WorldWideScience

Sample records for buried semiconductor heterostructures

  1. Electronic properties of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Einevoll, G.T.

    1991-02-01

    Ten papers on the electronic properties of semiconductors and semiconductor heterostructures constitute the backbone of this thesis. Four papers address the form and validity of the single-band effective mass approximation for semiconductor heterostructures. In four other papers properties of acceptor states in bulk semiconductors and semiconductor heterostructures are studied using the novel effective bond-orbital model. The last two papers deal with localized excitions. 122 refs

  2. Long wave polar modes in semiconductor heterostructures

    CERN Document Server

    Trallero-Giner, C; García-Moliner, F; Garc A-Moliner, F; Perez-Alvarez, R; Garcia-Moliner, F

    1998-01-01

    Long Wave Polar Modes in Semiconductor Heterostructures is concerned with the study of polar optical modes in semiconductor heterostructures from a phenomenological approach and aims to simplify the model of lattice dynamics calculations. The book provides useful tools for performing calculations relevant to anyone who might be interested in practical applications. The main focus of Long Wave Polar Modes in Semiconductor Heterostructures is planar heterostructures (quantum wells or barriers, superlattices, double barrier structures etc) but there is also discussion on the growing field of quantum wires and dots. Also to allow anyone reading the book to apply the techniques discussed for planar heterostructures, the scope has been widened to include cylindrical and spherical geometries. The book is intended as an introductory text which guides the reader through basic questions and expands to cover state-of-the-art professional topics. The book is relevant to experimentalists wanting an instructive presentatio...

  3. Advanced Semiconductor Heterostructures Novel Devices, Potential Device Applications and Basic Properties

    CERN Document Server

    Stroscio, Michael A

    2003-01-01

    This volume provides valuable summaries on many aspects of advanced semiconductor heterostructures and highlights the great variety of semiconductor heterostructures that has emerged since their original conception. As exemplified by the chapters in this book, recent progress on advanced semiconductor heterostructures spans a truly remarkable range of scientific fields with an associated diversity of applications. Some of these applications will undoubtedly revolutionize critically important facets of modern technology. At the heart of these advances is the ability to design and control the pr

  4. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    Science.gov (United States)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  5. Wave mechanics applied to semiconductor heterostructures

    International Nuclear Information System (INIS)

    Bastard, G.

    1990-01-01

    This book examines the basic electronic and optical properties of two dimensional semiconductor heterostructures based on III-V and II-VI compounds. The book explores various consequences of one-dimensional size-quantization on the most basic physical properties of heterolayers. Beginning with basic quantum mechanical properties of idealized quantum wells and superlattices, the book discusses the occurrence of bound states when the heterostructure is imperfect or when it is shone with near bandgap light

  6. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  7. Fabrication and experimental demonstration of photonic crystal laser with buried heterostructure

    DEFF Research Database (Denmark)

    Sakanas, Aurimas; Yu, Yi; Semenova, Elizaveta

    2017-01-01

    of separating active light amplification regions from passive regions for light propagation without induced absorption losses and surface recombination. The main focus of this work is the fabrication and experimental demonstration of a buried heterostructure (BH) photonic crystal laser bonded to a silicon wafer...

  8. OPENING ADDRESS: Heterostructures in Semiconductors

    Science.gov (United States)

    Grimmeiss, Hermann G.

    1996-01-01

    Good morning, Gentlemen! On behalf of the Nobel Foundation, I should like to welcome you to the Nobel Symposium on "Heterostructures in Semiconductors". It gives me great pleasure to see so many colleagues and old friends from all over the world in the audience and, in particular, to bid welcome to our Nobel laureates, Prof. Esaki and Prof. von Klitzing. In front of a different audience I would now commend the scientific and technological importance of heterostructures in semiconductors and emphatically emphasise that heterostructures, as an important contribution to microelectronics and, hence, information technology, have changed societies all over the world. I would also mention that information technology is one of the most important global key industries which covers a wide field of important areas each of which bears its own character. Ever since the invention of the transistor, we have witnessed a fantastic growth in semiconductor technology, leading to more complex functions and higher densities of devices. This development would hardly be possible without an increasing understanding of semiconductor materials and new concepts in material growth techniques which allow the fabrication of previously unknown semiconductor structures. But here and today I will not do it because it would mean to carry coals to Newcastle. I will therefore not remind you that heterostructures were already suggested and discussed in detail a long time before proper technologies were available for the fabrication of such structures. Now, heterostructures are a foundation in science and part of our everyday life. Though this is certainly true, it is nevertheless fair to say that not all properties of heterostructures are yet understood and that further technologies have to be developed before a still better understanding is obtained. The organisers therefore hope that this symposium will contribute not only to improving our understanding of heterostructures but also to opening new

  9. Electronic and optical properties of diamond/organic semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gajewski, Wojciech; Garrido, Jose; Niedermeier, Martin; Stutzmann, Martin [Walter Schottky Institute, TU Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Williams, Oliver; Haenen, Ken [Institute for Materials Research, University of Hasselt, Wetenschapspark 1, BE-3590 Diepenbeek (Belgium)

    2007-07-01

    Different diamond substrates (single crystalline: SCD, poly-crystalline: PCD and nano-crystalline: NCD) were used to investigate the electronic and optical properties of the diamond/organic semiconductor heterostructures. Layers of a poly[ethynyl-(2-decyloxy-5methoxy)benzene] - PEB, pentacene and 4-nitro-biphenyl-4-diazonium cations - Ph-Ph-NO{sub 2} were prepared by spin coating, thermal evaporation and grafting, respectively. The measurements of the electronic transport along the organic layer were performed using a Hg probe as well as Hall effect measurements in the temperature range 70-400 K. The I-V characteristics of the B-doped diamond/organic semiconductor heterostructures were measured at room temperature by means of the Hg probe. Undoped IIa and undoped PCD films were used for a study of the optical and optoelectronic properties of prepared heterostructures. The influence of the organic layer homogeneity and layer thickness on the optical properties will be discussed. Furthermore, preliminary data on perpendicular and parallel transport in the heterostructures layer will be reported.

  10. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    Science.gov (United States)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  11. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    Science.gov (United States)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  12. The importance to reveal buried interfaces in the semiconductor heterostructure devices

    International Nuclear Information System (INIS)

    Takeda, Yoshikazu; Tabuchi, Masao

    2007-01-01

    Even though several in-situ monitoring techniques exist and are quite useful to understand the growth processes in MBE or MOVPE, we also need a technique to reveal the buried interfaces along which carriers are transported and recombine to emit light. The interface is modified during the capping (overgrowth) and also during the device fabrication processes after growth. We need to correlate the interface structures in the devices and the device performances. The only technique we have at present is the X-ray CTR scattering measurements. We discuss the limits of the in-situ monitoring and the necessity to reveal the buried interfaces non-destructively, either in-situ or ex-situ

  13. Numerical methods for semiconductor heterostructures with band nonparabolicity

    International Nuclear Information System (INIS)

    Wang Weichung; Hwang Tsungmin; Lin Wenwei; Liu Jinnliang

    2003-01-01

    This article presents numerical methods for computing bound state energies and associated wave functions of three-dimensional semiconductor heterostructures with special interest in the numerical treatment of the effect of band nonparabolicity. A nonuniform finite difference method is presented to approximate a model of a cylindrical-shaped semiconductor quantum dot embedded in another semiconductor matrix. A matrix reduction method is then proposed to dramatically reduce huge eigenvalue systems to relatively very small subsystems. Moreover, the nonparabolic band structure results in a cubic type of nonlinear eigenvalue problems for which a cubic Jacobi-Davidson method with an explicit nonequivalence deflation method are proposed to compute all the desired eigenpairs. Numerical results are given to illustrate the spectrum of energy levels and the corresponding wave functions in rather detail

  14. Unselective regrowth buried heterostructure long-wavelength superluminescent diode realized with MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Ding Ying [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)]. E-mail: yingding@red.semi.ac.cn; Zhou Fan [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Chen Weixi [School of Physics, Peking University, Beijing 100871 (China); Wang Wei [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2007-01-15

    A novel unselective regrowth buried heterostructure (BH) long-wavelength superluminescent diode (SLD), which has a grade-strained bulk InGaAs active region, was developed by metalorganic vapor-phase epitaxy (MOVPE). The 3 dB emission spectrum bandwidth of the SLD is about 65 nm with the range from 1596 to 1661 nm at 90 mA and from 1585 to 1650 nm at 150 mA.An output power of 3.5 mW is obtained at 200 mA injection current under CW operation at room temperature.

  15. InGaAsP/InP quantum well buried heterostructure waveguides produced by ion implantation

    International Nuclear Information System (INIS)

    Zucker, J.E.; Jones, K.L.; Tell, B.; Brown-Goebeler, K.; Joyner, C.H.; Miller, B.I.; Young, M.G.

    1992-01-01

    Formation of buried InGaAsP/InP quantum well wave-guides by means of phosphorus ion implantation and thermal annealing during regrowth is demonstrated. Absorption spectra of implanted and unimplanted regions are used to estimate the induced index difference, which is of the order of 1% at 1.55μm. Calculated mode intensities are in good agreement with the observed near field intensity patterns. With this etchless implant technique, we achieve a significant reduction in propagation loss for singlemode pin waveguides relative to etched semi-insulating planar buried heterostructure waveguides fabricated from the same quantum well structure. In addition to reduced scattering loss, buried quantum well waveguides produced by ion implantation are more manufacturable because fewer and less-critical processing steps are involved. (author)

  16. Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures

    International Nuclear Information System (INIS)

    Birman, Joseph L.; Huong, Nguyen Que

    2007-01-01

    The formation of a hybridization state of Wannier Mott exciton and Frenkel exciton in different hetero-structure configurations involving quantum dots is investigated. The hybrid excitons exist at the interfaces of the semiconductors quantum dots and the organic medium, having unique properties and a large optical non-linearity. The coupling at resonance is very strong and tunable by changing the parameters of the systems (dot radius, dot-dot distance, generation of the organic dendrites and the materials of the system etc...). Different semiconductor quantum dot-organic material combination systems have been considered such as a semiconductor quantum dot lattice embedded in an organic host, a semiconductor quantum dot at the center of an organic dendrite, a semiconductor quantum dot coated by an organic shell

  17. Imaging the motion of electrons in 2D semiconductor heterostructures

    Science.gov (United States)

    Dani, Keshav

    Technological progress since the late 20th century has centered on semiconductor devices, such as transistors, diodes, and solar cells. At the heart of these devices, is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. In this talk, we combine femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy to image the motion of photoexcited electrons from high-energy to low-energy states in a 2D InSe/GaAs heterostructure exhibiting a type-II band alignment. At the instant of photoexcitation, energy-resolved photoelectron images reveal a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observe the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we make a movie lasting a few tens of picoseconds of the electron transfer process in the photoexcited type-II heterostructure - a fundamental phenomenon in semiconductor devices like solar cells. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into future solar cells, electron dynamics in 2D materials, and other semiconductor devices.

  18. Majorana zero modes in superconductor-semiconductor heterostructures

    Science.gov (United States)

    Lutchyn, R. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Krogstrup, P.; Marcus, C. M.; Oreg, Y.

    2018-05-01

    Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor-superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

  19. Magnetotransport investigations of single- and heterostructure epitaxial films of IV/VI-semiconductors

    International Nuclear Information System (INIS)

    Ambrosch, K.-E.

    1985-01-01

    Lead salts are small gap semiconductors that are used for infrared detectors and lasers. PbMnTe and PbEuTe are semimagnetic semiconductors. Magnetotransport properties of epitaxial films and epitaxial heterostructures (PbTe / PbSnTe) are investigated. Epitaxial films of PbSnTe, PbMnTe and PbEuTe have been used for Shubnikov de Haas - experiments in tilted magnetic fields. This method allows the quantitative determination of the electric carrier distribution with respect to the crystal directions. The nonequal distribution is caused by strain effects that are more important for PbMnTe than for PbSnTe and PbEuTe. Magnetoresistance experiments show a deviation from cubic symmetry that leads to the same results for the carrier distribution as the Shubnikov de Haas effect. Magnetoresistance experiments performed with PbTe / PbSnTe heterostructures show no megnetoresistance if the magnetic field is in plane with the layers. The difference of the magnetoresistance for single films and heterostructures is explained by 'quasitwodimensional' carriers. Shubnikov de Haas experiments performed on heterostructures as a function of the tilt angle of the magnetic field show different behaviour compared to that of single films. Using additional information about effective masses and strain it was possible to distinguish between 'two-' and 'threedimensional' electronic systems. The distribution of carriers in single films and heterostructures has been determined by means of magnetotransport experiments. The results are explained by strain effects of the crystal lattice. In addition heterostructures show a 'quasitwodimensional' behaviour caused by interaction of their layers. (Author)

  20. k-Space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor heterostructures

    OpenAIRE

    Lev, L. L.; Maiboroda, I. O.; Husanu, M. -A.; Grichuk, E. S.; Chumakov, N. K.; Ezubchenko, I. S.; Chernykh, I. A.; Wang, X.; Tobler, B.; Schmitt, T.; Zanaveskin, M. L.; Valeyev, V. G.; Strocov, V. N.

    2018-01-01

    Nanostructures based on buried interfaces and heterostructures are at the heart of modern semiconductor electronics as well as future devices utilizing spintronics, multiferroics, topological effects and other novel operational principles. Knowledge of electronic structure of these systems resolved in electron momentum k delivers unprecedented insights into their physics. Here, we explore 2D electron gas formed in GaN/AlGaN high-electron-mobility transistor (HEMT) heterostructures with an ult...

  1. Controlled fabrication of semiconductor-metal hybrid nano-heterostructures via site-selective metal photodeposition

    Science.gov (United States)

    Vela Becerra, Javier; Ruberu, T. Purnima A.

    2017-12-05

    A method of synthesizing colloidal semiconductor-metal hybrid heterostructures is disclosed. The method includes dissolving semiconductor nanorods in a solvent to form a nanorod solution, and adding a precursor solution to the nanorod solution. The precursor solution contains a metal. The method further includes illuminating the combined precursor and nanorod solutions with light of a specific wavelength. The illumination causes the deposition of the metal in the precursor solution onto the surface of the semiconductor nanorods.

  2. About possible mechanisms of current transfer in the bio-polymer - semiconductor heterostructure

    International Nuclear Information System (INIS)

    Pavlov, A.A.; Dosmailov, M.A.; Karibaeva, M.K.; Kenshinbaev, N.K.; Kokanbaev, M.; Uristembekov, B.B.; Tynyshtykbaev, K.B.

    2003-01-01

    Earlier by the bio-polymer films deposition on silicon the bio-polymer - semiconductor heterostructures were created. The influence of silicon surface atoms on self-organization processes in these bio-molecules were studied. Particularly the silicon - bio-cholesterol aqueous solution and the silicon - bio-chlorophyll aqueous solution spectral photo-sensitivity were considered. In this case the of photo-response broadening in the spectral photo-sensitivity short-wave part of these systems have been observed. The similar broadening is explained by both the passivation of surface recombination centers by OH-groups and the anti-reflecting properties of aqueous solutions. Besides it is possible the additional charge carriers generation caused by quasi-inter-zone transfers in the bio-polymers depending on electron-conformation properties of macromolecules. In the paper the possible mechanisms of current transfer in the bio-polymer - semiconductor heterostructure are discussed

  3. Step-Tapered Active-Region Mid-Infrared Quantum Cascade Lasers and Novel Fabrication Processes for Buried Heterostructures

    Science.gov (United States)

    2015-07-28

    phase- locked arrays, buried heterostructures REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO...to realizing BH-QCLs than the conventional process. Moreover, new processes for achieving on-chip, large-emitting aperture QCL phase- locked arrays...Hsing Hsu, Edwin Ramayya, and Tzu-Hsuan Chang. Last but not least, the author would like to thank his families, including his parents and

  4. Two-dimensional Semiconductor-Superconductor Hybrids

    DEFF Research Database (Denmark)

    Suominen, Henri Juhani

    This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...

  5. Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction

    NARCIS (Netherlands)

    Kjaergaard, M.; Suominen, H. J.; Nowak, M.P.; Akhmerov, A.R.; Shabani, J.; Palmstrøm, C. J.; Nichele, F.; Marcus, C.M.

    2017-01-01

    Measurement of multiple Andreev Reflection (MAR) in a Josephson junction made from an InAs quantum well heterostructure with epitaxial aluminum is used to quantify a highly transparent effective semiconductor-superconductor interface with near-unity transmission. The observed temperature

  6. Physics and application of persistent spin helix state in semiconductor heterostructures

    Science.gov (United States)

    Kohda, Makoto; Salis, Gian

    2017-07-01

    In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.

  7. Interlayer electron-hole pair multiplication by hot carriers in atomic layer semiconductor heterostructures

    Science.gov (United States)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel

    Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.

  8. Method of making a self-aligned schottky metal semi-conductor field effect transistor with buried source and drain

    International Nuclear Information System (INIS)

    Bol, I.

    1984-01-01

    A semi-conductor structure and particularly a high speed VLSI Self-Aligned Schottky Metal Semi-Conductor Field Effect Transistor with buried source and drain, fabricated by the ion implantation of source and drain areas at a predetermined range of depths followed by very localized laser annealing to electrically reactivate the amorphous buried source and drain areas thereby providing effective vertical separation of the channel from the buried source and drain respectively. Accordingly, spatial separations between the self-aligned gate-to-drain, and gate-to-source can be relatively very closely controlled by varying the doping intensity and duration of the implantation thereby reducing the series resistance and increasing the operating speed

  9. New approach to local anodic oxidation of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Martaus, Jozef; Gregusova, Dagmar; Cambel, Vladimir; Kudela, Robert; Soltys, Jan

    2008-01-01

    We have experimentally explored a new approach to local anodic oxidation (LAO) of a semiconductor heterostructures by means of atomic force microscopy (AFM). We have applied LAO to an InGaP/AlGaAs/GaAs heterostructure. Although LAO is usually applied to oxidize GaAs/AlGaAs/GaAs-based heterostructures, the use of the InGaP/AlGaAs/GaAs system is more advantageous. The difference lies in the use of different cap layer materials: Unlike GaAs, InGaP acts like a barrier material with respect to the underlying AlGaAs layer and has almost one order of magnitude lower density of surface states than GaAs. Consequently, the InGaP/AlGaAs/GaAs heterostructure had the remote Si-δ doping layer only 6.5 nm beneath the surface and the two-dimensional electron gas (2DEG) was confined only 23.5 nm beneath the surface. Moreover, InGaP unaffected by LAO is a very durable material in various etchants and allows us to repeatedly remove thin portions of the underlying AlGaAs layer via wet etching. This approach influences LAO technology fundamentally: LAO was used only to oxidize InGaP cap layer to define very narrow (∼50 nm) patterns. Subsequent wet etching was used to form very narrow and high-energy barriers in the 2DEG patterns. This new approach is promising for the development of future nano-devices operated both at low and high temperatures

  10. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  11. Impurity-induced states in superconducting heterostructures

    Science.gov (United States)

    Liu, Dong E.; Rossi, Enrico; Lutchyn, Roman M.

    2018-04-01

    Heterostructures allow the realization of electronic states that are difficult to obtain in isolated uniform systems. Exemplary is the case of quasi-one-dimensional heterostructures formed by a superconductor and a semiconductor with spin-orbit coupling in which Majorana zero-energy modes can be realized. We study the effect of a single impurity on the energy spectrum of superconducting heterostructures. We find that the coupling between the superconductor and the semiconductor can strongly affect the impurity-induced states and may induce additional subgap bound states that are not present in isolated uniform superconductors. For the case of quasi-one-dimensional superconductor/semiconductor heterostructures we obtain the conditions for which the low-energy impurity-induced bound states appear.

  12. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    Science.gov (United States)

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  13. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  14. Attenuation of an optical wave propagating in a waveguide, formed by layers of a semiconductor heterostructure, owing to scattering on inhomogeneities

    International Nuclear Information System (INIS)

    Bogatov, Alexandr P; Burmistrov, I S

    1999-01-01

    The scattering of an optical wave, propagating in a waveguide made up of layers of a semiconductor heterostructure, is analysed. The attenuation coefficient of the wave is found both for quasi-homogeneous single-crystal layers of a semiconductor solid solution and for layers containing quantum dots. (active media)

  15. High performance 1.3 μm buried crescent lasers and LEDs for fiber optic links

    International Nuclear Information System (INIS)

    Fu, R.J.; Chan, E.Y.; Hong, C.S.

    1989-01-01

    Self-aligned buried crescent heterostructure (BCH) semiconductor lasers and LEDs have been successfully developed as superb light sources for fiber optic communications. The fabrication and performance characteristics of these InGaAsP/InP lasers and LEDs are described. For lasers, the threshold currents as low as 10 mA and differential quantum efficiencies as high as 50% are achieved. For LEDs, the output powers at 150 mA are higher than 1 mW. Good far field patterns are obtained in both the LEDs and lasers. Measured I-V, L-I, spectrum and far field patterns are presented

  16. Heterostructures and quantum devices

    CERN Document Server

    Einspruch, Norman G

    1994-01-01

    Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical en

  17. Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures

    Directory of Open Access Journals (Sweden)

    Jacky Even

    2014-01-01

    Full Text Available Potentialities of density functional theory (DFT based methodologies are explored for photovoltaic materials through the modeling of the structural and optoelectronic properties of semiconductor hybrid organic-inorganic perovskites and GaAs/GaP heterostructures. They show how the properties of these bulk materials, as well as atomistic relaxations, interfaces, and electronic band-lineups in small heterostructures, can be thoroughly investigated. Some limitations of available standard DFT codes are discussed. Recent improvements able to treat many-body effects or based on density-functional perturbation theory are also reviewed in the context of issues relevant to photovoltaic technologies.

  18. Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response.

    Science.gov (United States)

    Zhan, Wen-wen; Kuang, Qin; Zhou, Jian-zhang; Kong, Xiang-jian; Xie, Zhao-xiong; Zheng, Lan-sun

    2013-02-06

    Metal-organic frameworks (MOFs) and related material classes are attracting considerable attention for their applications in gas storage/separation as well as catalysis. In contrast, research concerning potential uses in electronic devices (such as sensors) is in its infancy, which might be due to a great challenge in the fabrication of MOFs and semiconductor composites with well-designed structures. In this paper, we proposed a simple self-template strategy to fabricate metal oxide semiconductor@MOF core-shell heterostructures, and successfully obtained freestanding ZnO@ZIF-8 nanorods as well as vertically standing arrays (including nanorod arrays and nanotube arrays). In this synthetic process, ZnO nanorods not only act as the template but also provide Zn(2+) ions for the formation of ZIF-8. In addition, we have demonstrated that solvent composition and reaction temperature are two crucial factors for successfully fabricating well-defined ZnO@ZIF-8 heterostructures. As we expect, the as-prepared ZnO@ZIF-8 nanorod arrays display distinct photoelectrochemical response to hole scavengers with different molecule sizes (e.g., H(2)O(2) and ascorbic acid) owing to the limitation of the aperture of the ZIF-8 shell. Excitingly, such ZnO@ZIF-8 nanorod arrays were successfully applied to the detection of H(2)O(2) in the presence of serous buffer solution. Therefore, it is reasonable to believe that the semiconductor@MOFs heterostructure potentially has promising applications in many electronic devices including sensors.

  19. Semiconductor light sources fabricated by vapor phase epitaxial regrowth

    International Nuclear Information System (INIS)

    Powazinik, W.; Olshansky, R.; Meland, E.; Lauer, R.B.

    1986-01-01

    An extremely versatile technique for the fabrication of semiconductor light sources is described. The technique which is based on the halide vapor phase regrowth (VPR) of InP on channeled and selectively etched InGaAsP/InP double heterostructure material, results in a buried heterostructure (BH) index-guided VPR-BH diode laser structure which can be optimized for a number of different types of semiconductor light sources. The conditions and parameters associated with the halide VPR process are given, and the properties of the regrown InP are reported. The processing and characterization of high-frequency lasers with 18-GHz bandwidths and high-power lasers with cw single-spatial-mode powers of 60 mW are described. Additionally, the fabrication and characterization of superluminescent LEDs based on the this basic VPR-BH structure are described. These LEDs are capable of coupling more than 80 μW of optical power into a single-mode fiber at 100 mA, and can couple as much as 8 μW of optical power into a single-mode fiber at drive currents as low as 20 mA

  20. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    Science.gov (United States)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  1. Strain Imaging of Nanoscale Semiconductor Heterostructures with X-Ray Bragg Projection Ptychography

    Science.gov (United States)

    Holt, Martin V.; Hruszkewycz, Stephan O.; Murray, Conal E.; Holt, Judson R.; Paskiewicz, Deborah M.; Fuoss, Paul H.

    2014-04-01

    We report the imaging of nanoscale distributions of lattice strain and rotation in complementary components of lithographically engineered epitaxial thin film semiconductor heterostructures using synchrotron x-ray Bragg projection ptychography (BPP). We introduce a new analysis method that enables lattice rotation and out-of-plane strain to be determined independently from a single BPP phase reconstruction, and we apply it to two laterally adjacent, multiaxially stressed materials in a prototype channel device. These results quantitatively agree with mechanical modeling and demonstrate the ability of BPP to map out-of-plane lattice dilatation, a parameter critical to the performance of electronic materials.

  2. Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bratkovsky, A M [Hewlett-Packard Laboratories, 1501 Page Mill Road, MS 1123, Palo Alto, CA 94304 (United States)

    2008-02-15

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field.

  3. Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures

    International Nuclear Information System (INIS)

    Bratkovsky, A M

    2008-01-01

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field

  4. Spintronic effects in metallic, semiconductor, metal oxide and metal semiconductor heterostructures

    Science.gov (United States)

    Bratkovsky, A. M.

    2008-02-01

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field.

  5. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    International Nuclear Information System (INIS)

    McPheeters, Claiborne O; Yu, Edward T; Hu, Dongzhi; Schaadt, Daniel M

    2012-01-01

    Sub-wavelength photonic structures and nanoscale materials have the potential to greatly improve the efficiencies of solar cells by enabling maximum absorption of sunlight. Semiconductor heterostructures provide versatile opportunities for improving absorption of infrared radiation in photovoltaic devices, which accounts for half of the power in the solar spectrum. These ideas can be combined in quantum-well solar cells and related structures in which sub-wavelength metal and dielectric scattering elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than one micron of active material demonstrate the benefits of incorporating In(Ga)As quantum-wells and quantum-dots to improve their performance. Simulations that incorporate a realistic model of absorption in quantum-wells show that the use of broadband photonic structures with such devices can substantially improve the benefit of incorporating heterostructures, enabling meaningful improvements in their performance

  6. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission

    Science.gov (United States)

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications.Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in

  7. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.

    Science.gov (United States)

    Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2015-01-14

    The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.

  8. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  9. High‐Performance Nonvolatile Organic Field‐Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Wang, Laiyuan; Wu, Dequn

    2017-01-01

    Nonvolatile organic field‐effect transistor (OFET) memory devices based on pentacene/N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n‐type P13 embedded in p‐type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well‐like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge‐trapping property of the poly(4‐vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high‐performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory. PMID:28852619

  10. Spin injection and filtering in halfmetal/semiconductor (CrAs/GaAs) heterostructures

    International Nuclear Information System (INIS)

    Stickler, B. A.; Ertler, C.; Pötz, W.; Chioncel, L.; Arrigoni, E.

    2013-01-01

    Theoretical investigations of spin-dependent transport in GaAS/CrAs/GaAs halfmetal-semiconductor heterostructures indicate that this system is a candidate for an efficient room temperature spin injector and filter. The spin dependent electronic structure of zincblende CrAs and the band offset between GaAs and CrAs are determined by ab-initio calculations within the method of linear muffin tin orbitals (LMTO). This band structure is mapped onto an effective sp 3 d 5 s* nearest neighbor tight-binding (TB) Hamiltonian and the steady-state transport characteristic is calculated within a non-equilibrium Green’s function approach. Even at room temperature we find current spin polarizations up to 97%

  11. Heterostructures (CaSrBa)F2 on InP for Optoelectronics

    National Research Council Canada - National Science Library

    Pyshkin, Sergei

    1995-01-01

    .... MBE and Laser Vacuum Epitaxy (LVE) growth methods for semiconductor-semiconductor (SS) and semiconductor-crystalline dielectric-semiconductor heterostructures are considered as well as experimental facilities for these processes are elaborated.

  12. Electronic properties of electron and hole in type-II semiconductor nano-heterostructures

    Science.gov (United States)

    Rahul, K. Suseel; Souparnika, C.; Salini, K.; Mathew, Vincent

    2016-05-01

    In this project, we record the orbitals of electron and hole in type-II (CdTe/CdSe/CdTe/CdSe) semiconductor nanocrystal using effective mass approximation. In type-II the band edges of both valance and conduction band are higher than that of shell. So the electron and hole get confined in different layers of the hetero-structure. The energy eigen values and eigen functions are calculated by solving Schrodinger equation using finite difference matrix method. Based on this we investigate the effect of shell thickness and well width on energy and probability distribution of ground state (1s) and few excited states (1p,1d,etc). Our results predict that, type-II quantum dots have significant importance in photovoltaic applications.

  13. Electronic properties of electron and hole in type-II semiconductor nano-heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rahul, K. Suseel [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala. India (India); Department of Physics, Sri Vyasa NSS College, Wadakkancheri, Thrissur, Kerala, PIN:680623. India (India); Souparnika, C. [Department of Physics, Sri Vyasa NSS College, Wadakkancheri, Thrissur, Kerala, PIN:680623. India (India); Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala. India (India)

    2016-05-06

    In this project, we record the orbitals of electron and hole in type-II (CdTe/CdSe/CdTe/CdSe) semiconductor nanocrystal using effective mass approximation. In type-II the band edges of both valance and conduction band are higher than that of shell. So the electron and hole get confined in different layers of the hetero-structure. The energy eigen values and eigen functions are calculated by solving Schrodinger equation using finite difference matrix method. Based on this we investigate the effect of shell thickness and well width on energy and probability distribution of ground state (1s) and few excited states (1p,1d,etc). Our results predict that, type-II quantum dots have significant importance in photovoltaic applications.

  14. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  15. Visualizing excitations at buried heterojunctions in organic semiconductor blends.

    Science.gov (United States)

    Jakowetz, Andreas C; Böhm, Marcus L; Sadhanala, Aditya; Huettner, Sven; Rao, Akshay; Friend, Richard H

    2017-05-01

    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.

  16. Bond-Length Distortions in Strained Semiconductor Alloys

    International Nuclear Information System (INIS)

    Woicik, J.C.; Pellegrino, J.G.; Steiner, B.; Miyano, K.E.; Bompadre, S.G.; Sorensen, L.B.; Lee, T.; Khalid, S.

    1997-01-01

    Extended x-ray absorption fine structure measurements performed at In-K edge have resolved the outstanding issue of bond-length strain in semiconductor-alloy heterostructures. We determine the In-As bond length to be 2.581±0.004 Angstrom in a buried, 213 Angstrom thick Ga 0.78 In 0.22 As layer grown coherently on GaAs(001). This bond length corresponds to a strain-induced contraction of 0.015±0.004 Angstrom relative to the In-As bond length in bulk Ga 1-x In x As of the same composition; it is consistent with a simple model which assumes a uniform bond-length distortion in the epilayer despite the inequivalent In-As and Ga-As bond lengths. copyright 1997 The American Physical Society

  17. Synthesis; characterization; and growth mechanism of Au/CdS heterostructured nanoflowers constructed with nanorods

    International Nuclear Information System (INIS)

    Kong Qingcheng; Wu Rong; Feng Xiumei; Ye Cui; Hu Guanqi; Hu Jianqiang; Chen Zhiwu

    2011-01-01

    Research highlights: → Well-defined and flower-shaped Au/CdS heterostructured nanocrystals were for the first time synthesized. → The Au-nanorod-induced hydrothermal strategy was for the first time used to fabricate metal/semiconductor heterostructured nanomaterials. → A preliminary crystal growing mechanism was also proposed for better understanding the growth process of other Au/semiconductor heterostructure nanocrystals. → The route devised here should also be extendable to fabricate other Au/semiconductor heterostructure nanomaterials. - Abstract: Gold/sulfide cadmium (Au/CdS) heterostructured nanocrystals with a flower-like shape were for the first time synthesized through an Au-nanorod-induced hydrothermal method. The Au/CdS nanoflowers possessed the average size of about 350 nm while the nanorods constructing the nanoflowers had the average diameter, length, and aspect ratio of approximately 50 nm, 100 nm, and 2, respectively. Our method suggested that Au-nanorods played a decisive role in the formation of Au/CdS heterostructured nanoflowers, demonstrated by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), energy-dispersive X-ray spectroscopy (EDS), and UV-visible absorption spectroscopy measurements. A preliminary experiment model to reveal the Au/CdS growth mechanism was also put forward. The route devised here should be perhaps extendable to fabricate other Au/semiconductor heterostructured nanomaterials, and the Au/CdS nanoflowers may have potential applications in nanodevices, biolabels, and clinical detection and diagnosis.

  18. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    International Nuclear Information System (INIS)

    Nevedomskiy, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-01-01

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix

  19. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, Tobias

    2013-09-15

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  20. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    International Nuclear Information System (INIS)

    Stollenwerk, Tobias

    2013-09-01

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  1. Thermodynamic concepts in semiconductor quantum dot technology

    International Nuclear Information System (INIS)

    Shchukin, V.

    2001-01-01

    Major trends of the modern civilization are related to the changing of the industrial society into an information and knowledge-based society. This transformation is to a large extent based on the modern information and communication technology. The nobel prize-2000 in physics is a remarkable recognition of an extremely high significance of this kind of technology. The nobel prize has been awarded with one half jointly to Zhores I. Alferov and Herbert Kroemer for developing semiconductor heterostructures used in high-speed- and opto-electronics and one half to Jack St. Clair Kilby for this part in the invention of the integrated circuit. The development of the semiconductor heterostructures technology requires a profound understanding of the basic growth mechanisms involved in any technological process, including any type of epitaxy, either the liquid phase epitaxy (LPE), or the metalorganic vapor phase epitaxy (MOVPE), or the molecular beam epitaxy (MBE). Starting from this pioneering works on semiconductor heterostructures till present time, Professor Zh. Alferov has always paid much attention to complex and comprehensive study of the subject. This covers the growth - as well as the post-growth technology including the theoretical modeling of the technology, the characterization of the heterostructures, and the device design. Such complex approach has master mined the scientific and technological success of Abraham loffe Institute in the area of semiconductor heterostructures, and later, nano structures. (Orig../A.B.)

  2. Quasi-Two-Dimensional h-BN/β-Ga2O3 Heterostructure Metal-Insulator-Semiconductor Field-Effect Transistor.

    Science.gov (United States)

    Kim, Janghyuk; Mastro, Michael A; Tadjer, Marko J; Kim, Jihyun

    2017-06-28

    β-gallium oxide (β-Ga 2 O 3 ) and hexagonal boron nitride (h-BN) heterostructure-based quasi-two-dimensional metal-insulator-semiconductor field-effect transistors (MISFETs) were demonstrated by integrating mechanical exfoliation of (quasi)-two-dimensional materials with a dry transfer process, wherein nanothin flakes of β-Ga 2 O 3 and h-BN were utilized as the channel and gate dielectric, respectively, of the MISFET. The h-BN dielectric, which has an extraordinarily flat and clean surface, provides a minimal density of charged impurities on the interface between β-Ga 2 O 3 and h-BN, resulting in superior device performances (maximum transconductance, on/off ratio, subthreshold swing, and threshold voltage) compared to those of the conventional back-gated configurations. Also, double-gating of the fabricated device was demonstrated by biasing both top and bottom gates, achieving the modulation of the threshold voltage. This heterostructured wide-band-gap nanodevice shows a new route toward stable and high-power nanoelectronic devices.

  3. Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.

    Science.gov (United States)

    Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G

    2018-05-09

    Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.

  4. Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures

    Science.gov (United States)

    Maksimov, A. A.; Yakovlev, D. R.; Debus, J.; Tartakovskii, I. I.; Waag, A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Bayer, M.

    2010-07-01

    The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te were studied optically and simulated numerically. In samples with inhomogeneous magnetic ion distribution, these dynamics are contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. A spin-diffusion coefficient of 7×10-8cm2/s was evaluated for Zn0.99Mn0.01Se from comparison of experiment and theory. Calculations of the exciton giant Zeeman splitting and the magnetization dynamics in ordered alloys and digitally grown parabolic quantum wells show perfect agreement with the experimental data. In both structure types, spin diffusion contributes essentially to the magnetization dynamics.

  5. Ballistic electron emissions microscopy (BEEM) of ferromagnet-semiconductor interfaces; Ballistische Elektronen Emissions Mikroskopie (BEEM) an Ferromagnet-Halbleitergrenzflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Obernhuber, S.

    2007-04-15

    For current research on spin-transistors it is important to know the characteristics of ferromagnet semiconductor interfaces. The ballistic electron emission microscopy (BEEM) is a method to investigate such a buried interface with nanometer resolution. In this work several ferromagnet/GaAs(110) interfaces have been analysed concerning their homogeneity and mean local Schottky-barrier heights (SBH) have been determined. In Addition, the resulting integral SBH was calculated from the distribution of the local SBHs and compared with the SBH determined from voltage/current characteristics. The areas with a low SBH dominate the current conduction across the interface. Additional BEEM measurements on (AlGaAs/GaAs) heterostructures have been performed. This heterostructures consist of 50 nm AlGaAs/GaAs layers. The results of the BEEM measurements indicate, that the GaAs QWs are defined by AlGaAs barriers. The transition from AlGaAs to GaAs is done within 10 nm. (orig.)

  6. The study of sub-surface and interface characteristics of semiconductor heterostructures by slow positron implantation spectroscopy

    International Nuclear Information System (INIS)

    Baker, J.A.; Coleman, P.G.

    1989-01-01

    Experiments are described in which the controlled implantation of mono-energetic positrons is used to gain information non-destructively on epilayer and interface defects in semiconductor heterostructures. The implantation, and hence annihilation, profile is changed by varying the incident positron energy from 1 to 35 keV. Characteristics of the positron state at the annihilation site are reflected in the width of the measure Doppler-broadened annihilation line. The fractions of positrons annihilating from each state are deduced by solving the steady-state diffusion equation. The application of the technique is illustrated by application to a series of SiO 2 -Si samples. (author)

  7. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  8. Synthesis, fabrication and characterization of Ge/Si axial nanowire heterostructure tunnel FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and metal-semiconductor barrier heights) for low-power and high performance electronics.

  9. Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble.

    Science.gov (United States)

    Hadar, Ido; Hitin, Gal B; Sitt, Amit; Faust, Adam; Banin, Uri

    2013-02-07

    Semiconductor heterostructured seeded nanorods exhibit intense polarized emission, and the degree of polarization is determined by their morphology and dimensions. Combined optical and atomic force microscopy were utilized to directly correlate the emission polarization and the orientation of single seeded nanorods. For both the CdSe/CdS sphere-in-rod (S@R) and rod-in-rod (R@R), the emission was found to be polarized along the nanorod's main axis. Statistical analysis for hundreds of single nanorods shows higher degree of polarization, p, for R@R (p = 0.83), in comparison to S@R (p = 0.75). These results are in good agreement with the values inferred by ensemble photoselection anisotropy measurements in solution, establishing its validity for nanorod samples. On this basis, photoselection photoluminescence excitation anisotropy measurements were carried out providing unique information concerning the symmetry of higher excitonic transitions and allowing for a better distinction between the dielectric and the quantum-mechanical contributions to polarization in nanorods.

  10. Current transport in graphene/AlGaN/GaN vertical heterostructures probed at nanoscale.

    Science.gov (United States)

    Fisichella, Gabriele; Greco, Giuseppe; Roccaforte, Fabrizio; Giannazzo, Filippo

    2014-08-07

    Vertical heterostructures combining two or more graphene (Gr) layers separated by ultra-thin insulating or semiconductor barriers represent very promising systems for next generation electronics devices, due to the combination of high speed operation with wide-range current modulation by a gate bias. They are based on the specific mechanisms of current transport between two-dimensional-electron-gases (2DEGs) in close proximity. In this context, vertical devices formed by Gr and semiconductor heterostructures hosting an "ordinary" 2DEG can be also very interesting. In this work, we investigated the vertical current transport in Gr/Al(0.25)Ga(0.75)N/GaN heterostructures, where Gr is separated from a high density 2DEG by a ∼ 24 nm thick AlGaN barrier layer. The current transport from Gr to the buried 2DEG was characterized at nanoscale using conductive atomic force microscopy (CAFM) and scanning capacitance microscopy (SCM). From these analyses, performed both on Gr/AlGaN/GaN and on AlGaN/GaN reference samples using AFM tips with different metal coatings, the Gr/AlGaN Schottky barrier height ΦB and its lateral uniformity were evaluated, as well as the variation of the carrier densities of graphene (ngr) and AlGaN/GaN 2DEG (ns) as a function of the applied bias. A low Schottky barrier (∼ 0.40 eV) with excellent spatial uniformity was found at the Gr/AlGaN interface, i.e., lower compared to the measured values for metal/AlGaN contacts, which range from ∼ 0.6 to ∼ 1.1 eV depending on the metal workfunction. The electrical behavior of the Gr/AlGaN contact has been explained by Gr interaction with AlGaN donor-like surface states located in close proximity, which are also responsible of high n-type Gr doping (∼ 1.3 × 10(13) cm(-2)). An effective modulation of ns by the Gr Schottky contact was demonstrated by capacitance analysis under reverse bias. From this basic understanding of transport properties in Gr/AlGaN/GaN heterostructures, novel vertical field effect

  11. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials

    Science.gov (United States)

    Saha, Bivas; Shakouri, Ali; Sands, Timothy D.

    2018-06-01

    Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.

  12. Spin and energy transfer between magnetic ions and free carriers in diluted-magnetic semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44227 Dortmund (Germany); Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Kneip, M.; Bayer, M. [Experimental Physics 2, University of Dortmund, 44227 Dortmund (Germany); Maksimov, A.A.; Tartakovskii, I.I. [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation); Keller, D.; Ossau, W.; Molenkamp, L.W. [Physikalisches Institut der Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Scherbakov, A.V.; Akimov, A.V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Waag, A. [Abteilung Halbleiterphysik, Universitaet Ulm, 89081 Ulm (Germany)

    2004-03-01

    In this paper we give a brief overview of our studies on dynamical processes in diluted-magnetic-semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te. Presence of free carriers is an important factor which determines the energy- and spin transfer in a coupled systems of magnetic ions, lattice (the phonon system) and carriers. We report also new data on dynamical response of magnetic ions interacting with photogenerated electron-hole plasma. (Zn,Mn)Se/(Zn,Be)Se structures with relatively high Mn content of 11% provide spin-lattice relaxation time of about 20 ns, which is considerably shorter then the characteristic times of nonequilibrium phonons ranging to 1 {mu}s. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  14. Heterostructures of transition metal dichalcogenides

    KAUST Repository

    Amin, Bin

    2015-08-24

    The structural, electronic, optical, and photocatalytic properties of out-of-plane and in-plane heterostructures of transition metal dichalcogenides are investigated by (hybrid) first principles calculations. The out-of-plane heterostructures are found to be indirect band gap semiconductors with type-II band alignment. Direct band gaps can be achieved by moderate tensile strain in specific cases. The excitonic peaks show blueshifts as compared to the parent monolayer systems, whereas redshifts occur when the chalcogen atoms are exchanged along the series S-Se-Te. Strong absorption from infrared to visible light as well as excellent photocatalytic properties can be achieved.

  15. Single-mode molecular beam epitaxy grown PbEuSeTe/PbTe buried-heterostructure diode lasers for CO2 high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Feit, Z.; Kostyk, D.; Woods, R.J.; Mak, P.

    1991-01-01

    Buried-heterostructure tunable PbEuSeTe/PbTe lasers were fabricated using a two-stage molecular beam epitaxy growth procedure. Improvements in the processing technique yielded lasers that show performance characteristics significantly better than those reported previously. A continuous wave (cw) operating temperature of 203 K was realized, which is the highest cw operating temperature ever reported for lead-chalcogenides diode lasers. This laser exhibited exceptionally low-threshold currents of 1.4 mA at 90 K and 43 mA at 160 K with single-mode operation for injection currents up to 30I th and 0.18 mW power at 100 K. The usefulness of the laser, when operating cw at 200 K, was demonstrated by the ability to perform high-resolution spectroscopy of a low-pressure CO 2 gas sample

  16. Surface- and interface-engineered heterostructures for solar hydrogen generation

    Science.gov (United States)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  17. The Non-Equilibrium Statistical Distribution Function for Electrons and Holes in Semiconductor Heterostructures in Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Jόzwikowska

    2015-06-01

    Full Text Available The main goal of this work is to determine a statistical non-equilibrium distribution function for the electron and holes in semiconductor heterostructures in steady-state conditions. Based on the postulates of local equilibrium, as well as on the integral form of the weighted Gyarmati’s variational principle in the force representation, using an alternative method, we have derived general expressions, which have the form of the Fermi–Dirac distribution function with four additional components. The physical interpretation of these components has been carried out in this paper. Some numerical results of a non-equilibrium distribution function for an electron in HgCdTe structures are also presented.

  18. Feigenbaum scenario in the dynamics of a metal-oxide semiconductor heterostructure under harmonic perturbation. Golden mean criticality

    International Nuclear Information System (INIS)

    Cristescu, C.P.; Mereu, B.; Stan, Cristina; Agop, M.

    2009-01-01

    Experimental investigations and theoretical analysis on the dynamics of a metal-oxide semiconductor heterostructure used as nonlinear capacity in a series RLC electric circuit are presented. A harmonic voltage perturbation can induce various nonlinear behaviours, particularly evolution to chaos by period doubling and torus destabilization. In this work we focus on the change in dynamics induced by a sinusoidal driving with constant frequency and variable amplitude. Theoretical treatment based on the microscopic mechanisms involved led us to a dynamic system with a piecewise behaviour. Consequently, a model consisting of a nonlinear oscillator described by a piecewise second order ordinary differential equation is proposed. This kind of treatment is required by the asymmetry in the behaviour of the metal-oxide semiconductor with respect to the polarization of the perturbing voltage. The dynamics of the theoretical model is in good agreement with the experimental results. A connection with El Naschie's E-infinity space-time is established based on the interpretation of our experimental results as evidence of the importance of the golden mean criticality in the microscopic world.

  19. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Fabian, J.; Abiague, A.M.; Ertler, Ch.; Stano, P.; Zutic, I.

    2007-01-01

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  20. Organic p-n heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, Stefan [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hinderhofer, Alexander; Gerlach, Alexander; Schreiber, Frank [Institut fuer Angewandte Physik, Tuebingen (Germany); Osso, Oriol [MATGAS 2000 A.I.E., Esfera UAB, Barcelona (Spain); Wang, Cheng; Hexemer, Alexander [Advanced Light Source, Berkeley, CA (United States)

    2009-07-01

    For many applications of organic semiconductors two components such as e.g. n and p-type layers are required, and the morphology of such heterostructures is crucial for their performance. Pentacene (PEN) is one of the most promising p-type molecular semiconductors and recently perfluoro-pentacene (PFP) has been identified as a good electron conducting material for complementary circuits with PEN. We use soft and hard X-ray reflectivity measurements, scanning transmission X-ray microscopy (STXM) and atomic force microscopy for structural investigations of PFP-PEN heterostructures. The chemical contrast between PEN and PFP in STXM allows us to determine the lateral length scales of p and n domains in a bilayer. For a superlattice of alternating PFP and PEN layers grown by organic molecular beam deposition, X-ray reflectivity measurements demonstrate good structural order. We find a superlattice reflection that varies strongly when tuning the X-ray energy around the fluorine edge, demonstrating that there are indeed alternating PFP and PEN layers.

