WorldWideScience

Sample records for buried tunnel junction

  1. Magnetic tunnel junctions (MTJs)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal films separated by an insulating thin tunnel barrier. The theoretical and experimental results including junction conductance, magnetoresistance and their temperature and bias dependences are described.

  2. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-04-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  3. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  4. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  5. Electronic thermometry in tunable tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  6. Shot Noise in Magnetic Tunnel Junctions: Evidence for Sequential Tunneling

    OpenAIRE

    Guerrero, R.; Aliev, F. G.; Tserkovnyak, Y.; Santos, T. S.; Moodera, J.S.

    2006-01-01

    We report the experimental observation of sub-Poissonian shot noise in single magnetic tunnel junctions, indicating the importance of tunneling via impurity levels inside the tunnel barrier. For junctions with weak zero-bias anomaly in conductance, the Fano factor (normalized shot noise) depends on the magnetic configuration being enhanced for antiparallel alignment of the ferromagnetic electrodes. We propose a model of sequential tunneling through nonmagnetic and paramagnetic impurity levels...

  7. Soliton excitations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1982-01-01

    A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...

  8. delta-biased Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelet, V.;

    2010-01-01

    Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...

  9. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.;

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc biased...... at different points in the current-voltage characteristic. Both numerical calculations based on the Tien-Gordon theory and 70-GHz microwave experiments have confirmed the wide dynamic range (more than 15-dB attenuation for one stage) and the low insertion loss in the ''open'' state. The performance of a fully...... integrated submillimeter receiver circuit which comprises a flux-flow oscillator (FFO) as local oscillator, a superconducting variable attenuator, and a microwave SIS detector with tuned-out capacitance is also reported....

  10. Parameter Extraction of Rate Equations for Buried Tunnel Junction Vertical-cavity Surface-emitting Lasers%掩埋隧道结垂直面激光器速率方程参量提取

    Institute of Scientific and Technical Information of China (English)

    彭金花; 吴东升; 徐荃; 平兰兰

    2013-01-01

    In order to design and optimize high frequency performances of laser diodes, accurate extraction methods for the rate equation parameters are very important. A method for the rate equation parameter extraction for long-wavelength and high-bandwidth buried tunnel junction vertical-cavity surface-emitting lasers is presented. This method bases on the threshold current, output power, resonance frequency, damping factor and nonlinear effect of the gain compression factor under high bias currents. By fitting the chip frequency responses with different bias currents, resonance frequency and damping factor values can be obtained. Finally, by considering gain compression factor and nonlinear fitting resonance frequency and damping factor values under different currents, parameters of rate equation model can be extracted.%为了设计和优化高速激光二极管的高频特性,其速率方程模型参量的精确提取方法非常重要.本文针对新型长波长高带宽的掩埋隧道结垂直面激光器,给出一种速率方程模型参量提取方法.此方法是主要基于阈值电流、输出光功率、张弛振荡频率、阻尼因子和高偏置下增益压缩因子非线性效应等因素,根据已测量的不同偏置下芯片的小信号频率响应来拟合出方程中的张弛振荡频率和阻尼因子.通过考虑增益压缩因子,分别非线性拟合已提取的偏置光功率下的张弛振荡频率和阻尼因子,即可提取速率方程模型中的参量.

  11. Modelling of Dual-Junction Solar Cells including Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Abdelaziz Amine

    2013-01-01

    Full Text Available Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The purpose of this work is to contribute to the investigation of the tunnel electrical resistance of such a multi-junction cell through the analysis of the current-voltage (J-V characteristics under illumination. Our approach is based on an equivalent circuit model of a diode for each subcell. We examine the effect of tunnel resistance on the performance of a multi-junction cell using minimization of the least squares technique.

  12. Particle detection with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    At the Institute of Experimental Nuclear Physics of the University of Karlsruhe (TH) and at the Institute for Nuclear Physics of the Kernforschungszentrum Karlsruhe we started to produce superconducting tunnel junctions and to investigate them for their suitability as particle detectors. The required facilities for the production of tunnel junctions and the experimental equipments to carry out experiments with them were erected. Experiments are presented in which radiations of different kinds of particles could successfully be measured with the tunnel junctions produced. At first we succeeded in detectioning light pulses of a laser. In experiments with alpha-particles of an energy of 4,6 MeV the alpha-particles were detected with an energy resolution of 1,1%, and it was shown in specific experiments that the phonons originating from the deposition of energy by an alpha-particle in the substrate can be detected with superconducting tunnel junctions at the surface. On that occasion it turned out that the signals could be separated with respect to their point of origin (tunnel junction, contact leads, substrate). Finally X-rays with an energy of 6 keV were detected with an energy resolution of 8% in a test arrangement that makes use of the so-called trapping effect to read out a larger absorber volume. (orig.)

  13. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer;

    2015-01-01

    relies on four-point probe measurements performed with a range of different probe pitches and was originally developed for infinite samples. Using the method of images, we derive a modified CIPT model, which compensates for the insulating boundaries of a finite rectangular sample geometry. We measure...... on square tunnel junction pads with varying sizes and analyze the measured data using both the original and the modified CIPT model. Thus, we determine in which sample size range the modified CIPT model is needed to ensure validity of the extracted sample parameters, RA and TMR. In addition, measurements......We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...

  14. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  15. Graphene-based magnetic tunnel junctions

    Science.gov (United States)

    Cobas, Enrique

    2013-03-01

    Graphene's in-plane transport has been widely researched and has yielded extraordinary carrier mobilities of 105 cm2/Vs and spin diffusion lengths of exceeding 100 μm. These properties bode well for graphene in future electronics and spintronics technologies. Its out-of-plane transport has been far less studied, although its parent material, graphite, shows a large conductance anisotropy. Recent calculations show graphene's interaction with close-packed ferromagnetic metal surfaces should produce highly spin-polarized transport out-of-plane, an enabling breakthrough for spintronics technology. In this work, we fabricate and measure FM/graphene/FM magnetic tunnel junctions using CVD-grown single-layer graphene. The resulting juctions show non-linear current-voltage characteristics and a very weak temperature dependence consistent with charge tunneling transport. Furthermore, we study spin transport across the junction as a function of bias voltage and temperature. The tunneling magnetoresistance (TMR) peaks at two percent for single-layer graphene junctions and exhibits the expected bias asymmetry and a temperature dependence that fits well with established spin-polarized tunneling models. Results of mutli-layer graphene tunnel junctions will also be discussed.

  16. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale.

    Science.gov (United States)

    Gruverman, A; Wu, D; Lu, H; Wang, Y; Jang, H W; Folkman, C M; Zhuravlev, M Ye; Felker, D; Rzchowski, M; Eom, C-B; Tsymbal, E Y

    2009-10-01

    Using a set of scanning probe microscopy techniques, we demonstrate the reproducible tunneling electroresistance effect on nanometer-thick epitaxial BaTiO(3) single-crystalline thin films on SrRuO(3) bottom electrodes. Correlation between ferroelectric and electronic transport properties is established by direct nanoscale visualization and control of polarization and tunneling current. The obtained results show a change in resistance by about 2 orders of magnitude upon polarization reversal on a lateral scale of 20 nm at room temperature. These results are promising for employing ferroelectric tunnel junctions in nonvolatile memory and logic devices. PMID:19697939

  17. Quasiparticle dynamics in superconducting tunnel junctions

    NARCIS (Netherlands)

    Kozorezov, A.G.; Brammertz, G.; Hijmering, R.A.; Wigmore, J.K.; Peacock, A.; Martin, B.; Verhoeve, P.; Golubov, A.A.; Rogalla, H.

    2006-01-01

    Superconducting Tunnel Junctions (STJs) used as single photon detectors possess extreme sensitivity and excellent resolving power. However, like many other cryogenic detectors they operate under extremely non-equilibrium conditions. In order to understand the physics of the non-equilibrium, non-stat

  18. NbN tunnel junctions

    International Nuclear Information System (INIS)

    All-niobium nitride Josephon junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled dry reactive ion etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbN counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 2500C

  19. Modelling of Dual-Junction Solar Cells including Tunnel Junction

    OpenAIRE

    Abdelaziz Amine; Yamina Mir; Mimoun Zazoui

    2013-01-01

    Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The p...

  20. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al2O3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ0. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  1. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  2. Interface composition in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Schad, R.; Mayen, K.; McCord, J.; Allen, D.; Yang, D.; Tondra, M.; Wang, D.

    2001-06-01

    The magnetoresistance of magnetic tunnel junctions critically depends on the exact composition at the interfaces. As such the completeness of the oxidation process of the Al layer (used to produce Al{sub 2}O{sub 3}-based tunnel junctions) plays an essential role in the magnetoresistance. We studied the chemical properties of ferromagnet/Al{sub 2}O{sub 3} interfaces as a function of original Al layer thickness. We have studied the concentrations of elementary and oxidized Al, Co, Ni, and Fe for varying roughness of the ferromagnetic layer. The oxidation process critically depends on the roughness of the underlying ferromagnetic (FM) layer. Al layers grown onto smooth FM layers oxidize homogeneously whereas Al layers grown on rough FM layers show a complicated oxidation behavior. Within the sensitivity of the analysis technique, we did not observe oxidation of the ferromagnetic layers, even for the overoxidized part of the samples. {copyright} 2001 American Institute of Physics.

  3. Interface composition in magnetic tunnel junctions

    Science.gov (United States)

    Schad, R.; Mayen, K.; McCord, J.; Allen, D.; Yang, D.; Tondra, M.; Wang, D.

    2001-06-01

    The magnetoresistance of magnetic tunnel junctions critically depends on the exact composition at the interfaces. As such the completeness of the oxidation process of the Al layer (used to produce Al2O3-based tunnel junctions) plays an essential role in the magnetoresistance. We studied the chemical properties of ferromagnet/Al2O3 interfaces as a function of original Al layer thickness. We have studied the concentrations of elementary and oxidized Al, Co, Ni, and Fe for varying roughness of the ferromagnetic layer. The oxidation process critically depends on the roughness of the underlying ferromagnetic (FM) layer. Al layers grown onto smooth FM layers oxidize homogeneously whereas Al layers grown on rough FM layers show a complicated oxidation behavior. Within the sensitivity of the analysis technique, we did not observe oxidation of the ferromagnetic layers, even for the overoxidized part of the samples.

  4. Superconducting Tunnel Junction Arrays for UV Photon Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative method is described for the fabrication of superconducting tunnel junction (STJ) detector arrays offering true "three dimensional" imaging throughout...

  5. Quantum Tunneling Current in Nanoscale Plasmonic Junctions

    Science.gov (United States)

    Zhang, Peng; Lau, Y. Y.; Gilgenbach, R. M.

    2014-10-01

    Recently, electron tunneling between plasmonic resonators is found to support quantum plasmon resonances, which may introduce new regimes in nano-optoelectronics and nonlinear optics. This revelation is of substantial interest to the fundamental problem of electron transport in nano-scale, for example, in a metal-insulator-metal junction (MIM), which has been continuously studied for decades. Here, we present a self-consistent model of electron transport in a nano-scale MIM, by solving the coupled Schrödinger and Poisson equations. The effects of space charge, exchange-correlation, anode emission, and material properties of the electrodes and insulator are examined in detail. The self-consistent calculations are compared with the widely used Simmons formula. Transition from the direct tunneling regime to the space-charge-limited regime is demonstrated. This work was supported by AFOSR.

  6. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  7. Spin-dependent tunnelling in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Tsymbal, Evgeny Y [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE (United States); Mryasov, Oleg N [Seagate Research, 1251 Waterfront Place, Pittsburgh, PA (United States); LeClair, Patrick R [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2003-02-05

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)

  8. Functional ferroelectric tunnel junctions on silicon

    Science.gov (United States)

    Guo, Rui; Wang, Zhe; Zeng, Shengwei; Han, Kun; Huang, Lisen; Schlom, Darrell G.; Venkatesan, T.; Ariando; Chen, Jingsheng

    2015-07-01

    The quest for solid state non-volatility memory devices on silicon with high storage density, high speed, low power consumption has attracted intense research on new materials and novel device architectures. Although flash memory dominates in the non-volatile memory market currently, it has drawbacks, such as low operation speed, and limited cycle endurance, which prevents it from becoming the “universal memory”. In this report, we demonstrate ferroelectric tunnel junctions (Pt/BaTiO3/La0.67Sr0.33MnO3) epitaxially grown on silicon substrates. X-ray diffraction spectra and high resolution transmission electron microscope images prove the high epitaxial quality of the single crystal perovskite films grown on silicon. Furthermore, the write speed, data retention and fatigue properties of the device compare favorably with flash memories. The results prove that the silicon-based ferroelectric tunnel junction is a very promising candidate for application in future non-volatile memories.

  9. Parametric excitation of plasma oscillations in a Josephson tunnel junction

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig;

    1975-01-01

    Experimental evidence for subharmonic parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson−tunnel junction biased in the zero−voltage state to a finite...

  10. MgB2 tunnel junctions and SQUIDs

    NARCIS (Netherlands)

    Brinkman, A.; Rowell, J.M.

    2007-01-01

    Recent advances in the realization and understanding of MgB2 tunnel junctions and SQUIDs are surveyed. High quality MgB2 junctions with suitable tunnel barriers have been realized based on both oriented and epitaxial thin MgB2 films. Multiband transport properties, such as the existence of two energ

  11. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper;

    2007-01-01

    Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...... demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse...... magnetic field rather than an in-plane field. The conditions under which this occurs are discussed....

  12. Superpoissonian shot noise in organic magnetic tunnel junctions

    OpenAIRE

    Cascales, Juan Pedro; Hong, Jhen-Yong; Martinez, Isidoro; Lin, Minn-Tsong; Szczepanski, Tomasz; Dugaev, Vitalii K.; Barnas, Jozef; Aliev, Farkad G.

    2015-01-01

    Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here we investigate conductance and shot noise in magnetic tunnel junctions with PTCDA barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10 and 40\\%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5-2 times the maximum value...

  13. Superpoissonian shot noise in organic magnetic tunnel junctions

    Science.gov (United States)

    Cascales, Juan Pedro; Hong, Jhen-Yong; Martinez, Isidoro; Lin, Minn-Tsong; Szczepański, Tomasz; Dugaev, Vitalii K.; Barnaś, Józef; Aliev, Farkhad G.

    2014-12-01

    Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here, we investigate conductance and shot noise in magnetic tunnel junctions with 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10% and 40%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5-2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. We explain our main findings in terms of a model which includes tunneling through a two level (or multilevel) system, originated from interfacial bonds of the PTCDA molecules. Our results suggest that interfaces play an important role in the control of shot noise when electrons tunnel through organic barriers.

  14. Superpoissonian shot noise in organic magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Cascales, Juan Pedro; Martinez, Isidoro; Aliev, Farkhad G., E-mail: farkhad.aliev@uam.es [Dpto. Fisica Materia Condensada C3, Instituto Nicolas Cabrera (INC), Condensed Matter Physics Institute (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049 (Spain); Hong, Jhen-Yong; Lin, Minn-Tsong, E-mail: mtlin@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Szczepański, Tomasz; Dugaev, Vitalii K. [Department of Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów (Poland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland and Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2014-12-08

    Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here, we investigate conductance and shot noise in magnetic tunnel junctions with 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10% and 40%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5–2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. We explain our main findings in terms of a model which includes tunneling through a two level (or multilevel) system, originated from interfacial bonds of the PTCDA molecules. Our results suggest that interfaces play an important role in the control of shot noise when electrons tunnel through organic barriers.

  15. Tantalum oxide barrier in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Guanghua Yu; Tingting Ren; Wei Ji; Jiao Teng; Fengwu Zhu

    2004-01-01

    Tantalum as an insulating barrier can take the place of Al in magnetic tunnel junctions (MTJs). Ta barriers in MTJs were fabricated by natural oxidation. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation states of Ta barrier.The experimental results show that the chemical state of tantalum is pure Ta5+ and the thickness of the oxide is 1.3 nm. The unoxidized Ta in the barrier may chemically reacted with NiFe layer which is usually used in MTJs to form an intermetallic compound,NiTa2. A magnetic "dead layer" could be produced in the NiFe/Ta interface. The "dead layer" is likely to influence the spinning electron transport and the magnetoresistance effect.

  16. Ferroelectric tunnel junctions with graphene electrodes.

    Science.gov (United States)

    Lu, H; Lipatov, A; Ryu, S; Kim, D J; Lee, H; Zhuravlev, M Y; Eom, C B; Tsymbal, E Y; Sinitskii, A; Gruverman, A

    2014-01-01

    Polarization-driven resistive switching in ferroelectric tunnel junctions (FTJs)--structures composed of two electrodes separated by an ultrathin ferroelectric barrier--offers new physics and materials functionalities, as well as exciting opportunities for the next generation of non-volatile memories and logic devices. Performance of FTJs is highly sensitive to the electrical boundary conditions, which can be controlled by electrode material and/or interface engineering. Here, we demonstrate the use of graphene as electrodes in FTJs that allows control of interface properties for significant enhancement of device performance. Ferroelectric polarization stability and resistive switching are strongly affected by a molecular layer at the graphene/BaTiO3 interface. For the FTJ with the interfacial ammonia layer we find an enhanced tunnelling electroresistance (TER) effect of 6 × 10(5)%. The obtained results demonstrate a new approach based on using graphene electrodes for interface-facilitated polarization stability and enhancement of the TER effect, which can be exploited in the FTJ-based devices. PMID:25417720

  17. Terahertz Detection with Twin Superconductor-Insulator-Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Ming-Jye; SHI Sheng-Cai; Hiroshi Mat-suo

    2007-01-01

    Terahertz detection with twin superconductor-insulator-superconductor (SIS) tunnel junctions, which are connected in parallel via an inductive thin-film superconducting microstrip line, is mainly studied. Firstly, we investigate the direct-detection response of a superconducting twin-junction device by means of a Fourier transform spectrometer. Secondly, we construct a direct-detection model of twin SIS tunnel junctions. The superconducting twin-junction device is then simulated in terms of the constructed model. The simulation result is found to be in good agreement with the measured one. In addition, we observe that the direct-detection response of the device is consistent with the noise temperature behaviour.

  18. An Effective Method for Borehole Imaging of Buried Tunnels

    Directory of Open Access Journals (Sweden)

    Loreto Di Donato

    2012-01-01

    Full Text Available Detection and imaging of buried tunnels is a challenging problem which is relevant to both geophysical surveys and security monitoring. To comply with the need of exploring large portions of the underground, electromagnetic measurements carried out under a borehole configuration are usually exploited. Since this requires to drill holes in the soil wherein the transmitting and receiving antennas have to be positioned, low complexity of the involved apparatus is important. On the other hand, to effectively image the surveyed area, there is the need for adopting efficient and reliable imaging methods. To address these issues, in this paper we investigate the feasibility of the linear sampling method (LSM, as this inverse scattering method is capable to provide almost real-time results even when 3D images of very large domains are built, while not requiring approximations of the underlying physics. In particular, the results of the reported numerical analysis show that the LSM is capable of performing the required imaging task while using a quite simple measurement configuration consisting of two boreholes and a few number of multiview-multistatic acquisitions.

  19. High temperature coefficient of resistance for a ferroelectric tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaolin; Tian, Bobo; Liu, Bolu; Wang, Xudong; Huang, Hai [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yu Tian Road 500, Shanghai 200083 (China); University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing 100049 (China); Wang, Jianlu, E-mail: jlwang@mail.sitp.ac.cn, E-mail: xjmeng@mail.sitp.ac.cn; Zou, Yuhong; Sun, Shuo; Lin, Tie; Han, Li; Sun, Jinglan; Meng, Xiangjian, E-mail: jlwang@mail.sitp.ac.cn, E-mail: xjmeng@mail.sitp.ac.cn; Chu, Junhao [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yu Tian Road 500, Shanghai 200083 (China)

    2015-08-10

    An infrared detector is proposed that is based on a ferroelectric tunnel junction (FTJ) working under bolometer-like principles. Electron tunneling, either direct or indirect, through the ferroelectric barrier depends on the temperature of the devices. During tunneling, infrared radiation alters the polarization of the ferroelectric film via pyroelectricity, resulting in a change in the barrier height of the tunnel junction. A high temperature coefficient of resistance of up to −3.86% was observed at room temperature. These results show that the FTJ structure has potential to be adapted for use in uncooled infrared detectors.

  20. Magnetothermopower and magnon-assisted transport in ferromagnetic tunnel junctions

    OpenAIRE

    McCann, Edward; Fal'ko, Vladimir I.

    2002-01-01

    We present a model of the thermopower in a mesoscopic tunnel junction between two ferromagnetic metals based upon magnon-assisted tunneling processes. In our model, the thermopower is generated in the course of thermal equilibration between two baths of magnons, mediated by electrons. We predict a particularly large thermopower effect in the case of a junction between two half-metallic ferromagnets with antiparallel polarizations, $S_{AP} \\sim - (k_B/e)$, in contrast to $S_{P} \\approx 0$ for ...

  1. Parallel Quantum Circuit in a Tunnel Junction.

    Science.gov (United States)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-01-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N). PMID:27453262

  2. Parallel Quantum Circuit in a Tunnel Junction

    Science.gov (United States)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).

  3. Parallel Quantum Circuit in a Tunnel Junction.

    Science.gov (United States)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-25

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).

  4. Coulomb blockade in turnstile with multiple tunnel junctions

    CERN Document Server

    Lee, S C; Kang, D S; Kim, D C; Choi, C K; Ryu, J Y

    1999-01-01

    On the basis of the analytic solutions to the electrostatic problem of the multi-grated-small-junction systems, the stable domain for the Coulomb blockade of turnstile with multiple tunnel junctions at zero temperature has been analyzed as a function of the number of tunnel junction, the ratio of the gate capacitance to the junction capacitance, and the asymmetric factor. Our results show that domains form various shaped regions according to the asymmetric factor and their size depends on the number of junction and the ratio of the gate capacitance to the junction capacitance. In particular, it is shown that electrons can be transferred in positive and/or negative bias voltage depending on the asymmetric factor when an appropriate gate cycle is applied. Thus, the asymmetric factor plays an important role in determining the turnstile operation.

  5. Spatial dependence of plasma oscillations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Holst, Thorsten; Hansen, Jørn Bindslev

    1991-01-01

    We report on direct measurements of the plasma oscillations in Josephson tunnel junctions of various spatial dimensions. The effect of the spatial variation of the Cooper-pair phase difference (the Josephson phase) on the dynamics of the junction was investigated by application of a static magnet...

  6. Tunnel magnetoresistance in Self-Assembled Monolayers Based Tunnel Junctions

    Science.gov (United States)

    Mattana, Richard; Barraud, Clément; Tatay, Sergio; Galbiati, Marta; Seneor, Pierre; Bouzehouane, Karim; Jacquet, Eric; Deranlot, Cyrile; Fert, Albert; Petroff, Frédéric

    2012-02-01

    Organic/molecular spintronics is a rising research field at the frontier between spintronics and organic chemistry. Organic molecule and semiconductors were first seen as promising for spintronics devices due to their expected long spin lifetime. But an exciting challenge has also been to find opportunities arising from chemistry to develop new spintronics functionalities. It was shown that the molecular structure and the ferromagnetic metal/molecule hybridization can strongly influence interfacial spin properties going from spin polarization enhancement to its sign control in spintronics devices. In this scenario, while scarcely studied, self-assembled monolayers (SAMs) are expected to become perfect toy barriers to further test these tailoring properties in molecular magnetic tunnel junctions (MTJs). Due to its very high spin polarization and air stability LSMO has positioned itself as the electrode of choice in most of the organic spintronics devices. We will present a missing building block for molecular spintronics tailoring: the grafting and film characterization of organic monofunctionalized long alkane chains over LSMO. We have obtained 35% of magnetoresistance in LSMO/SAMs/Co MTJs. We will discuss the unusual behaviour of the bias voltage dependence of the TMR.

  7. Tunneling into high-Tc superconductors: methods of fabricating tunnel junctions

    International Nuclear Information System (INIS)

    In the preprint we shell review some experimental results on electron tunneling into high-Tc superconductors. Pros and cons of various methods of fabricating the tunnel junctions with metal oxide compound as a base electrode are discussed. The data obtained by different groups are examined in terms of the tunneling criterion. 66 refs.; 13 figs

  8. Shot noise in magnetic tunnel junctions from first principles

    Science.gov (United States)

    Liu, Kai; Xia, Ke; Bauer, Gerrit E. W.

    2012-07-01

    We compute the shot noise in ballistic and disordered Fe|MgO|Fe tunnel junctions by a wave-function-matching method. For tunnel barriers with ≲5 atomic layers we find a suppression of the Fano factor as a function of the magnetic configuration. In the antiparallel configuration the shot noise is full up to a threshold bias that indicates the onset of resonant tunneling. We find excellent agreement with recent experiments when interface disorder is taken into account.

  9. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported......A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...

  10. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    International Nuclear Information System (INIS)

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon

  11. Spin-polarized tunneling in MgO-based tunnel junctions with superconducting electrodes

    Science.gov (United States)

    Schebaum, Oliver; Fabretti, Savio; Moodera, Jagadeesh S.; Thomas, Andy

    2012-03-01

    We prepared magnetic tunnel junctions with one ferromagnetic and one superconducting Al-Si electrode. Pure cobalt electrodes were compared with a Co-Fe-B alloy and the Heusler compound Co2FeAl. The polarization of the tunneling electrons was determined using the Maki-Fulde model and is discussed along with the spin-orbit scattering and the total pair-breaking parameters. The junctions were post-annealed at different temperatures to investigate the symmetry filtering mechanism responsible for the giant tunneling magnetoresistance ratios in Co-Fe-B/MgO/Co-Fe-B junctions.

  12. New CMOS compatible super-junction LDMOST with n-type buried layer

    Institute of Scientific and Technical Information of China (English)

    Duan Bao-Xing; Zhang Bo; Li Zhao-Ji

    2007-01-01

    A new super-junction lateral double diffused MOSFET (LDMOST) structure is designed with n-type charge compensation layer embedded in the p--substrate near the drain to suppress substrate-assisted depletion effect that results from the compensating charges imbalance between the pillars in the n-type buried layer. A high electric field peak is introduced in the surface by the pn junction between the p--substrate and n-type buried layer, which given rise to a more uniform surface electric field distribution by modulation effect. The effect of reduced bulk field (REBULF)is introduced to improve the vertical breakdown voltage by reducing the high bulk electric field around the drain. The new structure features high breakdown voltage, low on-resistance and charges balance in the drift region due to n-type buried layer.

  13. Coherent diffraction of thermal currents in long Josephson tunnel junctions

    Science.gov (United States)

    Guarcello, Claudio; Giazotto, Francesco; Solinas, Paolo

    2016-08-01

    We discuss heat transport in thermally-biased long Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat current through the junction displays coherent diffraction. Thermal transport is analyzed as a function of both the length and the damping of the junction, highlighting deviations from the standard "Fraunhofer" pattern characteristic of short junctions. The heat current diffraction patterns show features strongly related to the formation and penetration of Josephson vortices, i.e., solitons. We show that a dynamical treatment of the system is crucial for the realistic description of the Josephson junction, and it leads to peculiar results. In fact, hysteretic behaviors in the diffraction patterns when the field is swept up and down are observed, corresponding to the trapping of vortices in the junction.

  14. GaInN-based tunnel junctions with graded layers

    Science.gov (United States)

    Takasuka, Daiki; Akatsuka, Yasuto; Ino, Masataka; Koide, Norikatsu; Takeuchi, Tetsuya; Iwaya, Motoaki; Kamiyama, Satoshi; Akasaki, Isamu

    2016-08-01

    We demonstrated low-resistivity GaInN-based tunnel junctions using graded GaInN layers. A systematic investigation of the samples grown by metalorganic vapor phase epitaxy revealed that a tunnel junction consisting of a 4 nm both-sides graded GaInN layer (Mg: 1 × 1020 cm‑3) and a 2 nm GaN layer (Si: 7 × 1020 cm‑3) showed the lowest specific series resistance of 2.3 × 10‑4 Ω cm2 at 3 kA/cm2 in our experiment. The InN mole fraction in the 4 nm both-sides graded GaInN layer was changed from 0 through 0.4 to 0. The obtained resistance is comparable to those of standard p-contacts with Ni/Au and MBE-grown tunnel junctions.

  15. Construction Technique of Long-Span Shallow-Buried Tunnel Considering the Optimal Sequence of Pilot-Tunnel Excavation

    Directory of Open Access Journals (Sweden)

    Bao Jin

    2015-01-01

    Full Text Available Construction technique considering the optimal sequence of pilot-tunnel excavation was investigated in order to ensure the safety of construction process of long-span shallow-buried tunnel. Firstly, optimal comparisons of the effect of different sequence of pilot-tunnel excavation on the ground settlement were implemented by the numerical analysis. Secondly, an optimal construction method was determined and applied to the construction of a practical tunnel. Some key issues and procedure of the selected construction method were described in detail. Finally, the numerical modeling and calculation of the tunnel construction process were conducted, and the effectiveness of these simulations was demonstrated by using the measured data of the practical tunnel.

  16. Millikelvin cooling by heavy-fermion-based tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Prest, Martin; Min, Gao, E-mail: Min@cardiff.ac.uk [School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Whall, Terry [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-12-28

    This paper addresses a high-performance electron-tunneling cooler based on a novel heavy-fermion/insulator/superconductor junction for millikelvin cooling applications. We show that the cooling performance of an electronic tunneling refrigerator could be significantly improved using a heavy-fermion metal to replace the normal metal in a conventional normal metal/insulator/superconductor junction. The calculation, based on typical parameters, indicates that, for a bath temperature of 300 mK, the minimum cooling temperature of an electron tunneling refrigerator is reduced from around 170 mK to below 50 mK if a heavy-fermion metal is employed in place of the normal metal. The improved cooling is attributed to an enhancement in electron tunneling due to the existence of a resonant density of states at the Fermi level.

  17. Magnetostatic effects on switching in small magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bapna, Mukund; Piotrowski, Stephan K.; Oberdick, Samuel D.; Majetich, Sara A., E-mail: sara@cmu.edu [Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Li, Mingen; Chien, C.-L. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2016-01-11

    Perpendicular CoFeB/MgO/CoFeB magnetic tunnel junctions with diameters under 100 nm are investigated by conductive atomic force microscopy. Minor loops of the tunnel magnetoresistance as a function of applied magnetic field reveal the hysteresis of the soft layer and an offset due to the magnetostatic field of the hard layer. Within the hysteretic region, telegraph noise is observed in the tunnel current. Simulations show that in this range, the net magnetic field in the soft layer is spatially inhomogeneous, and that antiparallel to parallel switching tends to start near the edge, while parallel to antiparallel reversal favors nucleation in the interior of the soft layer. As the diameter of the tunnel junction is decreased, the average magnitude of the magnetostatic field increases, but the spatial inhomogeneity across the soft layer is reduced.

  18. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    Science.gov (United States)

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  19. Shot noise in magnetic double-barrier tunnel junctions

    OpenAIRE

    Szczepański, T; Dugaev, V. K.; Barnaå, J.; Cascales, J. P.; Aliev, F. G.

    2013-01-01

    We calculate shot noise and the corresponding Fano factors in magnetic double-barrier tunnel junctions. Two situations are analyzed: (i) the central metallic layer is nonmagnetic while the external ones are ferromagnetic, and (ii) all of the metallic layers are ferromagnetic. In the latter case, the number of various magnetic configurations of the junctions is larger, which improves the functionality of such devices. The corresponding shot noise and Fano factor are shown to depend on the magn...

  20. Prism-coupled light emission from tunnel junctions

    Science.gov (United States)

    Ushioda, S.; Rutledge, J. E.; Pierce, R. M.

    1985-01-01

    Completely p-polarized light emission has been observed from smooth Al-AlO(x)-Au tunnel junctions placed on a prism coupler. The angle and polarization dependence demonstrate unambiguously that the emitted light is radiated by the fast-mode surface plasmon polariton. The emission spectra suggest that the dominant process for the excitation of the fast mode is through conversion of the slow mode to the fast mode mediated by residual roughness on the junction surface.

  1. Magnetic tunnel junction based spintronic logic devices

    Science.gov (United States)

    Lyle, Andrew Paul

    The International Technology Roadmap for Semiconductors (ITRS) predicts that complimentary metal oxide semiconductor (CMOS) based technologies will hit their last generation on or near the 16 nm node, which we expect to reach by the year 2025. Thus future advances in computational power will not be realized from ever-shrinking device sizes, but rather by 'outside the box' designs and new physics, including molecular or DNA based computation, organics, magnonics, or spintronic. This dissertation investigates magnetic logic devices for post-CMOS computation. Three different architectures were studied, each relying on a different magnetic mechanism to compute logic functions. Each design has it benefits and challenges that must be overcome. This dissertation focuses on pushing each design from the drawing board to a realistic logic technology. The first logic architecture is based on electrically connected magnetic tunnel junctions (MTJs) that allow direct communication between elements without intermediate sensing amplifiers. Two and three input logic gates, which consist of two and three MTJs connected in parallel, respectively were fabricated and are compared. The direct communication is realized by electrically connecting the output in series with the input and applying voltage across the series connections. The logic gates rely on the fact that a change in resistance at the input modulates the voltage that is needed to supply the critical current for spin transfer torque switching the output. The change in resistance at the input resulted in a voltage margin of 50--200 mV and 250--300 mV for the closest input states for the three and two input designs, respectively. The two input logic gate realizes the AND, NAND, NOR, and OR logic functions. The three input logic function realizes the Majority, AND, NAND, NOR, and OR logic operations. The second logic architecture utilizes magnetostatically coupled nanomagnets to compute logic functions, which is the basis of

  2. Dependence of transport properties in tunnel junction on boron doping

    Energy Technology Data Exchange (ETDEWEB)

    Shi, M.J.; Zeng, X.B.; Liu, S.Y.; Peng, W.B; Xiao, H.B; Liao, X.B.; Wang, Z.G.; Kong, G.L. [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2010-04-15

    Boron-doped hydrogenated silicon films with different gaseous doping ratio (B{sub 2}H{sub 6}/SiH{sub 4}) were fabricated as recombination p layers in tunnel junctions. The measurements of I-V characteristics of the junctions and transparency spectra of p layer indicated that the best gaseous doping ratio of the recombination layer is 0.04, which is correlated to the degradation of short range order (SRO) in the inserted p thin film. The junction with such recombination layer has small resistance, near ohmic contact. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Flicker (1/f) noise in tunnel junction DC SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Koch, R.H.; Clarke, J.; Goubau, W.M.; Martinis, J.M.; Pegrum, C.M.; Van Harlingen, D.J.

    1983-04-01

    We have measured the spectral density of the 1/f voltage noise in current-biased resistively shunted Josephson tunnel junctions and dc SQUIDs. A theory in which fluctuations in the temperature give rise to fluctuations in the critical current and hence in the voltage predicts the magnitude of the noise quite accurately for junctions with areas of about 2 x 10/sup 4/ ..mu..m/sup 2/, but significantly overestimates the noise for junctions with areas of about 6 ..mu..m/sup 2/. DC SQUIDs fabricated from these two types of junctions exhibit substantially more 1/f voltage noise than would be predicted from a model in which the noise arises from critical current fluctuations in the junctions. This result was confirmed by an experiment involving two different bias current and flux modulation schemes, which demonstrated that the predominant 1/f voltage noise arises not from critical current fluctuations, but from some unknown source that can be regarded as an apparent 1/f flux noise. Measurements on five different configurations of dc SQUIDs fabricated with thin-film tunnel junctions and with widely varying areas, inductances, and junction capacitances show that the spectral density of the 1/f equivalent flux noise is roughtly constant, within a factor of three of (10/sup -10//f)phi/sup 2//sub 0/Hz/sup -1/. It is emphasized that 1/f flux noise may not be the predominant source of 1/f noise in SQUIDS fabricated with other technologies.

  4. Direct detection at submillimetre wavelengths using superconducting tunnel junctions

    NARCIS (Netherlands)

    Withington, S; Isaak, KG; Kovtonyuk, SA; Panhuyzen, RA; Klapwijk, TM

    1995-01-01

    Superconducting tunnel-junction direct detectors are considered in some detail. For frequencies below twice that of the gap there is some bias voltage for which the input impedance is real, the responsivity quantum limited, and the dynamic range high. A susperconducting detector saturates for two re

  5. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  6. Multiband model for tunneling in MgB2 junctions

    NARCIS (Netherlands)

    Brinkman, A.; Golubov, A.A.; Rogalla, H.; Dolgov, O.V.; Kortus, J.; Kong, Y.; Jepsen, O.; Andersen, O.K.

    2002-01-01

    A theoretical model for quasiparticle and Josephson tunneling in multiband superconductors is developed and applied to MgB2-based junctions. The gap functions in different bands in MgB2 are obtained from an extended Eliashberg formalism, using the results of band structure calculations. The temperat

  7. Tunnel junction based memristors as artificial synapses

    Directory of Open Access Journals (Sweden)

    Andy eThomas

    2015-07-01

    Full Text Available We prepared magnesia, tantalum oxide and barium titanate based junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices towards their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms.

  8. Tunnel junctions for InP-on-Si solar cells

    Science.gov (United States)

    Keavney, C.; Vernon, S.; Haven, V.

    1991-01-01

    Growing, by metalorganic chemical vapor deposition, a tunnel junction is described, which makes possible and ohmic back contact in an n-on-p InP solar cell on a silicon substrate. The junction between heavily doped layers of p-type InGaAs and n-type InP shows resistance low enough not to affect the performance of these cells. InP solar cells made on n-type Si substrates with this structure were measured with an efficiency of 9.9 percent. Controls using p-type GaAs substrates showed no significant difference in cell performance, indicating that the resistance associated with the tunnel junction is less than about 0.1 ohm/sq cm.

  9. Fabrication of High-Quality Niobium Superconducting Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    XU Qin-Yin; CAO Chun-Hai; LI Meng-Yue; JIANG Yi; ZHA Shi-Tong; KANG Lin; XU Wei-Wei; CHEN Jian; WU Pei-Heng

    2011-01-01

    @@ For high-quality superconducting tunnel junctions(STJS), it is necessary to reduce leakage current as much as possible.We describe the fabrication of niobium STJs using the selective niobium(Nb) etching process and various ways to minimize the leakage current.The experiment shows that the leakage current mainly comes from shorts in the tunnel barrier layer rather than those around the junction edges.Through systematic analysis of the thin film stress, surface morphology and modified junction structures, we fabricate high-quality Nb STJs with a gap voltage of 2.8 mV and a leakage current at 1 m V as low as 8.1 % and 0.023% at 4.2K and 0.3 K, respectively.

  10. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    Science.gov (United States)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  11. In situ experiments on width and evolution characteristics of excavation damaged zone in deeply buried tunnels

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The seven long tunnels of Jinping II hydropower station are deeply buried.The width and evolution characteristics of excavation damaged zone(EDZ) are the key problem to the design of tunnels excavation and supports.In order to study this problem,several specific experimental tunnels with different overburden and geometric sizes were excavated at this site.Digital borehole camera,sliding micrometer,cross-hole acoustic wave equipment and acoustic emission apparatus were adopted.This paper introduced the comprehensive in situ experimental methods through pre-installed facilities and pre-drilled boreholes.Typical properties of the surrounding rock mass,including cracks,deformation,elastic wave and micro fractures,were measured during the whole process of the tunnel excavation.The width and characteristics of formation and evolution of tunnels EDZ were analyzed under different construction methods involving of TBM and drilling and blasting,the test tunnels were excavated by full-face or two benches.The relationships between EDZ and tunnel geometry sizes,overburden and excavation method were described as well.The results will not only contribute a great deal to the analysis of rock mass behavior in deeply buried rock mass,but also provide direct data for support design and rockburst prediction.

  12. Resonant inelastic tunneling in molecular junctions

    OpenAIRE

    Galperin, Michael; Nitzan, Abraham; Ratner, Mark A.

    2005-01-01

    Within a phonon-assisted resonance level model we develop a self-consistent procedure for calculating electron transport currents in molecular junctions with intermediate to strong electron-phonon interaction. The scheme takes into account the mutual influence of the electron and phonon subsystems. It is based on the 2nd order cumulant expansion, used to express the correlation function of the phonon shift generator in terms of the phonon momentum Green function. Equation of motion (EOM) meth...

  13. Fabrication and tunneling properties of niobium/lead Josephson junctions

    International Nuclear Information System (INIS)

    High quality Josephson tunneling junctions were fabricated by the process of electron beam evaporation of the Nb-base electrode. Thermal oxidation of Nb coated and uncoated surfaces was used in order to grow the oxide barrier at room temperature. Lead was used to complete the sandwich-type structure. The tunneling properties were profoundly sensitive to the surface properties of the Nb films. Markedly improved Josephson tunneling characteristics were found by depositing much higher residual resistance ratio (>100) films, which in this case seemed to be single crystal. One of the main deterrents for the practical use of high quality Nb/Nb:O/sub x//Pb Josephson junctions has been the high value of the specific capacitance of the native oxides which is drastically reduced by using single crystal Nb thin films. Some of the important parameters of the junctions can be modified by coating the Nb surface. It was demonstrated that Zr, Ti, and Al can be employed as oxidized barriers on single-crystal Nb films to produce high quality Josephson junctions that preserve the low values of the dielectric constant

  14. Fabrication and Tunneling Properties of Niobium/lead Josephson Junctions

    Science.gov (United States)

    Celaschi, Sergio

    High quality Josephson tunneling junctions have been fabricated by the process of electron beam evaporation of the Nb base electrode. Thermal oxidation of Nb coated and uncoated surfaces was used in order to grow the oxide barrier at room temperature. Lead was used to complete the sandwich-type structure. The tunneling properties were profoundly sensitive to the surface properties of the Nb films. We found markedly improved Josephson tunneling characteristics by depositing much higher residual resistance ratio (>100) films which in this case seemed to be single crystal. One of the main deterrents for the practical use of high quality Nb/Nb:O(,X)/Pb Josephson junctions has been the high value of the specific capacitance of the native oxides which is drastically reduced by using single crystal Nb thin films. Some of the important parameters of the junctions can be modified by coating the Nb surface. We have demonstrated that Zr, Ti, and Al can be employed as oxidized barriers on single-crystal Nb films to produce high quality Josephson junctions which preserve the low values of the dielectric constant.

  15. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    KAUST Repository

    Hanna, Amir

    2015-04-29

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET.

  16. Simulation of Tunnel Junction in Cascade Solar Cell (GaAs/Ge) Using AMPS-1D

    OpenAIRE

    Benmoussa Dennai; H. Ben Slimane; Helmaoui, A.

    2014-01-01

    The development of the tunnel junction interconnect was key the first two-terminal monolithic, multi-junction solar cell development. This paper describes simulation for the tunnel junction (GaAs) between top cell (GaAs) and bottom cell (Ge). This solar cell cascade was simulated when using one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the simulation, the thickness of the tunnel junction layer was varied from 10 to 50 nm. By varyin...

  17. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  18. Tunneling Conductance in Normal Metal/Insulator/Triplet Superconductor Junction

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2005-01-01

    Tunneling conductance in normal metal/insulator/triplet superconductor junctions is studied theoretically as a function of the bias voltage at zero temperature and finite temperature. The results show there are zero-bias conductance peak, zero-bias conductance dip and double-minimum structures in the spectra for p-wave superconductor junctions. The existence of such structures in the conductance spectrum can be taken as evidence that the pairing symmetry of Sr2RuO4 is p-wave symmetry.

  19. Development of suspended normal-metal-type tunneling junction refrigerator

    Science.gov (United States)

    Kashiwaya, Satoshi; Kashiwaya, Hiromi; Koyanagi, Masao; Tanaka, Yukio

    2016-09-01

    We have developed a suspended normal-metal-type superconducting-normal metal-superconductor tunneling junction refrigerator for the cooling of highly sensitive sensors operating at ultralow temperatures. The performance of the refrigerator is evaluated by comparing the experimental conductance with the numerical results of a theoretical formulation. The lowest temperature of 0.093 K at a bath temperature of 0.334 K indicates the successful operation of the refrigerator. The maximum cooling power of the present refrigerator estimated on the basis of the nonequilibrium stationary state model is 213 pW for a junction area of 40 × 7 µm2.

  20. Investigation of 1/f noise in tunnel junction dc SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Koch, R.; Clarke, J.; Goubau, W.; Harlingen; Martinis, J.; Pegrum, C.

    1983-05-01

    The authors describe two methods of measuring the 1/f noise in a dc SQUID. One is sensitive only to 1/f noise in the critical currents of the junctions, and the other is sensitive only to 1/f flux noise that is not associated with critical current fluctuations. From measurements on a planar thin-film dc SQUID incorporating Josephson tunnel junctions the authors conclude that the predominant source of 1/f noise is not noise in the critical currents, but rather an apparent flux noise of unknown origin.

  1. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  2. Magnetoresistance in the ferromagnet/insulator/ferromagnet tunnel junction

    Institute of Scientific and Technical Information of China (English)

    Lu Hong-Xia; Dong Zheng-Chao; Fu Hao

    2008-01-01

    Recently experiments and theories show that the tunnel magnetoresistance (TMR) does not only depend on the ferromagnetic metal electrodes but also on the insulator.Considering the rough-scattering effect and spin-flip effect in the insulator,this paper investigates the TMR ratio in a ferromagnet/insulator/ferromagnet (FM/I/FM) tunnelling junction by using Slonczewsik's model.A more general expression of TMR ratio as a function of barrier height,interface roughness and spin-flip effect is obtained.In lower barrier case,it shows that the TMR ratio depends on the roughscattering effect and spin-flip effect.

  3. Engineering ferroelectric tunnel junctions through potential profile shaping

    Energy Technology Data Exchange (ETDEWEB)

    Boyn, S.; Garcia, V., E-mail: vincent.garcia@thalesgroup.com; Fusil, S.; Carrétéro, C.; Garcia, K.; Collin, S.; Deranlot, C.; Bibes, M.; Barthélémy, A. [Unité Mixte de Physique CNRS/Thales, 1 Av. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay (France); Xavier, S. [Thales Research and Technology, 1 Av. Fresnel, 91767 Palaiseau (France)

    2015-06-01

    We explore the influence of the top electrode materials (W, Co, Ni, Ir) on the electronic band profile in ferroelectric tunnel junctions based on super-tetragonal BiFeO{sub 3}. Large variations of the transport properties are observed at room temperature. In particular, the analysis of current vs. voltage curves by a direct tunneling model indicates that the metal/ferroelectric interfacial barrier height increases with the top-electrode work function. While larger metal work functions result in larger OFF/ON ratios, they also produce a large internal electric field which results in large and potentially destructive switching voltages.

  4. Engineering ferroelectric tunnel junctions through potential profile shaping

    Directory of Open Access Journals (Sweden)

    S. Boyn

    2015-06-01

    Full Text Available We explore the influence of the top electrode materials (W, Co, Ni, Ir on the electronic band profile in ferroelectric tunnel junctions based on super-tetragonal BiFeO3. Large variations of the transport properties are observed at room temperature. In particular, the analysis of current vs. voltage curves by a direct tunneling model indicates that the metal/ferroelectric interfacial barrier height increases with the top-electrode work function. While larger metal work functions result in larger OFF/ON ratios, they also produce a large internal electric field which results in large and potentially destructive switching voltages.

  5. Room Temperature Magnetic Barrier Layers in Magnetic Tunnel Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson-Cheeseman, B. B.; Wong, F. J.; Chopdekar, R. V.; Arenholz, E.; Suzuki, Y.

    2010-03-09

    We investigate the spin transport and interfacial magnetism of magnetic tunnel junctions with highly spin polarized LSMO and Fe3O4 electrodes and a ferrimagnetic NiFe2O4 (NFO) barrier layer. The spin dependent transport can be understood in terms of magnon-assisted spin dependent tunneling where the magnons are excited in the barrier layer itself. The NFO/Fe3O4 interface displays strong magnetic coupling, while the LSMO/NFO interface exhibits clear decoupling as determined by a combination of X-ray absorption spectroscopy and X-ray magnetic circular dichroism. This decoupling allows for distinct parallel and antiparallel electrode states in this all-magnetic trilayer. The spin transport of these devices, dominated by the NFO barrier layer magnetism, leads to a symmetric bias dependence of the junction magnetoresistance at all temperatures.

  6. Magnetoresistance of galfenol-based magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Gobaut, B., E-mail: benoit.gobaut@elettra.eu [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34149 Trieste (Italy); Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Panaccione, G.; Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Rafaqat, H. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); ICTP, Trieste (Italy); Roddaro, S. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano (Italy); Eddrief, M.; Marangolo, M. [Sorbonne Universités, UPMC Paris 06, CNRS-UMR 7588, Institut des Nanosciences de Paris, 75005, Paris (France)

    2015-12-15

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe{sub 1-x}Ga{sub x}) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.

  7. Shot Noise in Ferromagnetic Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normal- metal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.

  8. A Model for the Behavior of Magnetic Tunnel Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bryan John Baker

    2003-08-05

    A magnetic tunnel junction is a device that changes its electrical resistance with a change in an applied magnetic field. A typical junction consists of two magnetic electrodes separated by a nonmagnetic insulating layer. The magnetizations of the two electrodes can have two possible extreme configurations, parallel and antiparallel. The antiparallel configuration is observed to have the higher measured resistance and the parallel configuration has the lower resistance. To switch between these two configurations a magnetic field is applied to the device which is primarily used to change the orientation of the magnetization of one electrode usually called the free layer, although with sufficient high magnetic field the orientation of the magnetizations of both of the electrodes can be changed. The most commonly used models for describing and explaining the electronic behavior of tunnel junctions are the Simmons model and the Brinkman model. However, both of these models were designed for simple, spin independent tunneling. The Simmons model does not address the issue of applied magnetic fields nor does it address the form of the electronic band structure in the metallic electrodes, including the important factor of spin polarization. The Brinkman model is similar, the main difference between the two models being the shape of the tunneling barrier potential between the two electrodes. Therefore, the research conducted in this thesis has developed a new theoretical model that addresses these important issues starting from basic principles. The main features of the new model include: the development of equations for true spin dependent tunneling through the insulating barrier, the differences in the orientations of the electrode magnetizations on either side of the barrier, and the effects of the density of states function on the behavior of the junction. The present work has explored densities of states that are more realistic than the simplified free electron density

  9. Tunnelling cooling by a normal-vacuum-superconductor junction

    Institute of Scientific and Technical Information of China (English)

    Zhang Xin; Zhang Dian-Lin

    2007-01-01

    The possibility of cooling a system from liquid helium temperature, 4.2 K, using a tunnel junction refrigerator is analysed. Calculations show that the device can be used over a wide temperature range from 4 K down to well below 1 mK with necessary cooling power. However, several serious difficulties must be overcome before the method can be used in low temperature laboratories.

  10. An x-ray detector using superconducting aluminum tunnel junctions

    International Nuclear Information System (INIS)

    We report on tests of a prototype detector for 6-keV X-rays, using series arrays of tunnel junction. Tests with higher-energy particles indicate an energy resolution of 4 keV, at 0.3K and with a warm pre-amp. At lower temperatures and with a cooled FET, the resolution should approach 100 eV

  11. Magnetostatic interactions in artificial ferrimagnet based magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Tiusan, C.; Dimopoulos, T.; Buda, L.; Da Costa, V.; Ounadjela, K.; Hehn, M.; van den Berg, H.

    2001-06-01

    Magnetostatic interactions between the soft and the hard magnetic electrodes in magnetic tunnel junctions (MTJs) using artificial ferrimagnets (AFis) are analyzed. We attribute these interactions to the dispersion fields associated to magnetic inhomogeneities arising from domain walls due to local anisotropic ordering. These magnetostatic interactions can be controlled by adjusting the net magnetic moment of the AFi to optimize the magnetotransport response of the MTJ devices.{copyright} 2001 American Institute of Physics.

  12. Simulation of Tunnel Junction in Cascade Solar Cell (GaAs/Ge Using AMPS-1D

    Directory of Open Access Journals (Sweden)

    Benmoussa Dennai

    2014-11-01

    Full Text Available The development of the tunnel junction interconnect was key the first two-terminal monolithic, multi-junction solar cell development. This paper describes simulation for the tunnel junction (GaAs between top cell (GaAs and bottom cell (Ge. This solar cell cascade was simulated when using one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D. In the simulation, the thickness of the tunnel junction layer was varied from 10 to 50 nm. By varying thickness of tunnel junction layer the simulated device performance was demonstrate in the form of current-voltage(I-V characteristics and quantum efficiency (QE.

