event of an outbreak, unopened vials be cultured at the outset.

  12. Powder formulation of Burkholderia cepacia for control of rape seed damping-off caused by Rhizoctonia solani.

    Science.gov (United States)

    Sharifi-Tehrani, A; Ahmadzadeh, M; Sarani, S; Farzaneh, M

    2007-01-01

    Talc-based formulation of Burkholderia cepaci strain Bu1 was tested as seed and soil drenchs separately for its ability to control Rhizoctonia soloni the causal agent of rape seed damping-off in greenhouse and field trials. In general, the formulated bacteria was more effective to suppress the disease than the suspension of bacteria cells in carboxymethylcellulose solution (1% w/v), in both greenhouse and field trials. The formulation of strain Bul as soil and seed treatments had the greatest effect on reducing the rape seed damping-off in greenhouse and field trials (66.7, 53.3, 64.4 and 40% respectively). The formulation of strain Bu1 as soil and seed treatments were the most effective treatments to increase the root dry weights in the infected soil in greenhouse. The formulation of strain Bul as soil drench had the greatest effect on enhancement of the fresh weight of roots and stem fresh and dry weights. The formulation of strain Bu1 stored at 4 degrees C exhibited better shelf Life and efficacy in vitro than it's counterpart stored at 25 degrees C. PMID:18399433

  13. Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli.

    Science.gov (United States)

    Inose, Ken; Fujikawa, Masako; Yamazaki, Tomohiko; Kojima, Katsuhiro; Sode, Koji

    2003-02-21

    We have cloned a 1620-nucleotide gene encoding the catalytic subunit (alpha subunit) of a thermostable glucose dehydrogenase (GDH) from Burkholderia cepacia. The FAD binding motif was found in the N-terminal region of the alpha subunit. The deduced primary structure of the alpha subunit showed about 48% identity to the catalytic subunits of sorbitol dehydrogenase (SDH) from Gluconobacter oxydans and 2-keto-D-gluconate dehydrogenases (2KGDH) from Erwinia herbicola and Pantoea citrea. The alpha subunit of B. cepacia was expressed in Escherichia coli in its active water-soluble form, showing maximum dye-mediated GDH activity at 70 degrees C, retaining high thermal stability. A putative open reading frame (ORF) of 507 nucleotides was also found upstream of the alpha subunit encoding an 18-kDa peptide, designated as gamma subunit. The deduced primary structure of gamma subunit showed about 30% identity to the small subunits of the SDH from G. oxydans and 2KGDHs from E. herbicola and P. citrea. PMID:12573242

  14. Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates.

    Science.gov (United States)

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X

    2013-11-01

    Burkholderia sp. C3, an efficient polycyclic aromatic hydrocarbon degrader, can utilize nine of the ten N-methylcarbamate insecticides including carbaryl as a sole source of carbon. Rapid hydrolysis of carbaryl in C3 is followed by slow catabolism of the resulting 1-naphthol. This study focused on metabolomes and proteomes in C3 cells utilizing carbaryl in comparison to those using glucose or nutrient broth. Sixty of the 867 detected proteins were involved in primary metabolism, adaptive sensing and regulation, transport, stress response, and detoxification. Among the 41 proteins expressed in response to carbaryl were formate dehydrogenase, aldehyde-alcohol dehydrogenase and ethanolamine utilization protein involved in one carbon metabolism. Acetate kinase and phasin were 2 of the 19 proteins that were not detected in carbaryl-supported C3 cells, but detected in glucose-supported C3 cells. Down-production of phasin and polyhydroxyalkanoates in carbaryl-supported C3 cells suggests insufficient carbon sources and lower levels of primary metabolites to maintain an ordinary level of metabolism. Differential metabolomes (~196 identified polar metabolites) showed up-production of metabolites in pentose phosphate pathways and metabolisms of cysteine, cystine and some other amino acids, disaccharides and nicotinate, in contract to down-production of most of the other amino acids and hexoses. The proteomic and metabolomic analyses showed that carbaryl-supported C3 cells experienced strong toxic effects, oxidative stresses, DNA/RNA damages and carbon nutrient deficiency.