  1. Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures

    International Nuclear Information System (INIS)

    Slipchenko, S. O.; Bondarev, A. D.; Vinokurov, D. A.; Nikolaev, D. N.; Fetisova, N. V.; Sokolova, Z. N.; Pikhtin, N. A.; Tarasov, I. S.

    2009-01-01

    Asymmetric Al 0.3 Ga 0.7 As/GaAs/InGaAs heterostructures with a broadened waveguide produced by the method of MOCVD epitaxy are studied. It is established that the precision shift of the active region to one of the cladding layers ensures the generation of the chosen mode of high order in the transverse broadened waveguide. It is experimentally established that this shift brings about an increase in internal optical losses and a decrease in the internal quantum efficiency of stimulated emission. It is shown experimentally that the shift of the active region to the n-type cladding layer governs the sublinear form of the power-current characteristic for semiconductor lasers; in the case of a shift of the active region towards the p-type cladding layer, the laser diodes demonstrated a linear dependence of optical power on the pump current in the entire range of pump currents.

  2. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures.

    Science.gov (United States)

    Lo, Shun S; Mirkovic, Tihana; Chuang, Chi-Hung; Burda, Clemens; Scholes, Gregory D

    2011-01-11

    The development of elegant synthetic methodologies for the preparation of monocomponent nanocrystalline particles has opened many possibilities for the preparation of heterostructured semiconductor nanostructures. Each of the integrated nanodomains is characterized by its individual physical properties, surface chemistry, and morphology, yet, these multicomponent hybrid particles present ideal systems for the investigation of the synergetic properties that arise from the material combination in a non-additive fashion. Of particular interest are type-II heterostructures, where the relative band alignment of their constituent semiconductor materials promotes a spatial separation of the electron and hole following photoexcitation, a highly desirable property for photovoltaic applications. This article highlights recent progress in both synthetic strategies, which allow for material and architectural modulation of novel nanoheterostructures, as well as the experimental work that provides insight into the photophysical properties of type-II heterostructures. The effects of external factors, such as electric fields, temperature, and solvent are explored in conjunction with exciton and multiexciton dynamics and charge transfer processes typical for type-II semiconductor heterostructures.

  3. Growth and properties of low-dimensional III-V semiconductor nanowire heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Martin

    2010-08-25

    In this work the properties of GaAs nanowire based heterostructures are investigated. The nanowires and their heterostructures are synthesized with Molecular Beam Epitaxy. The optical and structural properties are characterized by means of low temperature confocal micro-photoluminescence spectroscopy and Transmission Electron Microscopy. Molecular Beam Epitaxy is a versatile technique that allows to switch from radial to axial growth in order to cap the nanowires by an epitaxial prismatic AlGaAs/GaAs heterostructure. This can passivate surface states and improve the optical properties. The effect of such a passivation layer is studied by quantitative comparison of the diameter dependence of photoluminescence in passivated and unpassivated nanowires. The passivation is an important prerequisite for more complex axial heterostructures. Evidence for radial confinement effects is found in passivated nanowires with core diameters smaller than 70 nm. Furthermore, the polarization dependence of light absorption and emission is investigated. Two different types of axial heterostructures are studied that have the potential to further enhance the functionality of such nanowires. In a first step, the possibility of growth of axial InGaAs heterostructure in the Au-free Molecular Beam Epitaxy growth regime is investigated. Suitable growth conditions are identified and the growth temperature window for both GaAs and InGaAs nanowires is determined. At the optimum growth temperature for GaAs nanowires, the incorporation of indium in the structure is limited to a few percent. It is shown that by lowering the growth temperature the indium concentration in the structure can be increased up to 20%. The optical properties of the synthesized axial heterostructures are investigated by means of micro-photoluminescence spectroscopy and Transmission Electron Microscopy. The second type of axial nanowire heterostructure investigated in the present work is characterized by a change in crystal

  4. Defects in semiconductors

    International Nuclear Information System (INIS)

    Pimentel, C.A.F.

    1983-01-01

    Some problems openned in the study of defects in semiconductors are presented. In particular, a review is made of the more important problems in Si monocrystals of basic and technological interest: microdefects and the presence of oxigen and carbon. The techniques usually utilized in the semiconductor material characterization are emphatized according its potentialities. Some applications of x-ray techniques in the epitaxial shell characterization in heterostructures, importants in electronic optics, are shown. The increase in the efficiency of these defect analysis methods in semiconductor materials with the use of synchrotron x-ray sources is shown. (L.C.) [pt

  5. Progress in Group III nitride semiconductor electronic devices

    International Nuclear Information System (INIS)

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group III nitride semiconductor electronic materials and devices. This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China, which focuses on the research of the fundamental physical mechanisms of group III nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials, develop new GaN heterostructures, and eventually achieve high performance GaN microwave power devices. Some remarkable progresses achieved in the program will be introduced, including those in GaN high electron mobility transistors (HEMTs) and metal—oxide—semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators, and material growth, defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication, and quantum transport and spintronic properties of GaN-based heterostructures, and high-electric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources. (invited papers)

  6. Regulation of depletion layer width in Pb(Zr,Ti)O3/Nb:SrTiO3 heterostructures

    Science.gov (United States)

    Bai, Yu; Jie Wang, Zhan; Cui, Jian Zhong; Zhang, Zhi Dong

    2018-05-01

    Improving the tunability of depletion layer width (DLW) in ferroelectric/semiconductor heterostructures is important for the performance of some devices. In this work, 200-nm-thick Pb(Zr0.4Ti0.6)O3 (PZT) films were deposited on different Nb-doped SrTiO3 (NSTO) substrates, and the tunability of DLW at PZT/NSTO interfaces were studied. Our results showed that the maximum tunability of the DLW was achieved at the NSTO substrate with 0.5 wt% Nb. On the basis of the modified capacitance model and the ferroelectric semiconductor theory, we suggest that the tunability of the DLW in PZT/NSTO heterostructures can be attributed to a delicate balance of the depletion layer charge and the ferroelectric polarization charge. Therefore, the performance of some devices related to the tunability of DLW in ferroelectric/semiconductor heterostructures can be improved by modulating the doping concentration in semiconducting electrode materials.

  7. Electron scattering times in ZnO based polar heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Falson, J., E-mail: j.falson@fkf.mpg.de [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Kozuka, Y. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Smet, J. H. [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Arima, T. [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-08-24

    The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.

  8. Mixed Dimensional Van der Waals Heterostructures for Opto-Electronics.

    Science.gov (United States)

    Jariwala, Deep

    The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into ``all-2D'' van der Waals heterostructures, this concept is not limited to 2D materials alone. Given that any passivated, dangling bond-free surface will interact with another via vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through noncovalent interactions. In the first part of this talk I will present our work on emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices performed at Northwestern University. I will present two distinct examples of gate-tunable p-n heterojunctions 1. Single layer n-type MoS2\\ (2D) combined with p-type semiconducting single walled carbon nanotubes (1D) and 2. Single layer MoS2 combined with 0D molecular semiconductor, pentacene. I will present the unique electrical properties, underlying charge transport mechanisms and photocurrent responses in both the above systems using a variety of scanning probe microscopy techniques as well as computational analysis. This work shows that van der Waals interactions are robust across different dimensionalities of materials and can allow fabrication of semiconductor devices with unique geometries and properties unforeseen in bulk semiconductors. Finally, I will briefly discuss our recent work from Caltech on near-unity absorption in atomically-thin photovoltaic devices. This work is supported by the Materials Research Center at Northwestern University, funded by the National Science Foundation (NSF DMR-1121262) and the Resnick Sustainability Institute at Caltech.

  9. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    Science.gov (United States)

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts

    Science.gov (United States)

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-09-01

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se

  11. 1.5-μm and 10-Gb s−1 etched mesa buried heterostructure DFB-LD for datacenter networks

    International Nuclear Information System (INIS)

    Kwon, Oh Kee; Lee, Chul Wook; Leem, Young Ahn; Kim, Ki Soo; Oh, Su Hwan; Nam, Eun Soo

    2015-01-01

    We report a 1.5 μm and 10 Gb s −1 etched mesa buried heterostructure λ/4-shifted distributed feedback laser diode (DFB-LD) for the low-cost application of WDM–based datacenter networks. To reduce the threshold current and improve the modulation bandwidth in a conventional p-/n-/p-InP current blocking structure, a thin undoped-InP (u-InP) layer was inserted between the side walls of the active region and the p-InP layer (i.e., a u-/p-/n-/p-InP structure), and the region containing the active region and the current blocking structures was etched in a mesa form (i.e., an etched mesa). From this work, it was found that a 300 μm long anti-reflection (AR)-AR DFB-LD with a mesa width of 8 μm is reduced by about 25% while a side mode suppression ratio is >50 dB and a 3 dB bandwidth is >10 GHz at a current of 40 mA; in addition, it shows a clear eye-opening with a dynamic extinction ratio of >4.5 dB at 10 Gb s −1 , and a power penalty of <1 dB after a 2 km transmission. (paper)

  12. Heterostructured TiO2/NiTiO3 Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability.

    Science.gov (United States)

    Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing

    2018-04-11

    Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.

  13. In-plane heterostructures of Sb/Bi with high carrier mobility

    Science.gov (United States)

    Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

    2017-06-01

    In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

  14. Influence of Au Nanoparticle Shape on Au@Cu2O Heterostructures

    OpenAIRE

    Zhu, Jie; Lu, Na; Chen, Wei; Kong, Lina; Yang, Yun; Ma, Dekun; Huang, Shaoming

    2015-01-01

    Synthesis of metal-semiconductor heterostructures may allow the combination of function of the corresponding components and/or the enhanced performance resulting from the interactions between all the components. In this paper, Au@Cu2O core-shell heterostructures are prepared by a seed-growth method, using different-shaped Au nanocrystals as the seeds such as nanorods, octahedra, decahedra, dots, and nanocubes. The results revealed that the final structure of Au@Cu2O was greatly influenced by ...

  15. Structures and electronics of buried and unburied semiconductor interfaces

    International Nuclear Information System (INIS)

    Kamiya, Itaru

    2011-01-01

    The structure of interfaces plays an important role in determining the electronic properties of semiconductor nanostructures. Here, such examples are shown and discussed using semiconductor nanostructures prepared by molecular beam epitaxy and colloidal synthesis.

  16. Properties of InGaAs/GaAs metal-oxide-semiconductor heterostructure field-effect transistors modified by surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gregušová, D., E-mail: Dagmar.Gregusova@savba.sk [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Gucmann, F.; Kúdela, R. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Mičušík, M. [Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84541 (Slovakia); Stoklas, R.; Válik, L. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Greguš, J. [Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, Bratislava SK-84248 (Slovakia); Blaho, M. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Kordoš, P. [Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology STU, Ilkovičova 3, Bratislava SK-81219 (Slovakia)

    2017-02-15

    Highlights: • AlGaAs/InGaAs/GaAs-based metal oxide semiconductor transistors-MOSHFET. • Thin Al-layer deposited in-situ and oxidize in air – gate insulator. • MOSHFET vs HFET transistor properties, density of traps evaluated. - Abstract: GaAs-based heterostructures exhibit excellent carrier transport properties, mainly the high carrier velocity. An AlGaAs-GaAs heterostructure field-effect transistor (HFET) with an InGaAs channel was prepared using metal-organic chemical vapor deposition (MOVPE). An AlOx layer was formed on the AlGaAs barrier layer by the air-assisted oxidation of a thin Al layer deposited in-situ in an MOVPE reactor immediately after AlGaAs/InGaAs growth. The HFETs and MOSHFETs exhibited a very low trap state density in the order of 10{sup 11} cm{sup −2} eV{sup −1}. Capacitance measurement yielded no significant difference between the HFET and MOSHFET structures. The formation of an AlOx layer modified the surface by partially eliminating surface states that arise from Ga-and As-based native oxides. The presence of an AlOx layer reflected in a reduced gate leakage current, which was evidenced by the two-terminal transistor measurement. Presented preparation procedure and device properties show great potential of AlGaAs/InGaAs-based MOSHFETs.

  17. Use of the AlGaAs native oxide in AlGaAs-GaAs quantum well heterostructure laser devices

    International Nuclear Information System (INIS)

    Ries, M.J.; Chen, E.I.; Holonyak, Chen N. Jr.

    1995-01-01

    At atmospheric conditions high Al Composition Al x Ga 1-x As (x ≥0.7) in Al x Ga 1-x As-GaAs heterostructures is subject to failure via hydrolyzation. In contrast, open-quotes wetclose quotes oxidation at higher temperatures (≥400 degrees C) produces stable AlGaAs native oxides that prove to be useful in quantum well heterostructure devices. The open-quotes wetclose quotes oxidation process results in the conversion of high Al composition heterostructure material into a stable low refractive index, current-blocking native oxide, which can be used to define cavities and current paths. The oxidation can be used to passivate exposed Al-bearing surfaces. Its selective, anisotropic nature is also useful for the fabrication of both planar and non-planar devices, including buried-oxide heterostructures. The III-V native oxide has been used in the fabrication of single-stripe and stripe array lasers, ring lasers, coupled-cavity lasers, buried-oxide verticle cavity lasers, deep-oxide waveguides, deep-oxide lasers, and high reliability LED's. Also, the native oxide of A1As has been demonstrated in field effect transistor operation. The use of the III-V native oxide in various device applications is described

  18. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  19. Electromagnetic field enhancement effects in group IV semiconductor nanowires. A Raman spectroscopy approach

    Science.gov (United States)

    Pura, J. L.; Anaya, J.; Souto, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Periwal, P.; Baron, T.; Jiménez, J.

    2018-03-01

    Semiconductor nanowires (NWs) are the building blocks of future nanoelectronic devices. Furthermore, their large refractive index and reduced dimension make them suitable for nanophotonics. The study of the interaction between nanowires and visible light reveals resonances that promise light absorption/scattering engineering for photonic applications. Micro-Raman spectroscopy has been used as a characterization tool for semiconductor nanowires. The light/nanowire interaction can be experimentally assessed through the micro-Raman spectra of individual nanowires. As compared to both metallic and dielectric nanowires, semiconductor nanowires add additional tools for photon engineering. In particular, one can grow heterostructured nanowires, both axial and radial, and also one could modulate the doping level and the surface condition among other factors than can affect the light/NW interaction. We present herein a study of the optical response of group IV semiconductor nanowires to visible photons. The study is experimentally carried out through micro-Raman spectroscopy of different group IV nanowires, both homogeneous and axially heterostructured (SiGe/Si). The results are analyzed in terms of the electromagnetic modelling of the light/nanowire interaction using finite element methods. The presence of axial heterostructures is shown to produce electromagnetic resonances promising new photon engineering capabilities of semiconductor nanowires.

  20. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    Science.gov (United States)

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  1. Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)

    2006-11-15

    The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  3. Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures

    Science.gov (United States)

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-01-01

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In0.17Al0.83N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with being above). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering. PMID:25283334

  4. Quantum mechanical solver for confined heterostructure tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Van de Put, Maarten; Sorée, Bart; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Departement of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Verhulst, Anne S.; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandenberghe, William G. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2014-02-07

    Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement.

  5. Interface Schottky barrier engineering via strain in metal-semiconductor composites

    Science.gov (United States)

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2016-01-01

    The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures.The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation

  6. Photosensitive heterostructures made of sulfonamide zinc phthalocyanine and organic semiconductor

    Czech Academy of Sciences Publication Activity Database

    Lutsyk, P.; Vertsimakha, Ya.; Nešpůrek, Stanislav; Pomaz, I.

    2011-01-01

    Roč. 535, - (2011), s. 18-29 ISSN 1542-1406 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterostructure * reversal of sign in photovoltage spectra * sulphonamide-substituted phthalocyanine Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.580, year: 2011

  7. Space- and time-dependent quantum dynamics of spatially indirect excitons in semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Grasselli, Federico, E-mail: federico.grasselli@unimore.it; Goldoni, Guido, E-mail: guido.goldoni@unimore.it [Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena (Italy); CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy); Bertoni, Andrea, E-mail: andrea.bertoni@nano.cnr.it [CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy)

    2015-01-21

    We study the unitary propagation of a two-particle one-dimensional Schrödinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolutions during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices, the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic, and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.

  8. Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures

    Science.gov (United States)

    Shan, Junjie; Li, Jinhua; Chu, Xueying; Xu, Mingze; Jin, Fangjun; Fang, Xuan; Wei, Zhipeng; Wang, Xiaohua

    2018-06-01

    Semiconductor heterostructures based on transition metal dichalcogenides provide a broad platform to research two-dimensional nanomaterials and design atomically thin devices for fundamental and applied interests. The MoS2/WS2 heterostructure was prepared on SiO2/Si substrate by chemical vapor deposition (CVD) in our research. And the optical properties of the heterostructure was characterized by Raman and photoluminescence (PL) spectroscopy. The similar 2 orders of magnitude decrease of PL intensity in MoS2/WS2 heterostructures was tested, which is attribute to the electrical and optical modulation effects are connected with the interfacial charge transfer between MoS2 and WS2 films. Using MoS2/WS2 heterostructure as channel material of the phototransistor, we demonstrated over 50 folds enhanced photoresponsivity of multilayer MoS2 field-effect transistor. The results indicate that the MoS2/WS2 films can be a promising heterostructure material to enhance the photoresponse characteristics of MoS2-based phototransistors.

  9. Physics of SrTiO3-based heterostructures and nanostructures: a review.

    Science.gov (United States)

    Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy

    2018-02-09

    This review provides a summary of the rich physics expressed within SrTiO 3 -based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO 3 itself, we will then discuss the basics of SrTiO 3 -based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.

  10. Physics of SrTiO3-based heterostructures and nanostructures: a review

    Science.gov (United States)

    Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy

    2018-03-01

    This review provides a summary of the rich physics expressed within SrTiO3-based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO3 itself, we will then discuss the basics of SrTiO3-based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.

  11. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.

    Science.gov (United States)

    Zamani, Reza R; Hage, Fredrik S; Lehmann, Sebastian; Ramasse, Quentin M; Dick, Kimberly A

    2018-03-14

    Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.

  12. Research on the radiation exposure “memory effects” in AlGaAs heterostructures

    International Nuclear Information System (INIS)

    Gradoboev, A V; Sednev, V V

    2015-01-01

    Radiation exposure and long running time cause degradation of semiconductors' structures as well as semiconductors based on these structures. Besides, long running time can be the reason of partial radiation defects annealing. The purpose of the research work is to study the “memory effect” that happens during fast neuron radiation in AlGaAs heterostructures. Objects of the research are Infrared Light Emitting Electrodes (IRED) based on doubled AlGaAs heterostructures. During the experimental research LEDs were preliminarily radiated with fast neutrons, and radiation defects were annealed within the condition of current training with high temperatures, then emission power was measured. The research proved the existence of the “memory effect” that results in radiation stability enhancement with subsequent radiation. Possible mechanisms of the “memory effect” occurrence are under review. (paper)

  13. Two-Dimensional Electron Gas at SrTiO3-Based Oxide Heterostructures via Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Sang Woon Lee

    2016-01-01

    Full Text Available Two-dimensional electron gas (2DEG at an oxide interface has been attracting considerable attention for physics research and nanoelectronic applications. Early studies reported the formation of 2DEG at semiconductor interfaces (e.g., AlGaAs/GaAs heterostructures with interesting electrical properties such as high electron mobility. Besides 2DEG formation at semiconductor junctions, 2DEG was realized at the interface of an oxide heterostructure such as the LaAlO3/SrTiO3 (LAO/STO heterojunction. The origin of 2DEG was attributed to the well-known “polar catastrophe” mechanism in oxide heterostructures, which consist of an epitaxial LAO layer on a single crystalline STO substrate among proposed mechanisms. Recently, it was reported that the creation of 2DEG was achieved using the atomic layer deposition (ALD technique, which opens new functionality of ALD in emerging nanoelectronics. This review is focused on the origin of 2DEG at oxide heterostructures using the ALD process. In particular, it addresses the origin of 2DEG at oxide interfaces based on an alternative mechanism (i.e., oxygen vacancies.

  14. Pulsed field studies of magnetotransport in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Dalton, K.S.H.

    1999-01-01

    High field magnetotransport in two classes of semiconductor heterostructures has been studied: parallel transport in InAs/(Ga,In)Sb double heterojunctions and superlattices at low temperatures (300 mK-4.2 K), and vertical transport in GaAs/AlAs short-period superlattices at 150-300 K. The experiments mainly used the Oxford pulsed magnet (∼45 T, ∼15 ms pulses). The development of the data acquisition system and experimental techniques for magnetotransport are described, including corrections to the data, required because of the rapidly changing magnetic field. Previous studies of magnetotransport in InAs/GaSb double heterojunctions are reviewed: this electron-hole system shows compensated quantum Hall plateaux, with ρ xy dips accompanied by 'anomalous' peaks in σ xx . New data show a peak between ν=1 plateaux; this behaviour and the temperature dependence of the 'anomalous' σ xx peaks are explained by considering the movement of the Fermi level amongst anticrossing electron- and hole-like levels. InAs/(Ga,In)Sb superlattices with electron:hole density ratios close to 1 exhibit large oscillations in the resistivity (maxima typically ∼20-30 x higher than minima) and conductivity components. Deep minima in ρ xy alternate with low-integer plateaux. The magnetotransport in various ideal structures is considered, to explain the experimental results. The growth of a novel structure has allowed clearer observation of the behaviour of ρ xx (giant maxima) and ρ xy (zeroes or maxima) when the contributions from each well to σ xx and σ xy approach zero. Measurements of the high field magnetotransport peak positions show that the band overlap is increased by growing 'InSb' rather than 'GaAs' interfaces (∼20% increase), increasing the indium in the (Ga,In)Sb (∼30% increase per 10% In), or growing along [111] instead of [001] (∼30% increase). Magnetophonon resonance in short-period GaAs/AlAs superlattices causes strong, electric field-dependent vertical

  15. Photoluminescence and photocatalytic activities of Ag/ZnO metal-semiconductor heterostructure

    International Nuclear Information System (INIS)

    Sarma, Bikash; Deb, Sujit Kumar; Sarma, Bimal K.

    2016-01-01

    Present article focuses on the photocatalytic activities of ZnO nanorods and Ag/ZnO heterostructure deposited on polyethylene terephthalate (PET) substrate. ZnO nanorods are synthesized by thermal decomposition technique and Ag nanoparticles deposition is done by photo-deposition technique using UV light. X-ray diffraction studies reveal that the ZnO nanorods are of hexagonal wurtzite structure. Further, as-prepared samples are characterized by Scanning Electron Microscopy (SEM), Photoluminescence (PL) spectroscopy and UV-Vis spectroscopy. The surface plasmon resonance response of Ag/ZnO is found at 420 nm. The photocatalytic activities of the samples are evaluated by photocatalytic decolorization of methyl orange (MO) dye with UV irradiation. The degradation rate of MO increases with increase in irradiation time. The degradation of MO follows the first order kinetics. The photocatalytic activity of Ag/ZnO heterostructure is found to be more than that of ZnO nanorods. The PL intensity of ZnO nanorods is stronger than that of the Ag/ZnO heterostructure. The strong PL intensity indicates high recombination rate of photoinduced charge carriers which lowers the photocatalytic activity of ZnO nanorods. The charge carrier recombination is effectively suppressed by introducing Ag nanoparticles on the surface of the ZnO nanorods. This study demonstrates a strong relationship between PL intensity and photocatalytic activity. (paper)

  16. Nonradiative lifetime extraction using power-dependent relative photoluminescence of III-V semiconductor double-heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A. W., E-mail: alexandre.walker@ise.fraunhofer.de; Heckelmann, S.; Karcher, C.; Höhn, O.; Went, C.; Niemeyer, M.; Bett, A. W.; Lackner, D. [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany)

    2016-04-21

    A power-dependent relative photoluminescence measurement method is developed for double-heterostructures composed of III-V semiconductors. Analyzing the data yields insight into the radiative efficiency of the absorbing layer as a function of laser intensity. Four GaAs samples of different thicknesses are characterized, and the measured data are corrected for dependencies of carrier concentration and photon recycling. This correction procedure is described and discussed in detail in order to determine the material's Shockley-Read-Hall lifetime as a function of excitation intensity. The procedure assumes 100% internal radiative efficiency under the highest injection conditions, and we show this leads to less than 0.5% uncertainty. The resulting GaAs material demonstrates a 5.7 ± 0.5 ns nonradiative lifetime across all samples of similar doping (2–3 × 10{sup 17 }cm{sup −3}) for an injected excess carrier concentration below 4 × 10{sup 12 }cm{sup −3}. This increases considerably up to longer than 1 μs under high injection levels due to a trap saturation effect. The method is also shown to give insight into bulk and interface recombination.

  17. The photoelectric yield technique for the characterization of the semiconductor heterostructures

    International Nuclear Information System (INIS)

    Evangelisti, F.; Di Gaspare, L.

    1998-01-01

    The paper discusses the use of the photoelectric yield spectroscopy for investigating surface defects and interfaces. Few examples are presented that clearly show the usefulness of the techniques. The heterostructures discussed include crystalline/amorphous and crystalline/crystalline systems

  18. Strain in GaAs / InAs core-shell nanowire heterostructures grown on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik (Germany); Rieger, Torsten; Lepsa, Mihail Ion [Peter Gruenberg Institut 9, Forschungszentrum Juelich (Germany); JARA - Fundamentals of Future Information Technology (Germany)

    2012-07-01

    The growth of semiconductor nanowires (NWs) has attracted significant interest in recent years due to the possible fabrication of novel semiconductor devices for future electronic and opto-electronic applications. Compared to planar heterostructures, the nanowire approach offers an advantage regarding the possibility to form heterostructures between highly lattice mismatched systems, because the free surface of the nanowires allows to relieve the strain more efficiently. One particular way to form heterostructures in the NW geometry, is the fabrication of core-shell devices, in which a NW core is surrounded by a shell of different material. The understanding of the mutual strain between core and shell, as well as the relaxation behavior of the system are crucial for the fabrication of functional devices. In this contribution we report on first X-ray diffraction measurements of GaAs-core/InAs-shell nanowires grown on GaAs(111) by molecular beam epitaxy. Using symmetric- and grazing-incidence X-ray diffraction, the relaxation state of the InAs shell as well as the strain in the GaAs core are measured as function of the InAs shell thickness, showing a gradual relaxation behavior of the shell.

  19. Integration, gap formation, and sharpening of III-V heterostructure nanowires by selective etching

    DEFF Research Database (Denmark)

    Kallesoe, C.; Mølhave, Kristian; Larsen, K. F.

    2010-01-01

    Epitaxial growth of heterostructure nanowires allows for the definition of narrow sections with specific semiconductor composition. The authors demonstrate how postgrowth engineering of III-V heterostructure nanowires using selective etching can form gaps, sharpening of tips, and thin sections...... lithography is used for deposition of catalyst particles on trench sidewalls and the lateral growth of III-V nanowires is achieved from such catalysts. The selectivity of a bromine-based etch on gallium arsenide segments in gallium phosphide nanowires is examined, using a hydrochloride etch to remove the III...

  20. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    Science.gov (United States)

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  1. Hydrodynamic pumping of a quantum Fermi liquid in a semiconductor heterostructure

    Science.gov (United States)

    Heremans, J. J.; Kantha, D.; Chen, H.; Govorov, A. O.

    2003-03-01

    We present experimental results for a pumping mechanism observed in mesoscopic structures patterned on two-dimensional electron systems in GaAs/AlGaAs heterostructures. The experiments are performed at low temperatures, in the ballistic regime. The effect is observed as a voltage or current signal corresponding to carrier extraction from sub-micron sized apertures, when these apertures are swept by a beam of ballistic electrons. The carrier extraction, phenomenologically reminiscent of the Bernoulli pumping effect in classical fluids, has been observed in various geometries. We ascertained linearity between measured voltage and injected current in all experiments, thereby excluding rectification effects. The linear response, however, points to a fundamental difference from the Bernoulli effect in classical liquids, where the response is nonlinear and quadratic in terms of the velocity. The temperature dependence of the effect will also be presented. We thank M. Shayegan (Princeton University) for the heterostructure growth, and acknowledge support from NSF DMR-0094055.

  2. Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures

    Science.gov (United States)

    Liu, Ruoyu; Hu, Peiguang; Chen, Shaowei

    2012-10-01

    Heterostructures based on Ag3PO4 nanoparticles and TiO2 nanobelts were prepared by a coprecipitation method. The crystalline structures were characterized by X-ray diffraction measurements. Electron microscopic studies showed that the Ag3PO4 nanoparticles and TiO2 nanobelts were in intimate contact which might be exploited to facilitate charge transfer between the two semiconductor materials. In fact, the heterostructures exhibited markedly enhanced photocatalytic activity as compared with unmodified TiO2 nanobelts or commercial TiO2 colloids in the photodegradation of methyl orange under UV irradiation. This was accounted for by the improved efficiency of interfacial charge separation thanks to the unique alignments of their band structures. Remarkably, whereas the photocatalytic activity of the heterostructure was comparable to that of Ag3PO4 nanoparticles alone, the heterostructures exhibited significantly better stability and reusability in repeated tests than the Ag3PO4 nanoparticles.

  3. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor

    DEFF Research Database (Denmark)

    Hu, Yongjie; Churchill, Hugh; Reilly, David

    2007-01-01

    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitati...

  4. Voltage manipulation of the magnetization reversal in Fe/n-GaAs/piezoelectric heterostructure

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Luo, Wengang; Zhu, Lijun; Zhao, Jianhua; Wang, Kaiyou

    2015-01-01

    We carefully investigated the in-plane magnetization reversal and corresponding magnetic domain structures in Fe/n-GaAs/piezoelectric heterostructure using longitudinal magneto-optical Kerr microscopy. The coexistence of the in-plane <100> cubic and [11 ¯ 0] uniaxial magnetic anisotropy was observed in this system at virgin state. The piezo voltages can effectively manipulate the magnetic properties of the Fe/n-GaAs/piezoelectric heterostructure, where the manipulation of two-jump to one-jump magnetization switching during the magnetic reversal was achieved with magnetic field applied in [100] direction. Our findings on manipulation of ferromagnetization in this heterostructure could be important for future metal-semiconductor spintronic applications. The additional uniaxial anisotropy induced by piezo voltages obtained at ±75 V is ±1.4×10 3 J/m 3 . - Highlights: • In this work, we use piezo voltages not only realize the significant change of coercivity but also effectively manipulate the magnetization transition from one step to two steps during magnetic reversal, indicating that the piezo-voltages can be used to effectively control the magnetization reversal. • The additional uniaxial anisotropy induced by piezo voltages at +/−75 V are +/−1.4×10 3 J/m 3 . This work could be very used for future metal-semiconductor spintronic devices

  5. Axial Ge/Si nanowire heterostructure tunnel FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Sanuel T [Los Alamos National Laboratory; Daych, Shadi A [Los Alamos National Laboratory

    2010-01-01

    The vapor-liquid-solid (VLS) growth of semiconductor nanowires allows doping and composition modulation along their axis and the realization of axial 1 D heterostructures. This provides additional flexibility in energy band-edge engineering along the transport direction which is difficult to attain by planar materials growth and processing techniques. We report here on the design, growth, fabrication, and characterization of asymmetric heterostructure tunnel field-effect transistors (HTFETs) based on 100% compositionally modulated Si/Ge axial NWs for high on-current operation and low ambipolar transport behavior. We discuss the optimization of band-offsets and Schottky barrier heights for high performance HTFETs and issues surrounding their experimental realization. Our HTFET devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a measured current drive exceeding 100 {mu}A/{mu}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios.

  6. Ferromagnetism in diluted magnetic semiconductor heterojunction systems

    Czech Academy of Sciences Publication Activity Database

    Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.

    2002-01-01

    Roč. 17, - (2002), s. 393-403 ISSN 0268-1242 R&D Projects: GA ČR GA202/98/0085; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * heterostructures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.241, year: 2002

  7. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.

    Science.gov (United States)

    Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan

    2017-06-01

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.

  8. Characterization of GaAs and hetero-structures of GaAs-(AlGa)As films, by Hall effect

    International Nuclear Information System (INIS)

    Diniz, R.P.

    1989-08-01

    Hall effect measurements were performed on a series of semiconductor gallium arsenide (GaAs) films, intentionally or unitentionally doped, grown by molecular beam epitaxy (MBE). These measurements made possible both the evaluation of the films quality and the calibration of the dopants (Si and Be) effusion cells on the growing machine. Measurements on modulation doped single interface heterostructures also grown by MBE followed. The two dimensional electron gas in the heterostructures shows low temperature high mobility. The application of a strong magnetic field perpendicular to the plane of the gas eliminated its degrees of freedom completely and permitted the observation of Schubnikov-deHaas oscillations and integer quantum Hall effect. During the work we have deviced and developed apparatus in order to make ohmic contacts and perform litography to semiconductors. (author) [pt

  9. Studies on the InAlN/InGaN/InAlN/InGaN double channel heterostructures with low sheet resistance

    Science.gov (United States)

    Zhang, Yachao; Wang, Zhizhe; Xu, Shengrui; Chen, Dazheng; Bao, Weimin; Zhang, Jinfeng; Zhang, Jincheng; Hao, Yue

    2017-11-01

    High quality InAlN/InGaN/InAlN/InGaN double channel heterostructures were proposed and grown by metal organic chemical vapor deposition. Benefiting from the adoption of the pulsed growth method and Two-Step AlN interlayer, the material quality and interface characteristics of the double channel heterostructures are satisfactory. The results of the temperature-dependent Hall effect measurement indicated that the transport properties of the double channel heterostructures were superior to those of the traditional single channel heterostructures in the whole test temperature range. Meanwhile, the sheet resistance of the double channel heterostructures reached 218.5 Ω/□ at 300 K, which is the record of InGaN-based heterostructures. The good transport properties of the InGaN double channel heterostructures are beneficial to improve the performance of the microwave power devices based on nitride semiconductors.

  10. Charge transfer in rectifying oxide heterostructures and oxide access elements in ReRAM

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovich, G. B.; Pergament, A. L.; Boriskov, P. P.; Kuroptev, V. A., E-mail: v.a.kuroptev@gmail.com; Stefanovich, T. G. [Petrozavodsk State University (Russian Federation)

    2016-05-15

    The main aspects of the synthesis and experimental research of oxide diode heterostructures are discussed with respect to their use as selector diodes, i.e., access elements in oxide resistive memory. It is shown that charge transfer in these materials differs significantly from the conduction mechanism in p–n junctions based on conventional semiconductors (Si, Ge, A{sup III}–B{sup V}), and the model should take into account the electronic properties of oxides, primarily the low carrier drift mobility. It is found that an increase in the forward current requires an oxide with a small band gap (<1.3 eV) in the heterostructure composition. Heterostructures with Zn, In–Zn (IZO), Ti, Ni, and Cu oxides are studied; it is found that the CuO–IZO heterojunction has the highest forward current density (10{sup 4} A/cm{sup 2}).

  11. Voltage manipulation of the magnetization reversal in Fe/n-GaAs/piezoelectric heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanyuan; Luo, Wengang; Zhu, Lijun; Zhao, Jianhua; Wang, Kaiyou, E-mail: kywang@semi.ac.cn

    2015-02-01

    We carefully investigated the in-plane magnetization reversal and corresponding magnetic domain structures in Fe/n-GaAs/piezoelectric heterostructure using longitudinal magneto-optical Kerr microscopy. The coexistence of the in-plane <100> cubic and [11{sup ¯}0] uniaxial magnetic anisotropy was observed in this system at virgin state. The piezo voltages can effectively manipulate the magnetic properties of the Fe/n-GaAs/piezoelectric heterostructure, where the manipulation of two-jump to one-jump magnetization switching during the magnetic reversal was achieved with magnetic field applied in [100] direction. Our findings on manipulation of ferromagnetization in this heterostructure could be important for future metal-semiconductor spintronic applications. The additional uniaxial anisotropy induced by piezo voltages obtained at ±75 V is ±1.4×10{sup 3} J/m{sup 3}. - Highlights: • In this work, we use piezo voltages not only realize the significant change of coercivity but also effectively manipulate the magnetization transition from one step to two steps during magnetic reversal, indicating that the piezo-voltages can be used to effectively control the magnetization reversal. • The additional uniaxial anisotropy induced by piezo voltages at +/−75 V are +/−1.4×10{sup 3} J/m{sup 3}. This work could be very used for future metal-semiconductor spintronic devices.

  12. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    International Nuclear Information System (INIS)

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth; Geier, Michael L.; Prabhumirashi, Pradyumna L.; Hersam, Mark C.

    2014-01-01

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm 2 V −1 s −1 at low operating voltages ( 10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures

  13. Hydrogen in semiconductors II

    CERN Document Server

    Nickel, Norbert H; Weber, Eicke R; Nickel, Norbert H

    1999-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  14. Photoelectric properties of ZnO/Ag2S heterostructure and its photoelectric ethanol sensing characteristics

    International Nuclear Information System (INIS)

    Zhang Yu; Liu Bingkun; Wang Dejun; Lin Yanhong; Xie Tengfeng; Zhai Jiali

    2012-01-01

    Highlights: ► The ZnO/Ag 2 S heterostructure shows good photoelectric properties under visible-light irradiation. ► Transient photovoltage results reveal the separation process of photo-generated charges and give further evidence of interfacial effects. ► Photoelectric ethanol sensing characteristics have been found for the ZnO/Ag 2 S heterostructure at room temperature. - Abstract: The photoelectric properties of ZnO microspheres, ZnO/Ag 2 S heterogeneous microspheres and Ag 2 S hollow microspheres were investigated systematically by surface photovoltage, transient photovoltage and surface photocurrent techniques. The ZnO/Ag 2 S heterostructure shows superior photoelectric properties in visible-light region compared with pure Ag 2 S. Transient photovoltage results reveal the separation processes of photo-generated charge carriers in the samples. The photoelectric ethanol sensing property induced by visible light for the ZnO/Ag 2 S heterostructure has been found, which should be valuable for the practical application of semiconductor gas sensors at room temperature.

  15. Ion implantation in compound semiconductors for high-performance electronic devices

    International Nuclear Information System (INIS)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  16. Synthesis of Freestanding Single-crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-soluble Layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Di; Baek, David J.; Hong, Seung Sae; Kourkoutis, Lena F.; Hikita, Yasuyuki; Hwang, Harold Y.

    2016-08-22

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr3Al2O6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr3Al2O6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  17. Collaborative Research and Development. Delivery Order 0006: Transmission Electron Microscope Image Modeling and Semiconductor Heterointerface Characterization

    National Research Council Canada - National Science Library

    Mahalingam, Krishnamurthy

    2006-01-01

    .... Transmission electron microscope (TEM) characterization studies were performed on a variety of novel III-V semiconductor heterostructures being developed for advanced optoelectronic device applications...

  18. Molecular and polymeric organic semiconductors for applications in photovoltaic devices

    International Nuclear Information System (INIS)

    Meinhardt, G.

    2000-01-01

    Photovoltaic devices based on molecular as well as polymeric semiconductors were investigated and characterized. The organic materials presented here exhibit the advantages of low price, low processing costs and the possibility of tuning their optical properties. The photovoltaic properties were investigated by photocurrent action spectroscopy and I/V-characterization and the electric field distribution in each layer by electroabsorption spectroscopy. Single layer devices of molecular semiconductors and semiconducting polymers like methyl-substituted polyparaphenylene, CN-Ether-PPV, copper-phthalocyanine, the terryleneimide DOTer, the perylene derivatives BBP-perylene and polyBBP-perylene show low photocurrents as well as a small photovoltaic effect in their pristine form. One way to enhance the performance is to blend the active layer with molecular dopands like a soluble form of titaniumoxophthalocyanine or the aromatic macromolecule RS19 or to combine two organic semiconductors in heterostructure devices. The motivation for these experiments was the optimization of either charge transfer or energy transfer from one molecule to its neighbor molecule. A model based on the internal filter effect was used for fitting the photoresponse of single layer devices. For optimising heterostructure solar cells a more sophisticated theoretical model taking into account interference effects was used. (author)

  19. Oscillatory bistability of real-space transfer in semiconductor heterostructures

    Science.gov (United States)

    Do˙ttling, R.; Scho˙ll, E.

    1992-01-01

    Charge transport parallel to the layers of a modulation-doped GaAs/AlxGa1-xAs heterostructure is studied theoretically. The heating of electrons by the applied electric field leads to real-space transfer of electrons from the GaAs into the adjacent AlxGa1-xAs layer. For sufficiently large dc bias, spontaneous periodic 100-GHz current oscillations, and bistability and hysteretic switching transitions between oscillatory and stationary states are predicted. We present a detailed investigation of complex bifurcation scenarios as a function of the bias voltage U0 and the load resistance RL. For large RL subcritical Hopf bifurcations and global bifurcations of limit cycles are displayed.

  20. Cathodoluminescence of semiconductors in the scanning electron microscope

    International Nuclear Information System (INIS)

    Noriegas, Javier Piqueras de

    2008-01-01

    Full text: Cathodoluminescence (CL) in the scanning electron microscope (SEM) is a nondestructive technique, useful for characterization of optical and electronic properties of semiconductors, with spatial resolution. The contrast in the images of CL is related to the presence of crystalline defects, precipitates or impurities and provides information on their spatial distribution. CL spectra allows to study local energy position of localized electronic states. The application of the CL is extended to semiconductor very different characteristics, such as bulk material, heterostructures, nanocrystalline film, porous semiconductor, nanocrystals, nanowires and other nano-and microstructures. In the case of wafers, provides information on the homogeneity of their electronic characteristics, density of dislocations, grain sub frontiers, distribution of impurities and so on. while on the study of heterostructures CL images can determine, for example, the presence of misfit dislocations at the interface between different sheets, below the outer surface of the sample. In the study of other low dimensional structures, such as nanocrystalline films, nanoparticles and nano-and microstructures are observed elongated in some cases quantum confinement effects from the CL spectra. Moreover, larger structures, the order of hundreds of nanometers, with forms of wires, tubes or strips, is that in many semiconductor materials, mainly oxides, the behavior of luminescence is different from bulk material. The microstructures have a different structure of defects and a greater influence of the surface, which in some cases leads to a higher emission efficiency and a different spectral distribution. The presentation describes the principle of the CL technique and examples of its application in the characterization of a wide range of both semiconductor materials of different composition, and of different sizes ranging from nanostructures to bulk samples

  1. The Physics of Semiconductors An Introduction Including Devices and Nanophysics

    CERN Document Server

    Grundmann, Marius

    2006-01-01

    The Physics of Semiconductors provides material for a comprehensive upper-level-undergrauate and graduate course on the subject, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. For the interested reader some additional advanced topics are included, such as Bragg mirrors, resonators, polarized and magnetic semiconductors are included. Also supplied are explicit formulas for many results, to support better understanding. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from ...

  2. Interpreting Interfacial Structure in Cross-Sectional STM Images of III-V Semiconductor Heterostructures

    National Research Council Canada - National Science Library

    Nosho, B. Z; Barvosa-Carter, W; Yang, M. J; Bennett, B. R; Whitman, L. J

    2000-01-01

    ...) can be used for the study of III-V heterostructure interfaces. The interpretation of interfacial structure in XSTM images is impeded by the fact that only every other III or V plane as grown on the (001...

  3. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Iman Hassani; Mohseni, Hooman, E-mail: hmohseni@ece.northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-07-28

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  4. GaN heterostructures for biosensing and radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Howgate, John D.

    2012-12-11

    In this thesis I show the results from our investigation of the interface between gallium nitride wide bandgap semiconductor heterostructures and (bio)molecular systems on their surfaces for biosensing, bioelectronics, and photoelectric applications, with a large emphasis on the processes arising from high energy ionizing irradiation, including heterostructure photoelectric gain mechanisms. Wide bandgap semiconductors, such as gallium nitride, have received increasing attention as potential components in advanced organic/inorganic hybrid systems. Working to further this topic, we determine a new semiconductor alignment required for low energy photo-induced charge transfer ionization of alkyl chains well below the energy normally required for molecular cleavage, show original results of the influence of binding methods on enzyme functionality in conjunction with a novel electrochemical and environmental control system and demonstrate new possibilities to significantly improve upon pH measurements through the use of high sensitivity devices. Furthermore, based on the extension of this work to support future studies of radiation effects on cell systems, we present a detailed characterization of new simultaneous chemical sensing and ionizing radiation dosimetry using single devices. We found that their pH sensitivity was retained during X-ray irradiation and that the fundamental characteristics can be used to separate the irradiation signal from the pH response without compromising operational stability. These data provide clear indications of the separate response mechanism tied to the presence of a two-dimensional electron gas channel. Here, we found new results exhibiting exceptionally high gains and independence of the well-known persistent photoconductivity for soft X-rays and high energy particles in the ultralow dose-rate regime. This material system provides the capability for high sensitivity and resolution real time monitoring, which is competitive with and

  5. GaN heterostructures for biosensing and radiation detection

    International Nuclear Information System (INIS)

    Howgate, John D.

    2012-01-01

    In this thesis I show the results from our investigation of the interface between gallium nitride wide bandgap semiconductor heterostructures and (bio)molecular systems on their surfaces for biosensing, bioelectronics, and photoelectric applications, with a large emphasis on the processes arising from high energy ionizing irradiation, including heterostructure photoelectric gain mechanisms. Wide bandgap semiconductors, such as gallium nitride, have received increasing attention as potential components in advanced organic/inorganic hybrid systems. Working to further this topic, we determine a new semiconductor alignment required for low energy photo-induced charge transfer ionization of alkyl chains well below the energy normally required for molecular cleavage, show original results of the influence of binding methods on enzyme functionality in conjunction with a novel electrochemical and environmental control system and demonstrate new possibilities to significantly improve upon pH measurements through the use of high sensitivity devices. Furthermore, based on the extension of this work to support future studies of radiation effects on cell systems, we present a detailed characterization of new simultaneous chemical sensing and ionizing radiation dosimetry using single devices. We found that their pH sensitivity was retained during X-ray irradiation and that the fundamental characteristics can be used to separate the irradiation signal from the pH response without compromising operational stability. These data provide clear indications of the separate response mechanism tied to the presence of a two-dimensional electron gas channel. Here, we found new results exhibiting exceptionally high gains and independence of the well-known persistent photoconductivity for soft X-rays and high energy particles in the ultralow dose-rate regime. This material system provides the capability for high sensitivity and resolution real time monitoring, which is competitive with and

  6. Coherent light scattering from a buried dipole in a high-aperture optical system

    International Nuclear Information System (INIS)

    Vamivakas, A N; Mueller, T; Atatuere, M; Yurt, A; Koeklue, F H; Uenlue, M S

    2011-01-01

    We develop a theoretical formulation to calculate the absolute and differential transmission of a focused laser beam through a high-aperture optical system. The focused field interacts with a point dipole that is buried in a high-index material, and is situated at the Gaussian focus of the focusing and collection two-lens system. The derived expressions account for the vectorial nature of the focused electromagnetic field and the inhomogeneous focal region environment. The results obtained are in agreement with recent resonant light-scattering experiments where the buried emitter is an indium arsenide semiconductor quantum dot in gallium arsenide.