  13. Quantitative mapping of fast voltage pulses in tunnel junctions by plasmonic luminescence

    Science.gov (United States)

    Grosse, Christoph; Etzkorn, Markus; Kuhnke, Klaus; Loth, Sebastian; Kern, Klaus

    2013-10-01

    An optical read-out technique is demonstrated that enables mapping the time-dependent electrostatic potential in the tunnel junction of a scanning tunneling microscope with millivolt and nanosecond accuracy. We measure the time-dependent intensity of plasmonic light emitted from the tunnel junction upon excitation with a nanosecond voltage pulse. The light intensity is found to be a quantitative measure of the voltage between tip and sample. This permits non-invasive mapping of fast voltage transients directly at the tunnel junction. Knowledge of the pulse profile reaching the tunnel junction is applied to optimize the experiment's time response by actively shaping the incident pulses.

  14. Prediction of Collapse Scope of Deep-Buried Tunnels Using Pressure Arch Theory

    Directory of Open Access Journals (Sweden)

    Yingchao Wang

    2016-01-01

    Full Text Available Tunnel collapse remains a serious problem in practice. Effective prediction methods on tunnel collapse are necessary for tunnel engineering. In this study, systematic study on the pressure arch was presented to predict tunnel collapse. Multiple factors under different conditions were considered. First, the pressure arch was described as a certain scope in comparison with the lowest pressure arch line. Then, a deep-buried circular tunnel was selected as the investigated object. Its collapse scope was analyzed using the lowest pressure arch line. Meanwhile, the main influence from the ground stress field was considered. Different modes of ground stress fields were investigated in detail. The results indicate that the collapse scope varies with different ground stress fields. Determination on the collapse scope is strongly affected by the judgment standard of the pressure arch. Furthermore, a selected case was analyzed with the pressure arch. The area and the height of tunnel collapse were calculated with multiple factors, including ground stress field, judgment standard, and lateral pressure coefficient. Finally, selected results were compared with relevant previous researches, and reasonable results were obtained. The present results are helpful for further understanding of the tunnel collapse and could provide suitable guidance for tunnel projects.

  15. Analysis of astronomical data from optical superconducting tunnel junctions

    CERN Document Server

    De Bruijne, J H J; Perryman, M A C; Favata, F; Peacock, A; Bruijne, Jos H.J. de; Reynolds, Alastair P; Perryman, Michael .A.C.; Favata, Fabio; Peacock, Anthony

    2001-01-01

    Currently operating optical superconducting tunnel junction (STJ) detectors, developed in ESA, can simultaneously measure the wavelength (delta lambda = 50 nm at 500 nm) and arrival time (to within ~5 micros) of individual photons in the range 310-720 nm with an efficiency of ~70%, and with count rates of order 5,000 photons per second per junction. A number of STJ junctions placed in an array format generates four-dimensional data: photon arrival time, energy, and array element (X,Y). Such STJ cameras are ideally suited for, e.g., high time- resolution spectrally-resolved monitoring of variable sources or low-resolution spectroscopy of faint extragalactic objects. The reduction of STJ data involves detector efficiency correction, atmo- spheric extinction correction, sky background subtraction, and, unlike that of data from CCD-based systems, a more complex energy calibration, barycentric arrival time correction, energy range selection, and time binning; these steps are, in many respects, analogous to procedu...

  16. Scale invariance of a diode-like tunnel junction

    Science.gov (United States)

    Cabrera, Hugo; Zanin, Danilo Andrea; de Pietro, Lorenzo Giuseppe; Michaels, Thomas; Thalmann, Peter; Ramsperger, Urs; Vindigni, Alessandro; Pescia, Danilo

    2013-03-01

    In Near Field-Emission SEM (NFESEM), electrostatic considerations favor a diode-like tunnel junction consisting of an atomic-sized source mounted at the apex of a thin wire placed at nanometric distances from a collector. The quantum mechanical tunnel process, instead, can provide a barrier toward miniaturization. In the first place, it deteriorates the generation of electrons by introducing non-linearities within the classically forbidden zone that exponentially increase with decreasing sizes. In addition, in the direct tunnelling regime, i.e. when the distance between emitter and collector d approaches the subnanometer range, a characteristic length appears, making the cross-over from the (almost) scale-invariant electric-field assisted regime to the essentially different STM-regime. We have observed that the experimental data relating the current I to the two experimental variables V (bias voltage between tip and collector) and d can be made (almost) collapse onto a ``scaling curve'' relating I to the single variable V .d-λ , λ being some exponent that depends solely on the geometry of the junction. This scaling property can be used to highlight non-linear aspects of the quantum mechanical tunnelling process.

  17. FeGa/MgO/Fe/GaAs(001) magnetic tunnel junction: Growth and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gobaut, B., E-mail: benoit.gobaut@elettra.eu [Sincrotrone Trieste S.C.p.A., S.S. 14-km 163.5, Area Science Park, 34012 Trieste (Italy); Ciprian, R.; Salles, B.R.; Krizmancic, D. [Laboratorio TASC, IOM-CNR, S.S. 14-km 163.5, Basovizza, 34149 Trieste (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14-km 163.5, Basovizza, 34149 Trieste (Italy); Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano (Italy); Panaccione, G. [Laboratorio TASC, IOM-CNR, S.S. 14-km 163.5, Basovizza, 34149 Trieste (Italy); Eddrief, M.; Marangolo, M. [Sorbonne Universites, UPMC Univ Paris 06, UMR 7588, INSP, 4 place Jussieu, 75005 Paris (France); CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris (France); Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14-km 163.5, Basovizza, 34149 Trieste (Italy)

    2015-06-01

    Research on spintronics and on multiferroics leads now to the possibility of combining the properties of these materials in order to develop new functional devices. Here we report the integration of a layer of magnetostrictive material into a magnetic tunnel junction. A FeGa/MgO/Fe heterostructure has been grown on a GaAs(001) substrate by molecular beam epitaxy (MBE) and studied by X-ray magnetic circular dichroism (XMCD). The comparison between magneto optical Kerr effect (MOKE) measurements and hysteresis performed in total electron yield allowed distinguishing the ferromagnetic hysteresis loop of the FeGa top layer from that of the Fe buried layer, evidencing a different switching field of the two layers. This observation indicates an absence of magnetic coupling between the two ferromagnetic layers despite the thickness of the MgO barrier of only 2.5 nm. The in-plane magnetic anisotropy has also been investigated. Overall results show the good quality of the heterostructure and the general feasibility of such a device using magnetostrictive materials in magnetic tunnel junction.

  18. Inelastic electron tunnelling and noise spectroscopies in organic magnetic tunnel junctions with PTCDA barrier

    Science.gov (United States)

    Aliev, Farkhad; Martinez, Isidoro; Hong, Jhen-Yong; Cascales, Juan Pedro; Andres, Pablo; Lin, Minn-Tsong

    2015-03-01

    The influence of internal barrier dynamics on spin, charge transport and their fluctuations in organic spintronics remains poorly understood. Here we present inelastic electron tunnelling spectroscopy (IETS) and low frequency noise (LFN) studies in magnetic tunnel junctions with thin (1.2-5nm) organic PTCDA barriers in the tunnelling regime at temperatures down to 0.3K. Shot noise is superpoissonian with a Fano factor exceeding in 1.5-2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. IETS results show energy relaxation of tunneling electrons through the excitation of collective (librons) and internal (phonons) vibrational modes of the molecules. The bias dependence of the normalised 1/f noise studied up to 350mV reveals that the excitation of some phonon modes has a strong impact on LFN with over a 10-fold reproducible increase near some specific biases. The dependence of the IETS and LFN anomalies with the relative magnetic alignment of the electrodes will also be discussed.

  19. Growth of magnetic tunnel junctions on Si(001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Olive Mendez, S. [Centre de Recherche en Matiere Condensee et Nanosciences, CRMCN-CNRS, Laboratory Associated with the Universities of Aix Marseille II and III, Campus de Luminy, Case 913, 13288 Marseille cedex 9 (France); Le Thanh, V. [Centre de Recherche en Matiere Condensee et Nanosciences, CRMCN-CNRS, Laboratory Associated with the Universities of Aix Marseille II and III, Campus de Luminy, Case 913, 13288 Marseille cedex 9 (France)]. E-mail: lethanh@crmcn.univ-mrs.fr; Ozerov, I. [Centre de Recherche en Matiere Condensee et Nanosciences, CRMCN-CNRS, Laboratory Associated with the Universities of Aix Marseille II and III, Campus de Luminy, Case 913, 13288 Marseille cedex 9 (France); Ferrero, S. [Centre de Recherche en Matiere Condensee et Nanosciences, CRMCN-CNRS, Laboratory Associated with the Universities of Aix Marseille II and III, Campus de Luminy, Case 913, 13288 Marseille cedex 9 (France); Coudreau, C. [Centre de Recherche en Matiere Condensee et Nanosciences, CRMCN-CNRS, Laboratory Associated with the Universities of Aix Marseille II and III, Campus de Luminy, Case 913, 13288 Marseille cedex 9 (France); Lazzari, J.-L. [Centre de Recherche en Matiere Condensee et Nanosciences, CRMCN-CNRS, Laboratory Associated with the Universities of Aix Marseille II and III, Campus de Luminy, Case 913, 13288 Marseille cedex 9 (France); Arnaud d' Avitaya, F. [Centre de Recherche en Matiere Condensee et Nanosciences, CRMCN-CNRS, Laboratory Associated with the Universities of Aix Marseille II and III, Campus de Luminy, Case 913, 13288 Marseille cedex 9 (France); Ravel, L. [ST Microelectronics Rousset, 77 Avenue Olivier Perroy, ZI Rousset-Peynier, 13106 Rousset cedex (France); Boivin, P. [ST Microelectronics Rousset, 77 Avenue Olivier Perroy, ZI Rousset-Peynier, 13106 Rousset cedex (France)

    2007-06-04

    We present in this work the growth of magnetic tunnel junctions on Si(001) substrates using a template layer technique and the implementation of the layer-by-layer method to form the oxide barrier layer. By using a Co{sub 2}Si template layer formed by deposition of Co on Si at a temperature of {approx} 300 deg. C, we show that it is possible to considerably reduce the reaction between transition metals with Si substrate. We have also investigated the growth of alumina (Al{sub 2}O{sub 3}) barrier layer by an alternative layer-by-layer deposition method, which consists of successive cycles of molecular-beam deposition of an Al monolayer and oxidation under an O{sub 2} flux at room temperature. Numerous Co(Fe)/AlO {sub x}/NiFe tunnel junctions have been fabricated on Si(001) substrates. The oxidation kinetics, the surface morphology as well as the interface roughness and abruptness are studied by means of Auger profilometry, transmission electron microscopy and atomic force microscopy. We show that it is possible to realize a uniform and homogeneous nanometer-thick AlO {sub x} layer with smooth and sharp interfaces. Current-voltage and Kerr effect measurements are also used to investigate the electric and magnetic properties of these junctions.

  20. Time-to-breakdown characteristics of magnetic tunnel junctions

    International Nuclear Information System (INIS)

    To investigate the reliability of the MTJs on the roughness of insulating tunnel barrier, we prepared two MTJs with the different uniformity of barrier thickness. Namely, the one has uniform insulating barrier thickness; the other has non-uniform insulating barrier thickness as compared to different thing. As to depositing amorphous layer CoZrNb under the pinning layer IrMn, we achieved MTJ with uniform barrier thickness. First of all, we performed the breakdown-voltage measurement of two junctions and obtained the result having a similar breakdown-voltage about 1.4 V at two all junctions. And then, the time dependence dielectric breakdown (TDDB) measurements of two junctions are carried out under constant voltage stresses. The Weibull fit of our data shows clearly that time to breakdown (tBD) scales with the thickness uniformity of tunnel barrier. And also, Assuming a linear dependence of log(tBD) on stress voltages, we meet with result about the different lifetime of the two MTJs with uniform barrier thickness or non-uniform barrier thickness. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Time-to-breakdown characteristics of magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae Youn; Rhee, Jang Roh [Department of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea); Kim, Taewan; Park, Wanjun [Materials and Devices Laboratory, Samsung Advanced Institute of Technology, Gyeonggi-Do 449-711 (Korea); Jang, YoungMan; Cho, B.K. [Superconducting and Magnetic Materials Laboratory, GwangJu Institute of Science and Technology, Gwangju 500-712 (Korea)

    2004-12-01

    To investigate the reliability of the MTJs on the roughness of insulating tunnel barrier, we prepared two MTJs with the different uniformity of barrier thickness. Namely, the one has uniform insulating barrier thickness; the other has non-uniform insulating barrier thickness as compared to different thing. As to depositing amorphous layer CoZrNb under the pinning layer IrMn, we achieved MTJ with uniform barrier thickness. First of all, we performed the breakdown-voltage measurement of two junctions and obtained the result having a similar breakdown-voltage about 1.4 V at two all junctions. And then, the time dependence dielectric breakdown (TDDB) measurements of two junctions are carried out under constant voltage stresses. The Weibull fit of our data shows clearly that time to breakdown (t{sub BD}) scales with the thickness uniformity of tunnel barrier. And also, Assuming a linear dependence of log(t{sub BD}) on stress voltages, we meet with result about the different lifetime of the two MTJs with uniform barrier thickness or non-uniform barrier thickness. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. On the Interfacial Tunneling Current in Nanoscale Plasmonic Junctions

    Science.gov (United States)

    Lau, Y. Y.; Zhang, Peng; Gilgenbach, R. M.

    2015-11-01

    Recently, electron tunneling between plasmonic resonators is found to support quantum plasmon resonances, which may introduce new regimes in nano-optoelectronics and nonlinear optics. This is a fundamental problem of electron transport in nano-scale. Here, we present a self-consistent model of electron transport in a nano-scale metal-insulator (vacuum)-metal junction, by solving the coupled Schrödinger and Poisson equations. The effects of space charge, exchange-correlation, anode emission, and material properties of the electrodes and insulator are examined in detail. It is found that these effects may modify the current density by orders of magnitude from the widely used Simmons' formula. Transition from the direct tunneling regime to the space-charge-limited regime is demonstrated. For a given junction, simply increasing the driving field to field emission or space-charge-limited regime could significantly reduce the damping of the charge transfer plasmon due to quantum tunneling. This work was supported by AFOSR Grant No. FA9550-14-1-0309.

  3. Retention time in multiple-tunnel junction memory device

    Science.gov (United States)

    Jalil, M. B. A.; Wagner, M.; Ahmed, H.

    1999-01-01

    A computationally inexpensive approximation is obtained for the retention time of charges stored on a memory node of a multiple-tunnel junction (MTJ) memory device, based on previous simplifying assumptions by Jensen and Martinis. The approximation takes into account both thermally assisted single electron tunneling and higher order processes, or cotunneling and is in good agreement with a full master equation simulation of the device up to a temperature T≈T0/10, where T0=e2/kBC. For the case of a memory device formed within a δ-doped layer in GaAs, it is predicted that leakage due to single tunneling starts to dominate over cotunneling at temperatures above T≈T0/60, and that a sharp reduction in retention time occurs above T≈T0/100. Our analysis also shows that with the typical dimensions of present devices, a memory lifetime of a year requires the stringent condition of an 11-junction MTJ operated at below 1 K.

  4. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.

    2011-08-24

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  5. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    Science.gov (United States)

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-12-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature.

  6. Probing momentum distributions in magnetic tunnel junctions via hot-electron decay

    NARCIS (Netherlands)

    Jansen, R.; Banerjee, T.; Park, B.G.; Lodder, J.C.

    2007-01-01

    The tunnel momentum distribution in a (magnetic) tunnel junction is probed by analyzing the decay of the hot electrons in the Co metal anode after tunneling, using a three-terminal transistor structure in which the hot-electron attenuation is sensitive to the tunnel momentum distribution. Solid stat

  7. Finite element simulation of shallow-buried and mining tunnelling in adjacent frame structures

    Directory of Open Access Journals (Sweden)

    Chun-lai Chen

    2014-05-01

    Full Text Available By using three dimensional software MIDAS/GTS, the interactions among structures-soil-tunnel system is considered in this paper, and the working condition of shallow-buried underground excavation is simulated in the foundation of frame structures with the short-pile. The loadings and deformations of structures are studied before and after the tunnelling, and the influences of the following factors, including the horizontal position of tunnel and building, the height of building and the soil property, are analyzed. It is indicated that when the horizontal distance L equals zero (the distance between building axis to the tunnel axis, the building settlement increases gradually and shows a normal distribution during and after the tunnelling. Due to the small stiffness of frame structures with short-pile foundations, the building has large nonuniform settlement. When the distance of excavation is no less than 1.8 times of the thickness of overburden soil, the building settlement becomes stable, and the first principal stress P1 and maximum deformation rate E1 generally show a trend of decrease. With the increasing L, P1 and E1 will decrease accordingly, and the buildings tend to be inclined toward the tunnel. For a relatively larger distance, the building is nearly not affected.

  8. Spin nutation effects in molecular nanomagnet–superconductor tunnel junctions

    International Nuclear Information System (INIS)

    We study the spin nutation effects of a molecular nanomagnet on the Josephson current through a superconductor|molecular nanomagnet|superconductor tunnel junction. We explicitly demonstrate that, due to the spin nutation of the molecular nanomagnet, two oscillatory terms emerge in the ac Josephson current in addition to the conventional ac Josephson current. Some resonances occur in the junction due to the interactions of the transported quasiparticles with the bias voltage and molecular nanomagnet spin dynamics. Their appearance indicates that the energy exchanged during these interactions is in the range of the superconducting energy gap. We also show that the spin nutation is able to convert the ac Josephson current to a dc current, which is interesting for applications. (paper)

  9. Tunneling magnetoresistance and electroresistance in Fe/PbTiO3/Fe multiferroic tunnel junctions

    Science.gov (United States)

    Dai, Jian-Qing

    2016-08-01

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO3/Fe multiferroic tunnel junction with asymmetric TiO2- and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6pz orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing to the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.

  10. Encoding, training and retrieval in ferroelectric tunnel junctions

    Science.gov (United States)

    Xu, Hanni; Xia, Yidong; Xu, Bo; Yin, Jiang; Yuan, Guoliang; Liu, Zhiguo

    2016-05-01

    Ferroelectric tunnel junctions (FTJs) are quantum nanostructures that have great potential in the hardware basis for future neuromorphic applications. Among recently proposed possibilities, the artificial cognition has high hopes, where encoding, training, memory solidification and retrieval constitute a whole chain that is inseparable. However, it is yet envisioned but experimentally unconfirmed. The poor retention or short-term store of tunneling electroresistance, in particular the intermediate states, is still a key challenge in FTJs. Here we report the encoding, training and retrieval in BaTiO3 FTJs, emulating the key features of information processing in terms of cognitive neuroscience. This is implemented and exemplified through processing characters. Using training inputs that are validated by the evolution of both barrier profile and domain configuration, accurate recalling of encoded characters in the retrieval stage is demonstrated.

  11. Mechanically-induced resistive switching in ferroelectric tunnel junctions.

    Science.gov (United States)

    Lu, H; Kim, D J; Bark, C-W; Ryu, S; Eom, C B; Tsymbal, E Y; Gruverman, A

    2012-12-12

    Recent advances in atomic-precision processing of oxide ferroelectrics-materials with a stable polarization that can be switched by an external electric field-have generated considerable interest due to rich physics associated with their fundamental properties and high potential for application in devices with enhanced functionality. One of the particularly promising phenomena is the tunneling electroresistance (TER) effect-polarization-dependent bistable resistance behavior of ferroelectric tunnel junctions (FTJ). Conventionally, the application of an electric field above the coercive field of the ferroelectric barrier is required to observe this phenomenon. Here, we report a mechanically induced TER effect in ultrathin ferroelectric films of BaTiO(3) facilitated by a large strain gradient induced by a tip of a scanning probe microscope (SPM). The obtained results represent a new paradigm for voltage-free control of electronic properties of nanoscale ferroelectrics and, more generally, complex oxide materials. PMID:23181389

  12. Radiation Detection Measurements with a New 'Buried Junction' Silicon Avalanche Photodiode

    CERN Document Server

    Lecomte, R; Rouleau, D; Dautet, H; McIntyre, R J; McSween, D; Webb, P

    1999-01-01

    An improved version of a recently developed 'Buried Junction' avalanche photodiode (APD), designed for use with scintillators, is described and characterized. This device, also called the 'Reverse APD', is designed to have a wide depletion layer and thus low capacitance, but to have high gain only for e-h pairs generated within the first few microns of the depletion layer. Thus it has high gain for light from scintillators emitting in the 400-600 nm range, with relatively low dark current noise and it is relatively insensitive to minimum ionizing particles (MIPs). An additional feature is that the metallurgical junction is at the back of the wafer, leaving the front surface free to be coupled to a scintillator without fear of junction contamination. The modifications made in this device, as compared with the earlier diode, have resulted in a lower excess noise factor, lower dark current, and much-reduced trapping. The electrical and optical characteristics of this device are described and measurements of ener...

  13. Josephson tunnel junctions in a magnetic field gradient

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelets, V.P.

    2011-01-01

    We measured the magnetic field dependence of the critical current of high-quality Nb-based planar Josephson tunnel junctions in the presence of a controllable nonuniform field distribution. We found skewed and slowly changing magnetic diffraction patterns quite dissimilar from the Fraunhofer......-like ones typical of a homogeneous field. Our findings can be well interpreted in terms of recent theoretical predictions [R. Monaco, J. Appl. Phys. 108, 033906 (2010)] for a uniform magnetic field gradient, leading to Fresnel-like magnetic diffraction patterns. We also show that Fiske resonances can...... be suppressed by an asymmetric magnetic field profile. © 2011 American Institute of Physics....

  14. Neural coding using telegraphic switching of magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Dong Ik; Bae, Gi Yoon; Oh, Heong Sik; Park, Wanjun, E-mail: wanjun@hanyang.ac.kr [Department of Electronic Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-05-07

    In this work, we present a synaptic transmission representing neural coding with spike trains by using a magnetic tunnel junction (MTJ). Telegraphic switching generates an artificial neural signal with both the applied magnetic field and the spin-transfer torque that act as conflicting inputs for modulating the number of spikes in spike trains. The spiking probability is observed to be weighted with modulation between 27.6% and 99.8% by varying the amplitude of the voltage input or the external magnetic field. With a combination of the reverse coding scheme and the synaptic characteristic of MTJ, an artificial function for the synaptic transmission is achieved.

  15. Ferroelectric control of anisotropic damping in multiferroic tunnel junctions

    Science.gov (United States)

    Wang, Yan; Zhang, Ning; Berakdar, Jamal; Jia, Chenglong

    2015-10-01

    The magnetoelectric effect on nonlocal magnetization dynamics is theoretically investigated in normal-metal/ferroelectric-insulator/ferromagnetic tunnel junctions. In addition to the Rashba spin-orbit interaction (SOI) originating from loss of parity symmetry at the interfaces, the topology of interfacial spiral spins triggered by ferroelectric polarization acts with an effective SOI that is electrically controllable. These spin-dependent interactions result in an anisotropic Gilbert damping with C2 v symmetry. The findings are of a direct relevance for the utilization of composite multiferroics for devices that rely on electrically controlled magnetic switching.

  16. Increased Gilbert damping in spin valves and magnetic tunnel junctions

    International Nuclear Information System (INIS)

    We present a study on the Gilbert damping constant α in magnetic multilayers using the time-resolved MOKE technique. All observed α-values in Ni80Fe20 thin films with Cu/Ta seed and capping layers can be modeled using a spin pumping model. Investigation in device layers (spin-valves and magnetic tunnel junctions) is consistent with this model. An additional effect of the magnetization state of the pinned layer on free layer damping in spin valves is seen. These insights in the effect of interfaces on magnetic relaxation provide methods for optimization of magnetic devices for numerous high-speed applications

  17. Development of Superconducting Tunnel Junction as an Imaging Radiation Detector

    Science.gov (United States)

    Yamasaki, N. Y.; Rokutanda, E.; Kikuchi, K.; Kushino, A.; Ohashi, T.; Kurakado, M.

    Superconducting tunnel junctions (STJs) as X-ray detectors have been developed mainly aiming at high resolution spectrometers. We archived an energy resolution of 106 eV at 5.9 keV (FWHM) using an STJ developed at Nippon Steel Corporation with a cooled (~ 100K) FET. Furthermore, series-connected STJs as an imaging radiation detector are developed. Both the pulse hight and the rise time of signals from 241Am α-particles irradiated on a series-connected STJ give a good position sensitivity, indicating the intrinsic position resolution less than 0.5 mm

  18. Thermally activated magnetization reversal in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Zhou Guang-Hong; Wang Yin-Gang; Qi Xian-Jin; Li Zi-Quan; Chen Jian-Kang

    2009-01-01

    In this paper, the magnetization reversal of the ferromagnetic layers in the lrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants.

  19. Quasiparticle tunneling in a periodically driven bosonic Josephson junction

    Science.gov (United States)

    Gertjerenken, Bettina; Holthaus, Martin

    2014-11-01

    A resonantly driven bosonic Josephson junction supports stable collective excitations, or quasiparticles, which constitute analogs of the Trojan wave packets previously explored with Rydberg atoms in strong microwave fields. We predict a quantum beating effect between such symmetry-related many-body Trojan states taking place on time scales which are long in comparison with the driving period. Within a mean-field approximation, this quantum beating can be regarded as a manifestation of dynamical tunneling. On the full N -particle level, the beating phenomenon leads to an experimentally feasible, robust strategy for probing highly entangled mesoscopic states.

  20. Tunneling Anisotropic Magnetoresistance in Co/AlOx/Au Tunnel Junctions

    CERN Document Server

    Liu, R S; Canali, C M; Samuelson, L; Pettersson, H

    2008-01-01

    We observe spin-valve-like effects in nano-scaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer.

  1. Tunneling anisotropic magnetoresistance in Co/AlOx/Au tunnel junctions.

    Science.gov (United States)

    Liu, R S; Michalak, L; Canali, C M; Samuelson, L; Pettersson, H

    2008-03-01

    We observe spin-valve-like effects in nanoscaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer. PMID:18254603

  2. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions

    OpenAIRE

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S.; Saeys, Mark; Yang, Hyunsoo

    2014-01-01

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical...

  3. PHOTON-ASSISTED TUNNELING IN DOUBLE-BARRIER SUPERCONDUCTING TUNNEL-JUNCTIONS

    NARCIS (Netherlands)

    DIERICHS, MMTM; DIELEMAN, P; WEZELMAN, JJ; HONINGH, CE; KLAPWIJK, TM

    1994-01-01

    Double-barrier Nb/Al2O3/Al/Al2O3/Nb tunnel junctions are used as mixing elements in a 345 GHz waveguide mixer. Noise temperatures (double side band) down to 720 K at 3.0 K are obtained without the need to apply a magnetic field to suppress the Josephson current. It is shown that the composite barrie

  4. A Review of the CMOS Buried Double Junction (BDJ Photodetector and its Applications

    Directory of Open Access Journals (Sweden)

    Gabriel Vasilescu

    2008-10-01

    Full Text Available A CMOS Buried Double Junction PN (BDJ photodetector consists of two vertically-stacked photodiodes. It can be operated as a photodiode with improved performance and wavelength-sensitive response. This paper presents a review of this device and its applications. The CMOS implementation and operating principle are firstly described. This includes the description of several key aspects directly related to the device performances, such as surface reflection, photon absorption and electron-hole pair generation, photocurrent and dark current generation, etc. SPICE modelling of the detector is then presented. Next, design and process considerations are proposed in order to improve the BDJ performance. Finally, several BDJ-detector-based image sensors provide a survey of their applications.

  5. Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions.

    Science.gov (United States)

    Sokolov, A; Bak, O; Lu, H; Li, S; Tsymbal, E Y; Gruverman, A

    2015-07-31

    We report the effect of compressive strain on the tunneling electroresistance (TER) effect in BaTiO3/SrRuO3 (BTO/SRO) heterostructures. We find that epitaxial strain imposed by the mismatch of NdGaO3 and SrTiO3 lattice parameters with the BTO and SRO layers improves ferroelectric polarization of BTO and concurrently promotes the metallicity of the SRO films. While the enhanced polarization is beneficial for the TER magnitude, the reduced asymmetry in the tunneling barrier due to the shortened screening length of SRO is detrimental for the effect. Thus, a combined effect of strain on the polarization of the ferroelectric barrier and the screening properties of the electrodes needs to be taken into account when considering and predicting the TER effect in ferroelectric tunnel junctions. PMID:26150406

  6. Simultaneous quasiparticle and Josephson tunneling in BSCCO-2212 break junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Ozyuzer, L.

    1998-10-27

    Tunneling measurements are reported for superconductor-insulator-superconductor (SIS) break junctions on underdoped, optimally-doped, and overdoped single crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212). The junction I-V characteristics exhibit well-defined quasiparticle current jumps at eV = 2A as well as hysteretic Josephson currents. The quasiparticle branch has been analyzed in the framework of d{sub x{sup 2}-y{sup 2}} (d-wave) superconductivity and indicates that there is preferential tunneling along the lobe directions of the d-wave gap. For overdoped Bi-2212 with T{sub c} = 62 K, the Josephson current is measured as a function of junction resistance, R{sub n}, which varied by two orders of magnitude (1 k{Omega} to 100 k{Omega}). I{sub c}R{sub n} product is proportional to the 0.47 power of I{sub c} and displays a maximum of 7.0 mV. When the hole doping is decreased from overdoped (T{sub c} = 62 K) to the underdoped regime (T{sub c} = 70 K), the average I{sub c}R{sub n} product increases as does the quasiparticle gap. The maximum I{sub c}R{sub n} is {approximately} 40% of the {Delta}/e at each doping level, with a value as high as 25 mV in underdoped Bi-2212.

  7. Magnetic coherent tunnel junctions with periodic grating barrier

    Science.gov (United States)

    Fang, Henan; Xiao, Mingwen; Rui, Wenbin; Du, Jun; Tao, Zhikuo

    2016-04-01

    A new spintronic theory has been developed for the magnetic tunnel junction (MTJ) with single-crystal barrier. The barrier will be treated as a diffraction grating with intralayer periodicity, the diffracted waves of tunneling electrons thus contain strong coherence, both in charge and especially in spin. The theory can answer the two basic problems present in MgO-based MTJs: (1) Why does the tunneling magnetoresistance (TMR) oscillate with the barrier thickness? (2) Why is the TMR still far away from infinity when the two electrodes are both half-metallic? Other principal features of TMR can also be explained and reproduced by the present work. It also provides possible ways to modulate the oscillation of TMR, and to enhance TMR so that it can tend to infinity. Within the theory, the barrier, as a periodic diffraction grating, can get rid of the confinement in width, it can vary from nanoscale to microscale. Based on those results, a future-generation MTJ is proposed where the three pieces can be fabricated separately and then assembled together, it is especially appropriate for the layered materials, e.g., MoS2 and graphite, and most feasible for industries.

  8. Noise spectroscopy of magnetic tunnel junctions with organic barriers

    Science.gov (United States)

    Aliev, Farkhad; Cascales, Juan Pedro; Hong, Jhen-Yong; Lin, Minn-Tsong

    2014-03-01

    Understanding the details of spin and charge transport through organic barriers remains one of the main challenges in organic spintronics. Here we present low frequency noise studies in magnetic tunnel junctions with thin (2-5nm) organic PTCDA barriers in the tunnelling regime, investigated at temperatures of under 1K up to 300K. Shot noise measurements show a superpoissonian contribution at low biases giving rise to a Fano factor of around 1.5-2. We tentatively link the enhanced shot noise with electron bunching induced by inelastic interaction with collective low frequency vibration modes of the molecules. On the other hand, the bias dependence of 1/f noise studied up to 350mV reveals reproducible anomalies which could be linked with excitations induced by inelastic tunnelling, due to individual vibrational modes of higher frequency of the PTCDA molecules. The dependence of the shot and 1/f noise with the magnetic alignment of the electrodes will also be discussed Supported by UAM-Santander and MAT2012-32743 grants.

  9. Ferroelectric Tunnel Junction for Dense Cross-Point Arrays.

    Science.gov (United States)

    Lee, Hong-Sub; Han, Wooje; Chung, Hee-Yoon; Rozenberg, Marcelo; Kim, Kangsik; Lee, Zonghoon; Yeom, Geun Young; Park, Hyung-Ho

    2015-10-14

    Cross-point array (CPA) structure memories using a memristor are attracting a great deal of attention due to their high density integration with a 4F2 cell. However, a common significant drawback of the CPA configuration is crosstalk between cells. To date, the CPA structure using a redox-based memristor has restrictions to minimize the operating current level due to their resistive switching mechanism. This study demonstrates suitable characteristics of a ferroelectric tunnel junction (FTJ) for the memristor of the CPA structure using an electrostatic model. From the FTJ of the Au/p-type Pr0.98Ca0.02MnO3 (4 nm)/BaTiO3 (4.3 nm)/n-type Ca0.98Pr0.02MnO3 (3 nm)/Pt(111) structure, which has a higher and thicker potential barrier, a good memristive effect for the CPA structure with a high nonlinear current-voltage curve and low current operation, was obtained by Δ Fowler-Nordheim tunneling with effectively blocked direct tunneling and thermionic emission. The FTJ demonstrated reduced sneak current and the possible for high nonlinearity. PMID:26378472

  10. Properties of Light Emission Spectrum of Double-barrier Tunnel Junction

    Institute of Scientific and Technical Information of China (English)

    WANG Mao-xiang; NIE Li-cheng; ZHANG You-wen; YU Jian-hua

    2007-01-01

    Fabricated are the double-barrier light emission tunnel junctions successfully. Introduced are the fabrication process and light emission characteristics. The spectra of the junctions are measured and analyzed especially. Their spectrum wavelength including main wave peak(locates at 450 nm~500 nm) of the double-barrier junction shows a "blue shift" in comparison with that of the single-barrier Metal/Insulator/Semiconductor(MIS) or Metal/Insulator/Metal(MIM) junction(wave peak locates at 620 nm~740 nm). This phenomenon should be due to the occurrence of the electron resonant tunneling in the double-barrier junction.

  11. Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions

    OpenAIRE

    McCann, Edward; Fal'ko, Vladimir I.

    2002-01-01

    We present a theoretical description of the thermopower due to magnon-assisted tunneling in a mesoscopic tunnel junction between two ferromagnetic metals. The thermopower is generated in the course of thermal equilibration between two baths of magnons, mediated by electrons. For a junction between two ferromagnets with antiparallel polarizations, the ability of magnon-assisted tunneling to create thermopower $S_{AP}$ depends on the difference between the size $\\Pi_{\\uparrow, \\downarrow}$ of t...

  12. Superconducting Tunnel Junctions for High-Precision EUV Spectroscopy

    Science.gov (United States)

    Ponce, F.; Carpenter, M. H.; Cantor, R.; Friedrich, S.

    2016-08-01

    We have characterized the photon response of superconducting tunnel junctions in the extreme ultraviolet energy range below 100 eV with a pulsed 355 nm laser. The detectors are operated at rates up to 5000 counts/s, are very linear in energy and have an energy resolution between 0.9 and 2 eV. We observe multiple peaks that correspond to an integer number of photons with a Poissonian probability distribution and that can be used for high-accuracy energy calibration. The uncertainty of the centroid depends on the detector resolution and the counting statistics and can be as low as 1 meV for well-separated peaks with >10^5 counts. We discuss the precision of the peak centroid as a function of detector resolution and total number of counts and the accuracy of the energy calibration.

  13. Supersymmetric phase transition in Josephson-tunnel-junction arrays

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1988-08-31

    The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T/sub I/less than or equal toT/sub V/, then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T/sub I/=T/sub V/. Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory.

  14. Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons

    Science.gov (United States)

    Sengupta, Abhronil; Panda, Priyadarshini; Wijesinghe, Parami; Kim, Yusung; Roy, Kaushik

    2016-07-01

    Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks.

  15. Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons.

    Science.gov (United States)

    Sengupta, Abhronil; Panda, Priyadarshini; Wijesinghe, Parami; Kim, Yusung; Roy, Kaushik

    2016-01-01

    Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks. PMID:27443913

  16. Superconducting tunnel junction detectors for soft x-ray astrophysics

    Science.gov (United States)

    Verhoeve, P.; Hijmering, R. A.; Martin, D. D. E.; Jerjen, I.; Peacock, A.; Venn, R.

    2006-06-01

    The requirement on energy resolution for detectors in future X-ray satelite missions such as XEUS (X-ray Evolving Universe Spectroscopy mission) is 80%. In addition, the requirements for field of view and angular resolution demand a detector array of typically 150x150 micron sized pixels in a 30x30 pixel format. DROIDs (Distributed Read Out Imaging Devices), consisting of a superconducting absorber strip with superconducting tunnel junctions (STJs) as read-out devices on either end, can fulfill these requirements. The amplitudes of the two signals from the STJs provide information on the absorption position and the energy of the incoming photon in the absorber. In this paper we present the development status of Ta/Al 1-D DROIDs, as well as the the short term development program that should result in a full size XEUS array.

  17. Advanced Metrology for Characterization of Magnetic Tunnel Junctions

    DEFF Research Database (Denmark)

    Kjær, Daniel

    as it is believed to have the potential of becoming a truly universal memory solution dominant within all fields of memory application. A decade ago the company CAPRES A/S introduced the so-called CIPTech, which is a metrology tool utilizing micro four-point probes (M4PPs) and a method known as current in...... the turn-around time for measurements on magnetic tunnel junctions shortened dramatically from two days to one or two minutes. As one happy user put it, it was like going from a tricycle to a Ferrari in one step, and the tool is now in use in all major memory companies throughout the world. However...... purely by acquiring only half of the data needed for the conventional switching field CIPT measurement and particularly by avoiding magnetic field switching. We observe that the new method measures essentially the same RA values as compared to the conventional strategy. By offering the choice...

  18. A supersymmetric phase transition in Josephson-tunnel-junction arrays

    International Nuclear Information System (INIS)

    The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: TI≤TV, then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with TI=TV. Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory. (orig.)

  19. Magnetic tunnels junctions for all-oxide spin valves devices

    Energy Technology Data Exchange (ETDEWEB)

    Solignac, A; Guerrero, R; Fermon, C; Pannetier-Lecoeur, M [DSM/IRAMIS/SPEC- CNRS URA 2464, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Agnus, G; Lecoeur, Ph, E-mail: myriam.pannetier@cea.fr [Institut d' Electronique Fondamentale, Univ Paris-Sud, CNRS UMR8622, F-91405 Orsay (France)

    2011-07-06

    We have developed La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) based spin valve tunnel junctions where the hard layer is composed of Ru doped La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMRO). These perovskite oxide layers have been grown on SrTiO{sub 3} by pulsed laser deposition. X ray diffraction, transmission electron microscopy and atomic force microscope measurements show the crystalline quality of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3} doped Ruthenium thin films. Magnetization, resistance and noise characterisation of these layers are presented. The doping of Ruthenium increases the coercitive field of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} but degrades the metallic properties of the layer and leads to a noise increase of one order of magnitude. We have studied the magnetoresistance and magneto-transport properties of LSMO /STO/ LSMRO-based junctions which show the importance of the interfaces quality.

  20. Chaos and related nonlinear noise phenomena in Josephson tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Miracky, R.F.

    1984-07-01

    The nonlinear dynamics of Josephson tunnel junctions shunted by a resistance with substantial self-inductance have been thoroughly investigated. The current-voltage characteristics of these devices exhibit stable regions of negative differential resistance. Very large increases in the low-frequency voltage noise with equivalent noise temperatures of 10/sup 6/ K or more, observed in the vicinity of these regions, arise from switching, or hopping, between subharmonic modes. Moderate increases in the noise, with temperatures of about 10/sup 3/ K, arise from chaotic behavior. Analog and digital simulations indicate that under somewhat rarer circumstances the same junction system can sustain a purely deterministic hopping between two unstable subharmonic modes, accompanied by excess low-frequency noise. Unlike the noise-induced case, this chaotic process occurs over a much narrower range in bias current and is destroyed by the addition of thermal noise. The differential equation describing the junction system can be reduced to a one-dimensional mapping in the vicinity of one of the unstable modes. A general analytical calculation of switching processes for a class of mappings yields the frequency dependence of the noise spectrum in terms of the parameters of the mapping. Finally, the concepts of noise-induced hopping near bifurcation thresholds are applied to the problem of the three-photon Josephson parametric amplifier. Analog simulations indicate that the noise rise observed in experimental devices arises from occasional hopping between a mode at the pump frequency ..omega../sub p/ and a mode at the half harmonic ..omega../sub p//2. The hopping is induced by thermal noise associated with the shunt resistance. 71 references.

  1. Chaos and related nonlinear noise phenomena in Josephson tunnel junctions

    International Nuclear Information System (INIS)

    The nonlinear dynamics of Josephson tunnel junctions shunted by a resistance with substantial self-inductance have been thoroughly investigated. The current-voltage characteristics of these devices exhibit stable regions of negative differential resistance. Very large increases in the low-frequency voltage noise with equivalent noise temperatures of 106 K or more, observed in the vicinity of these regions, arise from switching, or hopping, between subharmonic modes. Moderate increases in the noise, with temperatures of about 103 K, arise from chaotic behavior. Analog and digital simulations indicate that under somewhat rarer circumstances the same junction system can sustain a purely deterministic hopping between two unstable subharmonic modes, accompanied by excess low-frequency noise. Unlike the noise-induced case, this chaotic process occurs over a much narrower range in bias current and is destroyed by the addition of thermal noise. The differential equation describing the junction system can be reduced to a one-dimensional mapping in the vicinity of one of the unstable modes. A general analytical calculation of switching processes for a class of mappings yields the frequency dependence of the noise spectrum in terms of the parameters of the mapping. Finally, the concepts of noise-induced hopping near bifurcation thresholds are applied to the problem of the three-photon Josephson parametric amplifier. Analog simulations indicate that the noise rise observed in experimental devices arises from occasional hopping between a mode at the pump frequency ω/sub p/ and a mode at the half harmonic ω/sub p//2. The hopping is induced by thermal noise associated with the shunt resistance. 71 references

  2. Electromigration-driven resistance switching in non-magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Current induced switching (CIS) was recently observed in thin magnetic tunnel junctions and attributed to electromigration of metallic atoms in nanoconstrictions in the insulating barrier. Here we study the CIS effect in tunnel junctions with a Ta layer deposited just below the insulating barrier. We observe enhanced resistance switching with increasing maximum applied current. Anomalous voltage-current characteristics with negative derivative were observed and this effect is attributed to heating in the tunnel junction. We also observe that, after repeatedly applying large current pulses, the electrical resistance decreases sharply through irreversible steps when ions are displaced into the barrier

  3. Effect of Barrier Width on Bias-Dependent Tunnelling in Ferromagnetic Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Fei-Fei; XIAO Ming-Wen; LI Zheng-Zhong; HU An; XU Wang

    2004-01-01

    @@ We present a finite temperature theory for bias-dependent tunnelling in ferromagnetic tunnelling junctions. The effects of the barrier width d on the tunnelling magnetoresistance (TMR) and its sign change behaviour are discussed with this theory. Numerical results show that both the zero-bias TMR and the critical voltage Vc at which the TMR changes its sign decrease with the increasing barrier width for a considerably thick barrier junction. Furthermore, it is found that a minimum exists in the curve of Vc versus d if a composite junction is under oxidized.

  4. Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions

    Science.gov (United States)

    Rashid, H.; Desmaris, V.; Pavolotsky, A.; Belitsky, V.

    2016-04-01

    In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction. The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.

  5. Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions

    Directory of Open Access Journals (Sweden)

    H. Rashid

    2016-04-01

    Full Text Available In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction. The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.

  6. Experimental study on similarity materials for soft rock of deep-buried tunnels

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu; PENG Hai-you

    2011-01-01

    When every parameter is properly scaled down in accordance with some similarity coefficients, it is possible to study the physical-mechanical properties of rock mass with a scale model. To identify the key mechanisms of soft rock in deep buried tunnels, the proper sand, binder and ratio were selected. During the process, the model manufacture technology was introduced and typical tests were done and the results were presented. The physical and mechanical properties effects caused by each composition were discussed. It is shown that the physical and mechanical properties of chosen ratio material such as uniaxial compressive strength tests, elasticity modulus, tensile strength, internal frictional angle, and Poisson's ratio meet with similarity relationship well. The physical and mechanical properties of deep soft rock are simulated successfully.

  7. Output voltage calculations in double barrier magnetic tunnel junctions with asymmetric voltage behavior

    KAUST Repository

    Useinov, Arthur

    2011-10-22

    In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR-V curves, output voltages and I-V characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR-V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series. © 2012 Elsevier B.V. All rights reserved.

  8. Time-resolved measurement of the tunnel magneto-Seebeck effect in a single magnetic tunnel junction.

    Science.gov (United States)

    Boehnke, Alexander; Walter, Marvin; Roschewsky, Niklas; Eggebrecht, Tim; Drewello, Volker; Rott, Karsten; Münzenberg, Markus; Thomas, Andy; Reiss, Günter

    2013-06-01

    Recently, several groups have reported spin-dependent thermoelectric effects in magnetic tunnel junctions. In this paper, we present a setup for time-resolved measurements of thermovoltages and thermocurrents of a single micro- to nanometer-scaled tunnel junction. An electrically modulated diode laser is used to create a temperature gradient across the tunnel junction layer stack. This laser modulation technique enables the recording of time-dependent thermovoltage signals with a temporal resolution only limited by the preamplifier for the thermovoltage. So far, time-dependent thermovoltage could not be interpreted. Now, with the setup presented in this paper, it is possible to distinguish different Seebeck voltage contributions to the overall measured voltage signal in the μs time regime. A model circuit is developed that explains those voltage contributions on different sample types. Further, it will be shown that a voltage signal arising from the magnetic tunnel junction can only be observed when the laser spot is directly centered on top of the magnetic tunnel junction, which allows a lateral separation of the effects.

  9. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Science.gov (United States)

    Dartora, C. A.; Nobrega, K. Z.; Cabrera, G. G.

    2016-08-01

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  10. Characterization of Magnetic Tunnel Junctions For Spin Transfer Torque Magnetic Random Access Memory

    Science.gov (United States)

    Dill, Joshua Luchay

    This thesis details two experimental methods for quantifying magnetic tunnel junction behavior, namely write error rates and field modulated spin-torque ferromagnetic resonance. The former examines how reliably an applied spin-transfer torque can excite magnetization dynamics that lead to a reversal of magnetization direction while the latter studies steady state dynamics provided by an oscillating spin-transfer torque. These characterization techniques reveal write error rate behavior for a particular composition magnetic tunnel junction that qualitatively deviates from theoretical predictions. Possible origins of this phenomenon are also investigated with the field modulated spin-torque ferromagnetic resonance technique. By understanding the dynamics of magnetic moments predicted by theory, one can experimentally confirm or disprove these theories in order to accurately model and predict tunnel junction behavior. By having a better model for what factors are important in magnetization dynamics, one can optimize these factors in terms of improving magnetic tunnel junctions for their use as computer memory.

  11. Coexistance of Giant Tunneling Electroresistance and Magnetoresistance in an All-Oxide Composite Magnetic Tunnel Junction

    KAUST Repository

    Caffrey, Nuala Mai

    2012-11-30

    We propose, by performing advanced abinitio electron transport calculations, an all-oxide composite magnetic tunnel junction, within which both large tunneling magnetoresistance (TMR) and tunneling electroresistance (TER) effects can coexist. The TMR originates from the symmetry-driven spin filtering provided by an insulating BaTiO3 barrier to the electrons injected from the SrRuO3 electrodes. Following recent theoretical suggestions, the TER effect is achieved by intercalating a thin insulating layer, here SrTiO3, at one of the SrRuO3/BaTiO3 interfaces. As the complex band structure of SrTiO3 has the same symmetry as that of BaTiO3, the inclusion of such an intercalated layer does not negatively alter the TMR and in fact increases it. Crucially, the magnitude of the TER also scales with the thickness of the SrTiO3 layer. The SrTiO3 thickness becomes then a single control parameter for both the TMR and the TER effect. This protocol offers a practical way to the fabrication of four-state memory cells. © 2012 American Physical Society.

  12. Enhanced Tunneling Electroresistance in Ferroelectric Tunnel Junctions due to the Reversible Metallization of the Barrier

    Science.gov (United States)

    Liu, Xiaohui; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-05-01

    Realizing a large tunneling electroresistance (TER) effect is crucial for device application of ferroelectric tunnel junctions (FTJs). FTJs are typically composed of a thin ferroelectric layer sandwiched by two metallic electrodes, where TER generally results from the dependence of the effective tunneling barrier height on the ferroelectric polarization. Since the resistance depends exponentially not only on barrier height but also on barrier width, TER is expected to be greatly enhanced when one of the electrodes is a semiconductor where the depletion region near the interface can be controlled via ferroelectric polarization. To explore this possibility, we perform studies of SrRuO3/BaTiO3/n -SrTiO3 FTJs, where n -SrTiO3 is an electron doped SrTiO3 electrode, using first-principles density functional theory. Our studies reveal that, in addition to modulation of the depletion region in n -SrTiO3 , the BaTiO3 barrier layer becomes conducting near the interface for polarization pointing into n -SrTiO3 , leading to dramatic enhancement of TER. The effect is controlled by the band alignment between the semiconductor and the ferroelectric insulator and opens the way for experimental realization of enhanced TER in FTJs through the choice of a semiconducting electrode and interface engineering.

  13. Enhanced Tunneling Electroresistance in Ferroelectric Tunnel Junctions due to the Reversible Metallization of the Barrier.

    Science.gov (United States)

    Liu, Xiaohui; Burton, J D; Tsymbal, Evgeny Y

    2016-05-13

    Realizing a large tunneling electroresistance (TER) effect is crucial for device application of ferroelectric tunnel junctions (FTJs). FTJs are typically composed of a thin ferroelectric layer sandwiched by two metallic electrodes, where TER generally results from the dependence of the effective tunneling barrier height on the ferroelectric polarization. Since the resistance depends exponentially not only on barrier height but also on barrier width, TER is expected to be greatly enhanced when one of the electrodes is a semiconductor where the depletion region near the interface can be controlled via ferroelectric polarization. To explore this possibility, we perform studies of SrRuO_{3}/BaTiO_{3}/n-SrTiO_{3} FTJs, where n-SrTiO_{3} is an electron doped SrTiO_{3} electrode, using first-principles density functional theory. Our studies reveal that, in addition to modulation of the depletion region in n-SrTiO_{3}, the BaTiO_{3} barrier layer becomes conducting near the interface for polarization pointing into n-SrTiO_{3}, leading to dramatic enhancement of TER. The effect is controlled by the band alignment between the semiconductor and the ferroelectric insulator and opens the way for experimental realization of enhanced TER in FTJs through the choice of a semiconducting electrode and interface engineering. PMID:27232046

  14. Current-Voltage Characteristics of MIM(S) Light Emission Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    WANG Maoxiang; YU Jianhua; SUN Chengxiu; WU Zonghan

    2001-01-01

    Double-barrier Au/Al2O3/Al/Al2O3/Al and Si-based Au/SiO2/Si light emission tunnel junctions were constructed. Light emission from these junctions was observed successfully. In this paper,we introduced simply the fabrication process of the double-barrier MIMJ and MIS J, and analyzed especially the I- V property and the negative resistance phenomenon (NRP) of these junctions. We concluded that the NRP resulted from obstructive effect of SPP to the electron's tunneling in the insulator layer, which will widen the barrier's width. The NRP was closely connected with the light emission. The SPP was a bridge of light emission and NRP of the junction. Discussion on the NRP was helpful to understand the electron tunneling characteristic and the light emission physical picture of these junctions.

  15. Strain sensing with sub-micron sized Al-AlOx-Al tunnel junctions

    OpenAIRE

    Koppinen, P. J.; Lievonen, J. T.; Ahlskog, M.; Maasilta, I. J.

    2009-01-01

    We demonstrate a local strain sensing method for nanostructures based on metallic Al tunnel junctions with AlOx barriers. The junctions were fabricated on top of a thin silicon nitride membrane, which was actuated with an AFM tip attached to a stiff cantilever. A large relative change in the tunneling resistance in response to the applied strain (gauge factor) was observed, up to a value 37. This facilitates local static strain variation measurements down to ~10^{-7}.