  15. POLYCLONAL OUTBREAK OF BLOODSTREAM INFECTIONS CAUSED BY Burkholderia cepacia COMPLEX IN HEMATOLOGY AND BONE MARROW TRANSPLANT OUTPATIENT UNITS

    Directory of Open Access Journals (Sweden)

    Icaro Boszczowski

    2014-01-01

    Full Text Available Aim: The objective was to describe an outbreak of bloodstream infections by Burkholderia cepacia complex (Bcc in bone marrow transplant and hematology outpatients. Methods: On February 15, 2008 a Bcc outbreak was suspected. 24 cases were identified. Demographic and clinical data were evaluated. Environment and healthcare workers' (HCW hands were cultured. Species were determined and typed. Reinforcement of hand hygiene, central venous catheter (CVC care, infusion therapy, and maintenance of laminar flow cabinet were undertaken. 16 different HCWs had cared for the CVCs. Multi-dose heparin and saline were prepared on counter common to both units. Findings: 14 patients had B. multivorans (one patient had also B. cenopacia, six non-multivorans Bcc and one did not belong to Bcc. Clone A B. multivorans occurred in 12 patients (from Hematology; in 10 their CVC had been used on February 11/12. Environmental and HCW cultures were negative. All patients were treated with meropenem, and ceftazidime lock-therapy. Eight patients (30% were hospitalized. No deaths occurred. After control measures (multidose vial for single patient; CVC lock with ceftazidime; cleaning of laminar flow cabinet; hand hygiene improvement; use of cabinet to store prepared medication, no new cases occurred. Conclusions: This polyclonal outbreak may be explained by a common source containing multiple species of Bcc, maybe the laminar flow cabinet common to both units. There may have been contamination by B. multivorans (clone A of multi-dose vials.

  16. Early growth promotion and leaf level physiology changes in Burkholderia phytofirmans strain PsJN inoculated switchgrass.

    Science.gov (United States)

    Wang, Bingxue; Mei, Chuansheng; Seiler, John R

    2015-01-01

    Switchgrass (SG) is one of the most promising next generation biofuel crops in North America. Inoculation with bacterial endophytes has improved growth of several plant species. Our study demonstrated that Burkholderia phytofirmans strain PsJN, a well-studied plant growth promoting rhizo-bacterium (PGPR) significantly increased both aboveground and belowground biomass (DW) and promoted elongation of root, stem and leaf within 17 days following inoculation. Furthermore, the enhanced root growth in PsJN inoculated plants lagged behind the shoot response, resulting in greater allocation to aboveground growth (p = 0.0041). Lower specific root length (SRL, p = 0.0158) and higher specific leaf weight (SLW, p = 0.0029) were also observed in PsJN inoculated seedlings, indicating changes in development. Photosynthetic rates (Ps) were also significantly higher in PsJN inoculated seedlings after 17 days (54%, p = 0.0016), and this occurred initially without increases in stomatal conductance resulting in significantly greater water use efficiency (WUE, 37.7%, p = 0.0467) and lower non-stomatal limitation (LNS, 29.6%, p = 0.0222). These rapid changes in leaf level physiology are at least partially responsible for the growth enhancement due to PsJN. PMID:25461696

  17. Investigation of quorum sensing-dependent gene expression in Burkholderia gladioli BSR3 through RNA-seq analyses.

    Science.gov (United States)

    Kim, Sunyoung; Park, Jungwook; Choi, Okhee; Kim, Jinwoo; Seo, Young-Su

    2014-12-28

    The plant pathogen Burkholderia gladioli, which has a broad host range that includes rice and onion, causes bacterial panicle blight and sheath rot. Based on the complete genome sequence of B. gladioli BSR3 isolated from infected rice sheaths, the genome of B. gladioli BSR3 contains the luxI/luxR family of genes. Members of this family encode N-acyl-homoserine lactone (AHL) quorum sensing (QS) signal synthase and the LuxR-family AHL signal receptor, which are similar to B. glumae BGR1. In B. glumae, QS has been shown to play pivotal roles in many bacterial behaviors. In this study, we compared the QS-dependent gene expression between B. gladioli BSR3 and a QS-defective B. gladioli BSR3 mutant in two different culture states (10 and 24 h after incubation, corresponding to an exponential phase and a stationary phase) using RNA sequencing (RNA-seq). RNA-seq analyses including gene ontology and pathway enrichment revealed that the B. gladioli BSR3 QS system regulates genes related to motility, toxin production, and oxalogenesis, which were previously reported in B. glumae. Moreover, the uncharacterized polyketide biosynthesis is activated by QS, which was not detected in B. glumae. Thus, we observed not only common QS-dependent genes between B. glumae BGR1 and B. gladioli BSR3, but also unique QS-dependent genes in B. gladioli BSR3. PMID:25223327

  18. Genome sequence alterations detected upon passage of Burkholderia mallei ATCC 23344 in culture and in mammalian hosts

    Directory of Open Access Journals (Sweden)

    Yu Yan

    2006-09-01

    Full Text Available Abstract Background More than 12,000 simple sequence repeats (SSRs have been identified in the genome of Burkholderia mallei ATCC 23344. As a demonstrated mechanism of phase variation in other pathogenic bacteria, these may function as mutable loci leading to altered protein expression or structure variation. To determine if such alterations are occurring in vivo, the genomes of various single-colony passaged B. mallei ATCC 23344 isolates, one from each source, were sequenced from culture, a mouse, a horse, and two isolates from a single human patient, and the sequence compared to the published B. mallei ATCC 23344 genome sequence. Results Forty-nine insertions and deletions (indels were detected at SSRs in the five passaged strains, a majority of which (67.3% were located within noncoding areas, suggesting that such regions are more tolerant of sequence alterations. Expression profiling of the two human passaged isolates compared to the strain before passage revealed alterations in the mRNA levels of multiple genes when grown in culture. Conclusion These data support the notion that genome variability upon passage is a feature of B. mallei ATCC23344, and that within a host B. mallei generates a diverse population of clones that accumulate genome sequence variation at SSR and other loci.