  7. The control of stoichiometry in Epitaxial semiconductor structures. Interfacial Chemistry: Property relations. A workshop review

    Science.gov (United States)

    Bachmann, Klaus J.

    1995-01-01

    A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.

  8. Effects of Coupling Lens on Optical Refrigeration of Semiconductors

    International Nuclear Information System (INIS)

    Kai, Ding; Yi-Ping, Zeng

    2008-01-01

    Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan; Zhang, Zhiyong; Zhu, Zhiyong; Schwingenschlö gl, Udo; Cui, Yi

    2012-01-01

    in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered

  10. Novel aspects of diluted and digital magnetic heterostructures

    International Nuclear Information System (INIS)

    Bonanni, A.

    1999-04-01

    In the present work novel aspects of diluted and digital II-VI-based heterostructures containing Mn ions are investigated. All the structures under study were fabricated by means of molecular beam epitaxy. Digital magnetic heterostructures have been prepared by incorporating discrete (sub)monolayers of the purely magnetic semiconductor MnTe into otherwise non magnetic CdTe quantum wells embedded in CdMgTe barriers. Formation and binding energy of magnetic polarons have been investigated in these structures and compared with the diluted case. Reflectance difference spectroscopy (RDS) performed ex-situ allowed to distinguish between signals due to the crystal anisotropy solely and those induced by the presence a magnetic elements. The problem of p-type doping of bulk diluted magnetic semiconductors II-VI-based is tackled. During and upon growth of ZnMnTe highly doped with N, in-situ RDS was carried out in order to investigate intra-ion transitions within the half filled 3d shell of Mn. Transport measurements and magnetometry at low temperature were performed to study, on the tracks of recent theoretical works, the influence of free carriers on the interaction between magnetic ions. As expected, indications of ferromagnetic ordering were found for the DMS with the highest concentration of carriers. Special attention was given to the formation of Mn islands on a II-VI substrate and to their change in morphology upon overgrowth with a mismatched material. A rich zoology of regularly shaped nanostructures could be produced. (author)

  11. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  12. Identification of defects in semiconductors

    CERN Document Server

    Stavola, Michael; Weber, Eicke R; Stavola, Michael

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors.The"Willardson and Beer"Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices,Oxygen in Silicon, and others promise indeed that this traditi...

  13. The physics of semiconductors an introduction including nanophysics and applications

    CERN Document Server

    Grundmann, Marius

    2016-01-01

    The 3rd edition of this successful textbook contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, carbon-based nanostructures and transparent conductive oxides. The text derives explicit formulas for many results to support better under...

  14. Designing Diameter-Modulated Heterostructure Nanowires of PbTe/Te by Controlled Dewetting.

    Science.gov (United States)

    Kumar, Abinash; Kundu, Subhajit; Samantaray, Debadarshini; Kundu, Paromita; Zanaga, Daniele; Bals, Sara; Ravishankar, N

    2017-12-13

    Heterostructures consisting of semiconductors with controlled morphology and interfaces find applications in many fields. A range of axial, radial, and diameter-modulated nanostructures have been synthesized primarily using vapor phase methods. Here, we present a simple wet chemical routine to synthesize heterostructures of PbTe/Te using Te nanowires as templates. A morphology evolution study for the formation of these heterostructures has been performed. On the basis of these control experiments, a pathway for the formation of these nanostructures is proposed. Reduction of a Pb precursor to Pb on Te nanowire templates followed by interdiffusion of Pb/Te leads to the formation of a thin shell of PbTe on the Te wires. Controlled dewetting of the thin shell leads to the formation of cube-shaped PbTe that is periodically arranged on the Te wires. Using control experiments, we show that different reactions parameters like rate of addition of the reducing agent, concentration of Pb precursor and thickness of initial Te nanowire play a critical role in controlling the spacing between the PbTe cubes on the Te wires. Using simple surface energy arguments, we propose a mechanism for the formation of the hybrid. The principles presented are general and can be exploited for the synthesis of other nanoscale heterostructures.

  15. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  16. Ultrafast dynamics of confined and localised excitons and biexcitons in low-dimensional semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Langbein, Wolfgang; Borri, Paola

    1999-01-01

    Coherent optical spectroscopy in the form of nonlinear transient four-wave mixing (TFWM) and linear resonant Rayleigh scattering (RRS) has been applied to investigate the exciton dynamics of low-dimensional semiconductor heterostructures. The dephasing times of excitons are determined from...

  17. In situ observation of surface reactions with synchrotron radiation induced semiconductor processes by infrared reflection absorption spectroscopy using buried metal layer substrates; Umekomi kinzokuso kiban wo mochiita sekigai hansha kyushu supekutoruho ni yoru hoshako reiki handotai process hanno no sonoba kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigoe, A.; Hirano, S. [The Graduate University for Advanced Studies, Yokohama (Japan); Mase, K.; Urisu, T. [Institute for Molecular Science, Aichi (Japan)

    1996-11-20

    It is known that infrared reflection absorption spectroscopy (IRAS) on semiconductor or insulator surfaces becomes practicable by using buried metal layer (BML) substrates, in which the metal thin film is buried order semiconductor or insulator films. In this work, IRAS has been measured for Langmuir-Blodgett films deposited on the BML substrate with SiO2/Al/Si(100) structure and the observed spectrum intensity has been quantitatively compared with the calculation assuming the ideal multilayer structure for the BML substrate. The BML-IRAS using CoSi2 has been adopted to the detection of SiHn on the Si (100) substrate during synchrotron radiation (SR) stimulated Si2H6 gas source molecular beam epitaxy. It has been found that SiH2 and SiH3 on the Si (100) surface are easily decomposed by SR, but SiH can`t be decomposed. From these experiments, it has been concluded that the BML-IRAS is an useful in situ observation technique for the photo-stimulated surface reactions. 26 refs., 9 figs.

  18. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    Science.gov (United States)

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  19. Theoretical prediction of high electron mobility in multilayer MoS2 heterostructured with MoSe2

    Science.gov (United States)

    Ji, Liping; Shi, Juan; Zhang, Z. Y.; Wang, Jun; Zhang, Jiachi; Tao, Chunlan; Cao, Haining

    2018-01-01

    Two-dimensional (2D) MoS2 has been considered to be one of the most promising semiconducting materials with the potential to be used in novel nanoelectronic devices. High carrier mobility in the semiconductor is necessary to guarantee a low power dissipation and a high switch speed of the corresponding electronic device. Strain engineering in 2D materials acts as an important approach to tailor and design their electronic and carrier transport properties. In this work, strain is introduced to MoS2 through perpendicularly building van der Waals heterostructures MoSe2-MoS2. Our first-principles calculations demonstrate that acoustic-phonon-limited electron mobility can be significantly enhanced in the heterostructures compared with that in pure multilayer MoS2. It is found that the effective electron mass and the deformation potential constant are relatively smaller in the heterostructures, which is responsible for the enhancement in the electron mobility. Overall, the electron mobility in the heterostructures is about 1.5 times or more of that in pure multilayer MoS2 with the same number of layers for the studied structures. These results indicate that MoSe2 is an excellent material to be heterostructured with multilayer MoS2 to improve the charge transport property.

  20. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    Science.gov (United States)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  1. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties

    Science.gov (United States)

    Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie

    2015-11-01

    Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.

  2. Scanning tunnel microscopy of semiconductor nanostructures

    International Nuclear Information System (INIS)

    Eder, C.

    1997-09-01

    In this work a scanning tunneling microscope (STM) is utilized as a surface sensitive tool for local characterization of internal potential profiles of GaAs/AlGaAs heterostructures. The STM is operated at variable temperatures under ambient conditions, i.e. either in air or in the variable temperature insert of a cryostat. Distinct local differences between current-voltage curves taken on inverted heterostructures, which were patterned by wet chemically etching, are found. The spectroscopic differences can be ascribed to the internal potential profile in the subsurface regions of the sample. Current imaging tunneling spectroscopy (CITS) is applied to study quantum wire regions. It is found that the magnitude of the CITS-current is an indirect measure of edge depletion zones, which are much larger at 4.2 K. Direct measurements of relevant energy levels in quantum structures were obtained by ballistic electron emission microscopy (BEEM). It is shown that this 3-terminal technique is an excellent tool for transport characterization of minibands formed in semiconductor superlattices. Furthermore, low dimensional electron gases are shown to act as very efficient collector electrodes at low temperatures. For the first time, BEEM experiments were performed at 4.2 K. The enhanced thermal resolution at 4.2 K allows an analysis of the relevant scattering processes. It is found that the collector current is strongly influenced by diffusive scattering at the metal/semiconductor interface. (author)

  3. Ultrasensitive near-infrared photodetectors based on graphene-MoTe2-graphene vertical van der Waals heterostructure

    Science.gov (United States)

    Zhang, Kun; Ye, Yu; Dai, Lun; School of Physics, Peking University Team

    Two-dimensional (2D) materials have rapidly established themselves as exceptional building blocks for optoelectronic applications, due to their unique properties and atomically thin nature. Nevertheless, near-infrared (NIR) photodetectors based on layered 2D semiconductors are rarely realized. In this work, we fabricate graphene-MoTe2-graphene vertical vdWs heterostructure by a facile and reliable site controllable transfer method, and apply it for photodetection from visible to the NIR wavelength range. Compared to the 2D semiconductor based photodetectors reported thus far, the graphene-MoTe2-graphene photodetector has superior performance, including high photoresponsivity (110 mA W-1 at 1064 nm and 205 mA W-1 at 473 nm), high external quantum efficiency (EQE, 12.9% at 1064 nm and 53.8% at 473 nm), rapid response and recovery processes (rise time of 24 μs, fall time of 46 μs under 1064 nm illumination), and free from an external source-drain power supply. The all-2D-materials heterostructure has promising applications in future novel high responsivity, high speed and flexible NIR devices.

  4. Magnetic engineering in InSe/black-phosphorus heterostructure by transition-metal-atom Sc-Zn doping in the van der Waals gap

    Science.gov (United States)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang

    2018-07-01

    Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.

  5. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    NARCIS (Netherlands)

    Baart, T.A.; Eendebak, P.T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2016-01-01

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the

  6. Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy

    Science.gov (United States)

    Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.

    2017-01-01

    The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/VHEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.

  7. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  8. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    International Nuclear Information System (INIS)

    Hahn, Herwig; Kalisch, Holger; Vescan, Andrei; Pécz, Béla; Kovács, András; Heuken, Michael

    2015-01-01

    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10 13  cm –2 allowing to considerably shift the threshold voltage to more positive values

  9. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  10. Critical thickness for the formation of misfit dislocations originating from prismatic slip in semipolar and nonpolar III-nitride heterostructures

    KAUST Repository

    Smirnov, A. M.

    2016-01-20

    We calculate the critical thickness for misfit dislocation (MD) formation in lattice mismatched semipolar and nonpolar III-nitride wurtzite semiconductor layers for the case of MDs originated from prismatic slip (PSMDs). It has been shown that there is a switch of stress relaxation modes from generation of basal slip originated MDs to PSMDs after the angle between c-axis in wurtzite crystal structure and the direction of semipolar growth reaches a particular value, e.g., ∼70° for Al0.13Ga0.87N/GaN (h0h̄ 1) semipolar heterostructures. This means that for some semipolar growth orientations of III-nitride heterostructures biaxial relaxation of misfit stress can be realized. The results of modeling are compared to experimental data on the onset of plastic relaxation in AlxGa1−xN/GaN heterostructures.

  11. Size and strain tunable band alignment of black-blue phosphorene lateral heterostructures.

    Science.gov (United States)

    Li, Yan; Ma, Fei

    2017-05-17

    Single-element lateral heterostructures composed of black and blue phosphorene are not only free from lattice mismatch but also exhibit rich physical properties related to the seamlessly stitched interfaces, providing the building blocks for designing atomically thin devices. Using first-principles calculations, we investigate the influence of interface structure, size effect and strain engineering on the electronic structure, effective masses and band alignment of black-blue phosphorene lateral heterostructures. The lateral heterostructure with an octatomic-ring interface presents a strong metallic feature due to the interface states, while a metal-semiconductor transition takes place in the system with a hexatomic-ring interface upon hydrogen passivation. Following a reciprocal scaling law, the band gap is tuned in a wide energy range by synchronously increasing the widths of black and blue phosphorene or by only widening that of black phosphorene. Moreover, type-II band alignment is observed in the width ranges of 2.0-3.1 nm and 3.7-4.2 nm, out of which it is type-I. However, the band gap and effective masses show small changes if only the width of blue phosphorene is altered. When the lateral heterostructure is tensile loaded, the effective mass ratio of hole to electron is enlarged by an order of magnitude at a strain of 4% along the zigzag direction. Meanwhile, the band alignment undergoes a crossover from type-I to type-II at a strain of 2%, facilitating efficient electron-hole separation for light detection and harvesting.

  12. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth, E-mail: ananth.dodabalapur@engr.utexas.edu [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Geier, Michael L.; Prabhumirashi, Pradyumna L. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Department of Medicine, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-02-10

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm{sup 2} V{sup −1} s{sup −1} at low operating voltages (<5 V) in air. We further show that the SWCNT-ZTO hybrid ambipolar FETs can be integrated into functional inverter circuits that display high peak gain (>10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures.

  13. Transfer matrix approach to electron transport in monolayer MoS2/MoO x heterostructures

    Science.gov (United States)

    Li, Gen

    2018-05-01

    Oxygen plasma treatment can introduce oxidation into monolayer MoS2 to transfer MoS2 into MoO x , causing the formation of MoS2/MoO x heterostructures. We find the MoS2/MoO x heterostructures have the similar geometry compared with GaAs/Ga1‑x Al x As semiconductor superlattice. Thus, We employ the established transfer matrix method to analyse the electron transport in the MoS2/MoO x heterostructures with double-well and step-well geometries. We also considere the coupling between transverse and longitudinal kinetic energy because the electron effective mass changes spatially in the MoS2/MoO x heterostructures. We find the resonant peaks show red shift with the increasing of transverse momentum, which is similar to the previous work studying the transverse-momentum-dependent transmission in GaAs/Ga1‑x Al x As double-barrier structure. We find electric field can enhance the magnitude of peaks and intensify the coupling between longitudinal and transverse momentums. Moreover, higher bias is applied to optimize resonant tunnelling condition to show negative differential effect can be observed in the MoS2/MoO x system.

  14. X-ray diffraction study of epitaxial heterostructures of II-VI CdTe and ZnTe semiconductors; Etude par diffraction de rayons X d`heterostructures epitaxiees a base des semi-conducteurs II-VI CdTe et ZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet-Boudet, N.

    1996-10-07

    This work deals with the structural study of II-VI semiconductor (CdTe and ZnTe) heterostructures by X-ray diffraction and reflectivity. These heterostructures have a high lattice parameter misfit and are grown by Molecular Beam Epitaxy. Two main subjects are developed: the characterization of ZnTe wires, grown by step propagation on a CdTe (001) vicinal surface, and the study of the vertical correlations in Cd{sub 0.8}Zn{sub 0.2}Te / CdTe superlattices and superlattices made of ZnTe fractional layers spaced by CdTe. The growth of organised system is up to date; its aim is to realize quantum boxes (or wires) superlattices which are laterally and vertically ordered. The deformation along the growth axis induced by a ZnTe fractional layer inserted in a CdTe matrix is modelled, in the kinematical approximation, to reproduce the reflectivity measured around the substrate (004) Bragg peak. The lateral periodicity of the wires, deposited on a vicinal surface is a new and difficult subject. Some results are obtained on a vertical superlattice grown on a 1 deg. mis-cut surface. The in-plane and out-of-plane correlation lengths of a Cd{sub 0.8}Zn{sub 0.2}Te / CdTe superlattice are deduced from the diffused scattered intensity measured at grazing incidence. The calculations are made within the `distorted Wave Born Approximation`. The vertical correlation in ZnTe boxes (or wines) superlattices can be measured around Bragg peaks. It is twice bigger in a superlattice grown on a 2 deg. mis-cut substrate than a nominal one. (author). 74 refs.

  15. Influence of Au Nanoparticle Shape on Au@Cu2O Heterostructures

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2015-01-01

    Full Text Available Synthesis of metal-semiconductor heterostructures may allow the combination of function of the corresponding components and/or the enhanced performance resulting from the interactions between all the components. In this paper, Au@Cu2O core-shell heterostructures are prepared by a seed-growth method, using different-shaped Au nanocrystals as the seeds such as nanorods, octahedra, decahedra, dots, and nanocubes. The results revealed that the final structure of Au@Cu2O was greatly influenced by the shape of the seeds used. Exposure of Cu2O{111} and Cu2O{001} favored when the overgrowth happened on Au{111} and Au{001} surface, respectively. The size of the product can also be tuned by the amount of the seeds. The results reported here provide a thinking clue to modulate the shape and size of core-shell nanocrystals, which is useful in developing new materials with desired performance.

  16. 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics

    Science.gov (United States)

    Suris, Robert A.; Vorobjev, Leonid E.; Firsov, Dmitry A.

    2015-01-01

    The 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics was held on November 24 - 28 at St. Petersburg Polytechnic University. The program of the Conference included semiconductor technology, heterostructures with quantum wells and quantum dots, opto- and nanoelectronic devices, and new materials. A large number of participants with about 200 attendees from many regions of Russia provided a perfect platform for the valuable discussions between students and experienced scientists. The Conference included two invited talks given by a corresponding member of RAS P.S. Kopyev ("Nitrides: the 4th Nobel Prize on semiconductor heterostructures") and Dr. A.V. Ivanchik ("XXI century is the era of precision cosmology"). Students, graduate and postgraduate students presented their results on plenary and poster sessions. The total number of accepted papers published in Russian (the official conference language) was 92. Here we publish 18 of them in English. Like previous years, the participants were involved in the competition for the best report. Certificates and cash prizes were awarded to a number of participants for the presentations selected by the Program Committee. Two special E.F. Gross Prizes were given for the best presentations in semiconductor optics. Works with potential applications were recommended for participation in the following competition for support from the Russian Foundation for Assistance to Small Innovative Enterprises in Science and Technology. The Conference was supported by the Russian Foundation for Basic Research, the "Dynasty" foundation and the innovation company "ATC - Semiconductor Devices", St. Petersburg. The official Conference website is http://www.semicond.spbstu.ru/conf2014-eng.html

  17. Transition metal atoms absorbed on MoS2/h-BN heterostructure: stable geometries, band structures and magnetic properties.

    Science.gov (United States)

    Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin

    2018-06-15

    We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.

  18. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  19. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    Science.gov (United States)

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  20. Axial Ge/Si nanowire heterostructure tunnel FETs.

    Energy Technology Data Exchange (ETDEWEB)

    Dayeh, Shadi A. (Los Alamos National Laboratory); Gin, Aaron V.; Huang, Jian Yu; Picraux, Samuel Thomas (Los Alamos National Laboratory)

    2010-03-01

    }20{sup o} off the <111> axis at about 300 nm away from the Ge/Si interface. This provides a natural marker for placing the gate contact electrodes and gate metal at appropriate location for desired high-on current and reduced ambipolarity as shown in Fig. 2. The 1D heterostructures allow band-edge engineering in the transport direction, not easily accessible in planar devices, providing an additional degree of freedom for designing tunnel FETs (TFETs). For instance, a Ge tunnel source can be used for efficient electron/hole tunneling and a Si drain can be used for reduced back-tunneling and ambipolar behavior. Interface abruptness on the other hand (particularly for doping) imposes challenges in these structures and others for realizing high performance TFETs in p-i-n junctions. Since the metal-semiconductor contacts provide a sharp interface with band-edge control, we use properly designed Schottky contacts (aided by 3D Silvaco simulations) as the tunnel barriers both at the source and drain and utilize the asymmetry in the Ge/Si channel bandgap to reduce ambipolar transport behavior generally observed in TFETs. Fig. 3 shows the room-temperature transfer curves of a Ge/Si heterostructure TFET (H-TFET) for different V{sub DS} values showing a maximum on-current of {approx}7 {micro}A, {approx}170 mV/decade inverse subthreshold slope and 5 orders of magnitude I{sub on}/I{sub off} ratios for all V{sub DS} biases considered here. This high on-current value is {approx}1750 X higher than that obtained with Si p-i-n{sup +} NW TFETs and {approx}35 X higher than that obtained with CNT TFET. The I{sub on}/I{sub off} ratio and inverse subthreshold slope compare favorably to that of Si {approx} 10{sup 3} I{sub on}/I{sub off} and {approx} 800 mV/decade SS{sup -1} but lags behind those of CNT TFET due to poor PECVD nitride gate oxide quality ({var_epsilon}{sub r} {approx} 3-4). The asymmetry in the Schottky barrier heights used here eliminates the stringent requirements of abrupt

  1. Nanoparticle Stability in Axial InAs-InP Nanowire Heterostructures with Atomically Sharp Interfaces.

    Science.gov (United States)

    Zannier, Valentina; Rossi, Francesca; Dubrovskii, Vladimir G; Ercolani, Daniele; Battiato, Sergio; Sorba, Lucia

    2018-01-10

    The possibility to expand the range of material combinations in defect-free heterostructures is one of the main motivations for the great interest in semiconductor nanowires. However, most axial nanowire heterostructures suffer from interface compositional gradients and kink formation, as a consequence of nanoparticle-nanowire interactions during the metal-assisted growth. Understanding such interactions and how they affect the growth mode is fundamental to achieve a full control over the morphology and the properties of nanowire heterostructures for device applications. Here we demonstrate that the sole parameter affecting the growth mode (straight or kinked) of InP segments on InAs nanowire stems by the Au-assisted method is the nanoparticle composition. Indeed, straight InAs-InP nanowire heterostructures are obtained only when the In/Au ratio in the nanoparticles is low, typically smaller than 1.5. For higher In content, the InP segments tend to kink. Tailoring the In/Au ratio by the precursor fluxes at a fixed growth temperature enables us to obtain straight and radius-uniform InAs-InP nanowire heterostructures (single and double) with atomically sharp interfaces. We present a model that is capable of describing all the experimentally observed phenomena: straight growth versus kinking, the stationary nanoparticle compositions in pure InAs and InAs-InP nanowires, the crystal phase trends, and the interfacial abruptness. By taking into account different nanowire/nanoparticle interfacial configurations (forming wetting or nonwetting monolayers in vertical or tapered geometry), our generalized model provides the conditions of nanoparticle stability and abrupt heterointerfaces for a rich variety of growth scenarios. Therefore, our results provide a powerful tool for obtaining high quality InAs-InP nanowire heterostructures with well-controlled properties and can be extended to other material combinations based on the group V interchange.

  2. CCST [Center for Compound Semiconductor Technology] research briefs

    International Nuclear Information System (INIS)

    Zipperian, T.E.; Voelker, E.R.

    1989-12-01

    This paper discusses the following topics: theoretical predictions of valence and conduction band offsets in III-V semiconductors; reflectance modulation of a semiconductor superlattice optical mirror; magnetoquantum oscillations of the phonon-drag thermoelectric power in quantum wells; correlation between photoluminescence line shape and device performance of p-channel strained-layer materials; control of threading dislocations in heteroepitaxial structures; improved growth of CdTe on GaAs by patterning; role of structure threading dislocations in relaxation of highly strained single-quantum-well structures; InAlAs growth optimization using reflection mass spectrometry; nonvolatile charge storage in III-V heterostructures; optically triggered thyristor switches; InAsSb strained-layer superlattice infrared detectors with high detectivities; resonant periodic gain surface-emitting semiconductor lasers; performance advantages of strained-quantum-well lasers in AlGaAs/InGaAs; optical integrated circuit for phased-array radar antenna control; and deposition and novel device fabrication from Tl 2 Ca 2 Ba 2 Cu 3 O y thin films

  3. Carrier concentration induced ferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  4. Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting

    Science.gov (United States)

    Wang, Biao; Kuang, Anlong; Luo, Xukai; Wang, Guangzhao; Yuan, Hongkuan; Chen, Hong

    2018-05-01

    Two-dimensional (2D) gallium sulfide (GaS), hexagonal boron nitride (h-BN) and graphitic carbon nitride (g-C3N4) have been fabricated and expected to be promising photocatalysts under ultraviolet irradiation. Here, we employ hybrid density functional calculations to explore the potential of the 2D GaS-based heterojunctions GaS/h-BN (g-C3N4) for the design of efficient water redox photocatalysts. Both heterostructures can be formed via van der Waals (vdW) interaction and are direct bandgap semiconductors, whose bandgaps are reduced comparing with isolated GaS, h-BN or g-C3N4 monolayers and whose bandedges straddle water redox potentials. Furthermore, the optical absorption of GaS/h-BN (g-C3N4) heterostructures is observably enhanced in the ultraviolet-visible (UV-vis) light range. The electron-hole pairs in GaS/h-BN (g-C3N4) heterostructures are completely separated from different layers. In addition, the in-plane biaxial strain can effectively modulate the electronic properties of GaS/h-BN (g-C3N4) heterostructures. Thus the GaS/h-BN (g-C3N4) heterostructures are anticipated to be promising candidates for photocatalytic water splitting to produce hydrogen.

  5. Main principles of developing exploitation models of semiconductor devices

    Science.gov (United States)

    Gradoboev, A. V.; Simonova, A. V.

    2018-05-01

    The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.

  6. The relationship between the dislocations and microstructure in In0.82Ga0.18As/InP heterostructures.

    Science.gov (United States)

    Zhao, Liang; Guo, Zuoxing; Wei, Qiulin; Miao, Guoqing; Zhao, Lei

    2016-10-11

    In this work, we propose a formation mechanism to explain the relationship between the surface morphology (and microstructure) and dislocations in the In 0.82 Ga 0.18 As/InP heterostructure. The In 0.82 Ga 0.18 As epitaxial layers were grown on the InP (100) substrate at various temperatures (430 °C, 410 °C and 390 °C) using low pressure metalorganic chemical vapor deposition (LP-MOCVD). Obvious protrusions and depressions were obseved on the surface of the In 0.82 Ga 0.18 As/InP heterostructure because of the movement of dislocations from the core to the surface. The surface morphologies of the In 0.82 Ga 0.18 As/InP (100) system became uneven with increasing temperature, which was associated with the formation of dislocations. Such research investigating the dislocation of large lattice mismatch heterostructures may play an important role in the future-design of semiconductor films.

  7. Tunnelling and relaxation in semiconductor double quantum wells

    International Nuclear Information System (INIS)

    Ferreira, R.; Bastard, G.

    1997-01-01

    Double quantum wells are among the simplest semiconductor heterostructures exhibiting tunnel coupling. The existence of a quantum confinement effect for the energy levels of a narrow single quantum well has been largely studied. In double quantum wells, in addition to these confinement effects which characterize the levels of the isolated wells, one faces the problem of describing the eigenstates of systems interacting weakly through a potential barrier. In addition, the actual structures differ from the ideal systems studied in the quantum mechanics textbooks in many aspects. The presence of defects leads, for instance, to an irreversible time evolution for a population of photocreated carriers. This irreversible transfer is now clearly established experimentally. The resonant behaviour of the transfer has also been evidenced, from the study of biased structures. If the existence of an interwell transfer is now clearly established from the experimental point of view, its theoretical description, however, is not fully satisfactory. This review focuses on the theoretical description of the energy levels and of the interwell assisted transfer in double quantum wells. We shall firstly outline the problem of tunnel coupling in semiconductor heterostructures and then discuss the single particle and exciton eigenstates in double quantum wells. In the remaining part of the review we shall present and critically review a few theoretical models used to describe the assisted interwell transfer in these structures. (author)

  8. Synchrotron radiation studies of inorganic-organic semiconductor interfaces

    International Nuclear Information System (INIS)

    Evans, D.A.; Steiner, H.J.; Vearey-Roberts, A.R.; Bushell, A.; Cabailh, G.; O'Brien, S.; Wells, J.W.; McGovern, I.T.; Dhanak, V.R.; Kampen, T.U.; Zahn, D.R.T.; Batchelor, D.

    2003-01-01

    Organic semiconductors (polymers and small molecules) are widely used in electronic and optoelectronic technologies. Many devices are based on multilayer structures where interfaces play a central role in device performance and where inorganic semiconductor models are inadequate. Synchrotron radiation techniques such as photoelectron spectroscopy (PES), near-edge X-ray absorption fine structure (NEXAFS) and X-ray standing wave spectroscopy (XSW) provide a powerful means of probing the structural, electronic and chemical properties of these interfaces. The surface-specificity of these techniques allows key properties to be monitored as the heterostructure is fabricated. This methodology has been directed at the growth of hybrid organic-inorganic semiconductor interfaces involving copper phthalocyanine as the model organic material and InSb and GaAs as the model inorganic semiconductor substrates. Core level PES has revealed that these interfaces are abrupt and chemically inert due to the weak bonding between the molecules and the inorganic semiconductor. NEXAFS studies have shown that there is a preferred orientation of the molecules within the organic semiconductor layers. The valence band offsets for the heterojunctions have been directly measured using valence level PES and were found to be very different for copper phthalocyanine on InSb and GaAs (0.7 and -0.3 eV respectively) although an interface dipole is present in both cases

  9. Ballistic-electron-emission spectroscopy of AlxGa1-xAs/GaAs heterostructures: Conduction-band offsets, transport mechanisms, and band-structure effects

    International Nuclear Information System (INIS)

    OShea, J.J.; Brazel, E.G.; Rubin, M.E.; Bhargava, S.; Chin, M.A.; Narayanamurti, V.

    1997-01-01

    We report an extensive investigation of semiconductor band-structure effects in single-barrier Al x Ga 1-x As/GaAs heterostructures using ballistic-electron-emission spectroscopy (BEES). The transport mechanisms in these single-barrier structures were studied systematically as a function of temperature and Al composition over the full compositional range (0≤x≤1). The initial (Γ) BEES thresholds for Al x Ga 1-x As single barriers with 0≤x≤0.42 were extracted using a model which includes the complete transmission probability of the metal-semiconductor interface and the semiconductor heterostructure. Band offsets measured by BEES are in good agreement with previous measurements by other techniques which demonstrates the accuracy of this technique. BEES measurements at 77 K give the same band-offset values as at room temperature. When a reverse bias is applied to the heterostructures, the BEES thresholds shift to lower voltages in good agreement with the expected bias-induced band-bending. In the indirect band-gap regime (x>0.45), spectra show a weak ballistic-electron-emission microscopy current contribution due to intervalley scattering through Al x Ga 1-x As X valley states. Low-temperature spectra show a marked reduction in this intervalley current component, indicating that intervalley phonon scattering at the GaAs/Al x Ga 1-x As interface produces a significant fraction of thisX valley current. A comparison of the BEES thresholds with the expected composition dependence of the Al x Ga 1-x As Γ, L, and X points yields good agreement over the entire composition range. copyright 1997 The American Physical Society

  10. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien; Amani, Matin; Desai, Sujay B.; Ahn, Geun Ho; Han, Kevin; He, Jr-Hau; Ager, Joel W.; Wu, Ming C.; Javey, Ali

    2018-01-01

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  11. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien

    2018-04-04

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  12. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    Science.gov (United States)

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  13. A feasibility study on SiC optoinjected CCD with buried channels

    International Nuclear Information System (INIS)

    Ye Na; Chen Zhiming; Xie Longfei

    2013-01-01

    An SiC optoinjected charge-coupled device with buried channels (BCCD) is designed for the detection of ultraviolet light (UV), and its feasibility is studied by means of Silvaco numerical simulation software. Charge storage and transfer characteristics of the BCCD can be conformed by simulation results. The buried channel design is a key point to realize the high sensitivity of the device. The channel mobility of electrons in the 6H-SiC BCCD can be changed from 47 to 200 cm 2 /(V.s) when the channel is replaced from surface to the subsurface of 0.2 μm. With the optimized device parameters, the density of stored electrons can reach up to 1.062 × 10 11 cm −2 and the number of stored electrons is up to 1.826 × 10 8 for UV light with wavelengths from 200 to 380 nm and an intensity of 0.1 W/cm 2 under a driving voltage of 15 V at room temperature. (semiconductor devices)

  14. Influence of the side chain and substrate on polythiophene thin film surface, bulk, and buried interfacial structures.

    Science.gov (United States)

    Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan

    2016-08-10

    The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting

  15. Growth and Device Performance of AlGaN/GaN Heterostructure with AlSiC Precoverage on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Lee

    2014-01-01

    Full Text Available A crack-free AlGaN/GaN heterostructure was grown on 4-inch Si (111 substrate with initial dot-like AlSiC precoverage layer. It is believed that introducing the AlSiC layer between AlN wetting layer and Si substrate is more effective in obtaining a compressively stressed film growth than conventional Al precoverage on Si surface. The metal semiconductor field effect transistor (MESFET, fabricated on the AlGaN/GaN heterostructure grown with the AlSiC layer, exhibited normally on characteristics, such as threshold voltage of −2.3 V, maximum drain current of 370 mA/mm, and transconductance of 124 mS/mm.

  16. General Considerations of the Electrostatic Boundary Conditions in Oxide Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Takuya

    2011-08-19

    When the size of materials is comparable to the characteristic length scale of their physical properties, novel functionalities can emerge. For semiconductors, this is exemplified by the 'superlattice' concept of Esaki and Tsu, where the width of the repeated stacking of different semiconductors is comparable to the 'size' of the electrons, resulting in novel confined states now routinely used in opto-electronics. For metals, a good example is magnetic/non-magnetic multilayer films that are thinner than the spin-scattering length, from which giant magnetoresistance (GMR) emerged, used in the read heads of hard disk drives. For transition metal oxides, a similar research program is currently underway, broadly motivated by the vast array of physical properties that they host. This long-standing notion has been recently invigorated by the development of atomic-scale growth and probe techniques, which enables the study of complex oxide heterostructures approaching the precision idealized in Fig. 1(a). Taking the subset of oxides derived from the perovskite crystal structure, the close lattice match across many transition metal oxides presents the opportunity, in principle, to develop a 'universal' heteroepitaxial materials system. Hand-in-hand with the continual improvements in materials control, an increasingly relevant challenge is to understand the consequences of the electrostatic boundary conditions which arise in these structures. The essence of this issue can be seen in Fig. 1(b), where the charge sequence of the sublayer 'stacks' for various representative perovskites is shown in the ionic limit, in the (001) direction. To truly 'universally' incorporate different properties using different materials components, be it magnetism, ferroelectricity, superconductivity, etc., it is necessary to access and join different charge sequences, labelled here in analogy to the designations 'group IV, III-V, II

  17. Photocatalysis-Based Nanoprobes Using Noble Metal-Semiconductor Heterostructure for Visible Light-Driven in Vivo Detection of Mercury.

    Science.gov (United States)

    Zhi, Lihua; Zeng, Xiaofan; Wang, Hao; Hai, Jun; Yang, Xiangliang; Wang, Baodui; Zhu, Yanhong

    2017-07-18

    The development of sensitive and reliable methods to monitor the presence of mercuric ions in cells and organisms is of great importance to biological research and biomedical applications. In this work, we propose a strategy to construct a solar-driven nanoprobe using a 3D Au@MoS 2 heterostructure as a photocatalyst and rhodamine B (RB) as a fluorescent and color change reporter molecule for monitoring Hg 2+ in living cells and animals. The sensing mechanism is based on the photoinduced electron formation of gold amalgam in the 3D Au@MoS 2 heterostructure under visible light illumination. This formation is able to remarkably inhibit the photocatalytic activity of the heterostructure toward RB decomposition. As a result, "OFF-ON" fluorescence and color change are produced. Such characteristics enable this new sensing platform to sensitively and selectively detect Hg 2+ in water by fluorescence and colorimetric methods. The detection limits of the fluorescence assay and colorimetric assay are 0.22 and 0.038 nM for Hg 2+ , respectively; these values are well below the acceptable limits in drinking water standards (10 nM). For the first time, such photocatalysis-based sensing platform is successfully used to monitor Hg 2+ in live cells and mice. Our work therefore opens a promising photocatalysis-based analysis methodology for highly sensitive and selective in vivo Hg 2+ bioimaging studies.

  18. CdSe/beta-Pb0.33V2O5 heterostructures: Nanoscale semiconductor interfaces with tunable energetic configurations for solar energy conversion and storage

    Science.gov (United States)

    Milleville, Christopher C.

    This dissertation focuses on the formation and characterization of semiconductor heterostructures, consisting of light-harvesting cadmium selenide quantum dots (CdSe QDs) and single crystalline lead vanadium oxide nanowires (β-Pb0.33V2O5 NWs), for the purpose of excited-state charge transfer and photocatalytic production of solar fuels. We reported two distinct routes for assembling CdSe/β-Pb0.33V2O5 heterostructures: linker-assisted assembly (LAA) mediated by a bifunctional ligand and successive ionic layer adsorption and reaction (SILAR). In the former case, the thiol end of a molecular linker, cysteine (Cys) is found to bind to the QD surface, whereas a protonated amine moiety interacts electrostatically with the negatively charged NW surface. In the alternative SILAR route, the surface coverage of CdSe on the β-Pb0.33V2O5 NWs is tuned by varying the number of successive precipitation cycles. Hard X-ray photoelectron spectroscopy (HAXPES) measurements revealed that the mid-gap states of β-Pb0.33V2O5 NWs are closely overlapped in energy with the valence band edges of CdSe QDs, suggesting that hole transfer from the valence band of CdSe into the mid-gap states is possible. Preliminary evidence of hole transfer was obtained through photoluminescence quenching experiments. Steady-state and time-resolved photoluminescence measurements on Cys-CdSe dispersions, mixed dispersions of Cys-CdSe QDs and β-Pb0.33V¬2O5 NWs, and mixed dispersions of Cys-CdS QDs and V2O5 revealed a greater extent of quenching of the emission of Cys-CdSe QDs by β Pb0.33V¬2O5 relative to V2O5. V2O5, devoid of mid-gap states, is unable to accept holes from CdSe and therefore should not quench emission to the same extent as β-Pb0.33V¬2O5. The additional quenching was dynamic, consistent with a mechanism involving the transfer of photogenerated holes from CdSe QDs to the mid-gap states of β Pb0.33V2O5. Transient absorption spectroscopy (TA) was used to probe the dynamics of interfacial

  19. Carrier diffusion in low-dimensional semiconductors. a comparison of quantum wells, disordered quantum wells, and quantum dots

    NARCIS (Netherlands)

    Fiore, A.; Rossetti, M.; Alloing, B.; Paranthoën, C.; Chen, J.X.; Geelhaar, L.; Riechert, H.

    2004-01-01

    We present a comparative study of carrier diffusion in semiconductor heterostructures with different dimensionality [InGaAs quantum wells (QWs), InAs quantum dots (QDs), and disordered InGaNAs QWs (DQWs)]. In order to evaluate the diffusion length in the active region of device structures, we

  20. Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    M. Agrawal

    2017-01-01

    Full Text Available The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V∼1and GaN is grown under N-rich growth regime (III/V<1. The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1 and metal rich growth regime (III/V≥1, respectively. AlGaN/GaN high electron mobility transistor (HEMT heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm−2.

  1. A high voltage SOI pLDMOS with a partial interface equipotential floating buried layer

    International Nuclear Information System (INIS)

    Wu Lijuan; Zhang Wentong; Zhang Bo; Li Zhaoji

    2013-01-01

    A novel silicon-on-insulator (SOI) high-voltage pLDMOS is presented with a partial interface equipotential floating buried layer (FBL) and its analytical model is analyzed in this paper. The surface heavily doped p-top layers, interface floating buried N + /P + layers, and three-step field plates are designed carefully in the FBL SOI pLDMOS to optimize the electric field distribution of the drift region and reduce the specific resistance. On the condition of ESIMOX (epoxy separated by implanted oxygen), it has been shown that the breakdown voltage of the FBL SOI pLDMOS is increased from −232 V of the conventional SOI to −425 V and the specific resistance R on,sp is reduced from 0.88 to 0.2424 Ω·cm 2 . (semiconductor devices)

  2. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten

    2008-07-01

    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  3. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan

    2011-05-01

    Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

  4. Theoretical investigation of spin-filtering in CrAs/GaAs heterostructures

    International Nuclear Information System (INIS)

    Stickler, B. A.; Ertler, C.; Pötz, W.; Chioncel, L.

    2013-01-01

    The electronic structure of bulk zinc-blende GaAs, zinc-blende and tetragonal CrAs, and CrAs/GaAs supercells, computed within linear muffin-tin orbital (LMTO) local spin-density functional theory, is used to extract the band alignment for the [1,0,0] GaAs/CrAs interface in dependence of the spin orientation. With the lateral lattice constant fixed to the experimental bulk GaAs value, a local energy minimum is found for a tetragonal CrAs unit cell with a longitudinal ([1,0,0]) lattice constant reduced by ≈2%. Due to the identified spin-dependent band alignment, half-metallicity of CrAs no longer is a key requirement for spin-filtering. Based on these findings, we study the spin-dependent tunneling current in [1,0,0] GaAs/CrAs/GaAs heterostructures within the non-equilibrium Green's function approach for an effective tight-binding Hamiltonian derived from the LMTO electronic structure. Results indicate that these heterostructures are promising candidates for efficient room-temperature all-semiconductor spin-filtering devices

  5. The Integration of Bacteriorhodopsin Proteins with Semiconductor Heterostructure Devices

    Science.gov (United States)

    Xu, Jian

    2008-03-01

    Bioelectronics has emerged as one of the most rapidly developing fields among the active frontiers of interdisciplinary research. A major thrust in this field is aimed at the coupling of the technologically-unmatched performance of biological systems, such as neural and sensing functions, with the well developed technology of microelectronics and optoelectronics. To this end we have studied the integration of a suitably engineered protein, bacteriorhodopsin (BR), with semiconductor optoelectronic devices and circuits. Successful integration will potentially lead to ultrasensitive sensors with polarization selectivity and built-in preprocessing capabilities that will be useful for high speed tracking, motion and edge detection, biological detection, and artificial vision systems. In this presentation we will summarize our progresses in this area, which include fundamental studies on the transient dynamics of photo-induced charge shift in BR and the coupling mechanism at protein-semiconductor interface for effective immobilizing and selectively integrating light sensitive proteins with microelectronic devices and circuits, and the device engineering of BR-transistor-integrated optical sensors as well as their applications in phototransceiver circuits. Work done in collaboration with Pallab Bhattacharya, Jonghyun Shin, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI; Robert R. Birge, Department of Chemistry, University of Connecticut, Storrs, CT 06269; and György V'ar'o, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Science, H-6701 Szeged, Hungary.

  6. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kushavah, Dushyant [Centre for Research in Nanotechnology and Science, IIT Bombay-400076, Mumbai (India); Mohapatra, P. K.; Vasa, P.; Singh, B. P., E-mail: bhanups@iitb.ac.in [Department of physics, IIT Bombay, Mumbai-400076 (India); Rustagi, K. C. [Indian Institute of Science Education and Research Bhopal-462066, Bhopal (India); Bahadur, D. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai-400076 (India)

    2015-05-15

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ∼5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ∼597 to ∼746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ∼51 ns as compared to ∼6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  7. Layer-dependent electronic properties of phosphorene-like materials and phosphorene-based van der Waals heterostructures.

    Science.gov (United States)

    Huang, Y C; Chen, X; Wang, C; Peng, L; Qian, Q; Wang, S F

    2017-06-29

    Black phosphorus is a layered semiconducting allotrope of phosphorus with high carrier mobility. Its monolayer form, phosphorene, is an extremely fashionable two-dimensional material which has promising potential in transistors, optoelectronics and electronics. However, phosphorene-like analogues, especially phosphorene-based heterostructures and their layer-controlled electronic properties, are rarely systematically investigated. In this paper, the layer-dependent structural and electronic properties of phosphorene-like materials, i.e., mono- and few-layer MXs (M = Sn, Ge; X = S, Se), are first studied via first-principles calculations, and then the band edge position of these MXs as well as mono- and few-layer phosphorene are aligned. It is revealed that van der Waals heterostructures with a Moiré superstructure formed by mutual coupling among MXs and among MXs and few-layer phosphorene are able to show type-I or type-II characteristics and a I-II or II-I transition can be induced by adjusting the number of layers. Our work is expected to yield a new family of phosphorene-based semiconductor heterostructures with tunable electronic properties through altering the number of layers of the composite.

  8. Studies of optical properties and applications of some mixed ternary semiconductors

    International Nuclear Information System (INIS)

    Ghosh, P.S.; Ghosh, D.K.; Samanta, L.K.

    1989-01-01

    Refractive indices of some mixed compound semiconductors below the bandgap are presented on the basis of some fundamental parameters and the effect of lattice mismatch on the refractive index step is also studied. The results help to design a variety of opto-electronic devices for the use in optical fiber communication and heterostructure lasers. The calculated values agree well with available experimental values thus justifying the approach. (author)

  9. Low-temperature magnetotransport in Si/SiGe heterostructures on 300 mm Si wafers

    Science.gov (United States)

    Scappucci, Giordano; Yeoh, L.; Sabbagh, D.; Sammak, A.; Boter, J.; Droulers, G.; Kalhor, N.; Brousse, D.; Veldhorst, M.; Vandersypen, L. M. K.; Thomas, N.; Roberts, J.; Pillarisetty, R.; Amin, P.; George, H. C.; Singh, K. J.; Clarke, J. S.

    Undoped Si/SiGe heterostructures are a promising material stack for the development of spin qubits in silicon. To deploy a qubit into high volume manufacturing in a quantum computer requires stringent control over substrate uniformity and quality. Electron mobility and valley splitting are two key electrical metrics of substrate quality relevant for qubits. Here we present low-temperature magnetotransport measurements of strained Si quantum wells with mobilities in excess of 100000 cm2/Vs fabricated on 300 mm wafers within the framework of advanced semiconductor manufacturing. These results are benchmarked against the results obtained in Si quantum wells deposited on 100 mm Si wafers in an academic research environment. To ensure rapid progress in quantum wells quality we have implemented fast feedback loops from materials growth, to heterostructure FET fabrication, and low temperature characterisation. On this topic we will present recent progress in developing a cryogenic platform for high-throughput magnetotransport measurements.

  10. Electric field modulation of electronic structures in InSe and black phosphorus heterostructure

    Science.gov (United States)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Xia, Congxin; Wu, Meng; Wang, Hui; Cen, Yu-lang; Pan, Shu-hang

    2018-01-01

    The electronic structures of InSe and black phosphorus (BP) heterostructure modulated by an external electric field (E⊥) have been investigated based on first-principles calculations. We find that InSe/BP has type II band offset with a direct band gap of 0.39 eV, and the electrons (holes) are spatially located in InSe (BP) layer. Meanwhile, the band structures of InSe/BP can be effectively modulated by E⊥. The band gap shows linear variation with E⊥ and its maximum of 0.69 eV is observed when E⊥ is 0.4 V / Å. The InSe/BP experiences a transition from semiconductor to metal with E⊥ of -0.6 and 0.8 V / Å. The band offsets are also modulated by E⊥, resulting in different spatial distribution of electron-hole pairs. Most importantly, the high carrier mobility can be preserved well under E⊥. Our results show that the novel InSe/BP heterostructure has great potential application in electronic and optoelectronic devices.