  16. AlGaAs/GaAs tunnel junctions in a 4-J tandem solar cell

    Institute of Scientific and Technical Information of China (English)

    Lü Siyu; Qu Xiaosheng

    2011-01-01

    The Ⅲ-Ⅴ compound tandem solar cell is a third-generation new style solar cell with ultra-high efficiency.The energy band gaps of the sub-cells in a GaInP/GaAs/InGaAs/Ge 4-J tandem solar cell are 1.8,1.4,1.0and 0.7 eV,respectively.In order to match the currents between sub-cells,tunnel junctions are used to connect the sub-cells.The characteristics of the tunnel junction,the material used in the tunnel junction,the compensation of the tunnel junction to the overall cell's characteristics,the tunnel junction's influence on the current density of sub-cells and the efficiency increase are discussed in the paper.An A1GaAs/GaAs tunnel junction is selected to simulate the cell's overall characteristics by PC 1 D,current densities of 16.02,17.12,17.75 and 17.45 mA/cm2 are observed,with a Voc of 3.246 V,the energy conversion efficiency under AM0 is 33.9%.

  17. Tunnel Junction with Perpendicular Magnetic Anisotropy: Status and Challenges

    Directory of Open Access Journals (Sweden)

    Mengxing Wang

    2015-08-01

    Full Text Available Magnetic tunnel junction (MTJ, which arises from emerging spintronics, has the potential to become the basic component of novel memory, logic circuits, and other applications. Particularly since the first demonstration of current induced magnetization switching in MTJ, spin transfer torque magnetic random access memory (STT-MRAM has sparked a huge interest thanks to its non-volatility, fast access speed, and infinite endurance. However, along with the advanced nodes scaling, MTJ with in-plane magnetic anisotropy suffers from modest thermal stability, high power consumption, and manufactural challenges. To address these concerns, focus of research has converted to the preferable perpendicular magnetic anisotropy (PMA based MTJ, whereas a number of conditions still have to be met before its practical application. This paper overviews the principles of PMA and STT, where relevant issues are preliminarily discussed. Centering on the interfacial PMA in CoFeB/MgO system, we present the fundamentals and latest progress in the engineering, material, and structural points of view. The last part illustrates potential investigations and applications with regard to MTJ with interfacial PMA.

  18. Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions

    NARCIS (Netherlands)

    Shan, J.; Dejene, F. K.; Leutenantsmeyer, J. C.; Flipse, J.; Munzenberg, M.; van Wees, B. J.

    2015-01-01

    Understanding heat generation and transport processes in a magnetic tunnel junction (MTJ) is a significant step towards improving its application in current memory devices. Recent work has experimentally demonstrated the magneto-Seebeck effect in MTJs, where the Seebeck coefficient of the junction v

  19. One-third (period three) harmonic generation in microwave-driven Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Clarke, J.; Mygind, Jesper;

    1986-01-01

    One-third harmonic signals have been generated in the zero voltage state of a Josephson tunnel junction driven with a microwave current in the frequency range 8–20 GHz. The signal was as much as 50 dB above the noise level of the detector with a linewidth of less than 100 Hz. The junction...

  20. Bottom-Up Molecular Tunneling Junctions Formed by Self-Assembly

    NARCIS (Netherlands)

    Zhang, Yanxi; Zhao, Zhiyuan; Fracasso, Davide; Chiechi, Ryan C

    2014-01-01

    This Minireview focuses on bottom-up molecular tunneling junctions - a fundamental component of molecular electronics - that are formed by self-assembly. These junctions are part of devices that, in part, fabricate themselves, and therefore, are particularly dependent on the chemistry of the molecul

  1. Static properties of small Josephson tunnel junctions in an oblique magnetic field

    DEFF Research Database (Denmark)

    Monaco, Roberto; Aarøe, Morten; Mygind, Jesper;

    2009-01-01

    We have carried out a detailed experimental investigation of the static properties of planar Josephson tunnel junctions in presence of a uniform external magnetic field applied in an arbitrary orientation with respect to the barrier plane. We considered annular junctions, as well as rectangular j...

  2. Fabrication of tunnel junctions on thick X-ray absorbing substrates of Nb and Ta

    NARCIS (Netherlands)

    Hamster, A.W.; Ferrari, E.; Adelerhof, D.J.; Brons, G.C.S.; Schoofs, I.J.E.; Flokstra, J.; Rogalla, H.; Bruijn, M.P.; Kiewiet, F.; Luiten, O.J.; Korte, de P.A.J.

    1996-01-01

    X-ray detectors based on absorber-junction combinations can combine a large detector area with position resolution and good energy resolution. We plan to use a thick, single crystal Nb or Ta absorber with readout tunnel junctions integrated on top as our next generation X-ray detector. The thickness

  3. Light emission and finite-frequency shot noise in molecular junctions: from tunneling to contact

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Christensen, Rasmus Bjerregaard; Brandbyge, Mads

    2013-01-01

    Scanning tunneling microscope induced light emission from an atomic or molecular junction has been probed from the tunneling to contact regime in recent experiments. There, the measured light emission yields suggest a strong correlation with the high-frequency current/charge fluctuations. We show...

  4. Effect of the electromagnetic environment on current fluctuations in driven tunnel junctions

    Science.gov (United States)

    Frey, Moritz; Grabert, Hermann

    2016-07-01

    We examine current fluctuations in tunnel junctions driven by a superposition of a constant and a sinusoidal voltage source. In standard setups, the external voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. The modes of this environment are excited by the time-dependent voltage and are the source of Johnson-Nyquist noise. We determine the autocorrelation function of the current flowing in the leads of the junction in the weak tunneling limit up to terms of second order in the tunneling Hamiltonian. The driven modes of the electromagnetic environment are treated exactly by means of a unitary transformation introduced recently. Particular emphasis is placed on the spectral function of the current fluctuations. The spectrum is found to comprise three contributions: a term arising from the Johnson-Nyquist noise of the environmental impedance, a part due to the shot noise of the tunneling element, and a third contribution which comes from the cross correlation between fluctuations caused by the electromagnetic environment and fluctuations of the tunneling current. All three parts of the spectral function occur already for devices under dc bias. The spectral function of ac driven tunneling elements can be determined from the result for a dc bias by means of a photoassisted tunneling relation of the Tien-Gordon type. Specific results are given for an Ohmic environment and for a junction driven through a resonator.

  5. Artificial ferroelectricity due to anomalous Hall effect in magnetic tunnel junctions

    OpenAIRE

    Vedyayev, A.; Ryzhanova, N.; Strelkov, N.; Dieny, B

    2012-01-01

    We theoretically investigated Anomalous Hall Effect (AHE) and Spin Hall Effect (SHE) transversally to the insulating spacer O, in magnetic tunnel junctions of the form F/O/F where F are ferromagnetic layers and O represents a tunnel barrier. We considered the case of purely ballistic (quantum mechanical) transport, taking into account the assymetric scattering due to spin-orbit interaction in the tunnel barrier. AHE and SHE in the considered case have a surface nature due to proximity effect....

  6. A high voltage Bi-CMOS compatible buffer super-junction LDMOS with an N-type buried layer

    International Nuclear Information System (INIS)

    A novel buffer super-junction (SJ) lateral double-diffused MOSFET (LDMOS) with an N-type buried layer (NB) is proposed. An N− buffer layer is implemented under the SJ region and an N-type layer is buried in the P substrate. Firstly, the new electric field peak introduced by the p—n junction of the P substrate and the N-type buried layer modulates the surface electric field distribution. Secondly, the N− buffer layer suppresses the substrate assisted depletion effect. Both of them improve the breakdown voltage (BV). Finally, because of the shallow depth of the SJ region, the NB buffer SJ-LDMOS is compatible with Bi-CMOS technology. Simulation results indicate that the average value of the surface lateral electric field strength of the NB buffer SJ-LDMOS reaches 23 V/μm at 15 μm drift length which results in a BV of 350 V and a specific on-resistance of 21 mΩ·cm2. (semiconductor devices)

  7. Nb/NiCu bilayers in single and stacked superconductive tunnel junctions: preliminary results

    International Nuclear Information System (INIS)

    We present preliminary experimental results concerning both single and stacked tunnel junctions in which one of the electrodes was formed by a superconductor/ferromagnet (S/F) bi-layer. In particular, in the stacked configuration a Nb/NiCu bi-layer was used as the intermediate electrode, and it was probed by tunneling on both sides. Tunnel junctions have been characterized in terms of current-voltage characteristics (IVC), and differential conductance. Preliminary steady-state injection-detection measurements performed in the stacked devices at T=4.2 K are also presented and discussed

  8. Nb/NiCu bilayers in single and stacked superconductive tunnel junctions: preliminary results

    Science.gov (United States)

    Pepe, G. P.; Ruotolo, A.; Parlato, L.; Peluso, G.; Ausanio, G.; Carapella, G.; Latempa, R.

    2004-05-01

    We present preliminary experimental results concerning both single and stacked tunnel junctions in which one of the electrodes was formed by a superconductor/ferromagnet (S/F) bi-layer. In particular, in the stacked configuration a Nb/NiCu bi-layer was used as the intermediate electrode, and it was probed by tunneling on both sides. Tunnel junctions have been characterized in terms of current-voltage characteristics (IVC), and differential conductance. Preliminary steady-state injection-detection measurements performed in the stacked devices at T=4.2K are also presented and discussed.

  9. Nb/NiCu bilayers in single and stacked superconductive tunnel junctions: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Pepe, G.P. E-mail: ruotolo_antonio@tin.it; Ruotolo, A.; Parlato, L.; Peluso, G.; Ausanio, G.; Carapella, G.; Latempa, R

    2004-05-01

    We present preliminary experimental results concerning both single and stacked tunnel junctions in which one of the electrodes was formed by a superconductor/ferromagnet (S/F) bi-layer. In particular, in the stacked configuration a Nb/NiCu bi-layer was used as the intermediate electrode, and it was probed by tunneling on both sides. Tunnel junctions have been characterized in terms of current-voltage characteristics (IVC), and differential conductance. Preliminary steady-state injection-detection measurements performed in the stacked devices at T=4.2 K are also presented and discussed.

  10. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Pu, E-mail: Vicky-sg1015@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore (Singapore); Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Lim, Sze-Ter; Han, Gu-Chang, E-mail: HAN-Guchang@dsi.a-star.edu.sg [Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Teo, Kie-Leong, E-mail: eleteokl@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore (Singapore)

    2015-12-21

    Heulser alloys Fe{sub 2}Cr{sub 1−x}Co{sub x}Si (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 10{sup 6 }erg/cm{sup 3}. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe{sub 2}CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  11. A superconducting tunnel junction X-ray detector design for practical applications

    International Nuclear Information System (INIS)

    Superconducting tunnel junctions coupled to a superconducting absorber can be used as a high-resolution energy-dispersive X-ray detector. The energy of an absorbed X-ray breaks Cooper pairs in the absorber, producing quasiparticles. These quasiparticles can tunnel through the barrier and be counted. When used in conjunction with FET electronics, however, the noise requirements limit the area of the tunnel junction. In many designs, this also limits the absorber area. We present a detector design that separates the absorber from the junction. It features a tantalum absorber for high absorption efficiency and an aluminum transport layer for rapid, low loss transport to the junction. Transport is aided by multiple trapping stages, while fabrication is simplified by using only two materials. (orig.)

  12. Tunnel anisotropic magnetoresistance in CoFeB|MgO|Ta junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hatanaka, S.; Miwa, S., E-mail: miwa@mp.es.osaka-u.ac.jp; Matsuda, K.; Nawaoka, K.; Tanaka, K.; Morishita, H.; Goto, M.; Mizuochi, N.; Shinjo, T.; Suzuki, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2015-08-24

    We found that CoFeB|MgO|Ta tunnel junctions exhibit tunnel anisotropic magnetoresistance (TAMR) at room temperature. The tunnel junctions exhibit positive magnetoresistance with the application of a magnetic field normal to the film plane. The dependencies on the applied magnetic field angle and MgO thickness reveal that the magnetoresistance originates from the TAMR, caused by the spin polarization and the spin-orbit interaction at the CoFeB|MgO interface. We also found that the TAMR can be used to detect ferromagnetic resonance in the CoFeB. This detection method could be useful for the characterization of nanomagnets that are free from the spin-transfer effect and the stray field of a reference layer, unlike conventional magnetic tunnel junctions.

  13. Voltage-Controlled Magnetic Dynamics in Nanoscale Magnetic Tunnel Junctions

    Science.gov (United States)

    Alzate Vinasco, Juan Guillermo

    Spintronic devices, i.e., those utilizing the interaction of magnetic moments with electric voltages and currents in magnetic nanostructures, offer an exceptionally promising set of candidates for future electronic memory needs. Recently, the possibility of reversing the magnetization of nanoscale magnetic tunnel junction (MTJ) devices using the spin transfer torque (STT) effect has attracted the attention of industry and academia, since STT-MRAM has been demonstrated to be a strong candidate for a high speed, high density, and high endurance nonvolatile memory. Further, by replacing the current-driven (e.g., STT) switching mechanism for a voltage-controlled effect, a novel magnetoelectric RAM (MeRAM) architecture could result in considerable improvements in terms of density and dissipated energy during switching, both factors which are limited in STT-MRAM by the large currents required. In this dissertation, the possibility of exploiting the voltage-controlled magnetic anisotropy (VCMA) effect on nanoscale MTJ devices as the driving mechanism for MeRAM will be introduced. Experimental results on the demonstration of current-assisted and purely voltage-controlled switching in the thermally-activated and precessional regimes are presented. The write energies in VCMA-driven switching of nanoscale MTJs are shown to be at least one order of magnitude smaller compared to STT-based schemes. The advantages and challenges in terms of scalability and energy-efficiency of this voltage-driven approach are discussed. Further, a compact model for co-simulation of VCMA-driven MTJs with CMOS is established and validated against experimental data. The compact model is refined by the parameters extracted from a detailed characterization of the voltage-driven dynamics in these devices. This includes experimental results on the accurate characterization of the temperature dependence of the perpendicular anisotropy and the VCMA effect in MTJs, as well as on the influence of higher

  14. Development and applications of the tunnel junction dc SQUID

    International Nuclear Information System (INIS)

    The development of a cylindrical dc SQUID made with shunted Nb-NbOx-Pb Josephson tunnel junctions is described. The SQUID is current biased at a non-zero voltage, and modulated with a 100 KHz flux. The 100 KHz signal across the SQUID drives a cooled tank circuit that optimally matches the SQUID impedance to the input of a room-temperature FET preamplifier. The SQUID is operated in a flux-locked loop with a dynamic range of +- 3 x 106 (in a 1-Hz bandwidth), a bandwidth of 0 to 2 KHz, and a slewing rate of 2 x 104 phi/sub o/sec-1. A flux noise power spectrum for a SQUID in a superconducting shield at 4.2 K is shown. Above 2 x 10-2 Hz the spectrum is white with an rms value of 10-5 phi/sub o/Hz/sup -1/2/. At lower frequencies the spectrum is approximately 10-10 (1 Hz/f) phi/sub o/2Hz-1, where f is the frequency. Factors contributing to the long term drift of the SQUID are discussed. A drift rate of 2 x 10-5 phi/sub o/h-1 over a 20-h period is achieved by regulating the temperature of the helium bath. A detailed description is given of the coupling of various input coils to the SQUID. The energy resolution of the SQUID with respect to a current in a 24-turn input coil is 7 x 10-30 J Hz-1 in the white noise region. The energy resolution in the l/f noise region and the long term drift performance are better than for any other SQUID

  15. Tunnel magnetoresistance in thermally robust Mo/CoFeB/MgO tunnel junction with perpendicular magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    B. Fang

    2015-06-01

    Full Text Available We report on tunnel magnetoresistance and electric-field effect in the Mo buffered and capped CoFeB/MgO magnetic tunnel junctions (MTJs with perpendicular magnetic anisotropy. A large tunnel magnetoresistance of 120% is achieved. Furthermore, this structure shows greatly improved thermal stability and stronger electric-field-induced modulation effect in comparison with the Ta/CoFeB/MgO-based MTJs. These results suggest that the Mo-based MTJs are more desirable for next generation spintronic devices.

  16. Klein tunneling and magnetoresistance of p -n junctions in Weyl semimetals

    Science.gov (United States)

    Li, Songci; Andreev, A. V.; Spivak, B. Z.

    2016-08-01

    We study the zero temperature conductance and magnetoconductance of ballistic p -n junctions in Weyl semimetals. Electron transport is mediated by Klein tunneling between the n and p regions. The chiral anomaly that is realized in Weyl semimetals plays a crucial role in the magnetoconductance of the junction. With the exception of field orientations where the angle between B and the junction plane is small, magnetoconductance is positive and linear in B at both weak and strong magnetic fields. In contrast, magnetoconductance in conventional p -n junctions is always negative.

  17. The p recombination layer in tunnel junctions for micromorph tandem solar cells

    Science.gov (United States)

    Yao, Wen-Jie; Zeng, Xiang-Bo; Peng, Wen-Bo; Liu, Shi-Yong; Xie, Xiao-Bing; Wang, Chao; Liao, Xian-Bo

    2011-07-01

    A new tunnel recombination junction is fabricated for n—i—p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p+ recombination layer between the n a-Si:H and the p hydrogenated nanocrystalline silicon (nc-Si:H) layers to improve the performance of the n—i—p tandem solar cells. The effects of the boron doping gas ratio and the deposition time of the p-a-Si:H recombination layer on the tunnel recombination junctions have been investigated. The current-voltage characteristic of the tunnel recombination junction shows a nearly ohmic characteristic, and the resistance of the tunnel recombination junction can be as low as 1.5 Ω·cm2 by using the optimized p-a-Si:H recombination layer. We obtain tandem solar cells with open circuit voltage Voc = 1.4 V, which is nearly the sum of the Vocs of the two corresponding single cells, indicating no Voc losses at the tunnel recombination junction.

  18. Fluctuations of the peak current of tunnel diodes in multi-junction solar cells

    International Nuclear Information System (INIS)

    Interband tunnel diodes are widely used to electrically interconnect the individual subcells in multi-junction solar cells. Tunnel diodes have to operate at high current densities and low voltages, especially when used in concentrator solar cells. They represent one of the most critical elements of multi-junction solar cells and the fluctuations of the peak current in the diodes have an essential impact on the performance and reliability of the devices. Recently we have found that GaAs tunnel diodes exhibit extremely high peak currents that can be explained by resonant tunnelling through defects homogeneously distributed in the junction. Experiments evidence rather large fluctuations of the peak current in the diodes fabricated from the same wafer. It is a challenging task to clarify the reason for such large fluctuations in order to improve the performance of the multi-junction solar cells. In this work we show that the large fluctuations of the peak current in tunnel diodes can be caused by relatively small fluctuations of the dopant concentration. We also show that the fluctuations of the peak current become smaller for deeper energy levels of the defects responsible for the resonant tunnelling.

  19. Numerical Simulation of Rock Mass Damage Evolution During Deep-Buried Tunnel Excavation by Drill and Blast

    Science.gov (United States)

    Yang, Jianhua; Lu, Wenbo; Hu, Yingguo; Chen, Ming; Yan, Peng

    2015-09-01

    Presence of an excavation damage zone (EDZ) around a tunnel perimeter is of significant concern with regard to safety, stability, costs and overall performance of the tunnel. For deep-buried tunnel excavation by drill and blast, it is generally accepted that a combination of effects of stress redistribution and blasting is mainly responsible for development of the EDZ. However, few open literatures can be found to use numerical methods to investigate the behavior of rock damage induced by the combined effects, and it is still far from full understanding how, when and to what degree the blasting affects the behavior of the EDZ during excavation. By implementing a statistical damage evolution law based on stress criterion into the commercial software LS-DYNA through its user-subroutines, this paper presents a 3D numerical simulation of the rock damage evolution of a deep-buried tunnel excavation, with a special emphasis on the combined effects of the stress redistribution of surrounding rock masses and the blasting-induced damage. Influence of repeated blast loadings on the damage extension for practical millisecond delay blasting is investigated in the present analysis. Accompanying explosive detonation and secession of rock fragments from their initial locations, in situ stress in the immediate vicinity of the excavation face is suddenly released. The transient characteristics of the in situ stress release and induced dynamic responses in the surrounding rock masses are also highlighted. From the simulation results, some instructive conclusions are drawn with respect to the rock damage mechanism and evolution during deep-buried tunnel excavation by drill and blast.

  20. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how...

  1. Band structure of topological insulators from noise measurements in tunnel junctions

    International Nuclear Information System (INIS)

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al2O3/Co tunnel junctions with bottom TI electrodes of either Bi2Te3 or Bi2Se3. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes

  2. Evidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.

    Science.gov (United States)

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2015-11-11

    We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel current around zero bias and step-like features in the current at larger biases. The voltage separation of these steps suggests that single-electron charging of nanometer-scale defects in the hBN barrier layer are responsible for these signatures. We find that annealing the metal-hBN-metal junctions removes these defects and the Coulomb blockade signatures in the tunneling current. PMID:26509431

  3. First-Principles Simulations of Inelastic Electron Tunneling Spectroscopyof Molecular Junctions

    OpenAIRE

    Jiang, Jun; Kula, Mathias; Lu, Wei; Luo, Yi

    2005-01-01

    A generalized Green's function theory is developed to simulate the inelastic electron tunneling spectroscopy (IETS) of molecular junctions. It has been applied to a realistic molecular junction with an octanedithiolate embedded between two gold contacts in combination with the hybrid density functional theory calculations. The calculated spectra are in excellent agreement with recent experimental results. Strong temperature dependence of the experimental IETS spectra is also reproduced. It is...

  4. Evidence for two-band superconductivity from break-junction tunneling on MgB2.

    Science.gov (United States)

    Schmidt, H; Zasadzinski, J F; Gray, K E; Hinks, D G

    2002-03-25

    Superconductor-insulator-superconductor tunnel junctions have been fabricated on MgB2 that display Josephson and quasiparticle currents. These junctions exhibit a gap magnitude, Delta approximately 2.5 meV, that is considerably smaller than the BCS value, but which clearly and reproducibly closes near the bulk T(c). In conjunction with fits of the conductance spectra, these results are interpreted as direct evidence of two-band superconductivity.

  5. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    Science.gov (United States)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  6. Circuit model for spin-bottleneck resistance in magnetic-tunnel-junction devices

    OpenAIRE

    Jungwirth, T.; MacDonald, A. H.

    1998-01-01

    Spin-bottlenecks are created in magnetic-tunnel-junction devices by spatial inhomogeneity in the relative resistances for up and down spins. We propose a simple electrical circuit model for these devices which incorporates spin-bottleneck effects and can be used to calculate their overall resistance and magnetoresistance. The model permits a simple understanding of the dependence of device magnetoresistance on spin diffusion lengths, tunneling magnetoresistance, and majority and minority spin...

  7. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Zhang Zheng-Zhong; Shen Rui; Sheng Li; Wang Rui-Qiang; Wang Bai-Gen; Xing Ding-Yu

    2011-01-01

    A single-molecule magnet (SMM)coupled to two normal metallic electrodes can both switch spin-up and spindown electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  8. Negative tunnelling magnetoresistance in spin filtering magnetic junctions with spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    Li Yun

    2011-01-01

    We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer-Büttiker formalism and taking into account the spin-orbit coupling (SOC). It is shown that spin-flip scattering induced by SOC is stronger in parallel alignment of magnetization of the ferromegnet barrier (FB) and the ferromagnetic electrode than that in antiparallel case. The increase of negative tunnelling magnetoresistance with bias is in agreement with recent experimental observation.

  9. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.

  10. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus_minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker`s theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.

  11. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    International Nuclear Information System (INIS)

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs

  12. Bias voltage dependence of tunneling anisotropic magnetoresistance in magnetic tunnel junctions with MgO and Al2O3 tunnel barriers.

    Science.gov (United States)

    Gao, Li; Jiang, Xin; Yang, See-Hun; Burton, J D; Tsymbal, Evgeny Y; Parkin, Stuart S P

    2007-11-30

    Tunneling anisotropic magnetoresistance (TAMR) is observed in tunnel junctions with transition metal electrodes as the moments are rotated from in-plane to out-of-plane in sufficiently large magnetic fields that the moments are nearly parallel to one another. A complex angular dependence of the tunneling resistance is found with twofold and fourfold components that vary strongly with bias voltage. Distinctly different TAMR behaviors are obtained for devices formed with highly textured crystalline MgO(001) and amorphous Al2O3 tunnel barriers. A tight-binding model shows that a fourfold angular dependence can be explained by the presence of an interface resonant state that affects the transmission of the contributing tunneling states through a spin-orbit interaction. PMID:18233308

  13. Realization of Primary Thermometer from Electrical Shot Noise in a Metal-Insulator-Metal Tunnel Junction

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Rehman, M.; Choi, J. S.; Song, W.; Chong, Y. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Khim, Z. G. [Dept. of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Ryu, S. W. [Dept. of Physics, Chonnam National University, Gwangju (Korea, Republic of)

    2010-04-15

    We measured electrical shot noise in a metal-insulator-metal tunnel junction, which was made by using electron-beam lithography and double-angle evaporation technique. Since the dependence of the shot noise on bias voltage and temperature is theoretically well known, we can determine the temperature of the junction by measuring the noise as the voltage across the junction is changed. A cryogenic low noise amplifier was used to amplify the noise signal in the frequency range of 600-800 MHz, which enabled fast measurement of noise signal and thus temperature. With further study, this method could be useful for primary thermometry in cryogenic temperatures.

  14. Vortex penetration and self-resonant effects in large Josephson tunnel junction

    International Nuclear Information System (INIS)

    Discontinuity in the resonant voltage (traveling wave resonance) as a function of applied magnetic field has been observed in large Josephson tunnel junctions. It is believed that our results can be explained in terms of peculiar magnetic properties of large junctions of finite length L>>lambda/sub J/, i.e., the quantization of internal fields and magnetic hysteresis. The discontinuity corresponds to the change of number of vortices penetrating the junction barrier. The experimental voltage jumps are in fairly good agreement with these calculated from the theory

  15. Macroscopic quantum tunneling in a stack of capacitively-coupled intrinsic Josephson junctions

    Science.gov (United States)

    Koyama, Tomio; Machida, Masahiko

    2008-04-01

    A macroscopic quantum theory for the phase dynamics in capacitively-coupled intrinsic Josephson junctions (IJJ's) is constructed. We quantize the capacitively-coupled IJJ model in terms of the canonical quantization method. The multi-junction effect for the macroscopic quantum tunneling (MQT) to the first resistive branch is clarified. It is shown that the escape rate is greatly enhanced by the capacitive coupling between junctions. We also discuss the origin of the N2 -enhancement in the escape rate observed in the uniformly switching in Bi-2212 IJJ's.

  16. Normal-state conductance used to probe superconducting tunnel junctions for quantum computing

    Science.gov (United States)

    Chaparro, Carlos; Bavier, Richard; Kim, Yong-Seung; Kim, Eunyoung; Kline, Jeffrey S.; Pappas, David P.; Oh, Seongshik

    2010-04-01

    Here we report normal-state conductance measurements of three different types of superconducting tunnel junctions that are being used or proposed for quantum computing applications: p-Al/a-AlO/p-Al, e-Re/e-AlO/p-Al, and e-V/e-MgO/p-V, where p stands for polycrystalline, e for epitaxial, and a for amorphous. All three junctions exhibited significant deviations from the parabolic behavior predicted by the WKB approximation models. In the p-Al/a-AlO/p-Al junction, we observed enhancement of tunneling conductances at voltages matching harmonics of Al-O stretching modes. On the other hand, such Al-O vibration modes were missing in the epitaxial e-Re/e-AlO/p-Al junction. This suggests that absence or existence of the Al-O stretching mode might be related to the crystallinity of the AlO tunnel barrier and the interface between the electrode and the barrier. In the e-V/e-MgO/p-V junction, which is one of the candidate systems for future superconducting qubits, we observed suppression of the density of states at zero bias. This implies that the interface is electronically disordered, presumably due to oxidation of the vanadium surface underneath the MgO barrier, even if the interface was structurally well ordered, suggesting that the e-V/e-MgO/p-V junction will not be suitable for qubit applications in its present form. This also demonstrates that the normal-state conductance measurement can be effectively used to screen out low quality samples in the search for better superconducting tunnel junctions.

  17. Spin Diode Based on Fe/MgO Double Tunnel Junction

    OpenAIRE

    Iovan, A.; Andersson, S; Naidyuk, Yu. G.; Vedyaev, A.; Dieny, B.; Korenivski, V.

    2007-01-01

    We demonstrate a spin diode consisting of a semiconductor free nano-scale Fe/MgO-based double tunnel junction. The device exhibits a near perfect spin-valve effect combined with a strong diode effect. The mechanism consistent with our data is resonant tunneling through discrete states in the middle ferromagnetic layer sandwiched by tunnel barriers of different spin-dependent transparency. The observed magneto-resistance is record high, ~4000%, essentially making the structure an on/off spin-s...

  18. Spin diode based on Fe/MgO double tunnel junction.

    Science.gov (United States)

    Iovan, A; Andersson, S; Naidyuk, Yu G; Vedyaev, A; Dieny, B; Korenivski, V

    2008-03-01

    We demonstrate a spin diode consisting of a semiconductor-free nanoscale Fe/MgO-based double tunnel junction. The device exhibits a near perfect spin-valve effect combined with a strong diode effect. The mechanism consistent with our data is resonant tunneling through discrete states in the middle ferromagnetic layer sandwiched by tunnel barriers of different spin-dependent transparency. The observed magnetoresistance is a record high>1000%, essentially making the structure an on/off spin switch. This, combined with the strong diode effect, approximately 100, demonstrates a new device principle, promising for memory and reprogrammable logic applications. PMID:18284216

  19. Coherent quantum transport in normal-metal/d-wave superconductor/normal-metal double tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    DONG; Zhengchao; FU; Hao

    2004-01-01

    Taking into account the effects of quantum interference and interface scattering, combining the electron current with hole current contribution to tunnel current,we study the coherent quantum transport in normal-metal/d-wave superconductor/normal-metal (NM/d-wave SC/NM) double tunnel junctions by using extended Blonder-Tinkham-Klapwijk (BTK) approach. It is shown that all quasiparticle transport coefficients and conductance spectrum exhibit oscillating behavior with the energy, in which periodic vanishing of Andreev reflection (AR) above superconducting gap is found.In tunnel limit for the interface scattering strength taken very large, there are a series of bound states of quasiparticles formed in SC.

  20. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions.

    Science.gov (United States)

    Jin Hu, Wei; Wang, Zhihong; Yu, Weili; Wu, Tom

    2016-02-29

    Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 10(5). Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs.

  1. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions

    KAUST Repository

    Jin Hu, Wei

    2016-02-29

    Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 105. Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs.

  2. Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions

    Science.gov (United States)

    McCann, Edward; Fal'Ko, Vladimir I.

    2002-10-01

    We present a theoretical description of the thermopower due to magnon-assisted tunneling in a mesoscopic tunnel junction between two ferromagnetic metals. The thermopower is generated in the course of thermal equilibration between two baths of magnons, mediated by electrons. For a junction between two ferromagnets with antiparallel polarizations, the ability of magnon-assisted tunneling to create thermopower SAP depends on the difference between the size Π↑,↓ of the majority- and minority-band Fermi surfaces and it is proportional to a temperature-dependent factor (kBT/ωD)3/2 where ωD is the magnon Debye energy. The latter factor reflects the fractional change in the net magnetization of the reservoirs due to thermal magnons at temperature T (Bloch's T3/2 law). In contrast, the contribution of magnon-assisted tunneling to the thermopower SP of a junction with parallel polarizations is negligible. As the relative polarizations of ferromagnetic layers can be manipulated by an external magnetic field, a large difference ΔS=SAP-SP~SAP~- (kB/e)f(Π↑,Π↓)(kBT/ωD)3/2 results in a magnetothermopower effect. This magnetothermopower effect becomes giant in the extreme case of a junction between two half-metallic ferromagnets, ΔS~-kB/e.

  3. Static properties of small Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monaco, R.; Aarøe, Morten; Mygind, Jesper;

    2008-01-01

    The magnetic field distribution in the barrier of small planar Josephson tunnel junctions is numerically simulated in the case when an external magnetic field is applied perpendicular to the barrier plane. The simulations allow for heuristic analytical solutions for the Josephson static phase pro...

  4. Testing the kibble-zurek scenario with annular josephson tunnel junctions

    Science.gov (United States)

    Kavoussanaki; Monaco; Rivers

    2000-10-16

    In parallel with Kibble's description of the onset of phase transitions in the early Universe, Zurek has provided a simple picture for the onset of phase transitions in condensed matter systems, supported by agreement with experiments in 3He and superconductors. We show how experiments with annular Josephson tunnel junctions can, and do, provide further support for this scenario.

  5. CMOS Interface Circuits for Spin Tunneling Junction Based Magnetic Random Access Memories

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh Saripalli

    2002-12-31

    Magneto resistive memories (MRAM) are non-volatile memories which use magnetic instead of electrical structures to store data. These memories, apart from being non-volatile, offer a possibility to achieve densities better than DRAMs and speeds faster than SRAMs. MRAMs could potentially replace all computer memory RAM technologies in use today, leading to future applications like instan-on computers and longer battery life for pervasive devices. Such rapid development was made possible due to the recent discovery of large magnetoresistance in Spin tunneling junction devices. Spin tunneling junctions (STJ) are composite structures consisting of a thin insulating layer sandwiched between two magnetic layers. This thesis research is targeted towards these spin tunneling junction based Magnetic memories. In any memory, some kind of an interface circuit is needed to read the logic states. In this thesis, four such circuits are proposed and designed for Magnetic memories (MRAM). These circuits interface to the Spin tunneling junctions and act as sense amplifiers to read their magnetic states. The physical structure and functional characteristics of these circuits are discussed in this thesis. Mismatch effects on the circuits and proper design techniques are also presented. To demonstrate the functionality of these interface structures, test circuits were designed and fabricated in TSMC 0.35{micro} CMOS process. Also circuits to characterize the process mismatches were fabricated and tested. These results were then used in Matlab programs to aid in design process and to predict interface circuit's yields.

  6. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions

    DEFF Research Database (Denmark)

    Donolato, M.; Sogne, E.; Dalslet, Bjarke Thomas;

    2011-01-01

    We demonstrate the detection of the Brownian relaxation frequency of 250 nm diameter magnetic beads using a lab-on-chip platform based on current lines for exciting the beads with alternating magnetic fields and highly sensitive magnetic tunnel junction (MTJ) sensors with a superparamagnetic free...

  7. Phase transitions of Josephson-tunnel-junction arrays at zero and full frustration

    NARCIS (Netherlands)

    Wees, B.J. van; Zant, H.S.J. van der; Mooij, J.E.

    1987-01-01

    We have fabricated and studied square two-dimensional arrays of Josephson oxide tunnel junctions. Remarkable structure is observed in the longitudinal and transverse resistance as a function of a perpendicular magnetic field. The linear and nonlinear resistance have been measured for f=0 and f=½, wh

  8. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Vilan, Ayelet [Department of Materials and Interfaces, Weizmann Institute of Science, POB 26, Rehovot 76100 (Israel)

    2016-01-07

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at the metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.

  9. Fabrication of high-quality submicron Nb/Al-AlOx/Nb tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Yu Hai-Feng; Cao Wen-Hui; Zhu Xiao-Bo; Yang Hai-Fang; Yu Hong-Wei; Ren Yu-Feng; Gu Chang-Zhi; Chen Geng-Hua; Zhao Shi-Ping

    2008-01-01

    Nb/Al-AlOx/Nb tunnel junctions are often used in the studies of macroscopic quantum phenomena and supercon-ducting qubit applications of the Josepheon devices. In this work, we describe a convenient and reliable process using electron beam lithography for the fabrication of high-quality, submicron-sized Nb/Al-AlOx/Nb Josephson junctions.The technique follows the well-known selective Nb etching process and produces high-quality junctions with Vm=100 mV at 2.3 K for the typical critical current density of 2.2 kA/cm2, which can be adjusted by controlling the oxygen pressure and oxidation time during the formation of the tunnelling barrier. We present the results of the temperature depen-dence of the sub-gap current and in-plane magnetic-field dependence of the critical current, and compare them with the theoretical predictions.

  10. Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor

    Energy Technology Data Exchange (ETDEWEB)

    Dhungana, Kamal B.; Pati, Ranjit, E-mail: patir@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States)

    2014-04-21

    Amplification of tunnel magnetoresistance by gate field in a molecular junction is the most important requirement for the development of a molecular spin valve transistor. Herein, we predict a giant amplification of tunnel magnetoresistance in a single molecular spin valve junction, which consists of Ru-bis-terpyridine molecule as a spacer between two ferromagnetic nickel contacts. Based on the first-principles quantum transport approach, we show that a modest change in the gate field that is experimentally accessible can lead to a substantial amplification (320%) of tunnel magnetoresistance. The origin of such large amplification is attributed to the spin dependent modification of orbitals at the molecule-lead interface and the resultant Stark effect induced shift in channel position with respect to the Fermi energy.

  11. Electrical control of memristance and magnetoresistance in oxide magnetic tunnel junctions

    KAUST Repository

    Zhang, Kun

    2015-01-01

    Electric-field control of magnetic and transport properties of magnetic tunnel junctions has promising applications in spintronics. Here, we experimentally demonstrate a reversible electrical manipulation of memristance, magnetoresistance, and exchange bias in Co/CoO–ZnO/Co magnetic tunnel junctions, which enables the realization of four nonvolatile resistance states. Moreover, greatly enhanced tunneling magnetoresistance of 68% was observed due to the enhanced spin polarization of the bottom Co/CoO interface. The ab initio calculations further indicate that the spin polarization of the Co/CoO interface is as high as 73% near the Fermi level and plenty of oxygen vacancies can induce metal–insulator transition of the CoO1−v layer. Thus, the electrical manipulation mechanism on the memristance, magnetoresistance and exchange bias can be attributed to the electric-field-driven migration of oxygen ions/vacancies between very thin CoO and ZnO layers.

  12. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    Science.gov (United States)

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift.

  13. Macroscopic quantum tunnelling in a current biased Josephson junction

    International Nuclear Information System (INIS)

    We discuss in this work an attempt to answer experimentally the question: do macroscopic variables obey quantum mechanics. More precisely, this experiment deals with the question of quantum-mechanical tunnelling of a macroscopic variable, a subject related to the famous Schrodinger's cat problem in the theory of measurement

  14. Radio-frequency shot-noise measurement in a magnetic tunnel junction with a MgO barrier

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Mushtaq; Park, Junghwan; Song, Woon; Chong, Yonuk [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Lee, Yeonsub; Min, Byoungchul; Shin, Kyungho [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Ryu, Sangwan [Chonnam National University, Gwangju (Korea, Republic of); Khim, Zheong [Seoul National University, Seoul (Korea, Republic of)

    2010-10-15

    We measured the noise power of a magnetic tunnel junction in the frequency range of 710 {approx} 1200 MHz. A low-noise cryogenic HEMT amplifier was used to measure the small noise signal at a high frequency with wide bandwidth. The MgO-barrier tunnel junction showed large tunnel magnetoresistance ratio of 215% at low temperature, which indicates electronic transport through the tunnel barrier without any significant spin-flip scattering. In the bias-dependent noise measurement, however, the zero-bias shot noise was enhanced compared to the value expected from a perfect tunnel barrier or the value observed from a good Al-AlO{sub x}-Al tunnel junction. We assume that this enhanced noise comes from inelastic tunneling processes through the barrier, which may be related to the observed zero-bias anomaly in the differential resistance of the tunnel junctions. We present a simple phenomenological model for how the inelastic scattering process can enhance the zero-bias noise in a tunnel junction.

  15. Temperature dependence of tunneling magnetoresistance in epitaxial magnetic tunnel junctions using a Co2FeAl Heusler alloy electrode

    Science.gov (United States)

    Wang, Wenhong; Sukegawa, Hiroaki; Inomata, Koichiro

    2010-09-01

    Spin-valve-type epitaxial magnetic tunnel junctions (MTJs) consisting of a full-Heusler alloy Co2FeAl (CFA) and a MgO tunnel barrier were fabricated on a single-crystal MgO(001) substrate using sputtering method for all the layers. Experimental temperature-dependent tunnel magnetoresistance in the MTJs was revealed to be fitted well using spin wave excitation model for tunneling spin polarization, P(T)=P0(1-αT3/2) up to room temperature, where P0 is the spin polarization at 0 K and α is a fitting parameter. The determined P and α are shown to be significantly different between bottom and top CFA electrodes facing a MgO barrier. It is demonstrated that the bottom CFA deposited on a Cr buffer has a low α and behaves as a half-metal with P˜1 in terms of the Δ1 symmetry due to the coherent tunneling through a MgO barrier.

  16. Real-time measurement of quasiparticle tunneling in a single-junction transmon qubit using feedback

    Science.gov (United States)

    Ristè, Diego; Bultink, Niels; Tiggelman, Marijn; Schouten, Raymond; Lehnert, Konrad; Dicarlo, Leonardo

    2013-03-01

    With coherence times of superconducting qubits now exceeding 100 μs , the contribution of quasiparticle (QP) tunneling to qubit relaxation and dephasing becomes potentially relevant. We report the real-time measurement of QP tunneling across the single junction of a 3D transmon qubit. We integrate recent developments in projective qubit readout with 99 % fidelity and feedback-based reset to transform the qubit into a charge-parity detector with 6 μs resolution. We detect a symmetric random telegraph signal matching a QP tunneling time of 0 . 8 ms . By measuring the correlation function of charge parity conditioned on specific initial and final qubit states, we determine that most QP tunneling does not induce qubit transitions, in contradiction with recent theory. We extract a QP-induced qubit relaxation time T1qp ~ 3 ms , decidedly not limiting the measured T1 = 0 . 14 ms . Research supported by NWO, FOM, and EU Project SOLID.

  17. Light amplification by stimulated emission from an optically pumped molecular junction in a scanning tunneling microscope

    CERN Document Server

    Braun, K; Wang, X; Adler, H; Peisert, H; Chasse, T; Zhang, D; Meixner, A J

    2013-01-01

    Here, we introduce and experimentally demonstrate optical amplification and stimulated emission from a single optically pumped molecular tunneling junction of a scanning tunneling microscope. The gap between a sharp gold tip and a flat gold substrate covered with a self-assembled monolayer of 5-chloro-2-mercaptobenzothiazole molecules forms an extremely small optical gain medium. When electrons tunnel from the molecules highest occupied molecular orbital to the tip, holes are left behind. These can be repopulated by hot electrons induced by the laser-driven plasmon oscillation on the metal surfaces enclosing the cavity. Solving the laser-rate equations for this system shows that the repopulation process can be efficiently stimulated by the gap modes near field, TERS scattering from neighboring molecules acting as an optical seed. Our results demonstrate how optical enhancement inside the plasmonic cavity can be further increased by a stronger localization via tunneling through molecules. We anticipate that st...

  18. Voltage-driven versus current-driven spin torque in anisotropic tunneling junctions

    KAUST Repository

    Manchon, Aurelien

    2011-10-01

    Nonequilibrium spin transport in a magnetic tunnel junction comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is studied theoretically. The interfacial SOI generates a spin torque of the form T=T∥ M×(z× M)+T⊥ z× M, even in the absence of an external spin polarizer. For thick and large tunnel barriers, the torque reduces to the perpendicular component T⊥, which can be electrically tuned by applying a voltage across the insulator. In the limit of thin and low tunnel barriers, the in-plane torque T∥ emerges, proportional to the tunneling current density. Experimental implications on magnetic devices are discussed. © 2011 IEEE.

  19. Elliptic annular Josephson tunnel junctions in an external magnetic field: the statics

    DEFF Research Database (Denmark)

    Monaco, Roberto; Granata, Carmine; Vettoliere, Antonio;

    2015-01-01

    We have investigated the static properties of one-dimensional planar Josephson tunnel junctions (JTJs) in the most general case of elliptic annuli. We have analyzed the dependence of the critical current in the presence of an external magnetic field applied either in the junction plane or in the ......We have investigated the static properties of one-dimensional planar Josephson tunnel junctions (JTJs) in the most general case of elliptic annuli. We have analyzed the dependence of the critical current in the presence of an external magnetic field applied either in the junction plane...... a numerical analysis is carried out after the derivation of the appropriate perturbed sine-Gordon equation. For a given applied field we find that a number of different phase profiles exist which differ according to the number of fluxon-antifluxon pairs. We demonstrate that in samples made by specularly...... symmetric electrodes a transverse magnetic field is equivalent to an in-plane field applied in the direction of the current flow. Varying the ellipse eccentricity we reproduce all known results for linear and ring-shaped JTJs. Experimental data on high-quality Nb/Al-AlOx/Nb elliptic annular junctions...

  20. Low frequency noise in small-area tunnel junction dc SQUIDs

    International Nuclear Information System (INIS)

    The noise in a small-area tunnel junction dc SQUID fabricated with a 2.5 μm Pb-alloy technology has been measured in the frequency interval 0.5 Hz -0.9 at 1.6 K, and epsilon α f-0.75 at 4.2 K. The presence of the increased noise at lower frequencies can be understood in terms of a thermal fluctuation model in which equilibrium temperature fluctuations modulate junction critical currents. (orig.)

  1. Mutual locking, chaos and devils staircase in two Josephson tunnel junctions with a common resistive shunt

    International Nuclear Information System (INIS)

    The authors have studied the phase-locking in a pair of individually biased, resistively and capacitively shunted Josephson junctions, coupled by a common resistive or capacitive shunt, on an analog computer. Under certain conditions locking is found to occur at all rational frequency ratios. A critical line is found in parameter space along which the steps form a complete devils staircase having a fractal dimension of 0.87. Beyond the critical line bifurcations occur on all steps following the Feigenbaum sequence to chaos. The Feigenbaum constants are recovered to a fair accuracy. Preliminary experiments with two Josephson tunnel junctions shunted on the chip by a gold-indium film are discussed

  2. INFLUENCE OF LONG AND DEEPLY-BURIED DIVERSION TUNNELS ON THE WATER TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    LI Ran; LI Ke-feng; LUO Lin; DENG Yun

    2004-01-01

    A 3-D temperature model for diversion tunnel was developed by combining k-ε model and energy transport equation. The actual geometry data of the tunnel was used to construct a three-dimensional computational domain including the concrete lining. As the interaction between temperature and velocity fields can be taken into account, the model can be employed to accurately simulate the temperature and velocity field. The model was validated with the field data observed in the diversion tunnel of the Nanya River. The water temperature of the diversion tunnel of the Second Jinping Cascade Hydropower Station to be built was predicted. It is shown that the temperature increase is not observable due to the large diameter of the tunnel, the big flow rate and the short contact time. The result can provide scientific foundation or reference for the design of hydropower station, and protection strategy of aquatic organisms and aquatic ecosystem.

  3. Anisotropic Magnetoresistance and Anisotropic Tunneling Magnetoresistance due to Quantum Interference in Ferromagnetic Metal Break Junctions

    DEFF Research Database (Denmark)

    Bolotin, Kirill; Kuemmeth, Ferdinand; Ralph, D

    2006-01-01

    We measure the low-temperature resistance of permalloy break junctions as a function of contact size and the magnetic field angle in applied fields large enough to saturate the magnetization. For both nanometer-scale metallic contacts and tunneling devices we observe large changes in resistance...... with the angle, as large as 25% in the tunneling regime. The pattern of magnetoresistance is sensitive to changes in bias on a scale of a few mV. We interpret the effect as a consequence of conductance fluctuations due to quantum interference....

  4. Probing the Inelastic Interactions in Molecular Junctions by Scanning Tunneling Microscope

    Science.gov (United States)

    Xu, Chen

    With a sub-Kelvin scanning tunneling microscope, the energy resolution of spectroscopy is improved dramatically. Detailed studies of finer features of spectrum become possible. The asymmetry in the line shape of carbon monoxide vibrational spectra is observed to correlate with the couplings of the molecule to the tip and substrates. The spin-vibronic coupling in the molecular junctions is revisited with two metal phthalocyanine molecules, unveiling sharp spin-vibronic peaks. Finally, thanks to the improved spectrum resolution, the bonding structure of the acyclic compounds molecules is surveyed with STM inelastic tunneling probe, expanding the capability of the innovative high resolution imaging technique.

  5. Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions.

    Science.gov (United States)

    Velev, J P; Duan, Chun-Gang; Belashchenko, K D; Jaswal, S S; Tsymbal, E Y

    2007-03-30

    Based on first-principles calculations, we demonstrate the impact of the electric polarization on electron transport in ferroelectric tunnel junctions (FTJs). Using a Pt/BaTiO3/Pt FTJ as a model system, we show that the polarization of the BaTiO3 barrier leads to a substantial drop in the tunneling conductance due to changes in the electronic structure driven by ferroelectric displacements. We find a sizable change in the transmission probability across the Pt/BaTiO3 interface with polarization reversal, a signature of the electroresistance effect. These results reveal exciting prospects that FTJs offer as resistive switches in nanoscale electronic devices. PMID:17501233

  6. Effect of stray capacitances in a multiple-tunnel junction memory device

    Science.gov (United States)

    Jalil, M. B. A.; Wagner, M.

    1999-12-01

    The retention time of a multiple-tunnel junction (MTJ) trap device is investigated, taking into account the effects of stray capacitances, which have been neglected so far. Using the image-soliton method, the exact solution to Gibb's energy change of tunnelling across the MTJ is obtained. The I- V characteristics and the retention time are then approximated via a much-reduced Master Equation. It is found that the stability of the trap is not adversely affected by stray capacitances provided that temperature is kept low.

  7. A new spin-functional MOSFET based on magnetic tunnel junction technology: pseudo-spin-MOSFET

    OpenAIRE

    Shuto, Yusuke; Nakane, Ryosho; Wang, Wenhong; Sukegawa, Hiroaki; Yamamoto, Shuu'ichirou; Tanaka, Masaaki; Inomata, Koichiro; Sugahara, Satoshi

    2009-01-01

    We fabricated and characterized a new spin-functional MOSFET referred to as a pseudo-spin-MOSFET (PS-MOSFET). The PS-MOSFET is a circuit using an ordinary MOSFET and magnetic tunnel junction (MTJ) for reproducing functions of spin-transistors. Device integration techniques for a bottom gate MOSFET using a silicon-on-insulator (SOI) substrate and for an MTJ with a full-Heusler alloy electrode and MgO tunnel barrier were developed. The fabricated PS-MOSFET exhibited high and low transconductanc...

  8. Zeeman effects on the coherent tunnelling conductance in normal-metal / superconductor / normal-metal double tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Dong Zheng-Chao

    2005-01-01

    The coherent quantum transport is investigated in normal-metal/superconductor/normal-metal (N/S/N) double tunnel junctions under a Zeeman magnetic field on the S. Taking simultaneously into account the electron-injected current from one N electrode and the hole-injected current from the other N electrode, we derive a general formula for the differential conductance in the N/S/N system. It is shown that the conductance spectrum exhibits oscillatory behaviour with the bias voltage, and the oscillation amplitude is reduced with increasing temperature and Zeeman magnetic field, the Zeeman energy can lead to the Zeeman splitting of conductance peaks. In the tunnel limit, a series of bound states of quasiparticles will form in the S.

  9. Electric Field Control of the Resistance of Multiferroic Tunnel Junctions with Magnetoelectric Antiferromagnetic Barriers

    Science.gov (United States)

    Merodio, P.; Kalitsov, A.; Chshiev, M.; Velev, J.

    2016-06-01

    Based on model calculations, we predict a magnetoelectric tunneling electroresistance effect in multiferroic tunnel junctions consisting of ferromagnetic electrodes and magnetoelectric antiferromagnetic barriers. Switching of the antiferromagnetic order parameter in the barrier in applied electric field by means of the magnetoelectric coupling leads to a substantial change of the resistance of the junction. The effect is explained in terms of the switching of the orientations of local magnetizations at the barrier interfaces affecting the spin-dependent interface transmission probabilities. Magnetoelectric multiferroic materials with finite ferroelectric polarization exhibit an enhanced resistive change due to polarization-induced spin-dependent screening. These results suggest that devices with active barriers based on single-phase magnetoelectric antiferromagnets represent an alternative nonvolatile memory concept.

