WorldWideScience

Sample records for buried radioactive waste

  1. Super analog computer for evaluating the safety of buried radioactive waste

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1980-01-01

    It is argued that the past use of digital computer programs for evaluating the safety of buried radioactive waste has been largely wasteful and dangerously delusive. It is suggested to use actual rocks as the analog of buried waste. The problem of comparable rates of leaching of radioactive waste and of natural rock is discussed. Two examples are given of the use of natural rock as an ''analog computer'': one for high-level radioactive waste, and one for low-level radioactive waste. Digital computers have not contributed anything to two crucial questions: Can shafts be securely sealed. Does the heat crack the rock or have important effects on its chemistry. 4 refs

  2. Radiotoxic hazard measure for buried solid radioactive waste

    International Nuclear Information System (INIS)

    Hamstra, J.

    1975-01-01

    The radiotoxic hazards resulting from the disposal of highlevel reprocessing wastes into a deep geological formation are reviewed. The term radiotoxic hazard measure (RHM), used to measure the hazard from buried radioactive wastes, is based on the maximum radionuclide concentration permissible in water. Calculations are made of the RHM levels for the high-level reprocessing wastes of both light-water-reactor and fast breeder reactor fuels. In comparing these RHM levels with that for the natural activity of an equivalent amount of uranium ore and its mill tailings, it is concluded that an actual additional radiotoxic hazard for buried high-level reprocessing waste only exists for the first 300 to 500 years after burial. (U.S.)

  3. Method of burying vessel containing radioactive waste

    International Nuclear Information System (INIS)

    Koga, Yoshihito.

    1989-01-01

    A float having an inert gas sealed therein is attached to a tightly closed vessel containing radioactive wastes. The vessel is inserted and kept in a small hole for burying the tightly closed vessel in an excavated shaft in rocks such as of granite or rock salts, while filling bentonite as shielding material therearound. In this case, the float is so adjusted that the apparent specific gravity is made equal or nearer between the tightly closed vessel and the bentonite, so that the rightly closed vessel does not sink and cause direct contact with the rocks even if bentonite flows due to earthquakes, etc. This can prevent radioactivity contamination through water in the rocks. (S.K.)

  4. A proposed alternative approach for protection of inadvertent human intruders from buried Department of Energy low level radioactive wastes

    International Nuclear Information System (INIS)

    Cochran, J.R.

    1995-01-01

    The burial of radioactive wastes creates a legacy. To limit the impact of this legacy on future generations, we establish and comply with performance objectives. This paper reviews performance objectives for the long-term isolation of buried radioactive wastes; identifies regulatorly-defined performance objectives for protecting the inadvertent human intruder (IHI) from buried low-level radioactive waste (LLW); (3) discusses a shortcoming of the current approach; and (4) offers an alternative approach for protecting the IHI. This alternative approach is written specifically for the burial of US Department of Energy (DOE) wastes at the Nevada Test Site (NTS), although the approach might be applied at other DOE burial sites

  5. The buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1991-01-01

    There are numerous locations throughout the Department of Energy (DOE) Complex where wastes have been buried in the ground or stored for future disposal. Much of this buried waste is contaminated with hazardous and radioactive materials. An extensive research program has been initiated at the Idaho National Engineering Laboratory (INEL) to develop and demonstrate advanced remediation techniques for DOE Complex buried waste. The purpose of the Buried Waste Integrated Demonstration (BWID), is to develop a scientifically sound and deployable remediation system consisting of advanced technologies which address the buried waste characteristics of the DOE Complex. This comprehensive remediation system win include technologies for the entire remediation cycle (cradle-to-grave). Technologies developed and demonstrated within the BWID will be transferred to the DOE Complex sites with buried waste, to private industry, and to universities. Multidirectional technology transfer is encouraged by the BWID. Identification and evaluation of plausible technological solutions are an ongoing activity of the BWID. A number of technologies are currently under development throughout the DOE Complex, private industry, and universities. Technology integration mechanisms have been established by BWID to facilitate collaborative research and demonstration of applicable remedial technologies for buried waste. Successful completion of the BWID will result in the development of a proven and deployable system at the INEL and other DOE Complex buried waste sites, thereby supporting the DOE Complex's environmental restoration objectives

  6. Remote technologies for buried waste retrieval

    International Nuclear Information System (INIS)

    Smith, A.M.; Rice, P.