  11. Coupling effects in heterostructures of pentacene and perfluorinated pentacene studied by optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Broch, Katharina; Heinemeyer, Ute; Hinderhofer, Alexander; Gerlach, Alexander; Schreiber, Frank [Institut fuer Angewandte Physik, Tuebingen (Germany); Anger, Falk [Institut fuer Angewandte Physik, Tuebingen (Germany); MATGAS 2000 AIE, Campus de la UAB, Bellaterra (Spain); Osso, Oriol [MATGAS 2000 AIE, Campus de la UAB, Bellaterra (Spain); Scholz, Reinhard [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    Heterostructures of organic semiconductors gain increasing interest in the last years because of their potential applications in organic electronics. To optimize those devices the understanding of the intermolecular coupling is crucial. Therefore, we investigate the optical absorption spectra of heterostructures and possible differences to the spectra of their single components. The combination of pentacene (PEN) with perfluorinated pentacene (PFP) is promising due to their similar geometric structure which can give rise to coevaporated films with a significant level of intermixing and accordingly an efficient intermolecular coupling. Indeed, performing in-situ-measurements with differential reflectance spectroscopy and spectroscopic ellipsometry we find features in the absorption spectra of mixed films that cannot be explained by a linear combination of the single film spectra. In the energy range between 1.4 eV and 2.4 eV spectra of PFP and PEN single and coevaporated films with different mixing ratios are compared and possible theoretical scenarios for coupling effects are discussed.

  12. Investigation of the compositional depth profile in epitaxial submicrometer layers of AIIIBV heterostructures

    International Nuclear Information System (INIS)

    Baumbach, T.; Bruehl, H.G.; Rhan, H.; Pietsch, U.

    1988-01-01

    The compositional depth profile in semiconductor heterostructures can be determined from X-ray diffraction patterns. Different grading profiles were studied through theoretical simulations with regard to their features in the rocking curve. It was found that the thickness and the grading of a particular layer cannot be determined independently of each other. A linear grading gives rise to an increased peak width of the layer diffraction peak whereas an exponential grading can be detected from the damping of high-order interference fringes. The exponential model can be applied to determine the abruptness of the heterointerfaces. The proposed evaluation method of experimental rocking curves includes the case of overlapping peaks of the layer and the substrate diffraction. The simulation results are discussed for a GaAs/Ga 1-x Al x As/GaAs[100] double heterostructure. When the experimental resolution is taken into account, the sensitivity of the interface width determination was 100-200 A. (orig.)

  13. Tuning the Schottky rectification in graphene-hexagonal boron nitride-molybdenum disulfide heterostructure.

    Science.gov (United States)

    Liu, Biao; Zhao, Yu-Qing; Yu, Zhuo-Liang; Wang, Lin-Zhi; Cai, Meng-Qiu

    2018-03-01

    It was still a great challenge to design high performance of rectification characteristic for the rectifier diode. Lately, a new approach was proposed experimentally to tune the Schottky barrier height (SBH) by inserting an ultrathin insulated tunneling layer to form metal-insulator-semiconductor (MIS) heterostructures. However, the electronic properties touching off the high performance of these heterostructures and the possibility of designing more efficient applications for the rectifier diode were not presently clear. In this paper, the structural, electronic and interfacial properties of the novel MIS diode with the graphene/hexagonal boron nitride/monolayer molybdenum disulfide (GBM) heterostructure had been investigated by first-principle calculations. The calculated results showed that the intrinsic properties of graphene and MoS 2 were preserved due to the weak van der Waals contact. The height of interfacial Schottky barrier can be tuned by the different thickness of hBN layers. In addition, the GBM Schottky diode showed more excellent rectification characteristic than that of GM Schottky diode due to the interfacial band bending caused by the epitaxial electric field. Based on the electronic band structure, we analyzed the relationship between the electronic structure and the nature of the Schottky rectifier, and revealed the potential of utilizing GBM Schottky diode for the higher rectification characteristic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Positron annihilation spectroscopy: Applications to Si, ZnO, and multilayer semiconductor structures

    Science.gov (United States)

    Schaffer, J. P.; Rohatgi, A.; Dewald, A. B.; Frost, R. L.; Pang, S. K.

    1989-11-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors is demonstrated for Si, ZnO, and multilayer structures, such as an AlGaAs/GaAs solar cell. The types of defects discussed include: i) vacancy complexes, oxygen impurities and dopants, ii) the influence of cooling rates on spatial non-uniformities in defects, and iii) characterization of buried interfaces. In sev-eral instances, the results of the PAS investigations are correlated with data from other established semiconductor characterization techniques.

  15. Deep Ultraviolet Light Emitters Based on (Al,Ga)N/GaN Semiconductor Heterostructures

    Science.gov (United States)

    Liang, Yu-Han

    Deep ultraviolet (UV) light sources are useful in a number of applications that include sterilization, medical diagnostics, as well as chemical and biological identification. However, state-of-the-art deep UV light-emitting diodes and lasers made from semiconductors still suffer from low external quantum efficiency and low output powers. These limitations make them costly and ineffective in a wide range of applications. Deep UV sources such as lasers that currently exist are prohibitively bulky, complicated, and expensive. This is typically because they are constituted of an assemblage of two to three other lasers in tandem to facilitate sequential harmonic generation that ultimately results in the desired deep UV wavelength. For semiconductor-based deep UV sources, the most challenging difficulty has been finding ways to optimally dope the (Al,Ga)N/GaN heterostructures essential for UV-C light sources. It has proven to be very difficult to achieve high free carrier concentrations and low resistivities in high-aluminum-containing III-nitrides. As a result, p-type doped aluminum-free III-nitrides are employed as the p-type contact layers in UV light-emitting diode structures. However, because of impedance-mismatch issues, light extraction from the device and consequently the overall external quantum efficiency is drastically reduced. This problem is compounded with high losses and low gain when one tries to make UV nitride lasers. In this thesis, we provide a robust and reproducible approach to resolving most of these challenges. By using a liquid-metal-enabled growth mode in a plasma-assisted molecular beam epitaxy process, we show that highly-doped aluminum containing III-nitride films can be achieved. This growth mode is driven by kinetics. Using this approach, we have been able to achieve extremely high p-type and n-type doping in (Al,Ga)N films with high aluminum content. By incorporating a very high density of Mg atoms in (Al,Ga)N films, we have been able to

  16. 33rd International Conference on the Physics of Semiconductors

    International Nuclear Information System (INIS)

    2017-01-01

    Preface to the Proceedings of the 33rd International Conference on the Physics of Semiconductors, Beijing, 2016 Shaoyun Huang 1 , Yingjie Xing 1 , Yang Ji 2 , Dapeng Yu 3 , and Hongqi Xu 1 1 Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China 2 SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 3 State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China From July 31 st to August 5 th , 2016, the 33rd International Conference on the Physics of Semiconductors (ICPS 2016) was held in Beijing, China, with a great success. The International Conference on the Physics of Semiconductors began in the 1950’s and is a premier biennial meeting for reporting all aspects of semiconductor physics including electronic, structural, optical, magnetic and transport properties. Reflecting the state of the art developments in semiconductor physics, ICPS 2016 served as an international forum for scholars, researchers, and specialists across the globe to discuss future research directions and technological advancements. The main topics of ICPS 2016 included: • Material growth, structural properties and characterization, phonons • Wide-bandgap semiconductors • Narrow-bandgap semiconductors • Carbon: nanotubes and graphene • 2D Materials beyond graphene • Organic semiconductors • Topological states of matter, topological Insulators and Weyl semimetals • Transport in heterostructures • Quantum Hall effects • Spintronics and spin phenomena • Electron devices and applications • Optical properties, optoelectronics, solar cells • Quantum optics, nanophotonics • Quantum information • Other topics in semiconductor physics and devices • Special topic: Majorana fermions in solid state (paper)

  17. Measurement of the Auger lifetime in GaInAsSb/GaSb heterostructures using the photoacoustic technique

    International Nuclear Information System (INIS)

    Riech, I.; Gomez-Herrera, M. L.; Diaz, P.; Mendoza-Alvarez, J. G.; Herrera-Perez, J. L.; Marin, E.

    2001-01-01

    We have studied Ga x In 1-x As y Sb 1-y /GaSb heterostructures for x=0.84 and y=0.14 using the photoacoustic technique with the heat transmission configuration. A theoretical model, which includes all the possible nonradiative recombination mechanisms that contribute to heat generation, was developed to calculate the photoacoustic signal for this type of heterostructure. The Auger recombination lifetime τ Auger was determined by fitting our experimental results to the calculated frequency dependence of the theoretical photoacoustic signal. The obtained value for τ Auger is compatible with those reported in the literature for semiconductors with band-gap energies below and above 0.5 eV, the energy region where there is a lack of experimental τ Auger values. Copyright 2001 American Institute of Physics

  18. Imaging the motion of electrons across semiconductor heterojunctions

    Science.gov (United States)

    Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  19. Spin-dependent tunneling recombination in heterostructures with a magnetic layer

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology (Finland)

    2017-01-15

    We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in the quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.

  20. Centimetre-scale electron diffusion in photoactive organic heterostructures

    Science.gov (United States)

    Burlingame, Quinn; Coburn, Caleb; Che, Xiaozhou; Panda, Anurag; Qu, Yue; Forrest, Stephen R.

    2018-02-01

    The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.

  1. Electron transport properties of indium oxide - indium nitride metal-oxide-semiconductor heterostructures

    International Nuclear Information System (INIS)

    Wang, C.Y.; Hauguth, S.; Polyakov, V.; Schwierz, F.; Cimalla, V.; Kups, T.; Himmerlich, M.; Schaefer, J.A.; Krischok, S.; Ambacher, O.; Morales, F.M.; Lozano, J.G.; Gonzalez, D.; Lebedev, V.

    2008-01-01

    The structural, chemical and electron transport properties of In 2 O 3 /InN heterostructures and oxidized InN epilayers are reported. It is shown that the accumulation of electrons at the InN surface can be manipulated by the formation of a thin surface oxide layer. The epitaxial In 2 O 3 /InN heterojunctions show an increase in the electron concentration due to the increasing band banding at the heterointerface. The oxidation of InN results in improved transport properties and in a reduction of the sheet carrier concentration of the InN epilayer very likely caused by a passivation of surface donors. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan

    2012-03-27

    Topological insulator is a new state of matter attracting tremendous interest due to its gapless linear dispersion and spin momentum locking topological states located near the surface. Heterostructures, which have traditionally been powerful in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered that an exotic topological state exists. Surprisingly, the state migrates from the nontrivial Bi 2Se 3 into the trivial Sb 2Se 3 region and spreads across the entire Sb 2Se 3 slab, extending beyond the concept of "surface" state while preserving all of the topological surface state characteristics. This unusual topological state arises from the coupling between different materials and the modification of electronic structure near Fermi energy. Our study demonstrates that heterostructures can open up opportunities for controlling the real-space distribution of the topological state and inducing quantum phase transitions between topologically trivial and nontrivial states. © 2012 American Chemical Society.

  3. Efficient Ab-Initio Electron Transport Calculations for Heterostructures by the Nonequilibrium Green’s Function Method

    Directory of Open Access Journals (Sweden)

    Hirokazu Takaki

    2014-01-01

    Full Text Available We present an efficient computation technique for ab-initio electron transport calculations based on density functional theory and the nonequilibrium Green’s function formalism for application to heterostructures with two-dimensional (2D interfaces. The computational load for constructing the Green’s functions, which depends not only on the energy but also on the 2D Bloch wave vector along the interfaces and is thus catastrophically heavy, is circumvented by parallel computational techniques with the message passing interface, which divides the calculations of the Green’s functions with respect to energy and wave vectors. To demonstrate the computational efficiency of the present code, we perform ab-initio electron transport calculations of Al(100-Si(100-Al(100 heterostructures, one of the most typical metal-semiconductor-metal systems, and show their transmission spectra, density of states (DOSs, and dependence on the thickness of the Si layers.

  4. The observation of the Aharonov-Bohm effect in suspended semiconductor ring interferometers

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Shevyrin, A. A.; Zhdanov, E. Yu; Bakarov, A. K.; Shklyaev, A. A.; Ishutkin, S. V.; Stepanenko, M. V.; Shesterikov, E. V.

    2018-02-01

    A suspended semiconductor quantum ring interferometer based on a GaAs/AlGaAs heterostructure with a two-dimensional electron gas (2DEG) is created and experimentally studied. The electron interference in suspended 2DEG is observed. The interference manifests itself as the Aharonov-Bohm oscillations of the interferometer magnetoresistance, clearly observed before as well as after suspension. The amplitude of the oscillations remains almost unchanged after suspension.

  5. Exploring interface morphology of a deeply buried layer in periodic multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Das, Gangadhar; Srivastava, A. K.; Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, Maharashtra (India); Khooha, Ajay; Singh, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India)

    2016-06-27

    Long-term durability of a thin film device is strongly correlated with the nature of interface structure associated between different constituent layers. Synthetic periodic multilayer structures are primarily employed as artificial X-ray Bragg reflectors in many applications, and their reflection efficiency is predominantly dictated by the nature of the buried interfaces between the different layers. Herein, we demonstrate the applicability of the combined analysis approach of the X-ray reflectivity and grazing incidence X-ray fluorescence measurements for the reliable and precise determination of a buried interface structure inside periodic X-ray multilayer structures. X-ray standing wave field (XSW) generated under Bragg reflection condition is used to probe the different constituent layers of the W- B{sub 4}C multilayer structure at 10 keV and 12 keV incident X-ray energies. Our results show that the XSW assisted fluorescence measurements are markedly sensitive to the location and interface morphology of a buried layer structure inside a periodic multilayer structure. The cross sectional transmission electron microscopy results obtained on the W-B{sub 4}C multilayer structure provide a deeper look on the overall reliability and accuracy of the XSW method. The method described here would also be applicable for nondestructive characterization of a wide range of thin film based semiconductor and optical devices.

  6. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  7. Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum

    DEFF Research Database (Denmark)

    Drachmann, A C C; Suominen, H J; Kjærgaard, Morten

    2017-01-01

    We demonstrate the transfer of the superconducting properties of NbTi, a large-gap high-critical-field superconductor, into an InAs heterostructure via a thin intermediate layer of epitaxial Al. Two device geometries, a Josephson junction and a gate-defined quantum point contact, are used...... to characterize interface transparency and the two-step proximity effect. In the Josephson junction, multiple Andreev reflections reveal near-unity transparency with an induced gap Δ* = 0.50 meV and a critical temperature of 7.8 K. Tunneling spectroscopy yields a hard induced gap in the InAs adjacent...

  8. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Nellist, Michael R; Laskowski, Forrest A L; Lin, Fuding; Mills, Thomas J; Boettcher, Shannon W

    2016-04-19

    Light-absorbing semiconductor electrodes coated with electrocatalysts are key components of photoelectrochemical energy conversion and storage systems. Efforts to optimize these systems have been slowed by an inadequate understanding of the semiconductor-electrocatalyst (sem|cat) interface. The sem|cat interface is important because it separates and collects photoexcited charge carriers from the semiconductor. The photovoltage generated by the interface drives "uphill" photochemical reactions, such as water splitting to form hydrogen fuel. Here we describe efforts to understand the microscopic processes and materials parameters governing interfacial electron transfer between light-absorbing semiconductors, electrocatalysts, and solution. We highlight the properties of transition-metal oxyhydroxide electrocatalysts, such as Ni(Fe)OOH, because they are the fastest oxygen-evolution catalysts known in alkaline media and are (typically) permeable to electrolyte. We describe the physics that govern the charge-transfer kinetics for different interface types, and show how numerical simulations can explain the response of composite systems. Emphasis is placed on "limiting" behavior. Electrocatalysts that are permeable to electrolyte form "adaptive" junctions where the interface energetics change during operation as charge accumulates in the catalyst, but is screened locally by electrolyte ions. Electrocatalysts that are dense, and thus impermeable to electrolyte, form buried junctions where the interface physics are unchanged during operation. Experiments to directly measure the interface behavior and test the theory/simulations are challenging because conventional photoelectrochemical techniques do not measure the electrocatalyst potential during operation. We developed dual-working-electrode (DWE) photoelectrochemistry to address this limitation. A second electrode is attached to the catalyst layer to sense or control current/voltage independent from that of the

  9. Ion channeling study of defects in multicomponent semiconductor compounds

    International Nuclear Information System (INIS)

    Turos, A.; Nowicki, L.; Stonert, A.

    2002-01-01

    Compound semiconductor crystals are of great technological importance as basic materials for production of modern opto- and microelectronic devices. Ion implantation is one of the principal techniques for heterostructures processing. This paper reports the results of the study of defect formation and transformation in binary and ternary semiconductor compounds subjected to ion implantation with ions of different mass and energy. The principal analytical technique was He-ion channeling. The following materials were studied: GaN and InGaN epitaxial layers. First the semi empirical method of channeling spectra analysis for ion implanted multicomponent single crystal was developed. This method was later complemented by the more sophisticated method based on the Monte Carlo simulation of channeling spectra. Next, the damage buildup in different crystals and epitaxial layers as a function of the implantation dose was studied for N, Mg, Te, and Kr ions. The influence of the substrate temperature on the defect transformations was studied for GaN epitaxial layers implanted with Mg ions. Special attention was devoted to the study of growth conditions of InGaN/GaN/sapphire heterostructures, which are important component of the future blue laser diodes. In-atom segregation and tetragonal distortion of the epitaxial layer were observed and characterized. Next problem studied was the incorporation of hydrogen atoms in GaAs and GaN. Elastic recoil detection (ERDA) and nuclear reaction analysis (NRA) were applied for the purpose. (author)

  10. Lithium adsorption and migration in group IV-VI compounds and GeS/graphene heterostructures: a comparative study.

    Science.gov (United States)

    Hao, Kuan-Rong; Fang, Lincan; Yan, Qing-Bo; Su, Gang

    2018-04-18

    By means of first-principles calculations, the adsorption and transport properties of lithium (Li) in orthorhombic group IV-VI compounds MX (M = Ge, Sn; X = S, Se) and GeS/graphene heterostructures have been systematically investigated. Strong interactions and distinct charge transfer between Li and compounds MX are observed. The Li diffusion barriers along the zigzag direction are found to be much lower than that along the armchair direction in monolayer and bulk MX, showing distinct anisotropic diffusion features. In particular, monolayer GeS has a lowest barrier of 0.173 eV (zigzag) among them and it will transit from a semiconductor to a metallic state after Li intercalation, indicating fast Li and electron transport properties. As a comparison, the addition of graphene in a GeS/graphene heterostructure could enhance its binding with Li, decrease the Li diffusion barrier and inhibit the volume expansion dramatically, suggesting a potential performance improvement. Our study not only reveals the directional transport properties of Li in MX, but also improves the understanding of the role of graphene in the MX/graphene heterostructure, and shows great potential application in the field of electrode materials.

  11. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    Science.gov (United States)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton

  12. DARPA-URI Consortium Meetings on Submicron Heterostructures of Diluted Magnetic Semiconductors.

    Science.gov (United States)

    1987-01-01

    Acta Physica Polonica (to be published). 89. B.E. Larson, K.C. Hass, H. Ehrenreich and A.E. Carlsson, "Theory of Exchange Interactions and Chemical...Rodriguez, "Parity Violation and Electron-Spin Resonance of Donors in Semiconductors" (to appear in Physica ). 45. Z. Barticevic, M. Dobrowolska, J.K. Furdyna

  13. Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    International Nuclear Information System (INIS)

    Lipperheide, R.; Wille, U.

    2006-01-01

    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered

  14. An electrically injected rolled-up semiconductor tube laser

    Energy Technology Data Exchange (ETDEWEB)

    Dastjerdi, M. H. T.; Djavid, M.; Mi, Z., E-mail: zetian.mi@mcgill.ca [Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9 (Canada)

    2015-01-12

    We have demonstrated electrically injected rolled-up semiconductor tube lasers, which are formed when a coherently strained InGaAs/InGaAsP quantum well heterostructure is selectively released from the underlying InP substrate. The device exhibits strong coherent emission in the wavelength range of ∼1.5 μm. A lasing threshold of ∼1.05 mA is measured for a rolled-up tube with a diameter of ∼5 μm and wall thickness of ∼140 nm at 80 K. The Purcell factor is estimated to be ∼4.3.

  15. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    International Nuclear Information System (INIS)

    Bhattacharya, Barnali; Sarkar, Utpal

    2016-01-01

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  16. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Barnali; Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com

    2016-10-20

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  17. Generation and control of spin-polarized photocurrents in GaMnAs heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Anibal T., E-mail: anibal@df.ufscar.br; Farinas, Paulo F.; Studart, Nelson [Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); DISSE - Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores, CNPq/MCT, Rio de Janeiro, RJ (Brazil); Castelano, Leonardo K. [Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Degani, Marcos H.; Maialle, Marcelo Z. [Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, 13484-350 Limeira, SP (Brazil); DISSE - Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores, CNPq/MCT, Rio de Janeiro, RJ (Brazil)

    2014-01-13

    Photocurrents are calculated for a specially designed GaMnAs semiconductor heterostructure. The results reveal regions in the infrared range of the energy spectrum, in which the proposed structure is remarkably spin-selective. For such photon energies, the generated photocurrents are strongly spin-polarized. Application of a relatively small static bias in the growth direction of the structure is predicted to efficiently reverse the spin-polarization for some photon energies. This behavior suggests the possibility of conveniently simple switching mechanisms. The physics underlying the results is studied and understood in terms of the spin-dependent properties emerging from the particular potential profile of the structure.

  18. The buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1991-01-01

    There are numerous locations throughout the Department of Energy (DOE) Complex where wastes have been buried in the ground or stored for future disposal. Much of this buried waste is contaminated with hazardous and radioactive materials. An extensive research program has been initiated at the Idaho National Engineering Laboratory (INEL) to develop and demonstrate advanced remediation techniques for DOE Complex buried waste. The purpose of the Buried Waste Integrated Demonstration (BWID), is to develop a scientifically sound and deployable remediation system consisting of advanced technologies which address the buried waste characteristics of the DOE Complex. This comprehensive remediation system win include technologies for the entire remediation cycle (cradle-to-grave). Technologies developed and demonstrated within the BWID will be transferred to the DOE Complex sites with buried waste, to private industry, and to universities. Multidirectional technology transfer is encouraged by the BWID. Identification and evaluation of plausible technological solutions are an ongoing activity of the BWID. A number of technologies are currently under development throughout the DOE Complex, private industry, and universities. Technology integration mechanisms have been established by BWID to facilitate collaborative research and demonstration of applicable remedial technologies for buried waste. Successful completion of the BWID will result in the development of a proven and deployable system at the INEL and other DOE Complex buried waste sites, thereby supporting the DOE Complex's environmental restoration objectives

  19. Lateral topological crystalline insulator heterostructure

    Science.gov (United States)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  20. Strain detection in crystalline heterostructures using bidimensional blocking patterns of channelled particles

    Science.gov (United States)

    Redondo-Cubero, A.; David-Bosne, E.; Wahl, U.; Miranda, P.; da Silva, M. R.; Correia, J. G.; Lorenz, K.

    2018-03-01

    Strain is a critical parameter affecting the growth and the performance of many semiconductor systems but, at the same time, the accurate determination of strain profiles in heterostructures can be challenging, especially at the nanoscale. Ion channelling/blocking is a powerful technique for the detection of the strain state of thin films, normally carried out through angular scans with conventional particle detectors. Here we report the novel application of position sensitive detectors for the evaluation of the strain in a series of AlInN/GaN heterostructures with different compositions and thicknesses. The tetragonal strain is varied from compressive to tensile and analysed through bidimensional blocking patterns. The results demonstrate that strain can be correctly quantified when compared to Monte Carlo channelling simulations, which are essential because of the presence of ion steering effects at the interface between the layer and the substrate. Despite this physical limitation caused by ion steering, our results show that full bidimensional patterns can be applied to detect fingerprints and enhance the accuracy for most critical cases, in which the angular shift associated to the lattice distortion is below the critical angle for channelling.

  1. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    Science.gov (United States)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-12-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.

  2. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    International Nuclear Information System (INIS)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Dae Kim, Seong; Ahn, Jong-Hyun

    2015-01-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (I on /I off ) of up to ∼10 3 , with a current density of 10 2 A cm −2 . We also observed significant dependence of Schottky barrier height Δφ b on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier. (paper)

  3. Semiconductor optical amplifiers for the 1000-1100-nm spectral range

    International Nuclear Information System (INIS)

    Lobintsov, A A; Shramenko, M V; Yakubovich, S D

    2008-01-01

    Two types of semiconductor optical amplifiers (SOAs) based on a double-layer quantum-well (InGa)As/(GaAl)As/GaAs heterostructure are investigated. The optical gain of more than 30 dB and saturation output power of more than 30 mW are achived at 1060 nm in pigtailed SOA modules. These SOAs used as active elements of a tunable laser provide rapid continuous tuning within 85 nm and 45 nm at output powers of 0.5 mW and more than 30 mW, respectively. (active media, lasers, and amplifiers)

  4. Buried Waste Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities

  5. A new partial SOI-LDMOSFET with a modified buried oxide layer for improving self-heating and breakdown voltage

    International Nuclear Information System (INIS)

    Jamali Mahabadi, S E; Orouji, Ali A; Keshavarzi, P; Moghadam, Hamid Amini

    2011-01-01

    In this paper, for the first time, we propose a partial silicon-on-insulator (P-SOI) lateral double-diffused metal-oxide-semiconductor-field-effect-transistor (LDMOSFET) with a modified buried layer in order to improve breakdown voltage (BV) and self-heating effects (SHEs). The main idea of this work is to control the electric field by shaping the buried layer. With two steps introduced in the buried layer, the electric field distribution is modified. Also a P-type window introduced makes the substrate share the vertical voltage drop, leading to a high vertical BV. Moreover, four interface electric field peaks are introduced by the buried P-layer, the Si window and two steps, which modulate the electric field in the SOI layer and the substrate. Hence, a more uniform electric field is obtained; consequently, a high BV is achieved. Furthermore, the Si window creates a conduction path between the active layer and substrate and alleviates the SHE. Two-dimensional simulations show that the BV of double step partial silicon on insulator is nearly 69% higher and alleviates SHEs 17% in comparison with its single step partial SOI counterpart and nearly 265% higher and alleviate SHEs 18% in comparison with its conventional SOI counterpart

  6. Resistance and sheet resistance measurements using electron beam induced current

    International Nuclear Information System (INIS)

    Czerwinski, A.; Pluska, M.; Ratajczak, J.; Szerling, A.; KaPtcki, J.

    2006-01-01

    A method for measurement of spatially uniform or nonuniform resistance in layers and strips, based on electron beam induced current (EBIC) technique, is described. High electron beam currents are used so that the overall resistance of the measurement circuit affects the EBIC signal. During the evaluation, the electron beam is scanned along the measured object, whose load resistance varies with the distance. The variation is compensated by an adjustable resistance within an external circuit. The method has been experimentally deployed for sheet resistance determination of buried regions of lateral confinements in semiconductor laser heterostructures manufactured by molecular beam epitaxy

  7. Broadband tunability of gain-flattened quantum-well semiconductor lasers with an external grating

    International Nuclear Information System (INIS)

    Mittelstein, M.; Mehuys, D.; Yariv, A.; Sarfaty, R.; Ungar, J.E.

    1989-01-01

    Semiconductor injection lasers are known to be tunable over a range of order kΒ · T. Quantum-well lasers, in particular, are shown to exhibit flattened, broadband gain spectra at a particular pumping condition. The gain requirement for a grating-tuned external cavity configuration is examined and is applied to a semiconductor quantum-well laser with an optimized length of gain region. The coupled-cavity formalism is employed to examine the conditions for continuous tuning. The possible tuning range of double-heterostructure lasers is compared to that of quantum-well lasers. The predicted broadband tunability of quantum-well lasers is confirmed experimentally by grating-tuning of uncoated lasers exceeding 120 nm, with single, longitudinal mode output power exceeding 300 mW

  8. Optimization problems of QW-SCH heterostructures AlGaAs/GaAs designed for working at 808 nm band

    International Nuclear Information System (INIS)

    Malag, A.; Kozlowska, A.; Strupinski, W.; Mozdzonek, M.; Dobrzanski, L.; Teodorczyk, M.; Mroziewicz, B.

    1999-01-01

    Semiconductor laser diodes (LDs) emitting in the 808 nm range found main field of application in the pumping systems of Nd 3+ :YAG lasers. Because of narrow absorption line of YAG material, narrow emission line of the laser pump exactly at the 808 nm wavelength is expected at the temperature optimised from the viewpoint of its stabilization (usually it is about 15 o C). To meet these requirements, an optimisation of the laser (AlGa)As heterostructure because of the composition and thickness of the constituent layers is necessary. In the communicate the design foundations, the characteristics of the manufactured LDs based on this design and intrinsic limitations of the possibility of 'tuning' the lasers to desired wavelength in the technological process are presented. The reported LDs are of the wide-stripe type with the Schottky-junction-isolation and have been manufactured from the MOVPE grown (Alga)As heterostructure. (author)

  9. Contribution to the study of electronic structure of crystalline semiconductors (Si, Ge, GaAs, Gap, ZnTe, ZnSe

    Directory of Open Access Journals (Sweden)

    Bouhafs B.

    2012-06-01

    Full Text Available The band structure of semiconductors was described by several theorists since the Fifties. The main objective of the present paper is to do a comparative study between various families of semi-conductors IV (Si,Ge, III-V (GaAs, GaP and II-VI (ZnSe, ZnTe with both methods; tight Binding1 method and pseudo potential method2. This work enables us to understand as well as the mechanism of conduction process in these semiconductors and powers and limits of the above methods. The obtained results allow to conclude that both methods are in a good agreement to describe the morphology of band structures of the cited semiconductors. This encourages us to study in the future the electronic behaviour through the structure of bands for more complex systems such as the heterostructures.

  10. Transferable tight binding model for strained group IV and III-V heterostructures

    Science.gov (United States)

    Tan, Yaohua; Povolotskyi, Micheal; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    Modern semiconductor devices have reached critical device dimensions in the range of several nanometers. For reliable prediction of device performance, it is critical to have a numerical efficient model that are transferable to material interfaces. In this work, we present an empirical tight binding (ETB) model with transferable parameters for strained IV and III-V group semiconductors. The ETB model is numerically highly efficient as it make use of an orthogonal sp3d5s* basis set with nearest neighbor inter-atomic interactions. The ETB parameters are generated from HSE06 hybrid functional calculations. Band structures of strained group IV and III-V materials by ETB model are in good agreement with corresponding HSE06 calculations. Furthermore, the ETB model is applied to strained superlattices which consist of group IV and III-V elements. The ETB model turns out to be transferable to nano-scale hetero-structure. The ETB band structures agree with the corresponding HSE06 results in the whole Brillouin zone. The ETB band gaps of superlattices with common cations or common anions have discrepancies within 0.05eV.

  11. Ferroelectric switching in epitaxial PbZr0.2Ti0.8O3/ZnO/GaN heterostructures

    Science.gov (United States)

    Wang, Juan; Salev, Pavel; Grigoriev, Alexei

    As a wide-bandgap semiconductor, ZnO has gained substantial interest due to its favorable properties including high electron mobility, strong room-temperature luminescence, etc. The main obstacle of its application is the lack of reproducible and low-resistivity p-type ZnO. P-type doping of ZnO through the interface charge injection, which can be achieved by the polarization switching of ferroelectric films, is a tempting solution. We explored ferroelectric switching behavior of PbZr0.2Ti0.8O3/ZnO/GaN heterostructures epitaxially grown on Sapphire substrates by RF sputtering. The electrical measurements of Pt/PbZr0.2Ti0.8O3/ZnO/GaN ferroelectric-semiconductor capacitors revealed unusual behavior that is a combination of polarization switching and a diode I-V characteristics.

  12. Three-dimensional Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O heterostructures for improving photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaoyu [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Department of Physics and Electronic Engineering, Yangtze Normal University, Chongqing 408100 (China); Hu, Chenguo, E-mail: hucg@cqu.edu.cn [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Xi, Yi; Zhang, Kaiyou; Hua, Hao [Department of Applied Physics, Chongqing University, Chongqing 400044 (China)

    2014-02-01

    Highlights: • Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O 3D network heterostructures are prepared via a simple precipitatation method. • Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O networks exhibit much enhanced photocatalytic activity. • High photocatalytic activity is attributed to its heterostructure and 3D architectures. - Abstract: Three-dimensional Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O heterostructures were fabricated by loading Ag{sub 2}O nanoparticles on WO{sub 3}·0.33H{sub 2}O 3D networks via a simple chemical precipitation method. The Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O heterostructures exhibited much enhanced photocatalytic activity for the degradation of methylene blue (MB) under simulated solar light irradiation. The optimal molar ratio of Ag{sub 2}O and WO{sub 3}·0.33H{sub 2}O is 1:2. The outstanding photocatalytic activity of the Ag{sub 2}O/WO{sub 3}·0.33H{sub 2}O can be attributed to its large surface area of the three-dimensional networks, the enhanced sunlight absorption and the prevention of electrons–holes combination from the heterostructures. The experiment result demonstrates that wide band gap semiconductor (WO{sub 3}·0.33H{sub 2}O) modified by narrow band gap metal oxide (Ag{sub 2}O) with 3D architecture will be an effective route to enhance its photocatalytic activity.

  13. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    Science.gov (United States)

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  14. Optical response of confined excitons in GaInAsSb/GaSb Quantum Dots heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, R [Departamento de Fisica, Universidad Autonoma de Occidente, A.A. 2790, Cali (Colombia); Tirado-Mejia, L; Fonthal, G; Ariza-Calderon, H [Laboratorio de Optoelectronica, Universidad del Quindio, A.A. 4603 Armenia (Colombia); Porras-Montenegro, N, E-mail: rsanchez40@gmail.co [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    The narrow-gap Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} compounds are suitable materials for heterostructure devices operating in the infrared wavelength range. In these compounds grown by liquid phase epitaxy over GaSb single crystals, for x and y values in the range of 0.10 to 0.14 for both variables, the photoluminescence optical response at 12K is blue-shifted by 20 meV related to the photoreflectance response. We believe this behavior is due to possible higher electronic confinement in some places of the heterostructure, possibly formed in the interface during the growth process. In order to explain this behavior, in this work we study the exciton recombination energy in spherical Quantum Dots (QDs) on Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y}/GaSb, using the variational procedure within the effective-mass approximation and considering an electron in a Type I band alignment formed by two semiconductors with similar parabolic conduction bands. Our results are in good agreement with recent experimental results.

  15. Microscopic theory of coherent and incoherent optical properties of semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Martin

    2008-09-02

    An important question is whether there is a regime in which lasing from indirect semiconductors is possible. Thus, we discuss this question in this thesis. It is shown that under incoherent emission conditions it is possible to create an exciton condensate in multiple-quantum-well (MQW) systems. The influence of a MQW structure on the exciton lifetime is investigated. For the description of the light-matter interaction of a QW in the coherent excitation regime, the semiconductor Bloch equation (SBE) are used. The incoherent regime is described by the semiconductor luminescence equations (SLE). In principle it is even possible to couple SBE and SLE. The resulting theory is able to describe interactions between coherent and incoherent processes we investigate both, the coherent and the incoherent light-emission regime. Thus we define the investigated system and introduce the many-body Hamiltonian that describes consistently the light-matter interaction in the classical and the quantum limit. We introduce the SBE that allow to compute the light-matter interaction in the coherent scenario. The extended scattering model is used to investigate the absorption of a Ge QW for different time delays after the excitations. In this context, we analyze whether there is a regime in which optical gain can be realized. Then we apply a transfer-matrix method to include into our calculations the influence of the dielectric environment on the optical response. Thereafter the SLE for a MQW system are introduced. We derive a scheme that allows for decoupling environmental effects from the pure PL-emission properties of the QW. The PL of the actual QW system is obtained by multiplying this filter function and the free-space PL that describes the quantum emission into a medium with spatially constant background-refractive index. It is studied how the MQW-Bragg structure influences the PL-emission properties compared to the emission of a single QW device. As a last feature, it is shown

  16. Ferromagnetic semiconductor-metal transition in heterostructures of europium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, Tobias; Kroha, Johann [Physikalisches Institut der Universitaet Bonn (Germany)

    2012-07-01

    Experiments on thin films of electron doped europium monoxide show a simultaneous ferromagnetic semiconductor-metal transition which goes along with a huge drop in resistivity over several orders of magnitude. Therefore, this material is a very promising candidate for spintronics applications. We have developed a theory which correctly predicts the simultaneous phase transition in thin films of electron doped EuO and the increase of the Curie temperature T{sub C} with doping concentration. The origin of the increased T{sub C} lies in the enhanced RKKY interaction between the localized 4f moments of the Eu atoms. Therefore, the phase transition is controlled by the population of the conduction band. We investigate the influence of film thickness and interface effects on the population of the conduction band and on the magnetic and electronic properties of the EuO film.

  17. Quantum Wells, Wires and Dots Theoretical and Computational Physics of Semiconductor Nanostructures

    CERN Document Server

    Harrison, Paul

    2011-01-01

    Quantum Wells, Wires and Dots, 3rd Edition is aimed at providing all the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. Completely revised and updated, this text is designed to lead the reader through a series of simple theoretical and computational implementations, and slowly build from solid foundations, to a level where the reader can begin to initiate theoretical investigations or explanations of their

  18. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    International Nuclear Information System (INIS)

    Wang, Yu

    2014-01-01

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  19. Heterostructure-based high-speed/high-frequency electronic circuit applications

    Science.gov (United States)

    Zampardi, P. J.; Runge, K.; Pierson, R. L.; Higgins, J. A.; Yu, R.; McDermott, B. T.; Pan, N.

    1999-08-01

    With the growth of wireless and lightwave technologies, heterostructure electronic devices are commodity items in the commercial marketplace [Browne J. Power-amplifier MMICs drive commercial circuits. Microwaves & RF, 1998. p. 116-24.]. In particular, HBTs are an attractive device for handset power amplifiers at 900 MHz and 1.9 GHz for CDMA applications [Lum E. GaAs technology rides the wireless wave. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 11-13; "Rockwell Ramps Up". Compound Semiconductor, May/June 1997.]. At higher frequencies, both HBTs and p-HEMTs are expected to dominate the marketplace. For high-speed lightwave circuit applications, heterostructure based products on the market for OC-48 (2.5 Gb/s) and OC-192 (10 Gb/s) are emerging [http://www.nb.rockwell.com/platforms/network_access/nahome.html#5.; http://www.nortel.com/technology/opto/receivers/ptav2.html.]. Chips that operate at 40 Gb/ have been demonstrated in a number of research laboratories [Zampardi PJ, Pierson RL, Runge K, Yu R, Beccue SM, Yu J, Wang KC. hybrid digital/microwave HBTs for >30 Gb/s optical communications. IEDM Technical Digest, 1995. p. 803-6; Swahn T, Lewin T, Mokhtari M, Tenhunen H, Walden R, Stanchina W. 40 Gb/s 3 Volt InP HBT ICs for a fiber optic demonstrator system. Proceedings of the 1996 GaAs IC Symposium, 1996. p. 125-8; Suzuki H, Watanabe K, Ishikawa K, Masuda H, Ouchi K, Tanoue T, Takeyari R. InP/InGaAs HBT ICs for 40 Gbit/s optical transmission systems. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 215-8]. In addition to these two markets, another area where heterostructure devices are having significant impact is for data conversion [Walden RH. Analog-to digital convertor technology comparison. Proceedings of the 1994 GaAs IC Symposium, 1994. p. 217-9; Poulton K, Knudsen K, Corcoran J, Wang KC, Nubling RB, Chang M-CF, Asbeck PM, Huang RT. A 6-b, 4 GSa/s GaAs HBT ADC. IEEE J Solid-State Circuits 1995;30:1109-18; Nary K, Nubling R, Beccue S, Colleran W

  20. Semiconductor nanostructures for artificial photosynthesis

    Science.gov (United States)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  1. Manipulating Conduction in Metal Oxide Semiconductors: Mechanism Investigation and Conductance Tuning in Doped Fe2O3 Hematite and Metal/Ga2O3/Metal Heterostructure

    Science.gov (United States)

    Zhao, Bo

    This study aims at understanding the fundamental mechanisms of conduction in several metal oxide semiconductors, namely alpha-Fe2O 3 and beta-Ga2O3, and how it could be tuned to desired values/states to enable a wide range of application. In the first effort, by adding Ti dopant, we successfully turned Fe2O3 from insulating to conductive by fabricated compositionally and structurally well-defined epitaxial alpha-(TixFe1-x)2 O3(0001) films for x ≤ 0.09. All films were grown by oxygen plasma assisted molecular beam epitaxy on Al2O3(0001) sapphire substrate with a buffer layer of Cr2O3 to relax the strain from lattice mismatch. Van der Pauw resistivity and Hall effect measurements reveal carrier concentrations between 1019 and 1020 cm-3 at room temperature and mobilities in the range of 0.1 to 0.6 cm2/V˙s. Such low mobility, unlike conventional band-conduction semiconductor, was attributed to hopping mechanism due to strong electron-phonon interaction in the lattice. More interestingly, conduction mechanism transitions from small-polaron hopping at higher temperatures to variable range hopping at lower temperatures with a transition temperature between 180 to 140 K. Consequently, by adding Ti dopant, conductive Fe 2O3 hematite thin films were achieved with a well-understood conducting mechanism that could guide further device application such as spin transistor and water splitting. In the case of Ga2O3, while having a band gap as high as 5 eV, they are usually conductive for commercially available samples due to unintentional Si doping. However, we discovered the conductance could be repeatedly switched between high resistance state and low resistance state when made into metal/Ga2O3 /metal heterostructure. However, to obtain well controlled switching process with consistent switching voltages and resistances, understanding switching mechanism is the key. In this study, we fabricated resistive switching devices utilizing a Ni/Ga2O3/Ir heterostructure. Bipolar

  2. Improved thermal stability and hole mobilities in a strained-Si/strained-Si1-yGe y/strained-Si heterostructure grown on a relaxed Si1-xGe x buffer

    International Nuclear Information System (INIS)

    Gupta, Saurabh; Lee, Minjoo L.; Isaacson, David M.; Fitzgerald, Eugene A.

    2005-01-01

    A dual channel heterostructure consisting of strained-Si/strained-Si 1-y Ge y on relaxed Si 1-x Ge x (y > x), provides a platform for fabricating metal-oxide-semiconductor field-effect transistors (MOSFETs) with high hole mobilities (μ eff ) which depend directly on Ge concentration and strain in the strained-Si 1-y Ge y layer. Ge out-diffuses from the strained-Si 1-y Ge y layer into relaxed Si 1-x Ge x during high temperature processing, reducing peak Ge concentration and strain in the strained-Si 1-y Ge y layer and degrades hole μ eff in these dual channel heterostructures. A heterostructure consisting of strained-Si/strained-Si 1-y Ge y /strained-Si, referred to as a trilayer heterostructure, grown on relaxed Si 1-x Ge x has much reduced Ge out-flux from the strained-Si 1-y Ge y layer and retains higher μ eff after thermal processing. Improved hole μ eff over similar dual channel heterostructures is also observed in this heterostructure. This could be a result of preventing the hole wavefunction tunneling into the low μ eff relaxed Si 1-x Ge x layer due to the additional valence band offset provided by the underlying strained-Si layer. A diffusion coefficient has been formulated and implemented in a finite difference scheme for predicting the thermal budget of the strained SiGe heterostructures. It shows that the trilayer heterostructures have superior thermal budgets at higher Ge concentrations. Ring-shaped MOSFETs were fabricated on both platforms and subjected to various processing temperatures in order to compare the extent of μ eff reduction with thermal budget. Hole μ eff enhancements are retained to a much higher extent in a trilayer heterostructure after high temperature processing as compared to a dual channel heterostructure. The improved thermal stability and hole μ eff of a trilayer heterostructure makes it an ideal platform for fabricating high μ eff MOSFETs that can be processed over higher temperatures without significant losses in hole

  3. Effect of the δ-potential on spin-dependent electron tunneling in double barrier semiconductor heterostructure

    Science.gov (United States)

    Chandrasekar, L. Bruno; Gnanasekar, K.; Karunakaran, M.

    2018-06-01

    The effect of δ-potential was studied in GaAs/Ga0.6Al0·4As double barrier heterostructure with Dresselhaus spin-orbit interaction. The role of barrier height and position of the δ- potential in the well region was analysed on spin-dependent electron tunneling using transfer matrix method. The spin-separation between spin-resonances on energy scale depends on both height and position of the δ- potential, whereas the tunneling life time of electrons highly influenced by the position of the δ- potential and not on the height. These results might be helpful for the fabrication of spin-filters.

  4. MoS2 /Rubrene van der Waals Heterostructure: Toward Ambipolar Field-Effect Transistors and Inverter Circuits.

    Science.gov (United States)

    He, Xuexia; Chow, WaiLeong; Liu, Fucai; Tay, BengKang; Liu, Zheng

    2017-01-01

    2D transition metal dichalcogenides are promising channel materials for the next-generation electronic device. Here, vertically 2D heterostructures, so called van der Waals solids, are constructed using inorganic molybdenum sulfide (MoS 2 ) few layers and organic crystal - 5,6,11,12-tetraphenylnaphthacene (rubrene). In this work, ambipolar field-effect transistors are successfully achieved based on MoS 2 and rubrene crystals with the well balanced electron and hole mobilities of 1.27 and 0.36 cm 2 V -1 s -1 , respectively. The ambipolar behavior is explained based on the band alignment of MoS 2 and rubrene. Furthermore, being a building block, the MoS 2 /rubrene ambipolar transistors are used to fabricate CMOS (complementary metal oxide semiconductor) inverters that show good performance with a gain of 2.3 at a switching threshold voltage of -26 V. This work paves a way to the novel organic/inorganic ultrathin heterostructure based flexible electronics and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    Science.gov (United States)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  6. Structural investigation of semi-conductor nanostructures by x-ray diffraction

    International Nuclear Information System (INIS)

    Stangl, J.