  19. Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243.

    Directory of Open Access Journals (Sweden)

    Andrea J Dowling

    Full Text Available Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin 'tails' and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle.

  20. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection.

    Science.gov (United States)

    Lim, Mei-Perng; Firdaus-Raih, Mohd; Nathan, Sheila

    2016-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs) have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of nematodes. RNA interference (RNAi)-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators. PMID:27672387

  1. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution.

  2. Functional characterization and evaluation of in vitro protective efficacy of murine monoclonal antibodies BURK24 and BURK37 against Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Bhavani V Peddayelachagiri

    Full Text Available Burkholderia pseudomallei, the causative agent of melioidosis has been recognized by CDC as a category B select agent. Although substantial efforts have been made for development of vaccine molecules against the pathogen, significant hurdles still remain. With no licensed vaccines available and high relapse rate of the disease, there is a pressing need for development of alternate protection strategies. Antibody-mediated passive protection is promising in this regard and our primary interest was to unravel this frontier of specific mAbs against Burkholderia pseudomallei infections, as functional characterization of antibodies is a pre-requisite to demonstrate them as protective molecules. To achieve this, we designed our study on in vitro-based approach and assessed two mAbs, namely BURK24 and BURK37, reactive with outer membrane proteins and lipopolysaccharide of the pathogen respectively, for their ability to manifest inhibitory effects on the pathogenesis mechanisms of B. pseudomallei including biofilm formation, invasion and induction of apoptosis. The experiments were performed using B. pseudomallei standard strain NCTC 10274 and a clinical isolate, B. pseudomallei 621 recovered from a septicemia patient with diabetic ailment. The growth kinetic studies of the pathogen in presence of various concentrations of each individual mAb revealed their anti-bacterial properties. Minimal inhibitory concentration and minimal bactericidal concentration of both the mAbs were determined by using standards of Clinical and Laboratory Standards Institute (CLSI and experiments were performed using individual mAbs at their respective bacteriostatic concentration. As an outcome, both mAbs exhibited significant anti-Burkholderia pseudomallei properties. They limited the formation of biofilm by the bacterium and completely crippled its invasion into human alveolar adenocarcinoma epithelial cells. Also, the mAbs were appreciably successful in preventing the

  3. Fermentation optimization for non-positional specificity lipase production of Burkholderia cepacia S31%Burkholderia cepacia S31细菌高产位置非特异性脂肪酶的发酵条件优化

    Institute of Scientific and Technical Information of China (English)

    卢亚萍; 汪瑾; 张充; 吕凤霞; 别小妹; 陆兆新

    2012-01-01

    从油脂污染的土壤中分离获得了1株高效产脂肪酶的细菌S31,经鉴定为Burkholderia cepacia(洋葱伯克霍尔德菌).B.cepacia S31所产脂肪酶具有活性高、耐高温、耐有机溶剂和位置非特异性水解甘油三酯等优良特性.为了进一步提高S31菌株的产酶量,对该菌产酶的发酵条件进行优化.通过单因子试验筛选出最佳碳源为麸皮,最佳氮源为蛋白胨,最佳诱导物为Tween-80.通过对培养基各组分及外部培养条件因素的正交试验,确定S31菌产脂肪酶的摇瓶发酵最优条件为:以20 g·L-1麸皮、10 g·L-1蛋白胨、40g·L-1Tween-80、0.5g·L-1MgSO4和2g·L-1K2 HPO4为培养基(pH 7.0),250 mL三角瓶装40 mL培养基,3%接种量,30℃、180 r·min-1培养66h可获得最理想的酶产量,达283.6 U·mL-1,比优化前提高2.73倍.%A lipase-producing strain named S31 from the soil of a cole plantation was isolated,which was identified as Burkholderia cepacia. S31 lipase had a variety of highly desirable characteristics, such as high activity, temperature stability, organic solvents tolerance and hydrolysis of triglyceride without positional specificity. In order to enhance the enzyme productivity, the culture conditions were improved. Initially, single-factor experiments were used to evaluate the optimal carbon source, nitrogen source and inducer, which were bran, peptone and Tween-80, respectively. According to the orthogonal tests of media components and fermentation parameters,the optimal culture conditions were determined as follows;the culture medium containing of 20 g·L-1 bran, l0g·L-1 peptone,40 g·L-1 Tween-80,0.5 g·L-1 MgSO4 and 2 g·L-1 K2HPO4 with initial pH 7. 0. The overnight culture was inoculated to 40 mL medium in 250 mL shaking flask,3% inocution amount,and fermented at 30 ℃ with 180 r·min-1 shaking for 66 h. The maximum lipase activity reached a high level(283.6 U·mL-1 ) .which was improved 2.73 folds compared with that under the original