  10. Ballistic current transport studies of ferromagnetic multilayer films and tunnel junctions (invited)

    International Nuclear Information System (INIS)

    Three applications of ballistic electron microscopy are used to study, with nanometer-scale resolution, the magnetic and electronic properties of magnetic multilayer thin films and tunnel junctions. First, the capabilities of ballistic electron magnetic microscopy are demonstrated through an investigation of the switching behavior of continuous Ni80Fe20/Cu/Co trilayer films in the presence of an applied magnetic field. Next, the ballistic, hot-electron transport properties of Co films and multilayers formed by thermal evaporation and magnetron sputtering are compared, a comparison which reveals significant differences in the ballistic transmissivity of thin film multilayers formed by the two techniques. Finally, the electronic properties of thin aluminum oxide tunnel junctions formed by thermal evaporation and sputter deposition are investigated. Here the ballistic electron microscopy studies yield a direct measurement of the barrier height of the aluminum oxide barriers, a result that is invariant over a wide range of oxidation conditions. [copyright] 2001 American Institute of Physics

  11. Important issues facing model-based approaches to tunneling transport in molecular junctions

    CERN Document Server

    Baldea, Ioan

    2015-01-01

    Extensive studies on thin films indicated a generic cubic current-voltage $I-V$ dependence as a salient feature of charge transport by tunneling. A quick glance at $I-V$ data for molecular junctions suggests a qualitatively similar behavior. This would render model-based studies almost irrelevant, since, whatever the model, its parameters can always be adjusted to fit symmetric (asymmetric) $I-V$ curves characterized by two (three) expansion coefficients. Here, we systematically examine popular models based on tunneling barrier or tight-binding pictures and demonstrate that, for a quantitative description at biases of interest ($V$ slightly higher than the transition voltage $V_t$), cubic expansions do not suffice. A detailed collection of analytical formulae as well as their conditions of applicability are presented to facilitate experimentalists colleagues to process and interpret their experimental data by obtained by measuring currents in molecular junctions. We discuss in detail the limits of applicabili...

  12. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    Science.gov (United States)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  13. Spin transport in nanoscale spin valves and magnetic tunnel junctions

    Science.gov (United States)

    Patibandla, Sridhar

    Spintronics or electronics that utilizes the spin degree of freedom of a single charge carrier (or an ensemble of charge carriers) to store, process, sense or communicate data and information is a rapidly burgeoning field in electronics. In spintronic devices, information is encoded in the spin polarization of a single carrier (or multiple carriers) and the spin(s) of these carrier(s) are manipulated for device operation. This strategy could lead to devices with low power consumption. This dissertation investigates spin transport in one dimensional and two dimensional semiconductors, with a view to applications in spintronic devices. This dissertation is arranged as follows: Chapter 1 gives a detailed introduction and necessary background to understand aspects of spin injection into a semiconductor from a spin polarized source such as a ferromagnet, and spin polarized electron transport in the semiconductor. Chapter 2 discusses the nanoporous alumina technique that is employed to fabricate nanowires and nanowire spin valves for the investigation of spin transport in 1D semiconductors. Chapter 3 investigates the spin transport in quasi one-dimensional spin valves with germanium spacer layer. These spin valves with 50nm in diameter and 1 mum length were fabricated using the porous alumina technique. Spin transport in nanoscale germanium spin valves was demonstrated and the spin relaxation lengths and the spin relaxation times were calculated. Chapter 4 discusses spin transport studies conducted in bulk high purity germanium with a view to comparing spin relaxation mechanisms in low mobility nanowires and high mobility bulk structures. Lateral spin valve with tunnel injectors were employed in this study and the spin transport measurements were conducted at various temperatures. The spin relaxation rates were measured as a function of temperature which allowed us to distinguish between two different mechanisms---D'yakonov-Perel' and Elliott-Yafet---that dominate spin

  14. Photovoltaic Effect on Molecule Coupled Ferromagnetic Films of a Magnetic Tunnel Junction

    OpenAIRE

    Tyagi, Pawan

    2011-01-01

    Economical solar energy conversion to electricity can be boosted by the discovery of fundamentally new photovoltaic mechanism, and a suitable system to realize it with commonly available materials like iron (Fe) and nickel (Ni). This paper reports the observation of photovoltaic effect on a molecular spintronics device, composed of magnetic tunnel junction (MTJ) and organometallic molecular clusters (OMCs). A prefabricated MTJ with exposed side edges, after enabling the bridging of OMC channe...

  15. An ARC less InGaP/GaAs DJ solar cell with hetero tunnel junction

    Science.gov (United States)

    Sahoo, G. S.; Nayak, P. P.; Mishra, G. P.

    2016-07-01

    Multi junction solar cell has not achieved an optimum performance yet. To acquire more conversion efficiency research on multi junction solar cell are in progress. In this work we have proposed a dual junction solar cell with conversion efficiency of 43.603%. Mainly the focus is given on the tunnel diode, window layer and back surface field (BSF) layer of the cell, as all of them plays important role on the cell performance. Here we have designed a hetero InGaP/GaAs tunnel diode which makes tunnel diode more transparent to the bottom cell as well as reduces the recombination at the interfaces. The thickness of the window and BSF layer are optimized to achieve higher conversion efficiency. The simulation is carried out using Silvaco ATLAS TCAD under 1000 sun of AM1.5G spectrum. Different performance parameters of the cell like short circuit current density (Jsc), open circuit voltage (Voc), external quantum efficiency (EQE), fill factor (FF), conversion efficiency (η), spectral response and photogeneration rate of the cell are examined and compared with previously reported literatures. For the proposed model a Voc of 2.7043 V, Jsc of 1898.52 mA/cm2, FF of 88.88% and η of 43.6% are obtained.

  16. Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact

    International Nuclear Information System (INIS)

    The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlOx/Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic. 133 refs., 49 figs

  17. Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact

    Energy Technology Data Exchange (ETDEWEB)

    Karadi, C [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1995-09-01

    The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlO{sub x}/Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic. 133 refs., 49 figs.

  18. Engineering double-well potentials with variable-width annular Josephson tunnel junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-11-01

    Long Josephson tunnel junctions are non-linear transmission lines that allow propagation of current vortices (fluxons) and electromagnetic waves and are used in various applications within superconductive electronics. Recently, the Josephson vortex has been proposed as a new superconducting qubit. We describe a simple method to create a double-well potential for an individual fluxon trapped in a long elliptic annular Josephson tunnel junction characterized by an intrinsic non-uniform width. The distance between the potential wells and the height of the inter-well potential barrier are controlled by the strength of an in-plane magnetic field. The manipulation of the vortex states can be achieved by applying a proper current ramp across the junction. The read-out of the state is accomplished by measuring the vortex depinning current in a small magnetic field. An accurate one-dimensional sine-Gordon model for this strongly non-linear system is presented, from which we calculate the position-dependent fluxon rest-mass, its Hamiltonian density and the corresponding trajectories in the phase space. We examine the dependence of the potential properties on the annulus eccentricity and its electrical parameters and address the requirements for observing quantum-mechanical effects, as discrete energy levels and tunneling, in this two-state system.

  19. Analysis of mechanical behaviors of big pipe roof for shallow buried large-span tunnel

    Institute of Scientific and Technical Information of China (English)

    Li Jian; Tan Zhongsheng; Yu Yu; Guo Xiaohong

    2013-01-01

    A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou-Xi’an Special Passenger Railway. The longitudinal de-formations of the pipe roofs were monitored and the mechanical behaviors of the pipe roofs were analyzed at the test section. A new double-parameter elastic foundation beam model for pipe roof in shallow tunnels was put for-ward in Wenxiang tunnel. The measured values and the calculation results agreed well with each other,revealing the force-deformation law of big pipe roof in loess tunnel:At about 15 m in front of the excavating face,the pipe roof starts to bear the load;at about 15 m behind the excavating face,the force of the pipe roof tends to be stabi-lized;the longitudinal deformation of the whole pipe roofs is groove-shaped distribution,and the largest force of pipe roofs is at the excavating face. Simultaneously,the results also indicate that mechanical behaviors of pipe roof closely relate to the location of the excavation face,the footage of the tunnelling cycle and the mechanics pa-rameters of pipe roof and rock. The conclusions can be reference for the design parameter optimization and the con-struction scheme selection of pipe roofs,and have been verified by the result of numerical analysis software FLAC3D and deformation monitoring.

  20. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction

    International Nuclear Information System (INIS)

    The operation of the hot-electron bolometer with normal metal-insulator-superconductor (NIS) tunnel junction as a temperature sensor is analyzed theoretically. The responsivity and the noise equivalent power (NEP) of the bolometer are obtained numerically for typical experimental parameters. Relatively simple approximate analytical expressions for these values are derived. The time constant of the device is also found. We demonstrate that the effect of the electron cooling by the NIS junction, which serves as a thermometer, can improve the sensitivity. This effect is also useful in the presence of the finite background power load. We discuss the effect of the correlation of the shot noise and the heat flow noise in the NIS junction. [copyright] 2001 American Institute of Physics

  1. Theory for collective macroscopic tunneling in high- Tc intrinsic Josephson junctions

    Science.gov (United States)

    Machida, M.; Koyama, T.

    2007-10-01

    On the basis of the theory for the capacitive coupling in intrinsic Josephson junctions (IJJ's), we theoretically study the macroscopic quantum tunneling in the switching dynamics into the voltage states in IJJ. The effective action obtained by using the path integral formalism reveals that the capacitive coupling splits each of the lowest and higher quantum levels, which are given inside Josephson potential barrier of the single junction derived by dropping off the coupling, into levels composed of the number of junction (N). This level splitting can cause multiple low-frequency Rabi-oscillations and enhance the switching probability compared to the conventional Caldeira-Leggett theory. Furthermore, a possibility as a naturally built-in multi-qubit is discussed.

  2. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    Science.gov (United States)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  3. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    Science.gov (United States)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1‑x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  4. Spatial inhomogeneities in the energy response of a tunnel junction detector due to penetration of Abrikosov vortices

    NARCIS (Netherlands)

    Grand, le J.B.; Martin, J.; Gross, R.; Hubener, R.P.; Hamster, A.W.; Brons, G.C.S.; Adelerhof, D.J.; Flokstra, J.; Korte, de P.A.J.

    1996-01-01

    For the application of superconductive tunnel junctions (STJs) as high resolution X-ray detectors the homogeneity of the detector response is of utmost importance. In this article it is shown how this homogeneity is degraded by the penetration of Abrikosov vortices (AVs) into the junction electrodes

  5. Band structure of topological insulators from noise measurements in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Cascales, Juan Pedro, E-mail: juanpedro.cascales@uam.es; Martínez, Isidoro; Aliev, Farkhad G., E-mail: farkhad.aliev@uam.es [Dpto. Fisica Materia Condensada C3, Instituto Nicolas Cabrera (INC), Condensed Matter Physics Institute (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049 (Spain); Katmis, Ferhat; Moodera, Jagadeesh S. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Chang, Cui-Zu [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Guerrero, Rubén [Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid (Spain)

    2015-12-21

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al{sub 2}O{sub 3}/Co tunnel junctions with bottom TI electrodes of either Bi{sub 2}Te{sub 3} or Bi{sub 2}Se{sub 3}. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  6. Conductance and shot noise in ferromagnet-superconductor epitaxial tunnel junctions

    Science.gov (United States)

    Aliev, Farkhad; Martinez, Isidoro; Cascales, Juan Pedro; Tiusan, Coriolan; Hehn, Michel

    Recently ferromagnet/superconductor hybrids have attracted attention due to the possibility of inducing p-wave superconductivity and of creating novel superconducting-spintronic devices. Most of these devices have a lateral configuration and are non-epitaxial, so they could not provide coherent electron tunneling over the interfaces. Here we investigate the conductance and shot noise in fully epitaxial Fe/MgO/V/MgO/Fe, Fe/MgO/Fe/MgO/V and Fe/MgO/V tunnel junctions with 40 nm thick Vanadium and 2nm thick MgO as a function of the applied bias, temperature (down to 0.3K) and magnetic state. All junctions show presence of finite subgap conductance indicating coherent two-electron transport over the barrier. Moreover, we observe conductance anomalies above the gap suppressed at temperature exceeding critical temperature, which may imply quasiparticle interference effects. High crystalline quality of the MgO barriers is confirmed by the fact that the above gap shot noise is Poissonian (direct tunneling with single barrier) or sub-Poissonian (sequential tunneling over two barriers) and is magnetic state dependent in the last case. The subgap Fano factor shows strong increase supporting multiple Andreev reflections as a possible source of excess subgap conductance.

  7. Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance States from first principles.

    Science.gov (United States)

    Velev, Julian P; Duan, Chun-Gang; Burton, J D; Smogunov, Alexander; Niranjan, Manish K; Tosatti, Erio; Jaswal, S S; Tsymbal, Evgeny Y

    2009-01-01

    Magnetic tunnel junctions (MTJs), composed of two ferromagnetic electrodes separated by a thin insulating barrier layer, are currently used in spintronic devices, such as magnetic sensors and magnetic random access memories. Recently, driven by demonstrations of ferroelectricity at the nanoscale, thin-film ferroelectric barriers were proposed to extend the functionality of MTJs. Due to the sensitivity of conductance to the magnetization alignment of the electrodes (tunneling magnetoresistance) and the polarization orientation in the ferroelectric barrier (tunneling electroresistance), these multiferroic tunnel junctions (MFTJs) may serve as four-state resistance devices. On the basis of first-principles calculations, we demonstrate four resistance states in SrRuO(3)/BaTiO(3)/SrRuO(3) MFTJs with asymmetric interfaces. We find that the resistance of such a MFTJ is significantly changed when the electric polarization of the barrier is reversed and/or when the magnetizations of the electrodes are switched from parallel to antiparallel. These results reveal the exciting prospects of MFTJs for application as multifunctional spintronic devices. PMID:19113889

  8. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions

    Science.gov (United States)

    Parzefall, M.; Bharadwaj, P.; Jain, A.; Taniguchi, T.; Watanabe, K.; Novotny, L.

    2015-12-01

    The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

  9. Structural and electrical characterization of magnetic tunnel junctions with ultrathin MgO-barriers

    International Nuclear Information System (INIS)

    Ultrathin barriers are necessary to provide sufficient high tunnel current densities, which are required for spin current induced switching experiments. For future MRAMs with high read and write performance a high room-temperature tunnelling magnetoresistance (TMR) is also necessary. The thinner the barrier, the more important become the interfaces between the ferromagnetic electrodes and the insulating barrier. We have prepared magnetic tunnel junctions (MTJs) with trilayers of CoFeB/MgO/CoFeB by means of e-beam evaporation of stoichiometric MgO and magnetron sputtering CoFeB. After characterizing the transport properties (I/V characteristics, TMR) the structural analysis was made by cross-sectional TEM. Aim is to correlate structural defects and quality of the interfaces with the transport properties. In future experiments we are planning to integrate the MTJs into a strip line with a photoconductive switch in order to study the dynamics of spin current induced switching effect

  10. Large magnetocapacitance effect in magnetic tunnel junctions based on Debye-Fröhlich model

    International Nuclear Information System (INIS)

    The frequency dependence of tunneling magnetocapacitance (TMC) in magnetic tunnel junctions (MTJs) is investigated theoretically and experimentally. According to the calculation based on Debye-Fröhlich model combined with Julliere formula, the TMC ratio strongly depends on the frequency and it has the maximum peak at a specific frequency. The calculated frequency dependence of TMC is in good agreement with the experimental results obtained in MgO-based MTJs with a tunneling magnetoresistance (TMR) ratio of 108%, which exhibit a large TMC ratio of 155% at room temperature. This calculation also predicts that the TMC ratio can be as large as about 1000% for a spin polarization of 87%, while the TMR ratio is 623% for the same spin polarization. These theoretical and experimental findings provide a deeper understanding on AC spin-dependent transport in the MTJs and will open up wider opportunities for device applications, such as highly sensitive magnetic sensors and impedance-tunable devices

  11. Large magnetocapacitance effect in magnetic tunnel junctions based on Debye-Fröhlich model

    Energy Technology Data Exchange (ETDEWEB)

    Kaiju, Hideo, E-mail: kaiju@es.hokudai.ac.jp; Takei, Masashi; Misawa, Takahiro; Nishii, Junji [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Nagahama, Taro [School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Xiao, Gang [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States)

    2015-09-28

    The frequency dependence of tunneling magnetocapacitance (TMC) in magnetic tunnel junctions (MTJs) is investigated theoretically and experimentally. According to the calculation based on Debye-Fröhlich model combined with Julliere formula, the TMC ratio strongly depends on the frequency and it has the maximum peak at a specific frequency. The calculated frequency dependence of TMC is in good agreement with the experimental results obtained in MgO-based MTJs with a tunneling magnetoresistance (TMR) ratio of 108%, which exhibit a large TMC ratio of 155% at room temperature. This calculation also predicts that the TMC ratio can be as large as about 1000% for a spin polarization of 87%, while the TMR ratio is 623% for the same spin polarization. These theoretical and experimental findings provide a deeper understanding on AC spin-dependent transport in the MTJs and will open up wider opportunities for device applications, such as highly sensitive magnetic sensors and impedance-tunable devices.

  12. Estimation of rectangular buried-section tunnel%矩形暗埋段隧道的估算

    Institute of Scientific and Technical Information of China (English)

    李梅

    2014-01-01

    以太原市南沙河沿岸中矩形暗埋段隧道为例,结合其场地岩土构成与工程特性,对建筑安装工程费(人工费、材料费、机械费)、工程建设其他费用以及基本预备费进行了估算预测,为项目决策提供了参考依据。%Taking the rectangular buried-section tunnel along Nansha river coast in Taiyuan city as an example, combining with the geotechnical structure of the field and the engineering characteristics, the paper estimates and predicts the building installation engineering cost ( labor cost, material cost, machinery cost) , engineering construction cost and basic preparation cost as well, which has provided some guidance for the pro-ject decision.

  13. Mechanical response features and failure process of soft surrounding rock around deeply buried three-centered arch tunnel

    Institute of Scientific and Technical Information of China (English)

    赵瑜; 张志刚

    2015-01-01

    Due to the extreme complexity of mechanical response of soft surrounding rock (SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Based on the similarity theory, new composite-similar material was developed, which showed good agreement with the similarity relation and successfully simulated physico-mechanical properties (PMP) of deep buried soft rock. And the 800 mm×800 mm×200 mm physical model (PM) was conducted, in which the endoscopic camera technique was adopted to track the entire process of failure of the model all the time. The experimental results indicate that the deformation of SR around a underground cavern possessed the characteristics of development by stages and in delay, and the initial damage of SR could induce rapid failure in the later stage, and the whole process could be divided into three stages, including the localized extension of crack(the horizontal load (HL) was in the range of 130 kN to 170 kN, the vertical load (VL) was in the range of 119 kN to 153.8 kN), rapid crack coalescence (the HL was in the range of 170 kN to 210 kN, the VL was in the range of 153.8 kN to 182.5 kN) and residual strength (the HL was greater than 210 kN, the VL was greater than 182.5 kN). Under the high stress conditions, the phenomenon of deformation localization in the SR became serious and different space positions show different deformation characteristics. In order to further explore the deformation localization and progressive failure phenomenon of soft SR around the deeply buried tunnel, applying the analysis software of FLAC3D three-dimensional explicit finite-difference method, based on the composite strain-softening model of Mohr-Coulomb shear failure and tensile failure, the calculation method of large deformation was adopted. Then, the comparative analysis between the PM experiment and numerical simulation of the three centered arch tunnels was implemented and the

  14. Tunneling Conductance and Magnetoresistance in Ferromagnet/Ferromagnet/d-Wave Superconductor Double Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    DONG Zheng-Chao

    2004-01-01

    The tunneling conductance and tunneling magnetoresistance (TMR) are investigated in ferromagnet/insulator/ferromagnet/insulator/d-wave superconductor (FM/I/FM/I/d-wave SC) structures by applying an extended Blonder-Tinkham-Klapwijk (BTK) approach. We study the effects of the exchange splitting in the FM,the magnetic impurity scattering in the thin insulator interface of FM/I/FM, and noncollinear magnetizations in adjacent magnetic layers on the TMR. It is shown (1) that the tunneling conductance and TMR exhibit amplitude-varying oscillating behavior with exchange splitting, (2) that with the presence of spin-flip scattering in insulator interface of FM/I/FM, the TMR can be dramatically enhanced, and (3) that the TMR depends strongly on the angle between the magnetization of two FMs.

  15. Polarity-tunable spin transport in all-oxide multiferroic tunnel junctions

    Science.gov (United States)

    Soni, Rohit; Petraru, Adrian; Nair, Harikrishnan S.; Vavra, Ondrej; Ziegler, Martin; Kim, Seong Keun; Jeong, Doo Seok; Kohlstedt, Hermann

    2016-05-01

    A multiferroic tunnel junction (MFTJ) promisingly offers multinary memory states in response to electric- and magnetic-fields, referring to tunneling electroresistance (TER) and tunneling magnetoresistance (TMR), respectively. In spite of recent progress, a substantial number of questions concerning the understanding of these two intertwined phenomena still remain open, e.g. the role of microstructural/chemical asymmetry at the interfaces of the junction and the effect of an electrode material on the MFTJ properties. In this regard, we look into the multiferroic effect of all-complex-oxide MFTJ (La0.7Sr0.3MnO3/Pb(Zr0.3Ti0.7)O3/La0.7Sr0.3MnO3). The results reveal apparent TER-TMR interplay--captured by the reversible electric-field control of the TMR effect. Finally, microscopy analysis on the MFTJ revealed that the observed TER-TMR interplay is perhaps mediated by microstructural and chemical asymmetry in our nominally symmetric MFTJ.A multiferroic tunnel junction (MFTJ) promisingly offers multinary memory states in response to electric- and magnetic-fields, referring to tunneling electroresistance (TER) and tunneling magnetoresistance (TMR), respectively. In spite of recent progress, a substantial number of questions concerning the understanding of these two intertwined phenomena still remain open, e.g. the role of microstructural/chemical asymmetry at the interfaces of the junction and the effect of an electrode material on the MFTJ properties. In this regard, we look into the multiferroic effect of all-complex-oxide MFTJ (La0.7Sr0.3MnO3/Pb(Zr0.3Ti0.7)O3/La0.7Sr0.3MnO3). The results reveal apparent TER-TMR interplay--captured by the reversible electric-field control of the TMR effect. Finally, microscopy analysis on the MFTJ revealed that the observed TER-TMR interplay is perhaps mediated by microstructural and chemical asymmetry in our nominally symmetric MFTJ. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01277a

  16. Integrating Atomic Layer Deposition and Ultra-High Vacuum Physical Vapor Deposition for In Situ Fabrication of Tunnel Junctions

    OpenAIRE

    Elliot, Alan J.; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Yiu, Haifeng; Zhao, Shiping; Wu, Judy Z.

    2014-01-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barrier using ALD is controlling the nucleation of dielectrics on metals with minimal formation of n...

  17. Lateral V/VOx/V Tunnel Junctions Formed by Anodic Oxidation

    Science.gov (United States)

    Kirkwood, David; West, Kevin; Lu, Jiwei; Wolf, Stuart

    2008-03-01

    Anodization has been found to be a simple and cost effective technique to produce oxide films of many transition metals. In this work, we have used anodic oxidation as a means of fabricating lateral V/VOx/V junctions. Vanadium wires grown by ion beam deposition were patterned by lithography and an active working window was defined on the wire. VOx was then grown under galvanostatic control in a two electrode electrochemical micro-cell. A droplet of oxygen rich saturated Boric acid was used as the electrolyte to electrically connect the Vandium working electrode to a Platinum wire counter electrode. A constant current of approximately 100 μA/cm^2 was maintained through the cell for various amounts of time. Electrical measurements of the resulting V/VOx/V junctions indicate a metal to insulator transition (MIT) near 340 ^oK that is similar to the structural phase transition and accompanied MIT of VO2 which occurs at this temperature. A 4-fold change in resistance is observed in the junctions. Below this transition temperature a typical junction behavior is observed with a dramatic change in resistance state from high to low with increasing applied current. This non-linear IV characteristic on the junction with a size of 5 μm by 15 μm suggests that the anodized VOx film behaves like a tunneling barrier.

  18. Valley and spin resonant tunneling current in ferromagnetic/nonmagnetic/ferromagnetic silicene junction

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2016-02-01

    Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.

  19. Rectification in tunneling junctions: 2,2'-bipyridyl-terminated n-alkanethiolates.

    Science.gov (United States)

    Yoon, Hyo Jae; Liao, Kung-Ching; Lockett, Matthew R; Kwok, Sen Wai; Baghbanzadeh, Mostafa; Whitesides, George M

    2014-12-10

    Molecular rectification is a particularly attractive phenomenon to examine in studying structure-property relationships in charge transport across molecular junctions, since the tunneling currents across the same molecular junction are measured, with only a change in the sign of the bias, with the same electrodes, molecule(s), and contacts. This type of experiment minimizes the complexities arising from measurements of current densities at one polarity using replicate junctions. This paper describes a new organic molecular rectifier: a junction having the structure Ag(TS)/S(CH2)11-4-methyl-2,2'-bipyridyl//Ga2O3/EGaIn (Ag(TS): template-stripped silver substrate; EGaIn: eutectic gallium-indium alloy) which shows reproducible rectification with a mean r(+) = |J(+1.0 V)|/|J(-1.0 V)| = 85 ± 2. This system is important because rectification occurs at a polarity opposite to that of the analogous but much more extensively studied systems based on ferrocene. It establishes (again) that rectification is due to the SAM, and not to redox reactions involving the Ga2O3 film, and confirms that rectification is not related to the polarity in the junction. Comparisons among SAM-based junctions incorporating the Ga2O3/EGaIn top electrode and a variety of heterocyclic terminal groups indicate that the metal-free bipyridyl group, not other features of the junction, is responsible for the rectification. The paper also describes a structural and mechanistic hypothesis that suggests a partial rationalization of values of rectification available in the literature.

  20. Metamorphic Ga0.76In0.24As/GaAs0.75Sb0.25 tunnel junctions grown on GaAs substrates

    Science.gov (United States)

    García, I.; Geisz, J. F.; France, R. M.; Kang, J.; Wei, S.-H.; Ochoa, M.; Friedman, D. J.

    2014-08-01

    Lattice-matched and pseudomorphic tunnel junctions have been developed in the past for application in a variety of semiconductor devices, including heterojunction bipolar transistors, vertical cavity surface-emitting lasers, and multijunction solar cells. However, metamorphic tunnel junctions have received little attention. In 4-junction Ga0.51In0.49P/GaAs/Ga0.76In0.24As/Ga0.47In0.53As inverted-metamorphic solar cells (4J-IMM), a metamorphic tunnel junction is required to series connect the 3rd and 4th junctions. We present a tunnel junction based on a metamorphic Ga0.76In0.24As/GaAs0.75Sb0.25 structure for this purpose. This tunnel junction is grown on a metamorphic Ga0.76In0.24As template on a GaAs substrate. The band offsets in the resulting type-II heterojunction are calculated using the first-principles density functional method to estimate the tunneling barrier height and assess the performance of this tunnel junction against other material systems and compositions. The effect of the metamorphic growth on the performance of the tunnel junctions is analyzed using a set of metamorphic templates with varied surface roughness and threading dislocation density. Although the metamorphic template does influence the tunnel junction performance, all tunnel junctions measured have a peak current density over 200 A/cm2. The tunnel junction on the best template has a peak current density over 1500 A/cm2 and a voltage drop at 15 A/cm2 (corresponding to operation at 1000 suns) lower than 10 mV, which results in a nearly lossless series connection of the 4th junction in the 4J-IMM structure.

  1. Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions

    Science.gov (United States)

    Shan, J.; Dejene, F. K.; Leutenantsmeyer, J. C.; Flipse, J.; Münzenberg, M.; van Wees, B. J.

    2015-07-01

    Understanding heat generation and transport processes in a magnetic tunnel junction (MTJ) is a significant step towards improving its application in current memory devices. Recent work has experimentally demonstrated the magneto-Seebeck effect in MTJs, where the Seebeck coefficient of the junction varies as the magnetic configuration changes from a parallel (P) to an antiparallel (AP) configuration. Here we report a study on its reciprocal effect, the magneto-Peltier effect, where the heat flow carried by the tunneling electrons is altered by changing the magnetic configuration of the MTJ. The magneto-Peltier signal that reflects the change in the temperature difference across the junction between the P and AP configurations scales linearly with the applied current in the small bias but is greatly enhanced in the large-bias regime, due to higher-order Joule heating mechanisms. By carefully extracting the linear response which reflects the magneto-Peltier effect, and comparing it with the magneto-Seebeck measurements performed on the same device, we observe results consistent with Onsager reciprocity. We estimate a magneto-Peltier coefficient of 13.4 mV in the linear regime using a three-dimensional thermoelectric model. Our result opens up the possibility of programmable thermoelectric devices based on the Peltier effect in MTJs.

  2. Organic multiferroic tunnel junctions with ferroelectric poly(vinylidene fluoride) barriers.

    Science.gov (United States)

    López-Encarnación, Juan M; Burton, J D; Tsymbal, Evgeny Y; Velev, Julian P

    2011-02-01

    Organic materials are promising for applications in spintronics due to their long spin-relaxation times in addition to their chemical flexibility and relatively low production costs. Most studies of organic materials for spintronics focus on nonpolar dielectrics or semiconductors, serving as passive elements in spin transport devices. Here, we demonstrate that employing organic ferroelectrics, such as poly(vinylidene fluoride) (PVDF), as barriers in magnetic tunnel junctions (MTJs) allows new functionality in controlling the tunneling spin polarization via the ferroelectric polarization of the barrier. Using first-principles methods based on density functional theory we investigate the spin-resolved conductance of Co/PVDF/Co and Co/PVDF/Fe/Co MTJs as model systems. We show that these tunnel junctions exhibit multiple resistance states associated with different magnetization configurations of the electrodes and ferroelectric polarization orientations of the barrier. Our results indicate that organic ferroelectrics may open a new and promising route in organic spintronics with implications for low-power electronics and nonvolatile data storage. PMID:21175179

  3. Spin dependent transport in diluted magnetic semiconductor/superconductor tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, A.A., E-mail: aashokri@pnu.ac.ir [Department of Physics, Payame Noor University, 19395-3697 Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Negarestani, S. [Department of Physics, Payame Noor University, 19395-3697 Tehran (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • Transport properties of DMS/SC/DMS double tunneling junctions have been investigated in the BTK model. • TMR dependence on barrier strength, spin polarization of DMS layers and the SC barrier parameters has been studied. • An oscillatory behavior with the quasi-particle energy has been observed in the conductance spectrum. - Abstract: A modification of Blonder–Tinkham–Klapwijk (BTK) model is proposed to describe transport properties of diluted magnetic semiconductor (DMS)/superconductor(SC)/DMS double tunneling junctions. Coherent spin-polarized transport is studied by taking into account the Andreev reflection on spatial variation of SC barrier parameters in the heterostructure. It is shown that the conductance spectrum exhibits an oscillatory behavior with quasi-particle energy, and the oscillation amplitude is reduced with increasing temperature. We also examine the dependence of tunneling magnetoresistance (TMR) on the barrier strength (κ) and spin polarization (P) of two DMS layers. Our results show that TMR decreases with increasing temperature and barrier strength, which may be useful in designing the nano spin-valve devices based on DMS and SC materials.

  4. Control of City Shallow Buried Tunnel Blasting Hazard to Surface Buildings

    OpenAIRE

    Yang Deqiang; Chi Enan; Ji Yucheng; Liu Jia; Wang Xuguang; Zhao Mingsheng; Tao Tiejun; Wang Yang

    2015-01-01

    Combining with the blasting test of an under-construction tunnel, this paper optimizes the overall blasting construction scheme. The optimized blasting scheme is used in the site construction test and the peak particle vibration velocity is strictly controlled under working conditions through blasting vibration monitoring to ensure the safety of surrounding buildings and structures in the construction process. The corresponding control measures are proposed to reduce the blasting vibration wh...

  5. Control of City Shallow Buried Tunnel Blasting Hazard to Surface Buildings

    Directory of Open Access Journals (Sweden)

    Yang Deqiang

    2015-01-01

    Full Text Available Combining with the blasting test of an under-construction tunnel, this paper optimizes the overall blasting construction scheme. The optimized blasting scheme is used in the site construction test and the peak particle vibration velocity is strictly controlled under working conditions through blasting vibration monitoring to ensure the safety of surrounding buildings and structures in the construction process. The corresponding control measures are proposed to reduce the blasting vibration which brings certain guiding significance to the following construction project.

  6. The maximal area of superconducting tunneling junction X-ray detectors determined by the required signal-to-noise ratio

    International Nuclear Information System (INIS)

    The intrinsically high energy resolution of superconducting tunneling junctions (STJ) requires a low noise charge sensitive amplifier circuit. The noise sources of such a junction + amplifier circuit are discussed. The dominant noise sources are the series noise and the 1/f flicker noise of the FET input stage, amplified by the large input capacitance of the STJ-detector. Means to reduce this capacitance are discussed. Reducing the preamplifier noise by a factor of two and the height of the potential barrier of the insulating layer by two orders of magnitude, by keeping the large conductance of the junction constant, would allow an increase in junction area by a factor of 15. (orig.)

  7. Zeeman effects on d-wave superconductor and tunneling spectrum in normal-metal/d-wave superconductor tunnel junction

    Institute of Scientific and Technical Information of China (English)

    DONG; Zhengchao

    2006-01-01

    We study the Zeeman effect on the d-wave superconductor and tunneling spectrum in normal-metal(N)/d-wave superconductor(S) junction by applying a Zeeman magnetic field to the S. It is shown that: (1) the Zeeman magnetic field can lead to the S gap decreasing, and with the increase in Zeeman energy, the superconducting state is changed to the normal state, exhibiting a first-order phase transition; (2) the Zeeman energy difference between the two splitting peaks in the conductance spectrum is equal to2h0 (h0 is the Zeeman energy); (3) both the barrier strength of interface scattering and the temperature can lower the magnitudes of splitting peaks, of which the barrier strength can lead to the splitting peaks becoming sharp and the temperature can smear out the peaks,however, neither of them can influence the Zeeman effect.

  8. Single-photon 2-D imaging X-ray spectrometer employing trapping with four tunnel junctions

    International Nuclear Information System (INIS)

    We are developing single-photon 2-D imaging X-ray spectrometers for applications in X-ray astrophysics. The devices employing a Ta strip X-ray absorber with Al traps and a tunnel junction at each end have been tested. They achieve an energy resolution of 26 eV out of 5.9 keV over a limited length (Segall, IEEE Trans., in press) with a 1-D spatial resolution of about 2 μm over the full 160 μm length. By analytical and numerical simulations of the quasiparticle diffusion process, we study related devices with a square Ta absorber having four traps and attached junctions to provide 2-D imaging. The traps give charge division to the corners or to the edges of the square absorber. We find that these devices can give good 2-D spatial resolution. We discuss the operating principle and the factors which affect the spatial resolution

  9. Size and voltage dependence of effective anisotropy in sub-100-nm perpendicular magnetic tunnel junctions

    Science.gov (United States)

    Piotrowski, Stephan K.; Bapna, Mukund; Oberdick, Samuel D.; Majetich, Sara A.; Li, Mingen; Chien, C. L.; Ahmed, Rizvi; Victora, R. H.

    2016-07-01

    Magnetic tunnel junctions with perpendicular magnetic anisotropy are investigated using a conductive atomic force microscope. The 1.23 -nm Co40Fe40B20 recording layer coercivity exhibits a size dependence which suggests single-domain behavior for diameters ≤100 nm. Focusing on devices with diameters smaller than 100 nm, we determine the effect of voltage and size on the effective device anisotropy Keff using two different techniques. Keff is extracted both from distributions of the switching fields of the recording and reference layers and from measurement of thermal fluctuations of the recording layer magnetization when a field close to the switching field is applied. The results from both sets of measurements reveal that Keff increases monotonically with decreasing junction diameter, consistent with the size dependence of the demagnetization energy density. We demonstrate that Keff can be controlled with a voltage down to the smallest size measured, 64 nm.

  10. Quantum critical points in tunneling junction of topological superconductor and topological insulator

    Science.gov (United States)

    Zuo, Zheng-Wei; Kang, Da-wei; Wang, Zhao-Wu; Li, Liben

    2016-08-01

    The tunneling junction between one-dimensional topological superconductor and integer (fractional) topological insulator (TI), realized via point contact, is investigated theoretically with bosonization technology and renormalization group methods. For the integer TI case, in a finite range of edge interaction parameter, there is a non-trivial stable fixed point which corresponds to the physical picture that the edge of TI breaks up into two sections at the junction, with one side coupling strongly to the Majorana fermion and exhibiting perfect Andreev reflection, while the other side decouples, exhibiting perfect normal reflection at low energies. This fixed point can be used as a signature of the Majorana fermion and tested by nowadays experiment techniques. For the fractional TI case, the universal low-energy transport properties are described by perfect normal reflection, perfect Andreev reflection, or perfect insulating fixed points dependent on the filling fraction and edge interaction parameter of fractional TI.

  11. Direct observation of current signal pulses from superconducting tunnel junction x-ray detector

    International Nuclear Information System (INIS)

    We developed the fast and low noise current readout circuit to directly observe signal current pulses from a superconducting tunnel junction (STJ). The developed circuit worked stable and is enough fast to obtain the information of the signal production process in the STJ. The rise time of current pulses ranged from 0.35 to 0.45 μsec was observed. The observed signals produced in the each electrode of the STJ can be discriminated clearly by the difference of the rise times. Moreover, the absorption events at the edge of the junction can be eliminated by the rise time discrimination. This result implies that the tail in the lower side of the peak spectrum can be reduced without any mechanical collimators. (author)

  12. Macroscopic quantum tunneling and retrapping processes in moderately damped YBaCuO Josephson junctions

    International Nuclear Information System (INIS)

    The moderately damped regime in a Josephson junction (JJ) is quite common in devices characterized by low critical currents and therefore by low Josephson energies. Measurements of switching current distribution (SCD) are a direct way of discriminating the phase dynamics also in the nontrivial case of moderate damping, which is going to be more and more common with advances in nano-patterning superconductors and in materials science finalized to build hybrid systems. We report on measurements of SCDs, both in thermal and quantum regime, on moderately damped YBaCuO grain boundary biepitaxial JJs. A direct transition from phase diffusion regime to macroscopic quantum tunnelling occurs at about 130 mK. The crossover to the quantum regime is tuned by the magnetic field and phase dynamics is described by a fully consistent set of junction parameters derived through numerical simulations.

  13. Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions

    Science.gov (United States)

    Tang, Y.-H.; Chu, F.-C.; Kioussis, Nicholas

    2015-06-01

    We predict a giant field-like spin torque, , in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF’s exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both ‘reading’ and ‘writing’ processes which require lower critical current densities and faster writing and reading speeds.

  14. Effect of oxygen vacancies on interlayer exchange coupling in Fe/MgO/Fe tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, M.Ye. [Department of Physics and Astronomy, Center for Materials Research and Analysis, University of Nebraska, Lincoln, NE 68588 (United States); Velev, J. [Department of Physics and Astronomy, Center for Materials Research and Analysis, University of Nebraska, Lincoln, NE 68588 (United States); Vedyayev, A.V. [Department of Physics, M.V. Lomonosov Moscow State University, 119899 Moscow (Russian Federation); Tsymbal, E.Y. [Department of Physics and Astronomy, Center for Materials Research and Analysis, University of Nebraska, Lincoln, NE 68588 (United States)]. E-mail: tsymbal@unl.edu

    2006-05-15

    We have investigated the interlayer exchange coupling (IEC) in Fe/MgO/Fe(0 0 1) tunnel junctions with and without oxygen vacancies in MgO, using model and density functional calculations. The model predicts that IEC changes sign from ferromagnetic to antiferromagnetic if a defect level matches the Fermi energy. Ab initio calculations show that for perfect junctions, IEC is ferromagnetic and decreases exponentially with MgO thickness. Oxygen vacancies placed in the middle of MgO make IEC antiferromagnetic for three monolayers (MLs) of MgO, but do not change the sign of IEC for five MLs. The latter fact is explained within the model, which suggests that for the impurity level lying below the Fermi energy IEC can change sign with increasing barrier thickness due to the weaker coupling of the impurity level to the ferromagnets.

  15. Low-noise submillimeter-wave NbTiN superconducting tunnel junction mixers

    Science.gov (United States)

    Kawamura, Jonathan; Chen, Jian; Miller, David; Kooi, Jacob; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    1999-12-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor quasiparticle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of TRX=260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high-gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2Δ/h˜1.2 THz.

  16. Magnon excitation and temperature dependent transport properties in magnetic tunnel junctions with Heusler compound electrodes

    Science.gov (United States)

    Drewello, Volker; Ebke, Daniel; Schäfers, Markus; Kugler, Zoë; Reiss, Günter; Thomas, Andy

    2012-04-01

    Magnetic tunnel junctions were prepared with the Heusler compounds Co2FeAl, Co2FeSi, and Co2MnSi as the soft magnetic electrode. The Co2MnSi electrodes had a multilayer design that used either the Co2FeAl or the Co2FeSi compound as a buffer material. Pinned Co-Fe was used as the hard reference electrode. The electronic transport characteristics were analyzed by tunneling spectroscopy. The dependence of sample properties on the buffer material was of interest, especially the gap in the minority density of states of the Heusler electrode. The temperature dependence of the transport properties was also investigated.

  17. Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes.

    Science.gov (United States)

    Pourhossein, Parisa; Vijayaraghavan, Ratheesh K; Meskers, Stefan C J; Chiechi, Ryan C

    2016-01-01

    Light-driven conductance switching in molecular tunnelling junctions that relies on photoisomerization is constrained by the limitations of kinetic traps and either by the sterics of rearranging atoms in a densely packed monolayer or the small absorbance of individual molecules. Here we demonstrate light-driven conductance gating; devices comprising monolayers of hemicyanine dyes trapped between two metallic nanowires exhibit higher conductance under irradiation than in the dark. The modulation of the tunnelling current occurs faster than the timescale of the measurement (∼1 min). We propose a mechanism in which a fraction of molecules enters an excited state that brings the conjugated portion of the monolayer into resonance with the electrodes. This mechanism is supported by calculations showing the delocalization of molecular orbitals near the Fermi energy in the excited and cationic states, but not the ground state and a reasonable change in conductance with respect to the effective barrier width. PMID:27272394

  18. Electric field control of spin dynamics in a magnetically active tunnel junction

    International Nuclear Information System (INIS)

    The dynamics of a single spin embedded in a tunnelling junction is studied. Within a nonequilibrium Keldysh Green's function technique, we derive a quantum Langevin equation describing the spin dynamics. In the high temperature limit, it reduces to a Bloch equation, for which the spin relaxation rate, as determined by the temporal fluctuation, is linearly proportional to the temperature. In the opposite limit, the relaxation rate depends on the applied voltage, in contrast to the case of a spin in an equilibrium environment. We also show that spin-flip transition processes during electron tunnelling convert the applied electric field (i.e. voltage bias) into an effective magnetic field. Consequently, the dynamics of the spin, otherwise precessing along the static magnetic field, will have either a frequency shift proportional to the dc bias or a magnetic resonance driven indirectly by an ac electric field at the Larmor frequency ωL. An experiment to measure this effect is also proposed

  19. Degradation of magnetic tunnel junctions with thin AlOx barrier

    Directory of Open Access Journals (Sweden)

    Tadashi Mihara, Yoshinari Kamakura, Masato Morifuji and Kenji Taniguchi

    2007-01-01

    Full Text Available The degradation of magnetic tunnel junctions (MTJs with AlOx barrier was experimentally investigated. Constant voltage stress (CVS measurement was carried out to monitor the time evolution of the conductance and tunneling magnetoresistance (TMR of MTJs. The gradual increase of the stress-induced leakage current (SILC was observed prior to the breakdown, following a power law function of stress time with an exponent of about 0.2–0.4, which is similar to the case of the ultrathin gate oxide films in MOSFETs. The measured TMR for SILC suggests that the spin-dependent current component would be involved in the early stage of degradation, while spin-independent conduction becomes dominant before the breakdown resulting in a decrease of TMR.

  20. Spin dependent transport in diluted magnetic semiconductor/superconductor tunnel junctions

    Science.gov (United States)

    Shokri, A. A.; Negarestani, S.

    2014-12-01

    A modification of Blonder-Tinkham-Klapwijk (BTK) model is proposed to describe transport properties of diluted magnetic semiconductor (DMS)/superconductor(SC)/DMS double tunneling junctions. Coherent spin-polarized transport is studied by taking into account the Andreev reflection on spatial variation of SC barrier parameters in the heterostructure. It is shown that the conductance spectrum exhibits an oscillatory behavior with quasi-particle energy, and the oscillation amplitude is reduced with increasing temperature. We also examine the dependence of tunneling magnetoresistance (TMR) on the barrier strength (κ) and spin polarization (P) of two DMS layers. Our results show that TMR decreases with increasing temperature and barrier strength, which may be useful in designing the nano spin-valve devices based on DMS and SC materials.

  1. Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Laloë

    2011-01-01

    Full Text Available Since the discovery of its superconducting properties in 2001, magnesium diboride has generated terrific scientific and engineering research interest around the world. With a of 39 K and two superconducting gaps, MgB2 has great promise from the fundamental point of view, as well as immediate applications. Several techniques for thin film deposition and heterojunction formation have been established, each with its own advantages and drawbacks. Here, we will present a brief overview of research based on MgB2 thin films grown by molecular beam epitaxy coevaporation of Mg and B. The films are smooth and highly crystalline, and the technique allows for virtually any heterostructure to be formed, including all-MgB2 tunnel junctions. Such devices have been characterized, with both quasiparticle and Josephson tunneling reported. MgB2 remains a material of great potential for a multitude of further characterization and exploration research projects and applications.

  2. Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. H.; Cheng, Y. H.; Ko, C. W.; Hsueh, W. J., E-mail: hsuehwj@ntu.edu.tw [Nanomagnetism Group, Department of Engineering Science and Ocean Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10660, Taiwan (China)

    2015-10-12

    This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed to the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.

  3. Electron Holography of Barrier Structures in Co/ZrAlOx/Co Magnetic Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHU Tao; SHEN Feng; SHENG Wen-Ting; WANG Wei-Gang; XIAO John Q; ZHANG Ze

    2005-01-01

    @@ We investigate the potential profiles and elemental distribution of barriers in Co/ZrAlOx/Co magnetic tunnel junctions (MTJs) using electron holography (EH) and scanning transmission electron microscopy. The MTJ barriers are introduced by oxidizing a bilayer consisting with a uniform 0.45-nm Al layer and a wedge-shaped Zr layer (0-2 nm). From the scanning transmission electron microscopy, AlOx and ZrOx layers are mixed together,indicating that compact AlOx layer cannot be formed in such a bilayer structure of barriers. The EH results reveal that there are no sharp interfaces between the barrier and magnetic electrodes, which may be responsible for a smaller tunnelling magnetoresistance compared with the MTJs of Co/AlOx/Co.

  4. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    Science.gov (United States)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  5. Influence of a Ta spacer on the magnetic and transport properties of perpendicular magnetic tunnel junctions

    OpenAIRE

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Ducruet, Clarisse; Dieny, Bernard

    2013-01-01

    International audience Ultrathin Ta layers were inserted in the bottom hard (Co/Pt)/Ta/CoFeB/MgO magnetic electrode of perpendicular magnetic tunnel junctions. The magnetization of the top part of this electrode abruptly falls in-plane when the Ta thickness exceeds 0.45 nm. This results from the balance between the various energy terms acting on this layer (exchange-like coupling through Ta, demagnetizing energy, and perpendicular anisotropy at the CoFeB/MgO interface). For small Ta thickn...

  6. Observation of Thermoelectric Currents in High-Field Superconductor-Ferromagnet Tunnel Junctions.

    Science.gov (United States)

    Kolenda, S; Wolf, M J; Beckmann, D

    2016-03-01

    We report on the experimental observation of spin-dependent thermoelectric currents in superconductor-ferromagnet tunnel junctions in high magnetic fields. The thermoelectric signals are due to a spin-dependent lifting of the particle-hole symmetry, and are found to be in excellent agreement with recent theoretical predictions. The maximum Seebeck coefficient inferred from the data is about -100  μV/K, much larger than commonly found in metallic structures. Our results directly prove the coupling of spin and heat transport in high-field superconductors.

  7. Frequency shift of spin waves in tunnel-junction spin-transfer nano-oscillators

    Science.gov (United States)

    Rodríguez-Suárez, R. L.; Matos-Abiague, A.; Azevedo, A.; Rezende, S. M.

    2010-10-01

    The excitations of microwave spin waves in magnetic tunnel junctions are theoretically investigated. An analytical approach which describes the dependence of the microwave precession frequency on the applied voltage is developed. It is shown that the spin-wave frequency is directly related to both the in-plane and perpendicular spin-transfer torques. In the low field regime the perpendicular torque can induce changes in the slope of the oscillation frequency versus applied voltage (df/dv) from negative (redshift) to positive (blueshift) values.

  8. Observation of Thermoelectric Currents in High-Field Superconductor-Ferromagnet Tunnel Junctions

    Science.gov (United States)

    Kolenda, S.; Wolf, M. J.; Beckmann, D.

    2016-03-01

    We report on the experimental observation of spin-dependent thermoelectric currents in superconductor-ferromagnet tunnel junctions in high magnetic fields. The thermoelectric signals are due to a spin-dependent lifting of the particle-hole symmetry, and are found to be in excellent agreement with recent theoretical predictions. The maximum Seebeck coefficient inferred from the data is about -100 μ V /K , much larger than commonly found in metallic structures. Our results directly prove the coupling of spin and heat transport in high-field superconductors.

  9. Polarity-tunable magnetic tunnel junctions based on ferromagnetism at oxide heterointerfaces

    OpenAIRE

    Ngo, Thach D.N.; Chang, Jung-Won; Lee, Kyujoon; Han, Seungju; Lee, Joon Sung; Kim, Young Heon; Jung, Myung-Hwa; Doh, Yong-Joo; Choi, Mahn-Soo; Song, Jonghyun; Kim, Jinhee

    2015-01-01

    Complex oxide systems have attracted considerable attention because of their fascinating properties, including the magnetic ordering at the conducting interface between two band insulators, such as LaAlO3 and SrTiO3. However, the manipulation of the spin degree of freedom at the LaAlO3/SrTiO3 heterointerface has remained elusive. Here, we have fabricated hybrid magnetic tunnel junctions consisting of Co and LaAlO3/SrTiO3 ferromagnets with the insertion of a Ti layer in between, which clearly ...

  10. Charge filling factors in clean and disordered arrays of tunnel junctions.

    Science.gov (United States)

    Walker, Kelly A; Vogt, Nicolas; Cole, Jared H

    2015-12-02

    We simulate one-dimensional arrays of tunnel junctions using the kinetic Monte Carlo method to study charge filling behaviour in the large charging energy limit. By applying a small fixed voltage bias and varying the offset voltage, we investigate this behaviour in clean and disordered arrays (both weak and strong disorder effects). The offset voltage dependent modulation of the current is highly sensitive to background charge disorder and exhibits substantial variation depending on the strength of the disorder. We show that while small fractional charge filling factors are likely to be washed out in experimental devices due to strong background charge disorder, larger factors may be observable.

  11. A scanning tunneling microscope break junction method with continuous bias modulation

    Science.gov (United States)

    Beall, Edward; Yin, Xing; Waldeck, David H.; Wierzbinski, Emil

    2015-09-01

    Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule.Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule. Electronic supplementary information (ESI) available: Additional current-time traces recorded for mesitylene, 2,4-dichlorotoluene, and 3,4-dichlorotoluene under different bias modulation frequencies, determined solvent capacitance values, and traces recorded under various geometrical constraints in the experimental cell. See DOI: 10.1039/c5nr04649a

  12. Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Y. W.; Raju, M.; Li, Qi, E-mail: Qil1@psu.edu [Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Hu, W. J. [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Burton, J. D.; Gruverman, A.; Tsymbal, E. Y. [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299 (United States); Kim, Y.-M.; Borisevich, A. Y.; Pennycook, S. J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Yang, S. M.; Noh, T. W. [IBS-Center for Functional Interfaces of Correlated Electron Systems, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Li, X. G. [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Zhang, Z. D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-05-07

    As semiconductor devices reach ever smaller dimensions, the challenge of power dissipation and quantum effect place a serious limit on the future device scaling. Recently, a multiferroic tunnel junction (MFTJ) with a ferroelectric barrier sandwiched between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four-level resistance states, giant tunneling electroresistance (TER) due to interfacial magnetoelectric coupling, and ferroelectric control of spin polarized tunneling in MFTJs. Coexistence of large tunneling magnetoresistance and TER has been observed in manganite/(Ba, Sr)TiO{sub 3}/manganite MFTJs at low temperatures and room temperature four-resistance state devices were also obtained. To enhance the TER for potential logic operation with a magnetic memory, La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BaTiO{sub 3}/La{sub 0.5}Ca{sub 0.5}MnO{sub 3} /La{sub 0.7}Sr{sub 0.3}MnO{sub 3} MFTJs were designed by utilizing a bilayer tunneling barrier in which BaTiO{sub 3} is ferroelectric and La{sub 0.5}Ca{sub 0.5}MnO{sub 3} is close to ferromagnetic metal to antiferromagnetic insulator phase transition. The phase transition occurs when the ferroelectric polarization is reversed, resulting in an increase of TER by two orders of magnitude. Tunneling magnetoresistance can also be controlled by the ferroelectric polarization reversal, indicating strong magnetoelectric coupling at the interface.