    2003-01-01

    Full text: Semiconductor nanostructures present a topic of increasing interest due to their potential for new device concepts, as well as from a scientific point of view. In structures with dimensions smaller than the DeBroglie wavelength of electrons or holes, quantum confinement effects determine the electronic and optical properties. For the understanding of such structures, their structural investigation, i.e., the determination of size, shape, chemical composition and strain state is mandatory. X-ray diffraction is a powerful technique for this purpose. In particular, the strain fields within nanostructures as well as in the surrounding matrix can be determined with high precision. Using synchrotron radiation sources, also the distribution of chemical composition within objects with typically several nm height and 10 to 100 nm width can be established. With x-ray diffraction, the non-destructive investigation of uncapped and buried structures is possible. The latter is important, as for applications buried structures are needed, and during capping the structural properties may change considerably. Here, we will focus on so-called self-assembled nanostructures, which form during the deposition of different semiconductors on top of each other. In contrast to structures etched after growth of planar layers, self organized islands or wires are virtually defect-free and hence promising for applications. Different scattering techniques sensitive to shape and/or composition and strain will be discussed. (author)

  7. Effects of polarization of polar semiconductor on electrical properties of poly(vinylidene fluoride-trifluoroethylene)/ZnO heterostructures

    International Nuclear Information System (INIS)

    Yamada, Hiroaki; Yoshimura, Takeshi; Fujimura, Norifumi

    2015-01-01

    The electrical properties of heterostructures composed of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and ZnO with different crystallographic polarities, i.e., O- and Zn-polar ZnO, were investigated. Distinct differences in the capacitance-voltage and polarization-voltage characteristics between the P(VDF-TrFE)/O- and Zn-polar ZnO were obtained in the depletion regions of ZnO. The band configurations were determined by X-ray photoelectron spectroscopy (XPS) using a synchrotron radiation beam to analyze the differences in the electrical properties of the P(VDF-TrFE)/O- and Zn-polar ZnO. The XPS spectra indicated that the valence band maximum of P(VDF-TrFE) is 2.9 and 2.7 eV higher than Zn- and O-polar ZnO, respectively. Thus, both structures have staggered band configurations with large valence band offsets, and the spontaneous polarization of ZnO is less effective on the band lineup. The electrical properties of the P(VDF-TrFE)/ZnO heterostructures are modulated through carrier generation because of the polarization-mediated interface charges and the staggered band alignments of the P(VDF-TrFE)/ZnO with a large valence band offset

  8. Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodière, Jean; Lombez, Laurent, E-mail: laurent.lombez@chimie-paristech.fr [IRDEP, Institute of R and D on Photovoltaic Energy, UMR 7174, CNRS-EDF-Chimie ParisTech, 6 Quai Watier-BP 49, 78401 Chatou Cedex (France); Le Corre, Alain; Durand, Olivier [INSA, FOTON-OHM, UMR 6082, F-35708 Rennes (France); Guillemoles, Jean-François [IRDEP, Institute of R and D on Photovoltaic Energy, UMR 7174, CNRS-EDF-Chimie ParisTech, 6 Quai Watier-BP 49, 78401 Chatou Cedex (France); NextPV, LIA CNRS-RCAST/U. Tokyo-U. Bordeaux, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-05-04

    We investigated a semiconductor heterostructure based on InGaAsP multi quantum wells (QWs) using optical characterizations and demonstrate its potential to work as a hot carrier cell absorber. By analyzing photoluminescence spectra, the quasi Fermi level splitting Δμ and the carrier temperature are quantitatively measured as a function of the excitation power. Moreover, both thermodynamics values are measured at the QWs and the barrier emission energy. High values of Δμ are found for both transition, and high carrier temperature values in the QWs. Remarkably, the quasi Fermi level splitting measured at the barrier energy exceeds the absorption threshold of the QWs. This indicates a working condition beyond the classical Shockley-Queisser limit.

  9. Organic heterostructures deposited by MAPLE on AZO substrate

    Science.gov (United States)

    Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Stanculescu, F.; Iftimie, S.; Girtan, M.; Popescu-Pelin, G.; Socol, G.

    2017-09-01

    Organic heterostructures based on poly(3-hexylthiophene) (P3HT) and fullerene (C60) as blends or multilayer were deposited on Al:ZnO (AZO) by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The AZO layers were obtained by Pulsed Laser Deposition (PLD) on glass substrate, the high quality of the films being reflected by the calculated figure of merit. The organic heterostructures were investigated from morphological, optical and electrical point of view by atomic force microscopy (AFM), UV-vis spectroscopy, photoluminescence (PL) and current-voltage (I-V) measurements, respectively. The increase of the C60 content in the blend heterostructure has as result a high roughness. Compared with the multilayer heterostructure, those based on blends present an improvement in the electrical properties. Under illumination, the highest current value was recorded for the heterostructure based on the blend with the higher C60 amount. The obtained results showed that MAPLE is a useful technique for the deposition of the organic heterostructures on AZO as transparent conductor electrode.

  10. Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%

    Science.gov (United States)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Telegin, K. Yu; Lobintsov, A. V.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Simakov, V. A.

    2017-08-01

    The results of development of quasi-cw laser diode arrays operating at a wavelength of 808 nm with a high efficiency are demonstrated. The laser diodes are based on semiconductor AlGaAs/GaAs quantum-well heterostructures grown by MOCVD. The measured spectral, spatial, electric and power characteristics are presented. The output optical power of the array with an emitting area of 5 × 10 mm is 2.7 kW at a pump current of 100 A, and the maximum efficiency reaches 62%.

  11. Poole Frenkel current and Schottky emission in SiN gate dielectric in AlGaN/GaN metal insulator semiconductor heterostructure field effect transistors

    Science.gov (United States)

    Hanna, Mina J.; Zhao, Han; Lee, Jack C.

    2012-10-01

    We analyze the anomalous I-V behavior in SiN prepared by plasma enhanced chemical vapor deposition for use as a gate insulator in AlGaN/GaN metal insulator semiconductor heterostructure filed effect transistors (HFETs). We observe leakage current across the dielectric with opposite polarity with respect to the applied electric field once the voltage sweep reaches a level below a determined threshold. This is observed as the absolute minimum of the leakage current does not occur at minimum voltage level (0 V) but occurs earlier in the sweep interval. Curve-fitting analysis suggests that the charge-transport mechanism in this region is Poole-Frenkel current, followed by Schottky emission due to band bending. Despite the current anomaly, the sample devices have shown a notable reduction of leakage current of over 2 to 6 order of magnitudes compared to the standard Schottky HFET. We show that higher pressures and higher silane concentrations produce better films manifesting less trapping. This conforms to our results that we reported in earlier publications. We found that higher chamber pressure achieves higher sheet carrier concentration that was found to be strongly dependent on the trapped space charge at the SiN/GaN interface. This would suggest that a lower chamber pressure induces more trap states into the SiN/GaN interface.

  12. Scattering theory of ballistic-electron-emission microscopy at nonepitaxial interfaces

    International Nuclear Information System (INIS)

    Smith, D. L.; Kozhevnikov, M.; Lee, E. Y.; Narayanamurti, V.

    2000-01-01

    calculated BEEM current near threshold for GaAs. We generalize the model to describe buried heterostructures and apply it to the Au/GaAs(100) interface and GaAs/Al x Ga 1-x As heterostructures buried beneath this interface. Experimental results on these materials are presented and compared with the model. Strong scattering is required to describe the observed BEEM currents for Au/GaAs(100) and buried GaAs/Al x Ga 1-x As heterostructures. (c) 2000 The American Physical Society

  13. Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects.

    Science.gov (United States)

    Pala, M G; Baltazar, S; Martins, F; Hackens, B; Sellier, H; Ouisse, T; Bayot, V; Huant, S

    2009-07-01

    We study scanning gate microscopy (SGM) in open quantum rings obtained from buried semiconductor InGaAs/InAlAs heterostructures. By performing a theoretical analysis based on the Keldysh-Green function approach we interpret the radial fringes observed in experiments as the effect of randomly distributed charged defects. We associate SGM conductance images with the local density of states (LDOS) of the system. We show that such an association cannot be made with the current density distribution. By varying an external magnetic field we are able to reproduce recursive quasi-classical orbits in LDOS and conductance images, which bear the same periodicity as the Aharonov-Bohm effect.

  14. Tunneling conductance in semiconductor-superconductor hybrid structures

    Science.gov (United States)

    Stenger, John; Stanescu, Tudor D.

    2017-12-01

    We study the differential conductance for charge tunneling into a semiconductor wire-superconductor hybrid structure, which is actively investigated as a possible scheme for realizing topological superconductivity and Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using both a Blonder-Tinkham-Klapwijk approach and a Keldysh nonequilibrium Green's function method. The dependence of various tunneling conductance features on the coupling strength between the semiconductor and the superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs, has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular, the presence of subgap states in the parent superconductor, due to disorder and finite magnetic fields, leads to characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties are discussed.

  15. Vertical-Cavity In-plane Heterostructures: Physics and Applications

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2015-01-01

    We show that the in-plane heterostructures realized in vertical cavities with high contrast grating(HCG) reflector enables exotic configurations of heterostructure and photonic wells. In photonic crystal heterostructures forming a photonic well, the property of a confined mode is determined...... by the well width and barrier height. We show that in vertical-cavity in-plane heterostructures, anisotropic dispersion curvatures plays a key role as well, leading to exotic effects such as a photonic well with conduction band like well and a valence band like barrier. We investigate three examples...

  16. Buried Craters of Utopia

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-365, 19 May 2003Beneath the northern plains of Mars are numerous buried meteor impact craters. One of the most heavily-cratered areas, although buried, occurs in Utopia Planitia, as shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The history of Mars is complex; impact craters provide a tool by which to understand some of that history. In this case, a very ancient, cratered surface was thinly-buried by younger material that is not cratered at all. This area is near 48.1oN, 228.2oW; less than 180 km (112 mi) west of the Viking 2 lander site. Sunlight illuminates the scene from the lower left.

  17. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films

    Science.gov (United States)

    Testoni, Glaucio O.; Amoresi, Rafael A. C.; Lustosa, Glauco M. M. M.; Costa, João P. C.; Nogueira, Marcelo V.; Ruiz, Miguel; Zaghete, Maria A.; Perazolli, Leinig A.

    2018-02-01

    In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.

  18. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  19. Multilayer Graphene–WSe2 Heterostructures for WSe2 Transistors

    KAUST Repository

    Tang, Hao-Ling

    2017-11-29

    Two-dimensional (2D) materials are drawing growing attention for next-generation electronics and optoelectronics owing to its atomic thickness and unique physical properties. One of the challenges posed by 2D materials is the large source/drain (S/D) series resistance due to their thinness, which may be resolved by thickening the source and drain regions. Recently explored lateral graphene–MoS21−3 and graphene–WS21,4 heterostructures shed light on resolving the mentioned issues owing to their superior ohmic contact behaviors. However, recently reported field-effect transistors (FETs) based on graphene–TMD heterostructures have only shown n-type characteristics. The lack of p-type transistor limits their applications in complementary metal-oxide semiconductor electronics. In this work, we demonstrate p-type FETs based on graphene–WSe2 lateral heterojunctions grown with the scalable CVD technique. Few-layer WSe2 is overlapped with the multilayer graphene (MLG) at MLG–WSe2 junctions such that the contact resistance is reduced. Importantly, the few-layer WSe2 only forms at the junction region while the channel is still maintained as a WSe2 monolayer for transistor operation. Furthermore, by imposing doping to graphene S/D, 2 orders of magnitude enhancement in Ion/Ioff ratio to ∼108 and the unipolar p-type characteristics are obtained regardless of the work function of the metal in ambient air condition. The MLG is proposed to serve as a 2D version of emerging raised source/drain approach in electronics.

  20. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%

    Science.gov (United States)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Bagaev, T. A.; Andreev, A. Yu.; Telegin, K. Yu.; Lobintsov, A. V.; Davydova, E. I.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Ivanova, E. B.; Simakov, V. A.

    2017-05-01

    The results of the development and fabrication of laser diode bars (λ = 800 - 810 nm) based on AlGaAs/GaAs quantum-well heterostructures with a high efficiency are presented. An increase in the internal quantum and external differential efficiencies together with a decrease in the working voltage and the series resistance allowed us to improve the output parameters of the semiconductor laser under quasi-cw pumping. The output power of the laser diode bars with a 5-mm transverse length reached 210 W, and the efficiency was ~70%.

  1. Effect of photocurrent amplification in In sub 2 O sub 3 -GaSe heterostructure

    CERN Document Server

    Drapak, S I

    2001-01-01

    The experimentally determined effects of originating the photocurrent amplification in the In sub 2 O sub 3 -GaSe heterostructure with localization of the barrier plane perpendicular to the semiconductor layers are described. The value of the amplification coefficient by the reverse displacement U = 10 V reached M approx = 82 and the absolute value of the current sensitivity - 30-32 A/W. The mechanism of the current transfer through the dielectric, inevitable originating on the gallium monoselenide surface, is determined on the basis of the volt-ampere characteristics study. The supposition is made on the change in the conductivity mechanisms by transferring the barrier plane from the parallel to the perpendicular one to the GaSe layers

  2. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  3. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    Science.gov (United States)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  4. Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks

    OpenAIRE

    Shabani, J.; Kjaergaard, M.; Suominen, H. J.; Kim, Younghyun; Nichele, F.; Pakrouski, K.; Stankevic, T.; Lutchyn, R. M.; Krogstrup, P.; Feidenhans'l, R.; Kraemer, S.; Nayak, C.; Troyer, M.; Marcus, C. M.; Palmstrøm, C. J.

    2015-01-01

    Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between a one-dimensional (1D) semiconductor (Sm) with strong SOC and a superconductor (S) hosts Majorana modes with nontrivial topological properties [5-8]. Recently, epitaxial growth of Al on InAs nanowires was shown to yield a high quality S-Sm system ...

  5. Photoelectric characteristics of an inverse U-shape buried doping design for crosstalk suppression in pinned photodiodes

    International Nuclear Information System (INIS)

    Cao Chen; Zhang Bing; Li Xin; Wu Longsheng; Wang Junfeng

    2014-01-01

    A design of an inverse U-shape buried doping in a pinned photodiode (PPD) of CMOS image sensors is proposed for electrical crosstalk suppression between adjacent pixels. The architecture achieves no extra fill factor consumption, and proper built-in electric fields can be established according to the doping gradient created by the injections of the extremely low P-type doping buried regions in the epitaxial layer, causing the excess electrons to easily drift back to the photosensitive area rarely with a diffusion probability; the overall junction capacitance and photosensitive area extensions for a full well capacity (FWC) and internal quantum efficiency (IQE) improving are achieved by the injection of a buried N-type doping. By considering the image lag issue, the process parameters of all the injections have been precisely optimized. Optical simulation results based on the finite difference time domain method show that compared to the conventional PPD, the electrical crosstalk rate of the proposed architecture can be decreased by 60%–80% at an incident wavelength beyond 450 nm, IQE can be clearly improved at an incident wavelength between 400 and 600 nm, and the FWC can be enhanced by 107.5%. Furthermore, the image lag performance is sustained to a perfect low level. The present study provides important guidance on the design of ultra high resolution image sensors. (semiconductor devices)

  6. Structure, chemical bonding states, and optical properties of the hetero-structured ZnO/CuO prepared by using the hydrothermal and the electrospinning methods

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyong-Soo; Kim, Jong Wook; Bae, Jong-Seong; Hong, Tae Eun; Jeong, Euh Duck; Jin, Jong Sung; Ha, Myoung Gyu; Kim, Jong-Pil, E-mail: jpkim@kbsi.re.kr

    2017-01-01

    ZnO-branched nanostructures have recently attracted considerable attention due to their rich architectures and promising applications in the field of optoelectronics. Contrary to n-type semiconducting metal oxides, cupric oxide is a p-type semiconductor which can be applied to high-critical-temperature superconductors, photovoltaic materials, field emission, and catalysis. We report the synthesis of the ZnO nanorods on the CuO nanofibers prepared by using the electrospinning method along with the hydrothermal method. As the growing time increases, emission spectra of the hetero-structured ZnO/CuO show that the observed band in the UV region is slightly increased, while the intensity of the green emission is highly enhanced. The hetero-structured ZnO/CuO is found to be a promising candidate for developing renewable devices with photoluminescent behavior and the increased surface to volume ratio.

  7. Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Bikash; Sarma, Bimal K., E-mail: sarmabimal@gmail.com

    2017-07-15

    Highlights: • Fabrication of Ag/ZnO heterostructure by facile chemical processes. • Decoration of plasmonic Ag nanoparticles on ZnO microrods through direct attachment. • Quenching of photoluminescence is observed in Ag/ZnO heterostructure. • Extent of surface coverage governs photophysical and photochemical properties. - Abstract: This report presents findings on microstructural, photophysical, and photocatalytic properties of Ag/ZnO heterostructure grown on flexible and silicon substrates. ZnO microrods are prepared by thermal decomposition method for different solute concentrations and Ag/ZnO heterostructure are fabricated by photo-deposition of Ag nanoparticles on ZnO microrods. X-ray diffraction and electron microscopy studies confirm that ZnO microrods belong to the hexagonal wurtzite structure and grown along [001] direction with random alignment showing that majority microrods are aligned with (100) face parallel to the sample surface. Plasmonic Ag nanoparticles are attached to different faces of ZnO. In the optical reflection spectra of Ag/ZnO heterostructure, the surface plasmon resonance peak due to Ag nanoparticles appears at 445 nm. Due to the oxygen vacancies the band gaps of ZnO microrods turn out to be narrower compared to that of bulk ZnO. The presence of Ag nanoparticles decreases the photoluminescence intensity which might be attributed to the non-radiative energy and direct electron transfer in the plasmon–exciton system. The quenching of photoluminescence in Ag/ZnO heterostructure at different growth conditions depend on the extent of surface coverage of ZnO by plasmonic Ag nanoparticles. Photocatalytic degradation efficiency of Ag/ZnO heterostructure is higher than that of ZnO microrods. The extent of surface coverage of ZnO microrods by Ag nanoparticles is crucial for the observed changes in photophysical and photochemical properties.

  8. A.E.S. characterisation of small dimensional heterostructures

    International Nuclear Information System (INIS)

    Gelsthorpe, A.J.

    2001-01-01

    Surface analysis is used to examine the outer layers of solid material to determine their properties and composition, and has many applications in industry. Atomic composition of the surface can be determined by Auger analysis. Depth profiles can also be obtained by exposing layers buried within a structure and then analysing them. This thesis presents improved techniques for analysing complex structures that have multiple thin layers or have significant topographical features. Bevelling techniques can be used to produce depth profiles of complex heterostructures by removing surface layers with a bevel. The work presented here shows the development of a chemical bevelling reactor to produce a system that is routinely used to make bevels on samples. The chemical bevelling reactor can also be used to correct for non-linear effects in the slope of the surface of the bevel that are usually present in other bevelling techniques. Chemical bevelling shows significant improvements in the depth resolution over the existing technique of ion beam milling. Artefacts due to surface topography are a common problem in Auger analysis as it is often difficult to identify the correct Auger reading from the artefact. A Cylindrical Mirror Analyser (CMA) described here, has been modified to detect artefacts. It uses three pairs of opposing detectors that observe 6 angles of azimuth simultaneously. The opposing detectors are used to identify topographical artefacts in two dimensions across the surface. The CMA also incorporates an electrostatic lens that deflects electrons onto the detectors along the same path independent of their energy. The operation and characterisation of the modified CMA and its electrostatic lens is described. Application to topographical features that show artefacts is also described. The CMA system can also be used to perform depth profiling by ion beam bevelling. This technique is applied to multi-layered heterostructures and a comparison is made between this

  9. Large microwave tunability of GaAs-based multiferroic heterostructure for applications in monolithic microwave integrated circuits

    International Nuclear Information System (INIS)

    Chen Yajie; Gao Jinsheng; Vittoria, C; Harris, V G; Heiman, D

    2010-01-01

    Microwave magnetoelectric coupling in a ferroelectric/ferromagnetic/semiconductor multiferroic (MF) heterostructure, consisting of a Co 2 MnAl epitaxial film grown on a GaAs substrate bonded to a lead magnesium niobate-lead titanate (PMN-PT) crystal, is reported. Ferromagnetic resonance measurements were carried out at X-band under the application of electric fields. Results indicate a frequency tuning of 125 MHz for electric field strength of 8 kV cm -1 resulting in a magnetoelectric coupling coefficient of 3.4 Oe cm kV -1 . This work explores the potential of electronically controlled MF devices for use in future monolithic microwave integrated circuits.

  10. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.

    Science.gov (United States)

    Liu, Baodan; Yang, Bing; Yuan, Fang; Liu, Qingyun; Shi, Dan; Jiang, Chunhai; Zhang, Jinsong; Staedler, Thorsten; Jiang, Xin

    2015-12-09

    In this work, we demonstrate a new strategy to create WZ-GaN/3C-SiC heterostructure nanowires, which feature controllable morphologies. The latter is realized by exploiting the stacking faults in 3C-SiC as preferential nucleation sites for the growth of WZ-GaN. Initially, cubic SiC nanowires with an average diameter of ∼100 nm, which display periodic stacking fault sections, are synthesized in a chemical vapor deposition (CVD) process to serve as the core of the heterostructure. Subsequently, hexagonal wurtzite-type GaN shells with different shapes are grown on the surface of 3C-SiC wire core. In this context, it is possible to obtain two types of WZ-GaN/3C-SiC heterostructure nanowires by means of carefully controlling the corresponding CVD reactions. Here, the stacking faults, initially formed in 3C-SiC nanowires, play a key role in guiding the epitaxial growth of WZ-GaN as they represent surface areas of the 3C-SiC nanowires that feature a higher surface energy. A dedicated structural analysis of the interfacial region by means of high-resolution transmission electron microscopy (HRTEM) revealed that the disordering of the atom arrangements in the SiC defect area promotes a lattice-matching with respect to the WZ-GaN phase, which results in a preferential nucleation. All WZ-GaN crystal domains exhibit an epitaxial growth on 3C-SiC featuring a crystallographic relationship of [12̅10](WZ-GaN) //[011̅](3C-SiC), (0001)(WZ-GaN)//(111)(3C-SiC), and d(WZ-GaN(0001)) ≈ 2d(3C-SiC(111)). The approach to utilize structural defects of a nanowire core to induce a preferential nucleation of foreign shells generally opens up a number of opportunities for the epitaxial growth of a wide range of semiconductor nanostructures which are otherwise impossible to acquire. Consequently, this concept possesses tremendous potential for the applications of semiconductor heterostructures in various fields such as optics, electrics, electronics, and photocatalysis for energy harvesting

  11. Transmission electron microscopy of GaN based, doped semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pretorius, A.

    2006-07-01

    This thesis addresses the analysis of GaN based heterostructures with transmission electron microscopy (TEM). Basic properties of the material of interest are introduced in chapter 2. These include the structural and optical properties as well as an introduction to the growth methods used for the samples analysed in this work. In chapter 3 a brief theoretical treatment of TEM is given. As one main topic of this work is the determination of the In concentration in InGaN islands using strain state analysis, a detailed description of the method is given. Chapter 4 describes the results obtained for pyramidal defects present in metalorganic vapour phase epitaxy grown GaN:Mg with high dopant concentration. Based on the experimental results and the well established knowledge that GaN of inverted polarity is present inside the pyramidal defects, a variety of basal plane inversion domain boundary models was set up. From these models, HRTEM images were simulated using the multislice approach, followed by a quantitative comparison to experimentally obtained HRTEM images. Another focus of this work is the analysis of In{sub x}Ga{sub 1-x}N islands grown on GaN presented in chapter 5. Following a literature survey which describes different methods used to obtain In{sub x}Ga{sub 1-x}N islands, the first topic is the distinction of In{sub x}Ga{sub 1-x}N islands and metal droplets, which can form during growth. This is followed by the experimental results of molecular beam epitaxy and metalorganic vapour phase epitaxy grown In{sub x}Ga{sub 1-x}N island and quantum dot samples. (orig.)

  12. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  13. Tunable SnSe2 /WSe2 Heterostructure Tunneling Field Effect Transistor.

    Science.gov (United States)

    Yan, Xiao; Liu, Chunsen; Li, Chao; Bao, Wenzhong; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2017-09-01

    The burgeoning 2D semiconductors can maintain excellent device electrostatics with an ultranarrow channel length and can realize tunneling by electrostatic gating to avoid deprivation of band-edge sharpness resulting from chemical doping, which make them perfect candidates for tunneling field effect transistors. Here this study presents SnSe 2 /WSe 2 van der Waals heterostructures with SnSe 2 as the p-layer and WSe 2 as the n-layer. The energy band alignment changes from a staggered gap band offset (type-II) to a broken gap (type-III) when changing the negative back-gate voltage to positive, resulting in the device operating as a rectifier diode (rectification ratio ~10 4 ) or an n-type tunneling field effect transistor, respectively. A steep average subthreshold swing of 80 mV dec -1 for exceeding two decades of drain current with a minimum of 37 mV dec -1 at room temperature is observed, and an evident trend toward negative differential resistance is also accomplished for the tunneling field effect transistor due to the high gate efficiency of 0.36 for single gate devices. The I ON /I OFF ratio of the transfer characteristics is >10 6 , accompanying a high ON current >10 -5 A. This work presents original phenomena of multilayer 2D van der Waals heterostructures which can be applied to low-power consumption devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Heterostructures based on inorganic and organic van der Waals systems

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-01-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS 2 heterostructures for memory devices; graphene/MoS 2 /WSe 2 /graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors

  15. TNX Burying Ground: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    The TNX Burying Ground, located within the TNX Area of the Savannah River Plant (SRP), was originally built to dispose of debris from an experimental evaporator explosion at TNX in 1953. This evaporator contained approximately 590 kg of uranyl nitrate. From 1980 to 1984, much of the waste material buried at TNX was excavated and sent to the SRP Radioactive Waste Burial Grounds for reburial. An estimated 27 kg of uranyl nitrate remains buried at TNX. The TNX Burying Ground consists of three sites known to contain waste and one site suspected of containing waste material. All four sites are located within the TNX security fenceline. Groundwater at the TNX Burying Ground was not evaluated because there are no groundwater monitoring wells installed in the immediate vicinity of this waste site. The closure options considered for the TNX Burying Ground are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated

  16. The Blackfoot 111 buried geophone experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cieslewicz, D.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1999-07-01

    As an important difference between a VSP and a conventional survey is the presence of the near-surface layer in the latter, it is possible that overburden materials are particularly attenuative to shear waves, causing an observed narrower bandwidth of converted waves in a seismic experiment conducted in the Blackfoot oil field. The Blackfoot III buried geophone experiment tested this hypothesis by recording data with three component geophones buried to various depths in the near surface. By avoiding a portion of the near surface, buried geophones might avoid a certain amount of attenuation, resulting in a better bandwidth and hence vertical resolution for P-S reflections in particular. Accessory seismic studies of near-surface velocity and impedance were made using the buried geophone data, made possible by the unique geometry of the experiment. The P-P processed data had comparable data quality at all geophone depths, whereas the processed surface P-S data had superior quality over data from the buried phones. This was a result of greater amounts of mode leakage and lower raw reflection amplitudes in the buried phones. No systematic improvement in P-S or P-P reflection bandwidth was noted for deeper geophones; inconsistent geophone coupling was partly a factor in this observation. Raw reflection amplitudes through the near surface are controlled mainly by the impedance of near-surface sediments. Near-surface velocities are typical for unconsolidated overburden for the western 2/3 of the buried receiver line, but increases to values more typical of unweathered bedrock for the eastern 1/3. This probably shows a thinning of the overburden layer in this area. 2 refs.

  17. Proximity effect in semiconductor films with spin-splitting and spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, Jens; Grein, Roland [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)

    2012-07-01

    Superconducting heterostructures with spin-active materials have emerged as promising platforms for engineering topological superconductors featuring Majorana bound states at surfaces, edges and vortices. Here we present a method for evaluating, from a microscopic model, the band structure of a semiconductor film of finite thickness deposited on top of a conventional superconductor. Analytical expressions for the proximity induced gap openings are presented in terms of microscopic parameters and the proximity effect in presence of spin-orbit and exchange splitting is visualized in terms of Andreev reflection processes. An expression for the topological invariant, associated with the existence of Majorana bound states, is shown to depend only on parameters of the semiconductor film. The finite thickness of the film leads to resonant states in the film giving rise to a complex band structure with the topological phase alternating between trivial and non-trivial as the parameters are tuned of the film are tuned.

  18. Stability and band offsets between c-plane ZnO semiconductor and LaAlO3 gate dielectric

    Science.gov (United States)

    Wang, Jianli; Chen, Xinfeng; Wu, Shuyin; Tang, Gang; Zhang, Junting; Stampfl, C.

    2018-03-01

    Wurtzite-perovskite heterostructures composed of a high dielectric constant oxide and a wide bandgap semiconductor envision promising applications in field-effect transistors. In the present paper, the structural and electronic properties of LaAlO3/ZnO heterojunctions are investigated by first-principles calculations. We study the initial adsorption of La, Al, and oxygen atoms on ZnO (0001) and (000 1 ¯ ) surfaces and find that La atoms may occupy interstitial sites during the growth of stoichiometric ZnO (0001). The band gap of the stoichiometric ZnO (0001) surface is smaller than that of the stoichiometric ZnO (000 1 ¯ ) surface. The surface formation energy indicates that La or Al atoms may substitute Zn atoms at the nonstoichiometric ZnO (0001) surface. The atomic charges, electronic density of states, and band offsets are analyzed for the optimized LaAlO3/ZnO heterojunctions. There is a band gap for the LaAlO3/ZnO (000 1 ¯ ) heterostructures, and the largest variation in charge occurs at the surface or interface. Our results suggest that the Al-terminated LaAlO3/ZnO (000 1 ¯ ) interfaces are suitable for the design of metal oxide semiconductor devices because the valence and conduction band offsets are both larger than 1 eV and the interface does not produce any in-gap states.

  19. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    Science.gov (United States)

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  20. Ge/Si core/multi shell heterostructure FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Concentric heterostructured materials provide numerous design opportunities for engineering strain and interfaces, as well as tailoring energy band-edge combinations for optimal device performance. Key to the realization of such novel device concepts is the complete understanding and full control over their growth, crystal structure, and hetero-epitaxy. We report here on a new route for synthesizing Ge/Si core/multi-shell heterostructure nanowires that eliminate Au seed diffusion on the nanowire sidewalls by engineering the interface energy density difference. We show that such control over core/shell synthesis enable experimental realization of heterostructure FET devices beyond those available in the literature with enhanced transport characteristics. We provide a side-by-side comparison on the transport properties of Ge/Si core/multi-shell nanowires grown with and without Au diffusion and demonstrate heterostructure FETs with drive currents that are {approx} 2X higher than record results for p-type FETs.

  1. Optical gain tuning within IR region in type-II In0.5Ga0.5As0.8P0.2/GaAs0.5Sb0.5 nano-scale heterostructure under external uniaxial strain

    Science.gov (United States)

    Singh, A. K.; Rathi, Amit; Riyaj, Md.; Bhardwaj, Garima; Alvi, P. A.

    2017-11-01

    Quaternary and ternary alloy semiconductors offer an extra degree of flexibility in terms of bandgap tuning. Modifications in the wave functions and alterations in optical transitions in quaternary and ternary QW (quantum well) heterostructures due to external uniaxial strain provide valuable insights on the characteristics of the heterostructure. This paper reports the optical gain in strained InGaAsP/GaAsSb type-II QW heterostructure (well width = 20 Å) under external uniaxial strain at room temperature (300 K). The entire heterostructure is supposed to be grown on InP substrate pseudomorphically. Band structure, wave functions, energy dispersion and momentum matrix elements of the heterostructure have been computed. 6 × 6 diagonalised k → ·p → Hamiltonian matrix of the system is evaluated and Luttinger-Kohn model has been applied for the band structure and wavefunction calculations. TE mode optical gain spectrum in the QW-heterostructure under uniaxial strain along [110] is calculated. Optical gain of the heterostructure as a function of 2D carrier density and temperature variation is investigated. The variation of the peak optical gain as a function of As and Sb fractions in InGaAsP as a barrier and GaAsSb as a well respectively is exhibited. For a charge carrier injection of 5 ×1012 /cm2 , the TE optical gain is 3952 cm-1 at room temperature under no external uniaxial strain. Significant increase in TE mode optical gain is observed under high external uniaxial strain (1, 5 and 10 GPa) along [110] within IR (Infrared region) region.

  2. On the problem of internal optical loss and current leakage in laser heterostructures based on AlGaInAs/InP solid solutions

    International Nuclear Information System (INIS)

    Veselov, D. A.; Shashkin, I. S.; Bakhvalov, K. V.; Lyutetskiy, A. V.; Pikhtin, N. A.; Rastegaeva, M. G.; Slipchenko, S. O.; Bechvay, E. A.; Strelets, V. A.; Shamakhov, V. V.; Tarasov, I. S.

    2016-01-01

    Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswave output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).

  3. On the problem of internal optical loss and current leakage in laser heterostructures based on AlGaInAs/InP solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.; Lyutetskiy, A. V.; Pikhtin, N. A.; Rastegaeva, M. G.; Slipchenko, S. O.; Bechvay, E. A.; Strelets, V. A.; Shamakhov, V. V.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-09-15

    Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswave output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).

  4. 2D Vertical Heterostructures for Novel Tunneling Device Applications

    Science.gov (United States)

    2017-03-01

    2D Vertical Heterostructures for Novel Tunneling Device Applications Philip M. Campbell, Christopher J. Perini, W. Jud Ready, and Eric M. Vogel...School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA, USA 30332 Abstract: Vertical heterostructures...digital logic, signal processing, analog-to-digital conversion, and high-frequency communications, vertical heterostructure tunneling devices have

  5. Remote technologies for buried waste retrieval

    International Nuclear Information System (INIS)

    Smith, A.M.; Rice, P.

    1995-01-01

    The DOE is evaluating what should be done with this buried waste. Although the radioactive waste is not particularly mobile unless airborne, some of it was buried with volatile organics and/or other substances that tend to spread easily to surrounding soil or water tables. Volatile organics are hazardous materials (such as trichloroethylene) and require clean-up at certain levels in drinking water. There is concern that the buried volatile organics will spread into the water table and contaminate drinking water. Because of this, the DOE is considering options for handling this buried waste and reducing the risks of spreading or exposure. There are two primary options: containment and stabilization, or retrieval. Containment and stabilization systems would include systems that would leave the waste where it is, but contain and stabilize it so that the radioactive and hazardous materials would not spread to the surrounding soil, water, or air. For example, an in situ vitrification system could be used to melt the waste into a composite glass-like material that would not leach into the surrounding soil, water, or air. Retrieval systems are those that would remove the waste from its burial location for treatment and/or repackaging for long term storage. The objective of this project was to develop and demonstrate remote technologies that would minimize dust generation and the spread of airborne contaminants during buried waste retrieval. Remote technologies are essential for the retrieval of buried waste because they remove workers from the hazardous environment and provide greater automation, reducing the chances of human error. Minimizing dust generation is also essential to increased safety for the workers and the environment during buried waste retrieval. The main contaminants within the waste are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides, which are easily suspended in air and spread if disturbed

  6. Buried MoO x/Ag Electrode Enables High-Efficiency Organic/Silicon Heterojunction Solar Cells with a High Fill Factor.

    Science.gov (United States)

    Xia, Zhouhui; Gao, Peng; Sun, Teng; Wu, Haihua; Tan, Yeshu; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan

    2018-04-25

    Silicon (Si)/organic heterojunction solar cells based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type Si have attracted wide interests because they promise cost-effectiveness and high-efficiency. However, the limited conductivity of PEDOT:PSS leads to an inefficient hole transport efficiency for the heterojunction device. Therefore, a high dense top-contact metal grid electrode is required to assure the efficient charge collection efficiency. Unfortunately, the large metal grid coverage ratio electrode would lead to undesirable optical loss. Here, we develop a strategy to balance PEDOT:PSS conductivity and grid optical transmittance via a buried molybdenum oxide/silver grid electrode. In addition, the grid electrode coverage ratio is optimized to reduce its light shading effect. The buried electrode dramatically reduces the device series resistance, which leads to a higher fill factor (FF). With the optimized buried electrode, a record FF of 80% is achieved for flat Si/PEDOT:PSS heterojunction devices. With further enhancement adhesion between the PEDOT:PSS film and Si substrate by a chemical cross-linkable silance, a power conversion efficiency of 16.3% for organic/textured Si heterojunction devices is achieved. Our results provide a path to overcome the inferior organic semiconductor property to enhance the organic/Si heterojunction solar cell.

  7. Channeling techniques to study strains and defects in heterostructures and multi quantum wells

    Science.gov (United States)

    Pathak, A. P.; Dhamodaran, S.; Sathish, N.

    2005-08-01

    The importance and advantages of heterostructures and Quantum Wells (QWs) in device technology has made research challenging due to lack of direct techniques for their characterization. Particularly the characterization of strain and defects at the interfaces has become important due to their dominance in the electrical and optical properties of materials and devices. RBSiC has been used to study variety of defects in single crystalline materials, for nearly four decades now. Channeling based experiments play a crucial role in giving depth information of strain and defects. Ion beams are used for both material characterizations as well as for modifications. Hence it is also possible to monitor the modifications online, which are discussed in detail. In the present work, Swift Heavy Ion (SHI) modification of III-V semiconductor heterostnictures and MQWs and the results of subsequent strain measurements by RBSiC in initially strained as well as lattice matched systems are discussed. We find that the compressive strain decreases due to SHI irradiation and a tensile strain is induced in an initially lattice matched system. The incident ion fluence dependence of strain modifications in the heterostructures will also be discussed. The use of high energy channeling for better sensitivity of strain measurements in low mismatch materials will be discussed in detail. Wherever possible, a comparison of results with those obtained by other techniques like HRXRD is given.

  8. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-05-23

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  9. Atomic Scale Chemical and Structural Characterization of Ceramic Oxide Heterostructure Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R. K.

    2003-04-16

    The research plan was divided into three tasks: (a) growth of oxide heterostructures for interface engineering using standard thin film deposition techniques, (b) atomic level characterization of oxide heterostructure using such techniques as STEM-2 combined with AFM/STM and conventional high-resolution microscopy (HRTEM), and (c) property measurements of aspects important to oxide heterostructures using standard characterization methods, including dielectric properties and dynamic cathodoluminescence measurements. Each of these topics were further classified on the basis of type of oxide heterostructure. Type I oxide heterostructures consisted of active dielectric layers, including the materials Ba{sub x}Sr{sub 1-x}TiO{sub 3} (BST), Y{sub 2}O{sub 3} and ZrO{sub 2}. Type II heterostructures consisted of ferroelectric active layers such as lanthanum manganate and Type III heterostructures consist of phosphor oxide active layers such as Eu-doped Y{sub 2}O{sub 3}.

  10. Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric Arthur; Lee, Mark; Averitt, R. D. (Los Alamos National Laboratory); Highstrete, Clark; Taylor, A. J. (Los Alamos National Laboratory); Padilla, W. J. (Los Alamos National Laboratory); Reno, John Louis; Wanke, Michael Clement; Allen, S. James (University of California Santa Barbara)

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  11. Photopatterning of heterostructured polymer Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Li Tiesheng; Mitsuishi, Masaya; Miyashita, Tokuji

    2008-01-01

    Heterostructured polymer Langmuir-Blodgett (LB) film prepared by using poly(N-dodecylacrylamide-co-t-butyl 4-vinylphenyl carbonate) (p(DDA-tBVPC53)) and poly(N-neopentyl methacrylamide-co-9-anthrylmethyl methacrylate) (p(nPMA-AMMA10)) polymer LB films which can act as photogenerator layers were investigated. Patterns with a resolution of 0.75 μm were obtained on heterostructured polymer LB films composed of 4 layers of p(nPMA-AMMA10) LB film (top layers) and 40 layers of p(DDA-tBVPC53) LB film (under layers) on a silicon wafer by deep UV irradiation followed by development with 1% tetramethylammonium hydroxide aqueous solution. The sensitivity of the heterostructured polymer LB films was improved without loss of the resolution compared with p(DDA-tBVPC53) LB film. The etch resistance of the heterostructured polymer LB films was sufficiently good to allow patterning of a copper film suitable for photomask fabrication

  12. Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al-Ge-Al Nanowire Heterostructures.

    Science.gov (United States)

    Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois

    2017-08-09

    Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

  13. Photoreflectance and Raman Study of Surface Electric States on AlGaAs/GaAs Heterostructures

    Directory of Open Access Journals (Sweden)

    Luis Zamora-Peredo

    2016-01-01

    Full Text Available Photoreflectance (PR and Raman are two very useful spectroscopy techniques that usually are used to know the surface electronic states in GaAs-based semiconductor devices. However, although they are exceptional tools there are few reports where both techniques were used in these kinds of devices. In this work, the surface electronic states on AlGaAs/GaAs heterostructures were studied in order to identify the effect of factors like laser penetration depth, cap layer thickness, and surface passivation over PR and Raman spectra. PR measurements were performed alternately with two lasers (532 nm and 375 nm wavelength as the modulation sources in order to identify internal and surface features. The surface electric field calculated by PR analysis decreased whereas the GaAs cap layer thickness increased, in good agreement with a similar behavior observed in Raman measurements (IL-/ILO ratio. When the heterostructures were treated by Si-flux, these techniques showed contrary behaviors. PR analysis revealed a diminution in the surface electric field due to a passivation process whereas the IL-/ILO ratio did not present the same behavior because it was dominated by the depletion layers width (cap layer thickness and the laser penetration depth.

  14. Influence of the electric polarization on carrier transport and recombinaton dynamics in ZnO-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Matthias

    2010-08-16

    The present thesis deals with the influence of the electric polarization on properties of free carriers in ZnO-based semiconductor heterostructures. Thereby especially transport properties of free carriers as well as their recombination dynamics are studied. The thesis treats four main topics. The first main topic lies on the phsical properties of the applied materials, here the connection of the band gap and the lattice constant of thin Mg{sub x}Zn{sub 1-x}O films and their magnesium content is described. Furthermore the morphology of such films is discussed. Different substrates and deposition conditions are thereby detailedly considered. The second main topic treats the properties of undoped and phosphorus doped thin ZnO and Mg{sub x}Zn{sub 1-x}O films. The structural, transport, and luminescence properties are here compared and conclusions drawn on the growth conditions. In the third main topic quantum effects on ZnO/Mg{sub x}Zn{sub 1-x}O interfaces are treated. Hereby especially the influence of the electric polarization is considered. The presence of a two-dimensional electron gas is proved, and the necessary conditions for the generation of the so-called confined Stark effect are explained. Especially the growth-relevant parameters are considered. The fourth main topic represent coupling phenomena in ZnO/BaTiO{sub 3} heterostructures. Thereby first the experimentally observed properties of different heterostructures are shown, which were grown on different substrates. Here structural and transport properties hold the spotlight. A model for the description of the formation of space-charge zones in such heterostructures is introduced and applied for the description of the experimental results. The usefulness of the ferroelectric properties of the material BaTiO{sub 3} in combination with semiconducting ZnO were studied. For this ferroelectric field effect transistors were fabricated under application of both materials. The principle suitedness of the

  15. Time-resolved optically-detected magnetic resonance of II-VI diluted-magnetic-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.Yu.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Dept. Mathem. and Natural Sci. College of Sci., Card. S. Wyszynski Univ., Warsaw (Poland); Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44221 Dortmund (Germany); A. F. Ioffe Physico-Technical Institute, 194017 St. Petersburg (Russian Federation); Ryabchenko, S.M. [Institute of Physics NAS Ukraine, 03028 Kiev (Ukraine); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany)

    2007-01-15

    Time-resolved optically-detected magnetic resonance (ODMR) technique was used to study spin dynamics of Mn{sup 2+} ions in (Zn,Mn)Se- and (Cd,Mn)Te-based diluted magnetic semiconductor quantum wells. Times of spin-lattice relaxation have been measured directly from a dynamical shift of exciton luminescence lines after a pulsed impact of 60 GHz microwave radiation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. A review of nano-optics in metamaterial hybrid heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, Western University, London N6G 3K7 (Canada)

    2014-03-31

    We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.

  17. Implementation of the buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Merrill, S.K.

    1992-01-01

    The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring

  18. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-01-01

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  19. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  20. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  1. Long-range ordering of III-V semiconductor nanostructures by shallowly buried dislocation networks

    International Nuclear Information System (INIS)

    Coelho, J; Patriarche, G; Glas, F; Saint-Girons, G; Sagnes, I

    2004-01-01

    We account for lateral orderings of III-V nanostructures resulting from a GaAs/InAs/InGaAs/GaAs sequence grown on GaAs by metallorganic vapour phase epitaxy at two different temperatures. For both samples, the ordering is induced by the stress field of a periodic dislocation network (DN) shallowly buried and parallel to the surface. This DN is a grain boundary (GB) that forms, between a thin GaAs layer (on which growth was performed) and a GaAs substrate joined together by wafer bonding, in order to accommodate a tilt and a twist between these two crystals; both these misorientations are imposed in a controlled manner. This GB is composed of a one-dimensional network of mixed dislocations and of a one-dimensional network of screw dislocations. For both samples, the nanostructures observed by transmission electron microscopy (TEM) and atomic force microscopy are ordered by the underlying DN observed by TEM since they have same dimensions and orientations as the cells of the DN

  2. Hexagonal boron nitride and graphene in-plane heterostructures: An experimentally feasible approach to charge-induced switchable CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xin; Tahini, Hassan A.; Smith, Sean C., E-mail: sean.smith@unsw.edu.au

    2016-10-20

    Hexagonal boron nitride (h-BN) has been proposed as a sorbent material for charge-induced switchable CO{sub 2} capture. However, h-BN is a wide-gap semiconductor, hindering injection of the requisite charge. Here, we employ first-principle calculations to support the proposal that in-plane h-BN/graphene (P-BN/G) heterostructures, consisting of alternating strips of h-BN and graphene, may provide an experimentally feasible material platform for voltage-induced charging of h-BN strips to realize switchable CO{sub 2} capture. Our results show that a significant amount of injected negative charges are distributed onto h-BN strips of P-BN/G, such that CO{sub 2} capture/release can be simply controlled by switching on/off the charge states of P-BN/G system. At saturation CO{sub 2} capture coverage, the negatively charged P-BN/G heterostructures achieve CO{sub 2} capture capacities up to 2.27 × 10{sup 14} cm{sup −2}, which is twice that which can be achieved on stacked h-BN/graphene (S-BN/G) nanosheets.

  3. Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures

    Science.gov (United States)

    Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta

    2018-04-01

    We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the

  4. Ion beam synthesis and characterization of metastable group-IV alloy semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Naoto; Hasegawa, Masataka; Hayashi, Nobuyuki; Makita, Yunosuke; Shibata, Hajime [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Katsumata, Hiroshi; Uekusa, Shin-ichiro

    1997-03-01

    New Group-IV metastable alloy semiconductors and their heterostructures based on combinations of C-Si-Ge-Sn are recently attracting interest because of feasible new electronic and optoelectronic application in Si-technology and here research works on synthesis and characterization of the epitaxial heterostructures of Si-C, Si-Sn on Si fabricated by ion implantation together either with ion-beam-induced epitaxial crystallization (IBIEC) or solid phase epitaxial growth (SPEG) have been investigated. Formations of layers of Si{sub 1-y}C{sub y} (y=0.014 at peak concentration) on Si(100) have been performed by high-dose implantation of 17 keV C ions and successive IBIEC with 400 keV Ar or Ge ion bombardments at 300-400degC or SPEG up to 750degC. Crystalline growth by IBIEC has shown a lower growth rate in Si{sub 1-y}C{sub y}/Si than in intrinsic Si due mainly to the strain existence, which was observed by the X-ray diffraction (XRD) measurements. Photoluminescence(PL) measurements have revealed I{sub 1} or G line emissions that are relevant to small vacancy clusters or C pair formation, respectively. The crystalline growth of Si{sub 1-z}Sn{sub z} layers by 110 keV {sup 120}Sn ion implantation (z=0.029 and z=0.058 at peak concentration) into Si(100) followed either by IBIEC or by SPEG has been also investigated. PL emission from both IBIEC-grown and SPEG-grown samples with the lower Sn concentration has shown similar peaks to those by ion-implanted and annealed Si samples with intense I{sub 1} or I{sub 1}-related (Ar) peaks. Present results suggest that IBIEC has a feature for the non-thermal equilibrium fabrication of Si-C and Si-Sn alloy semiconductors. (J.P.N.)