  4. Bacteria belonging to the genus Burkholderia are obligatory symbionts of the eriococcids Acanthococcus aceris Signoret, 1875 and Gossyparia spuria (Modeer, 1778) (Insecta, Hemiptera, Coccoidea).

    Science.gov (United States)

    Michalik, Katarzyna; Szklarzewicz, Teresa; Kalandyk-Kołodziejczyk, Małgorzata; Jankowska, Władysława; Michalik, Anna

    2016-05-01

    In the fat body cells of the scale insects, Gossyparia spuria and Acanthococcus aceris, numerous rod-shaped symbiotic bacteria occur. Molecular analyses have revealed that these microorganisms are closely related to the widely distributed bacterium Burkholderia. Ultrastructural observations have revealed that the bacteria are transovarially (vertically) transmitted from the mother to offspring. The microorganisms leave the fat body cells and invade ovarioles containing vitellogenic oocytes. They pass through the follicular epithelium in the neck region of the ovariole and enter the perivitelline space. Next, the symbionts infest the anterior region of the oocyte.

  5. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-06

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the second quarter of the third year, LLNL finalized all immunological assessments of NLP vaccine formulations in the F344 model. Battelle has immunized rats with three unique NLP formulations by either intramuscular or intranasal administration. All inoculations have been completed, and protective efficacy against an aerosolized challenge will begin at the end of October, 2014.

  6. Evidence for Acquisition in Nature of a Chromosomal 2,4-Dichlorophenoxyacetic Acid/(alpha)-Ketoglutarate Dioxygenase Gene by Different Burkholderia spp

    OpenAIRE

    Matheson, V. G.; Forney, L J; Suwa, Y.; Nakatsu, C. H.; A. J. Sexstone; Holben, W E

    1996-01-01

    We characterized the gene required to initiate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by the soil bacterium Burkholderia sp. strain TFD6, which hybridized to the tfdA gene of the canonical 2,4-D catabolic plasmid pJP4 under low-stringency conditions. Cleavage of the ether bond of 2,4-D by cell extracts of TFD6 proceeded by an (alpha)-ketoglutarate-dependent reaction, characteristic of TfdA (F. Fukumori and R. P. Hausinger, J. Bacteriol. 175:2083-2086, 1993). The TFD6 tfdA g...

  7. Crystallization and preliminary X-ray diffraction analysis of BipD, a virulence factor from Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    BipD is likely to be a component of a type-III protein secretion system (TTSS) in B. pseudomallei. Native and selenomethionyl-BipD proteins have been expressed and crystals have been obtained which diffract to 2.1 Å. Burkholderia pseudomallei, the causative agent of melioidosis, possesses a protein-secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to secrete virulence-associated proteins into target cells of the host organism. The BipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and most likely functionally analogous to IpaD from Shigella and SipD from Salmonella. Thus, the BipD protein is likely to be a component of a type III protein-secretion system (TTSS) in B. pseudomallei. Proteins in the same class as BipD, such as IpaD and SipD, are thought to act as extracellular chaperones to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and might even link the translocon pore with the secretion needle. There is evidence that the translocator proteins also bind an integrin which stimulates actin-mediated insertion of the bacterium into the host-cell membrane. Native BipD has been crystallized in a monoclinic crystal form that diffracts X-rays to 2.5 Å resolution. BipD protein which incorporates selenomethionine (SeMet-BipD) has also been expressed and forms crystals which diffract to a higher resolution of 2.1 Å

  8. Near-atomic resolution analysis of BipD, a component of the type III secretion system of Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    The type III secretion system needle-tip protein BipD has been crystallized in a form that diffracts X-rays to 1.5 Å resolution and the structure has been refined to an R factor of 16.1% and an Rfree of 19.8% at this resolution. The putative antiparallel dimer interface that was observed in earlier structures is conserved. Burkholderia pseudomallei, the causative agent of melioidosis, possesses a type III protein secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to inject virulence-associated proteins into target cells of the host organism. The bipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and is most likely to be functionally analogous to IpaD from Shigella and SipD from Salmonella. Proteins in this family are thought to act as extracellular chaperones at the tip of the secretion needle to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and may also link the translocon pore with the secretion needle. BipD has been crystallized in a monoclinic crystal form that diffracted X-rays to 1.5 Å resolution and the structure was refined to an R factor of 16.1% and an Rfree of 19.8% at this resolution. The putative dimer interface that was observed in previous crystal structures was retained and a larger surface area was buried in the new crystal form