  13. Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited)

    KAUST Repository

    Yin, Y. W.

    2015-03-03

    As semiconductor devices reach ever smaller dimensions, the challenge of power dissipation and quantum effect place a serious limit on the future device scaling. Recently, a multiferroic tunnel junction (MFTJ) with a ferroelectric barrier sandwiched between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four-level resistance states, giant tunneling electroresistance (TER) due to interfacial magnetoelectric coupling, and ferroelectric control of spin polarized tunneling in MFTJs. Coexistence of large tunneling magnetoresistance and TER has been observed in manganite/(Ba, Sr)TiO3/manganite MFTJs at low temperatures and room temperature four-resistance state devices were also obtained. To enhance the TER for potential logic operation with a magnetic memory, La0.7Sr0.3MnO3/BaTiO3/La0.5Ca0.5MnO3 /La0.7Sr0.3MnO3 MFTJs were designed by utilizing a bilayer tunneling barrier in which BaTiO3 is ferroelectric and La0.5Ca0.5MnO3 is close to ferromagnetic metal to antiferromagnetic insulator phase transition. The phase transition occurs when the ferroelectric polarization is reversed, resulting in an increase of TER by two orders of magnitude. Tunneling magnetoresistance can also be controlled by the ferroelectric polarization reversal, indicating strong magnetoelectric coupling at the interface.

  14. Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy

    Directory of Open Access Journals (Sweden)

    Weisheng Zhao

    2016-01-01

    Full Text Available Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into conventional complementary metal oxide semiconductor (CMOS circuits. However, this device suffers from a number of failure issues, such as large process variation and tunneling barrier breakdown. The large process variation is an intrinsic issue for PMA-MTJ as it is based on the interfacial effects between ultra-thin films with few layers of atoms; the tunneling barrier breakdown is due to the requirement of an ultra-thin tunneling barrier (e.g., <1 nm to reduce the resistance area for the spin transfer torque switching in the nanopillar. These failure issues limit the research and development of STT-MRAM to widely achieve commercial products. In this paper, we give a full analysis of failure mechanisms for PMA-MTJ and present some eventual solutions from device fabrication to system level integration to optimize the failure issues.

  15. The study of a new n/p tunnel recombination junction and its application in a-Si:H/μc-Si:H tandem solar cells

    Institute of Scientific and Technical Information of China (English)

    Li Gui-Jun; Hou Guo-Fu; Han Xiao-Yan; Yuan Yu-Jie; Wei Chang-Chun; Sun Jian; Zhao Yin; Geng Xin-Hua

    2009-01-01

    This paper reports that a double N layer(a-Si:H/μc-Si:H)is used to substitute the single microcrystalline siliconn layer(n-μc-Si:H)in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells.The electrical transport and optical properties of these tunnel recombination junctions are investigated by current-voltage measurement and transmission measurement.The new n/p tunnel recombination junction shows a better ohmic contact.In addition,the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance.The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.

  16. Large influence of capping layers on tunnel magnetoresistance in CoFe/MgO/CoFe magnetic tunnel junctions

    CERN Document Server

    Zhou, Jiaqi; Wang, Yin; Peng, Shouzhong; Qiao, Junfeng; Su, Li; Zeng, Lang; Lei, Na; Zhang, Youguang; Bournel, Arnaud

    2016-01-01

    We report the first-principles theoretical investigations of the tunnel magnetoresistance(TMR) effect in the symmetric capping layer/CoFe(001)/MgO(001)/CoFe(001)/capping layer magnetic tunnel junctions(MTJs) with Ta, Hf and Ir used as capping layer materials. Spin-resolved conductance and TMR ratios are shown and it is found that the TMR ratio is sensitive to the capping layer material. The spin polarization of s state in Co atom at the CoFe/capping layer interface is presented to explain the influence on TMR ratio caused by different capping layers, and we can obtain a high spin polarization value and a giant TMR ratio when Ir is used, demonstrating that Ir is an ideal capping layer material. We also study the spin-polarized transport properties in the Brillouin zone. In the parallel condition, a central broad peak is found in the majority-spin channel due to the {\\Delta}1 state, while sharp transmission probability peaks at some k||-points appear in the minority-spin channel. The sharp peak phenomenon is at...

  17. Electric-field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature

    Science.gov (United States)

    Chen, Aitian; Li, Peisen; Li, Dalai; Zhao, Yonggang; Zhang, Sen; Yang, Lifeng; Liu, Yan; Zhu, Meihong; Zhang, Huiyun; Han, Xiufeng

    2015-03-01

    Recent studies on the electric-field control of tunneling magnetoresistance (TMR) have attracted considerable attention for low power consumption. So far two methods have been demonstrated for electric-field control of TMR. One method uses ferroelectric or multiferroic barriers, which is limited by low temperature. The other is nanoscale thin film magnetic tunnel junction (MTJ), but the assistance of a magnetic field is required. Therefore, electric-field control of TMR at room temperature without a magnetic field is highly desired. One promising way is to employ strain-mediated coupling in ferromagnetic/piezoelectric structure. Though MTJs/piezoelectric has been predicted by theory, experiment work is still lacking. We deposited CoFeB/AlOx/CoFeB on Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) ferroelectric single crystal. Under external electric fields, PMN-PT will produce a piezostrain due to piezoelectric effect, and the piezostrain transfers to ferromagnetic film to change the magnetic anisotropy. We demonstrate a reversible, continuous magnetization rotation and manipulation of TMR at room temperature by electric fields without the assistance of a magnetic field.

  18. Size dependence of nanosecond-scale spin-torque switching in perpendicularly magnetized tunnel junctions

    Science.gov (United States)

    Devolder, T.; Le Goff, A.; Nikitin, V.

    2016-06-01

    We have time resolved the spin-transfer-torque-induced switching in perpendicularly magnetized tunnel junctions of diameters from 50 to 250 nm in the subthreshold thermally activated regime. When the field and the spin torque concur to both favor the P to AP transition, the reversal yields monotonic resistance ramps that can be interpreted as a domain wall propagation through the device at velocities of the order of 17 to 30 nm/ns; smaller cells switch faster, and proportionally to their diameter. At the largest sizes, transient domain wall pinning can occasionally occur. When the field hinders the P to AP transition triggered by the spin torque, the P to AP switching is preceded by repetitive switching attempts, during which the resistance transiently increases until successful reversal occurs. At 50 nm, the P to AP switching proceeds reproducibly in 3 ns, with a monotonic featureless increase of the device resistance. In the reverse transition (AP to P), the variability of thermally activated reversal is not restricted to stochastic variations of incubation delays before the onset of reversal: several reversal paths are possible even in the smallest perpendicularly magnetized junctions. Besides, the nonuniform nature of the magnetic response seems still present at the nanoscale, with sometimes electrical signatures of strong disorder during the AP to P reversal. The AP to P transition is preceded by a strong instability of the AP states in devices larger than 100 nm. The resistance becomes extremely agitated before switching to P in a path yielding a slow (20 to 50 ns) and irregular increase of the conductance with substantial event-to-event variability. Unreversed bubbles of typical diameter 60 nm can persist a few additional microseconds in the largest junctions. The complexity of the AP to P switching is reduced but not suppressed when the junctions are downsized below 60 nm. The instability of the initial AP state is no longer detected but the other features

  19. Voltage-controlled magnetic anisotropy in Fe|MgO tunnel junctions studied by x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shinji, E-mail: miwa@mp.es.osaka-u.ac.jp; Matsuda, Kensho; Tanaka, Kazuhito; Goto, Minori; Suzuki, Yoshishige [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Kotani, Yoshinori; Nakamura, Tetsuya [Japan Synchrotron Radiation Research Institute/SPring-8, Sayo, Hyogo 679-5198 (Japan)

    2015-10-19

    In this study, voltage-controlled magnetic anisotropy (VCMA) in Fe|MgO tunnel junctions was investigated via the magneto-optical Kerr effect, soft x-ray absorption spectroscopy, and magnetic circular dichroism spectroscopy. The Fe|MgO tunnel junctions showed enhanced perpendicular magnetic anisotropy under external negative voltage, which induced charge depletion at the Fe|MgO interface. Despite the application of voltages of opposite polarity, no trace of chemical reaction such as a redox reaction attributed to O{sup 2−} migration was detected in the x-ray absorption spectra of the Fe. The VCMA reported in the Fe|MgO-based magnetic tunnel junctions must therefore originate from phenomena associated with the purely electric effect, that is, surface electron doping and/or redistribution induced by an external electric field.

  20. Similarities between normal- and super-currents in topological insulator magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Soodchomshom, Bumned, E-mail: Bumned@hotmail.co [ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd. Bangkok 10400 (Thailand); Chantngarm, Peerasak [Department of Electronics and Telecommunication Engineering, Faculty of Engineering, Pathumwan Institute of Technology, Bangkok 10330 (Thailand)

    2010-11-15

    This work compares the normal-current in a NM/Fi/NM junction with the super-current in a SC/Fi/SC junction, where both are topological insulator systems. NM and Fi are normal region and ferromagnetic region of thickness d with exchange energy m playing a role of the mass of the Dirac electrons and with the gate voltage V{sub G}, respectively. SC is superconducting region induced by a s-wave superconductor. We show that, interestingly, the critical super-current passing through a SC/Fi/SC junction behaves quite similar to the normal-current passing through a NM/Fi/NM junction. The normal-current and super-current exhibit N-peak oscillation, found when currents are plotted as a function of the magnetic barrier strength {chi} {approx} md/hv{sub F}. With the barrier strength Z {approx} V{sub G}d/hv{sub F}, the number of peaks N is determined through the relation Z {approx} N{pi} + {sigma}{pi} (with 0 < {sigma}{<=}1 for {chi} < Z). The normal- and the super-currents also exhibit oscillating with the same height for all of peaks, corresponding to the Dirac fermion tunneling behavior. These anomalous oscillating currents due to the interplay between gate voltage and magnetic field in the barrier were not found in graphene-based NM/Fi/NM and SC/Fi/SC junctions. This is due to the different magnetic effect between the Dirac fermions in topological insulator and graphene.

  1. Electron tunneling through molecule-electrode contacts of single alkane molecular junctions: experimental determination and a practical barrier model.

    Science.gov (United States)

    Wang, Kun; Xu, Bingqian

    2016-04-14

    An advanced understanding of the molecule-electrode contact interfaces of single-molecule junctions is a necessity for real world application of future single-molecule devices. This study aims to elucidate the change in the contact tunnelling barrier induced by junction extension and how this change affects the resulting junction conductance. The contact barrier of Au-octanedithiol/octanediamine-Au junctions was studied under triangle (TRI) mechanical modulations using the modified scanning tunneling microscopy (STM) break junction technique. The experimental results reveal that as the junction separation extends, the contact barrier of octanedithiol follows a unique trend, a linear increase followed by a plateau in barrier height, which is in contrast to that of octanediamine, a nearly rectangle barrier. We propose a modified contact barrier model for the unique barrier shape of octanedithiol, based on which the calculation agrees well with the experimental data. This study shows unprecedented experimental features of the molecule-electrode contact barrier of single-molecule junctions and provides new insights into the nature of contact effect in determining electron transport through single-molecule junctions. PMID:26988278

  2. Development and application of super-conducting tunnel junctions for photon spectroscopy and radiation detection

    International Nuclear Information System (INIS)

    A radiation detector acting at low temperature has some capacities such as superior energy resolution, fine energy measurement, and so on. Superconductors are widely used for such low temperature detectors. Detectors using the superconductors contain micro-calorimeters using superconducting tunnel junction (STJ) and superconducting transition edge sensor. Both are detectors using superconducting thin film, and have capacity to be able to upgrade one to two column on energy resolution of the superconducting detectors. STJ is a detector to measure total amounts of quasi particle excited by energy brought into superconducting layer and can be operated at temperature less than about 1 K. And, the TES micro-calorimeter is a detector by using rapid change of electric resistance near transition temperature of a superconductor, and is used at temperature less than about 100 mK. Author has progressed some researches on element making technology, measuring technology and their application technologies under aiming at actual use of them for general detectors. Here were introduced on outlines of quantum detectors using present superconducting tunnel junction containing their acting principles, making technologies, basic researches for applications of STJ, heavy ion beam detector, and other researches such as sub-millimeter wave imaging element, signal processing circuit using SQUID amplifier, superconducting ADC and integration technology. (G.K.)

  3. Analysis of pulse shape from a high-resolution superconducting tunnel junction X-ray spectrometer

    International Nuclear Information System (INIS)

    Superconducting-insulating-superconducting (SIS) tunnel junctions coupled to superconducting absorbers may be used as high-resolution, high-efficiency X-ray spectrometers. Until recently, the X-ray-induced current pulse from such devices has been measured using FET-based negative-feedback charge or current amplifiers. The limited bandwidth and feed-back nature of these amplifiers have made it difficult to deduce the true shape of the X-ray induced current pulse. Recently, we have begun to use high-bandwidth amplifiers based on Superconducting Quantum Interference Devices (SQUIDS) to measure the current pulses from our tunnel junction X-ray spectrometers. We have measured pulses from devices with niobium X-ray absorbing layers coupled to aluminum layers that serve as quasiparticle traps. We present here a study of pulse shape as a function of bias voltage. In general, the X-ray induced pulses increase in amplitude and become longer as we increase the bias voltage. We found that it is possible to differentiate pulses produced by X-ray absorption in the top niobium film from those produced in the bottom niobium film by measuring the rise time of the current pulses. This allows us to produce a high resolution spectrum using only pulses produced in the bottom niobium film. The measured energy resolution of this spectrum is 29 eV FWHM at 5.89 keV, about 5 times better than that obtainable using semiconductor ionization detectors. (orig.)

  4. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Directory of Open Access Journals (Sweden)

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  5. Imaging soft x-ray spectrometers based on superconducting tunnel junctions

    Science.gov (United States)

    Verhoeve, P.; Martin, D. D. E.; Venn, R.

    2010-07-01

    X-ray detectors based on superconducting tunnel junctions (STJs) have demonstrated good energy resolution in the soft X-ray energy range 0.1-6 keV. In particular DROIDS (Distributed Read Out Imaging Devices), consisting of a superconducting absorber strip with superconducting tunnel junctions as read-out devices on either end, could combine this high resolving power with a large sensitive area and good soft X-ray detection efficiency. In this paper we present results on the spectroscopic performance of Al and Ta/Al DROIDs with different absorber materials (Ta, Re) and with variations in absorber configurations: our standard absorber integrated with the read-out structure is compared with absorbers deposited after definition of the read-out structure. The latter allows maximising the detection efficiency through thicker layers and different absorber materials. Also, absorbers which are electrically coupled to the readout structure are compared to insulated absorbers which couple to the readout structure by phonon exchange across a thin dielectric layer. New process routes have been designed for all new configurations. Whilst not all these structures have been fabricated successfully yet, our integrated absorber sofar exhibits the best performance, with 2.45 eV FWHM at 400 eV and 16.6 eV FWHM at 5.9 keV.

  6. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons.

    Science.gov (United States)

    Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai; Meixner, Alfred J

    2015-01-01

    Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode. PMID:26171286

  7. Spin asymmetry calculations of the TMR-V curves in single and double-barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2011-10-01

    Spin-polarization asymmetry is the key parameter in asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) in magnetic tunnel junctions. In this paper, we study the value of the TMR as a function of the applied voltage Va in the single as well as double barrier magnetic tunnel junctions (SMTJ & DMTJ, which are constructed from CoFeB/MgO interfaces) and numerically estimate the possible difference of the TMR-V a curves for negative and positive voltages in the homojunctions. As a result, we found that AVB may help to determine the exact values of Fermi wave vectors for minority and majority conducting spin sub-bands. Moreover, significant asymmetry of the experimental TMR-Va curves, which arises due to different annealing regimes, is explained by different heights of the tunnel barriers and values of the spin asymmetry. The numerical TMR-V a data are in good agreement with experimental ones. © 2011 IEEE.

  8. Development of superconducting tunnel junction as photon counting detector in astronomy

    International Nuclear Information System (INIS)

    This work describes the development of S/Al-AlOx-Al/S Superconducting Tunnel Junctions (STJ) to count photons for astronomical applications in the near-infrared. The incoming light energy is converted into excited charges in a superconducting layer (S, either Nb or Ta) with a population proportional to the deposited energy. The photon energy can thus be evaluated by integrating the tunnel current induced in a voltage biased junction at a very low temperature (100 mK). The performance of STJ for light detection is discussed in the first chapter and compared with the best performances obtained with other techniques based on either superconductors. At the beginning of the thesis, a previous manufacturing process made it possible to obtain good quality Nb based junctions and preliminary results for photon counting. The objective of the thesis was to replace Nb as absorber with Ta, an intrinsically more sensitive material, and secondly to develop a new and more efficient manufacturing process. We first focused on the optimization of the Tantalum thin film quality. Structural analysis showed that these films can be grown epitaxially by magnetron sputtering onto an R-plane sapphire substrate heated to 600 Celsius degrees and covered by a thin Nb buffer layer. Electrical transport measurement from room to low temperatures gave excellent Relative Resistive Ratios of about 50 corresponding to mean free path of the order of 100 nm. Then, we conceived an original manufacturing process batch on 3 inch diameter sapphire substrate with five mask levels. These masks made it possible to produce single pixel STJ of different sizes (from 25*25 to 50*50 square microns) and shapes. We also produced multiple junctions onto a common absorber as well as 9-pixel arrays. Thanks to the development of this process we obtained a very large percentage of quality junctions (>90%) with excellent measured normal resistances of a few micro-ohm cm2 and low leakage currents of the order of one n

  9. Photoenhanced spin/valley polarization and tunneling magnetoresistance in a ferromagnetic-normal-ferromagnetic silicene junction

    Science.gov (United States)

    Ho, Le Bin; Nguyen Lan, Tran

    2016-09-01

    We theoretically demonstrate a simple way to significantly enhance the spin/valley polarizations and tunneling magnetoresistnace (TMR) in a ferromagnetic-normal-ferromagnetic (FNF) silicene junction by applying a circularly polarized light in the off-resonant regime to the second ferromagnetic (FM) region. We show that the fully spin-polarized current can be realized in certain ranges of light intensity. Increasing the incident energy in the presence of light will induce a transition of perfect spin polarization from positive to negative or vice versa depending on the magnetic configuration (parallel or anti-parallel) of FNF junction. Additionally, under a circularly polarized light, valley polarization is very sensitive to electric field and the perfect valley polarization can be achieved even when staggered electric field is much smaller than exchange field. The most important result we would like to emphasize in this paper is that the perfect spin polarization and 100% TMR induced by a circularly polarized light are completely independent of barrier height in the normal region. Furthermore, the sign reversal of TMR can be observed when the polarized direction of light is changed. A condition for observing the 100% TMR is also reported. Our results are expected to be informative for real applications of a FNF silicene junction, especially in spintronics.

  10. Electronic transport through EuO spin-filter tunnel junctions

    KAUST Repository

    Jutong, Nuttachai

    2012-11-12

    Epitaxial spin-filter tunnel junctions based on the ferromagnetic semiconductor europium monoxide (EuO) are investigated by means of density functional theory. In particular, we focus on the spin transport properties of Cu(100)/EuO(100)/Cu(100) junctions. The dependence of the transmission coefficient and the current-voltage curves on the interface spacing and EuO thickness is explained in terms of the EuO density of states and the complex band structure. Furthermore, we also discuss the relation between the spin transport properties and the Cu-EuO interface geometry. The level alignment of the junction is sensitively affected by the interface spacing, since this determines the charge transfer between EuO and the Cu electrodes. Our calculations indicate that EuO epitaxially grown on Cu can act as a perfect spin filter, with a spin polarization of the current close to 100%, and with both the Eu-5d conduction-band and the Eu-4f valence-band states contributing to the coherent transport. For epitaxial EuO on Cu, a symmetry filtering is observed, with the Δ1 states dominating the transmission. This leads to a transport gap larger than the fundamental EuO band gap. Importantly, the high spin polarization of the current is preserved up to large bias voltages.

  11. What determines the sign reversal of magnetoresistance in a molecular tunnel junction?

    Science.gov (United States)

    Mandal, Subhasish; Pati, Ranjit

    2012-04-24

    The observations of both positive and negative signs in tunneling magnetoresistance (TMR) for the same organic spin-valve structure have baffled researchers working in organic spintronics. In this article, we provide an answer to this puzzle by exploring the role of metal-molecule interface on TMR in a single molecular spin-valve junction. A planar organic molecule sandwiched between two nickel electrodes is used to build a prototypical spin-valve junction. A parameter-free, single-particle Green's function approach in conjunction with a posteriori, spin-unrestricted density functional theory involving a hybrid orbital-dependent functional is used to calculate the spin-polarized current. The effect of external bias is explicitly included to investigate the spin-valve behavior. Our calculations show that only a small change in the interfacial distance at the metal-molecule junction can alter the sign of the TMR from a positive to a negative value. By changing the interfacial distance by 3%, the number of participating eigenchannels as well as their orbital characteristics changes for the antiparallel configuration, leading to the sign reversal in TMR. PMID:22409503

  12. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    Science.gov (United States)

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.

  13. Polarity-tunable magnetic tunnel junctions based on ferromagnetism at oxide heterointerfaces

    Science.gov (United States)

    Ngo, Thach D. N.; Chang, Jung-Won; Lee, Kyujoon; Han, Seungju; Lee, Joon Sung; Kim, Young Heon; Jung, Myung-Hwa; Doh, Yong-Joo; Choi, Mahn-Soo; Song, Jonghyun; Kim, Jinhee

    2015-08-01

    Complex oxide systems have attracted considerable attention because of their fascinating properties, including the magnetic ordering at the conducting interface between two band insulators, such as LaAlO3 and SrTiO3. However, the manipulation of the spin degree of freedom at the LaAlO3/SrTiO3 heterointerface has remained elusive. Here, we have fabricated hybrid magnetic tunnel junctions consisting of Co and LaAlO3/SrTiO3 ferromagnets with the insertion of a Ti layer in between, which clearly exhibit magnetic switching and the tunnelling magnetoresistance effect below 10 K. The magnitude and sign of the tunnelling magnetoresistance are strongly dependent on the direction of the rotational magnetic field parallel to the LaAlO3/SrTiO3 plane, which is attributed to a strong Rashba-type spin-orbit coupling in the LaAlO3/SrTiO3 heterostructure. Our study provides a further support for the existence of the macroscopic ferromagnetism at LaAlO3/SrTiO3 heterointerfaces and opens a novel route to realize interfacial spintronics devices.

  14. Dielectric characteristics of magnetic tunnel junctions using amorphous CoNbZr layers

    International Nuclear Information System (INIS)

    Magnetic tunnel junctions (MTJs) consisting of amorphous CoNbZr layers have been investigated and compared with traditional MTJs using Ta layers. The amorphous CoNbZr layer was employed as a buffer layer under the pinning layer IrMn in TiN/CoNbZr/IrMn/CoFe/Ru/CoFe for better uniformity of barrier. To investigate the dependence of the reliability of the MTJs on the bottom electrode, we carried out time-dependent dielectric breakdown (TDDB) measurements under constant voltage stress. The Weibull fit of our data clearly shows that tBD scales with the thickness uniformity of MTJ's tunnel barrier. Assuming a linear dependence of log(tBD) on stress voltages, we obtained a lifetime of 104 years at an operating voltage of 0.4 V for MTJs with CoNbZr layers. This study shows that the reliability of the new MTJ structure was improved due to the ultra smooth barrier because the surface roughness of the bottom electrode influenced the uniformity of the tunnel barrier.

  15. Dielectric characteristics of magnetic tunnel junctions using amorphous CoNbZr layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S. [PaiChai University, Daejeon (Korea, Republic of); Sok, J. H. [University of Seoul, Seoul (Korea, Republic of); Cho, B. K. [KwangJu Institute of Science and Technology, Gwangju (Korea, Republic of); Rhee, J. R. [Sookmyung Women' s University, Seoul (Korea, Republic of); Park, W. J.; Kim, T. W. [Samsung Advanced Institute of Technology, Gyeonggi-Do (Korea, Republic of)

    2005-06-15

    Magnetic tunnel junctions (MTJs) consisting of amorphous CoNbZr layers have been investigated and compared with traditional MTJs using Ta layers. The amorphous CoNbZr layer was employed as a buffer layer under the pinning layer IrMn in TiN/CoNbZr/IrMn/CoFe/Ru/CoFe for better uniformity of barrier. To investigate the dependence of the reliability of the MTJs on the bottom electrode, we carried out time-dependent dielectric breakdown (TDDB) measurements under constant voltage stress. The Weibull fit of our data clearly shows that t{sub BD} scales with the thickness uniformity of MTJ's tunnel barrier. Assuming a linear dependence of log(t{sub BD}) on stress voltages, we obtained a lifetime of 10{sup 4} years at an operating voltage of 0.4 V for MTJs with CoNbZr layers. This study shows that the reliability of the new MTJ structure was improved due to the ultra smooth barrier because the surface roughness of the bottom electrode influenced the uniformity of the tunnel barrier.

  16. Vortex domain structures and dc current dependence of magneto-resistances in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Wei Hong-Xiang; Lu Qing-Feng; Zhao Su-Fen; Zhang Xie-Qun; Feng Jia-Feng; Han Xiu-Feng

    2004-01-01

    Microfabrication and the magneto-transport characteristics of the magnetic tunnel junctions (MTJs) with a spin-valve-type structure of Ta (5nm)/Ni7gFe21 (25nm)/Ir22Mn78 (12nm)/Co75Fe25 (4nm)/Al(0.8nm) oxide/Co75Fe25(4nm)/Ni7gFe21 (20nm)/Ta(5nm) were investigated in this paper. A series of experimental data measured with a MTJ was used to verify a magnon-assisted tunnelling model and theory. Furthermore, a micromagnetics simulation shows that the butterfly-like vortex domain structures can be formed under a current-induced Oersted field, which decreases the net magnetization values of the ferromagnetic electrodes under a large dc current (i.e., in high voltage regimes). It is one of the main reasons for the tunnel magnetoresistance ratios to decrease significantly at high voltage biasing.

  17. Reduced master equation analysis of multiple-tunnel junction single-electron memory device

    Science.gov (United States)

    Jalil, M. B. A.; Wagner, M.

    2000-07-01

    We employ a master equation (ME) approach in the charge transport analysis across a uniform multiple-tunnel junction (MTJ) memory trap, using a much-reduced state list derived from circuit symmetry, and previous assumptions by Jensen and Martinis. This enables all significant single tunneling and higher-order cotunneling sequences to be accounted for, while avoiding the computational cost of the full ME method. The reduced ME method is conceptually simpler and yields greater accuracy, compared with previous approximations based on tunneling probabilities. For an MTJ trap with zero stray capacitance C0, the results obtained are found to agree very closely with the full ME results up to a temperature of T≈3T0/10, where T0=e2/kBC, whereas previous methods break down at T≈T0/10. Furthermore, unlike the earlier methods, the reduced ME approach can be applied to the realistic but less symmetric case of a trap with finite C0, and remains valid up to the trap's maximum operating temperature of T≈T0/100. Finally, our reduced ME results are in close agreement with available experimental data at T

  18. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    Science.gov (United States)

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs. PMID:26699194

  19. Spin tunneling magnetoresistance in NiFe/Al{sub 2}O{sub 3}/Co junctions with reduced dimensions formed using photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, S. [Tohoku Univ., Sendai (Japan). Dept. of Applied Physics; Yaoi, T. [Sony Corp., Yokohama (Japan). Research Center; Miyazaki, T. [Tohoku Univ., Sendai (Japan). Dept. of Applied Physics

    1997-02-01

    The spin tunneling magnetoresistive effect has been investigated for NiFe/Al{sub 2}O{sub 3}/Co junctions with a small junction area down to 3.5 x 3.5 {mu}m{sup 2} fabricated using photolithography. About 75 of the prepared junctions exhibit the spin tunneling magnetoresistive effect, the maximum value being around 1 at room temperature. Negative interlayer exchange coupling (J<0) is found in these junctions. The strength of the coupling tends to increase with decreasing junction area. (orig.).

  20. On a semiconductor laser with a p–n tunnel junction with radiation emission through the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kolpakov, D. A., E-mail: kolpdm@gmail.com; Zvonkov, B. N.; Nekorkin, S. M.; Dikareva, N. V. [Lobachevsky State University of Nizhny Novgorod, Physical-Technical Research Institute (Russian Federation); Aleshkin, V. Ya.; Dubinov, A. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-11-15

    A multiwell interband cascade laser with a tunnel junction within a single waveguide and radiation emission through the substrate is implemented for the first time. It is shown that such a laser heterostructure design provides the more efficient population of quantum wells in comparison with a conventional multiwell laser with radiation emission through the substrate, due to which the lasing threshold is significantly lowered.

  1. Self-assembled monolayers of terminal acetylenes as replacements for thiols in bottom-up tunneling junctions

    NARCIS (Netherlands)

    Fracasso, Davide; Kumar, Sumit; Rudolf, Petra; Chiechi, Ryan C.

    2014-01-01

    Why use thiols in Molecular Electronics? They stink, oxidize readily, poison catalysts, and often require nontrivial protection/deprotection chemistry. In this communication we demonstrate the fabrication of tunneling junctions formed by contact of self-assembled monolayers (SAMs) of terminal alkyne

  2. Structural defects analysis versus spin polarized tunneling in Co2FeAl/MgO/CoFe magnetic tunnel junctions with thick MgO barriers

    International Nuclear Information System (INIS)

    We report on spin polarization reduction by incoherent tunneling in single crystal Co2FeAl/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). A large density of misfit dislocations in the Heusler based MTJs has been provided by a thick MgO barrier and its 3.8% lattice mismatch with the Co2FeAl electrode. Our analysis implicates a correlated structural-transport approach. The crystallographic coherence in the real space has been investigated by High Resolution Transmission Electron Microscopy phase analysis. The electronic transport experiments in variable temperature, fitted with a theoretical extended-Glazman–Matveev model, address different levels of the tunneling mechanisms from direct to multi-center hopping. We demonstrate a double impact of dislocations, as extended defects, on the tunneling polarization. Firstly, the breaking of the crystal symmetry destroys the longitudinal and lateral coherence of the propagating Bloch functions. This affects the symmetry filtering efficiency of the Δ1 states across the (001) MgO barriers and reduces the associated effective tunneling polarization. Secondly, dislocations provide localized states within the MgO gap. This determines temperature activated spin-conserving inelastic tunneling through chains of defects which are responsible for the one order of magnitude drop of the tunnel magnetoresistance from low to room temperature. - Highlights: • The paper focuses on tunneling transport in realistic single crystal magnetic tunnel junctions involving the full Heusler alloy Co2FeAl. • Via correlated structural-transport analysis approach, the paper demonstrates the role of extended structural defects in a single crystal epitaxial barrier on the tunneling polarization efficiency. • We illustrate the effect of the crystal symmetry breaking on the spin and symmetry polarized tunneling transport. • The transport results are confronted with a theoretical model considering different orders of tunneling mechanisms, from

  3. Tunneling conductance in quantum wire/insulator/d_(x~2-y~2)+id_(xy) mixed wave superconductor junctions

    Institute of Scientific and Technical Information of China (English)

    Wei Jian-Wen

    2009-01-01

    Using the extended Blonder-Tinkham-Klapwijk(BTK)theory, this paper calculates the tunnelling conductance in quantum wire/insulator/d_(x~2-y~2)+id_(xy) mixed wave superconductor(q/I/d_(x~2-y~2)+id_(xy))junctions That is different from the case in d-and p-wave superconductor junctions. When the angle α between a-axis of the d_(x~2-y~2) wave superconductor and the interface normal is π/4, there follows a rather distinctive tunnelling conductance. The zero-bias conductance peak(ZBCP)may or may not appear in the tunnelling conductance. Both the interface potential z and the quasi-particle lifetime factor [F]are smaller, there is no ZBCP. Otherwise, the ZBCP will appear. The position otbias conductance peak(BCP)depends strongly on the amplitude ratio of two components for d_(x~2-y~2)+id_(xy) mixed wave. The low and narrow ZBCP may coexist with the BCP in the tunnelling conductance. Using those features in the tunnelling conductance of q/I/d_(x~2-y~2)+id_(xy) junctions, it can distinguish d_(x~2-y~2)+id_(xy) mixed wave superconductor from d-and p-wave one.

  4. Detection of HIV-1 antigen based on magnetic tunnel junction sensor and magnetic nanoparticles

    CERN Document Server

    Li, L; Zhou, Y; Pong, P W T

    2016-01-01

    In recent years, it is evidenced that the individuals newly infected HIV are transmitting the virus prior to knowing their HIV status. Identifying individuals that are early in infection with HIV antibody negative (window period) remains problematic. In the newly infected individuals, HIV antigen p24 is usually present in their serum or plasma 7-10 days before the HIV antibody. After antibody production initiates, the p24 antigen is bound into immune complexes. That means the detectable p24 antigens in serum/plasma are short-lived, and their amount is in the pg/ml range. Thus, a rapid quantitative bio-detection system with high-sensitivity is required to achieve early disease diagnosis. Magnetoresistive (MR) biosensor with ultra-high sensitivity possesses great potential in this area. In this study, a p24 detection assay using MgO-based magnetic tunnel junction (MTJ) sensor and 20-nm magnetic nanoparticles is reported.

  5. Giant Electroresistance in Edge Metal-Insulator-Metal Tunnel Junctions Induced by Ferroelectric Fringe Fields

    Science.gov (United States)

    Jung, Sungchul; Jeon, Youngeun; Jin, Hanbyul; Lee, Jung-Yong; Ko, Jae-Hyeon; Kim, Nam; Eom, Daejin; Park, Kibog

    2016-08-01

    An enormous amount of research activities has been devoted to developing new types of non-volatile memory devices as the potential replacements of current flash memory devices. Theoretical device modeling was performed to demonstrate that a huge change of tunnel resistance in an Edge Metal-Insulator-Metal (EMIM) junction of metal crossbar structure can be induced by the modulation of electric fringe field, associated with the polarization reversal of an underlying ferroelectric layer. It is demonstrated that single three-terminal EMIM/Ferroelectric structure could form an active memory cell without any additional selection devices. This new structure can open up a way of fabricating all-thin-film-based, high-density, high-speed, and low-power non-volatile memory devices that are stackable to realize 3D memory architecture.

  6. A novel architecture of non-volatile magnetic arithmetic logic unit using magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Complementary metal–oxide–semiconductor (CMOS) technology is facing increasingly difficult obstacles such as power consumption and interconnection delay. Novel hybrid technologies and architectures are being investigated with the aim to circumvent some of these limits. In particular, hybrid CMOS/magnetic technology based on magnetic tunnel junctions (MTJs) is considered as a very promising approach thanks to the full compatibility of MTJs with CMOS technology. By tightly merging the conventional electronics with magnetism, both logic and memory functions can be implemented in the same device. As a result, non-volatility is directly brought into logic circuits, yielding significant improvement of device performances and new functionalities as well. We have conceived an innovative methodology to construct non-volatile magnetic arithmetic logic units (MALUs) combining spin-transfer torque MTJs with MOS transistors. The present 4-bit MALU utilizes 4 MTJ pairs to store its operation code (opcode). Its operations and performances have been confirmed and evaluated through electrical simulations. (paper)

  7. Relaxation phenomena in current-induced switching in thin magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Recently, reversible resistance (R) changes were observed in thin tunnel junctions (TJ) when a critical electrical current was applied. These changes are called current-induced switching (CIS) and are attributed to electromigration in nanoconstrictions in the insulating barrier. Here, we study the CIS effect on a thin TJ prepared by IBD, displaying a 3.4% R change when a CIS cycle is performed at room temperature. After complete (or half) CIS cycles with adequate maximum currents, we monitored R as a function of time. In both cases a non-monotonic relaxation occurs with two distinct relaxation times, τ1∼10min, τ2∼102min. First R increases (decreases) rapidly, but then a slow relaxation dominates, reducing (increasing) R. These opposite relaxation processes suggest two independent physical mechanisms acting simultaneously inside the TJ. The physical origin of these effects is discussed

  8. The universal magnetic tunnel junction logic gates representing 16 binary Boolean logic operations

    Science.gov (United States)

    Lee, Junwoo; Suh, Dong Ik; Park, Wanjun

    2015-05-01

    The novel devices are expected to shift the paradigm of a logic operation by their own nature, replacing the conventional devices. In this study, the nature of our fabricated magnetic tunnel junction (MTJ) that responds to the two external inputs, magnetic field and voltage bias, demonstrated seven basic logic operations. The seven operations were obtained by the electric-field-assisted switching characteristics, where the surface magnetoelectric effect occurs due to a sufficiently thin free layer. The MTJ was transformed as a universal logic gate combined with three supplementary circuits: A multiplexer (MUX), a Wheatstone bridge, and a comparator. With these circuits, the universal logic gates demonstrated 16 binary Boolean logic operations in one logic stage. A possible further approach is parallel computations through a complimentary of MUX and comparator, capable of driving multiple logic gates. A reconfigurable property can also be realized when different logic operations are produced from different level of voltages applying to the same configuration of the logic gate.

  9. Size dependence of magnetization reversal of ring shaped magnetic tunnel junction

    International Nuclear Information System (INIS)

    The size dependence of magnetization reversal of magnetic tunnel junction (MTJ) rings has been investigated. The MTJ rings, with outer diameter of 4, 2 and 1 μm and inner diameter of 1.5, 1 and 0.5 μm were fabricated by a top-down technique. The magnetoresistance curves manifest all of the magnetic domain configurations during magnetization reversal in different sized rings. Various transition processes were observed, such as four transition, three transition and two transition in the largest, middle and smallest MTJ ring, respectively. Furthermore, the biasing fields observed from major loops decrease with decreasing size, which may result from edge roughness produced in the ion-milling process

  10. Origins of large light induced voltage in magnetic tunnel junctions grown on semiconductor substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Lin, W.; Petit-Watelot, S.; Hehn, M.; Rinnert, H.; Lu, Y.; Montaigne, F.; Lacour, D.; Andrieu, S.; Mangin, S., E-mail: stephane.mangin@univ-lorraine.fr [Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine- BP 70239, F-54506 Vandoeuvre-lès-Nancy Cedex (France)

    2016-01-14

    Recently, the study of interactions between electron spins and heat currents has given rise to the field of “Spin Caloritronics”. Experimental studies of these interactions have shown a possibility to combine the use of heat and light to power magnetic tunnel junction (MTJ) devices. Here we present a careful study of an MTJ device on Si substrate that can be powered entirely by light. We analyze the influence of the material properties, device geometry, and laser characteristics on the electric response of the sample. We demonstrate that by engineering the MTJ and its electrical contact, a large photovoltage reaching 100 mV can be generated. This voltage originates from the Si substrate and depends on the MTJ magnetic configuration. Finally, we discuss the origin of the photo-voltage in terms of Seebeck and photovoltaic effects.

  11. Short-Term Plasticity and Long-Term Potentiation in Magnetic Tunnel Junctions: Towards Volatile Synapses

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2016-02-01

    Synaptic memory is considered to be the main element responsible for learning and cognition in humans. Although traditionally nonvolatile long-term plasticity changes are implemented in nanoelectronic synapses for neuromorphic applications, recent studies in neuroscience reveal that biological synapses undergo metastable volatile strengthening followed by a long-term strengthening provided that the frequency of the input stimulus is sufficiently high. Such "memory strengthening" and "memory decay" functionalities can potentially lead to adaptive neuromorphic architectures. In this paper, we demonstrate the close resemblance of the magnetization dynamics of a magnetic tunnel junction (MTJ) to short-term plasticity and long-term potentiation observed in biological synapses. We illustrate that, in addition to the magnitude and duration of the input stimulus, the frequency of the stimulus plays a critical role in determining long-term potentiation of the MTJ. Such MTJ synaptic memory arrays can be utilized to create compact, ultrafast, and low-power intelligent neural systems.

  12. Multispectral/fluorescence CT using superconducting tunnel junction detector for 3-D material analysis

    International Nuclear Information System (INIS)

    We have developed superconducting tunnel junctions (STJs) for applications to astrophysics, particle physics, material physics, etc. The spectrum capability of STJs is the wide wavelength/energy range from visible light to X-ray. STJs are applicable to photon detectors with good energy resolution and a high photon-counting rate. STJs also have good efficiency because of their high absorption efficiency below 1 keV photon energy. This is advantageous in low photon emission observation like fluorescence from objects. STJs have potentials to open new windows of the Multispectral/fluorescence computed tomography (CT) below 1 keV photon energy. As first step, we are starting STJ-CT experiments from the high-energy X-ray region (6-20 keV). We report and discuss the CT using STJs

  13. Mapping the intramolecular contributions to the inelastic electron tunneling signal of a molecular junction

    Science.gov (United States)

    Foti, Giuseppe; Vázquez, Héctor

    2016-07-01

    We present a quantitative analysis of the intramolecular origin of the inelastic electron tunneling signal of a molecular junction. We use density-functional theory to study a representative conjugated molecule with a low degree of symmetry and calculate, for all modes, the different contributions that give rise to the vibrational spectrum. These local contributions involve products of scattering states with electron-phonon matrix elements and thus encode information on both the vibrational modes and the electronic structure. We separate these intra- and interatomic terms and draw a pattern of addition or cancellation of these partial contributions throughout the inelastic spectrum. This allows for a quantitative relation between the degree of symmetry of each vibrational mode, its inelastic signal, and the locality of selection rules.

  14. Tunneling magnetoresistance based on a Cr/graphene/Cr magnetotunnel junction

    Institute of Scientific and Technical Information of China (English)

    栾桂苹; 张沛然; 焦娜; 孙立忠

    2015-01-01

    Using the density functional theory and the nonequilibrium Green’s function method, we studied the finite-bias quan-tum transport in a Cr/graphene/Cr magnetotunnel junction (MTJ) constructed by a single graphene layer sandwiched be-tween two semi-infinite Cr(111) electrodes. We found that the tunneling magnetoresistance (TMR) ratio in this MTJ reached 108%, which is close to that of a perfect spin filter. Under an external positive bias, we found that the TMR ratio remained constant at 65%, in contrast to MgO-based MTJs, the TMR ratios of which decrease with increasing bias. These results indicate that the Cr/graphene/Cr MTJ is a promising candidate for spintronics applications.

  15. Atomic nitrogen source for the formation of aluminum nitride tunnel barrier SIS junctions

    International Nuclear Information System (INIS)

    A 2.45 GHz electron-cyclotron-resonance plasma source has been adopted to form AlN barriers of Nb/Al-AlN/Nb SIS junctions. Good quality AlN barriers with tunnel resistivities as small as 7 Ωμm2 have been realized. The optical emission spectrum of the nitrogen plasma has been investigated in order to evaluate the dissociation rate of N2. AlN barriers with less leakage current were formed when the relative intensity of the emission lines of atomic N was stronger. Nitridation by atomic N could be beneficial in the formation of low resistivity, low leakage current AlN barriers.

  16. Three-terminal magnetic tunneling junction device with perpendicular anisotropy CoFeB sensing layer

    International Nuclear Information System (INIS)

    We demonstrated read and write characteristics of a three terminal memory device with a perpendicular anisotropy-free layer of a strip of [Co/Ni] and a low-switching perpendicular-anisotropy CoFeB/MgO sensing layer. This new design of the cell results in a small cell area. The switching magnetic field of the sensing layer can be decreased by changing sputtering gas for the Ta-cap from Ar to Kr. An electron energy-loss spectroscopy analysis of the cross-section of the magnetic tunneling junction (MTJ) revealed that the boron content in CoFeB with a Kr-sputtered Ta-cap was smaller than that with an Ar-sputtered one. A change in resistance for the MTJ was observed that corresponded to the magnetic switching of the Co/Ni wire and its magnetoresistance ratio and critical current were 90% and 0.8 mA, respectively

  17. Terahertz direct-detection behavior of niobium nitride superconducting tunnel junctions above liquid helium temperature

    International Nuclear Information System (INIS)

    Niobium nitride (NbN) superconducting tunnel junctions (STJs) have an energy gap nearly double that of niobium STJs, making them potential sensitive detectors that operate at higher frequencies and temperatures. In this paper, we investigate the direct-detection behavior (i.e. the spectral response, current responsivity, noise characteristics, and noise equivalent power (NEP)) of a 500 GHz NbN STJ detector at temperatures from approximately 5 to 9 K. The detector shows an uncorrected NEP of 3.8 × 10−13 W/√(Hz) around 5 K and 1.5 × 10−12 W/√(Hz) at 9 K. Its performance can be further improved by adopting a cryogenically cooled readout circuit and fabricating the device with a wiring layer of higher critical-transition temperatures. (papers)

  18. Modification of Layer Structures of Superconducting Tunnel Junctions to Improve X-ray Energy Resolution

    Science.gov (United States)

    Ukibe, Masahiro; Fujii, Go; Shiki, Shigetomo; Kitajima, Yoshinori; Ohkubo, Masataka

    2016-07-01

    The layer structure of a Nb/Al-based superconducting tunnel junction (STJ) X-ray detector was modified to improve the energy resolution (Δ E) of STJ X-ray detectors by suppressing the recombination of excited quasiparticles in the electrodes. A 100-pixel array of 100 × 100 \\upmu m STJs with a symmetric layer structure of Nb (300 nm)/Al-AlOx(70 nm)/Al (70 nm)/Nb (300 nm) was fabricated. Fabrication yields of the 100 pixels were more than 90 %. The average leak current of the STJ array was 8 nA. The mean Δ E of the STJ array was 6.7 ± 1.0 eV for 400 eV X-rays. This Δ E is the best value reported for Nb/Al STJs.

  19. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  20. Leak current estimated from the shot noise in magnetic tunneling junctions

    Science.gov (United States)

    Tanaka, Takahiro; Arakawa, Tomonori; Maeda, Masahiro; Kobayashi, Kensuke; Nishihara, Yoshitaka; Ono, Teruo; Nozaki, Takayuki; Fukushima, Akio; Yuasa, Shinji

    2014-07-01

    We performed the shot noise measurement in epitaxial Fe/MgO/Fe-based magnetic tunneling junctions (MTJs) with various MgO thicknesses between 1.1 nm and 1.625 nm. While the Fano factor to characterize the shot noise is very close to 1 in MTJs with MgO barrier thicker than 1.2 nm, the magnetic configuration-dependent reduction of the Fano factor for MTJs with thin MgO barrier was observed, which is mainly due to the existence of leakage current. By using a simple parallel circuit model, we demonstrated that the contribution of the leak current can be sensitively derived from the shot noise.

  1. Superconducting tunnel junction array development for high-resolution energy-dispersive x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barfknecht, A. T.; Cramer, S. P; Frank, M.; Friedrich, S.; Hiller, L. J.; Labov, S. E.; Mears, C. A.; Niderost, B.

    1998-07-01

    Cryogenic energy-dispersive x-ray detectors are being developed because of their superior energy resolution ((less than or equal to) 10 eV FWHM for keV x rays) compared to semiconductor EDS systems. So far, their range of application is limited due to their comparably small size and low count rate. We present data on the development of superconducting tunnel junction (STJ) detector arrays to address both of these issues. A single STJ detector has a resolution around 10 eV below 1 keV and can be operated at count rates of order 10,000 counts/s. We show that the simultaneous operation of several STJ detectors does not diminish their energy resolution significantly, while increasing the detector area and the maximum count rate by a factor given by the total number of independent channels.

  2. Promising X-ray fluorescent tests for superconducting tunnel junction detector

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan; Robinson, Art

    2001-01-11

    Scientists in the Physical Biosciences Division of the Ernest Orlando Berkeley National Laboratory (Berkeley Lab) studying transition metals in proteins with fluorescence-detected L-edge absorption spectroscopy have found the measurements to be extremely challenging. The difficulty is that the metal centers are present in very dilute concentrations so that their weak fluorescence is often obscured by strong background signals from carbon and oxygen. To solve this problem, the Berkeley group has been working with researchers from the Advanced Detector Group at the Lawrence Livermore National Laboratory on an energy-dispersive superconducting tunnel junction x-ray detector. These devices in principle have the energy resolution needed to reveal the metal signal. The most recent results with the latest version of the detector on Beamline 4.0.1-2 at the Advanced Light Source (ALS) illustrate the promise of the cryogenic detector strategy not only for this application but also for spectroscopy of other types of dilute samples.

  3. Confined State and Electronic Transport in an Artificial Graphene-Based Tunnel Junction

    Institute of Scientific and Technical Information of China (English)

    袁建辉; 张建军; 曾奇军; 张俊佩; 成泽

    2011-01-01

    Artificial graphene structures embedded in semiconductors could open novel routes for studies of electron interactions in 1ow-dimensional systems. We propose a way to manipulate the transport properties of massless Dirac fermions in an artificial graphene-based tunnel junction. Velocity-modulation control of electron wave propagation in the different regions can be regarded as velocity barriers. Transmission probability of electron is affected profoundly by this velocity barrier. We find that there is no confinement for Dirac electron as the velocity ratio ζ is less than 1, but when the velocity ratio is larger than 1 the confined state appears in the continuum band. These localized Dirac electrons may lead to the decreasing of transmission probability.

  4. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  5. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.; Diény, B. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, INAC-SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Ducruet, C. [Crocus-Technology, 5, Place Robert Schuman, F-38054 Grenoble (France); Vila, L. [Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France)

    2015-09-07

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  6. Magneto Seebeck effect in Co-Fe-B/MgO/Co-Fe-B tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Marvin; Walowski, Jakob; Zbarsky, Vladyslav; Muenzenberg, Markus [I. Physikalisches Institut, Universitaet Goettingen (Germany); Drewello, Volker; Ebke, Daniel; Reiss, Guenter; Thomas, Andy [Department of Physics, Bielefeld University (Germany); Peretzki, Patrick; Seibt, Michael [IV. Physikalisches Institut, Universitaet Goettingen (Germany); Czerner, Michael; Bachmann, Michael; Heiliger, Christian [I. Physikalisches Institut, Universitaet Giessen (Germany)

    2011-07-01

    Co-Fe-B/MgO/Co-Fe-B devices showing a giant TMR effect are possible candidates for the generation of spin-currents by thermal heating. We present the observation of a magneto Seebeck effect in Co-Fe-B/MgO/Co-Fe-B magnetic tunnel junctions (MTJs). The effects could be used for thermal spin-injection and thermally driven spin-transfer torque. The samples presented in this work consist of a minimal pseudo-spin-valve stack with sputtered Ta and Co-Fe-B layers and an e-beam evaporated MgO barrier. The MTJs are heated by a diode laser which achieves powers of up to 100 mW and is focused onto the sample in a standard confocal microscope setup. The heating is simulated by finite element methods and the experimental results are compared with ab initio calculations of the magneto-thermoelectric power and of the spin-Seebeck coefficient.

  7. Double-pinned magnetic tunnel junction sensors with spin-valve-like sensing layers

    Science.gov (United States)

    Yuan, Z. H.; Huang, L.; Feng, J. F.; Wen, Z. C.; Li, D. L.; Han, X. F.; Nakano, Takafumi; Yu, T.; Naganuma, Hiroshi

    2015-08-01

    MgO magnetic tunnel junction (MTJ) sensors with spin-valve-like sensing layers of Ir22Mn78 (6)/Ni80Fe20 (tNiFe = 20-70)/Ru (0.9)/Co40Fe40B20 (3) (unit: nm) have been fabricated. A linear field dependence of magnetoresistance for these MTJ sensors was obtained by carrying out a two-step field annealing process. The sensitivity and linear field range can be tuned by varying the thickness of NiFe layer and annealing temperature, and a high sensitivity of 37%/mT has been achieved in the MTJ sensors with 70 nm NiFe at the optimum annealing temperature of 230 °C. Combining the spin-valve-like sensing structure and a soft magnetic NiFe layer, MTJ sensors with relatively wide field sensing range have been achieved and could be promising for showing high sensitivity magnetic field sensing applications.

  8. Thermo-electric charge-to-voltage converter with superconductor-insulator-normal tunnel junction for bolometer applications

    International Nuclear Information System (INIS)

    A novel type of the zero-biased thermo-electric bolometer (TEB) is proposed. The bolometer is based on a charge-to-voltage converter (CVC) with a superconductor-insulator-normal (SIN) tunnel junction and a superconducting absorber. The absorption of photons in the absorber leads to excitation of quasiparticles with some fraction of charge imbalance, tunneling through the SIN junction in zero-biased mode and generation of voltage. The thermoelectric voltage is determined by accumulation of tunneling charge in an external capacitance. Conversion efficiency is very high and voltage values comparable with a superconducting gap are easily achieved. The zero-biased CVC-TEB can be effectively used for creation of an array of bolometers and multi-pixel detection systems.