  5. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    The design and analysis of semiconductor strained-layer device structures require an understanding of the equilibrium profiles of strain and dislocations associated with mismatched epitaxy. Although it has been shown that the equilibrium configuration for a general semiconductor strained-layer structure may be found numerically by energy minimization using an appropriate partitioning of the structure into sublayers, such an approach is computationally intense and non-intuitive. We have therefore developed a simple electric circuit model approach for the equilibrium analysis of these structures. In it, each sublayer of an epitaxial stack may be represented by an analogous circuit configuration involving an independent current source, a resistor, an independent voltage source, and an ideal diode. A multilayered structure may be built up by the connection of the appropriate number of these building blocks, and the node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits can easily be extended to the relaxation of strained-layer structures. Furthermore, the electrical circuit model may be extended to continuously-graded epitaxial layers by considering the limit as the individual sublayer thicknesses are diminished to zero. In this paper, we describe the mathematical foundation of the electrical circuit model, demonstrate its application to several representative structures involving In x Ga1- x As strained layers on GaAs (001) substrates, and develop its extension to continuously-graded layers. This extension allows the development of analytical expressions for the strain, misfit dislocation density, critical layer thickness and widths of misfit dislocation free zones for a continuously-graded layer having an arbitrary compositional profile. It is similar to the transition from circuit

  6. Fabrication of colloidal crystal heterostructures by a room temperature floating self-assembly method

    International Nuclear Information System (INIS)

    Wang Aijun; Chen Shengli; Dong Peng

    2011-01-01

    Highlights: → Opal colloidal crystal heterostructure of several square centimeters in area was fabricated within only tens of minutes. → A fabricated colloidal crystal heterostructure was composed of a PS opal and a TiO 2 inverse opal crystal films. → The photonic heterostructure had two photonic-band gaps. → The relative position of the two photonic-band gaps can be controlled by the size of PS microspheres used to fabricate the photonic heterostructure. - Abstract: Photonic crystal heterostructures were fabricated through a room temperature floating self-assembly (RTFSA) method recently developed by our research group. Applying this method, opal colloidal crystal heterostructures of several square centimeters in area were fabricated within tens of minutes without special facilities, and a heterostructure composed of a PS opal and a TiO 2 inverse opal crystal films was fabricated. SEM image of the PS opal-TiO 2 inverse opal heterostructure showed the ordered growth of the top opal film of the heterostructure was hardly disturbed by the cracks in the TiO 2 inverse opal film. The UV-vis transmission spectra indicated that the photonic heterostructures had two photonic-band gaps, and the relative position of two photonic-band gaps can be controlled by the size of PS microspheres used to fabricated the photonic heterostructures.

  7. Superthin Solar Cells Based on AIIIBV/Ge Heterostructures

    Science.gov (United States)

    Pakhanov, N. A.; Pchelyakov, O. P.; Vladimirov, V. M.

    2017-11-01

    A comparative analysis of the prospects of creating superthin, light-weight, and highly efficient solar cells based on AIIIBV/InGaAs and AIIIBV/Ge heterostructures is performed. Technological problems and prospects of each variant are discussed. A method of thinning of AIIIBV/Ge heterostructures with the use of an effective temporary carrier is proposed. The method allows the process to be performed almost with no risk of heterostructure fracture, thinning of the Ge junction down to several tens of micrometers (or even several micrometers), significant enhancement of the yield of good structures, and also convenient and reliable transfer of thinned solar cells to an arbitrary light and flexible substrate. Such a technology offers a possibility of creating high-efficiency thin and light solar cells for space vehicles on the basis of mass-produced AIIIBV/Ge heterostructures.

  8. DOE's plan for buried transuranic (TRU) contaminated waste

    International Nuclear Information System (INIS)

    Mathur, J.; D'Ambrosia, J.; Sease, J.

    1987-01-01

    Prior to 1970, TRU-contaminated waste was buried as low-level radioactive waste. In the Defense Waste Management Plan issued in 1983, the plan for this buried TRU-contaminated waste was to monitor the buried waste, take remedial actions, and to periodically evaluate the safety of the waste. In March 1986, the General Accounting Office (GAO) recommended that the Department of Energy (DOE) provide specific plans and cost estimates related to buried TRU-contaminated waste. This plan is in direct response to the GAO request. Buried TRU-contaminated waste and TRU-contaminated soil are located in numerous inactive disposal units at five DOE sites. The total volume of this material is estimated to be about 300,000 to 500,000 m 3 . The DOE plan for TRU-contaminated buried waste and TRU-contaminated soil is to characterize the disposal units; assess the potential impacts from the waste on workers, the surrounding population, and the environment; evaluate the need for remedial actions; assess the remedial action alternatives; and implement and verify the remedial actions as appropriate. Cost estimates for remedial actions for the buried TRU-contaminated waste are highly uncertain, but they range from several hundred million to the order of $10 billion

  9. In situ vitrification of buried waste sites

    International Nuclear Information System (INIS)

    Shade, J.W.; Thompson, L.E.; Kindle, C.H.

    1991-04-01

    In situ vitrification (ISV) is a remedial technology initially developed to treat soils contaminated with a variety of organics, heavy metals, and/or radioactive materials. Recent tests have indicated the feasibility of applying the process to buried wastes including containers, combustibles, and buried metals. In addition, ISV is being considered for application to the emplacement of barriers and to the vitrification of underground tanks. This report provides a review of some of the recent experiences of applying ISV in engineering-scale and pilot-scale tests to wastes containing organics, the Environmental Protection Agency (EPA) Toxic metals buried in sealed containers, and buried ferrous metals, with emphasis on the characteristics of the vitrified product and adjacent soil. 9 refs., 2 figs., 3 tabs

  10. Charge and field coupling phenomena at metal-oxide interfaces and their applications

    Science.gov (United States)

    Voora, Venkata M.

    Heterostructures composed of polar materials, such as ferroelectric and/or piezoelectric, are interesting due to their interface lattice charge coupling (LCC) effects. In this thesis, coupling effects between switchable ferroelectric and non-switchable piezoelectric semiconductor spontaneous polarizations are addressed. Also discussed is a dielectric continuum model approach for studying LCC effects in double layer piezoelectric semiconductor-ferroelectric and triple layer piezoelectric semiconductor-ferroelectric-piezoelectric semiconductor heterostructures. The dielectric continuum model augments the effects of electric field driven switchable polarization due to LCC with depletion layer formation in semiconductor heterostructures. Electrical investigations were used to study a reference single layer (BaTiO3), a double layer (BaTiO3-ZnO), and a triple layer (ZnO-BaTiO 3-ZnO) heterostructure grown by pulsed laser deposition. The coupling between the non-switchable spontaneous polarization of ZnO and the electrically switchable spontaneous polarization of BaTiO3 causes strong asymmetric polarization hysteresis behavior. The n-type ZnO layer within double and triple layered heterostructures reveals hysteresis-dependent capacitance variations upon formation of depletion layers at the ZnO/BaTiO 3 interfaces. Model analysis show very good agreement between the generated data and the experimental results. The dielectric continuum model approach allows for the derivation of the amount and orientation of the spontaneous polarization of the piezoelectric constituents, and can be generalized towards multiple layer piezoelectric semiconductor-ferroelectric heterostructures. Based on experimental results the polarization coupled ZnO-BaTiO 3-ZnO heterostructures is identified as a two-terminal unipolar ferroelectric bi-junction transistor which can be utilized in memory storage devices. Furthermore it is discussed, that the triple layer heterostructure with magnetically

  11. Integrated test schedule for buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Brown, J.T.; McDonald, J.K.

    1992-05-01

    The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ''windows of opportunity'' schedule. The ''windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M

  12. Spatially resolved band alignments at Au-hexadecanethiol monolayer-GaAs(001) interfaces by ballistic electron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Junay, A.; Guézo, S., E-mail: sophie.guezo@univ-rennes1.fr; Turban, P.; Delhaye, G.; Lépine, B.; Tricot, S.; Ababou-Girard, S.; Solal, F. [Département Matériaux-Nanosciences, Institut de Physique de Rennes, UMR 6251, CNRS-Université de Rennes 1, Campus de Beaulieu, Bât 11E, 35042 Rennes Cedex (France)

    2015-08-28

    We study structural and electronic inhomogeneities in Metal—Organic Molecular monoLayer (OML)—semiconductor interfaces at the sub-nanometer scale by means of in situ Ballistic Electron Emission Microscopy (BEEM). BEEM imaging of Au/1-hexadecanethiols/GaAs(001) heterostructures reveals the evolution of pinholes density as a function of the thickness of the metallic top-contact. Using BEEM in spectroscopic mode in non-short-circuited areas, local electronic fingerprints (barrier height values and corresponding spectral weights) reveal a low-energy tunneling regime through the insulating organic monolayer. At higher energies, BEEM evidences new conduction channels, associated with hot-electron injection in the empty molecular orbitals of the OML. Corresponding band diagrams at buried interfaces can be thus locally described. The energy position of GaAs conduction band minimum in the heterostructure is observed to evolve as a function of the thickness of the deposited metal, and coherently with size-dependent electrostatic effects under the molecular patches. Such BEEM analysis provides a quantitative diagnosis on metallic top-contact formation on organic molecular monolayer and appears as a relevant characterization for its optimization.

  13. International Conference on the Physics of Semiconductors (17th) Held in San Francisco, California on August 6-10, 1984

    Science.gov (United States)

    1984-09-30

    Levels of Two-Dimensional Holes in GaAs - (A[Ga)As Quantum Well Heterostructures 219 11:00 M. A. Chin , V. Narayanamurti, H. L. Stormer, A. C. Gossard...W. Chye , P. Skeath, C. Y. Su and I. Lindau, J. Vac. Sci. Technol. 16, 1422 (1979). 121 17th International Conference on the Physics of Semiconductors...DIMENSIONAL HOLE GAS M. A. Chin , V. Narayanamurti, H. L. Stormer and A. C. Gossard AT&T Bell Laboratories, Murray Hill, NJ 07974 The enhanced electron

  14. Semiconductor integrated circuits

    International Nuclear Information System (INIS)

    Michel, A.E.; Schwenker, R.O.; Ziegler, J.F.

    1979-01-01

    An improved method involving ion implantation to form non-epitaxial semiconductor integrated circuits. These are made by forming a silicon substrate of one conductivity type with a recessed silicon dioxide region extending into the substrate and enclosing a portion of the silicon substrate. A beam of ions of opposite conductivity type impurity is directed at the substrate at an energy and dosage level sufficient to form a first region of opposite conductivity within the silicon dioxide region. This impurity having a concentration peak below the surface of the substrate forms a region of the one conductivity type which extends from the substrate surface into the first opposite type region to a depth between the concentration peak and the surface and forms a second region of opposite conductivity type. The method, materials and ion beam conditions are detailed. Vertical bipolar integrated circuits can be made this way when the first opposite type conductivity region will function as a collector. Also circuits with inverted bipolar devices when this first region functions as a 'buried'' emitter region. (U.K.)

  15. Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure

    International Nuclear Information System (INIS)

    Huang, Zongyu; Han, Weijia; Chander, D Sathish; Qi, Xiang; Zhang, Han; Tang, Hongli; Ren, Long

    2015-01-01

    We have fabricated a novel sunlight photo-detector based on a MoS 2 /graphene heterostructure. The MoS 2 /graphene heterostructure was prepared by a facile hydrothermal method along with a subsequent annealing process followed by a substrate-induced high selective nucleation and growth mechanism. The microstructures and morphologies of the two-dimensional MoS 2 /graphene heterostructure can be experimentally confirmed by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a UV–vis absorption spectrometer. Photoresponse investigations performed by a photoelectrochemical (PEC) measurement system indicate that the synthesized MoS 2 /graphene heterostructure shows superior photoresponse activities under the illumination of sunlight in contrast with bare MoS 2 and graphene. The improved photoresponsivity can be attributed to the enhanced light absorption, strong light–matter interaction and the extremely efficient charge separation of the heterostructure. The structure and performances of the MoS 2 /graphene heterostructure suggest promising applications in the field of photonics and optoelectronics. (paper)

  16. Variable electronic properties of lateral phosphorene-graphene heterostructures.

    Science.gov (United States)

    Tian, Xiaoqing; Liu, Lin; Du, Yu; Gu, Juan; Xu, Jian-Bin; Yakobson, Boris I

    2015-12-21

    Phosphorene and graphene have a tiny lattice mismatch along the armchair direction, which can result in an atomically sharp in-plane interface. The electronic properties of the lateral heterostructures of phosphorene/graphene are investigated by the first-principles method. Here, we demonstrate that the electronic properties of this type of heterostructure can be highly tunable by the quantum size effects and the externally applied electric field (Eext). At strong Eext, Dirac Fermions can be developed with Fermi velocities around one order smaller than that of graphene. Undoped and hydrogen doped configurations demonstrate three drastically different electronic phases, which reveal the strongly tunable potential of this type of heterostructure. Graphene is a naturally better electrode for phosphorene. The transport properties of two-probe devices of graphene/phosphorene/graphene exhibit tunnelling transport characteristics. Given these results, it is expected that in-plane heterostructures of phosphorene/graphene will present abundant opportunities for applications in optoelectronic and electronic devices.

  17. Nanoscale heterostructures with molecular-scale single-crystal metal wires.

    Science.gov (United States)

    Kundu, Paromita; Halder, Aditi; Viswanath, B; Kundu, Dipan; Ramanath, Ganpati; Ravishankar, N

    2010-01-13

    Creating nanoscale heterostructures with molecular-scale (synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.

  18. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  19. Molecular level control of nanoscale composition and morphology: Toward photocatalytic nanocomposites for solar-to-chemical energy conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ruberu, Thanthrige P. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Understanding the factors influencing nanocrystal formation is a challenge yet to be realized. In comparison to the large number of studies on nanocrystal synthesis and their applications, the number of studies on the effect of the precursor chemistry on nanocrystal composition and shape remains low. Although photochemical fabrication of metalsemiconductor nano-heterostructures is reported in literature, control over the free particle formation and the site of metal deposition have not been achieved. Moreover, utilization of metal- semiconductor nano-heterostructures in photocatalytic reactions other than water splitting is hardly explored. In this thesis, we studied the effect of chalcogenide precursor reactivity on the composition, morphology and the axial anisotropy of cadmiumchalcogenide nanocrystals. We also investigated the influence of the irradiation wavelength in synthesizing metal-semiconductor nano-heterostructures. Finally, we showed that metal semiconductor nano-heterostructures can be used as a photocatalyst for alcohol dehydrogenation reactions. We explored the pathways for the formation of Pt and Pd nanoparticles on CdS and CdS{sub 0.4}Se{sub 0.6} nanorods. This study revealed that the wavelength of irradiation is critical to control free-standing vs. bound metal (Pt and Pd) nanoparticles to semiconductor. Additionally, we observed that metal photodeposition occurs on specific segments of axially anisotropic, compositionally graded CdS0.4Se0.6 nanorods due to the band-gap differential between their nano-domains. We used semiconductor-metal heterostructures for sunlightdriven dehydrogenation and hydrogenolysis of benzyl alcohol. Heterostructure composition dictates activity (turnovers) and product distribution. A few metal (Pt, Pd) islands on the semiconductor surface significantly enhance activity and selectivity and also greatly stabilize the semiconductor against photoinduced etching and degradation.

  20. Ionic conductivity in oxide heterostructures: the role of interfaces

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available Rapidly growing attention is being directed to the investigation of ionic conductivity in oxide film heterostructures. The main reason for this interest arises from interfacial phenomena in these heterostructures and their applications. Recent results revealed that heterophase interfaces have faster ionic conduction pathways than the bulk or homophase interfaces. This finding can open attractive opportunities in the field of micro-ionic devices. The influence of the interfaces on the conduction properties of heterostructures is becoming increasingly important with the miniaturization of solid-state devices, which leads to an enhanced interface density at the expense of the bulk. This review aims to describe the main evidence of interfacial phenomena in ion-conducting film heterostructures, highlighting the fundamental and technological relevance and offering guidelines to understanding the interface conduction mechanisms in these structures.

  1. Additional compound semiconductor nanowires for photonics

    Science.gov (United States)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  2. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S M

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed by a

  3. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  4. Piezoelectric control of magnetoelectric coupling driven non-volatile memory switching and self cooling effects in FE/FSMA multiferroic heterostructures

    Science.gov (United States)

    Singh, Kirandeep; Kaur, Davinder

    2017-02-01

    The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.

  5. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  6. Non-destructive spatial characterization of buried interfaces in multilayer stacks via two color picosecond acoustics

    Science.gov (United States)

    Faria, Jorge C. D.; Garnier, Philippe; Devos, Arnaud

    2017-12-01

    We demonstrate the ability to construct wide-area spatial mappings of buried interfaces in thin film stacks in a non-destructive manner using two color picosecond acoustics. Along with the extraction of layer thicknesses and sound velocities from acoustic signals, the morphological information presented is a powerful demonstration of phonon imaging as a metrological tool. For a series of heterogeneous (polymer, metal, and semiconductor) thin film stacks that have been treated with a chemical procedure known to alter layer properties, the spatial mappings reveal changes to interior thicknesses and chemically modified surface features without the need to remove uppermost layers. These results compare well to atomic force microscopy scans showing that the technique provides a significant advantage to current characterization methods for industrially important device stacks.

  7. Formation Process and Properties of Ohmic Contacts Containing Molybdenum to AlGaN/GaN Heterostructures

    Directory of Open Access Journals (Sweden)

    Wojciech Macherzynski

    2016-01-01

    Full Text Available Properties of wide bandgap semiconductors as chemical inertness to harsh conditions and possibility of working at high temperature ensure possible applications in the field as military, aerospace, automotive, engine monitoring, flame detection and solar UV detection. Requirements for ohmic contacts in semiconductor devices are determined by the proposed application. These contacts to AlGaN/GaN heterostructure for application as high temperature, high frequency and high power devices have to exhibit good surface morphology and low contact resistance. The latter is a crucial factor in limiting the development of high performance AlGaN/GaN devices. Lowering of the resistance is assured by rapid thermal annealing process. The paper present studies of Ti/Al/Mo/Au ohmic contacst annealed at temperature range from 825°C to 885°C in N2 atmosphere. The electrical parameters of examined samples as a function of the annealing process condition have been studied. Initially the annealing temperature increase caused lowering of the contacts resistance. The lowest value was noticed for the temperature of annealing equal to 885°C. Further increase of annealing temperature led to deterioration of contact resistance of investigated ohmic contacts.

  8. In situ vitrification on buried waste

    International Nuclear Information System (INIS)

    Bates, S.O.

    1992-01-01

    In situ vitrification (ISV) is being evaluated as a remedial treatment technology for buried mixed and transuranic (TRU) wastes at the Subsurface Disposal Area (SDA) at Idaho National Engineering Laboratory (INEL) and can be related to buried wastes at other Department of Energy (DOE) sites. There are numerous locations around the DOE Complex where wastes were buried in the ground or stored for future burial. The Buried Waste Program (BWP) is conducting a comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the Department of Energy - Field Office Idaho (DOE-ID). As part of the RI/FS, an ISV scoping study on the treatability of the SDA mixed low-level and mixed TRU waste is being performed for applicability to remediation of the waste at the Radioactive Waste Management Complex (RWMC). The ISV project being conducted at the INEL by EG ampersand G Idaho, Inc. consists of a treatability investigation to collect data to satisfy nine CERCLA criteria with regards to the SDA. This treatability investigation involves a series of experiments and related efforts to study the feasibility of ISV for remediation of mixed and TRU waste disposed of at the SDA

  9. Time-resolved optical studies of wide-gap II-VI semiconductor heterostructures

    Science.gov (United States)

    Wang, Hong

    ZnSe and ZnSe-based quantum well and superlattice structures are potential candidates for light emitting devices and other optical devices such as switches and modulators working in the blue-green wavelength range. Carrier dynamics studies of these structures are important in evaluating device performance as well as understanding the underlying physical processes. In this thesis, a carrier dynamics investigation is conducted for temperature from 77K to 295K on CdZnSSe/ZnSSe single quantum well structure (SQW) and ZnSe/ZnSTe superlattice fabricated by molecular beam epitaxy (MBE). Two experimental techniques with femtosecond time resolution are used in this work: up-conversion technique for time- resolved photoluminescence (PL) and pump-probe technique for time-resolved differential absorption studies. For both heterostructures, the radiative recombination is dominated by exciton transition due to the large exciton binding energy as a result of quantum confinement effect. The measured decay time of free exciton PL in CdZnSSe/ZnSSe SQW increases linearly with increasing temperature which agrees with the theoretical prediction by considering the conservation of momentum requirement for radiative recombination. However, the recombination of free carriers is also observed in CdZnSSe/ZnSSe SQW for the whole temperature range studied. On the other hand, in ZnSe/ZnSTe superlattice structures, the non- radiative recombination processes are non-negligible even at 77K and become more important in higher temperature range. The relaxation processes such as spectral hole burning, carrier thermalization and hot-carrier cooling are observed in ZnSe/ZnSTe superlattices at room temperature (295K) by the femtosecond pump-probe measurements. A rapid cooling of the thermalized hot- carrier from 763K to 450K within 4ps is deduced. A large optical nonlinearity (i.e., the induced absorption change) around the heavy-hole exciton energy is also obtained.

  10. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures

    International Nuclear Information System (INIS)

    Chung, Jing-Yang; Sorkin, Viacheslav; Pei, Qing-Xiang; Zhang, Yong-Wei; Chiu, Cheng-Hsin

    2017-01-01

    Van der Waals heterostructures based on graphene and other 2D materials have attracted great attention recently. In this study, the mechanical properties and failure behaviour of a graphene/silicene/graphene heterostructure are investigated using molecular dynamics simulations. We find that by sandwiching silicene in-between two graphene layers, both ultimate tensile strength and Young’s modulus of the heterostructure increase approximately by a factor of 10 compared with those of stand-alone silicene. By examining the fracture process of the heterostructure, we find that graphene and silicene exhibit quite different fracture behaviour. While graphene undergoes cleavage through its zigzag edge only, silicene can cleave through both its zigzag and armchair edges. In addition, we study the effects of temperature and strain rate on the mechanical properties of the heterostructure and find that an increase in temperature results in a decrease in its mechanical strength and stiffness, while an increase in strain rate leads to an increase in its mechanical strength without significant changes in its stiffness. We further explore the failure mechanism and show that the temperature and strain-rate dependent fracture stress can be accurately described by the kinetic theory of fracture. Our findings provide a deep insight into the mechanical properties and failure mechanism of graphene/silicene heterostructures. (paper)

  11. Highly Confined Electronic and Ionic Conduction in Oxide Heterostructures

    DEFF Research Database (Denmark)

    Pryds, Nini

    2015-01-01

    The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. In this talk I will present our recent results both on ionic and electronic conductivity at different heterostructures systems. In the first...... unattainable for Bi2O3-based materials, is achieved[1]. These confined heterostructures provide a playground not only for new high ionic conductivity phenomena that are sufficiently stable but also uncover a large variety of possible technological perspectives. At the second part, I will discuss and show our...

  12. Concealed epispadias associated with a buried penis.

    Science.gov (United States)

    Sol Melgar, Ricardo; Gorduza, Daniela; Demède, Delphine; Mouriquand, Pierre

    2016-12-01

    The aim was to describe the clinical presentation and the surgical management of penile epispadias associated with a buried penis in five children. This is a 5-year retrospective review of patients presenting with a buried penis, a congenital defect of the penile skin shaft associated with an unretractable foreskin for whom a penile epispadias was found at the time of surgery. All had undergone surgery combining a Cantwell-Ransley procedure and refashioning of the penile skin following the authors' technique. Three children had a glanular epispadias and two had a midshaft epispadias. Four had a satisfactory outcome, and one required a complementary urethroplasty for glanular dehiscence. Buried penis and epispadias are usually isolated congenital anomalies, although they can be associated. It is therefore recommended to warn parents about the possibility of underlying penile anomaly in children with buried penises and unretractable foreskin. Careful palpation of the dorsum of the glans through the foreskin looking for a dorsal cleft could indicate an associated epispadiac urethra. Surgical correction of both anomalies can be done at the same time. Parents of boys with buried penises should be warned that underlying penile anomaly may exist. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  13. Dual-band infrared capabilities for imaging buried object sites

    Energy Technology Data Exchange (ETDEWEB)

    Del Grande, N.K.; Durbin, P.F.; Gorvad, M.R.; Perkins, D.E.; Clark, G.A.; Hernandez, J.E.; Sherwood, R.J.

    1993-04-02

    We discuss dual-band infrared (DBIR) capabilities for imaging buried object sizes. We identify physical features affecting thermal contrast needed to distinguish buried object sites from undisturbed sites or surface clutter. Apart from atmospheric transmission and system performance, these features include: object size, shape, and burial depth; ambient soil, disturbed soil and object site thermal diffusivity differences; surface temperature, emissivity, plant-cover, slope, albedo and roughness variations; weather conditions and measurement times. We use good instrumentation to measure the time-varying temperature differences between buried object sites and undisturbed soil sites. We compare near surface soil temperature differences with radiometric infrared (IR) surface temperature differences recorded at 4.7 {plus_minus} 0.4 {mu}m and at 10.6 {plus_minus} 1.0 {mu}m. By producing selective DBIR image ratio maps, we distinguish temperature-difference patterns from surface emissivity effects. We discuss temperature differences between buried object sites, filled hole site (without buried objects), cleared (undisturbed) soil sites, and grass-covered sites (with and without different types of surface clutter). We compare temperature, emissivity-ratio, visible and near-IR reflectance signatures of surface objects, leafy plants and sod. We discuss the physical aspects of environmental, surface and buried target features affecting interpretation of buried targets, surface objects and natural backgrounds.

  14. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Kuzmík, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Brunner, F.; Cho, E.-M. [Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Hashizume, T. [Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, 060-0814 Sapporo, Japan and JST-CREST, 102-0075 Tokyo (Japan)

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from EC-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about EC-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  15. Electronic properties of phosphorene/graphene heterostructures: Effect of external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumandeep; Srivastava, Sunita; Tankeshwar, K. [Department of Physics, Panjab University, Chandigarh-160014 (India); Kumar, Ashok [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India 151001 (India)

    2016-05-23

    We report the electronic properties of electrically gated heterostructures of black and blue phosphorene with graphene. The heterostructure of blue phosphorene with graphene is energetically more favorable than black phospherene/graphene. However, both are bonded by weak interlayer interactions. Graphene induces the Dirac cone character in both heterostructure which shows tunabilities with external electric field. It is found that Dirac cone get shifted depending on the polarity of external electric field that results into the so called self induced p-type or n-type doping effect. These features have importance in the fabrication of nano-electronic devices based on the phosphorene/graphene heterostructures.

  16. Interface-engineered oxygen octahedral coupling in manganite heterostructures

    Science.gov (United States)

    Huijben, M.; Koster, G.; Liao, Z. L.; Rijnders, G.

    2017-12-01

    Control of the oxygen octahedral coupling (OOC) provides a large degree of freedom to manipulate physical phenomena in complex oxide heterostructures. Recently, local tuning of the tilt angle has been found to control the magnetic anisotropy in ultrathin films of manganites and ruthenates, while symmetry control can manipulate the metal insulator transition in nickelate thin films. The required connectivity of the octahedra across the heterostructure interface enforces a geometric constraint to the 3-dimensional octahedral network in epitaxial films. Such geometric constraint will either change the tilt angle to retain the connectivity of the corner shared oxygen octahedral network or guide the formation of a specific symmetry throughout the epitaxial film. Here, we will discuss the control of OOC in manganite heterostructures by interface-engineering. OOC driven magnetic and transport anisotropies have been realized in LSMO/NGO heterostructures. Competition between the interfacial OOC and the strain further away from the interface leads to a thickness driven sharp transition of the anisotropic properties. Furthermore, octahedral relaxation leading to a change of p-d hybridization driven by interfacial OOC appears to be the strongest factor in thickness related variations of magnetic and transport properties in epitaxial LSMO films on NGO substrates. The results unequivocally link the atomic structure near the interfaces to the macroscopic properties. The strong correlation between a controllable oxygen network and the functionalities will have significant impact on both fundamental research and technological application of correlated perovskite heterostructures. By controlling the interfacial OOC, it is possible to pattern in 3 dimensions the magnetization to achieve non-collinear magnetization in both in-plane and out of plane directions, thus making the heterostructures promising for application in orthogonal spin transfer devices, spin oscillators, and low

  17. Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure

    International Nuclear Information System (INIS)

    Peng, Li; Yao, Kailun; Zhu, Sicong; Ni, Yun; Zu, Fengxia; Wang, Shuling; Guo, Bin; Tian, Yong

    2014-01-01

    We report ab initio calculations of electronic transport properties of heterostructure based on MoS 2 nanoribbons. The heterostructure consists of edge hydrogen-passivated and non-passivated zigzag MoS 2 nanoribbons (ZMoS 2 NR-H/ZMoS 2 NR). Our calculations show that the heterostructure has half-metallic behavior which is independent of the nanoribbon width. The opening of spin channels of the heterostructure depends on the matching of particular electronic orbitals in the Mo-dominated edges of ZMoS 2 NR-H and ZMoS 2 NR. Perfect spin filter effect appears at small bias voltages, and large negative differential resistance and rectifying effects are also observed in the heterostructure.

  18. Simulation of semiconductor devices

    International Nuclear Information System (INIS)

    Oriato, D.

    2001-09-01

    In this thesis a drift diffusion model coupled with self-consistent solutions of Poisson's and Schroedinger's equations, is developed and used to investigate the operation of Gunn diodes and GaN-based LEDs. The model also includes parameters derived from Monte Carlo calculations of the simulated devices. In this way the characteristics of a Monte Carlo approach and of a quantum solver are built into a fast and flexible drift-diffusion model that can be used for testing a large number of heterostructure designs in a time-effective way. The full model and its numerical implementation are described in chapter 2. In chapter 3 the theory of Gunn diodes is presented. A basic model of the dynamics of domain formation and domain transport is described with particular regard to accumulation and dipole domains. Several modes of operation of the Gunn device are described, varying from the resonance mode to the quenched mode. Details about transferred electron devices and negative differential resistance in semiconductor materials are given. In chapter 4 results from the simulation of a simple conventional gunn device confirm the importance of the doping condition at the cathode. Accumulation or dipole domains are achieved respectively with high and low doping densities. The limits of a conventional Gunn diode are explained and solved by introducing the heterostructure Gunn diode. This new design consists of a conventional GaAs transit region coupled with an electron launcher at the cathode, made using an AIGaAs heterostructure step. Simulations show the importance of the insertion of a thin highly-doped layer between the transit region and the electron launcher in order to improve device operation. Chapter 5 is an introduction to Ill-nitrides, in particular GaN and its alloy ln-GaN. We outline the discrepancy in the elastic and piezoelectric parameters found in the literature. Strain, dislocations and piezoelectricity are presented as the main features of a InGaN/GaN system

  19. Vacuum-evaporated ferroelectric films and heterostructures of vinylidene fluoride/trifluoroethylene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Draginda, Yu. A., E-mail: lbf@ns.crys.ras.ru; Yudin, S G; Lazarev, V V; Yablonskii, S V; Palto, S P [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    The potential of the vacuum method for preparing ferroelectric films and photonic heterostructures from organic materials is studied. Vacuum-evaporated films of fluoropolymers and heterostructures on their basis are obtained and their ferroelectric and spectral properties are studied. In particular, homogeneous films of the well-known piezoelectric polymer polyvinylidene fluoride and ferroelectric material vinylidene fluoride/trifluoroethylene copolymer (P(VDF/TFE)) are produced. Experimental studies of vacuum-evaporated P(VDF/TFE) films confirmed their ferroelectric properties. The heterostructures composed of alternating layers of P(VDF/TFE) copolymer molecules and azodye molecules are fabricated by vacuum evaporation. Owing to the controlled layer thickness and a significant difference in the refractive indices of the P(VDF/TFE) copolymer and azodyes, these heterostructures exhibit properties of photonic crystals. This finding is confirmed by the occurrence of a photonic band in the absorption spectra of the heterostructures.

  20. Tunable emergent heterostructures in a prototypical correlated metal

    Science.gov (United States)

    Fobes, D. M.; Zhang, S.; Lin, S.-Z.; Das, Pinaki; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Harriger, L. W.; Ehlers, G.; Podlesnyak, A.; Bewley, R. I.; Sazonov, A.; Hutanu, V.; Ronning, F.; Batista, C. D.; Janoschek, M.

    2018-05-01

    At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge2. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions3, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom4. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures5. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting6 and electronic nematic textures7 in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.

  1. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Nichele, F; Suominen, Henri Juhani

    2016-01-01

    topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al......, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e(2)/h...

  2. First-principles approach for superconducting slabs and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Csire, Gabor [Wigner Research Centre for Physics, Budapest (Hungary)

    2016-07-01

    We present a fully ab-initio method to calculate the transition temperature for superconducting slabs and heterostructures. In the case of thin superconductor layers the electron-phonon interaction may change significantly. Therefore we calculate the layer dependent phonon spectrum to determine the layer dependence of the electron-phonon coupling for such systems. The phonon spectrum is than coupled to the Kohn-Sham-Bogoliubov-de Gennes equation via the McMillan-Hopfield parameter, and it is solved self-consistently. The theory is applied to niobium slabs and niobium-gold heterostructures. Based on these calculations we investigate both the dependence of the superconducting transition temperature on the thickness of superconducting slabs and the inverse proximity effect observed in thin superconducting heterostructures.

  3. Study of interface properties in LaAlO3/SrTiO3 heterostructures

    International Nuclear Information System (INIS)

    Thiel, Stefan Patrick

    2009-01-01

    Interface effects, which play a crucial role in semiconductors, are also important in oxides. Over the last years several oxide heterostructures were investigated with interface properties, which are not found in the bulk properties of the constituting materials. An exciting example is the interface between the two oxides Lanthanumaluminate (LAO) and Strontiumtitanate (STO) which was investigated in this work. Both materials are band-insulators, however a conducting layer can form at the interface, a so called quasi-two-dimensional electron gas (q2-DEG). After a brief introduction to this heterostructure the sample-preparation and characterization is described, and subsequently different projects are reported in detail. The investigation of the electronic transport properties as a function of the LAO film thickness revealed a transition from insulating to conducting behavior if the films exceed a critical thickness of 3 unit cells (uc). By electric field effect the conductivity of the interface can be tuned to a large extent. In samples with 3 uc of LAO a metal-insulator-transition can be induced. To be able to investigate defined structures a novel patterning technique was developed in the course of this thesis, which is based on the variation of the thickness of the epitaxial LAO. At 200 mK the q2-DEG condenses into a superconducting ground state. Investigations on bicrystalline samples reveal that the conducting interface is strongly influenced by dislocations in the STO substrate. (orig.)

  4. Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure

    Science.gov (United States)

    Bescond, M.; Logoteta, D.; Michelini, F.; Cavassilas, N.; Yan, T.; Yangui, A.; Lannoo, M.; Hirakawa, K.

    2018-02-01

    We study by means of full quantum simulations the operating principle and performance of a semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic emission. Our model takes into account the coupling between the electric and thermal currents by self-consistently solving the transport equations within the non-equilibrium Green’s function framework and the heat equation. We show that the device can achieve relatively high cooling power values, while in the considered implementation, the maximum lattice temperature drop is severely limited by the thermal conductivity of the constituting materials. In such an out-of-equilibrium structure, we then emphasize the significant deviation of the phonon temperature from its electronic counterpart which can vary over several hundred Kelvin. The interplay between those two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable options toward an optimization of the device are proposed.

  5. Low Dimensional Semiconductor Structures Characterization, Modeling and Applications

    CERN Document Server

    Horing, Norman

    2013-01-01

    Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included h...

  6. AlGaN channel field effect transistors with graded heterostructure ohmic contacts

    Science.gov (United States)

    Bajaj, Sanyam; Akyol, Fatih; Krishnamoorthy, Sriram; Zhang, Yuewei; Rajan, Siddharth

    2016-09-01

    We report on ultra-wide bandgap (UWBG) Al0.75Ga0.25N channel metal-insulator-semiconductor field-effect transistors (MISFETs) with heterostructure engineered low-resistance ohmic contacts. The low intrinsic electron affinity of AlN (0.6 eV) leads to large Schottky barriers at the metal-AlGaN interface, resulting in highly resistive ohmic contacts. In this work, we use a reverse compositional graded n++ AlGaN contact layer to achieve upward electron affinity grading, leading to a low specific contact resistance (ρsp) of 1.9 × 10-6 Ω cm2 to n-Al0.75Ga0.25N channels (bandgap ˜5.3 eV) with non-alloyed contacts. We also demonstrate UWBG Al0.75Ga0.25N channel MISFET device operation employing the compositional graded n++ ohmic contact layer and 20 nm atomic layer deposited Al2O3 as the gate-dielectric.

  7. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  8. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  9. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce F [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-05-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or

  10. A Versatile and Simple Approach to Generate Light Emission in Semiconductors Mediated by Electric Double Layers

    KAUST Repository

    Pu, Jiang

    2017-04-18

    The light-emitting device is the primary device for current light sources. In principle, conventional light-emitting devices need heterostructures and/or intentional carrier doping to form a p-n junction. This junction formation is, however, very difficult to achieve for most emerging semiconductors, and the fabrication of light-emitting devices is invariably a significant challenge. This study proposes a versatile and simple approach to realize light-emitting devices. This proposed device requires only a semiconducting film with two electrodes that are covered with an electrolyte. This unique structure achieves light emission at a voltage slightly larger than the bandgap energy of materials. This study applies this concept to emerging direct bandgap semiconductors, such as transition metal dichalcogenide monolayers and zinc oxide single crystals. These devices generate obvious light emission and provide sufficient evidence of the formation of a dynamic p-i-n junction or tunneling junction, presenting a versatile technique to develop optoelectronic devices.

  11. Electronic structure, lattice dynamics, and optical properties of a novel van der Waals semiconductor heterostructure: InGaSe2

    Science.gov (United States)

    Ibarra-Hernández, Wilfredo; Elsayed, Hannan; Romero, Aldo H.; Bautista-Hernández, Alejandro; Olguín, Daniel; Cantarero, Andrés

    2017-07-01

    There is a growing interest in the property dependence of transition metal dichalcogenides as a function of the number of layers and formation of heterostructures. Depending on the stacking, doping, edge effects, and interlayer distance, the properties can be modified, which opens the door to novel applications that require a detailed understanding of the atomic mechanisms responsible for those changes. In this work, we analyze the electronic properties and lattice dynamics of a heterostructure constructed by simultaneously stacking InSe layers and GaSe layers bounded by van der Waals forces. We have assumed the same space group of GaSe, P 6 ¯m 2 as it becomes the lower energy configuration for other considered stackings. The structural, vibrational, and optical properties of this layered compound have been calculated using density functional theory. The structure is shown to be energetically, thermally, and elastically stable, which indicates its possible chemical synthesis. A correlation of the theoretical physical properties with respect to its parent compounds is extensively discussed. One of the most interesting properties is the low thermal conductivity, which indicates its potential use in thermolectric applications. Additionally, we discuss the possibility of using electronic gap engineering methods, which can help us to tune the optical emission in a variable range close to that used in the field of biological systems (NIR). Finally, the importance of considering properly van der Waals dispersion in layered materials has been emphasized as included in the exchange correlation functional. As for the presence of atoms with important spin-orbit coupling, relativistic corrections have been included.

  12. Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices

    International Nuclear Information System (INIS)

    Cambel, Vladimir; Martaus, Jozef; Soltys, Jan; Kudela, Robert; Gregusova, Dagmar

    2008-01-01

    The local anodic oxidation (LAO) by the tip of atomic force microscope (AFM) is used for fabrication of nanometer-scaled structures and devices. We study the technology of LAO applied to semiconductor heterostructures, theoretically and experimentally as well. The goal is to improve the LAO process itself, i.e., to create narrow LAO lines that form high-energy barriers in the plane with the 2D electron gas. In the first part we show the electric field distribution in the system tip-sample during LAO. For samples with low-conductive cap layer the maximum electric field is shifted apart the tip apex, which leads to wide oxide lines. Our Monte Carlo (MC) calculations show how the height of the energy barrier in the system depends on the geometry of the created lines (trenches), and on voltage applied to the structure. Based on the calculations, we have proposed a novel LAO technology and applied it to InGaP/AlGaAs/GaAs heterostructure with doping layer only 6 nm beneath the surface. The doping layer can be oxidized easily by the AFM tip in this case, and the oxide objects can be removed by several etchants. This approach to the LAO technology leads to narrow LAO trenches (∼60 nm) and to energy barriers high enough for room- and low-temperature applications

  13. Semiconductor

    International Nuclear Information System (INIS)

    2000-01-01

    This book deals with process and measurement of semiconductor. It contains 20 chapters, which goes as follows; semiconductor industry, introduction of semiconductor manufacturing, yield of semiconductor process, materials, crystal growth and a wafer forming, PN, control pollution, oxidation, photomasking photoresist chemistry, photomasking technologies, diffusion and ion injection, chemical vapor deposition, metallization, wafer test and way of evaluation, semiconductor elements, integrated circuit and semiconductor circuit technology.

  14. Quantum engineering of transistors based on 2D materials heterostructures

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  15. Quantum engineering of transistors based on 2D materials heterostructures.

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  16. Electrical properties and radiation hardness of SOI systems with multilayer buried dielectric

    International Nuclear Information System (INIS)

    Barchuk, I.P.; Kilchitskaya, V.I.; Lysenko, V.S.

    1997-01-01

    In this work SOI structures with buried SiO 2 -Si 3 N 4 -SiO 2 layers have been fabricated by the ZMR-technique with the aim of improving the total dose radiation hardness of the buried dielectric layer. To optimize the fabrication process, buried layers were investigated by secondary ion mass spectrometry before and after the ZMR process, and the obtained results were compared with electrical measurements. It is shown that optimization of the preparation processes of the initial buried dielectric layers provides ZMR SOI structures with multilayer buried isolation, which are of high quality for both Si film interfaces. Particular attention is paid to the investigation of radiation-induced charge trapping in buried insulators. Buried isolation structures with a nitride layer exhibit significant reduction of radiation-induced positive charge as compared to classical buried SiO 2 layers produced by either the ZMR or the SIMOX technique

  17. Buried nodules from the central Indian Ocean basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Parthiban, G.

    . Of these, 13 buried nodules are from two sediment cores in siliceous ooze and seven from two sediment cores in a red clay area. The morphology, size, surface texture and chemical composition of buried nodules from two different sediment type have been...

  18. Three-dimensional minority carrier lifetime mapping of thin film semiconductors for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian [PLANT PV, Inc., Belmont, CA (United States); Peters, Craig [PLANT PV, Inc., Belmont, CA (United States); Barnard, Edward [PLANT PV, Inc., Belmont, CA (United States)

    2015-09-30

    This project addresses the difficulty of accurately measuring charge carrier dynamics in novel semiconductor materials for thin film photovoltaic cells. We have developed a two- photon lifetime tomography technique to separate bulk minority carrier lifetime from surface recombination effects and effects of recombination at sub-surface defects. This technique also enables us to characterize how local defects such as grain boundaries– buried below the surface of a sample–affect carrier lifetimes in the active layer, dynamics that have been previously inaccessible. We have applied this newly developed technique to illuminate how CdCl2 treatment improves CdTe PV efficiency. From striking 3D lifetime tomography maps, a clear, sub- surface understanding emerges of the photophysical changes that occur in CdTe active medium following exposure to CdCl2, a standard step in the fabrication of high-efficiency CdTe-based solar cells. This work demonstrates a well-defined method to quantify grain-boundary, interface, and bulk recombination in CdTe and other optically-active polycrystalline semiconductor materials; information that can provide critical information to the development of next- generation photovoltaics and many other semiconductor technologies.

  19. Electromagnetic scattering from buried objects

    International Nuclear Information System (INIS)

    Brock, B.C.; Sorensen, K.W.

    1994-10-01

    Radar imaging and detection of objects buried in soil has potentially important applications in the areas of nonproliferation of weapons, environmental monitoring, hazardous-waste site location and assessment, and even archeology. In order to understand and exploit this potential, it is first necessary to understand how the soil responds to an electromagnetic wave, and how targets buried within the soil scatter the electromagnetic wave. We examine the response of the soil to a short pulse, and illustrate the roll of the complex dielectric permittivity of the soil in determining radar range resolution. This leads to a concept of an optimum frequency and bandwidth for imaging in a particular soil. We then propose a new definition for radar cross section which is consistent with the modified radar equation for use with buried targets. This radar cross section plays the same roll in the modified radar equation as the traditional radar cross section does in the free-space radar equation, and is directly comparable to it. The radar cross section of several canonical objects in lossy media is derived, and examples are given for several object/soil combinations

  20. n-VO{sub 2}/p-GaN based nitride–oxide heterostructure with various thickness of VO{sub 2} layer grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minhuan [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bian, Jiming, E-mail: jmbian@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050, China (China); Sun, Hongjun; Liu, Weifeng [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhang, Yuzhi [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050, China (China); Luo, Yingmin [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2016-12-15

    Graphical abstract: The significant influences of VO{sub 2} layer thickness on the structural, electrical and contact properties of the n-VO{sub 2}/p-GaN based nitride-oxide heterostructure were investigated systemically. - Highlights: • High quality VO{sub 2} films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). • A distinct reversible SMT phase transition was observed for the n-VO{sub 2}/p-GaN based nitride-oxide heterostructure. • The clear rectifying transport characteristics originated from the n-VO{sub 2}/p-GaN interface were demonstrated before and after SMT of the VO{sub 2} over layer. • The XPS analyses confirmed the valence state of V in VO{sub 2} films was principally composed of V{sup 4+} with trace amount of V{sup 5+}. • The design and modulation of the n-VO{sub 2}/p-GaN based heterostructure devices will benefit significantly from these achievements. - Abstract: High quality VO{sub 2} films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO{sub 2} layer thickness on the SMT properties of the as-grown n-VO{sub 2}/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO{sub 2}/p-GaN interface were demonstrated before and after SMT of the VO{sub 2} over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO{sub 2} films was principally composed of V{sup 4+} with trace amount of V{sup 5+}. The design and modulation of the n-VO{sub 2}/p-GaN based heterostructure

  1. Heterostructures based on two-dimensional layered materials and their potential applications

    KAUST Repository

    Li, Ming-yang; Chen, Chang-Hsiao; Shi, Yumeng; Li, Lain-Jong

    2015-01-01

    The development of two-dimensional (2D) layered materials is driven by fundamental interest and their potential applications. Atomically thin 2D materials provide a wide range of basic building blocks with unique electrical, optical, and thermal properties which do not exist in their bulk counterparts. The van der Waals interlayer interaction enables the possibility to exfoliate and reassemble different 2D materials into arbitrarily and vertically stacked heterostructures. Recently developed vapor phase growth of 2D materials further paves the way of directly synthesizing vertical and lateral heterojunctions. This review provides insights into the layered 2D heterostructures, with a concise introduction to preparative approaches for 2D materials and heterostructures. These unique 2D heterostructures have abundant implications for many potential applications.

  2. Heterostructures based on two-dimensional layered materials and their potential applications

    KAUST Repository

    Li, Ming-yang

    2015-12-04

    The development of two-dimensional (2D) layered materials is driven by fundamental interest and their potential applications. Atomically thin 2D materials provide a wide range of basic building blocks with unique electrical, optical, and thermal properties which do not exist in their bulk counterparts. The van der Waals interlayer interaction enables the possibility to exfoliate and reassemble different 2D materials into arbitrarily and vertically stacked heterostructures. Recently developed vapor phase growth of 2D materials further paves the way of directly synthesizing vertical and lateral heterojunctions. This review provides insights into the layered 2D heterostructures, with a concise introduction to preparative approaches for 2D materials and heterostructures. These unique 2D heterostructures have abundant implications for many potential applications.