  9. Crystallization and preliminary X-ray diffraction analysis of BipD, a virulence factor from Burkholderia pseudomallei

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M. J.; Ruaux, A.; Mikolajek, H.; Erskine, P. T.; Gill, R.; Wood, S. P. [School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX (United Kingdom); Wood, M. [Institute of Animal Health, Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN (United Kingdom); Cooper, J. B., E-mail: j.b.cooper@soton.ac.uk [School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX (United Kingdom)

    2006-08-01

    BipD is likely to be a component of a type-III protein secretion system (TTSS) in B. pseudomallei. Native and selenomethionyl-BipD proteins have been expressed and crystals have been obtained which diffract to 2.1 Å. Burkholderia pseudomallei, the causative agent of melioidosis, possesses a protein-secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to secrete virulence-associated proteins into target cells of the host organism. The BipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and most likely functionally analogous to IpaD from Shigella and SipD from Salmonella. Thus, the BipD protein is likely to be a component of a type III protein-secretion system (TTSS) in B. pseudomallei. Proteins in the same class as BipD, such as IpaD and SipD, are thought to act as extracellular chaperones to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and might even link the translocon pore with the secretion needle. There is evidence that the translocator proteins also bind an integrin which stimulates actin-mediated insertion of the bacterium into the host-cell membrane. Native BipD has been crystallized in a monoclinic crystal form that diffracts X-rays to 2.5 Å resolution. BipD protein which incorporates selenomethionine (SeMet-BipD) has also been expressed and forms crystals which diffract to a higher resolution of 2.1 Å.

  10. Pathological findings and diagnostic implications of a rhesus macaque (Macacca mulatta) model of aerosol exposure to Burkholderia mallei (glanders).

    Science.gov (United States)

    Yingst, Samuel L; Facemire, Paul; Chuvala, Lara; Norwood, David; Wolcott, Mark; Huzella, Louis

    2015-06-01

    Burkholderia mallei is a Gram-negative bacillus that causes a pneumonic disease known as glanders in equids and humans, and a lymphatic infection known as farcy, primarily in equids. With the potential to infect humans by the respiratory route, aerosol exposure can result in severe, occasionally fatal, pneumonia. Today, glanders infections in humans are rare, likely due to less frequent contact with infected equids than in the past. Acutely ill humans often have non-specific clinical signs and in order to diagnose cases, especially in scenarios of multiple cases in an unexpected setting, rapid diagnostics for B. mallei may be critical. The pathogenesis of acute glanders in the rhesus macaque (Macaca mulatta) was studied as an initial effort to improve diagnostic methods. In the study described here, the diagnostic techniques of PCR, culture and histopathology were compared. The results indicated that PCR may provide rapid, non-invasive diagnosis of glanders in some cases. As expected, PCR results were positive in lung tissue in 11/12 acutely infected rhesus macaques, but more importantly in terms of diagnostic algorithm development, PCR results were frequently positive in non-invasive samples such as broncho-alveolar lavage or nasal swabs (7/12) and occasionally in blood (3/12). However, conventional bacterial culture failed to recover bacteria in many of these samples. The study showed that the clinical presentation of aerosol-exposed rhesus macaques is similar to descriptions of human glanders and that PCR has potential for rapid diagnosis of outbreaks, if not individual cases.

  11. The Autotransporter BpaB Contributes to the Virulence of Burkholderia mallei in an Aerosol Model of Infection.

    Science.gov (United States)

    Zimmerman, Shawn M; Michel, Frank; Hogan, Robert J; Lafontaine, Eric R

    2015-01-01

    Burkholderia mallei is a highly pathogenic bacterium that causes the zoonosis glanders. Previous studies indicated that the genome of the organism contains eight genes specifying autotransporter proteins, which are important virulence factors of Gram-negative bacteria. In the present study, we report the characterization of one of these autotransporters, BpaB. Database searches identified the bpaB gene in ten B. mallei isolates and the predicted proteins were 99-100% identical. Comparative sequence analyses indicate that the gene product is a trimeric autotransporter of 1,090 amino acids with a predicted molecular weight of 105-kDa. Consistent with this finding, we discovered that recombinant bacteria expressing bpaB produce a protein of ≥ 300-kDa on their surface that is reactive with a BpaB-specific monoclonal antibody. Analysis of sera from mice infected with B. mallei indicated that animals produce antibodies against BpaB during the course of disease, thus establishing production of the autotransporter in vivo. To gain insight on its role in virulence, we inactivated the bpaB gene of B. mallei strain ATCC 23344 and determined the median lethal dose of the mutant in a mouse model of aerosol infection. These experiments revealed that the bpaB mutation attenuates virulence 8-14 fold. Using a crystal violet-based assay, we also discovered that constitutive production of BpaB on the surface of B. mallei promotes biofilm formation. To our knowledge, this is the first report of a biofilm factor for this organism.