  9. Use of a Superconducting Tunnel Junction for X-Ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, L

    2001-03-06

    A superconducting tunnel junction (STJ) in combination with a superconducting absorber of radiation may function as a highly resolving x-ray spectrometer. Electronic excitations, or quasiparticles, are created when a superconductor absorbs an x ray and are detected as an excess tunnel current through the junction. The number of quasiparticles created and the magnitude of the excess current is proportional to the energy of the absorbed x ray. This is similar to existing semiconductor-based spectrometers that measure electron-hole pairs, but with 1000 times more excitations. The energy measurement therefore can be up to 30 times more precise with a superconducting detector than with a semiconductor detector. This work describes the development and testing of an STJ spectrometer design for x-ray fluorescence applications. First, the basic principles of the STJ spectrometer are explained. This is followed by detailed simulations of the variance in the number of quasiparticles produced by absorption of an x ray. This variance is inherent in the detector and establishes an upper limit on the resolving power of the spectrometer. These simulations include effects due to the materials used in the spectrometer and to the multilayer structure of the device. Next, the spectrometer is characterized as functions of operating temperature, incident x-ray energy, and count rate. Many of these tests were performed with the spectrometer attached to a synchrotron radiation port. Finally, example x-ray fluorescence spectra of materials exposed to synchrotron radiation are presented. These materials are of interest to semiconductor processing and structural biology, two fields that will benefit immediately from the improved resolving power of the STJ spectrometer.

  10. Oscillatory behavior of the tunnel magnetoresistance due to thickness variations in Ta|CoFe|MgO magnetic tunnel junctions: A first-principles study

    Science.gov (United States)

    Sankaran, K.; Swerts, J.; Couet, S.; Stokbro, K.; Pourtois, G.

    2016-09-01

    To investigate the impact of both the CoFe ferromagnetic layer thickness and the capping paramagnetic layer on the tunnel magnetoresistance (TMR), we performed first-principles simulations on epitaxial magnetic tunnel junctions contacted with either CoFe or Ta paramagnetic capping layers. We observed a strong oscillation of the TMR amplitude with respect to the thickness of the ferromagnetic layer. The TMR is found to be amplified whenever the MgO spin tunnel barrier is thickened. Quantization of the electronic structure of the ferromagnetic layers is found to be at the origin of this oscillatory behavior. Metals such as Ta contacting the magnetic layer are found to enhance the amplitude of the oscillations due to the occurrence of an interface dipole. The latter drives the band alignment and tunes the nature of the spin channels that are active during the tunneling process. Subsequently, the regular transmission spin channels are modulated in the magnetic tunnel junction stack and other complex ones are being activated.

  11. Structural defects analysis versus spin polarized tunneling in Co2FeAl/MgO/CoFe magnetic tunnel junctions with thick MgO barriers

    Science.gov (United States)

    Gabor, M. S.; Tiusan, C.; Petrisor, T.; Petrisor, T.; Hehn, M.; Lu, Y.; Snoeck, E.

    2013-12-01

    We report on spin polarization reduction by incoherent tunneling in single crystal Co2FeAl/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). A large density of misfit dislocations in the Heusler based MTJs has been provided by a thick MgO barrier and its 3.8% lattice mismatch with the Co2FeAl electrode. Our analysis implicates a correlated structural-transport approach. The crystallographic coherence in the real space has been investigated by High Resolution Transmission Electron Microscopy phase analysis. The electronic transport experiments in variable temperature, fitted with a theoretical extended-Glazman-Matveev model, address different levels of the tunneling mechanisms from direct to multi-center hopping. We demonstrate a double impact of dislocations, as extended defects, on the tunneling polarization. Firstly, the breaking of the crystal symmetry destroys the longitudinal and lateral coherence of the propagating Bloch functions. This affects the symmetry filtering efficiency of the Δ1 states across the (001) MgO barriers and reduces the associated effective tunneling polarization. Secondly, dislocations provide localized states within the MgO gap. This determines temperature activated spin-conserving inelastic tunneling through chains of defects which are responsible for the one order of magnitude drop of the tunnel magnetoresistance from low to room temperature.

  12. Proximity effect in planar superconducting tunnel junctions containing Nb/NiCu superconductor/ferromagnet bilayers

    Science.gov (United States)

    Pepe, G. P.; Latempa, R.; Parlato, L.; Ruotolo, A.; Ausanio, G.; Peluso, G.; Barone, A.; Golubov, A. A.; Fominov, Ya. V.; Kupriyanov, M. Yu.

    2006-02-01

    We present experimental results concerning both the fabrication and characterization of superconducting tunnel junctions containing superconductor/ferromagnet (S/F) bilayers made by niobium (S) and a weak ferromagnetic Ni0.50Cu0.50 alloy. Josephson junctions have been characterized down to T=1.4K in terms of current-voltage I - V characteristics and Josephson critical current versus magnetic field. By means of a numerical deconvolution of the I - V data the electronic density of states on both sides of the S/F bilayer has been evaluated at low temperatures. Results have been compared with theoretical predictions from a proximity model for S/F bilayers in the dirty limit in the framework of Usadel equations for the S and F layers, respectively. The main physical parameters characterizing the proximity effect in the Nb/NiCu bilayer, such as the coherence length and the exchange field energy of the F metal, and the S/F interface parameters have been also estimated.

  13. Evaluation of a ferroelectric tunnel junction by ultraviolet-visible absorption using a removable liquid electrode.

    Science.gov (United States)

    Lee, Hong-Sub; Kang, Kyung-Mun; Yeom, Geun Young; Park, Hyung-Ho

    2016-05-27

    Ferroelectric memristors offer a significant alternative to their redox-based analogs in resistive random access memory because a ferroelectric tunnel junction (FTJ) exhibits a memristive effect that induces resistive switching (RS) regardless of the operating current level. This RS results from a change in the ferroelectric polarization direction, allowing the FTJ to overcome the restriction encountered in redox-based memristors. Herein, the memristive effect of an FTJ was investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy using a removable mercury (Hg) top electrode (TE), BaTiO3 (BTO) ferroelectric tunnel layer, La0.7Sr0.3MnO3 (LSMO) semiconductor bottom electrode, and wide-bandgap quartz (100) single-crystal substrate to determine the low-resistance state (LRS) and high-resistance state (HRS) of the FTJ. A BTO (110)/LSMO (110) polycrystal memristor involving a Hg TE showed a small memristive effect (switching ratio). This effect decreased with increasing read voltage because of a small potential barrier height. The LRS and HRS of the FTJ showed quasi-similar UV-Vis absorption spectra, consistent with the small energy difference between the valence-band maximum of BTO and Fermi level of LSMO near the interface between the LRS and HRS. This energy difference stemmed from the ferroelectric polarization and charge-screening effect of LSMO based on an electrostatic model of the FTJ. PMID:27087674

  14. Write operation study of Co/BTO/LSMO ferroelectric tunnel junction

    Science.gov (United States)

    Wang, Z. H.; Zhao, W. S.; Kang, W.; Bouchenak-Khelladi, A.; Zhang, Y.; Klein, J.-O.; Ravelosona, D.; Chappert, C.

    2013-07-01

    Recently, a Co/BaTiO3/La0.67Sr0.33MnO3 (Co/BTO/LSMO) ferroelectric tunnel junction (FTJ) has shown the great potential towards non-volatile memory and logic applications due to its excellent performance. Especially, the giant OFF/ON tunnel resistance ratio (e.g., ˜100) assures that FTJ-based random access memory (FTRAM) can achieve lower reading error rate than emerging magnetic RAM. Nevertheless, in this paper, our investigation demonstrated that this FTJ suffered from difficulties in write operation when integrating with current CMOS technology into a FTRAM. Specifically, the write performances of Co/BTO/LSMO 1T1R FTRAM such as cell area, speed, energy dissipation, and thermal fluctuation effect were simulated and evaluated with a compact model and CMOS 40 nm design kit. Simulation results indicate the drawbacks of this FTRAM including significant performance asymmetry between two write orientations, high write voltage, large cell area, and severe thermal fluctuation disturbance. Simultaneously, this research provides several methods of improving write performance of FTRAM from the perspective of device size and process parameters.

  15. AlOx barrier growth in magnetic tunnel junctions for sensor applications

    Science.gov (United States)

    Knudde, S.; Farinha, G.; Leitao, D. C.; Ferreira, R.; Cardoso, S.; Freitas, P. P.

    2016-08-01

    Magnetic tunnel junction (MTJ) research has been focused on MgO-based crystalline structures due to high tunnel magnetoresistance (TMR), despite requiring a more severe process control than previous generations of MTJ stacks based on amorphous barriers (e.g. AlOx). In this work, we study the electrical transport properties in AlOx barriers in MTJ sensors fabricated using Ion beam sputtering and remote plasma oxidation. Amorphous barriers were prepared from oxidation of thin Al films, deposited in single step barrier (SSB-Al 1 nm/oxidation) or double step barrier (DSB-Al 0.5 nm/oxidation/Al 0.5 nm/oxidation) structures. We show tunable resistance-area products (RxA) ranging from ≈ 10 Ω μ m2 (suited for nano devices) up to ≈ 100 k Ω μ m2 (suited for large area sensors) with TMR above 30%. For all geometries studied, the structures have a coercivity free linear response and require none or one annealing step. This makes them very competitive for all industrial applications where the TMR level is not the dominant specification to meet.

  16. Analytical description of ballistic spin currents and torques in magnetic tunnel junctions

    KAUST Repository

    Chshiev, M.

    2015-09-21

    In this work we demonstrate explicit analytical expressions for both charge and spin currents which constitute the 2×2 spinor in magnetic tunnel junctions with noncollinear magnetizations under applied voltage. The calculations have been performed within the free electron model in the framework of the Keldysh formalism and WKB approximation. We demonstrate that spin/charge currents and spin transfer torques are all explicitly expressed through only three irreducible quantities, without further approximations. The conditions and mechanisms of deviation from the conventional sine angular dependence of both spin currents and torques are shown and discussed. It is shown in the thick barrier approximation that all tunneling transport quantities can be expressed in an extremely simplified form via Slonczewski spin polarizations and our effective spin averaged interfacial transmission probabilities and effective out-of-plane polarizations at both interfaces. It is proven that the latter plays a key role in the emergence of perpendicular spin torque as well as in the angular dependence character of all spin and charge transport considered. It is demonstrated directly also that for any applied voltage, the parallel component of spin current at the FM/I interface is expressed via collinear longitudinal spin current components. Finally, spin transfer torque behavior is analyzed in a view of transverse characteristic length scales for spin transport.

  17. An Explicit Function Expression for dc Bias and Temperature Dependence of Magnetoresistances in Magnetic Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An explicit function expression for the bias voltage or/and temperature dependences of tunnel magnetoresistance ratio and resistances were obtained with a unique set of intrinsic parameters. Two of these intrinsic parameters are the Curie temperature TC and the density of state (DOS) for itinerant majority and minority electrons ξ(ρM/ρm),which are the eigen parameters of ferromagnetic electrodes. Others are the spin-dependent matrix-element ratio (i.e.,|Td|2/|TJ|2 ) and the anisotropic-wavelength-cutoff energy EγC of spin-wave spectrum in magnetic tunnel junction (MT J), which are the structure parameters of an MTJ. These intrinsic parameters can be predetermined using the experimental measurement or, in principle, using the first-principle calculation method for an MTJ with the three key layers of FM/I/FM. Furthermore, a series of experimental data for an MTJ, for example, a spin-valve-type MTJ of Ta (5 nm)/Ni79Fe21(25 nm)/Ir22Mn78(12 nm)/Co75Fe25(4 nm)/Al(0.8 nm)-oxide/Co75Fe25(4 nm)/Ni79Fe21(20 nm)/Ta (5 nm) in this work, can be self-consistently evaluated and explained using such concise explicit function formulations.

  18. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, S., E-mail: stephane.andrieu@univ-lorraine.fr; Bonell, F.; Hauet, T.; Montaigne, F. [Institut Jean Lamour, Nancy University/CNRS, Bd des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy (France); Calmels, L.; Snoeck, E. [CEMES, CNRS and Toulouse University, 29 rue Jeanne Marvig, 31055 Toulouse (France); Lefevre, P.; Bertran, F. [Synchrotron SOLEIL-CNRS, L' Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette cedex (France)

    2014-05-07

    The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

  19. Evaluation of a ferroelectric tunnel junction by ultraviolet–visible absorption using a removable liquid electrode

    Science.gov (United States)

    Lee, Hong-Sub; Kang, Kyung-Mun; Yeom, Geun Young; Park, Hyung-Ho

    2016-05-01

    Ferroelectric memristors offer a significant alternative to their redox-based analogs in resistive random access memory because a ferroelectric tunnel junction (FTJ) exhibits a memristive effect that induces resistive switching (RS) regardless of the operating current level. This RS results from a change in the ferroelectric polarization direction, allowing the FTJ to overcome the restriction encountered in redox-based memristors. Herein, the memristive effect of an FTJ was investigated by ultraviolet–visible (UV–Vis) absorption spectroscopy using a removable mercury (Hg) top electrode (TE), BaTiO3 (BTO) ferroelectric tunnel layer, La0.7Sr0.3MnO3 (LSMO) semiconductor bottom electrode, and wide-bandgap quartz (100) single-crystal substrate to determine the low-resistance state (LRS) and high-resistance state (HRS) of the FTJ. A BTO (110)/LSMO (110) polycrystal memristor involving a Hg TE showed a small memristive effect (switching ratio). This effect decreased with increasing read voltage because of a small potential barrier height. The LRS and HRS of the FTJ showed quasi-similar UV–Vis absorption spectra, consistent with the small energy difference between the valence-band maximum of BTO and Fermi level of LSMO near the interface between the LRS and HRS. This energy difference stemmed from the ferroelectric polarization and charge-screening effect of LSMO based on an electrostatic model of the FTJ.

  20. Cryogenic Phase-Locking Loop System Based on SIS Tunnel Junction

    Science.gov (United States)

    Khudchenko, A. V.; Koshelets, V. P.; Kalashnikov, K. V.

    An ultra-wideband cryogenic phase-locking loop (CPLL) system is a new cryogenic device. The CPLL is intended for phase-locking of a Flux-Flow Oscillator (FFO) in a Superconducting Integrated Receiver (SIR) but can be used for any cryogenic terahertz oscillator. The key element of the CPLL is Cryogenic Phase Detector (CPD), a recently proposed new superconducting element. The CPD is an innovative implementation of superconductor-insulator-superconductor (SIS) tunnel junction. All components of the CPLL reside inside a cryostat at 4.2 K, with the loop length of about 50 cm and the total loop delay 5.5 ns. Such a small delay results in CPLL synchronization bandwidth as wide as 40 MHz and allows phase-locking of more than 60% of the power emitted by the FFO even for FFO linewidth of about 10 MHz. This percentage of phase-locked power three times exceeds that achieved with conventional room-temperature PLLs. Such an improvement enables reducing the FFO phase noise and extending the SIR operation range.Another new approach to the FFO phase-locking has been proposed and experimentally verified. The FFO has been synchronized by a cryogenic harmonic phase detector (CHPD) based on the SIS junction. The CHPD operates simultaneously as the harmonic mixer (HM) and phase detector. We have studied the HM based on the SIS junction theoretically; in particular we calculated 3D dependences of the HM output signal power versus the bias voltage and the LO power. Results of the calculations have been compared with experimental measurements. Good qualitative and quantitative correspondence has been achieved. The FFO phase-locking by the CHPD has been demonstrated. Such a PLL system is expected to be extra wideband. This concept is very promising for building of the multi-pixel SIR array.

  1. Tunneling characteristics for nm-thick mesas consisting of a few intrinsic Josephson junctions

    Science.gov (United States)

    Suzuki, Minoru; Ohmaki, Masayuki; Takemura, Ryota; Hamada, Kenji; Watanabe, Takao; Ota, Kensuke; Kitano, Haruhisa; Maeda, Atsutaka

    2008-10-01

    Very thin mesa structures consisting of a few intrinsic Josephson junctions have been fabricated on single crystal surfaces of Bi2Sr2CaCu2O8+δ. In the fabrication procedure, annealing is conducted after the mesa structure is formed by Ar ion milling. Or, the annealing is skipped and, instead, the electrodes to the mesas have been deposited in vacuum immediately after crystals are cleaved. We have attained both uniform current-voltage (I-V) characteristics and small contact resistances, which are usually difficult to obtain at the same time in the case of nm-thick mesa structures. For the mesas thus fabricated, it is found that the Josephson critical current Jc of the top IJJ (the surface junction) is reduced significantly. The reduction of Jc is more significant when the doping level of the crystal used is lower. We argue that this is due to the proximity efiect of the surface junction, in which the top electrode is in close proximity with the Ag or Au film of a thickness of the order of 300 nm. For mesas obtained by this method, the switching probability distribution has been measured. It is found that when the mesa lateral size is larger than 2 μm the switching is unreproducible and lacking systematic temperature dependence. It is also found that escape temperature Tesc and the standard deviation σ for the switching probability distribution exhibits a large deviation from the Kramers' thermal activation theory. When the lateral size is no larger than 2 μm, the switching probability distribution results show coincidence with the theory in the temperature range from 1.3 K to 5 K. Below 0.5 K, the escape temperature tends to saturate and indicates a crossover near 0.5 K from the thermal activation to the macroscopic quantum tunneling.

  2. Tunneling anisotropic magnetoresistance in La2/3Sr1/3MnO3/LaAlO3/Pt tunnel junctions

    Directory of Open Access Journals (Sweden)

    R. Galceran

    2016-04-01

    Full Text Available The magnetotransport properties of La2/3Sr1/3MnO3(LSMO/ LaAlO3(LAO/Pt tunneling junctions have been analyzed as a function of temperature and magnetic field. The junctions exhibit magnetoresistance (MR values of about 37%, at H=90 kOe at low temperature. However, the temperature dependence of MR indicates a clear distinct origin than that of conventional colossal MR. In addition, tunneling anisotropic MR (TAMR values around 4% are found at low temperature and its angular dependence reflects the expected uniaxial anisotropy. The use of TAMR response could be an alternative of much easier technological implementation than conventional MTJs since only one magnetic electrode is required, thus opening the door to the implementation of more versatile devices. However, further studies are required in order to improve the strong temperature dependence at the present stage.

  3. Influence of the MgO barrier thickness on the lifetime characteristics of magnetic tunnelling junctions for sensors

    Science.gov (United States)

    Conca, A.; Casper, F.; Paul, J.; Lehndorff, R.; Jakob, G.; Kläui, M.; Hillebrands, B.; Leven, B.

    2016-06-01

    Magnetic tunnelling junctions increasingly enter the market for magnetic sensor applications. Thus, technological parameters such as the lifetime characteristics become more and more important. Here, an analysis of the lifetime characteristics of magnetic tunnelling junctions using the Weibull statistical distribution for CoFeB/MgO/CoFeB junctions is presented. The Weibull distribution is governed by two parameters, the characteristic lifetime η of the population and the shape parameter β, which gives information about the presence of an infant mortality. The suitability of the Weibull distribution is demonstrated for the description of dielectric breakdown processes in MgO-based tunnelling junctions at different voltages. A study of the dependence of the characteristic lifetime extrapolated to the low voltage regime, and the β parameter on the nominal barrier thickness and the resistance  ×  area product of the MgO barrier is shown. The influence of the RF deposition power for the MgO barrier and an annealing step on the Weibull parameters is also discussed.

  4. Resonant electron tunneling in single quantum well heterostructure junction of electrodeposited metal semiconductor nanostructures using nuclear track filters

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, A.; Avasthi, D.K.; Singh, Benoy K.; Lotha, S.; Singh, J.P.; Fink, D.; Yadav, B.K.; Bhattacharya, B.; Bose, S.K

    1999-05-02

    We report on resonant electron tunneling through a Cu-Se heterostructure junction grown electrochemically in the submicron size pores (0.8 {mu}m) of a nuclear track filter (Polycarbonate). The prominent feature of negative differential resistance (NDR) has been observed in the current-voltage (I-V) characteristic of the so-fabricated array of resonant tunneling diodes (RTDs) even at room temperature, along with a significant peak to valley current ratio (2.5) of the resonance. Tunneling structures of the nanofabricated RTDs around zero bias are also observed at room temperature. Our results show that the low cost and relatively easy electrodeposition method can be a very effective way to prepare resonant quantum tunneling devices, using the pores of nuclear track filters.

  5. Resonant electron tunneling in single quantum well heterostructure junction of electrodeposited metal semiconductor nanostructures using nuclear track filters

    International Nuclear Information System (INIS)

    We report on resonant electron tunneling through a Cu-Se heterostructure junction grown electrochemically in the submicron size pores (0.8 μm) of a nuclear track filter (Polycarbonate). The prominent feature of negative differential resistance (NDR) has been observed in the current-voltage (I-V) characteristic of the so-fabricated array of resonant tunneling diodes (RTDs) even at room temperature, along with a significant peak to valley current ratio (2.5) of the resonance. Tunneling structures of the nanofabricated RTDs around zero bias are also observed at room temperature. Our results show that the low cost and relatively easy electrodeposition method can be a very effective way to prepare resonant quantum tunneling devices, using the pores of nuclear track filters

  6. Feasibilty of a Multi-bit Cell Perpendicular Magnetic Tunnel Junction Device

    Science.gov (United States)

    Kim, Chang Soo

    The ultimate objective of this research project was to explore the feasibility of making a multi-bit cell perpendicular magnetic tunnel junction (PMTJ) device to increase the storage density of spin-transfer-torque random access memory (STT-RAM). As a first step toward demonstrating a multi-bit cell device, this dissertation contributed a systematic and detailed study of developing a single cell PMTJ device using L10 FePt films. In the beginning of this research, 13 up-and-coming non-volatile memory (NVM) technologies were investigated and evaluated to see whether one of them might outperform NAND flash memories and even HDDs on a cost-per-TB basis in 2020. This evaluation showed that STT-RAM appears to potentially offer superior power efficiency, among other advantages. It is predicted that STTRAM's density could make it a promising candidate for replacing NAND flash memories and possibly HDDs if STTRAM could be improved to store multiple bits per cell. Ta/Mg0 under-layers were used first in order to develop (001) L1 0 ordering of FePt at a low temperature of below 400 °C. It was found that the tradeoff between surface roughness and (001) L10 ordering of FePt makes it difficult to achieve low surface roughness and good perpendicular magnetic properties simultaneously when Ta/Mg0 under-layers are used. It was, therefore, decided to investigate MgO/CrRu under-layers to simultaneously achieve smooth films with good ordering below 400°C. A well ordered 4 nm L10 FePt film with RMS surface roughness close to 0.4 nm, perpendicular coercivity of about 5 kOe, and perpendicular squareness near 1 was obtained at a deposition temperature of 390 °C on a thermally oxidized Si substrate when MgO/CrRu under-layers are used. A PMTJ device was developed by depositing a thin MgO tunnel barrier layer and a top L10 FePt film and then being postannealed at 450 °C for 30 minutes. It was found that the sputtering power needs to be minimized during the thin MgO tunnel barrier

  7. Tunnel magnetoresistance in textured Co2FeAl/MgO/CoFe magnetic tunnel junctions on a Si/SiO2 amorphous substrate

    Science.gov (United States)

    Wen, Zhenchao; Sukegawa, Hiroaki; Mitani, Seiji; Inomata, Koichiro

    2011-05-01

    Magnetic tunnel junctions with B2-ordered Co2FeAl full Heusler alloy as a ferromagnetic electrode were fabricated by sputtering on thermally oxidized Si/SiO2 amorphous substrates. A Co2FeAl/MgO/Co50Fe50 structure showed a highly (001)-textured structure and the tunneling magnetoresistance (TMR) ratio of 166% at room temperature and 252% at 48 K were achieved. The temperature dependence of TMR can be fitted with spin wave excitation model, and the bias voltage dependence of differential conductance demonstrated that the high TMR was mainly contributed by coherent tunneling. This work suggests the B2-Co2FeAl is one of the promising candidates for practical spintronic applications.

  8. Enhanced magneto-transport at high bias in quasi-magnetic tunnel junctions with EuS spin-filter barriers

    OpenAIRE

    Nagahama, T; Santos, T. S.; Moodera, J. S.

    2007-01-01

    In quasi-magnetic tunnel junctions (QMTJs) with a EuS spin filter tunnel barrier between Al and Co electrodes, we observed large magnetoresistance (MR). The bias dependence shows an abrupt increase of MR ratio in high bias voltage, which is contrary to conventional magnetic tunnel junctions (MTJs). This behavior can be understood as due to Fowler-Nordheim tunneling through the fully spin-polarized EuS conduction band. The I-V characteristics and bias dependence of MR calculated using tunnelin...

  9. Tunneling planer Hall effect in Ni81Fe19/Al2O3/Nix Fe1-x junction

    Institute of Scientific and Technical Information of China (English)

    陈慧余; 冯永嘉; 熊曹水

    1999-01-01

    Tunneling planer Hall (TPH) effect in Ni81Fe19/Al2O3/NixFe1-x trilayer junction is different from general planer Hall effect in single-layer film or two-layer junction. This effect concerns the spin-polarized transport, so that the TPH voltage depends on the angle between magnetic vectors of two ferromagnetic layers. The TPH effect is reported to be influenced by composition and magnetic properties of FM layers and the thickness of the insulating layer.

  10. Perpendicularly magnetized ferrimagnetic [Mn50Ga50/Co2FeAl] superlattice and the utilization in magnetic tunnel junctions

    Directory of Open Access Journals (Sweden)

    Q. L. Ma

    2015-08-01

    Full Text Available The ferrimagnetic superlattice (SL [MnGa/Co2FeAl]n exhibiting perpendicular magnetic anisotropy opened a new method for spintronics materials used in magnetic random access memory, because of the high anisotropy, small damping constant and tunable magnetization. In this work, we fabricated SLs with different MnGa composition and studied the MnGa composition dependence of the structure and magnetic properties of the SLs. Furthermore, we fabricated fully perpendicular magnetic tunnel junctions with SLs as both top and bottom electrodes. A clear tunnel magnetoresistance (TMR effect with TMR ratio of 1.3% at room temperature was observed.

  11. Perpendicularly magnetized ferrimagnetic [Mn50Ga50/Co2FeAl] superlattice and the utilization in magnetic tunnel junctions

    Science.gov (United States)

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-08-01

    The ferrimagnetic superlattice (SL) [MnGa/Co2FeAl]n exhibiting perpendicular magnetic anisotropy opened a new method for spintronics materials used in magnetic random access memory, because of the high anisotropy, small damping constant and tunable magnetization. In this work, we fabricated SLs with different MnGa composition and studied the MnGa composition dependence of the structure and magnetic properties of the SLs. Furthermore, we fabricated fully perpendicular magnetic tunnel junctions with SLs as both top and bottom electrodes. A clear tunnel magnetoresistance (TMR) effect with TMR ratio of 1.3% at room temperature was observed.

  12. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    Science.gov (United States)

    Paul, William; Baumann, Susanne; Lutz, Christopher P.; Heinrich, Andreas J.

    2016-07-01

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5-35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  13. Tunneling characteristics of YBa 2Cu 3O 7-δ-Pb window-type Josephson junctions

    Science.gov (United States)

    Frangi, F.; Dwir, B.; Pavuna, D.

    1992-02-01

    We present the results of tunneling measurements done on window-type, native-barrier YBa 2Cu 3O 7-δ-Pb junctions. We show features in the I-V curves which are related to the gap of YBa 2Cu 3O 7-δ, as well as to the Pb and YBa 2Cu 3O 7-δ phonon spectra. The nature of barrier in these structures is found to be semi-conducting. We can also see the asymmetry in the tunneling curves.

  14. Studies of the Transports and Electrical Properties in Multiferroic Tunnel Junction

    Science.gov (United States)

    Barrionuevo Diestra, Danilo; Ortega, Nora; Katiyar, Ram; Sokolov, Andrei

    2014-03-01

    A multiferroic tunnel junction (MFTJ) consists of metal or ferromagnetic electrodes separated by a ferroelectric (FE) or single phase multiferroics barrier. We have studied two different MFTJ configurations: (i) La0.67Sr0.33MnO3 (LSMO)/PbZr0.52Ti0.48O3 (PZT)/LSMO, (ii) Pt/Pb(Zr0.53Ti0.47)0.60 (Fe0.5Ta0.5)0.40 O3 (PTZFT)/LSMO. We have grown ultrathin films of about 3 to 7 nm of PZT on LSMO/(LaAlO3)0.3 (Sr2AlTaO6)0.7 (LSMO/LSAT) (001) substrates using by pulsed laser deposition technique. With similar technique and substrate, we have grown ultrathin films of 4.5 to 6 nm of PZTFT. The x-ray diffraction patterns of the heterostructures show only the (00 l) reflections corresponding to the LSAT substrate, PZT or PZTFT and LSMO layers. The Atomic force microscopy of PZT/LSMO/LSAT and PZTFT/LSMO/LSAT heterostructures shows that the average surface roughness was less than 1 nm. Piezo force microscopy of the ultrathin PZT and PZTFT films shows a clear and reversible out-of-plane phase contrast above +/- 3 V, which indicates the ferroelectric character of those thin films. The Current-Voltage (IV) characteristics of the PZT/LSMO films, with PZT barrier thickness between 7 to 3 nm showed nonlinear IV characteristics indicating tunneling mechanism. The resistance switching behavior was observed from low resistance state to high resistance state and vice versa by sweeping the voltage from negative to positive and back.

  15. Interfacial Nb-substitution induced anomalous enhancement of polarization and conductivity in BaTiO3 ferroelectric tunnel junctions

    Directory of Open Access Journals (Sweden)

    H. F. Li

    2014-12-01

    Full Text Available Using density functional theory (DFT method combined with non-equilibrium Green’s function approach, we systematically investigated the structural, ferroelectric and electronic transport properties of Pt/BaTiO3/Pt ferroelectric tunnel junctions (FTJ with the interface atomic layers doped by charge neutral NbTi substitution. It is found that interfacial NbTi substitution will produce several anomalous effects such as the vanishing of ferroelectric critical thickness and the decrease of junction resistance against tunneling current. Consequently, the thickness of the ferroelectric thin film (FTF in the FTJ can be reduced, and both the electroresistance effect and sensitivity to external bias of the FTJ are enhanced. Our calculations indicate that the enhancements of conductivity and ferroelectric distortion can coexist in FTJs, which should be important for applications of functional electronic devices based on FTJs.

  16. Growth of ErAs nanodots by molecular beam epitaxy for application to tunneling junctions in multijunction solar cells

    Science.gov (United States)

    Hung, Chao-Yu; Sogabe, Tomah; Miyashita, Naoya; Okada, Yoshitaka

    2016-02-01

    ErAs nanodots (NDs) grown on GaAs(001) substrates by using molecular beam epitaxy (MBE) were investigated. Atomic force microscope images indicate that the size of ErAs NDs increases with deposition time and growth temperature. A calibration was performed to determine the deposition rate of ErAs in order that the size of NDs can be accurately controlled and hence optimized. Local current flow images and surface profiles around ErAs NDs were simultaneously measured to clarify the local conductivity distribution corresponding to a real space profile. Furthermore, we also fabricated and characterized an ErAs-ND-embedded GaAs tunnel junction (TJ), which resulted in a voltage drop of 30 mV for 15 A/cm2 operation current equivalent to 1000 suns concentration, which is less than one-third of that of a conventional heavily doped tunnel junction.

  17. Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact.

    Science.gov (United States)

    Yonkee, Benjamin P; Young, Erin C; Lee, Changmin; Leonard, John T; DenBaars, Steven P; Speck, James S; Nakamura, Shuji

    2016-04-01

    We demonstrate a III-nitride edge emitting laser diode (EELD) grown on a (2021) bulk GaN substrate with a GaN tunnel junction contact for hole injection. The tunnel junction was grown using a combination of metal-organic chemical-vapor deposition (MOCVD) and ammonia-based molecular-beam epitaxy (MBE) which allowed to be regrown over activated p-GaN. For a laser bar with dimensions of 1800 µm x 2.5 µm, without facet coatings, the threshold current was 284 mA (6.3 kA/cm2) and the single facet slope efficiency was 0.33 W/A (12% differential efficiency). A differential resistivity at high current density of 2.3 × 10-4 Ω cm2 was measured. PMID:27137064

  18. NbN-MgO-NbN tunnel junctions integrated in aluminum strip lines for terahertz quasiparticle mixers

    NARCIS (Netherlands)

    Schicke, M; Plathner, B; Gundlach, KH; Aoyagi, M; Takada, S; Dieleman, P; Jegers, JBM; Klapwijk, TM; van de Stadt, H; Rogalla, H; Blank, DHA

    1997-01-01

    NbN tunnel junctions are of great interest for THz heterodyne receivers because their large gap voltage of V-gap approximate to 5 mV implies an upper frequency limit of 4 Delta/h approximate to 2.6 THz as compared to 1.4 THz of Nb. However, due to the high ac losses in NbN films for frequencies abov

  19. A Self-consistent Calculation and an Anisotropic Wavelength Cutoff Energy of Spin-wave Spectrum in Magnetic Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Temperature dependence of tunnel magnetoresistance (TMR) ratio,resistance, and coercivity from 4.2 K to room temperature (RT), applied dc bias voltage dependence of the TMR ratio and resistances at 4.2 K and RT, tunnel current I and dynamic conductance dI/dV as functions of the dc bias voltage at 4.2 K, and inelastic electron tunneling (lET) spectroscopy, d2I/dV2 versus V,at 4.2 K for a tunnel junction of Ta(5 nm)/Ni79Fe21(25 nm)/Ir22Mn78(12 nm)/Co75Fe25(4 nm)/Al(0.8 nm)-oxide/Co75Fe25(4 nm)/Ni79Fe21(25 nm)/Ta(5 nm) were systematically investigated.High TMR ratio of 59.2% at 4.2 K and 41.3% at RT were observed for this junction after annealing at 275℃ for an hour. The temperature dependence of TMR ratio and resistances from 4.2 to 300 K at 1.0 mV bias and the dc bias voltage dependence of TMR ratio at 4.2 K from 0 to 80 mV can be evaluated by a comparison of self-consistent calculations with the experimental data based on the magnon-assisted inelastic excitation model and theory. An anisotropic wavelength cutoff energy of spin-wave spectrum in magnetic tunnel junctions (MTJs)was suggested, which is necessary for self-consistent calculations, based on a series of lET spectra observed in the MTJs.

  20. A Superconducting Tunnel Junction X-ray Spectrometer without Liquid Cryogens

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S; Hertrich, T; Drury, O B; Cherepy, N J; Hohne, J

    2008-06-15

    Superconducting tunnel junctions (STJs) are being developed as X-ray detectors because they combine the high energy resolution of cryogenic detector technologies with the high count rate capabilities of athermal devices. We have built STJ spectrometers for chemical analysis of dilute samples by high-resolution soft X-ray spectroscopy at the synchrotron. The instruments use 36 pixels of 200 {micro}m x 200 {micro}m Nb-Al-AlOx-Al-Nb STJs with 165 nm thick Nb absorber films. They have achieved an energy resolution of {approx}10-20 eV FWHM for X-ray energies below 1 keV, and can be operated at a total count rate of {approx}10{sup 6} counts/s. For increased user-friendliness, we have built a liquid-cryogen-free refrigerator based on a two-stage pulse tube cryocooler in combination with a two-stage adiabatic demagnetization stage. It holds the STJ detector at the end of a 40-cm-long cold finger, and attains the required operating temperature of {approx}0.3 K at the push of a button. We describe the instrument performance and present speciation measurements on Eu dopant activators in the novel scintillator material SrI{sub 2} to illustrate the potential for STJ spectrometers at the synchrotron.

  1. Double-pinned magnetic tunnel junction sensors with spin-valve-like sensing layers

    International Nuclear Information System (INIS)

    MgO magnetic tunnel junction (MTJ) sensors with spin-valve-like sensing layers of Ir22Mn78 (6)/Ni80Fe20 (tNiFe = 20–70)/Ru (0.9)/Co40Fe40B20 (3) (unit: nm) have been fabricated. A linear field dependence of magnetoresistance for these MTJ sensors was obtained by carrying out a two-step field annealing process. The sensitivity and linear field range can be tuned by varying the thickness of NiFe layer and annealing temperature, and a high sensitivity of 37%/mT has been achieved in the MTJ sensors with 70 nm NiFe at the optimum annealing temperature of 230 °C. Combining the spin-valve-like sensing structure and a soft magnetic NiFe layer, MTJ sensors with relatively wide field sensing range have been achieved and could be promising for showing high sensitivity magnetic field sensing applications

  2. A Superconducting Tunnel Junction X-ray Spectrometer without Liquid Cryogens

    International Nuclear Information System (INIS)

    Superconducting tunnel junctions (STJs) are being developed as X-ray detectors because they combine the high energy resolution of cryogenic detector technologies with the high count rate capabilities of athermal devices. We have built STJ spectrometers for chemical analysis of dilute samples by high-resolution soft X-ray spectroscopy at the synchrotron. The instruments use 36 pixels of 200 (micro)m x 200 (micro)m Nb-Al-AlOx-Al-Nb STJs with 165 nm thick Nb absorber films. They have achieved an energy resolution of ∼10-20 eV FWHM for X-ray energies below 1 keV, and can be operated at a total count rate of ∼106 counts/s. For increased user-friendliness, we have built a liquid-cryogen-free refrigerator based on a two-stage pulse tube cryocooler in combination with a two-stage adiabatic demagnetization stage. It holds the STJ detector at the end of a 40-cm-long cold finger, and attains the required operating temperature of ∼0.3 K at the push of a button. We describe the instrument performance and present speciation measurements on Eu dopant activators in the novel scintillator material SrI2 to illustrate the potential for STJ spectrometers at the synchrotron

  3. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    Science.gov (United States)

    Warburton, W. K.; Harris, J. T.; Friedrich, S.

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100-2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays - currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I-V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  4. Modeling of switching energy of magnetic tunnel junction devices with tilted magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Surawanitkun, C. [Science and Technology Program, Nongkhai Campus, Khon Kaen University, Nongkhai 43000 (Thailand); Kaewrawang, A. [KKU-Seagate Cooperation Research Laboratory, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Siritaratiwat, A., E-mail: apirat@kku.ac.th [KKU-Seagate Cooperation Research Laboratory, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Kruesubthaworn, A. [Science and Technology Program, Nongkhai Campus, Khon Kaen University, Nongkhai 43000 (Thailand); Sivaratana, R. [Seagate Technology, 1627, Teparak, Samutprakarn 10200 (Thailand); Jutong, N. [Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Mewes, C.K.A.; Mewes, T. [Department of Physics & Astronomy, MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2015-05-01

    For spin transfer torque (STT), the switching energy and thermal stability of magnetic tunnel junctions (MTJ) bits utilized in memory devices are important factors that have to be considered simultaneously. In this article, we examined the minimum energy for STT induced magnetization switching in MTJ devices for different in-plane angles of the magnetization in the free layer and the pinned layer with respect to the major axis of the elliptical cylinder of the cell. Simulations were performed by comparing the analytical solution with macrospin and full micromagnetic calculations. The results show good agreement of the switching energy calculated by using the three approaches for different initial angles of the magnetization of the free layer. Also, the low-energy location specifies the suitable value of both time and current in order to reduce the heat effect during the switching process. - Highlights: • Switching energy model was firstly examined with tiled magnetization in STT-RAM. • Simulation was performed by analytical solution, macrospin and micromagnetic models. • Low energy results from three models show agreement for tilt angle in free layer. • We also found an optimal tilt angle of the pinned layer. • Low-energy location specifies the suitable switching location to reduce heat effect.

  5. Modeling of switching energy of magnetic tunnel junction devices with tilted magnetization

    International Nuclear Information System (INIS)

    For spin transfer torque (STT), the switching energy and thermal stability of magnetic tunnel junctions (MTJ) bits utilized in memory devices are important factors that have to be considered simultaneously. In this article, we examined the minimum energy for STT induced magnetization switching in MTJ devices for different in-plane angles of the magnetization in the free layer and the pinned layer with respect to the major axis of the elliptical cylinder of the cell. Simulations were performed by comparing the analytical solution with macrospin and full micromagnetic calculations. The results show good agreement of the switching energy calculated by using the three approaches for different initial angles of the magnetization of the free layer. Also, the low-energy location specifies the suitable value of both time and current in order to reduce the heat effect during the switching process. - Highlights: • Switching energy model was firstly examined with tiled magnetization in STT-RAM. • Simulation was performed by analytical solution, macrospin and micromagnetic models. • Low energy results from three models show agreement for tilt angle in free layer. • We also found an optimal tilt angle of the pinned layer. • Low-energy location specifies the suitable switching location to reduce heat effect

  6. Perpendicular magnetic tunnel junction with thin CoFeB/Ta/Co/Pd/Co reference layer

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Huadong, E-mail: huadong@avalanche-technology.com; Malmhall, Roger; Wang, Zihui; Yen, Bing K; Zhang, Jing; Wang, Xiaobin; Zhou, Yuchen; Hao, Xiaojie; Jung, Dongha; Satoh, Kimihiro; Huai, Yiming [Avalanche Technology, 46600 Landing Parkway, Fremont, California 94538 (United States)

    2014-11-10

    Integration of high density spin transfer torque magnetoresistance random access memory requires a thin stack (less than 15 nm) of perpendicular magnetic tunnel junction (p-MTJ). We propose an innovative approach to solve this challenging problem by reducing the thickness and/or moment of the reference layer. A thin reference layer structure of CoFeB/Ta/Co/Pd/Co has 60% magnetic moment of the conventional thick structure including [Co/Pd] multilayers. We demonstrate that the perpendicular magnetization of the CoFeB/Ta/Co/Pd/Co structure can be realized by anti-ferromagnetically coupling to a pinned layer with strong perpendicular anisotropy via Ruderman-Kittel-Kasuya-Yosida exchange interaction. The pMTJ with thin CoFeB/Ta/Co/Pd/Co reference layer has a comparable TMR ratio (near 80%) as that with thick reference layer after annealing at 280 °C. The pMTJ with thin reference layer has a total thickness less than 15 nm, thereby significantly increasing the etching margin required for integration of high density pMTJ array on wafers with form factor of 300 mm and beyond.

  7. SPICE modelling of magnetic tunnel junctions written by spin-transfer torque

    Energy Technology Data Exchange (ETDEWEB)

    Guo, W; Prenat, G; De Mestier, N; Baraduc, C; Dieny, B [SPINTEC, UMR(8191), INAC, CEA/CNRS/UJF, 17 Av. des Martyrs, 38054 Grenoble Cedex 9 (France); Javerliac, V; El Baraji, M, E-mail: guillaume.prenat@cea.f [CROCUS Technology, 5 Place Robert Schuman, 38025 Grenoble (France)

    2010-06-02

    Spintronics aims at extending the possibility of conventional electronics by using not only the charge of the electron but also its spin. The resulting spintronic devices, combining the front-end complementary metal oxide semiconductor technology of electronics with a magnetic back-end technology, employ magnetic tunnel junctions (MTJs) as core elements. With the intent of simulating a circuit without fabricating it first, a reliable MTJ electrical model which is applicable to the standard SPICE (Simulation Program with Integrated Circuit Emphasis) simulator is required. Since such a model was lacking so far, we present a MTJ SPICE model whose magnetic state is written by using the spin-transfer torque effect. This model has been developed in the C language and validated on the Cadence Virtuoso Platform with a Spectre simulator. Its operation is similar to that of the standard BSIM (Berkeley Short-channel IGFET Model) SPICE model of the MOS transistor and fully compatible with the SPICE electrical simulator. The simulation results obtained using this model have been found in good accord with those theoretical macrospin calculations and results.

  8. Double-pinned magnetic tunnel junction sensors with spin-valve-like sensing layers

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Z. H.; Huang, L.; Feng, J. F., E-mail: jiafengfeng@iphy.ac.cn; Wen, Z. C.; Li, D. L.; Han, X. F. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Nakano, Takafumi; Naganuma, Hiroshi, E-mail: naganuma@mlab.apph.tohoku.ac.jp [Department of Applied Physics, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Yu, T. [Department of Applied Physics, Tohoku University, Sendai, Miyagi 980-8579 (Japan); College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2015-08-07

    MgO magnetic tunnel junction (MTJ) sensors with spin-valve-like sensing layers of Ir{sub 22}Mn{sub 78} (6)/Ni{sub 80}Fe{sub 20} (t{sub NiFe} = 20–70)/Ru (0.9)/Co{sub 40}Fe{sub 40}B{sub 20} (3) (unit: nm) have been fabricated. A linear field dependence of magnetoresistance for these MTJ sensors was obtained by carrying out a two-step field annealing process. The sensitivity and linear field range can be tuned by varying the thickness of NiFe layer and annealing temperature, and a high sensitivity of 37%/mT has been achieved in the MTJ sensors with 70 nm NiFe at the optimum annealing temperature of 230 °C. Combining the spin-valve-like sensing structure and a soft magnetic NiFe layer, MTJ sensors with relatively wide field sensing range have been achieved and could be promising for showing high sensitivity magnetic field sensing applications.

  9. Novel vertical hetero- and homo-junction tunnel field-effect transistors based on multi-layer 2D crystals

    Science.gov (United States)

    Lu, Shang-Chun; Mohamed, Mohamed; Zhu, Wenjuan

    2016-03-01

    Vertical hetero- and homo-junction tunnel FET (TFET) based on multi-layer black phosphorus (BP) and transition metal dichalcogenides are proposed and studied by numerical simulations employing the semi-classical density gradient quantum correction model. It is found that the vertical TFET based on BP can achieve high on-current (>200 μA μm-1) and steep subthreshold swing (average value = 24.6 mV/dec) simultaneously, due to its high mobility, direct narrow bandgap, and low dielectric constant. We also found that the on-current in vertical TFETs based on MoS2/MoSe2 hetero-junction is two orders of magnitudes higher than the one in MoS2 homo-junction TFET, due to the reduced effective bandgap in heterostructure with staggered band alignment. In addition, we present various design considerations and recommendations as well as provide a qualitative comparison with published data.

  10. Magnetic Tunnel Junctions with Perpendicular Anisotropy Using a Co2FeAl Full-Heusler Alloy

    Science.gov (United States)

    Wen, Zhenchao; Sukegawa, Hiroaki; Kasai, Shinya; Hayashi, Masamitsu; Mitani, Seiji; Inomata, Koichiro

    2012-06-01

    We fabricated perpendicularly magnetized magnetic tunnel junctions (p-MTJs) with an ultrathin Co2FeAl (CFA) full-Heusler alloy electrode having large interface magnetic anisotropy of CFA/MgO. An out-of-plane tunnel magnetoresistance (TMR) ratio of 53% at room temperature was observed in CFA/MgO/Co20Fe60B20 p-MTJs. By inserting a 0.1-nm-thick Fe (Co50Fe50) layer between the MgO and Co20Fe60B20 layers, The TMR ratio was significantly enhanced to 91% (82%) due to the improved interface. The bias voltage dependence of differential conductance did not clearly show coherent tunneling characteristics for ultrathin CFA-MTJs, suggesting that a higher TMR ratio may be achieved by improving the B2 ordering of CFA and/or interface structure.

  11. Effects of boron composition on tunneling magnetoresistance ratio and microstructure of CoFeB/MgO/CoFeB pseudo-spin-valve magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kodzuka, M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Hono, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); National Institute for Materials Science, Tsukuba 305-0047 (Japan); Ikeda, S.; Ohno, H. [Center for Spintronics Integrated Systems, Tohoku University, Sendai 980-8577 (Japan); Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Gan, H. D. [Center for Spintronics Integrated Systems, Tohoku University, Sendai 980-8577 (Japan)

    2012-02-15

    The effect of B concentration on the tunneling magnetoresistance (TMR) of (Co{sub 25}Fe{sub 75}){sub 100-x}B{sub x}/MgO/(Co{sub 25}Fe{sub 75}){sub 100-x}B{sub x} (x = 22 and 33) pseudo-spin-valve (P-SV) magnetic tunnel junctions (MTJs) was investigated. The TMR ratios for optimally annealed MTJs with x = 22 and 33 were 340% and 170%, respectively, at room temperature. High resolution transmission electron microscopy (HRTEM) observation showed a weaker (001) texture in the MgO barrier in the MTJ with x = 33. The bottom electrode was not fully crystallized even with a considerable amount of B in the (Co{sub 25}Fe{sub 75}){sub 67}B{sub 33}, while good epitaxy was observed between (001) textured MgO and (Co{sub 25}Fe{sub 75}){sub 78}B{sub 22} electrodes.

  12. Inelastic Tunneling Spectroscopy of Gold-Thiol and Gold-Thiolate Interfaces in Molecular Junctions: The Role of Hydrogen

    CERN Document Server

    Demir, Firuz

    2012-01-01

    It is widely believed that when a molecule with thiol (S-H) end groups bridges a pair of gold electrodes, the S atoms bond to the gold and the thiol H atoms detach from the molecule. However, little is known regarding the details of this process, its time scale, and whether molecules with and without thiol hydrogen atoms can coexist in molecular junctions. Here we explore theoretically how inelastic tunneling spectroscopy (IETS) can shed light on these issues. We present calculations of the geometries, low bias conductances and IETS of propanedithiol and propanedithiolate molecular junctions with gold electrodes. We show that IETS can distinguish between junctions with molecules having no, one or two thiol hydrogen atoms. We find that in most cases the single-molecule junctions in the IETS experiment of Hihath et al. [Nano Lett. 8, 1673 (2008)] had no thiol H atoms, but that a molecule with a single thiol H atom may have bridged their junction occasionally. We also consider the evolution of the IETS spectrum ...

  13. 230 and 492 GHz low noise SIS waveguide receivers employing tuned Nb/AlOx/Nb tunnel junctions

    International Nuclear Information System (INIS)

    We report results on two full height waveguide receivers that cover the 200-290 GHz and 380-510 GHz atmospheric windows. The receivers are part of the facility instrumentation at the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. We have measured receiver noise temperatures in the range of 20K-35K DSB in the 200-290 GHz band, and 65-90K DSB in the 390-510 GHz atmospheric band. In both instances low mixer noise temperatures and very high quantum efficiency have been achieved. Conversion gain (3 dB) is possible with the 230 GHz receiver, however lowest noise and most stable operation is achieved with unity conversion gain. A 40% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner full height waveguide mixer block. The tuned Nb/AlOx/Nb tunnel junctions incorporate an open-quotes end-loadedclose quotes tuning stub with two quarter-wave transformer sections to tune out the large junction capacitance. Both 230 and 492 GHz SIS junctions are 0.49μm2 in size and have current densities of 8 and 10 kA/cm2 respectively. Fourier Transform Spectrometer (FTS) measurements of the 230 and 492 GHz tuned junctions show good agreement with the measured heterodyne waveguide response

  14. A Single-Level Tunnel Model to Account for Electrical Transport through Single Molecule- and Self-Assembled Monolayer-based Junctions

    Science.gov (United States)

    Garrigues, Alvar R.; Yuan, Li; Wang, Lejia; Mucciolo, Eduardo R.; Thompon, Damien; Del Barco, Enrique; Nijhuis, Christian A.

    2016-05-01

    We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction.

  15. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)

    2014-05-07

    To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50 s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5 kΩ to 39 kΩ. Moreover, an additional 500 s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5 kΩ to 13.9 kΩ. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8 nm and 12.8 nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20 nm.