  3. Seismic response of buried pipelines: a state-of-the-art review

    International Nuclear Information System (INIS)

    Datta, T.K.

    1999-01-01

    A state-of-the-art review of the seismic response of buried pipelines is presented. The review includes modeling of soil-pipe system and seismic excitation, methods of response analysis of buried pipelines, seismic behavior of buried pipelines under different parametric variations, seismic stresses at the bends and intersections of network of pipelines. pipe damage in earthquakes and seismic risk analysis of buried pipelines. Based on the review, the future scope of work on the subject is outlined. (orig.)

  4. Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor

    KAUST Repository

    Song, Zhibo; Schultz, Thorsten; Ding, Zijing; Lei, Bo; Han, Cheng; Amsalem, Patrick; Lin, Tingting; Chi, Dongzhi; Wong, Swee Liang; Zheng, Yu Jie; Li, Ming-yang; Li, Lain-Jong; Chen, Wei; Koch, Norbert; Huang, Yu Li; Wee, Andrew Thye Shen

    2017-01-01

    Two-dimensional (2D) semiconductors offer a convenient platform to study 2D physics, for example, to understand doping in an atomically thin semiconductor. Here, we demonstrate the fabrication and unravel the electronic properties of a lateral doped/intrinsic heterojunction in a single-layer (SL) tungsten diselenide (WSe2), a prototype semiconducting transition metal dichalcogenide (TMD), partially covered with a molecular acceptor layer, on a graphite substrate. With combined experiments and theoretical modeling, we reveal the fundamental acceptor-induced p-doping mechanism for SL-WSe2. At the 1D border between the doped and undoped SL-WSe2 regions, we observe band bending and explain it by Thomas-Fermi screening. Using atomically resolved scanning tunneling microscopy and spectroscopy, the screening length is determined to be in the few nanometer range, and we assess the carrier density of intrinsic SL-WSe2. These findings are of fundamental and technological importance for understanding and employing surface doping, for example, in designing lateral organic TMD heterostructures for future devices.

  5. Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor

    KAUST Repository

    Song, Zhibo

    2017-07-28

    Two-dimensional (2D) semiconductors offer a convenient platform to study 2D physics, for example, to understand doping in an atomically thin semiconductor. Here, we demonstrate the fabrication and unravel the electronic properties of a lateral doped/intrinsic heterojunction in a single-layer (SL) tungsten diselenide (WSe2), a prototype semiconducting transition metal dichalcogenide (TMD), partially covered with a molecular acceptor layer, on a graphite substrate. With combined experiments and theoretical modeling, we reveal the fundamental acceptor-induced p-doping mechanism for SL-WSe2. At the 1D border between the doped and undoped SL-WSe2 regions, we observe band bending and explain it by Thomas-Fermi screening. Using atomically resolved scanning tunneling microscopy and spectroscopy, the screening length is determined to be in the few nanometer range, and we assess the carrier density of intrinsic SL-WSe2. These findings are of fundamental and technological importance for understanding and employing surface doping, for example, in designing lateral organic TMD heterostructures for future devices.

  6. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  7. Study of interface properties in LaAlO{sub 3}/SrTiO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Stefan Patrick

    2009-02-19

    Interface effects, which play a crucial role in semiconductors, are also important in oxides. Over the last years several oxide heterostructures were investigated with interface properties, which are not found in the bulk properties of the constituting materials. An exciting example is the interface between the two oxides Lanthanumaluminate (LAO) and Strontiumtitanate (STO) which was investigated in this work. Both materials are band-insulators, however a conducting layer can form at the interface, a so called quasi-two-dimensional electron gas (q2-DEG). After a brief introduction to this heterostructure the sample-preparation and characterization is described, and subsequently different projects are reported in detail. The investigation of the electronic transport properties as a function of the LAO film thickness revealed a transition from insulating to conducting behavior if the films exceed a critical thickness of 3 unit cells (uc). By electric field effect the conductivity of the interface can be tuned to a large extent. In samples with 3 uc of LAO a metal-insulator-transition can be induced. To be able to investigate defined structures a novel patterning technique was developed in the course of this thesis, which is based on the variation of the thickness of the epitaxial LAO. At 200 mK the q2-DEG condenses into a superconducting ground state. Investigations on bicrystalline samples reveal that the conducting interface is strongly influenced by dislocations in the STO substrate. (orig.)

  8. SEM based overlay measurement between resist and buried patterns

    Science.gov (United States)

    Inoue, Osamu; Okagawa, Yutaka; Hasumi, Kazuhisa; Shao, Chuanyu; Leray, Philippe; Lorusso, Gian; Baudemprez, Bart

    2016-03-01

    With the continuous shrink in pattern size and increased density, overlay control has become one of the most critical issues in semiconductor manufacturing. Recently, SEM based overlay of AEI (After Etch Inspection) wafer has been used for reference and optimization of optical overlay (both Image Based Overlay (IBO) and Diffraction Based Overlay (DBO)). Overlay measurement at AEI stage contributes monitor and forecast the yield after formation by etch and calibrate optical measurement tools. however those overlay value seems difficult directly for feedback to a scanner. Therefore, there is a clear need to have SEM based overlay measurements of ADI (After Develop Inspection) wafers in order to serve as reference for optical overlay and make necessary corrections before wafers go to etch. Furthermore, to make the corrections as accurate as possible, actual device like feature dimensions need to be measured post ADI. This device size measurement is very unique feature of CDSEM , which can be measured with smaller area. This is currently possible only with the CD-SEM. This device size measurement is very unique feature of CD-SEM , which can be measured with smaller area. In this study, we assess SEM based overlay measurement of ADI and AEI wafer by using a sample from an N10 process flow. First, we demonstrate SEM based overlay performance at AEI by using dual damascene process for Via 0 (V0) and metal 1 (M1) layer. We also discuss the overlay measurements between litho-etch-litho stages of a triple patterned M1 layer and double pattern V0. Second, to illustrate the complexities in image acquisition and measurement we will measure overlay between M1B resist and buried M1A-Hard mask trench. Finally, we will show how high accelerating voltage can detect buried pattern information by BSE (Back Scattering Electron). In this paper we discuss the merits of this method versus standard optical metrology based corrections.

  9. Zinc Alloys for the Fabrication of Semiconductor Devices

    Science.gov (United States)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  10. Design and Characterisation of III-V Semiconductor Nanowire Lasers

    Science.gov (United States)

    Saxena, Dhruv

    The development of small, power-efficient lasers underpins many of the technologies that we utilise today. Semiconductor nanowires are promising for miniaturising lasers to even smaller dimensions. III-V semiconductors, such as Gallium Arsenide (GaAs) and Indium Phosphide (InP), are the most widely used materials for optoelectronic devices and so the development of nanowire lasers based on these materials is expected to have technologically significant outcomes. This PhD dissertation presents a comprehensive study of the design of III-V semiconductor nanowire lasers, with bulk and quantum confined active regions. Based on the design, various III-V semiconductor nanowire lasers are demonstrated, namely, GaAs nanowire lasers, GaAs/AlGaAs multi-quantum well (MQW) nanowire lasers and InP nanowire lasers. These nanowire lasers are shown to operate at room temperature, have low thresholds, and lase from different transverse modes. The structural and optoelectronic quality of nanowire lasers are characterised via electron microscopy and photoluminescence spectroscopic techniques. Lasing is characterised in all these devices by optical pumping. The lasing characteristics are analysed by rate equation modelling and the lasing mode(s) in these devices is characterised by threshold gain modelling, polarisation measurements and Fourier plane imaging. Firstly, GaAs nanowire lasers that operate at room temperature are demonstrated. This is achieved by determining the optimal nanowire diameter to reduce threshold gain and by passivating nanowires to improve their quantum efficiency (QE). High-quality surface passivated GaAs nanowires of suitable diameters are grown. The growth procedure is tailored to improve both QE and structural uniformity of nanowires. Room-temperature lasing is demonstrated from individual nanowires and lasing is characterised to be from TM01 mode by threshold gain modelling. To lower threshold even further, nanowire lasers with GaAs/AlGaAs coaxial multi

  11. Barrier inhomogeneities at vertically stacked graphene-based heterostructures.

    Science.gov (United States)

    Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2014-01-21

    The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.

  12. Epitaxy of Polar Oxides and Semiconductors

    Science.gov (United States)

    Shelton, Christopher Tyrel

    remarkable surface morphologies. This work represents the first effort to extend SAE and CAE to true bulk single-crystal GaN substrates. By carefully controlling supersaturation during growth it is possible to prepare confined areas with a range of step densities, including surfaces that are entirely step-free. Single terrace GaN mesas up to 100 m in size have been observed, however the potential exists, due to the extremely low dislocation density of the substrate, to further extend the dimensions of these regions. Step-free GaN templates are ideal substrates for rocksalt heteroepitaxy and solve a long-standing challenge related to the integration of cubic and hexagonal materials. It has been previously observed that the origin of the two in-plane orientations in rocksalts grown on III-nitrides is a consequence of the stepped GaN surface. By using a substrate that is effectively step-free across a 100 m region, it is possible to prepare a rocksalt // GaN film with a single in-plane orientation. Heterojunctions of this type are disclination defect free and highly crystalline. The ability to locally prepare a single orientation rocksalt film, coupled with commensurate 2D layer-by-layer growth techniques, allows growth, for the first time, of a truly 'semiconductor-grade' oxide-nitride interface. To study the transport properties of oxide-nitride heterostructures, a series of experiments on standard GaN // sapphire template layers were conducted. Devices that allowed contact to the buried oxide-nitride interface were prepared and characterized using low-temperature Hall measurements. Although a high mobility 2DEG was not observed in these samples, a conduction path at the lattice matched Mg0.52Ca0.48O // GaN interface did appear. If confirmed, this finding could represent the first evidence for interfacial polar coupling between an oxide and a nitride. Overcoming the significant symmetry, chemistry and bonding environment barriers to forming a structurally perfect oxide

  13. Tunable band gaps in graphene/GaN van der Waals heterostructures

    International Nuclear Information System (INIS)

    Huang, Le; Kang, Jun; Li, Yan; Li, Jingbo; Yue, Qu

    2014-01-01

    Van der Waals (vdW) heterostructures consisting of graphene and other two-dimensional materials provide good opportunities for achieving desired electronic and optoelectronic properties. Here, we focus on vdW heterostructures composed of graphene and gallium nitride (GaN). Using density functional theory, we perform a systematic study on the structural and electronic properties of heterostructures consisting of graphene and GaN. Small band gaps are opened up at or near the Γ point of the Brillouin zone for all of the heterostructures. We also investigate the effect of the stacking sequence and electric fields on their electronic properties. Our results show that the tunability of the band gap is sensitive to the stacking sequence in bilayer-graphene-based heterostructures. In particular, in the case of graphene/graphene/GaN, a band gap of up to 334 meV is obtained under a perpendicular electric field. The band gap of bilayer graphene between GaN sheets (GaN/graphene/graphene/GaN) shows similar tunability, and increases to 217 meV with the perpendicular electric field reaching 0.8 V Å  − 1 . (paper)

  14. Structural characterization of InAlAsSb/InGaAs/InP heterostructures for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baladés, N., E-mail: nuria.balades@uca.es [INNANOMAT Group, Departamento de Ciencia de los Materiales e I. M. y Q. I., Instituto Universitario de Investigación en Microscopía Electrónica y Materiales (IMEYMAT), CEIMAR, Universidad de Cádiz, 11510 Puerto Real, Cádiz (Spain); Herrera, M.; Sales, David L.; Delgado, F.J. [INNANOMAT Group, Departamento de Ciencia de los Materiales e I. M. y Q. I., Instituto Universitario de Investigación en Microscopía Electrónica y Materiales (IMEYMAT), CEIMAR, Universidad de Cádiz, 11510 Puerto Real, Cádiz (Spain); Hernández-Maldonado, D.; Ramasse, Q.M. [SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Warrington WA4 4AD (United Kingdom); Pizarro, J.; Galindo, P. [Department of Computer Engineering, University of Cádiz, Avda. de la Universidad de Cádiz, no 10, 11519 Cádiz (Spain); González, M. [U.S Naval Research Laboratory, 4555 Overlook Ave. SW, Washington D.C. 20375 (United States); Sotera Defense Solutions, 430 National Business Pkwy # 100, Annapolis Junction, MD 20701 (United States); Abell, J.; Tomasulo, S.; Walters, J.R. [U.S Naval Research Laboratory, 4555 Overlook Ave. SW, Washington D.C. 20375 (United States); and others

    2017-02-15

    Highlights: • The red shift in the photoluminescence emission of InAlAsSb layers is due to small and gradual compositional fluctuations, rather than in the form of atomically sharp transitions. • The composition fluctuations in InAlAsSb active layers do not cause strong variations of the lattice parameter. • The strain due to composition fluctuations in the InGaAs buffer layer does not have a strong effect in the InAlAsSb active layer. • The 2D nature of the TEM-STEM techniques is an important limitation for the analysis of 3D small compositional fluctuations in quaternary semiconductors. - Abstract: In this work, we have characterized by transmission electron microscopy techniques the structural properties of InAlAsSb/InGaAs/InP heterostructures, with target applications in high efficiency solar cells. Previous photoluminescence (PL) analysis suggested the existence of compositional fluctuations in the active layer of these heterostructures. 220 bright field (BF) diffraction contrast micrographs have revealed strong strain contrast in the InGaAs buffer layer, related to the existence of these compositional fluctuations. The effect of a decomposed buffer on the growth of the InAlAsSb layer has been analyzed through the simulation of the strain fields in the heterostructure using the finite elements method (FEM). These simulations have shown that the strain in the buffer layer due to the compositional fluctuations only affects the first few nm of the InAlAsSb layer. The analysis by aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS) of the composition of the InAlAsSb layer reveals that any compositional fluctuation is only observed as an average effect, rather than in the form of clustering or atomically sharp transitions. The limitations of these techniques for the detection of small 3D compositional fluctuations are discussed.

  15. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    International Nuclear Information System (INIS)

    Chopra, Nitin; McWhinney, Hylton G.; Shi Wenwu

    2011-01-01

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N 2 -rich (O 2 -lean) environment between 125 and 750 deg. C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: → Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. → Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. → CNTs in heterostructures decompose between 600 and 750 deg. C in N 2 -rich atmosphere. → Metallic species in heterostructures were oxidized at higher temperatures.

  16. Buried topography of Utopia, Mars: Persistence of a giant impact depression

    International Nuclear Information System (INIS)

    McGill, G.E.

    1989-01-01

    Knobs, partially buried craters, ring fractures, and some mesas permit a qualitative determination of the topography buried beneath younger northern plains materials. These features are widely distributed in the Utopia area but are absent in a large, roughly circular region centered at about 48 degree N, 240 degree W. This implies the existence of a circular depression about 3,300 km in diameter buried beneath Utopia Planitia that is here interpreted to represent the central part of a very large impact basin. The presence of buried curved massifs around part of this depression, and a roughly coincident mascon, lend further support. Present topography, areal geology, and paleotopography of buried surfaces all point to the persistence of this major depression for almost the entire history of Mars

  17. Statistical survey of the buried waters in the Protein Data Bank.

    Science.gov (United States)

    Carugo, Oliviero

    2016-01-01

    The structures of buried water molecules were studied in an ensemble of high-quality and non-redundant protein crystal structures. Buried water molecules were clustered and classified in lake-like clusters, which are completely isolated from the bulk solvent, and bay-like clusters, which are in contact with the bulk solvent through a surface water molecule. Buried water molecules are extremely common: lake-like clusters are found in 89 % of the protein crystal structures and bay-like clusters in 93 %. Clusters with only one water molecule are much more common than larger clusters. Both cluster types incline to be surrounded by loop residues, and to a minor extent by residues in extended secondary structure. Helical residues on the contrary do not tend to surround clusters of buried water molecules. One buried water molecule is found every 30-50 amino acid residues, depending on the secondary structures that are more abundant in the protein. Both main- and side-chain atoms are in contact with buried waters; they form four hydrogen bonds with the first water and 1-1.5 additional hydrogen bond for each additional water in the cluster. Consequently, buried water molecules appear to be firmly packed and rigid like the protein atoms. In this regard, it is remarkable to observe that prolines often surround water molecules buried in the protein interior. Interestingly, clusters of buried water molecules tend to be just beneath the protein surface. Moreover, water molecules tend to form a one-dimensional wire rather than more compact arrangements. This agrees with recent evidence of the mechanisms of solvent exchange between internal cavities and bulk solvent.

  18. Melter development needs assessment for RWMC buried wastes

    International Nuclear Information System (INIS)

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended

  19. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    Science.gov (United States)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  20. Virtual environmental applications for buried waste characterization technology evaluation report

    International Nuclear Information System (INIS)

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year

  1. Virtual environmental applications for buried waste characterization technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  2. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  3. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  4. Spin–orbit induced electronic spin separation in semiconductor nanostructures

    Science.gov (United States)

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136

  5. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    Science.gov (United States)

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  6. Charge separation sensitized by advanced II-VI semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, David F. [Univ.of California, Merced, CA (United States)

    2017-04-11

    This proposal focuses on how the composition and morphology of pure and alloyed II-VI semiconductor heterostructures control their spectroscopic and dynamical properties. The proposed research will use a combination of synthesis development, electron microscopy, time-resolved electronic spectroscopy and modeling calculations to study these nanostructures. The proposed research will examine the extent to which morphology, compression due to lattice mismatch and alloy effects can be used to tune the electron and hole energies and the spectroscopic properties of II-VI heterojunctions. It will also use synthesis, optical spectroscopy and HRTEM to examine the role of lattice mismatch and hence lattice strain in producing interfacial defects, and the extent to which defect formation can be prevented by controlling the composition profile through the particles and across the interfaces. Finally, we will study the magnitude of the surface roughness in core/shell nanostructures and the role of shell thickness variability on the inhomogeneity of interfacial charge transfer rates.

  7. Manipulating the magnetism and resistance state of Mn:ZnO/Pb(Zr0.52Ti0.48)O3 heterostructured films through electric fields

    Science.gov (United States)

    Li, Yong-Chao; Wu, Jun; Pan, Hai-Yang; Wang, Jue; Wang, Guang-Hou; Liu, Jun-Ming; Wan, Jian-Guo

    2018-05-01

    Mn:ZnO/Pb(Zr0.52Ti0.48)O3 (PZT) heterostructured films have been prepared on Pt/Ti/SiO2/Si wafers by a sol-gel process. Nonvolatile and reversible manipulation of the magnetism and resistance by electric fields has been realized. Compared with the saturation magnetic moment (Ms) in the +3.0 V case, the modulation gain of Ms can reach 270% in the -3.0 V case at room temperature. The resistance change is attributed to the interfacial potential barrier height variation and the formation of an accumulation (or depletion) layer at the Mn:ZnO/PZT interface, which can be regulated by the ferroelectric polarization direction. The magnetism of Mn:ZnO originates from bound magnetic polarons. The mobile carrier variation in Mn:ZnO, owing to interfacial polarization coupling and the ferroelectric field effect, enables the electric manipulation of the magnetism in the Mn:ZnO/PZT heterostructured films. This work presents an effective method for modulating the magnetism of magnetic semiconductors and provides a promising avenue for multifunctional devices with both electric and magnetic functionalities.

  8. Oxygen vacancy induced two-dimensional electron system in disordered-crystalline LaAlO{sub 3}/KTaO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Michael; Gabel, Judith; Scheiderer, Philipp; Dudy, Lenart; Sing, Michael; Claessen, Ralph [Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), Universitaet Wuerzburg (Germany); Schlueter, Christoph; Lee, Tien-Lin [Diamond Light Source Ltd., Didcot (United Kingdom)

    2016-07-01

    Two-dimensional electron systems (2DESs) in oxide heterostructures based on SrTiO{sub 3} are considered to be a promising platform for future microelectronic technology. A variety of interesting properties such as ferromagnetism, resistive switching and superconductivity are linked to interfacial n-doping involving oxygen vacancies. The introduction of a high Z-cation with large spin-orbit coupling like Ta offers an exciting new parameter. We report on a new oxygen vacancy induced 2DES located at the interface of disordered LaAlO{sub 3} and crystalline KTaO{sub 3}, which exhibits remarkably high electron mobilities and charge carrier concentrations. The number of charge carriers can be readily manipulated by the film thickness and irradiation with intense X-rays. Our synchrotron-based hard X-ray photoemission experiments provide a direct probe of the Ta 5d charge carriers at the buried interface to obtain information on the charge carrier density, its depth distribution, and the band structure.

  9. Effect of AlN growth temperature on trap densities of in-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Joseph J. Freedsman

    2012-06-01

    Full Text Available The trapping properties of in-situ metal-organic chemical vapor deposition (MOCVD grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors (MIS-HFETs with AlN layers grown at 600 and 700 °C has been quantitatively analyzed by frequency dependent parallel conductance technique. Both the devices exhibited two kinds of traps densities, due to AlN (DT-AlN and AlGaN layers (DT-AlGaN respectively. The MIS-HFET grown at 600 °C showed a minimum DT-AlN and DT-AlGaN of 1.1 x 1011 and 1.2 x 1010 cm-2eV-1 at energy levels (ET -0.47 and -0.36 eV. Further, the gate-lag measurements on these devices revealed less degradation ∼ ≤ 5% in drain current density (Ids-max. Meanwhile, MIS-HFET grown at 700 °C had more degradation in Ids-max ∼26 %, due to high DT-AlN and DT-AlGaN of 3.4 x 1012 and 5 x 1011 cm-2eV-1 positioned around similar ET. The results shows MIS-HFET grown at 600 °C had better device characteristics with trap densities one order of magnitude lower than MIS-HFET grown at 700 °C.

  10. M = Mo, W; X = S, Se, Te) heterostructures

    KAUST Repository

    Zhang, Qingyun

    2018-04-16

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional GaX/MX2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between GaX and MX2 is found to result in Rashba splitting at the valence-band edge around the Γ point, which grows for increasing strength of the spin-orbit coupling in the p orbitals of the chalcogenide atoms. The location of the valence-band maximum in the Brillouin zone can be tuned by strain and application of an out-of-plane electric field. The coexistence of Rashba splitting (in-plane spin direction) and band splitting at the K and K′ valleys (out-of-plane spin direction) makes GaX/MX2 heterostructures interesting for spintronics and valleytronics. They are promising candidates for two-dimensional spin-field-effect transistors and spin-valley Hall effect devices. Our findings shed light on the spin-valley coupling in van der Waals heterostructures.

  11. Applications of Si/SiGe heterostructures to CMOS devices

    International Nuclear Information System (INIS)

    Sidek, R.M.

    1999-03-01

    For more than two decades, advances in MOSFETs used in CMOS VLSI applications have been made through scaling to ever smaller dimensions for higher packing density, faster circuit speed and lower power dissipation. As scaling now approaches nanometer regime, the challenge for further scaling becomes greater in terms of technology as well as device reliability. This work presents an alternative approach whereby non-selectively grown Si/SiGe heterostructure system is used to improve device performance or to relax the technological challenge. SiGe is considered to be of great potential because of its promising properties and its compatibility with Si, the present mainstream material in microelectronics. The advantages of introducing strained SiGe in CMOS technology are examined through two types of device structure. A novel structure has been fabricated in which strained SiGe is incorporated in the source/drain of P-MOSFETs. Several advantages of the Si/SiGe source/drain P-MOSFETs over Si devices are experimentally, demonstrated for the first time. These include reduction in off-state leakage and punchthrough susceptibility, degradation of parasitic bipolar transistor (PBT) action, suppression of CMOS latchup and suppression of PBT-induced breakdown. The improvements due to the Si/SiGe heterojunction are supported by numerical simulations. The second device structure makes use of Si/SiGe heterostructure as a buried channel to enhance the hole mobility of P-MOSFETs. The increase in the hole mobility will benefit the circuit speed and device packing density. Novel fabrication processes have been developed to integrate non-selective Si/SiGe MBE layers into self-aligned PMOS and CMOS processes based on Si substrate. Low temperature processes have been employed including the use of low-pressure chemical vapor deposition oxide and plasma anodic oxide. Low field mobilities, μ 0 are extracted from the transfer characteristics, Id-Vg of SiGe channel P-MOSFETs with various Ge

  12. One-dimensional Z-scheme TiO{sub 2}/WO{sub 3}/Pt heterostructures for enhanced hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hongqing [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (SCICDLCEM), Zhengzhou University, Zhengzhou 450001, Henan (China); Zhang, Peng, E-mail: Zhangp@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (SCICDLCEM), Zhengzhou University, Zhengzhou 450001, Henan (China); Hu, Junhua, E-mail: Hujh@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (SCICDLCEM), Zhengzhou University, Zhengzhou 450001, Henan (China); Pan, Jimin [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Fan, Jiajie [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (SCICDLCEM), Zhengzhou University, Zhengzhou 450001, Henan (China); Shao, Guosheng [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (SCICDLCEM), Zhengzhou University, Zhengzhou 450001, Henan (China); Institute for Renewable Energy and Environmental Technologies, University of Bolton, Bolton BL35AB (United Kingdom)

    2017-01-01

    Graphical abstract: We reported one-dimensional solid-state Z-scheme photosynthetic heterojunction system with Pt nanoparticle as an electron collector and WO{sub 3} as a hole collector, leading to effective charge separation. - Highlights: • The composite nanofibers were fabricated by facile electrospinning technique. • The composite nanofibers exhibited enhanced activity for H{sub 2} evolution. • Enhanced activity is due to the formation of Z-scheme TiO{sub 2}/WO{sub 3}/Pt heterojunction. - Abstract: One-dimensional Z-scheme TiO{sub 2}/WO{sub 3}/Pt heterostructures were fabricated by integrating a facile electrospinning technique and subsequent annealing in air. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy, were used to characterize the as-fabricated samples. The results showed that the H{sub 2}-generation of the as-fabricated one-dimensional Z-scheme TiO{sub 2}/WO{sub 3}/Pt heterostructures (S2) was greatly enhanced compared with pure TiO{sub 2} nanofibers (S0) and TiO{sub 2}/WO{sub 3} nanofibers (S1). The enhanced photocatalyst activities were mainly attributed to the solid-state Z-scheme photosynthetic heterojunction system with Pt nanoparticle as an electron collector and WO{sub 3} as a hole collector, leading to effective charge separation on these semiconductors, which were evidenced by electrochemical impedance spectroscopy (EIS) and photocurrent analysis.

  13. X = S, Se, Te) heterostructures

    KAUST Repository

    Zhang, Qingyun; Schwingenschlö gl, Udo

    2018-01-01

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional GaX/MX2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between GaX and MX2 is found to result in Rashba splitting at the valence

  14. Experimental investigation of buried tritium in plant and animal tissues

    International Nuclear Information System (INIS)

    Kim, S. B.; Workman, W. J. G.; Davis, P. A.

    2008-01-01

    Buried exchangeable tritium appears as part of organically bound tritium (OBT) in the traditional experimental determination of OBT. Since buried tritium quickly exchanges with hydrogen atoms in the body following ingestion, assuming that it is part of OBT rather than part of tritiated water (HTO) could result in a significant overestimate of the ingestion dose. This paper documents an experimental investigation into the existence, amount and significance of buried tritium in plant and fish samples. OBT concentrations in the samples were determined in the traditional way and also following denaturing with five chemical solutions that break down large molecules and expose buried tritium to exchange with free hydrogen atoms. A comparison of the OBT concentrations before and after denaturing, together with the concentration of HTO in the supernatant obtained after denaturing, suggests that buried OBT may exist but makes up less than 5% of the OBT concentration in plants and at most 20% of the OBT concentration in fish. The effects of rinse time and rinse water volumes were investigated to optimize the removal of exchangeable OBT from the samples. (authors)

  15. The surgical correction of buried penis: a new technique

    NARCIS (Netherlands)

    Boemers, T. M.; de Jong, T. P.

    1995-01-01

    We report a new surgical technique for the correction of buried penis. The study comprised 10 boys with buried penis. The technique consisted of resection of abnormal dartos attachments, unfurling of the prepuce and correction of the deficient shaft skin by reapproximation of the preputial skin

  16. Photonic Heterostructures with Properties of Ferroelectrics and Light Polarizers

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Draginda, Yu A [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-11-15

    The optical and electro-optical properties of a new type of photonic heterostructure composed of alternating ferroelectric molecular layers and optically anisotropic layers of another material are considered. A numerical simulation of the real prototype of this heterostructure, which can be prepared by the Langmuir-Blodgett method from layers of a ferroelectric copolymer (polyvinylidene fluoride trifluoroethylene) and an azo dye with photoinduced optical anisotropy, has been performed. It is shown that this heterostructure has pronounced polarization optical properties and yields a significant change in the polarization state of light at the photonic band edges in the ranges of the maximum density of photon states. The latter property can be used to obtain an enhanced electro-optic effect at small spectral shifts of the photonic band (the latter can be provided by the piezoelectric effect in ferroelectric layers).

  17. Intraband absorption in GaAs-(Ga,Al)As variably spaced semiconductor superlattices under crossed electric and magnetic fields

    Science.gov (United States)

    Reyes-Gómez, E.; Raigoza, N.; Oliveira, L. E.

    2013-11-01

    A theoretical study of the intraband absorption properties of GaAs-Ga1-xAlxAs variably spaced semiconductor superlattices under crossed magnetic and electric fields is presented. Calculations are performed for the applied electric field along the growth-axis direction, whereas the magnetic field is considered parallel to the heterostructure layers. By defining a critical electric field so that the heterostructure energy levels are aligned in the absence of the applied magnetic fields, one finds that, in the weak magnetic-field regime, an abrupt red shift of the absorption coefficient maxima is obtained at fields equal to or larger than the critical electric field, a fact which may be explained from the localization properties of the electron wave functions. Results in the strong magnetic-field regime reveal a rich structure on the intraband absorption coefficient which may be explained from the strong dispersion exhibited by both the energy levels and transition strengths as functions of the generalized orbit-center position. Moreover, the possibility of occurrence of absorption in a wide frequency range is also demonstrated. Present calculated results may be of interest for future design and improvement of multilayered-based photovoltaic and solar-cell devices.

  18. Escher-like quasiperiodic heterostructures

    International Nuclear Information System (INIS)

    Barriuso, A G; Monzon, J J; Sanchez-Soto, L L; Costa, A F

    2009-01-01

    Quasiperiodic heterostructures present unique structural, electronic and vibrational properties, connected to the existence of incommensurate periods. We go beyond previous schemes, such as Fibonacci or Thue-Morse, based on substitutional sequences, by introducing construction rules generated by tessellations of the unit disc by regular polygons. We explore some of the properties exhibited by these systems. (fast track communication)

  19. Escher-like quasiperiodic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Barriuso, A G; Monzon, J J; Sanchez-Soto, L L [Departamento de Optica, Facultad de Fisica, Universidad Complutense, 28040 Madrid (Spain); Costa, A F [Departamento de Matematicas Fundamentales, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)

    2009-05-15

    Quasiperiodic heterostructures present unique structural, electronic and vibrational properties, connected to the existence of incommensurate periods. We go beyond previous schemes, such as Fibonacci or Thue-Morse, based on substitutional sequences, by introducing construction rules generated by tessellations of the unit disc by regular polygons. We explore some of the properties exhibited by these systems. (fast track communication)

  20. Detection and mapping of buried waste

    International Nuclear Information System (INIS)

    Stahl, G.; Odenweller, J.; Huff, D.

    1996-01-01

    A major environmental concern today is the characterization, remediation, and monitoring of Federal waste sites, such as those operated by the Department of Energy (DOE). A significant amount of hazardous waste is buried at known sites on DOE reservations. Determining the exact location of buried waste trenches is an important step in the characterization and remediation of these sites. Remotely sensed imagery offers a rich source of information for accomplishing this task. This paper presents a case study conducted at Solid Waste Storage Area 4 (SWSA 4) at Oak Ridge National Laboratory. Historical aerial photography and recently collected multispectral imagery were analyzed to determine the precise locations of the buried trenches. A comparison of the results to recent ground measurements indicates the strengths and weaknesses of the remote sensing approach. Further analysis of these ground data also provides an understanding of the phenomenology that gives rise to the imagery signatures associated with the trenches. Application of these techniques can significantly reduce the costs of site remediation. By knowing the trench locations precisely, rather than the general locations, remediation alternatives to contain and isolate the waste materials can be tailored appropriately

  1. DOE complex buried waste characterization assessment

    International Nuclear Information System (INIS)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m 3 of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993)

  2. In situ vitrification: Application to buried waste

    International Nuclear Information System (INIS)

    Callow, R.A.; Thompson, L.E.

    1991-01-01

    Two in situ vitrification field tests were conducted in June and July 1990 at Idaho National Engineering Laboratory. In situ vitrification is a technology for in-place conversion of contaminated soils into a durable glass and crystalline waste form and is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate buried waste structures found at Idaho National Engineering Laboratory. In particular, these tests were designed as part of a treatability study to provide essential information on field performance of the process under conditions of significant combustible and metal wastes, and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology provided valuable operational control for successfully processing the high metal content waste. The results indicate that in situ vitrification is a feasible technology for application to buried waste. 2 refs., 5 figs., 2 tabs

  3. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata.

    Directory of Open Access Journals (Sweden)

    J Zhang

    Full Text Available This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines.

  4. Graphene diamond-like carbon films heterostructure

    International Nuclear Information System (INIS)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-01-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications

  5. Electrical detection of ferromagnetic resonance in ferromagnet/n-GaAs heterostructures by tunneling anisotropic magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Boyko, Y.; Geppert, C. C.; Christie, K. D.; Stecklein, G.; Crowell, P. A., E-mail: crowell@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Patel, S. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Palmstrøm, C. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2014-11-24

    We observe a dc voltage peak at ferromagnetic resonance (FMR) in samples consisting of a single ferromagnetic (FM) layer grown epitaxially on the n-GaAs (001) surface. The FMR peak is detected as an interfacial voltage with a symmetric line shape and is present in samples based on various FM/n-GaAs heterostructures, including Co{sub 2}MnSi/n-GaAs, Co{sub 2}FeSi/n-GaAs, and Fe/n-GaAs. We show that the interface bias voltage dependence of the FMR signal is identical to that of the tunneling anisotropic magnetoresistance (TAMR) over most of the bias range. Furthermore, we show how the precessing magnetization yields a dc FMR signal through the TAMR effect and how the TAMR phenomenon can be used to predict the angular dependence of the FMR signal. This TAMR-induced FMR peak can be observed under conditions where no spin accumulation is present and no spin-polarized current flows in the semiconductor.

  6. Graphene-Nanodiamond Heterostructures and their application to High Current Devices

    Science.gov (United States)

    Zhao, Fang; Vrajitoarea, Andrei; Jiang, Qi; Han, Xiaoyu; Chaudhary, Aysha; Welch, Joseph O.; Jackman, Richard B.

    2015-01-01

    Graphene on hydrogen terminated monolayer nanodiamond heterostructures provides a new way to improve carrier transport characteristics of the graphene, offering up to 60% improvement when compared with similar graphene on SiO2/Si substrates. These heterostructures offers excellent current-carrying abilities whilst offering the prospect of a fast, low cost and easy methodology for device applications. The use of ND monolayers is also a compatible technology for the support of large area graphene films. The nature of the C-H bonds between graphene and H-terminated NDs strongly influences the electronic character of the heterostructure, creating effective charge redistribution within the system. Field effect transistors (FETs) have been fabricated based on this novel herterostructure to demonstrate device characteristics and the potential of this approach. PMID:26350107

  7. Performance of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...

  8. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes

    Science.gov (United States)

    Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.

    2013-02-01

    Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ~5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.

  9. Thermoelectric properties of IV–VI-based heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pabloborges@ufv.br [Instituto de Ciências Exatas e Tec., Universidade Federal de Viçosa, Rio Paranaíba, MG (Brazil); Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Petersen, J.E.; Scolfaro, L. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Leite Alves, H.W. [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Caixa Postal 110, São João Del Rei 36300-000, MG (Brazil); Myers, T.H. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States)

    2015-07-15

    Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<10{sup 18} cm{sup −3}). A large value of ZT{sub ||} (parallel to the growth direction) of 3.0 is predicted for n=4.7×10{sup 18} cm{sup −3} and T=700 K, whereas ZT{sub p} (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×10{sup 17} cm{sup −3}. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed. - Graphical abstract: Figure of merit for PbTe/SnTe/PbTe heterostructure along the [0 0 1] direction, P.D. Borges, J.E. Petersen, L. Scolfaro, H.W. Leite Alves, T.H. Myers, Improved thermoelectric properties of IV–VI-based heterostructures and superlattices. - Highlights: • Thermoelectric properties of IV

  10. Rhenium Dichalcogenides: Layered Semiconductors with Two Vertical Orientations.

    Science.gov (United States)

    Hart, Lewis; Dale, Sara; Hoye, Sarah; Webb, James L; Wolverson, Daniel

    2016-02-10

    The rhenium and technetium diselenides and disulfides are van der Waals layered semiconductors in some respects similar to more well-known transition metal dichalcogenides (TMD) such as molybdenum sulfide. However, their symmetry is lower, consisting only of an inversion center, so that turning a layer upside-down (that is, applying a C2 rotation about an in-plane axis) is not a symmetry operation, but reverses the sign of the angle between the two nonequivalent in-plane crystallographic axes. A given layer thus can be placed on a substrate in two symmetrically nonequivalent (but energetically similar) ways. This has consequences for the exploitation of the anisotropic properties of these materials in TMD heterostructures and is expected to lead to a new source of domain structure in large-area layer growth. We produced few-layer ReS2 and ReSe2 samples with controlled "up" or "down" orientations by micromechanical cleavage and we show how polarized Raman microscopy can be used to distinguish these two orientations, thus establishing Raman as an essential tool for the characterization of large-area layers.

  11. Aging management and life assessment of buried commodities in nuclear power plants

    International Nuclear Information System (INIS)

    Park, J. H.; Jung, I. S.; Jo, H. S.; Kim, M. G.; Kim, S. T.; Lee, S. S.

    2000-01-01

    General field survey, inspection and life assessment were performed to establish effective aging management program of buried commodities in nuclear power plant. Basic informations on material characteristics, aging degradation experiences and maintenance history were gathered. Considering their degradation effects on power operation or safety, buried commodities were screened for the aging management priority. Various inspection techniques were applied in field survey and inspection, and their results were incorporated in the life assessment of buried commodities. In the aspect of aging degradation, general status of buried commodities were considered still sound while some revealed local degradation

  12. Response of steel buried pipeline to the three dimensional fault movement

    International Nuclear Information System (INIS)

    Zia Tohidi, R.; Shakib, H.

    2003-01-01

    Fault movement during an earthquake may have severe effect on buried pipelines as a lifeline element. A few studies are carried out on the behaviour of buried pipelines to this kind of damage and disruption. In most of these studies, the fault movements are modeled as two-dimensional. In this study, by modeling the pipe as a beam and the surrounding soil as nonlinear springs, the effect of three dimensional movement of fault on buried pipelines is investigated. Some important parameters such as; fault movement, depth of buried, geometrical characteristics of the pipe, angle of pipe- soil friction, angle of pipe- fault crossing, and the fault slip are considered in this study

  13. In situ vitrification of buried waste: Containment issues and suppression systems

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.

    1992-03-01

    Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) are developing a remedial action technology for buried waste through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment process originally developed for the US Department of Energy (DOE) to stabilize soils contaminated with transuranic waste. ISV tests with buried waste forms have demonstrated that the processing of buried waste is more dynamic than the processing of soils. This paper will focus on the issue of containment of the gases released during the processing of buried waste and on engineered suppression systems to alleviate transient events associated with dynamic off-gassing from the ISV melt

  14. In situ vitrification of buried waste: Containment issues and suppression systems

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.

    1992-01-01

    Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) are developing a remedial action technology for buried waste through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment process originally developed for the U.S. Department of Energy (DOE) to stabilize soils contaminated with transuranic waste. ISV tests with buried waste forms have demonstrated that the processing of buried waste is more dynamic than the processing of soils. This paper will focus on the issue of containment of the gases released during the processing of buried waste and on engineered suppression systems to alleviate transient events associated with dynamic off-gassing from the ISV melt. (author)

  15. High-efficiency super capacitors based on hetero-structured α-MnO2 nanorods

    International Nuclear Information System (INIS)

    Ghouri, Zafar Khan; Shaheer Akhtar, M.; Zahoor, Awan; Barakat, Nasser A.M.; Han, Weidong; Park, Mira; Pant, Bishweshwar; Saud, Prem Singh; Lee, Cho Hye; Kim, Hak Yong

    2015-01-01

    Highlights: • Hetero-structured α-MnO 2 nanorods are prepared by a facile hydrothermal route. • It is applied as active electrode materials for supercapacitor. • A high specific capacitance of 298 Fg −1 with a superior long term cyclic stability is achieved. • Supercapacitor shows high specific capacitance retention 94% after 1000 cycles. - Abstract: Hetero-structured manganese dioxide nanorods with α phase (α-MnO 2 ) were prepared by a facile hydrothermal route at low temperature. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements were used to characterize the prepared hetero-structured α-MnO 2 nanorods. Supercapacitive performance of the hetero-structured α-MnO 2 nanomaterials as active electrode material was evaluated by cyclic voltammetry (CV) in alkaline medium. The MnO 2 hetero-structure with 2 × 2 tunnels constructed from double chains of octahedral [MnO 6 ] structure yield a significantly high specific capacitance of 298 Fg −1 at 5 mV s −1 and demonstrated a superior long term cyclic stability, with specific capacitance retention about 94% after 1000 cycles. The superior supercapacitive performance of the hetero-structured α-MnO 2 electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport

  16. Topological properties and correlation effects in oxide heterostructures

    Science.gov (United States)

    Okamoto, Satoshi

    2015-03-01

    Transition-metal oxides (TMOs) have long been one of the main subjects of material science because of their novel functionalities such as high-Tc superconductivity in cuprates and the colossal magnetoresistance effect in manganites. In recent years, we have seen tremendous developments in thin film growth techniques with the atomic precision, resulting in the discovery of a variety of electronic states in TMO heterostructures. These developments motivate us to explore the possibility of novel quantum states of matter such as topological insulators (TIs) in TMO heterostructures. In this talk, I will present our systematic theoretical study on unprecedented electronic states in TMO heterostructures. An extremely simple but crucial observation is that, when grown along the [111] crystallographic axis, bilayers of perovskite TMOs form buckled honeycomb lattices of transition-metal ions, similar to graphene. Thus, with the relativistic spin-orbit coupling and proper band filling, two-dimensional TI states or spin Hall insulators are anticipated. Based on tight-binding modeling and density-functional theory calculations, possible candidate materials for TIs are identified. By means of the dynamical-mean-field theory and a slave-boson mean field theory, correlation effects, characteristics of TMOs, are also examined. I will further discuss future prospects in topological phenomena in TMO heterostructures and related systems. The author thanks D. Xiao, W. Zhu, Y. Ran, R. Arita, Y. Nomura and N. Nagaosa for their fruitful discussions and collaboration. This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  17. Electron spin resonance characterization of trapping centers in Unibond reg-sign buried oxides

    International Nuclear Information System (INIS)

    Conley, J.F. Jr.; Lenahan, P.M.; Wallace, B.D.

    1996-01-01

    Electron spin resonance and capacitance vs. voltage measurements are used to evaluate the radiation response of Unibond buried oxides. When damaged by hole injection, it is found that Unibond reg-sign buried oxides exhibit a rough correspondence between E' centers and positive charge as well as generation of P b centers at the Unibond buried oxide/Si interface. In these respects, Unibond buried oxides qualitatively resemble thermal SiO 2 . However, a hydrogen complexed E' center known as the 74 G doublet is also detected in the Unibond buried oxides. This defect is not detectable in thermal SiO 2 under similar circumstances. Since the presence of 74 G doublet center is generally indicative of very high hydrogen content and since hydrogen is clearly a significant participant in radiation damage, this result suggests a qualitative difference between the radiation response of Unibond and thermal SiO 2 . Unibond results are also compared and contrasted with similar investigations on separation-by-implanted-oxygen (SIMOX) buried oxides. Although the charge trapping response of Unibond buried oxides may be inferior to that of radiation hardened thermal SiO 2 , it appears to be more simple and superior to that of SIMOX buried oxides

  18. Quantum transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Tillmann Christoph

    2009-11-15

    several controversially discussed questions on the nature of transport in this type of nanodevices. In contrast to previous approximate approaches, we show that the nature of transport in QCLs is sensitive to the applied bias voltage and can be tuned from the coherent to the incoherent regime. We point out that the elastic scattering at rough interfaces is among the most efficient incoherent scattering mechanisms in THz-QCLs and significantly influences the laser performance. Up to now, this has been utterly underestimated in approximate studies of THz-QCLs with direct optical transitions. All current theoretical models apply periodic (or field-periodic) boundary conditions on the transport in QCLs. Our revision of the open boundary conditions allows us to consider the QCL as an open quantum devices, instead. In this way, we illustrate that charge distributions in QCLs can develop periodicities that are only commensurable or even incommensurable with the QCL periodicity. This effect leads to efficient non-radiative transitions between the laser levels and is - due to the common periodic boundary conditions - completely missed in literature. We also propose several novel THz-QCLs with larger optical gain, lower thermal load and a higher resistivity against growth imperfections. The third part of this thesis is dedicated to the spin transport in two-dimensional semicon- ductor heterostructures. It is common to apply an approximate envelope function model (EFT) for the spin-orbit interaction in such devices, in spite of the well-known fact that EFT calculations typically incorrectly predict the spin-splitting in semiconductor heterostructures. For this reason, we represent the NEGF method in the EFT model as well as in a microscopic atomistic tight binding model. In the later model, the spin-orbit interaction is treated nonperturbatively going far beyond the approximate EFT model. We show that the numerically efficient EFT model yields results that qualitatively agree with

  19. Synthesis of Colloidal Nanocrystal Heterostructures for High-Efficiency Light Emission

    Science.gov (United States)

    Lu, Yifei

    Group II-VI semiconductor nanocrystals, particularly those based on ZnCdS(Se), can be synthesized using well established chemical colloidal processes, and have been a subject of extensive research over the past decade. Their optical properties can be easily tuned through size and composition variations, making them very attractive for many optoelectronic applications including light-emitting diodes (LEDs) and solar cells. Incorporation of diverse internal heterostructures provides an additional means for tuning the optical and electronic properties of conventional ZnCdS(Se) nanocrystals. Extensive bandgap and strain engineering may be applied to the resultant nanocrystal heterostructures to achieve desirable properties and enhanced performance. Despite the high scientific and practical interests of this unique class of nanomaterials, limited efforts have been made to explore their synthesis and potential device applications. This thesis focuses on the synthesis, engineering, characterization, and device demonstration of two types of CdSe-based nanocrystal heterostructures: core/multishell quantum dots (QDs) and QD quantum wells (QDQWs). Their optical properties have been tuned by bandgap and strain engineering to achieve efficient photoluminescence (PL) and electroluminescence (EL).Firstly, yellow light-emitting CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and the effects of the shell on the luminescent properties were investigated. The core/shell/shell QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell, and exhibited 40% stronger PL and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD-LEDs had a luminance of 558 cd/m2 at 20 mA/cm 2, 28% higher than that of CdSe/ZnCdS/ZnS QD

  20. Heterostructured ZnS/InP nanowires for rigid/flexible ultraviolet photodetectors with enhanced performance.

    Science.gov (United States)

    Zhang, Kai; Ding, Jia; Lou, Zheng; Chai, Ruiqing; Zhong, Mianzeng; Shen, Guozhen

    2017-10-19

    Heterostructured ZnS/InP nanowires, composed of single-crystalline ZnS nanowires coated with a layer of InP shell, were synthesized via a one-step chemical vapor deposition process. As-grown heterostructured ZnS/InP nanowires exhibited an ultrahigh I on /I off ratio of 4.91 × 10 3 , a high photoconductive gain of 1.10 × 10 3 , a high detectivity of 1.65 × 10 13 Jones and high response speed even in the case of very weak ultraviolet light illumination (1.87 μW cm -2 ). The values are much higher than those of previously reported bare ZnS nanowires owing to the formation of core/shell heterostructures. Flexible ultraviolet photodetectors were also fabricated with the heterostructured ZnS/InP nanowires, which showed excellent mechanical flexibility, electrical stability and folding endurance besides excellent photoresponse properties. The results elucidated that the heterostructured ZnS/InP nanowires could find good applications in next generation flexible optoelectronic devices.