  12. Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development.

    Directory of Open Access Journals (Sweden)

    Tiffany M Mott

    Full Text Available In this study, a Burkholderia mallei tonB mutant (TMM001 deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis.Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 10(4 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001.Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis.

  13. The Autotransporter BpaB Contributes to the Virulence of Burkholderia mallei in an Aerosol Model of Infection.

    Directory of Open Access Journals (Sweden)

    Shawn M Zimmerman

    Full Text Available Burkholderia mallei is a highly pathogenic bacterium that causes the zoonosis glanders. Previous studies indicated that the genome of the organism contains eight genes specifying autotransporter proteins, which are important virulence factors of Gram-negative bacteria. In the present study, we report the characterization of one of these autotransporters, BpaB. Database searches identified the bpaB gene in ten B. mallei isolates and the predicted proteins were 99-100% identical. Comparative sequence analyses indicate that the gene product is a trimeric autotransporter of 1,090 amino acids with a predicted molecular weight of 105-kDa. Consistent with this finding, we discovered that recombinant bacteria expressing bpaB produce a protein of ≥ 300-kDa on their surface that is reactive with a BpaB-specific monoclonal antibody. Analysis of sera from mice infected with B. mallei indicated that animals produce antibodies against BpaB during the course of disease, thus establishing production of the autotransporter in vivo. To gain insight on its role in virulence, we inactivated the bpaB gene of B. mallei strain ATCC 23344 and determined the median lethal dose of the mutant in a mouse model of aerosol infection. These experiments revealed that the bpaB mutation attenuates virulence 8-14 fold. Using a crystal violet-based assay, we also discovered that constitutive production of BpaB on the surface of B. mallei promotes biofilm formation. To our knowledge, this is the first report of a biofilm factor for this organism.

  14. Spatio-temporal responses of Arabidopsis leaves in photosynthetic performance and metabolite contents to Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    Fan eSu

    2016-03-01

    Full Text Available A valuable strategy to improve crop yield consists in the use of plant growth-promoting rhizobacteria (PGPRs. However, the influence of PGPR colonization on plant physiology is largely unknown. PGPR Burkholderia phytofirmans strain PsJN (Bp PsJN colonized only Arabidopsis thaliana roots after seed or soil inoculation. Foliar bacteria were detected only after leaf infiltration. Since different bacterial times of presence and/or locations in host plant could lead to different plant physiological responses, photosynthesis and metabolite profiles in A. thaliana leaves were thus investigated following leaf, root or seed inoculation with Bp PsJN. Only Bp PsJN leaf colonization transiently decreased cyclic electron transport and effective quantum yield of photosystem I (PSI, and prevented a decrease in net photosynthesis and stomatal opening compared to the corresponding control. Metabolomic analysis revealed that soluble sugars, amino acids or their derivatives accumulated differently in all Bp PsJN-inoculated plants. Octanoic acid accumulated only in case of inoculated plants. Modifications in vitamin, organic acid such as tricarboxylic acid intermediates, and hormone amounts were dependent on bacterial time of presence and location. Additionally, a larger array of amino acids and hormones (auxin, cytokinin, abscisic acid were modified by seed inoculation with Bp PsJN. Our work thereby provides evidence that relative short-term inoculation with Bp PsJN altered physiological status of A.thaliana leaves, whereas long-term bacterization triggered modifications on a larger set of metabolites. Our data highlighted the changes displayed during this plant-microbe interaction to trigger physiological and metabolic responses that could explain the increase in plant growth or stress tolerance conferred by the presence of Bp PsJN.

  15. Spatio-temporal Responses of Arabidopsis Leaves in Photosynthetic Performance and Metabolite Contents to Burkholderia phytofirmans PsJN.

    Science.gov (United States)

    Su, Fan; Gilard, Françoise; Guérard, Florence; Citerne, Sylvie; Clément, Christophe; Vaillant-Gaveau, Nathalie; Dhondt-Cordelier, Sandrine