  16. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K., E-mail: bill@xia.com [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Harris, J.T. [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Friedrich, S. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100–2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays – currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I–V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  17. Magnetic tunneling junctions with the Heusler compound Co2Cr0.6Fe0.4Al

    International Nuclear Information System (INIS)

    Materials with large spin polarization are required for applications in spintronics devices. For this reason, major research efforts are directed to study the properties of compounds which are expected to be half metals, i.e. materials with 100% spin polarization. Half metals are expected to have a gap in the density of states at the Fermi energy for one spin band while the other spin band is metallic leading to a completely spin polarized current. The ferromagnetic full Heusler alloy Co2Cr0.6Fe0.4Al (CCFA) has attracted great interest in the field of spintronics. The high Tc (800 K) and the expected half metallicity make CCFA a good candidate for applications in spintronic devices such as magnetic tunneling junctions (MTJs). This thesis presents the results of the study of the electronic and structural properties of CCFA thin films. The films were implemented in magnetic tunneling junctions and the tunneling magnetoresistance effect (TMR) was investigated. The main objectives were the measurement of the spin polarisation of the CCFA alloy and to obtain information about its electronic structure. The influence of the deposition conditions on the thin film properties and on the surface crystalline order and their respective influence on the TMR ratio was investigated. Epitaxial CCFA thin films with two alternative growth orientations were deposited on different substrates and buffer layers. An annealing step was used to improve the crystalline properties of the thin films. In the tunneling junctions, Al2O3 was used as a barrier material and Co was chosen as counter electrode. The multilayer systems were patterned in Mesa structures using lithographic techniques. In the framework of the Julliere model, a maximum spin polarisation of 54% at 4K was measured in tunneling junctions with epitaxial CCFA electrodes. A strong influence of the annealing temperature on the TMR ratio was determined. The increase of the TMR ratio could be correlated to an improvement of the

  18. Experimental demonstration of single electron transistors featuring SiO{sub 2} plasma-enhanced atomic layer deposition in Ni-SiO{sub 2}-Ni tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Karbasian, Golnaz, E-mail: Golnaz.Karbasian.1@nd.edu; McConnell, Michael S.; Orlov, Alexei O.; Rouvimov, Sergei; Snider, Gregory L. [Electrical Engineering Department, University of Notre Dame, Indiana 46556 (United States)

    2016-01-15

    The authors report the use of plasma-enhanced atomic layer deposition (PEALD) to fabricate single-electron transistors (SETs) featuring ultrathin (≈1 nm) tunnel-transparent SiO{sub 2} in Ni-SiO{sub 2}-Ni tunnel junctions. They show that, as a result of the O{sub 2} plasma steps in PEALD of SiO{sub 2}, the top surface of the underlying Ni electrode is oxidized. Additionally, the bottom surface of the upper Ni layer is also oxidized where it is in contact with the deposited SiO{sub 2}, most likely as a result of oxygen-containing species on the surface of the SiO{sub 2}. Due to the presence of these surface parasitic layers of NiO, which exhibit features typical of thermally activated transport, the resistance of Ni-SiO{sub 2}-Ni tunnel junctions is drastically increased. Moreover, the transport mechanism is changed from quantum tunneling through the dielectric barrier to one consistent with thermally activated resistors in series with tunnel junctions. The reduction of NiO to Ni is therefore required to restore the metal-insulator-metal (MIM) structure of the junctions. Rapid thermal annealing in a forming gas ambient at elevated temperatures is presented as a technique to reduce both parasitic oxide layers. This method is of great interest for devices that rely on MIM tunnel junctions with ultrathin barriers. Using this technique, the authors successfully fabricated MIM SETs with minimal trace of parasitic NiO component. They demonstrate that the properties of the tunnel barrier in nanoscale tunnel junctions (with <10{sup −15} m{sup 2} in area) can be evaluated by electrical characterization of SETs.

  19. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

    International Nuclear Information System (INIS)

    The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9 kA/cm2) and low ON-resistance (0.4 mΩ cm2) are demonstrated. Non-planar selective area regrowth is identified as the limiting factor to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities

  20. Niobium nano-SQUIDs based on sub-micron tunnel junction fabricated by three-dimensional Focused Ion Beam sculpting

    Science.gov (United States)

    Fretto, M.; Enrico, E.; De Leo, N.; Boarino, L.; Lacquaniti, V.; Granata, C.; Russo, R.; Vettoliere, A.

    2014-05-01

    A three dimensional nano-SQUID (Superconducting Quantum Interference Device) has been realized in a vertical configuration (with the loop in the same plane of Josephson Tunneling Junctions, JTJs). The loop area is 0.25 μm2 corresponding to a modulation period of about 5 mT, the square JTJs have a side length of 0.3 μm. Josephson junction's fabrication is carried out combining optical lithography to pattern trilayer and three dimensional (3D) Focused Ion Beam (FIB) sculpting technique to define the junctions' and the loop's areas. Two different ion etching processes were performed, perpendicular and parallel to the multilayer, resulting in a precise 3D structure. Finally, a standard anodization was performed to eliminate the unstructured surface material generated by the high energetic ion beam assuring high quality junctions. Electric transport characteristics of the nanodevice measured at T = 4.2 K are reported, in particular the current-voltage characteristics and critical current vs external magnetic field. The high modulation depth of the critical current (up to 70% of the Ic at zero magnetic flux) and the device reliability are very encouraging in view of nanoscience applications.

  1. Development of superconducting tunnel junction as photon counting detector in astronomy; Developpement de jonctions supraconductrices a effet tunnel pour le comptage de photons en astronomie

    Energy Technology Data Exchange (ETDEWEB)

    Jorel, C

    2004-12-15

    This work describes the development of S/Al-AlOx-Al/S Superconducting Tunnel Junctions (STJ) to count photons for astronomical applications in the near-infrared. The incoming light energy is converted into excited charges in a superconducting layer (S, either Nb or Ta) with a population proportional to the deposited energy. The photon energy can thus be evaluated by integrating the tunnel current induced in a voltage biased junction at a very low temperature (100 mK). The performance of STJ for light detection is discussed in the first chapter and compared with the best performances obtained with other techniques based on either superconductors. At the beginning of the thesis, a previous manufacturing process made it possible to obtain good quality Nb based junctions and preliminary results for photon counting. The objective of the thesis was to replace Nb as absorber with Ta, an intrinsically more sensitive material, and secondly to develop a new and more efficient manufacturing process. We first focused on the optimization of the Tantalum thin film quality. Structural analysis showed that these films can be grown epitaxially by magnetron sputtering onto an R-plane sapphire substrate heated to 600 Celsius degrees and covered by a thin Nb buffer layer. Electrical transport measurement from room to low temperatures gave excellent Relative Resistive Ratios of about 50 corresponding to mean free path of the order of 100 nm. Then, we conceived an original manufacturing process batch on 3 inch diameter sapphire substrate with five mask levels. These masks made it possible to produce single pixel STJ of different sizes (from 25*25 to 50*50 square microns) and shapes. We also produced multiple junctions onto a common absorber as well as 9-pixel arrays. Thanks to the development of this process we obtained a very large percentage of quality junctions (>90%) with excellent measured normal resistances of a few micro-ohm cm{sup 2} and low leakage currents of the order of one

  2. X-ray absorption and magnetic circular dichroism studies of Co2FeAl in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ebke, D.; Kugler, Z.; Thomas, P.; Schebaum, O.; Schafers, M.; Nissen, D.; Schmalhorst, J.; Hutten, A.; Arenholz, E.; Thomas, A.

    2010-01-11

    The bulk magnetic moment and the element specific magnetic moment of Co{sub 2}FeAl thin films were examined as a function of annealing temperature by alternating gradient magnetometer (AGM) and X-ray absorption spectroscopy (XAS)/X-ray magnetic circular dichroism (XMCD), respectively. A high magnetic moment can be achieved for all annealing temperatures and the predicted bulk and interface magnetic moment of about 5 {tilde A}{sub B} are reached via heating. We will also present tunnel magnetoresistance (TMR) values of up to 153% at room temperature and 260% at 13 K for MgO based magnetic tunnel junctions (MTJs) with Co{sub 2}FeAl and Co-Fe electrodes.

  3. Evidence of a barrier oxidation dependence on the interfacialmagnetism in co/alumina based magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Telling, N.D.; van der Laan, G.; Ladak, S.; Hicken, R.J.; Arenholz, E.

    2005-09-29

    Soft x-ray absorption spectroscopy and magnetic circular dichroism at the Co L{sub 2,3} edge have been applied to explore the near-interfacial magnetism of Co electrodes in Co/alumina based magnetic tunnel junctions. By taking into account the formation of CoO at the FM/barrier interface, the change in the total magnetic moment on metallic Co atoms as a function of barrier oxidation has been determined. The results demonstrate a strong correlation between the Co moments and measured TMR values, and an enhancement in the Co moments for moderate oxidation times.

  4. Macroscopic quantum tunneling and phase diffusion in a La2-xSrxCuO4 intrinsic Josephson junction stack

    Science.gov (United States)

    Kubo, Yuimaru; Sboychakov, A. O.; Nori, Franco; Takahide, Y.; Ueda, S.; Tanaka, I.; Islam, A. T. M. N.; Takano, Y.

    2012-10-01

    We performed measurements of switching current distribution in a submicrometer La2-xSrxCuO4 (LSCO) intrinsic Josephson junction (IJJ) stack in a wide temperature range. The escape rate saturates below approximately 2 K, indicating that the escape event is dominated by a macroscopic quantum tunneling (MQT) process with a crossover temperature T*≈2K. We applied the theory of MQT for IJJ stacks, taking into account dissipation and the phase retrapping effect in the LSCO IJJ stack. The theory is in good agreement with the experiment both in the MQT and in the thermal activation regimes.

  5. Solar energy conversion through the interaction of plasmons with tunnel junctions. Part A: Solar cell analysis. Part B: Photoconductor analysis

    Science.gov (United States)

    Welsh, P. E.; Schwartz, R. J.

    1988-01-01

    A solar cell utilizing guided optical waves and tunnel junctions was analyzed to determine its feasibility. From this analysis, it appears that the limits imposed upon conventional multiple cell systems also limit this solar cell. Due to this limitation, it appears that the relative simplicity of the conventional multiple cell systems over the solar cell make the conventional multiple cell systems the more promising candidate for improvement. It was discovered that some superlattice structures studied could be incorporated into an infrared photodetector. This photoconductor appears to be promising as a high speed, sensitive (high D sup star sub BLIP) detector in the wavelength range from 15 to over 100 micrometers.

  6. Interfacial effects on the tunneling magnetoresistance in L a0.7S r0.3Mn O3/MgO /Fe tunneling junctions

    Science.gov (United States)

    Galceran, R.; Balcells, Ll.; Martinez-Boubeta, C.; Bozzo, B.; Cisneros-Fernández, J.; de la Mata, M.; Magén, C.; Arbiol, J.; Tornos, J.; Cuellar, F. A.; Sefrioui, Z.; Cebollada, A.; Golmar, F.; Hueso, L. E.; Casanova, F.; Santamaría, J.; Martinez, B.

    2015-09-01

    We report on magnetotransport properties on L a0.7S r0.3Mn O3/MgO /Fe tunnel junctions grown epitaxially on top of (001)-oriented SrTi O3 substrates by sputtering. It is shown that the magnetoresistive response depends critically on the MgO /Fe interfacial properties. The appearance of an Fe OX layer by the interface destroys the Δ1 symmetry filtering effect of the MgO /Fe system and only a small negative tunneling magnetoresistance (TMR) (˜-3 %) is measured. However, in annealed samples a switchover from positive TMR (˜+25 % at 70 K) to negative TMR (˜-1 %) is observed around 120 K. This change is associated with the transition from semiconducting at high T to insulating at low T taking place at the Verwey transition (TV˜120 K ) in F e3O4, thus suggesting the formation of a very thin slab of magnetite at the MgO /Fe interface during annealing treatments. These results highlight the relevance of interfacial properties on the tunneling conduction process and how it can be substantially modified through appropriate interface engineering.

  7. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    Directory of Open Access Journals (Sweden)

    J. Rogge

    2015-07-01

    Full Text Available We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs. By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR ratio of -10% is found for Co2FeAl (24 nm / BaO (5 nm / Fe (7 nm MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM, it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  8. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    Science.gov (United States)

    Rogge, J.; Hetaba, W.; Schmalhorst, J.; Bouchikhaoui, H.; Stender, P.; Baither, D.; Schmitz, G.; Hütten, A.

    2015-07-01

    We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs). By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR) ratio of -10% is found for Co2FeAl (24 nm) / BaO (5 nm) / Fe (7 nm) MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM), it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  9. Determination of iron content and dispersity of intact ferritin by superconducting tunnel junction cryodetection mass spectrometry.

    Science.gov (United States)

    Plath, Logan D; Ozdemir, Abdil; Aksenov, Alexander A; Bier, Mark E

    2015-09-01

    Ferritin is a common iron storage protein complex found in both eukaryotic and prokaryotic organisms. Although horse spleen holoferritin (HS-HoloFt) has been widely studied, this is the first report of mass spectrometry (MS) analysis of the intact form, likely because of its high molecular weight ∼850 kDa and broad iron-core mass distribution. The 24-subunit ferritin heteropolymer protein shell consists of light (L) and heavy (H) subunits and a ferrihydrite-like iron core. The H/L heterogeneity ratio of the horse spleen apoferritin (HS-ApoFt) shell was found to be ∼1:10 by liquid chromatography-electrospray ionization mass spectrometry. Superconducting tunneling junction (STJ) cryodetection matrix-assisted laser desorption ionization time-of-flight MS was utilized to determine the masses of intact HS-ApoFt, HS-HoloFt, and the HS-HoloFt dimer to be ∼505 kDa, ∼835 kDa, and ∼1.63 MDa, respectively. The structural integrity of HS-HoloFt and the proposed mineral adducts found for both purified L and H subunits suggest a robust biomacromolecular complex that is internally stabilized by the iron-based core. However, cross-linking experiments of HS-HoloFt with glutaraldehyde, unexpectedly, showed the complete release of the iron-based core in a one-step process revealing a cross-linked HS-ApoFt with a narrow fwhm peak width of 31.4 kTh compared to 295 kTh for HS-HoloFt. The MS analysis of HS-HoloFt revealed a semiquantitative description of the iron content and core dispersity of 3400 ± 1600 (2σ) iron atoms. Commercially prepared HS-ApoFt was estimated to still contain an average of 240 iron atoms. These iron abundance and dispersity results suggest the use of STJ cryodetection MS for the clinical analysis of iron deficient/overload diseases. PMID:26266697

  10. Microwave resonant activation in hybrid single-gap/two-gap Josephson tunnel junctions

    Science.gov (United States)

    Carabello, Steven; Lambert, Joseph G.; Mlack, Jerome; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto C.

    2016-09-01

    Microwave resonant activation is a powerful, straightforward technique to study classical and quantum systems, experimentally realized in Josephson junction devices cooled to very low temperatures. These devices typically consist of two single-gap superconductors separated by a weak link. We report the results of the first resonant activation experiments on hybrid thin film Josephson junctions consisting of a multi-gap superconductor (MgB2) and a single-gap superconductor (Pb or Sn). We can interpret the plasma frequency in terms of theories both for conventional and hybrid junctions. Using these models, we determine the junction parameters including critical current, resistance, and capacitance and find moderately high quality factors of Q0˜ 100 for these junctions.

  11. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications

    Science.gov (United States)

    Feng, Ying; Chen, Ke

    2015-01-01

    We report a dry transfer method that can tranfer chemical vapor deposition (CVD) grown graphene onto liquid-sensitive surfaces. The graphene grown on copper (Cu) foil substrate was first transferred onto a freestanding 4 μm thick sputtered Cu film using the conventional wet transfer process, followed by a dry transfer process onto the target surface using a polydimethylsiloxane stamp. The dry-transferred graphene has similar properties to traditional wet-transferred graphene, characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and electrical transport measurements. It has a sheet resistance of 1.6 ˜ 3.4 kΩ/□, hole density of (4.1 ˜ 5.3) × 1012 cm-2, and hole mobility of 460 ˜ 760 cm2 V-1 s-1 without doping at room temperature. The results suggest that large-scale CVD-grown graphene can be transferred with good quality and without contaminating the target surface by any liquid. Mg/MgO/graphene tunnel junctions were fabricated using this transfer method. The junctions show good tunneling characteristics, which demonstrates the transfer technique can also be used to fabricate graphene devices on liquid-sensitive surfaces.

  12. Morphology and magnetoresistance of Co2Cr0.6Fe0.4Al-based tunnelling junctions

    International Nuclear Information System (INIS)

    Some ferromagnetic Heusler compounds are theoretically predicted to be half metallic materials, i.e. to be characterized by a huge spin polarization at the Fermi energy. We investigate the correlations between junction preparation conditions, morphology and transport properties of planar MgO/Co2Cr0.6Fe0.4Al/AlOx/Co/CoOx/Pt tunnelling junctions. Epitaxial Co2Cr0.6Fe0.4Al thin films were deposited by dc and rf magnetron sputtering on different buffer layers (Cr, Fe, MgO) on MgO(1 0 0) substrates. By RHEED, LEED and in situ STM investigations different surface morphologies were observed. Atomically flat surfaces with Co2Cr0.6Fe0.4Al unit cell sized steps (B2 structure) were obtained by rf sputtering on MgO substrates with e-beam evaporated MgO buffer layers. However, this morphology results in AlOx tunnelling barriers with improper wetting properties.

  13. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications

    International Nuclear Information System (INIS)

    We report a dry transfer method that can tranfer chemical vapor deposition (CVD) grown graphene onto liquid-sensitive surfaces. The graphene grown on copper (Cu) foil substrate was first transferred onto a freestanding 4 μm thick sputtered Cu film using the conventional wet transfer process, followed by a dry transfer process onto the target surface using a polydimethylsiloxane stamp. The dry-transferred graphene has similar properties to traditional wet-transferred graphene, characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and electrical transport measurements. It has a sheet resistance of 1.6 ∼ 3.4 kΩ/□, hole density of (4.1 ∼ 5.3) × 1012 cm−2, and hole mobility of 460 ∼ 760 cm2 V−1 s−1 without doping at room temperature. The results suggest that large-scale CVD-grown graphene can be transferred with good quality and without contaminating the target surface by any liquid. Mg/MgO/graphene tunnel junctions were fabricated using this transfer method. The junctions show good tunneling characteristics, which demonstrates the transfer technique can also be used to fabricate graphene devices on liquid-sensitive surfaces. (paper)

  14. An array of cold-electron bolometers with SIN tunnel junctions and JFET readout for cosmology instruments

    International Nuclear Information System (INIS)

    A novel concept of the parallel/series array of Cold-Electron Bolometers (CEB) with Superconductor-Insulator-Normal (SIN) Tunnel Junctions has been proposed. The concept was developed specially for matching the CEB with JFET amplifier at conditions of high optical power load. The CEB is a planar antenna-coupled superconducting detector with high sensitivity. For combination of effective HF operation and low noise properties the current-biased CEBs are connected in series for DC and in parallel for HF signal. A signal is concentrated from an antenna to the absorber through the capacitance of the tunnel junctions and through additional capacitance for coupling of superconducting islands. Using array of CEBs the applications can be considerably extended to higher power load by distributing the power between N CEBs and decreasing the electron temperature. Due to increased responsivity the noise matching is so effective that photon NEP could be easily achieved at 300 mK with a room temperature JFET for wide range of optical power loads. The concept of the CEB array has been developed for the BOOMERanG balloon telescope and other Cosmology instruments

  15. Impact of lattice strain on the tunnel magnetoresistance in Fe/insulator/Fe and Fe/insulator/La0.67Sr0.33MnO3 magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2013-08-19

    The objective of this work is to describe the tunnel electron current in single-barrier magnetic tunnel junctions within an approach that goes beyond the single-band transport model. We propose a ballistic multichannel electron transport model that can explain the influence of in-plane lattice strain on the tunnel magnetoresistance as well as the asymmetric voltage behavior. We consider as an example single-crystal magnetic Fe(110) electrodes for Fe/insulator/Fe and Fe/insulator/La0.67Sr0.33MnO3 tunnel junctions, where the electronic band structures of Fe and La0.67Sr0.33MnO3 are derived by ab initio calculations.

  16. Tunnel magnetoresistance in full-epitaxial magnetic tunnel junctions with a top electrode consisting of a perpendicularly magnetized D022-Mn3Ge film

    Science.gov (United States)

    Sugihara, Atsushi; Suzuki, Kazuya; Miyazaki, Terunobu; Mizukami, Shigemi

    2015-07-01

    We grew a magnetic tunnel junction (MTJ) with a top electrode consisting of a Mn3Ge film using a thin Co-Fe alloy film as a seed layer. X-ray diffraction showed that the Mn3Ge had (001)-oriented D022 structure epitaxially grown on an MgO(001) substrate. Magnetic hysteresis loops suggested that the D022-Mn3Ge film possessed perpendicular magnetic anisotropy. A magnetoresistance (MR) ratio of 11.3% was observed in the microfabricated MTJ at room temperature. The resistance-field curve suggested that the top-Co-Fe and D022-Mn3Ge layer are weakly coupled antiferromagnetically. The optimization of top-Co-Fe composition would improve MR ratio.

  17. Boron-doped silicon film as a recombination layer in the tunnel junction of a tandem solar cell

    Institute of Scientific and Technical Information of China (English)

    Shi Mingji; Wang Zhanguo; Liu Shiyong; Peng Wenbo; Xiao Haibo; Zhang Changsha; Zeng Xiangbo

    2009-01-01

    Boron-doped hydrogenated silicon films with different gaseous doping ratios (B2H6/SiH4) were deposited in a plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure of the films was investigated by atomic force microscopy (AFM) and Raman scattering spectroscopy. The electrical properties of the films were characterized by their room temperature electrical conductivity (σ) and the activation energy (Ea). The results show that with an increasing gaseous doping ratio, the silicon films transfer from a microcrystalline to an amorphous phase, and corresponding changes in the electrical properties were observed. The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions. The measurements of the Ⅰ-Ⅴ characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04, and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it. The junction with such a recombination layer has a small resistance, a nearly ohmic contact, and a negligible optical absorption.

  18. Graphene-SnO2 nanocomposites decorated with quantum tunneling junctions: preparation strategies, microstructures and formation mechanism.

    Science.gov (United States)

    Wang, Qingxiu; Wu, Xianzheng; Wang, Lijun; Chen, Zhiwen; Wang, Shilong

    2014-09-28

    Tin dioxide (SnO2) and graphene are versatile materials that are vitally important for creating new functional and smart materials. A facile, simple and efficient ultrasonic-assisted hydrothermal synthesis approach has been developed to prepare graphene-SnO2 nanocomposites (GSNCs), including three samples with graphene/Sn weight ratios = 1 : 2 (GSNC-2), 1 : 1 (GSNC-1), and graphene oxide/Sn weight ratio = 1 : 1 (GOSNC-1). Low-magnification electron microscopy analysis indicated that graphene was exfoliated and adorned with SnO2 nanoparticles, which were dispersed uniformly on both the sides of the graphene nanosheets. High-magnification electron microscopy analysis confirmed that the graphene-SnO2 nanocomposites presented network tunneling frameworks, which were decorated with the SnO2 quantum tunneling junctions. The size distribution of SnO2 nanoparticles was estimated to range from 3 to 5.5 nm. Comparing GSNC-2, GSNC-1, and GOSNC-1, GOSNC-1 was found to exhibit a significantly better the homogeneous distribution and a considerably smaller size distribution of SnO2 nanoparticles, which indicated that it was better to use graphene oxide as a supporting material and SnCl4·5H2O as a precursor to synthesize hybrid graphene-SnO2 nanocomposites. Experimental results suggest that the graphene-SnO2 nanocomposites with interesting SnO2 quantum tunneling junctions may be a promising material to facilitate the improvement of the future design of micro/nanodevices.

  19. Self-field effects in window-type Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, Roberto; Koshelets, Valery P; Mukhortova, Anna;

    2013-01-01

    different electrode inductances, for which we provide empirical expressions. We also generalize the modeling to the window-type junctions used nowadays and discuss how to take advantage of the asymmetric behavior in the realization of some superconducting devices. Further we report a systematic...... junction in the presence of an in-plane external magnetic field, He, is revisited and extended to junctions whose electrodes can be thin and of different materials, i.e., of arbitrary penetration depth. We demonstrate that the asymmetry of the magnetic diffraction pattern, Ic(He), is ascribed to the...... investigation of the diffraction patterns of in-line window-type junctions having a number of diverse geometrical configurations and made of dissimilar materials. The experimental results are found to be in agreement with the predictions and clearly demonstrate that the pattern asymmetry increases with the...

  20. Spontaneous anomalous and spin Hall effects due to spin-orbit scattering of evanescent wave functions in magnetic tunnel junctions.

    Science.gov (United States)

    Vedyayev, A; Ryzhanova, N; Strelkov, N; Dieny, B

    2013-06-14

    We theoretically investigated the anomalous Hall effect (AHE) and spin Hall effect (SHE) transversal to the insulating spacer I, in magnetic tunnel junctions of the form F/I/F where the F's are ferromagnetic layers and I represents a tunnel barrier. We considered the case of purely ballistic (quantum mechanical) transport. These effects arise because of the asymmetric scattering of evanescent wave functions due to the spin-orbit interaction in the tunnel barrier. The AHE and SHE we investigated have a surface nature due to the proximity effect. Their amplitude is of first order in the scattering potential. This contrasts with ferromagnetic metals wherein these effects are of second (side-jump scattering) and third (skew scattering) order in these potentials. The value of the AHE current in the insulating spacer may be much larger than that in metallic ferromagnetic electrodes. For the antiparallel orientation of the magnetizations in the two F electrodes, a spontaneous Hall current exists even at zero applied voltage. PMID:25165958

  1. Topological Insulator Magnetic Tunnel Junctions: Quantum Hall Effect and Fractional Charge via Folding

    OpenAIRE

    Meng, Qinglei; Vishveshwara, Smitha; Hughes, Taylor L.

    2012-01-01

    We provide a characterization of tunneling between coupled topological insulators in 2D and 3D under the influence of a ferromagnetic layer. We explore conditions for such systems to exhibit integer quantum Hall physics and localized fractional charge, also taking into account interaction effects for the 2D case. We show that the effects of tunneling are topologically equivalent to a certain deformation or folding of the sample geometry. Our key advance is the realization that the quantum Hal...

  2. Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials.

    Science.gov (United States)

    Joiner, Corey A; Campbell, Philip M; Tarasov, Alexey A; Beatty, Brian R; Perini, Chris J; Tsai, Meng-Yen; Ready, William J; Vogel, Eric M

    2016-04-01

    Tunneling devices based on vertical heterostructures of graphene and other 2D materials can overcome the low on-off ratios typically observed in planar graphene field-effect transistors. This study addresses the impact of processing conditions on two-dimensional materials in a fully integrated heterostructure device fabrication process. In this paper, graphene-molybdenum disulfide-graphene tunneling heterostructures were fabricated using only large-area synthesized materials, unlike previous studies that used small exfoliated flakes. The MoS2 tunneling barrier is either synthesized on a sacrificial substrate and transferred to the bottom-layer graphene or synthesized directly on CVD graphene. The presence of graphene was shown to have no impact on the quality of the grown MoS2. The thickness uniformity of MoS2 grown on graphene and SiO2 was found to be 1.8 ± 0.22 nm. XPS and Raman spectroscopy are used to show how the MoS2 synthesis process introduces defects into the graphene structure by incorporating sulfur into the graphene. The incorporation of sulfur was shown to be greatly reduced in the absence of molybdenum suggesting molybdenum acts as a catalyst for sulfur incorporation. Tunneling simulations based on the Bardeen transfer Hamiltonian were performed and compared to the experimental tunneling results. The simulations show the use of MoS2 as a tunneling barrier suppresses contributions to the tunneling current from the conduction band. This is a result of the observed reduction of electron conduction within the graphene sheets. PMID:26987383

  3. Numerical Optimization of Tunnel-recombination Junction and Optical Absorption Properties of a-Si:H/a-SiGe:H Double-junction Solar Cell

    Institute of Scientific and Technical Information of China (English)

    KE Shaoying; WANG Chong; PAN Tao; WANG Zhaoqing; YANG Jie; YANG Yu

    2015-01-01

    The tunnel-recombination junction (TRJ) and optical absorption properties of a-Si:H/a-SiGe:H dou-ble-junction solar cell were calculated by means of one dimensional simulator named AMPS-1D at the radiation of AM1.5G with a power density of 100 mW/cm2. Since the TRJ is the core component of the tandem solar cell, the optical absorption of the sub-cells and the electronic transport properties at the interface of the sub-cells are affected by the thickness and doping concentration of the TRJ. As a result, the TRJ parameters were optimized. The numerical results indicate that the maximum conversion efficiency (Ef) of 9.862% can be obtained when the thickness and doping con-centration of the TRJ are 10 nm and 5´1019 cm–3, respectively. Based on the analysis of the contour map of short circuit current density, the optimal current matching can be achieved for 130 nm-thick topi-layer and 250 nm-thick bottom i-layer. In addition, four kinds of TRJ structures were also simulated for the comparison purpose. According to the cal-culated resistivity and band structures of the four TRJs, the efficiency of the solar cell withn-typeμc-Si:H layer and p-type a-Si:H layer in TRJ structure is greater than that with other TRJ structures. It is assumed that the effect of the band offset that results in the formation of triangular barrier and backscattering behavior at the edge of the TRJ could be responsible to this phenomenon.

  4. Spin Transfer Torque Switching and Perpendicular Magnetic Anisotropy in Full Heusler Alloy Co2FeAl-BASED Tunnel Junctions

    Science.gov (United States)

    Sukegawa, H.; Wen, Z. C.; Kasai, S.; Inomata, K.; Mitani, S.

    2014-12-01

    Some of Co-based full Heusler alloys have remarkable properties in spintronics, that is, high spin polarization of conduction electrons and low magnetic damping. Owing to these properties, magnetic tunnel junctions (MTJs) using Co-based full Heusler alloys are potentially of particular importance for spintronic application such as magnetoresistive random access memories (MRAMs). Recently, we have first demonstrated spin transfer torque (STT) switching and perpendicular magnetic anisotropy (PMA), which are required for developing high-density MRAMs, in full-Heusler Co2FeAl alloy-based MTJs. In this review, the main results of the experimental demonstrations are shown with referring to related issues, and the prospect of MTJs using Heusler alloys is also discussed.

  5. Spin-transfer switching in full-Heusler Co2FeAl-based magnetic tunnel junctions

    Science.gov (United States)

    Sukegawa, Hiroaki; Wen, Zhenchao; Kondou, Kouta; Kasai, Shinya; Mitani, Seiji; Inomata, Koichiro

    2012-04-01

    We demonstrated spin-transfer magnetization switching using magnetic tunnel junctions (MTJs) with a full-Heusler alloy Co2FeAl (CFA). We prepared CFA (1.5 nm)/MgO/CoFe (4 nm) ("CFA-free") and CFA (30 nm)/MgO/CoFeB (2 nm) ("CFA-reference") MTJs on a Cr(001) layer. The intrinsic critical current density (Jc0) of the CFA-free (CFA-reference) MTJ was 29 MA/cm2 (7.1 MA/cm2). The larger Jc0 of the CFA-free MTJ is attributed to the significant enhancement of the Gilbert damping factor (˜0.04) of the CFA due to the Cr layer. The Jc0 of the CFA-reference is as small as that reported for typical CoFeB/MgO/CoFeB MTJs.

  6. Magnetocrystalline anisotropy and its electric-field-assisted switching of Heusler-compound-based perpendicular magnetic tunnel junctions

    Science.gov (United States)

    Bai, Zhaoqiang; Shen, Lei; Cai, Yongqing; Wu, Qingyun; Zeng, Minggang; Han, Guchang; Feng, Yuan Ping

    2014-10-01

    Employing density functional theory combined with the non-equilibrium Green's function formalism, we systematically investigate the structural, magnetic and magnetoelectric properties of the Co2FeAl(CFA)/MgO interface, as well as the spin-dependent transport characteristics of the CFA/MgO/CFA perpendicular magnetic tunnel junctions (p-MTJs). We find that the structure of the CFA/MgO interface with the oxygen-top FeAl termination has high thermal stability, which is protected by the thermodynamic equilibrium limit. Furthermore, this structure is found to have perpendicular magnetocrystalline anisotropy (MCA). Giant electric-field-assisted modifications of this interfacial MCA through magnetoelectric coupling are demonstrated with an MCA coefficient of up to 10-7 erg V-1 cm. In addition, our non-collinear spin transport calculations of the CFA/MgO/CFA p-MTJ predict a good magnetoresistance performance of the device.

  7. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  8. Investigation of the Mn{sub 3−δ}Ga/MgO interface for magnetic tunneling junctions

    Energy Technology Data Exchange (ETDEWEB)

    ViolBarbosa, C. E., E-mail: carlos.barbosa@cpfs.mpg.de; Ouardi, S.; Fecher, G. H.; Felser, C. [Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden (Germany); Kubota, T.; Mizukami, S.; Miyazaki, T. [WPI Advanced Institute for Materials Research, Tohoku University, 980-8577 Sendai (Japan); Kozina, X.; Ikenaga, E. [JASRI, SPring-8, Sayo-cho, Hyogo 679-5198 (Japan)

    2014-07-21

    The Mn{sub 3}Ga Heusler compound and related alloys are the most promising materials for the realization of spin-transfer-torque magnetoresistive memories. Mn–Ga films exhibits perpendicular magnetic anisotropy and high spin polarization and can be used to improve the performance of MgO-based magneto tunneling junctions. The interface between Mn–Ga and MgO films were chemically characterized by hard x-ray photoelectron spectroscopy. The experiment indicated the formation of Ga-O bonds at the interface and evidenced changes in the local environment of Mn atoms in the proximity of the MgO film. We show that the deposition of few monoatomic layers of Mg on top of Mn–Ga film, before the MgO deposition, strongly suppresses the oxidation of gallium.

  9. Analysis of single-event upset of magnetic tunnel junction used in spintronic circuits caused by radiation-induced current

    International Nuclear Information System (INIS)

    This paper describes the possibility of a switching upset of a magnetic tunnel junction (MTJ) caused by a terrestrial radiation-induced single-event-upset (SEU) current in spintronic integrated circuits. The current waveforms were simulated by using a 3-D device simulator in a basic circuit including MTJs designed using 90-nm CMOS parameters and design rules. The waveforms have a 400 -μA peak and a 200-ps elapsed time when neutron particles with a linear energy transfer value of 14 MeV cm2/mg enter the silicon surface. The authors also found that the SEU current may cause soft errors with a probability of more than 10−12 per event, which was obtained by approximate solution of the ordinary differential equation of switching probability when the intrinsic critical current (IC0) became less than 30 μA

  10. Ab-initio transport calculations of Fe/MgO/Fe tunnel junctions modified by Co and Cr interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Peter [Martin Luther University Halle-Wittenberg (Germany); International Max Planck Research School for Science and Technology of Nanostructures (Germany); Henk, Juergen [Max Planck Institute of Microstructure Physics, Halle (Germany); Zahn, Peter [Martin Luther University Halle-Wittenberg (Germany); Mertig, Ingrid [Martin Luther University Halle-Wittenberg (Germany); Max Planck Institute of Microstructure Physics, Halle (Germany)

    2010-07-01

    For spintronic device applications, large and tuneable tunnel magnetoresistance ratios (TMR) are inevitable. However, experimental TMR ratios of epitaxial Fe/MgO/Fe junctions can be strongly reduced by imperfect Fe/MgO interfaces. A way to increase the TMR ratio is the insertion of thin metallic layers at the Fe/MgO interfaces. With respect to their magnetic and electronic properties as well as their small lattice mismatch to Fe(001), Co and Cr interlayers have been preferably studied. We report on systematic ab-initio investigations of Co and Cr interlayers focussing on the changes of the electronic structure and the transport properties. The results of spin-dependent ballistic transport calculations reveal options to specifically manipulate the TMR ratio. The observed effects are directly addressed and interpreted by means of electronic states with complex wave vectors.

  11. Design of Logic Module Based on Magnetic-Tunnel-Junction Elements for Nonvolatile Field-Programmable Gate Array

    Science.gov (United States)

    Lee, Hyunjoo; Kim, Sojeong; Lee, Seungyeon; Lee, Seungjun; Shin, Hyungsoon

    2009-04-01

    Magnetologic using a magnetic-tunnel-junction (MTJ) element is a very hopeful candidate for universal logic technology because it can be used to build both logic circuits and nonvolatile memories. A structure of single-layer (SL) MTJ with a novel current driver previously presented by the authors improved both functional flexibility and uniformity of magnetologic. In this paper, the design of a nonvolatile logic module using SL MTJ is presented, which can be used as a basic logic cell for nonvolatile field-programmable gate arrays (FPGAs). The S-module is a basic logic cell for Act3 family of FPGAs by Actel, which can implement arbitrary five-input logic functions. We designed an S-module using SL MTJ elements such that it can work as a programmable logic module with nonvolatility. The functional verification has been carried out by HSPICE simulator on the basis of a macro-model of SL MTJ.

  12. Enhanced Macroscopic Quantum Tunneling in Capacitively Coupled BiPb2201 Single-Layered Intrinsic Josephson Junctions

    Science.gov (United States)

    Nomura, Yoshiki; Mizuno, Takaaki; Kambara, Hitoshi; Nakagawa, Yuya; Kakeya, Itsuhiro

    2015-01-01

    Macroscopic quantum tunneling (MQT) in an intrinsic Josephson junction (IJJ) stack of Bi1.9Pb0.1Sr1.39La0.63CuO6+δ (BiPb2201) has been investigated. For the first switch, from superconducting to the first resistive branch in current-voltage characteristics, the crossover between MQT and thermal activation (TA) takes place at 0.6 K. On the other hand, for the second switch, the MQT-TA crossover temperature is increased to 2.0 K. This result is interpreted as follows: the MQT rate of the second switch is enhanced by the charge coupling between adjacent IJJs as well as in Bi2Sr2CaCu2O8+δ. We consider that the enhancement of the MQT rate is a common feature among bismuth-cuprates with single and double CuO2 layers in their crystal structures.

  13. 城市复杂环境下浅埋地铁隧道掘进爆破%Urban Shallow-buried Tunnel Driving Blasting in Complicated Enviroment

    Institute of Scientific and Technical Information of China (English)

    谢兴博; 王希之; 唐启超

    2014-01-01

    Through the construction analysis and scheme optimization,desided take the method of loosening blas-ting-the 50ms delay blasting of 0. 7 m short circulation drilling footage and 3 m low-bench and reasonable blasting parameters system,in the construction of shallow-buried tunnel driving blasting under the area of dense urban archi-tecture and under-ground utilities,the point is control the damage of earthquake effect of controlled blasting to the a-bove-ground structures and under-ground utilities. At the circumastance of ensure the brick-cement building( the ho-rizon range to the right above of tunnel is 3. 7 m)and various under-ground utilities safe. Througe many instrument monitoring and real course,put forward the allowed safety vibration velocity of the above-ground brick structure build-ing under the circumstance of the tunnel driving blasting in downtown should bellow 1. 5 cm/s.%在城市建筑和地下管线密集区域浅埋地铁隧道矿山法掘进施工中,控制爆破所产生的地震效应对地表建筑和地下管线的危害是关键。通过施工分析和方案优化,采用0.7 m短循环进尺、3 m长度小台阶、50 ms时间间隔延期起爆的松动爆破方法和合理爆破参数体系,在保证水平距离仅3.7 m砖混房屋和隧道上方各类地下管线安全情况下加快了施工进度。通过大量仪器监测和实际观察,提出闹市区隧道爆破时地表砖混结构建筑物允许安全振速1.5 cm/s为宜。

  14. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  15. Infrared detection with high-Tc bolometers and response of Nb tunnel junctions to picosecond voltage pulses

    International Nuclear Information System (INIS)

    Oxide superconductors with high critical temperature Tc make sensitive thermometers for several types of infrared bolometers. The authors built composite bolometers with YBa2Cu3O7-δ thermometers on sapphire substrates which have higher sensitivity than competing thermal detectors which operate at temperatures above 77 K. A 1 x 1 mm bolometer with gold black serving as the radiation absorber has useful sensitivity for wavelengths 20--100 μm. A 3 x 3 mm bolometer with a bismuth film as the absorber operates from 20--100 μm. High-Tc bolometers which are fabricated with micromachining techniques on membranes of Si or Si3N4 have potential application to large-format arrays which are used for infrared imaging. A nonisothermal high-Tc bolometer can be fabricated on a membrane of yttria-stabilized zirconia (YSZ) which is in thermal contact with the heat sink along the perimeter of the membrane. A thermal analysis indicates that the YSZ membrane bolometer can have improved sensitivity compared to the sapphire bolometer for spectrometer applications. The quasiparticle tunneling current in a superconductor-insulator-superconductor (SIS) junction is highly nonlinear in the applied voltage. The authors have made the first measurement of the linear response of the quasiparticle current in a Nb/AlOx/Nb junction over a broad bandwidth from 75--200 GHz. Nonlinear measurements made with these pulses may provide information about the quasiparticle lifetime. Preliminary data from such measurements are presented

  16. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction.

    Science.gov (United States)

    Park, B G; Wunderlich, J; Martí, X; Holý, V; Kurosaki, Y; Yamada, M; Yamamoto, H; Nishide, A; Hayakawa, J; Takahashi, H; Shick, A B; Jungwirth, T

    2011-05-01

    A spin valve is a microelectronic device in which high- and low-resistance states are realized by using both the charge and spin of carriers. Spin-valve structures used in modern hard-drive read heads and magnetic random access memoriescomprise two ferromagnetic electrodes whose relative magnetization orientations can be switched between parallel and antiparallel configurations, yielding the desired giant or tunnelling magnetoresistance effect. Here we demonstrate more than 100% spin-valve-like signal in a NiFe/IrMn/MgO/Pt stack with an antiferromagnet on one side and a non-magnetic metal on the other side of the tunnel barrier. Ferromagneticmoments in NiFe are reversed by external fields of approximately 50  mT or less, and the exchange-spring effect of NiFe on IrMn induces rotation of antiferromagnetic moments in IrMn, which is detected by the measured tunnelling anisotropic magnetoresistance. Our work demonstrates a spintronic element whose transport characteristics are governed by an antiferromagnet. It demonstrates that sensitivity to low magnetic fields can be combined with large, spin-orbit-coupling-induced magnetotransport anisotropy using a single magnetic electrode. The antiferromagnetic tunnelling anisotropic magnetoresistance provides a means to study magnetic characteristics of antiferromagnetic films by an electronic-transport measurement. PMID:21399629

  17. Enhancement of electric-field-induced change of magnetic anisotropy by interface engineering of MgO magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Electric-field-induced modification of magnetic anisotropy is studied using tunnel magnetoresistance of the Co40Fe40B20/ MgO/ Co40Fe40B20 and Co40Fe40B20/ Hf (0.08 nm)/ MgO/ Co40Fe40B20 magnetic tunnel junctions. In both systems, the interfacial perpendicular magnetic anisotropy is increased with increasing electron density at the MgO interface. A quantitative comparison between the two systems reveals that the change of magnetic anisotropy energy with electric field is significantly enhanced in Co40Fe40B20/ Hf/ MgO/ Co40Fe40B20 compared to Co40Fe40B20/ MgO/ Co40Fe40B20. The sub-monolayer Hf insertion at the Co40Fe40B20/MgO interface turns out to be critical to the enhanced electric field control of the magnetic anisotropy, indicating the interface sensitive nature of the effect. (paper)

  18. Enhancement of electric-field-induced change of magnetic anisotropy by interface engineering of MgO magnetic tunnel junctions

    Science.gov (United States)

    Bonaedy, Taufik; Choi, Jun Woo; Jang, Chaun; Min, Byoung-Chul; Chang, Joonyeon

    2015-06-01

    Electric-field-induced modification of magnetic anisotropy is studied using tunnel magnetoresistance of the Co40Fe40B20/ MgO/ Co40Fe40B20 and Co40Fe40B20/ Hf (0.08 nm)/ MgO/ Co40Fe40B20 magnetic tunnel junctions. In both systems, the interfacial perpendicular magnetic anisotropy is increased with increasing electron density at the MgO interface. A quantitative comparison between the two systems reveals that the change of magnetic anisotropy energy with electric field is significantly enhanced in Co40Fe40B20/ Hf/ MgO/ Co40Fe40B20 compared to Co40Fe40B20/ MgO/ Co40Fe40B20. The sub-monolayer Hf insertion at the Co40Fe40B20/MgO interface turns out to be critical to the enhanced electric field control of the magnetic anisotropy, indicating the interface sensitive nature of the effect.

  19. Superconducting Tunnel Junction Refrigerators for Sub-Kelvin Cooling of Electrons, Phonons, and Arbitrary, User-Supplied Payloads

    Science.gov (United States)

    Lowell, Peter Joseph

    Modern science often requires measurements at sub-Kelvin temperatures. Temperatures of 300 mK can be reached by using liquid 3He, but reaching lower temperatures requires the use of adiabatic demagnetization and dilution refrigerators which are complex, large, and costly. Normal-metalInsulatorSuperconductor (NIS) tunnel junctions provide an alternative refrigeration method that is simple to use, compact, and provides continuous cooling power that has the potential to expand the accessibility of these sub-Kelvin temperatures. When properly biased, the electron system in the normal metal of an NIS junction is cooled since the hottest electrons preferentially tunnel from the normal metal to the superconductor, transferring heat in the process. When the normal metal is extended onto a thermally isolated membrane, the cold electrons cool the phonons in the membrane through electron-phonon coupling. In previous work, NIS junctions have been used to cool detectors and bulk objects that were integrated with the membrane, but could not be considered a general-purpose refrigerator since they could not cool arbitrary objects. The goal of this work has been to demonstrate a general-purpose NIS refrigerator to which a user can attach arbitrary bulk objects. First, we discuss NIS refrigeration and then develop a model to predict phonon cooling. We fabricated and tested NIS refrigerators capable of cooling bulk objects and used the model to explain the results. The devices were able to cool phonons from 300 mK to 154 mK with 100 pW of cooling power at 200 mK. With these devices, we were able to cool a 2 cm3 piece of copper from 290 mK to 256 mK with 700 pW of cooling power at 290 mK. This demonstration marks the emergence of NIS refrigerators as a true, general-purpose refrigerator since users can attach arbitrary objects. Measurements of Andreev reflections in the devices and next-generation refrigerators that cool electrons from 100 mK to below 50 mK are also presented.

  20. Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liming [Centre for Neural Engineering, The University of Melbourne, 203 Bouverie Street, Carlton, Victoria 3053 (Australia); Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia); National ICT Australia, The University of Melbourne, Parkville 3010 (Australia); Qiu, Wanzhi; Sharafat Hossain, Md; Al-Dirini, Feras; Skafidas, Efstratios, E-mail: sskaf@unimelb.edu.au [Centre for Neural Engineering, The University of Melbourne, 203 Bouverie Street, Carlton, Victoria 3053 (Australia); Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia); Evans, Robin [Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia)

    2016-02-07

    Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicate that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport.

  1. Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering

    International Nuclear Information System (INIS)

    Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicate that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport

  2. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    CERN Document Server

    Kilgour, Michael

    2015-01-01

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-B\\"uttiker's probe technique" can properly replicate different transport mechanisms: phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction, to provide results consistent with experiments. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) The electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer. Under large dephasing the electrical conductance is suppressed. (iii) At high enough temperatures, $k_BT/\\epsilon_B>1/25$, with $\\epsilon_B$ as ...

  3. Mapping the first electronic resonances of a Cu phthalocyanine STM tunnel junction

    International Nuclear Information System (INIS)

    Using a low temperature, ultrahigh vacuum scanning tunneling microscope (STM), dI/dV differential conductance maps were recorded at the tunneling resonance energies for a single Cu phthalocyanine molecule adsorbed on an Au(111) surface. We demonstrated that, contrary to the common assumption, such maps are not representative of the molecular orbital spatial expansion, but rather result from their complex superposition captured by the STM tip apex with a superposition weight which generally does not correspond to the native weight used in the standard Slater determinant basis set. Changes in the molecule conformation on the Au(111) surface further obscure the identification between dI/dV conductance maps and the native molecular orbital electronic probability distribution in space.

  4. From tunneling to contact: Inelastic signals in an atomic gold junction from first principles

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Lorente, N.; Paulsson, Magnus;

    2007-01-01

    The evolution of electron conductance in the presence of inelastic effects is studied as an atomic gold contact is formed evolving from a low-conductance regime (tunneling) to a high-conductance regime (contact). In order to characterize each regime, we perform density-functional theory (DFT......) calculations to study the geometric and electronic structures, together with the strength of the atomic bonds and the associated vibrational frequencies. The conductance is calculated by, first, evaluating the transmission of electrons through the system and, second, by calculating the conductance change due...... to the excitation of vibrations. As found in previous studies [Paulsson , Phys. Rev. B 72, 201101(R) (2005)], the change in conductance due to inelastic effects permits us to characterize the crossover from tunneling to contact. The most notorious effect is the crossover from an increase in conductance...

  5. Interface study of FeMgOFe magnetic tunnel junctions using 3D Atom Probe

    CERN Document Server

    Mazumder, B; Vella, A; Vurpillot, F; Deconihout, B

    2011-01-01

    A detailed interface study was conducted on a Fe/MgO/Fe system using laser assisted 3D atom probe. It exhibits an additional oxide formation at the second interface of the multilayer structure independent of laser wavelength, laser fluence and the thickness of the tunnel barrier. We have shown with the help of simulation that this phenomena is caused by the field evaporation of two layers having two different evaporation

  6. Laser-assisted spin-polarized transport in graphene tunnel junctions.

    Science.gov (United States)

    Ding, Kai-He; Zhu, Zhen-Gang; Berakdar, Jamal

    2012-07-01

    The Keldysh nonequilibrium Green's function method is utilized to theoretically study spin-polarized transport through a graphene spin valve irradiated by a monochromatic laser field. It is found that the bias dependence of the differential conductance exhibits successive peaks corresponding to the resonant tunneling through the photon-assisted sidebands. The multi-photon processes originate from the combined effects of the radiation field and the graphene tunneling properties, and are shown to be substantially suppressed in a graphene spin valve which results in a decrease of the differential conductance for a high bias voltage. We also discuss the appearance of a dynamical gap around zero bias due to the radiation field. The gap width can be tuned by changing the radiation electric field strength and the frequency. This leads to a shift of the resonant peaks in the differential conductance. We also demonstrate numerically the dependences of the radiation and spin valve effects on the parameters of the external fields and those of the electrodes. We find that the combined effects of the radiation field, the graphene and the spin valve properties bring about an oscillatory behavior in the tunnel magnetoresistance, and this oscillatory amplitude can be changed by scanning the radiation field strength and/or the frequency. PMID:22677935

  7. GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE

    Science.gov (United States)

    Zheng, Xin-He; Liu, San-Jie; Xia, Yu; Gan, Xing-Yuan; Wang, Hai-Xiao; Wang, Nai-Ming; Yang, Hui

    2015-10-01

    We report a GaInP/GaAs tandem solar cell with a novel GaAs tunnel junction (TJ) with using tellurium (Te) and magnesium (Mg) as n- and p-type dopants via dual-filament low temperature effusion cells grown by molecular beam epitaxy (MBE) at low temperature. The test Te/Mg-doped GaAs TJ shows a peak current density of 21 A/cm2. The tandem solar cell by the Te/Mg TJ shows a short-circuit current density of 12 mA/cm2, but a low open-circuit voltage range of 1.4 V˜1.71 V under AM1.5 illumination. The secondary ion mass spectroscopy (SIMS) analysis reveals that the Te doping is unexpectedly high and its doping profile extends to the Mg doping region, thus possibly resulting in a less abrupt junction with no tunneling carriers effectively. Furthermore, the tunneling interface shifts from the intended GaAs n++/p++ junction to the AlGaInP/GaAs junction with a higher bandgap AlGaInP tunneling layers, thereby reducing the tunneling peak. The Te concentration of ˜ 2.5 × 1020 in GaAs could cause a lattice strain of 10-3 in magnitude and thus a surface roughening, which also negatively influences the subsequent growth of the top subcell and the GaAs contacting layers. The doping features of Te and Mg are discussed to understand the photovoltaic response of the studied tandem cell. Project supported by the SINANO-SONY Joint Program (Grant No. Y1AAQ11001), the National Natural Science Foundation of China (Grant No. 61274134), the USCB Start-up Program (Grant No. 06105033), and the International Cooperation Projects of Suzhou City, China (Grant No. SH201215).

  8. GaInP/GaAs tandem solar cells with highly Te-and Mg-doped GaAs tunnel junctions grown by MBE

    Institute of Scientific and Technical Information of China (English)

    郑新和; 刘三姐; 夏宇; 甘兴源; 王海啸; 王乃明; 杨辉

    2015-01-01

    We report a GaInP/GaAs tandem solar cell with a novel GaAs tunnel junction (TJ) with using tellurium (Te) and magnesium (Mg) as n- and p-type dopants via dual-filament low temperature effusion cells grown by molecular beam epitaxy (MBE) at low temperature. The test Te/Mg-doped GaAs TJ shows a peak current density of 21 A/cm2. The tandem solar cell by the Te/Mg TJ shows a short-circuit current density of 12 mA/cm2, but a low open-circuit voltage range of 1.4 V∼1.71 V under AM1.5 illumination. The secondary ion mass spectroscopy (SIMS) analysis reveals that the Te doping is unexpectedly high and its doping profile extends to the Mg doping region, thus possibly resulting in a less abrupt junction with no tunneling carriers effectively. Furthermore, the tunneling interface shifts from the intended GaAs n++/p++junction to the AlGaInP/GaAs junction with a higher bandgap AlGaInP tunneling layers, thereby reducing the tunneling peak. The Te concentration of∼2.5 × 1020 in GaAs could cause a lattice strain of 10−3 in magnitude and thus a surface roughening, which also negatively influences the subsequent growth of the top subcell and the GaAs contacting layers. The doping features of Te and Mg are discussed to understand the photovoltaic response of the studied tandem cell.