  1. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    Science.gov (United States)

    Sakurai, Kenji

    2010-12-01

    This special issue is devoted to describing recent applications of x-ray and neutron scattering techniques to the exploration of surfaces and buried interfaces of various functional materials. Unlike many other surface-sensitive methods, these techniques do not require ultra high vacuum, and therefore, a variety of real and complicated surfaces fall within the scope of analysis. It must be particularly emphasized that the techniques are capable of seeing even buried function interfaces as well as the surface. Furthermore, the information, which ranges from the atomic to mesoscopic scale, is highly quantitative and reproducible. The non-destructive nature of the techniques is another important advantage of using x-rays and neutrons, when compared with other atomic-scale analyses. This ensures that the same specimen can be measured by other techniques. Such features are fairly attractive when exploring multilayered materials with nanostructures (dots, tubes, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. The Japan Applied Physics Society has established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. As the methods can be applied to almost all types of materials, from semiconductor and electronic devices to soft materials, participants have fairly different backgrounds but share a common interest in state-of-the-art x-ray and neutron techniques and sophisticated applications. A series of workshops has been organized almost every year since 2001. Some international interactions have been continued intensively, although the community is part of a Japanese society. This special issue does not report the proceedings of the recent workshop, although all the authors are in some way involved in the activities of the above society. Initially, we intended to collect quite long overview papers, including the authors' latest and most important original results, as well as

  2. Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices

    Science.gov (United States)

    2016-03-01

    ARL-TR-7618 ● MAR 2016 US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in...US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices by Blair C...Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  3. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  4. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  5. Sexual and Overall Quality of Life Improvements After Surgical Correction of "Buried Penis".

    Science.gov (United States)

    Hughes, Duncan B; Perez, Edgar; Garcia, Ryan M; Aragón, Oriana R; Erdmann, Detlev

    2016-05-01

    "Buried penis" is an increasing burden in our population with many possible etiologies. Although surgical correction of buried penis can be rewarding and successful for the surgeon, the psychological and functional impact of buried penis on the patient is less understood. The study's aim was to evaluate the sexual satisfaction and overall quality of life before and after buried penis surgery in a single-surgeon's patient population using a validated questionnaire (Changes in Sexual Functioning Questionnaire short-form). Using Likert scales generated from the questionnaire and 1-tailed paired t test analysis, we found that there was significantly improved sexual function after correction of a buried penis. Variables individually showed that there was significant improvement with sexual pleasure, urinating, and with genital hygiene postoperatively. There were no significant differences concerning frequency of pain with orgasms. Surgical correction of buried penis significantly improves the functional, sexual, and psychological aspects of patient's lives.

  6. Charge Transfer Effects in Naturally Occurring van der Waals Heterostructures (PbSe )1.16(TiSe2 )m (m =1 , 2)

    Science.gov (United States)

    Yao, Q.; Shen, D. W.; Wen, C. H. P.; Hua, C. Q.; Zhang, L. Q.; Wang, N. Z.; Niu, X. H.; Chen, Q. Y.; Dudin, P.; Lu, Y. H.; Zheng, Y.; Chen, X. H.; Wan, X. G.; Feng, D. L.

    2018-03-01

    van der Waals heterostructures (VDWHs) exhibit rich properties and thus has potential for applications, and charge transfer between different layers in a heterostructure often dominates its properties and device performance. It is thus critical to reveal and understand the charge transfer effects in VDWHs, for which electronic structure measurements have proven to be effective. Using angle-resolved photoemission spectroscopy, we studied the electronic structures of (PbSe )1.16(TiSe2 )m (m =1 , 2), which are naturally occurring VDWHs, and discovered several striking charge transfer effects. When the thickness of the TiSe2 layers is halved from m =2 to m =1 , the amount of charge transferred increases unexpectedly by more than 250%. This is accompanied by a dramatic drop in the electron-phonon interaction strength far beyond the prediction by first-principles calculations and, consequently, superconductivity only exists in the m =2 compound with strong electron-phonon interaction, albeit with lower carrier density. Furthermore, we found that the amount of charge transferred in both compounds is nearly halved when warmed from below 10 K to room temperature, due to the different thermal expansion coefficients of the constituent layers of these misfit compounds. These unprecedentedly large charge transfer effects might widely exist in VDWHs composed of metal-semiconductor contacts; thus, our results provide important insights for further understanding and applications of VDWHs.

  7. Diffusion-controlled growth of molecular heterostructures: fabrication of two-, one-, and zero-dimensional C(60) nanostructures on pentacene substrates.

    Science.gov (United States)

    Breuer, Tobias; Witte, Gregor

    2013-10-09

    A variety of low dimensional C60 structures has been grown on supporting pentacene multilayers. By choice of substrate temperature during growth the effective diffusion length of evaporated fullerenes and their nucleation at terraces or step edges can be precisely controlled. AFM and SEM measurements show that this enables the fabrication of either 2D adlayers or solely 1D chains decorating substrate steps, while at elevated growth temperature continuous wetting of step edges is prohibited and instead the formation of separated C60 clusters pinned at the pentacene step edges occurs. Remarkably, all structures remain thermally stable at room temperature once they are formed. In addition the various fullerene structures have been overgrown by an additional pentacene capping layer. Utilizing the different probe depth of XRD and NEXAFS, we found that no contiguous pentacene film is formed on the 2D C60 structure, whereas an encapsulation of the 1D and 0D structures with uniformly upright oriented pentacene is achieved, hence allowing the fabrication of low dimensional buried organic heterostructures.

  8. Design of buried concrete encasements

    International Nuclear Information System (INIS)

    Drake, R.M.

    1989-01-01

    The operation of many Department of Energy (DOE) sites requires the transfer of radioactive liquid products from one location to another. DOE Order 6430.1A requires that the transfer pipelines be designed and constructed so that any leakage can be detected and contained before it reaches the environment. One design option often considered to meet this requirement is to place the pipeline in a stainless steel-lined, buried concrete encasement. This provides the engineer with the design challenge to integrate standard structural design principles with unique DOE requirements. The complete design of a buried concrete encasement must consider seismic effects, leak detection, leak confinement, radiation shielding, thermal effects, pipe supports, and constructability. This paper contains a brief discussion of each of these design considerations, based on experience gained during the design of concrete encasements for the Process Facilities Modifications (PFM) project at Hanford

  9. Buried waste integrated demonstration FY 94 deployment plan

    International Nuclear Information System (INIS)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document

  10. Test plan for buried waste containment system materials

    International Nuclear Information System (INIS)

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100 degrees C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs

  11. IZO deposited by PLD on flexible substrate for organic heterostructures

    Science.gov (United States)

    Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Rasoga, O.; Stanculescu, F.; Socol, G.

    2017-05-01

    In:ZnO (IZO) thin films were deposited on flexible plastic substrates by pulsed laser deposition (PLD) method. The obtained layers present adequate optical and electrical properties competitive with those based on indium tin oxide (ITO). The figure of merit (9 × 10-3 Ω-1) calculated for IZO layers demonstrates that high quality coatings can be prepared by this deposition technique. A thermal annealing (150 °C for 1 h) or an oxygen plasma etching (6 mbar for 10 min.) were applied to the IZO layers to evaluate the influence of these treatments on the properties of the transparent coatings. Using vacuum evaporation, organic heterostructures based on cooper phthalocyanine (CuPc) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) were deposited on the untreated and treated IZO layers. The optical and electrical properties of the heterostructures were investigated by UV-Vis, FTIR and current-voltage ( I- V) measurements. For the heterostructure fabricated on IZO treated in oxygen plasma, an improvement in the current value with at least one order of magnitude was evidenced in the I- V characteristics recorded in dark conditions. Also, an increase in the current value for the heterostructure deposited on untreated IZO layer can be achieved by adding an organic layer such as tris-8-hydroxyquinoline aluminium (Alq3).

  12. Charge transport in non-polar and semi-polar III-V nitride heterostructures

    International Nuclear Information System (INIS)

    Konar, Aniruddha; Verma, Amit; Fang, Tian; Zhao, Pei; Jana, Raj; Jena, Debdeep

    2012-01-01

    Compared to the intense research focus on the optical properties, the transport properties in non-polar and semi-polar III-nitride semiconductors remain relatively unexplored to date. The purpose of this paper is to discuss charge-transport properties in non-polar and semi-polar orientations of GaN in a comparative fashion to what is known for transport in polar orientations. A comprehensive approach is adopted, starting from an investigation of the differences in the electronic bandstructure along different polar orientations of GaN. The polarization fields along various orientations are then discussed, followed by the low-field electron and hole mobilities. A number of scattering mechanisms that are specific to non-polar and semi-polar GaN heterostructures are identified, and their effects are evaluated. Many of these scattering mechanisms originate due to the coupling of polarization with disorder and defects in various incarnations depending on the crystal orientation. The effect of polarization orientation on carrier injection into quantum-well light-emitting diodes is discussed. This paper ends with a discussion of orientation-dependent high-field charge-transport properties including velocity saturation, instabilities and tunneling transport. Possible open problems and opportunities are also discussed. (paper)

  13. 47 CFR 32.2423 - Buried cable.

    Science.gov (United States)

    2010-10-01

    ... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a... of cleaning manholes and ducts in connection with construction work and the cost of permits and...

  14. Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures.

    Science.gov (United States)

    Gamucci, A; Spirito, D; Carrega, M; Karmakar, B; Lombardo, A; Bruna, M; Pfeiffer, L N; West, K W; Ferrari, A C; Polini, M; Pellegrini, V

    2014-12-19

    Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies. Here we report a new class of heterostructures comprising a single-layer (or bilayer) graphene in close proximity to a quantum well created in GaAs and supporting a high-mobility two-dimensional electron gas. In our devices, graphene is naturally hole-doped, thereby allowing for the investigation of electron-hole interactions. We focus on the Coulomb drag transport measurements, which are sensitive to many-body effects, and find that the Coulomb drag resistivity significantly increases for temperatures law, therefore displaying a notable departure from the ordinary quadratic temperature dependence expected in a weakly correlated Fermi-liquid. This anomalous behaviour is consistent with the onset of strong interlayer correlations. Our heterostructures represent a new platform for the creation of coherent circuits and topologically protected quantum bits.

  15. Rare-earth nickelates RNiO3: thin films and heterostructures

    Science.gov (United States)

    Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J.-M.; Kreisel, J.

    2018-04-01

    This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron–lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.

  16. Limitations of threshold voltage engineering of AlGaN/GaN heterostructures by dielectric interface charge density and manipulation by oxygen plasma surface treatments

    Science.gov (United States)

    Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.

    2016-05-01

    The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.

  17. Optical phonon scattering on electronic mobility in Al2O3/AlGaN/AlN/GaN heterostructures

    Science.gov (United States)

    Zhou, X. J.; Qu, Y.; Ban, S. L.; Wang, Z. P.

    2017-12-01

    Considering the built-in electric fields and the two-mode property of transverse optical phonons in AlGaN material, the electronic eigen-energies and wave functions are obtained by solving Schrödinger equation with the finite difference method. The dispersion relations and potentials of the optical phonons are given by the transfer matrix method. The mobility of the two dimensional electron gas influenced by the optical phonons in Al2O3/AlGaN/AlN/GaN heterostructures is investigated based on the theory of Lei-Ting force balance equation. It is found that the scattering from the half-space phonons is the main factor affecting the electronic mobility, and the influence of the other phonons can be ignored. The results show that the mobility decreases with increasing the thicknesses of Al2O3 and AlN layers, but there is no definite relationship between the mobility and the thickness of AlGaN barrier. The mobility is obviously reduced by increasing Al component in AlGaN crystal to show that the effect of ternary mixed crystals is important. It is also found that the mobility increases first and then decreases as the increment of the fixed charges, but decreases always with increasing temperature. The heterostructures constructed here can be good candidates as metal-oxide-semiconductor high-electron-mobility-transistors since they have higher electronic mobility due to the influence from interface phonons weakened by the AlN interlayer.

  18. Buried injector logic, a vertical IIL using deep ion implantation

    NARCIS (Netherlands)

    Mouthaan, A.J.

    1987-01-01

    A vertically integrated alternative for integrated injection logic has been realized, named buried injector logic (BIL). 1 MeV ion implantations are used to create buried layers. The vertical pnp and npn transistors have thin base regions and exhibit a limited charge accumulation if a gate is

  19. Optical and electronic properties of AlGaN/GaN heterostructures; Optische und elektronische Eigenschaften von AlGaN/GaN-Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Winzer, Andreas T.

    2008-10-28

    The electronic material properties of AlGaN/GaN heterostructures were investigated. The analysis of optical spectra by complex models allowed for the first time to confirm the theoretically predicted dependence of the polarisation discontinuity (also called polarisation charge) on the Al content by reliable experiments. Furthermore, it is shown that the polarisation discontinuity is constant over the temperature range from 5 K up to room temperature. The method employed here is based on the analysis of electroreflectance (ER) spectra and exploits the specific dependence of the electric field strength within a layer on the applied electric voltage. In this work this method is consequently refined to surpass all alternative methods in accuracy. ER spectra of group-III-nitrides posses some general peculiarities: (i) In di- rect proximity to the band gap they can not be described by constant Seraphin coefficients in contrast to small gap semiconductors (e.g. GaAs). (ii) Though, the analysis of the Franz-Keldysh oscillations by Aspnes' method yields the correct values of the electric field strength as it is the case for small gap semiconductors. Optical and especially ER spectra of group-III-nitrides can only be described completely by taking into account for excitons in electric fields. For this a mo- del proposed by Blossey was applied to nitride semiconductors and implemented into a software program. By extensive numerical simulations it was found that the energetic position of the exciton main resonance as well as its spectral width depend linearly on the electric field strength. The approach presented is unique since it allows for a quantitative description of excitons in inhomogeneous electric fields. The good agreement between experiment and simulation supports the reliability of the material properties presented in this work. The operation of AlGaN/GaN heterostructures as chemical sensors was investigated by means of optical spectra too. If Pt contacted

  20. Risk and cost tradeoffs for remote retrieval of buried waste

    International Nuclear Information System (INIS)

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-01-01

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program's technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste

  1. Thermal response in van der Waals heterostructures

    KAUST Repository

    Gandi, Appala

    2016-11-21

    We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical phonons are found to occur as a consequence of the van der Waals bonding, contribute significantly to the thermal transport, and compensate for the reduced contributions of the acoustic phonons (increased scattering cross-sections in heterostructures), such that the thermal conductivities turn out to be similar to those of the bare MXenes. Our results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation. © 2016 IOP Publishing Ltd.

  2. 2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications

    Science.gov (United States)

    Cheng, Kai; Guo, Yu; Han, Nannan; Jiang, Xue; Zhang, Junfeng; Ahuja, Rajeev; Su, Yan; Zhao, Jijun

    2018-04-01

    Solar photovoltaics provides a practical and sustainable solution to the increasing global energy demand. Using first-principles calculations, we investigate the energetics and electronic properties of two-dimensional lateral heterostructures by group-III monochalcogenides and explore their potential applications in photovoltaics. The band structures and formation energies from supercell calculations demonstrate that these heterostructures retain semiconducting behavior and might be synthesized in laboratory using the chemical vapor deposition technique. According to the computed band offsets, most of the heterojunctions belong to type II band alignment, which can prevent the recombination of electron-hole pairs. Besides, the electronic properties of these lateral heterostructures can be effectively tailored by the number of layers, leading to a high theoretical power conversion efficiency over 20%.

  3. AlN/GaN heterostructures for normally-off transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, K. S., E-mail: zhur@isp.nsc.ru; Malin, T. V.; Mansurov, V. G.; Tereshenko, O. E. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Abgaryan, K. K.; Reviznikov, D. L. [Dorodnicyn Computing Centre of the Russian Academy of Sciences (Russian Federation); Zemlyakov, V. E.; Egorkin, V. I. [National Research University of Electronic Technology (MIET) (Russian Federation); Parnes, Ya. M.; Tikhomirov, V. G. [Joint Stock Company “Svetlana-Electronpribor” (Russian Federation); Prosvirin, I. P. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation)

    2017-03-15

    The structure of AlN/GaN heterostructures with an ultrathin AlN barrier is calculated for normally-off transistors. The molecular-beam epitaxy technology of in situ passivated SiN/AlN/GaN heterostructures with a two-dimensional electron gas is developed. Normally-off transistors with a maximum current density of ~1 A/mm, a saturation voltage of 1 V, a transconductance of 350 mS/mm, and a breakdown voltage of more than 60 V are demonstrated. Gate lag and drain lag effects are almost lacking in these transistors.

  4. Buried Waste Integrated Demonstration FY-93 Deployment Plan

    International Nuclear Information System (INIS)

    Bonnenberg, R.W.; Heard, R.E.; Milam, L.M.; Watson, L.R.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year 1993 effort will deploy seven major field demonstrations at the Idaho National Engineering Laboratory's (INEL's) Radioactive Waste Management Complex Cold Test Pit. These major demonstrations are Remote Characterization System, Remote Excavation System, Overburden Removal, Waste Isolation, Contamination Control Unit, Rapid Monitoring Unit, and Fixation of Soil Surface Contamination. This document is the basic operational planning document for BWID deployment of the INEL field demonstrations. Additional sections deal briefly with four nonINEL field and laboratory demonstrations (Buried Waste Retrieval, Arc Melter Vitrification, Graphite DC Plasma Arc Melter, and Fixed Hearth Plasma Process) and with four INEL laboratory demonstrations (Electrostatic Curtain, Thermal Kinetics, Multiaxis Crane Control System, and Dig-Face Characterization)

  5. Buried Object Detection Method Using Optimum Frequency Range in Extremely Shallow Underground

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Abe, Touma

    2011-07-01

    We propose a new detection method for buried objects using the optimum frequency response range of the corresponding vibration velocity. Flat speakers and a scanning laser Doppler vibrometer (SLDV) are used for noncontact acoustic imaging in the extremely shallow underground. The exploration depth depends on the sound pressure, but it is usually less than 10 cm. Styrofoam, wood (silver fir), and acrylic boards of the same size, different size styrofoam boards, a hollow toy duck, a hollow plastic container, a plastic container filled with sand, a hollow steel can and an unglazed pot are used as buried objects which are buried in sand to about 2 cm depth. The imaging procedure of buried objects using the optimum frequency range is given below. First, the standardized difference from the average vibration velocity is calculated for all scan points. Next, using this result, underground images are made using a constant frequency width to search for the frequency response range of the buried object. After choosing an approximate frequency response range, the difference between the average vibration velocity for all points and that for several points that showed a clear response is calculated for the final confirmation of the optimum frequency range. Using this optimum frequency range, we can obtain the clearest image of the buried object. From the experimental results, we confirmed the effectiveness of our proposed method. In particular, a clear image of the buried object was obtained when the SLDV image was unclear.

  6. Multiple scattering theory for superconducting heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ujfalussy, Balazs [Wigner Research Centre for Physics, Budapest (Hungary)

    2016-07-01

    We generalize the screened Korringa-Kohn-Rostoker method for solving the corresponding Kohn-Sham-Bogoliubov-de Gennes equations for surfaces and interfaces. As an application of the theory, we study the quasiparticle spectrum of Au overlayers on a Nb(100) host. We find that within the superconducting gap region, the quasiparticle spectrum consists of Andreev bound states with a dispersion which is closely connected to the underlying electronic structure of the overlayer. We also find that the spectrum has a strongly k-dependent induced gap. The properties of the gap are discussed in relation to the thickness of the overlayer, and it is shown that certain states do not participate in the Andreev scattering process. From the thickness dependence of the gap size we calculate the superconducting critical temperature of Au/Nb(100) heterostructures what we compare with with experiments. Moreover, predictions are made for similar heterostructures of other compounds.

  7. Controlled Synthesis of CuS/TiO2 Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting.

    Science.gov (United States)

    Chandra, Moumita; Bhunia, Kousik; Pradhan, Debabrata

    2018-04-16

    Photocatalytic hydrogen (H 2 ) generation through water splitting has attracted substantial attention as a clean and renewable energy generation process that has enormous potential in converting solar-to-chemical energy using suitable photocatalysts. The major bottleneck in the development of semiconductor-based photocatalysts lies in poor light absorption and fast recombination of photogenerated electron-hole pairs. Herein we report the synthesis of CuS/TiO 2 heterostructured nanocomposites with varied TiO 2 contents via simple hydrothermal and solution-based process. The morphology, crystal structure, composition, and optical properties of the as-synthesized CuS/TiO 2 hybrids are evaluated in detail. Controlling the CuS/TiO 2 ratio to an optimum value leads to the highest photocatalytic H 2 production rate of 1262 μmol h -1 g -1 , which is 9.7 and 9.3 times higher than that of pristine TiO 2 nanospindles and CuS nanoflakes under irradiation, respectively. The enhancement in the H 2 evolution rate is attributed to increased light absorption and efficient charge separation with an optimum CuS coverage on TiO 2 . The photoluminescence and photoelectrochemical measurements further confirm the efficient separation of charge carriers in the CuS/TiO 2 hybrid. The mechanism and synergistic role of CuS and TiO 2 semiconductors for enhanced photoactivity is further delineated.

  8. High-efficiency super capacitors based on hetero-structured α-MnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ghouri, Zafar Khan [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Organic materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shaheer Akhtar, M. [New & Renewable Energy Material Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of); Zahoor, Awan [Department of Chemical Engineering, NED University of Engineering & Technology, University Road, Karachi 75270 (Pakistan); Barakat, Nasser A.M., E-mail: nasser@jbnu.ac.kr [Department of Organic materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Chemical Engineering, Faculty of Engineering, El-Minia University, El-Minia (Egypt); Han, Weidong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Mira [Department of Organic materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Pant, Bishweshwar; Saud, Prem Singh; Lee, Cho Hye [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Hak Yong, E-mail: khy@jbnu.ac.kr [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2015-09-05

    Highlights: • Hetero-structured α-MnO{sub 2} nanorods are prepared by a facile hydrothermal route. • It is applied as active electrode materials for supercapacitor. • A high specific capacitance of 298 Fg{sup −1} with a superior long term cyclic stability is achieved. • Supercapacitor shows high specific capacitance retention 94% after 1000 cycles. - Abstract: Hetero-structured manganese dioxide nanorods with α phase (α-MnO{sub 2}) were prepared by a facile hydrothermal route at low temperature. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements were used to characterize the prepared hetero-structured α-MnO{sub 2} nanorods. Supercapacitive performance of the hetero-structured α-MnO{sub 2} nanomaterials as active electrode material was evaluated by cyclic voltammetry (CV) in alkaline medium. The MnO{sub 2} hetero-structure with 2 × 2 tunnels constructed from double chains of octahedral [MnO{sub 6}] structure yield a significantly high specific capacitance of 298 Fg{sup −1} at 5 mV s{sup −1} and demonstrated a superior long term cyclic stability, with specific capacitance retention about 94% after 1000 cycles. The superior supercapacitive performance of the hetero-structured α-MnO{sub 2} electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.

  9. Voltage control of magnetism in multiferroic heterostructures.

    Science.gov (United States)

    Liu, Ming; Sun, Nian X

    2014-02-28

    Electrical tuning of magnetism is of great fundamental and technical importance for fast, compact and ultra-low power electronic devices. Multiferroics, simultaneously exhibiting ferroelectricity and ferromagnetism, have attracted much interest owing to the capability of controlling magnetism by an electric field through magnetoelectric (ME) coupling. In particular, strong strain-mediated ME interaction observed in layered multiferroic heterostructures makes it practically possible for realizing electrically reconfigurable microwave devices, ultra-low power electronics and magnetoelectric random access memories (MERAMs). In this review, we demonstrate this remarkable E-field manipulation of magnetism in various multiferroic composite systems, aiming at the creation of novel compact, lightweight, energy-efficient and tunable electronic and microwave devices. First of all, tunable microwave devices are demonstrated based on ferrite/ferroelectric and magnetic-metal/ferroelectric composites, showing giant ferromagnetic resonance (FMR) tunability with narrow FMR linewidth. Then, E-field manipulation of magnetoresistance in multiferroic anisotropic magnetoresistance and giant magnetoresistance devices for achieving low-power electronic devices is discussed. Finally, E-field control of exchange-bias and deterministic magnetization switching is demonstrated in exchange-coupled antiferromagnetic/ferromagnetic/ferroelectric multiferroic hetero-structures at room temperature, indicating an important step towards MERAMs. In addition, recent progress in electrically non-volatile tuning of magnetic states is also presented. These tunable multiferroic heterostructures and devices provide great opportunities for next-generation reconfigurable radio frequency/microwave communication systems and radars, spintronics, sensors and memories.

  10. Buried waste remediation: A new application for in situ vitrification

    International Nuclear Information System (INIS)

    Kindle, C.H.; Thompson, L.E.

    1991-04-01

    Buried wastes represent a significant environmental concern and a major financial and technological challenge facing many private firms, local and state governments, and federal agencies. Numerous radioactive and hazardous mixed buried waste sites managed by the US Department of Energy (DOE) require timely clean up to comply with state or federal environmental regulations. Hazardous wastes, biomedical wastes, and common household wastes disposed at many municipal landfills represent a significant environmental health concern. New programs and regulations that result in a greater reduction of waste via recycling and stricter controls regarding generation and disposal of many wastes will help to stem the environmental consequences of wastes currently being generated. Groundwater contamination, methane generation, and potential exposures to biohazards and chemically hazardous materials from inadvertent intrusion will continue to be potential environmental health consequences until effective and permanent closure is achieved. In situ vitrification (ISV) is being considered by the DOE as a permanent closure option for radioactive buried waste sites. The results of several ISV tests on simulated and actual buried wastes conducted during 1990 are presented here. The test results illustrate the feasibility of the ISV process for permanent remediation and closure of buried waste sites in commercial landfills. The tests were successful in immobilizing or destroying hazardous and radioactive contaminants while providing up to 75 vol % waste reduction. 6 refs., 7 figs., 5 tabs

  11. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  12. Buried Waste Integrated Demonstration stakeholder involvement model

    International Nuclear Information System (INIS)

    Kaupanger, R.M.; Kostelnik, K.M.; Milam, L.M.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy (DOE) Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. Stakeholder participation in the DOE Environmental Management decision-making process is critical to remediation efforts. Appropriate mechanisms for communication with the public, private sector, regulators, elected officials, and others are being aggressively pursued by BWID to permit informed participation. This document summarizes public outreach efforts during FY-93 and presents a strategy for expanded stakeholder involvement during FY-94

  13. Buried Landmines in Libya and Detection Technologies

    International Nuclear Information System (INIS)

    El-Bakkoush, F.A.

    2015-01-01

    In this Article, presentation and discussion of the impact of detonated buried land mines in vast areas of land in Libya are given, especially from economical and social point of view. The methods and techniques which are currently used to allocate the positions of buried land mines during de mining operations are mentioned and discussed with emphasize on their strength and weakness. These include mechanical removing methods, prodders, metal detectors, ground penetrating radar and sniffing dogs. Furthermore, the novel and most developed detection techniques invented to detect land mines using SQUDS and neutron techniques based on thermal neutron backscattering and elemental analysis by fast and thermal neutrons are given and discussed.

  14. Detection of a buried object with pulse-compensated wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2003-01-01

    For the detection of a buried object we consider two straight thin-wire antennas above an interface between two homogeneous dielectric half spaces. One antenna is a transmitting wire and the other is a receiving wire. Our aim is to use this simple antenna set up for the detection of buried objects

  15. A novel partial SOI LDMOSFET with periodic buried oxide for breakdown voltage and self heating effect enhancement

    Science.gov (United States)

    Jamali Mahabadi, S. E.; Rajabi, Saba; Loiacono, Julian

    2015-09-01

    In this paper a partial silicon on insulator (PSOI) lateral double diffused metal oxide semiconductor field effect transistor (LDMOSFET) with periodic buried oxide layer (PBO) for enhancing breakdown voltage (BV) and self-heating effects (SHEs) is proposed for the first time. This new structure is called periodic buried oxide partial silicon on insulator (PBO-PSOI). In this structure, periodic small pieces of SiO2 were used as the buried oxide (BOX) layer in PSOI to modulate the electric field in the structure. It was demonstrated that the electric field is distributed more evenly by producing additional electric field peaks, which decrease the common peaks near the drain and gate junctions in the PBO-PSOI structure. Hence, the area underneath the electric field curve increases which leads to higher breakdown voltage. Also a p-type Si window was introduced in the source side to force the substrate to share the vertical voltage drop, leading to a higher vertical BV. Furthermore, the Si window under the source and those between periodic pieces of SiO2 create parallel conduction paths between the active layer and substrate thereby alleviating the SHEs. Simulations with the two dimensional ATLAS device simulator from the Silvaco suite of simulation tools show that the BV of PBO-PSOI is 100% higher than that of the conventional partial SOI (C-PSOI) structure. Furthermore the PBO-PSOI structure alleviates SHEs to a greater extent than its C-PSOI counterpart. The achieved drain current for the PBO-PSOI structure (100 μA), at drain-source voltage of VDS = 100 V and gate-source voltage of VGS = 25 V, is shown to be significantly larger than that in C-PSOI and fully depleted SOI (FD-SOI) structures (87 μA and 51 μA respectively). Drain current can be further improved at the expense of BV by increasing the doping of the drift region.

  16. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

    2014-06-23

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  17. Ultra thin buried oxide layers formed by low dose Simox process

    Energy Technology Data Exchange (ETDEWEB)

    Aspar, B.; Pudda, C.; Papon, A.M. [CEA Centre d`Etudes de Grenoble, 38 (France). Lab. d`Electronique et d`Instrumentation; Auberton Herve, A.J.; Lamure, J.M. [SOITEC, 38 - Grenoble (France)

    1994-12-31

    Oxygen low dose implantation is studied for two implantation energies. For 190 keV, a continuous buried oxide layer is obtained with a high dislocation density in the top silicon layer due to SiO{sub 2} precipitates. For 120 keV, this silicon layer is free of SiO{sub 2} precipitate and has a low dislocation density. Low density of pin-holes is observed in the buried oxide. The influence of silicon islands in the buried oxide on the breakdown electric fields is discussed. (authors). 6 refs., 5 figs.

  18. Ultra thin buried oxide layers formed by low dose Simox process

    International Nuclear Information System (INIS)

    Aspar, B.; Pudda, C.; Papon, A.M.

    1994-01-01

    Oxygen low dose implantation is studied for two implantation energies. For 190 keV, a continuous buried oxide layer is obtained with a high dislocation density in the top silicon layer due to SiO 2 precipitates. For 120 keV, this silicon layer is free of SiO 2 precipitate and has a low dislocation density. Low density of pin-holes is observed in the buried oxide. The influence of silicon islands in the buried oxide on the breakdown electric fields is discussed. (authors). 6 refs., 5 figs

  19. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Oberbeck, Lars; Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y.; Schofield, Steven R.; Curson, Neil J.

    2014-01-01

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  20. Bearing and Range Estimation Algorithm for Buried Object in Underwater Acoustics

    Directory of Open Access Journals (Sweden)

    Dong Han

    2009-01-01

    (DOA of objects and objects-sensors distances, is used in MUSIC algorithm instead of classical model. The influence of the depth of buried objects is discussed. Finally, the numerical results are given in the case of buried cylindrical shells.

  1. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  2. Thin SiGe virtual substrates for Ge heterostructures integration on silicon

    International Nuclear Information System (INIS)

    Cecchi, S.; Chrastina, D.; Frigerio, J.; Isella, G.; Gatti, E.; Guzzi, M.; Müller Gubler, E.; Paul, D. J.

    2014-01-01

    The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si 1−x Ge x buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si 1−x Ge x layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach

  3. Growth of ZnO heterostructures in an ultra compact MBE system

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Marcel [University of Duisburg-Essen, Institute of Experimental Physics, Duisburg (Germany); University of Paderborn (Germany). Group Nanophotonics and Nanomaterials; Meier, Cedrik [University of Paderborn (Germany). Group Nanophotonics and Nanomaterials

    2009-07-01

    Due to its unique properties such as the large direct bandgap of 3.37 eV and its high exciton binding energy, zinc oxide (ZnO) is a very promising semiconductor for optoelectronic and photonic applications even at room temperature. By adding cadmium (Cd) or magnesium (Mg) the bandgap can be tuned between 3.0 eV and 4.0 eV. It has already been shown that plasma assisted molecular beam epitaxy (PA-MBE) is a very suitable technique for growing high-quality epilayers of ZnO. Especially for research issues small samples are often sufficient. By using ultra compact MBE-systems the running costs can be kept down. However, the special system geometry and the very compact design lead to high requirements on the system. It is not trivial that in such a system stoichiometric and homogeneous growth conditions be achieved anyway. Furthermore, very high growth-rates can be obtained. By working in the zinc- (Zn) or oxygen-rich (O) regime completely different surface morphologies free of any metallic clusters are created. We present a systematic study on the growth conditions in such a compact system. Especially, the determination of the flux is discussed, and the grown heterostructures are characterised for their usability for nanophotonic devices.

  4. Pyroelectric effect and lattice thermal conductivity of InN/GaN heterostructures

    Science.gov (United States)

    Hansdah, Gopal; Sahoo, Bijay Kumar

    2018-06-01

    The built-in-polarization (BIP) of InN/GaN heterostructures enhances Debye temperature, phonon mean free path and thermal conductivity of the heterostructure at room temperature. The variation of thermal conductivities (kp: including polarization mechanism and k: without polarization mechanism) with temperature predicts the existence of a transition temperature (Tp) between primary and secondary pyroelectric effect. Below Tp, kp is lower than k; while above Tp, kp is significantly contributed from BIP mechanism due to thermal expansion. A thermodynamic theory has been proposed to explain the result. The room temperature thermal conductivity of InN/GaN heterostructure with and without polarization is respectively 32 and 48 W m-1 K-1. The temperature Tp and room temperature pyroelectric coefficient of InN has been predicted as 120 K and -8.425 μC m-2 K-1, respectively which are in line with prior literature studies. This study suggests that thermal conductivity measurement in InN/GaN heterostructures can help to understand the role of phonons in pyroelectricity.

  5. Superconducting cuprate heterostructures for hot electron bolometers

    Science.gov (United States)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  6. Superconducting cuprate heterostructures for hot electron bolometers

    International Nuclear Information System (INIS)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-01-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La 2−x Sr x CuO 4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV∼γI 3 , with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g e−ph ≈1 W/K cm 2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity

  7. Ultrafast strain engineering in complex oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Paul; Caviglia, Andrea; Hu, Wanzheng; Bromberger, Hubertus; Singla, Rashmi; Mitrano, Matteo; Hoffmann, Matthias C.; Kaiser, Stefan; Foerst, Michael [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Scherwitzl, Raoul; Zubko, Pavlo; Gariglio, Sergio; Triscone, Jean-Marc [Departement de Physique de la Matiere Condensee, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneve 4, Geneva (Switzerland); Cavalleri, Andrea [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Department of Physics, Clarendon Laboratory, University of Oxford (United Kingdom)

    2012-07-01

    The mechanical coupling between the substrate and the thin film is expected to be effective on the ultrafast timescale, and could be exploited for the dynamic control of materials properties. Here, we demonstrate that a large-amplitude mid-infrared field, made resonant with a stretching mode of the substrate, can switch the electronic properties of a thin film across an interface. Exploiting dynamic strain propagation between different components of a heterostructure, insulating antiferromagnetic NdNiO{sub 3} is driven through a prompt, five-order-of-magnitude increase of the electrical conductivity, with resonant frequency and susceptibility that is controlled by choice of the substrate material. Vibrational phase control, extended here to a wide class of heterostructures and interfaces, may be conductive to new strategies for electronic phase control at THz repetition rates.

  8. Electron mobility and drift velocity in selectively doped InAlAs/InGaAs/InAlAs heterostructures

    International Nuclear Information System (INIS)

    Vasil’evskii, I. S.; Galiev, G. B.; Klimov, E. A.; Požela, K.; Požela, J.; Jucienė, V.; Sužiedėlis, A.; Žurauskienė, N.; Keršulis, S.; Stankevič, V.

    2011-01-01

    An increase in the electron mobility and drift velocity in high electric fields in quantum wells of selectively doped InAlAs/InGaAs/InAsAs heterostructures is obtained experimentally via controlling the composition of semiconductors forming the interface. The electron mobility at the interface in the In 0.8 Ga 0.2 As/In 0.7 Al 0.3 As metamorphic structure with a high molar fraction of In (0.7–0.8) is as high as 12.3 × 10 3 cm 2 V −1 s −1 at room temperature. An increase in the electron mobility by a factor of 1.1–1.4 is attained upon the introduction of thin (1–3 nm) InAs layers into a quantum well of selectively doped In 0.53 Ga 0.47 As/In 0.52 Al 0.48 As heterostructures. A maximal drift velocity attains 2.5 × 10 7 cm/s in electric fields of 2–5 kV/cm. The threshold field F th for the intervalley Γ-L electron transfer (the Gunn effect) in the InGaAs quantum well is higher than in the bulk material by a factor of 2.5–3. The effect of two- to threefold decrease in the threshold field F th in the InGaAs quantum well is established upon increasing the molar fraction of In in the InAlAs barrier, as well as upon the introduction of thin InAs inserts into the InGaAs quantum well.

  9. NaCl-assisted one-step growth of MoS2-WS2 in-plane heterostructures

    Science.gov (United States)

    Wang, Zhan; Xie, Yong; Wang, Haolin; Wu, Ruixue; Nan, Tang; Zhan, Yongjie; Sun, Jing; Jiang, Teng; Zhao, Ying; Lei, Yimin; Yang, Mei; Wang, Weidong; Zhu, Qing; Ma, Xiaohua; Hao, Yue

    2017-08-01

    Transition metal dichalcogenides (TMDs) have attracted considerable interest for exploration of next-generation electronics and optoelectronics in recent years. Fabrication of in-plane lateral heterostructures between TMDs has opened up excellent opportunities for engineering two-dimensional materials. The creation of high quality heterostructures with a facile method is highly desirable but it still remains challenging. In this work, we demonstrate a one-step growth method for the construction of high-quality MoS2-WS2 in-plane heterostructures. The synthesis was carried out using ambient pressure chemical vapor deposition (APCVD) with the assistance of sodium chloride (NaCl). It was found that the addition of NaCl played a key role in lowering the growth temperatures, in which the Na-containing precursors could be formed and condensed on the substrates to reduce the energy of the reaction. As a result, the growth regimes of MoS2 and WS2 are better matched, leading to the formation of in-plane heterostructures in a single step. The heterostructures were proved to be of high quality with a sharp and clear interface. This newly developed strategy with the assistance of NaCl is promising for synthesizing other TMDs and their heterostructures.

  10. Strong magnetization and Chern insulators in compressed graphene/CrI 3 van der Waals heterostructures

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin

    2018-02-01

    Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.

  11. Performance evaluation of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  12. Detection and characterization of buried lunar craters with GRAIL data

    Science.gov (United States)

    Sood, Rohan; Chappaz, Loic; Melosh, Henry J.; Howell, Kathleen C.; Milbury, Colleen; Blair, David M.; Zuber, Maria T.

    2017-06-01

    We used gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) to detect, characterize and validate the presence of large impact craters buried beneath the lunar maria. In this paper we focus on two prominent anomalies detected in the GRAIL data using the gravity gradiometry technique. Our detection strategy is applied to both free-air and Bouguer gravity field observations to identify gravitational signatures that are similar to those observed over buried craters. The presence of buried craters is further supported by individual analysis of regional free-air gravity anomalies, Bouguer gravity anomaly maps, and forward modeling. Our best candidate, for which we propose the informal name of Earhart Crater, is approximately 200 km in diameter and forms part of the northwestern rim of Lacus Somniorum, The other candidate, for which we propose the informal name of Ashoka Anomaly, is approximately 160 km in diameter and lies completely buried beneath Mare Tranquillitatis. Other large, still unrecognized, craters undoubtedly underlie other portions of the Moon's vast mare lavas.

  13. Risk and cost tradeoffs for remote retrieval of buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-12-31

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program`s technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste.

  14. Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology.

    Science.gov (United States)

    Cunningham, Patrick D; Souza, João B; Fedin, Igor; She, Chunxing; Lee, Byeongdu; Talapin, Dmitri V

    2016-06-28

    Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor-polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I∥/I⊥ = 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures.

  15. Preparation and infrared absorption properties of buried SiC layers

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Wong, S.P.; Kwok, R.W.M.

    1997-01-01

    Buried SiC layers were formed by using a metal vapor vacuum arc (MEVVA) ion source, with C + ions implanted into Si substrates under different doses. In the present study, the extracted voltage was 50 kV and the ion dose was varied from 3.0 x 10 17 to 1.6 x 10 18 cm -2 . According to infrared absorption measurements, it was fount that the structure of the buried SiC layers depended on the ion dose. Moreover, the results also demonstrated that the buried SiC layers including cubic crystalline SiC could be synthesized at an averaged substrate temperature of lower than 400 degree C with the MEVVA ion source

  16. A fully coupled finite element model for stress distribution in buried gas pipeline

    International Nuclear Information System (INIS)

    Yahya Sukirman; Zainal Zakaria; Woong Soon Yue

    2001-01-01

    The study of stress-strain relationship is very important in many designs of buried structures over the years. The behavior and mechanism between the interaction of soil and buried structures such as a natural pipeline will mostly contributes to the integrity of the pipeline. This paper presents a fully coupled finite element of consolidation analysis model to study the stress-strain distribution along a buried pipeline before it excess its maximum deformation limit. The behavior of the soil-pipeline system can be modelled by a non-linear elasto-plastic based on Mohr-Coulomb and critical state yield surfaces. The deformation and deflection of the pipeline due to drained and external loading condition will be considered here. Finally the stress-strain distribution of the buried pipeline will be utilised to obtain the maximum deformation limit and the deflection of the buried pipeline. (Author)

  17. Giant magnetoelectric effect in pure manganite-manganite heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanjukta; Pankaj, Ravindra; Yarlagadda, Sudhakar; Majumdar, Pinaki; Littlewood, Peter B.

    2017-11-01

    Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form (Insulator) /(LaMnO3)(n)/Interface/(CaMnO3)(n)/(Insulator) show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from LaMnO3 to CaMnO3 due to repulsion. Here, an effective nearest-neighbor electron-electron (electron-hole) repulsion (attraction) is generated by cooperative electron-phonon interaction. Double exchange, when a particle virtually hops to its unoccupied neighboring site and back, produces magnetic polarons that polarize antiferromagnetic regions. Thus a striking giant magnetoelectric effect ensues when an external electrical field enhances the electron leakage across the interface.

  18. Full-Field Strain Mapping at a Ge/Si Heterostructure Interface

    Directory of Open Access Journals (Sweden)

    Buwen Cheng

    2013-05-01

    Full Text Available The misfit dislocations and strain fields at a Ge/Si heterostructure interface were investigated experimentally using a combination of high-resolution transmission electron microscopy and quantitative electron micrograph analysis methods. The type of misfit dislocation at the interface was determined to be 60° dislocation and 90° full-edge dislocation. The full-field strains at the Ge/Si heterostructure interface were mapped by using the geometric phase analysis (GPA and peak pairs analysis (PPA, respectively. The effect of the mask size on the GPA and PPA results was analyzed in detail. For comparison, the theoretical strain fields of the misfit dislocations were also calculated by the Peierls-Nabarro and Foreman dislocation models. The results showed that the optimal mask sizes in GPA and PPA were approximately three tenths and one-tenth of the reciprocal lattice vector, respectively. The Foreman dislocation model with an alterable factor a = 4 can best describe the strain field of the misfit dislocation at the Ge/Si heterostructure interface.

  19. Field-scale permeation testing of jet-grouted buried waste sites

    International Nuclear Information System (INIS)

    Loomis, G.G.; Zdinak, A.P.

    1996-01-01

    The Idaho National Engineering Laboratory (INEL) conducted field-scale hydraulic conductivity testing of simulated buried waste sites with improved confinement. The improved confinement was achieved by jet grouting the buried waste, thus creating solid monoliths. The hydraulic conductivity of the monoliths was determined using both the packer technique and the falling head method. The testing was performed on simulated buried waste sites utilizing a variety of encapsulating grouts, including high-sulfate-resistant Portland cement, TECT, (a proprietary iron oxide cement) and molten paraffin. By creating monoliths using in-situ jet grouting of encapsulating materials, the waste is simultaneously protected from subsidence and contained against further migration of contaminants. At the INEL alone there is 56,000 m 3 of buried transuranic waste commingled with 170,000--224,000 m 3 of soil in shallow land burial. One of the options for this buried waste is to improve the confinement and leave it in place for final disposal. Knowledge of the hydraulic conductivity for these monoliths is important for decision-makers. The packer tests involved coring the monolith, sealing off positions within the core with inflatable packers, applying pressurized water to the matrix behind the seal, and observing the water flow rate. The falling head tests were performed in full-scale 3-m-diameter, 3-m-high field-scale permeameters. In these permeameters, both water inflow and outflow were measured and equated to a hydraulic conductivity

  20. Novel high-voltage power lateral MOSFET with adaptive buried electrodes

    International Nuclear Information System (INIS)

    Zhang Wen-Tong; Wu Li-Juan; Qiao Ming; Luo Xiao-Rong; Zhang Bo; Li Zhao-Ji

    2012-01-01

    A new high-voltage and low-specific on-resistance (R on,sp ) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed. The MOSFET features are that the electrodes are in the buried oxide (BOX) layer, the negative drain voltage V d is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source. Because the interface silicon layer potentials are lower than the neighboring electrode potentials, the electronic potential wells are formed above the electrode regions, and the hole potential wells are formed in the spacing of two neighbouring electrode regions. The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials. Based on the interface charge enhanced dielectric layer field theory, the electric field strength in the buried layer is enhanced. The vertical electric field E I and the breakdown voltage (BV) of ABE SOI are 545 V/μm and −587 V in the 50 μm long drift region and the 1 μm thick dielectric layer, and a low R on,sp is obtained. Furthermore, the structure also alleviates the self-heating effect (SHE). The analytical model matches the simulation results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)