    2016-01-01

    A valuable strategy to improve crop yield consists in the use of plant growth-promoting rhizobacteria (PGPRs). However, the influence of PGPR colonization on plant physiology is largely unknown. PGPR Burkholderia phytofirmans strain PsJN (Bp PsJN) colonized only Arabidopsis thaliana roots after seed or soil inoculation. Foliar bacteria were detected only after leaf infiltration. Since, different bacterial times of presence and/or locations in host plant could lead to different plant physiological responses, photosynthesis, and metabolite profiles in A. thaliana leaves were thus investigated following leaf, root, or seed inoculation with Bp PsJN. Only Bp PsJN leaf colonization transiently decreased cyclic electron transport and effective quantum yield of photosystem I (PSI), and prevented a decrease in net photosynthesis and stomatal opening compared to the corresponding control. Metabolomic analysis revealed that soluble sugars, amino acids or their derivatives accumulated differently in all Bp PsJN-inoculated plants. Octanoic acid accumulated only in case of inoculated plants. Modifications in vitamin, organic acid such as tricarboxylic acid intermediates, and hormone amounts were dependent on bacterial time of presence and location. Additionally, a larger array of amino acids and hormones (auxin, cytokinin, abscisic acid) were modified by seed inoculation with Bp PsJN. Our work thereby provides evidence that relative short-term inoculation with Bp PsJN altered physiological status of A. thaliana leaves, whereas long-term bacterization triggered modifications on a larger set of metabolites. Our data highlighted the changes displayed during this plant-microbe interaction to trigger physiological and metabolic responses that could explain the increase in plant growth or stress tolerance conferred by the presence of Bp PsJN. PMID:27066045

  16. Comparison of DNA extraction kits for detection of Burkholderia pseudomallei in spiked human whole blood using real-time PCR.

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    Full Text Available Burkholderia pseudomallei, the etiologic agent of melioidosis, is endemic in northern Australia and Southeast Asia and can cause severe septicemia that may lead to death in 20% to 50% of cases. Rapid detection of B. pseudomallei infection is crucial for timely treatment of septic patients. This study evaluated seven commercially available DNA extraction kits to determine the relative recovery of B. pseudomallei DNA from spiked EDTA-containing human whole blood. The evaluation included three manual kits: the QIAamp DNA Mini kit, the QIAamp DNA Blood Mini kit, and the High Pure PCR Template Preparation kit; and four automated systems: the MagNAPure LC using the DNA Isolation Kit I, the MagNAPure Compact using the Nucleic Acid Isolation Kit I, and the QIAcube using the QIAamp DNA Mini kit and the QIAamp DNA Blood Mini kit. Detection of B. pseudomallei DNA extracted by each kit was performed using the B. pseudomallei specific type III secretion real-time PCR (TTS1 assay. Crossing threshold (C T values were used to compare the limit of detection and reproducibility of each kit. This study also compared the DNA concentrations and DNA purity yielded for each kit. The following kits consistently yielded DNA that produced a detectable signal from blood spiked with 5.5×10(4 colony forming units per mL: the High Pure PCR Template Preparation, QIAamp DNA Mini, MagNA Pure Compact, and the QIAcube running the QIAamp DNA Mini and QIAamp DNA Blood Mini kits. The High Pure PCR Template Preparation kit yielded the lowest limit of detection with spiked blood, but when this kit was used with blood from patients with confirmed cases of melioidosis, the bacteria was not reliably detected indicating blood may not be an optimal specimen.

  17. [Homologous expression of Burkholderia cepacia G63 lipase gene based on T7 RNA polymerase expression system].

    Science.gov (United States)

    Jia, Bin; Yang, Jiangke; Yan, Yunjun

    2009-02-01

    In order to realize over-expression of Burkholderia cepacia (B. cepacia) lipase, we introduced the widely used T7 RAN polymerase expression system into B. cepacia G63 to over-express the lipase gene. By using PCR technique, we amplified the T7 RNA polymerase gene (T7 RNAP) from the BL21 (DE3) and cloned it into the suicide plasmid pJQ200SK. After that, we flanked T7 RNAP with two 500 bp homologous fragments and integrated it into the genomes of B. cepacia by tri-parental mating, so that T7 RNAP was under-controlled by lipase gene (lipA) promoter. Then, we cloned the lipA and its partner gene lipB into the vector pUCPCM and pBBR22b both or separately. Therefore, we got 7 expression plasmids pBBR22blipAB, pBBR22blipA, pUCPCMlipAB, pUCPCMlipA, pUCPCMdeltalipAlipB, pUCPCMdeltalipA, pUCPCMdeltalipB, and then electroporated them into B. cepacia containing T7 RNA. After shake flask culture, we found B. cepacia containing pUCPCMlipAB produced the most quantity of lipase, and lipase activity was up to 607.2 U/mg, 2.8-folds higher than that of the wild strain. Moreover, lipase activities of all engineering strains except the one containing pUCPCMdeltalipB were enhanced to some extent. The specific activities of wild type B. cepacia and B. cepacia containing pUCPCMlipAB were respectively 29 984 U/mg and 30 875 U/mg after ammonium sulfate precipitation and gel filtration chromatography. The T7 RNA polymerase expression system could effectively enhanced lipase expression in B. cepacia, and secretion signal PelB and ribosome-binding site may promote lipase expression in engineering strain. PMID:19459326