  9. ``Hybrid'' multi-gap/single-gap Josephson junctions: Evidence of macroscopic quantum tunneling in superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions

    Science.gov (United States)

    Carabello, Steve; Lambert, Joseph; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto

    We report results of superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions, with and without microwaves. These results suggest that the switching behavior is dominated by quantum tunneling through the washboard potential barrier, rather than thermal excitations or electronic noise. Evidence includes a leveling in the standard deviation of the switching current distribution below a crossover temperature, a Lorentzian shape of the escape rate enhancement peak upon excitation by microwaves, and a narrowing in the histogram of escape counts in the presence of resonant microwave excitation relative to that in the absence of microwaves. These are the first such results reported in ``hybrid'' Josephson tunnel junctions, consisting of multi-gap and single-gap superconducting electrodes.

  10. Coherence effects in S/I/N/I/FS tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Li Xiao-Wei

    2007-01-01

    The dc Josephson effect in superconductor/insulator/normal metal/insulator/ferromagnetic superconductor junctions has been studied. We calculate the dc Josephson current based on the Bogoliubov de Gennes equation. The Josephson current is derived as a function of exchange field in ferromagnetic superconductor, normal metal thickness and insulating barrier strength. It is found that there exists an oscillation relation between the critical Josephson current and the normal metal thickness. The oscillation amplitude decreases as the thickness of the normal metal increases or the exchange field augments.

  11. Fe3O4/MgO/Fe Heteroepitaxial Structures for Magnetic Tunnel Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Orna, J. [University of Zaragoza, Spain; Morellon, Luis [University of Zaragoza, Spain; Algarabel, Pedro A. [University of Zaragoza, Spain; Pardo, J. A. [University of Zaragoza, Spain; Sangiao, S [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, 50009 Spain; Magen, C [Oak Ridge National Laboratory (ORNL); Snoeck, E. [CEMES-CNRS, Toulouse, France; De Teresa, J M [Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Zaragoza, 50009 Spain; Ibarra, M. Ricardo [University of Zaragoza, Spain

    2008-01-01

    In this work we report the growth and structural and magnetic characterization of heteroepitaxial Fe O/MgO/Fe junctions. All three layers have been deposited by pulsed laser deposition. Combining High Resolution Transmission Electron Microscopy and X-ray results, we have obtained for the heterostructure the epitaxy relation MgO(001) [100]//Fe O(001)[100]/MgO(001) [100]/Fe(001)[110]. All interfaces appear very sharp with relatively small root-mean square (rms) roughness, 0.2 nm. The magnetic coupling between Fe O and Fe electrodes is also very small, 0.03 mJ/

  12. Resonance effect in the voltage state of intrinsic Josephson junction stacks with multiple tunneling channels

    Science.gov (United States)

    Koyama, Tomio; Ota, Yukihiro; Machida, Masahiko

    2011-06-01

    We investigate the resonance effect caused by the Josephson-Leggett (JL) mode in intrinsic Josephson junction stacks (IJJs) formed by a stack of multigap superconducting layers. Such an IJJ system is expected to be realized in a single crystal of highly anisotropic iron-based superconductors with thick blocking layers. It is shown that the JL mode is resonantly excited by the Josephson oscillations in the voltage state with inhomogeneous electric-field distribution along the c axis. The resonance creates a steplike structure with a negative resistance region in the I-V characteristics.

  13. Observation of Macroscopic Quantum Tunneling in a Single Bi2Sr2CaCu2O8+δ Surface Intrinsic Josephson Junction

    Science.gov (United States)

    Li, Shao-Xiong; Qiu, Wei; Han, Siyuan; Wei, Y. F.; Zhu, X. B.; Gu, C. Z.; Zhao, S. P.; Wang, H. B.

    2007-07-01

    We report on the first unambiguous observation of macroscopic quantum tunneling (MQT) in a single submicron Bi2Sr2CaCu2O8+δ surface intrinsic Josephson junction (IJJ) by measuring its temperature-dependent switching current distribution. All relevant junction parameters were determined in situ in the classical regime and were used to predict the behavior of the IJJ in the quantum regime via MQT theory. Experimental results agree quantitatively with the theoretical predictions, thus confirming the MQT picture. Furthermore, the data also indicate that the surface IJJ, where the current flows along the c axis of the crystal, has the conventional sin⁡φ current-phase relationship.

  14. Observation of macroscopic quantum tunneling in a single Bi2Sr2CaCu2O8+delta surface intrinsic Josephson junction.

    Science.gov (United States)

    Li, Shao-Xiong; Qiu, Wei; Han, Siyuan; Wei, Y F; Zhu, X B; Gu, C Z; Zhao, S P; Wang, H B

    2007-07-20

    We report on the first unambiguous observation of macroscopic quantum tunneling (MQT) in a single submicron Bi(2)Sr(2)CaCu(2)O(8+delta) surface intrinsic Josephson junction (IJJ) by measuring its temperature-dependent switching current distribution. All relevant junction parameters were determined in situ in the classical regime and were used to predict the behavior of the IJJ in the quantum regime via MQT theory. Experimental results agree quantitatively with the theoretical predictions, thus confirming the MQT picture. Furthermore, the data also indicate that the surface IJJ, where the current flows along the c axis of the crystal, has the conventional sinphi current-phase relationship. PMID:17678315

  15. Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin, E-mail: jiangxinyj@gmail.com; Li, Zhipeng; Zheng, Yuankai; Kaiser, Christian; Diao, Zhitao; Fang, Jason; Leng, Qunwen, E-mail: Qunwen.Leng@wdc.com [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

    2015-09-15

    Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.

  16. Voltage-controlled inversion of tunnel magnetoresistance in epitaxial nickel/graphene/MgO/cobalt junctions

    Energy Technology Data Exchange (ETDEWEB)

    Godel, F.; Doudin, B.; Henry, Y.; Halley, D., E-mail: halley@ipcms.unistra.fr, E-mail: dayen@ipcms.unistra.fr; Dayen, J.-F., E-mail: halley@ipcms.unistra.fr, E-mail: dayen@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-UdS, 23 rue du Loess, 67034 Strasbourg (France); Venkata Kamalakar, M. [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-UdS, 23 rue du Loess, 67034 Strasbourg (France); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg (Sweden)

    2014-10-13

    We report on the fabrication and characterization of vertical spin-valve structures using a thick epitaxial MgO barrier as spacer layer and a graphene-passivated Ni film as bottom ferromagnetic electrode. The devices show robust and scalable tunnel magnetoresistance, with several changes of sign upon varying the applied bias voltage. These findings are explained by a model of phonon-assisted transport mechanisms that relies on the peculiarity of the band structure and spin density of states at the hybrid graphene|Ni interface.

  17. Low-current-density spin-transfer switching in Gd{sub 22}Fe{sub 78}-MgO magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Kinjo, Hidekazu, E-mail: kinjou.h-lk@nhk.or.jp; Machida, Kenji; Aoshima, Ken-ichi; Kato, Daisuke; Kuga, Kiyoshi; Kikuchi, Hiroshi; Shimidzu, Naoki [Science and Technology Research Laboratories, Japan Broadcasting Corporation (NHK), Kinuta, Setagaya, Tokyo 157-8510 (Japan); Matsui, Koichi [Department of Green and Sustainable Chemistry, Tokyo Denki University, Adachi, Tokyo 120-8551 (Japan)

    2014-05-28

    Magnetization switching of a relatively thick (9 nm) Gd-Fe free layer was achieved with a low spin injection current density of 1.0 × 10{sup 6} A/cm{sup 2} using MgO based magnetic tunnel junction devices, fabricated for light modulators. At about 560 × 560 nm{sup 2} in size, the devices exhibited a tunneling magnetoresistance ratio of 7%. This low-current switching is mainly attributed to thermally assisted spin-transfer switching in consequence of its thermal magnetic behavior arising from Joule heating.

  18. Dynamical image-charge effect in molecular tunnel junctions: Beyond energy level alignment

    Science.gov (United States)

    Jin, Chengjun; Thygesen, Kristian S.

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how the finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z2, where Z is the quasiparticle renormalization factor, compared to the static IC approximation. We show that Z can be expressed either in terms of the plasma frequency of the electrode or as the overlap between electrode wave functions corresponding to an empty and filled level, respectively. First-principles GW calculations for benzene-diamine connected to gold electrodes show that the dynamical corrections can reduce the conductance by more than a factor of two when compared to static GW or density functional theory where the molecular energy levels have been shifted to match the exact quasiparticle levels.

  19. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilgour, Michael; Segal, Dvira, E-mail: dsegal@chem.utoronto.ca [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada)

    2015-07-14

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This “Landauer-Büttiker’s probe technique” can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, k{sub B}T/ϵ{sub B} > 1/25, with ϵ{sub B} as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker’s probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  20. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    Science.gov (United States)

    Kilgour, Michael; Segal, Dvira

    2015-07-01

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-Büttiker's probe technique" can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ɛB > 1/25, with ɛB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker's probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  1. Gate-Tunable Tunneling Resistance in Graphene/Topological Insulator Vertical Junctions.

    Science.gov (United States)

    Zhang, Liang; Yan, Yuan; Wu, Han-Chun; Yu, Dapeng; Liao, Zhi-Min

    2016-03-22

    Graphene-based vertical heterostructures, particularly stacks incorporated with other layered materials, are promising for nanoelectronics. The stacking of two model Dirac materials, graphene and topological insulator, can considerably enlarge the family of van der Waals heterostructures. Despite good understanding of the two individual materials, the electron transport properties of a combined vertical heterojunction are still unknown. Here, we show the experimental realization of a vertical heterojunction between Bi2Se3 nanoplate and monolayer graphene. At low temperatures, the electron transport through the vertical heterojunction is dominated by the tunneling process, which can be effectively tuned by gate voltage to alter the density of states near the Fermi surface. In the presence of a magnetic field, quantum oscillations are observed due to the quantized Landau levels in both graphene and the two-dimensional surface states of Bi2Se3. Furthermore, we observe an exotic gate-tunable tunneling resistance under high magnetic field, which displays resistance maxima when the underlying graphene becomes a quantum Hall insulator. PMID:26930548

  2. Infrared detection with high-{Tc} bolometers and response of Nb tunnel junctions to picosecond voltage pulses

    Energy Technology Data Exchange (ETDEWEB)

    Verghese, S.

    1993-05-01

    Oxide superconductors with high critical temperature {Tc} make sensitive thermometers for several types of infrared bolometers. The authors built composite bolometers with YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thermometers on sapphire substrates which have higher sensitivity than competing thermal detectors which operate at temperatures above 77 K. A 1 x 1 mm bolometer with gold black serving as the radiation absorber has useful sensitivity for wavelengths 20--100 {mu}m. A 3 x 3 mm bolometer with a bismuth film as the absorber operates from 20--100 {mu}m. High-{Tc} bolometers which are fabricated with micromachining techniques on membranes of Si or Si{sub 3}N{sub 4} have potential application to large-format arrays which are used for infrared imaging. A nonisothermal high-{Tc} bolometer can be fabricated on a membrane of yttria-stabilized zirconia (YSZ) which is in thermal contact with the heat sink along the perimeter of the membrane. A thermal analysis indicates that the YSZ membrane bolometer can have improved sensitivity compared to the sapphire bolometer for spectrometer applications. The quasiparticle tunneling current in a superconductor-insulator-superconductor (SIS) junction is highly nonlinear in the applied voltage. The authors have made the first measurement of the linear response of the quasiparticle current in a Nb/AlO{sub x}/Nb junction over a broad bandwidth from 75--200 GHz. Nonlinear measurements made with these pulses may provide information about the quasiparticle lifetime. Preliminary data from such measurements are presented.

  3. A Novel Design and Fabrication of Magnetic Random Access Memory Based on Nano-ring-type Magnetic Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    X.F.Han; M. Ma; Y. Wang; Z.C. Wen; D.P. Liu; W.S.Zhan; H.X. Wei; Z.L.Peng; H.D. Yang; J.F. Feng; G.X.Du; Z.B.Sun; L.X. Jiang; Q.H. Qin

    2007-01-01

    Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/Co75Fe25(2)/Ru(0.75)/Co60Fe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit: nm)were nano-fabricated on the Si(100)/SiO2 substrate using magnetron sputtering deposition combined with the optical lithography, electron beam lithography (EBL) and Ar ion-beam etching techniques. The smaller NR-MTJs with the inner- and outer-diameter of around 50 and 100 nm and also their corresponding NR-MTJ arrays were nano-patterned. The tunnelling magnetoresistance (TMR & R) versus driving current (I) loops for a spin-polarized current switching were measured, and the TMR ratio of around 35% at room temperature were observed. The critical values of switching current for the free Co60Fe20B20 layer relative to the reference Co60Fe20B20 layer between parallel and anti-parallel magnetization states were between 0.50 and 0.75 mA in such NR-MTJs. It is suggested that the applicable MRAM fabrication with the density and capacity higher than 256 Mbit/inch2 even 6 Gbite/inch2 are possible using both 1 NR-MTJ+1 transistor structure and current switching mechanism based on based on our fabricated 4×4 MRAM demo devices.

  4. Heat transfer coefficient saturation in superconducting Nb tunnel junctions contacted to a NbTiN circuit and an Au energy relaxation layer

    CERN Document Server

    Selig, Stefan; Jacobs, Karl; Schultz, Michael; Honingh, Netty

    2014-01-01

    In this paper we present the experimental realization of a Nb tunnel junction connected to a high-gap superconducting NbTiN embedding circuit. We investigate relaxation of nonequilibrium quasiparticles in a small volume Au layer between the Nb tunnel junction and the NbTiN circuit. We find a saturation in the effective heat-transfer coefficient consistent with a simple theoretical model. This saturation is determined by the thickness of the Au layer. Our findings are important for the design of the ideal Au energy relaxation layer for practical SIS heterodyne mixers and we suggest two geometries, one, using a circular Au layer and, two, using a half-circular Au layer. Our work is concluded with an outlook of our future experiments.

  5. Theoretical study of electron tunneling through the spiral molecule junctions along spiral paths.

    Science.gov (United States)

    Xu, Xiaodong; Li, Weiqi; Zhou, Xin; Wang, Qiang; Feng, Jikang; Tian, Wei Quan; Jiang, Yongyuan

    2016-02-01

    The electronic transport properties of carbohelicenes and heterohelicenes absorbed between two metal electrodes have been investigated by using the nonequilibrium Green's function in combination with the density function theory. The transport properties of the molecular junctions are mainly dependent on the nature of spiral molecules. The detailed analyses of the transmission spectra, the energy levels as well as the spatial distribution of molecular projected self-consistent Hamiltonian explain how the geometry of molecules affects the intra-molecular electronic coupling. The spiral current in the configurations can be achieved by tuning the outer edge states of spiral-shaped molecules. Furthermore, the symmetric current-voltage characteristics are investigated with the bias changing for all devices as well as an negative differential resistance behavior is observed. PMID:26762548

  6. A comprehensive picture in the view of atomic scale on piezoelectricity of ZnO tunnel junctions: The first principles simulation

    Directory of Open Access Journals (Sweden)

    Genghong Zhang

    2016-06-01

    Full Text Available Piezoelectricity is closely related with the performance and application of piezoelectric devices. It is a crucial issue to understand its detailed fundamental for designing functional devices with more peculiar performances. Basing on the first principles simulations, the ZnO piezoelectric tunnel junction is taken as an example to systematically investigate its piezoelectricity (including the piezopotential energy, piezoelectric field, piezoelectric polarization and piezocharge and explore their correlation. The comprehensive picture of the piezoelectricity in the ZnO tunnel junction is revealed at atomic scale and it is verified to be the intrinsic characteristic of ZnO barrier, independent of its terminated surface but dependent on its c axis orientation and the applied strain. In the case of the ZnO c axis pointing from right to left, an in-plane compressive strain will induce piezocharges (and a piezopotential energy drop with positive and negative signs (negative and positive signs emerging respectively at the left and right terminated surfaces of the ZnO barrier. Meanwhile a piezoelectric polarization (and a piezoelectric field pointing from right to left (from left to right are also induced throughout the ZnO barrier. All these piezoelectric physical quantities would reverse when the applied strain switches from compressive to tensile. This study provides an atomic level insight into the fundamental behavior of the piezoelectricity of the piezoelectric tunnel junction and should have very useful information for future designs of piezoelectric devices.

  7. A Liquid-Cryogen-Free Superconducting Tunnel Junction X-ray Spectrometer for Astrobiology Research at the Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S; Drury, O B; Hertrich, T; Hoehne, J

    2008-06-15

    Superconducting tunnel junctions (STJs) are being developed as energy-dispersive soft X-ray detectors, because they combine the high energy resolution of low-temperature detectors with the comparably high count rates of non-thermal devices. We have built a 36-pixel spectrometer based on 200 {micro}m x 200 {micro}m Nb-Al-AlOx-Al-Nb STJs. It offers an energy resolution of {approx}10 to 20 eV FWHM in the soft X-ray band below 1 keV, a solid angle coverage {Omega}/4{pi} {approx} 10{sup -3}, and can be operated at total rates up to {approx}10{sup 6} counts/s. For STJ operation by non-expert users, we have built a liquid-cryogen-free spectrometer with a mechanical pulse-tube cryocooler and a two-stage adiabatic demagnetization refrigerator. It is fully automated for cooldown to a base temperature of <30 mK in 15 hours, and has a hold time of >3 days between demagnetization cycles for STJ operation at 0.3 K. The STJ spectrometers are used for speciation measurements on dilute samples by fluorescence-detected X-ray absorption spectroscopy, and can achieve sensitivities below 100 ppm. We discuss the spectrometer performance in representative applications on metals in meteorites in the context of geological signatures of biological activity.

  8. Tunnel field-effect transistors with germanium/strained-silicon hetero-junctions for low power applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsoo, E-mail: minsoo@mosfet.t.u-tokyo.ac.jp; Kim, Younghyun; Yokoyama, Masafumi; Nakane, Ryosho; Kim, SangHyeon; Takenaka, Mitsuru; Takagi, Shinichi

    2014-04-30

    We have studied a simple structure n-channel tunnel field-effect transistor with a pure-Ge/strained-Si hetero-junction. The device operation was demonstrated for the devices fabricated by combining epitaxially-grown Ge on strained-silicon-on-insulator substrates. Atomic-layer-deposition-Al{sub 2}O{sub 3}-based gate stacks were formed with electron cyclotron resonance plasma post oxidation to ensure the high quality metal–oxide–semiconductor interface between the high-k insulator and Ge. While the gate leakage current and drain current saturation are well controlled, relatively higher minimum subthreshold swing of 125 mV/dec and lower I{sub ON}/I{sub OFF} ratio of 10{sup 3}–10{sup 4} were obtained. It is expected that these device characteristics can be improved by further process optimization. - Highlights: • Layer by layer growth of Ge • Uniform interface between Ge and the insulator • Gate leakage current and drain current saturation seem to be well controlled. • The output characteristics show good saturation.

  9. Compact-device model development for the energy-delay analysis of magneto-electric magnetic tunnel junction structures

    Science.gov (United States)

    Sharma, N.; Bird, J. P.; Dowben, P. A.; Marshall, A.

    2016-06-01

    We discuss the application of a novel class of device, the magneto-electric magnetic tunnel junction (ME-MTJ) to realize a variety of computational functions, including majority logic and the XNOR/XOR gate. We also develop a compact model to describe the operation of these devices, which function by utilizing the phenomenon of ‘voltage-controlled magnetism’ to switch the operational state of MTJs. The model breaks down the switching process into three key stages of operation: electrical-to-magnetic conversion, magnetization transfer, and final-state readout. Estimates for the switching energy and delay of these devices, obtained from this compact model, reveal significant improvements in both of these parameters when compared to conventional MTJs switched by spin-transfer-torque. In fact, the capacity to use the ME-MTJ to implement complex logical operations within a single device allows its energy costs to even approach those of low-power CMOS. The added benefits of non-volatility and compact circuit footprint, combined with their potential for heterogeneous integration with CMOS, make the ME devices of considerable interest for post-CMOS technology.

  10. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes.

    Science.gov (United States)

    Sadaf, S M; Ra, Y-H; Nguyen, H P T; Djavid, M; Mi, Z

    2015-10-14

    The current LED lighting technology relies on the use of a driver to convert alternating current (AC) to low-voltage direct current (DC) power, a resistive p-GaN contact layer to inject positive charge carriers (holes) for blue light emission, and rare-earth doped phosphors to down-convert blue photons into green/red light, which have been identified as some of the major factors limiting the device efficiency, light quality, and cost. Here, we show that multiple-active region phosphor-free InGaN nanowire white LEDs connected through a polarization engineered tunnel junction can fundamentally address the afore-described challenges. Such a p-GaN contact-free LED offers the benefit of carrier regeneration, leading to enhanced light intensity and reduced efficiency droop. Moreover, through the monolithic integration of p-GaN up and p-GaN down nanowire LED structures on the same substrate, we have demonstrated, for the first time, AC operated LEDs on a Si platform, which can operate efficiently in both polarities (positive and negative) of applied voltage.

  11. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  12. Development of Superconducting Tunnel Junction X-ray Detector with High Absorption Yields Utilizing Silicon Pixel Absorbers

    Science.gov (United States)

    Shiki, Shigetomo; Fujii, Go; Ukibe, Masahiro; Kitajima, Yoshinori; Ohkubo, Masataka

    2016-07-01

    A superconducting tunnel junction (STJ) array detector along with silicon pixel absorbers (STJ-SPA) is fabricated to achieve high detection efficiency at X-ray energies below 10 keV. The STJ pixels have dimensions of 100 \\upmu m × 100 \\upmu m and are composed of Nb-Al/AlOX/Al-Nb thin layers. The SPAs are also 100 \\upmu m × 100 \\upmu m and have a depth of 400 \\upmu m, and are isolated from each other by a deep trench with a depth of 350 \\upmu m. The detection efficiency of the STJ-SPA exceeds 95 % at X-ray energies below 10 keV, and its energy resolution is 82 eV FWHM, as measured at the Si K\\upalpha line at 1740 eV. By means of the STJ-SPA detector, the X-ray absorption spectrum of the light element sulfur with a concentration of less than 0.1 wt% in a soda-lime glass sample was successfully acquired.

  13. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes.

    Science.gov (United States)

    Sadaf, S M; Ra, Y-H; Nguyen, H P T; Djavid, M; Mi, Z

    2015-10-14

    The current LED lighting technology relies on the use of a driver to convert alternating current (AC) to low-voltage direct current (DC) power, a resistive p-GaN contact layer to inject positive charge carriers (holes) for blue light emission, and rare-earth doped phosphors to down-convert blue photons into green/red light, which have been identified as some of the major factors limiting the device efficiency, light quality, and cost. Here, we show that multiple-active region phosphor-free InGaN nanowire white LEDs connected through a polarization engineered tunnel junction can fundamentally address the afore-described challenges. Such a p-GaN contact-free LED offers the benefit of carrier regeneration, leading to enhanced light intensity and reduced efficiency droop. Moreover, through the monolithic integration of p-GaN up and p-GaN down nanowire LED structures on the same substrate, we have demonstrated, for the first time, AC operated LEDs on a Si platform, which can operate efficiently in both polarities (positive and negative) of applied voltage. PMID:26384135

  14. A Liquid-Cryogen-Free Superconducting Tunnel Junction X-ray Spectrometer for Astrobiology Research at the Synchrotron

    International Nuclear Information System (INIS)

    Superconducting tunnel junctions (STJs) are being developed as energy-dispersive soft X-ray detectors, because they combine the high energy resolution of low-temperature detectors with the comparably high count rates of non-thermal devices. We have built a 36-pixel spectrometer based on 200 (micro)m x 200 (micro)m Nb-Al-AlOx-Al-Nb STJs. It offers an energy resolution of ∼10 to 20 eV FWHM in the soft X-ray band below 1 keV, a solid angle coverage (Omega)/4π ∼ 10-3, and can be operated at total rates up to ∼106 counts/s. For STJ operation by non-expert users, we have built a liquid-cryogen-free spectrometer with a mechanical pulse-tube cryocooler and a two-stage adiabatic demagnetization refrigerator. It is fully automated for cooldown to a base temperature of 3 days between demagnetization cycles for STJ operation at 0.3 K. The STJ spectrometers are used for speciation measurements on dilute samples by fluorescence-detected X-ray absorption spectroscopy, and can achieve sensitivities below 100 ppm. We discuss the spectrometer performance in representative applications on metals in meteorites in the context of geological signatures of biological activity

  15. High speed domain wall motion in MgO-based magnetic tunnel junctions driven by perpendicular current injection

    Science.gov (United States)

    Metaxas, P. J.; Chanthbouala, A.; Matsumoto, R.; Cros, V.; Anane, A.; Grollier, J.; Fert, A.; Zvezdin, K. A.; Fukushima, A.; Yuasa, S.

    2012-02-01

    The ability to efficiently drive fast domain wall (DW) motion will pave the way for revolutionary new electronic devices ranging from DW-MRAMs to spintronic memristors. The majority of domain wall devices use a lateral, current-in-plane configuration in which critical current densities for domain wall motion remain quite high, typically being on the order of 100 MA/cm^2 with velocities generally limited to about 100 m/s. In this contribution we show that critical current densities can be decreased by up to two orders of magnitude using the current-perpendicular-to-plane geometry. Indeed, we demonstrate that a DW can be propagated back and forth along the free layer of a MgO-based magnetic tunnel junction (MTJ) in the absence of an external magnetic field using current densities that are on the order of 5 MA/cm^2. More notably however, we obtain high domain wall velocities for these low current densities: the MTJ's large resistance variations allow us to carry out time-resolved measurements of the wall motion from which we evidence DW velocities exceeding 500m/s.

  16. Reactive ion etching of Nb thin films for Nb/Al-AlO[sub x]/Nb Josephson tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Popova, K. (Dept. of Physics and Applied Physics, Univ. of Strathclyde, Glasgow (United Kingdom)); Lea, W.F. (Dept. of Physics and Applied Physics, Univ. of Strathclyde, Glasgow (United Kingdom)); Hutson, D. (Dept. of Physics and Applied Physics, Univ. of Strathclyde, Glasgow (United Kingdom)); Sydow, J.P. (Dept. of Physics and Applied Physics, Univ. of Strathclyde, Glasgow (United Kingdom)); Pegrum, C.M. (Dept. of Physics and Applied Physics, Univ. of Strathclyde, Glasgow (United Kingdom))

    1994-03-01

    Reactive ion etching of both Nb and Nb/Al-AlO[sub x]/Nb trilayer has been optimised for the fabrication of Josephson tunnel junctions. Niobium thin films deposited by magnetron sputtering on silicon wafers have been patterned by a process using CF[sub 4] + O[sub 2]. The effect of main process parameters on photoresist mask etch anisotropy has been demonstrated by scanning electron microscopy (SEM) observations, and the influence of gas composition, total pressure and discharge power on etch rates has been evaluated by response surface methodology. A face-centred cubed experimental design with 17 trials has been performed and the data processed using multiple regression analysis. Second-order polynomial expressions (response surfaces) for Nb and Si etch rates as functions of process parameters have been obtained. A reliable and repeatable Nb etch process has been defined in the range 100-270 mTorr total pressure, 50-70 W input power and 0-10% by flow of O[sub 2] added to the CF[sub 4]. Maximum Nb and Si etch rates were obtained with 7% O[sub 2] in the gas mixture, and SEM showed that vertical etch profiles were produced at 50 mTorr CF[sub 4] + 5%O[sub 2]. (orig.)

  17. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions

    KAUST Repository

    Oh, Se Chung

    2009-10-25

    Spin-transfer torque (STT) allows the electrical control of magnetic states in nanostructures. The STT in magnetic tunnel junctions (MTJs) is of particular importance owing to its potential for device applications. It has been demonstrated that the MTJ has a sizable perpendicular STT (, field-like torque), which substantially affects STT-driven magnetization dynamics. In contrast to symmetric MTJs where the bias dependence of is quadratic, it is theoretically predicted that the symmetry breaking of the system causes an extra linear bias dependence. Here, we report experimental results that are consistent with the predicted linear bias dependence in asymmetric MTJs. The linear contribution is quite significant and its sign changes from positive to negative as the asymmetry is modified. This result opens a way to design the bias dependence of the field-like term, which is useful for device applications by allowing, in particular, the suppression of the abnormal switching-back phenomena. © 2009 Macmillan Publishers Limited. All rights reserved.

  18. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    Science.gov (United States)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  19. Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions.

    Science.gov (United States)

    Lock, Jeffrey T; Parker, Ian; Smith, Ian F

    2016-10-01

    Tunneling membrane nanotubes (TNTs) are thin membrane projections linking cell bodies separated by many micrometers, which are proposed to mediate signaling and even transfer of cytosolic contents between distant cells. Several reports describe propagation of Ca(2+) signals between distant cells via TNTs, but the underlying mechanisms remain poorly understood. Utilizing a HeLa M-Sec cell line engineered to upregulate TNTs we replicated previous findings that mechanical stimulation elicits robust cytosolic Ca(2+) elevations that propagate to surrounding, physically separate cells. However, whereas this was previously interpreted to involve intercellular communication through TNTs, we found that Ca(2+) signal propagation was abolished - even in TNT-connected cells - after blocking ATP-mediated paracrine signaling with a cocktail of extracellular inhibitors. To then establish whether gap junctions may enable cell-cell signaling via TNTs under these conditions, we expressed sfGFP-tagged connexin-43 (Cx43) in HeLa M-Sec cells. We observed robust communication of mechanically-evoked Ca(2+) signals between distant but TNT-connected cells, but only when both cells expressed Cx43. Moreover, we also observed communication of Ca(2+) signals evoked in one cell by local photorelease of inositol 1,4,5-trisphosphate (IP3). Ca(2+) responses in connected cells began after long latencies at intracellular sites several microns from the TNT connection site, implicating intercellular transfer of IP3 and subsequent IP3-mediated Ca(2+) liberation, and not Ca(2+) itself, as the mediator between TNT-connected, Cx43-expressing cells. Our results emphasize the need to control for paracrine transmission in studies of cell-cell signaling via TNTs and indicate that, in this cell line, TNTs do not establish cytosolic continuity between connected cells but rather point to the crucial importance of connexins to enable communication of cytosolic Ca(2+) signals via TNTs.

  20. Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Pawan, E-mail: ptyagi@udc.edu; Friebe, Edward; Baker, Collin [University of the District of Columbia, Department of Mechanical Engineering (United States)

    2015-11-15

    Addressing the challenges of using high-Curie temperature ferromagnetic (FM) electrodes is critical for molecular spintronics devices (MSDs) research. Two FM electrodes simultaneously chemically bonded with a thiol-functionalized molecule can produce novel MSDs to exploring new quantum mechanical phenomenon and computer technologies. For developing a commercially viable MSD, it is crucial to developing a device fabrication scheme that carefully considers FM electrodes’ susceptibility to oxidation, chemical etching, and stress-induced deformations during fabrication and usage. This paper studies NiFe, an alloy extensively used in present-day memory devices and high-temperature engineering applications, as a candidate FM electrode for the fabrication of MSDs. Our spectroscopic reflectance studies show that NiFe oxidized aggressively after heating beyond ∼90 °C. The NiFe surfaces, aged for several months or heated for several minutes below ∼90 °C, exhibited remarkable electrochemical activity and were found suitable for chemical bonding with the thiol-functionalized molecular device elements. NiFe also demonstrated excellent etching resistance against commonly used solvents and lithography related chemicals. Additionally, NiFe mitigated the adverse effects of mechanical stress by subsiding the stress-induced deformities. A magnetic tunnel junction-based MSD approach was designed by carefully considering the merits and limitations of NiFe. The device fabrication protocol considers the safe temperature limit to avoiding irreversible surface oxidation, the effect of mechanical stresses, surface roughness, and chemical etching. This paper provides foundational experimental insights in realizing a versatile MSD allowing a wide range of transport and magnetic studies.

  1. Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices

    International Nuclear Information System (INIS)

    Addressing the challenges of using high-Curie temperature ferromagnetic (FM) electrodes is critical for molecular spintronics devices (MSDs) research. Two FM electrodes simultaneously chemically bonded with a thiol-functionalized molecule can produce novel MSDs to exploring new quantum mechanical phenomenon and computer technologies. For developing a commercially viable MSD, it is crucial to developing a device fabrication scheme that carefully considers FM electrodes’ susceptibility to oxidation, chemical etching, and stress-induced deformations during fabrication and usage. This paper studies NiFe, an alloy extensively used in present-day memory devices and high-temperature engineering applications, as a candidate FM electrode for the fabrication of MSDs. Our spectroscopic reflectance studies show that NiFe oxidized aggressively after heating beyond ∼90 °C. The NiFe surfaces, aged for several months or heated for several minutes below ∼90 °C, exhibited remarkable electrochemical activity and were found suitable for chemical bonding with the thiol-functionalized molecular device elements. NiFe also demonstrated excellent etching resistance against commonly used solvents and lithography related chemicals. Additionally, NiFe mitigated the adverse effects of mechanical stress by subsiding the stress-induced deformities. A magnetic tunnel junction-based MSD approach was designed by carefully considering the merits and limitations of NiFe. The device fabrication protocol considers the safe temperature limit to avoiding irreversible surface oxidation, the effect of mechanical stresses, surface roughness, and chemical etching. This paper provides foundational experimental insights in realizing a versatile MSD allowing a wide range of transport and magnetic studies

  2. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    Science.gov (United States)

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %. PMID:27677304

  3. 浅埋大跨公路隧道穿越富水软弱土层施工关键技术%Key construction technology of shallow-buried large span highway tunnel through rich water soft soil layer

    Institute of Scientific and Technical Information of China (English)

    赵立财

    2015-01-01

    This article takes Xia-Zhang highway (Xiamen section) Dongfu tunnel construc-tion as an example. Introduces the application ofϕ299 big pipe follow with pipe drilling occlu-sal and linking reinforcement technology+cross-located right next door after disassembly type excavation technology in shallow-buried rich water soft soil stratum tunnel excavation process. While using TGMIS dynamic intelligent monitoring system of construction settlement condi-tions for data acquisition,analysis and processing,make the deformation of surrounding rock control,successfully passed the construction of shallow-buried soft soil excavation.%以厦漳公路(厦门段)东孚隧道施工为例,介绍了ϕ229大管棚跟管钻进咬合相接加固技术+十字交叉隔壁后拆式开挖技术在浅埋富水软弱土层隧道开挖过程中的应用;同时利用TGMIS动态智能化监测系统对施工沉降状况进行了数据采集、分析及处理,使围岩变形得到控制,顺利通过了浅埋软弱土层段掘进施工。

  4. Magnetic tunneling junctions with the Heusler compound Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al

    Energy Technology Data Exchange (ETDEWEB)

    Conca Parra, A.

    2007-07-20

    Materials with large spin polarization are required for applications in spintronics devices. For this reason, major research efforts are directed to study the properties of compounds which are expected to be half metals, i.e. materials with 100% spin polarization. Half metals are expected to have a gap in the density of states at the Fermi energy for one spin band while the other spin band is metallic leading to a completely spin polarized current. The ferromagnetic full Heusler alloy Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al (CCFA) has attracted great interest in the field of spintronics. The high Tc (800 K) and the expected half metallicity make CCFA a good candidate for applications in spintronic devices such as magnetic tunneling junctions (MTJs). This thesis presents the results of the study of the electronic and structural properties of CCFA thin films. The films were implemented in magnetic tunneling junctions and the tunneling magnetoresistance effect (TMR) was investigated. The main objectives were the measurement of the spin polarisation of the CCFA alloy and to obtain information about its electronic structure. The influence of the deposition conditions on the thin film properties and on the surface crystalline order and their respective influence on the TMR ratio was investigated. Epitaxial CCFA thin films with two alternative growth orientations were deposited on different substrates and buffer layers. An annealing step was used to improve the crystalline properties of the thin films. In the tunneling junctions, Al{sub 2}O{sub 3} was used as a barrier material and Co was chosen as counter electrode. The multilayer systems were patterned in Mesa structures using lithographic techniques. In the framework of the Julliere model, a maximum spin polarisation of 54% at 4K was measured in tunneling junctions with epitaxial CCFA electrodes. A strong influence of the annealing temperature on the TMR ratio was determined. The increase of the TMR ratio could be correlated

  5. A low-noise charge-sensitive preamplifier for an X-ray detector of a Nb-based superconducting tunnel junction

    International Nuclear Information System (INIS)

    A low-noise charge-sensitive preamplifier with cooled 4-JFETs was developed for an X-ray detector of a Nb-based superconducting tunnel junction with a large capacitance and a low leakage current. The low-noise characteristics for a wide range of shaping times were obtained by using a selected JFET, 2SK190 in the first stage of the preamplifier. A new formula to simulate the preamplifier noise was developed and applied to the optimization of preamplifier design. A high-energy resolution of 66 eV for 5.9 keV X-ray and 51 eV for pulser signals was obtained by using the optimized preamplifier with an X-ray detector of a 178 μm x 178 μm Nb/Al-AlO2/Nb superconducting tunnel junction with a junction capacitance of 1900pF and a bias current of 1.44nA. (orig.)

  6. Gap anisotropy and tunneling currents. [MPS3

    DEFF Research Database (Denmark)

    Lazarides, N.; Sørensen, Mads Peter

    1996-01-01

    The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to......The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to...

  7. Preparation and characterization of a ferrimagnetic amorphous alloy of GdCo entering the design of magnetic tunnel junctions: ionizing radiations hardness of magnetic tunnel junctions; preparation et caracterisation d'un alliage amorphe ferrimagnetique de GdCo entrant dans la conception de jonctions tunnel magnetiques. Resistance des jonctions tunnel magnetiques aux rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Conraux, Y

    2005-10-15

    The magnetic random access memories (MRAM) are on the way to supplant the other forms of random access memories using the states of electric charge, and this thanks to their many technical advantages: not-volatility, speed, low consumption power, robustness. Also, the MRAM are alleged insensitive with the ionizing radiations, which was not checked in experiments until now. The current architecture of the MRAM is based on the use of magnetic tunnel junctions (MTJ). These MRAM can present an important disadvantage, because they are likely of present errors of addressing, in particular when integration (density of memory cells) is increasingly thorough. The work undertaken during this thesis relates to these two points: - to check the functional reliability of the MRAM containing JTM exposed to high energy ionizing radiations; - to study a ferrimagnetic amorphous alloy, GdCo, likely to enter the composition of JTM and allowing to free from the possible errors of addressing by a process of thermal inhibition of the memory cells. This work of thesis showed that the MRAM containing JTM preserve their functional properties fully when they are subjected to intense ionizing radiations, and that GdCo is a very interesting material from the point of view of the solid state physics and magnetism, that its physical properties are very promising as for its applications, and that its integration in a JTM still claims technological developments. (author)

  8. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    International Nuclear Information System (INIS)

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits

  9. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    Energy Technology Data Exchange (ETDEWEB)

    Grezes, C.; Alzate, J. G.; Cai, X.; Wang, K. L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Ebrahimi, F.; Khalili Amiri, P. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Inston, Inc., Los Angeles, California 90024 (United States); Katine, J. A. [HGST, Inc., San Jose, California 95135 (United States); Langer, J.; Ocker, B. [Singulus Technologies AG, Kahl am Main 63796 (Germany)

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits.

  10. On the Selection and Matching of Non-Blasting Equipment Used in Shallow Buried Tunnels%城市浅埋及超浅埋隧道非爆技术设备选型与配套研究

    Institute of Scientific and Technical Information of China (English)

    谢达文

    2013-01-01

    随着我国铁路建设事业的迅猛发展,隧道开挖作业所面临的环境越来越复杂.重庆铁路枢纽规模宏大,穿越城市繁华区,尤以新红岩隧道埋深浅,上部楼房林立、人口密集,重要建(构)筑物和精密设备保护点较多.如何控制隧道施工对周边环境及邻近居民的影响是本工程重难点所在.文章针对非爆破开挖技术方案进行比选并结合隧道工程实际情况最终选择了悬臂式掘进机方案.%With the rapid development of domestic railway construction, the tunnel construction is facing more and more complicated environments. The Chongqing Railway Terminal crosses busy urban areas in a broad scale. As a key component of the terminal, the Xinhongyan Tunnel, a shallow buried tunnel, features buildings and a dense population above, including quite a few important buildings and precision machinery that required protection. How to control and minimize the effects on environment and residents induced by tunnel construction has become a prominent topic that needs to be addressed urgently. This paper discusses the selection of non-blasting excavation options. Based on the tunnel features, the option with boom-type roadheader was finally determined.

  11. Chemical ordering and large tunnel magnetoresistance in Co2FeAl/MgAl2O4/Co2FeAl(001) junctions

    Science.gov (United States)

    Scheike, Thomas; Sukegawa, Hiroaki; Inomata, Koichiro; Ohkubo, Tadakatsu; Hono, Kazuhiro; Mitani, Seiji

    2016-05-01

    Epitaxial magnetic tunnel junctions (MTJs) with a Co2FeAl/CoFe (0.5 nm)/MgAl2O4/Co2FeAl(001) structure were fabricated by magnetron sputtering. High-temperature in situ annealing led to a high degree of B2-order in the Co2FeAl layers and cation order of the MgAl2O4 barrier. Large tunnel magnetoresistance (TMR) of up to 342% was obtained at room temperature (616% at 4 K), in contrast to the TMR ratio ( ≲ 160%) suppressed by the band-folding effect in Fe/cation-ordered MgAl2O4/Fe MTJs. The present study reveals that the high degree of B2-order and the resulting high spin polarization in the Co2FeAl electrodes enable us to bypass the band-folding problem in spinel barriers.

  12. Lattice-matched magnetic tunnel junctions using a Heusler alloy Co2FeAl and a cation-disorder spinel Mg-Al-O barrier

    Science.gov (United States)

    Scheike, Thomas; Sukegawa, Hiroaki; Furubayashi, Takao; Wen, Zhenchao; Inomata, Koichiro; Ohkubo, Tadakatsu; Hono, Kazuhiro; Mitani, Seiji

    2014-12-01

    Perfectly lattice-matched magnetic tunnel junctions (MTJs) consisting of a Heusler alloy B2-Co2FeAl (CFA) electrode and a cation-disorder spinel (Mg-Al-O) barrier were fabricated by sputtering and plasma oxidation. We achieved a large tunnel magnetoresistance (TMR) ratio of 228% at room temperature (RT) (398% at 5 K) for the epitaxial CFA/MgAl-O/CoFe(001) MTJ, in which the effect of lattice defects on TMR ratios is excluded. With inserting a ultrathin (≤1.5 nm) CoFe layer between the CFA and Mg-Al-O, the TMR ratio further increased up to 280% at RT (453% at 5 K), which reflected the importance of controlling barrier-electrode interface states other than the lattice matching.

  13. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Science.gov (United States)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching.

  14. In-plane magnetic field effect on switching voltage and thermal stability in electric-field-controlled perpendicular magnetic tunnel junctions

    Science.gov (United States)

    Grezes, C.; Rojas Rozas, A.; Ebrahimi, F.; Alzate, J. G.; Cai, X.; Katine, J. A.; Langer, J.; Ocker, B.; Khalili Amiri, P.; Wang, K. L.

    2016-07-01

    The effect of in-plane magnetic field on switching voltage (Vsw) and thermal stability factor (Δ) are investigated in electric-field-controlled perpendicular magnetic tunnel junctions (p-MTJs). Dwell time measurements are used to determine the voltage dependence of the energy barrier height for various in-plane magnetic fields (Hin), and gain insight into the Hin dependent energy landscape. We find that both Vsw and Δ decrease with increasing Hin, with a dominant linear dependence. The results are reproduced by calculations based on a macrospin model while accounting for the modified magnetization configuration in the presence of an external magnetic field.

  15. Zurek-Kibble mechanism for the spontaneous vortex formation in Nb-Al/Al-ox/Nb Josephson tunnel junctions: New theory and experiment

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Aarøe, Morten;

    2006-01-01

    New scaling behavior has been both predicted and observed in the spontaneous production of fluxons in quenched Nb-Al/Al-ox/Nb annular Josephson tunnel junctions (JTJs) as a function of the quench time, tau(Q). The probability f(1) to trap a single defect during the normal-metal-superconductor phase...... transition clearly follows an allometric dependence on tau(Q) with a scaling exponent sigma=0.5, as predicted from the Zurek-Kibble mechanism for realistic JTJs formed by strongly coupled superconductors. This definitive experiment replaces one reported by us earlier, in which an idealized model was used...

  16. Effective description of tunneling in a time-dependent potential with applications to voltage switching in Josephson junctions

    DEFF Research Database (Denmark)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2013-01-01

    variable: the phase change across a Josephson junction. The Josephson junction phase variable behaves as the position coordinate of a particle moving in a tilted washboard potential, and our general solution to the motion in such a potential with a time-dependent tilt reproduces a number of features...... associated with voltage switching in Josephson junctions. Apart from applications as artificial atoms in quantum information studies, the Josephson junction may serve as an electric field sensitive detector, and our studies provide a detailed understanding of how the voltage switching dynamics couples to the...

  17. Influence of chemical and magnetic interface properties of Co-Fe-B/ MgO / Co-Fe-B tunnel junctions on the annealing temperature dependenceof the magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Schmalhorst, J.; Thomas, A.; Kou, X.; Reiss, G.; Kou, X.; Arenholz, E.

    2007-05-01

    The knowledge of chemical and magnetic conditions at the Co{sub 40}Fe{sub 40}B{sub 20}/MgO interface is important to interpret the strong annealing temperature dependence of tunnel magnetoresistance of Co-Fe-B/MgO/Co-Fe-B magnetic tunnel junctions, which increases with annealing temperature from 20% after annealing at 200 C up to a maximum value of 112% after annealing at 350 C. While the well defined nearest neighbor ordering indicating crystallinity of the MgO barrier does not change by the annealing, a small amount of interfacial Fe-O at the lower Co-Fe-B/MgO interface is found in the as grown samples, which is completely reduced after annealing at 275 C. This is accompanied by a simultaneous increase of the Fe magnetic moment and the tunnel magnetoresistance. However, the TMR of the MgO based junctions increases further for higher annealing temperature which can not be caused by Fe-O reduction. The occurrence of an x-ray absorption near-edge structure above the Fe and Co L-edges after annealing at 350 C indicates the recrystallization of the Co-Fe-B electrode. This is prerequisite for coherent tunneling and has been suggested to be responsible for the further increase of the TMR above 275 C. Simultaneously, the B concentration in the Co-Fe-B decreases with increasing annealing temperature, at least some of the B diffuses towards or into the MgO barrier and forms a B{sub 2}O{sub 3} oxide.

  18. Transmission electron microscopy and ferromagnetic resonance investigations of tunnel magnetic junctions using Co{sub 2}MnGe Heusler alloys as magnetic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Belmeguenai, M., E-mail: belmeguenai.mohamed@univ-paris13.fr [LSPM (CNRS-UPR 3407), Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Genevois, C. [Groupe de Physique des Matériaux, UMR CNRS 6634, Site Universitaire du Madrillet, BP12, 76801 Saint Etienne du Rouvray cedex (France); Zighem, F.; Roussigné, Y.; Chérif, S.M. [LSPM (CNRS-UPR 3407), Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Westerholt, K. [Institut für Experimentelle Physik, Ruhr-Universität Bochum, 44780 Bochum (Germany); El Bahoui, A.; Fnidiki, A. [Groupe de Physique des Matériaux, UMR CNRS 6634, Site Universitaire du Madrillet, BP12, 76801 Saint Etienne du Rouvray cedex (France); Moch, P. [LSPM (CNRS-UPR 3407), Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France)

    2014-01-31

    High resolution transmission electron microscopy, nano-beam electronic diffraction, energy dispersive X-rays scanning spectroscopy, vibrating sample magnetometry (VSM) and ferromagnetic resonance (FMR) techniques are used in view of comparing (static and dynamic) magnetic and structural properties of Co{sub 2}MnGe(13 nm)/Al{sub 2}O{sub 3}(3 nm)/Co(13 nm) tunnel magnetic junctions (TMJs), deposited on various single crystalline substrates (a-plane sapphire, MgO(100) and Si(111)). They allow for providing a correlation between these magnetic properties and the fine structure investigated at atomic scale. The Al{sub 2}O{sub 3} tunnel barrier is always amorphous and contains a large concentration of Co atoms, which, however, is significantly reduced when using a sapphire substrate. The Co layer is polycrystalline and shows larger grains for films grown on a sapphire substrate. The VSM investigation reveals in-plane anisotropy only for samples grown on a sapphire substrate. The FMR spectra of the TMJs are compared to the obtained ones with a single Co and Co{sub 2}MnGe films of identical thickness deposited on a sapphire substrate. As expected, two distinct modes are detected in the TMJs while only one mode is observed in each single film. For the TMJ grown on a sapphire substrate, the FMR behavior does not significantly differ from the superposition of the individual spectra of the single films, allowing for a conclusion that the exchange coupling between the two magnetic layers is too small to give rise to observable shifts. For TMJs grown on a Si or on a MgO substrate, the resonance spectra reveal one mode which is nearly identical to the obtained one in the single Co film, while the other observed resonance shows a considerably smaller intensity and cannot be described using the magnetic parameters appropriate to the single Co{sub 2}MnGe film. The large Co concentration in the Al{sub 2}O{sub 3} interlayer prevents for a simple interpretation of the observed spectra

  19. Dependency of tunneling magneto-resistance on Fe insertion-layer thickness in Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based magnetic tunneling junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Kyo-Suk [MRAM Center, Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Electronics Co., Ltd., San #16 Banwol-dong, Hwasung-City, Gyeonggi-Do 445-701 (Korea, Republic of); Park, Jea-Gun, E-mail: parkjgL@hanyang.ac.kr [MRAM Center, Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-21

    For Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based perpendicular magnetic tunneling junctions spin valves with [Co/Pd]{sub n}-synthetic-antiferromagnetic (SyAF) layers, the tunneling-magneto-resistance (TMR) ratio strongly depends on the nanoscale Fe insertion-layer thickness (t{sub Fe}) between the Co{sub 2}Fe{sub 6}B{sub 2} pinned layer and MgO tunneling barrier. The TMR ratio rapidly increased as t{sub Fe} increased up to 0.4 nm by improving the crystalline linearity of a MgO tunneling barrier and by suppressing the diffusion of Pd atoms from a [Co/Pd]{sub n}-SyAF. However, it abruptly decreased by further increasing t{sub Fe} in transferring interfacial-perpendicular magnetic anisotropy into the IMA characteristic of the Co{sub 2}Fe{sub 6}B{sub 2} pinned layer. Thus, the TMR ratio peaked at t{sub Fe} = 0.4 nm: i.e., 120% at 29 Ωμm{sup 2}.

  20. The dependency of tunnel magnetoresistance ratio on nanoscale thicknesses of Co2Fe6B2 free and pinned layers for Co2Fe6B2/MgO-based perpendicular-magnetic-tunnel-junctions

    Science.gov (United States)

    Jeon, Min-Su; Chae, Kyo-Suk; Lee, Du-Yeong; Takemura, Yasutaka; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2015-04-01

    The tunnel magnetoresistance (TMR) ratio of a cobalt-iron-boron (CoFeB)-based perpendicular-magnetic-tunnel-junction (p-MTJ) spin valve is extremely sensitive to both nanoscale Co2Fe6B2 free- and pinned-layer thicknesses. The TMR ratio peaks at a Co2Fe6B2 free-layer thickness of 1.05 nm, while it peaks at a Co2Fe6B2 pinned-layer thickness of 1.59 nm, achieving 104%. The amount of tantalum diffused into the MgO tunneling barrier (originated from a tantalum seed) decreases with increasing Co2Fe6B2 free-layer thickness, while the amount of palladium diffused from a [Co/Pd]n SyAF layer decreases with increasing Co2Fe6B2 pinned-layer thickness, determining the crystallinity of the MgO tunneling barrier and the TMR ratio. In addition, the TMR ratio tended to decrease when the Co2Fe6B2 free layer and the Co2Fe6B2 pinned layer switched characteristics from interface-perpendicular anisotropic to in-plane anisotropic.