  18. Inoculation of Burkholderia cepacia and Gluconacetobacter diazotrophicus on phenotype and biomass of Triticum aestivum var. Nana-F2007 at 50% of nitrogen fertilizer

    Directory of Open Access Journals (Sweden)

    Jesús Jaime Hernández-Escareño

    2015-03-01

    Full Text Available Wheat (Triticum aestivum L consuming requires of nitrogen fertilizer (NF, as ammonium nitrate (NH4NO3, which one in excess causes lost soil productivity. An alternative to reduce and optimize NF to wheat is to inoculate with endophytic promoting growth bacteria (EPGB, as genus Burkholderia cepacia and Gluconacetobacter diazotrophicus able to improve radical uptake of NF, its suggesting by inducing synthesis of growth promoting vegetal substances (GPVS. The aim of this research was to evaluate the inoculation of Burkholderia cepacia and Gluconacetobacter diazotrophicus on phenology and biomass of T.aestivum at 50% dose of NF. A trial in greenhouse condition wasconducted inoculating seed T.aestivum´s with both EPGB by measuring its phenology: (PH plant height, (RL root length and biomass: total fresh weight (TFW and dry (TDW at seedling and flowering stages. Results showed a positive effect of B. cepacia in wheat on its TDW with 0.61g value statistically significant compared to 0.53g TDW of wheat used as relative control fed with NF 100% dose (RC. B. cepacia and G. diazotrophicus inoculated to wheat had a positive increased on its TDW with 4.23 g value statistically significant compared to 1.13 g TDW of wheat used as RC. Conclusion suggested that B. cepacia and G. diazotrophicus by synthetized GPVS had a positive effect on wheat growth at reduced dose of NF.

  19. Method for Regulated Expression of Single-Copy Efflux Pump Genes in a Surrogate Pseudomonas aeruginosa Strain: Identification of the BpeEF-OprC Chloramphenicol and Trimethoprim Efflux Pump of Burkholderia pseudomallei 1026b

    OpenAIRE

    Kumar, Ayush; Chua, Kim-Lee; Schweizer, Herbert P.

    2006-01-01

    Construction and integration of recombinant mini-Tn7 expression vectors into the chromosome of a surrogate, efflux-sensitized, and biosafe Pseudomonas aeruginosa host was validated as a generally applicable method for studies of uncharacterized bacterial efflux pumps. Using this method, the Burkholderia pseudomallei bpeEF-oprC operon was shown to encode a chloramphenicol and trimethoprim efflux pump.

  20. Phylogenomic Analysis Reveals an Asian Origin for African Burkholderia pseudomallei and Further Supports Melioidosis Endemicity in Africa.

    Science.gov (United States)

    Sarovich, Derek S; Garin, Benoit; De Smet, Birgit; Kaestli, Mirjam; Mayo, Mark; Vandamme, Peter; Jacobs, Jan; Lompo, Palpouguini; Tahita, Marc C; Tinto, Halidou; Djaomalaza, Innocente; Currie, Bart J; Price, Erin P

    2016-01-01

    Burkholderia pseudomallei, an environmental bacterium that causes the deadly disease melioidosis, is endemic in northern Australia and Southeast Asia. An increasing number of melioidosis cases are being reported in other tropical regions, including Africa and the Indian Ocean islands. B. pseudomallei first emerged in Australia, with subsequent rare dissemination event(s) to Southeast Asia; however, its dispersal to other regions is not yet well understood. We used large-scale comparative genomics to investigate the origins of three B. pseudomallei isolates from Madagascar and two from Burkina Faso. Phylogenomic reconstruction demonstrates that these African B. pseudomallei isolates group into a single novel clade that resides within the more ancestral Asian clade. Intriguingly, South American strains reside within the African clade, suggesting more recent dissemination from West Africa to the Americas. Anthropogenic factors likely assisted in B. pseudomallei dissemination to Africa, possibly during migration of the Austronesian peoples from Indonesian Borneo to Madagascar ~2,000 years ago, with subsequent genetic diversity driven by mutation and recombination. Our study provides new insights into global patterns of B. pseudomallei dissemination and adds to the growing body of evidence of melioidosis endemicity in Africa. Our findings have important implications for melioidosis diagnosis and management in Africa. IMPORTANCE Sporadic melioidosis cases have been reported in the African mainland and Indian Ocean islands, but until recently, these regions were not considered areas where B. pseudomallei is endemic. Given the high mortality rate of melioidosis, it is crucial that this disease be recognized and suspected in all regions of endemicity. Previous work has shown that B. pseudomallei originated in Australia, with subsequent introduction into Asia; however, the precise origin of B. pseudomallei in other tropical regions remains poorly understood. Using