    1995-01-01

    The DOE is evaluating what should be done with this buried waste. Although the radioactive waste is not particularly mobile unless airborne, some of it was buried with volatile organics and/or other substances that tend to spread easily to surrounding soil or water tables. Volatile organics are hazardous materials (such as trichloroethylene) and require clean-up at certain levels in drinking water. There is concern that the buried volatile organics will spread into the water table and contaminate drinking water. Because of this, the DOE is considering options for handling this buried waste and reducing the risks of spreading or exposure. There are two primary options: containment and stabilization, or retrieval. Containment and stabilization systems would include systems that would leave the waste where it is, but contain and stabilize it so that the radioactive and hazardous materials would not spread to the surrounding soil, water, or air. For example, an in situ vitrification system could be used to melt the waste into a composite glass-like material that would not leach into the surrounding soil, water, or air. Retrieval systems are those that would remove the waste from its burial location for treatment and/or repackaging for long term storage. The objective of this project was to develop and demonstrate remote technologies that would minimize dust generation and the spread of airborne contaminants during buried waste retrieval. Remote technologies are essential for the retrieval of buried waste because they remove workers from the hazardous environment and provide greater automation, reducing the chances of human error. Minimizing dust generation is also essential to increased safety for the workers and the environment during buried waste retrieval. The main contaminants within the waste are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides, which are easily suspended in air and spread if disturbed

  7. Implementation of the buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Merrill, S.K.

    1992-01-01

    The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring

  8. Buried waste remediation: A new application for in situ vitrification

    International Nuclear Information System (INIS)

    Kindle, C.H.; Thompson, L.E.

    1991-04-01

    Buried wastes represent a significant environmental concern and a major financial and technological challenge facing many private firms, local and state governments, and federal agencies. Numerous radioactive and hazardous mixed buried waste sites managed by the US Department of Energy (DOE) require timely clean up to comply with state or federal environmental regulations. Hazardous wastes, biomedical wastes, and common household wastes disposed at many municipal landfills represent a significant environmental health concern. New programs and regulations that result in a greater reduction of waste via recycling and stricter controls regarding generation and disposal of many wastes will help to stem the environmental consequences of wastes currently being generated. Groundwater contamination, methane generation, and potential exposures to biohazards and chemically hazardous materials from inadvertent intrusion will continue to be potential environmental health consequences until effective and permanent closure is achieved. In situ vitrification (ISV) is being considered by the DOE as a permanent closure option for radioactive buried waste sites. The results of several ISV tests on simulated and actual buried wastes conducted during 1990 are presented here. The test results illustrate the feasibility of the ISV process for permanent remediation and closure of buried waste sites in commercial landfills. The tests were successful in immobilizing or destroying hazardous and radioactive contaminants while providing up to 75 vol % waste reduction. 6 refs., 7 figs., 5 tabs

  9. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  10. Risk and cost tradeoffs for remote retrieval of buried waste

    International Nuclear Information System (INIS)

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-01-01

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program's technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste

  11. Basic prerequisites and the practice of using deep water tables for burying liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    In the USSR, creating reservoirs for liquid radioactive wastes is one of the promising methods of safely disposing of them in deep water tables, in zones with a standing regime or a slow rate of subterranean water exchange. The results of investigations and the practice of burying (the wastes) indicate the reliability and effectiveness of such a method of final waste disposal when the basic requirements of environmental protection are observed. Geological formations and collector strata that guarantee the localization of the liquid radioactive wastes placed in them for many tens and even hundreds of thousands of years can be studied and chosen in different regions. The basic requirements and criteria to which the geological structures and collector strata must correspond for ensuring the safe burial of wastes have been formulated. Wastes are buried only after a comprehensive, scientifically based evaluation of the sanitary-radiation safety for this generation and future ones, taking into account the burial regime and the physico-chemical processes that accompany combining wastes with rocks and stratal waters, as well as the time of holding wastes to maximum permissible concentrations. Positive and negative factors that characterize the method are analyzed. Possible emergency situations with subterranean burial are evaluated. The composition and methods of the geological survey, hydrodynamic, geophysical, physico-chemical and sanitary-radiation investigations; methods of calculating and predicting the movement of wastes underground;methods of preparing wastes for burial and chemical methods of restoring the suitability of wells; design characteristics and conditions of preparing wells for use; methods of estimating heating and processes of radiolysis for a medium containing highly radioactive wastes; methods of operational and remote control of the burial process and the condition of the ambient medium, etc. are briefly examined

  12. In situ vitrification on buried waste

    International Nuclear Information System (INIS)

    Bates, S.O.

    1992-01-01

    In situ vitrification (ISV) is being evaluated as a remedial treatment technology for buried mixed and transuranic (TRU) wastes at the Subsurface Disposal Area (SDA) at Idaho National Engineering Laboratory (INEL) and can be related to buried wastes at other Department of Energy (DOE) sites. There are numerous locations around the DOE Complex where wastes were buried in the ground or stored for future burial. The Buried Waste Program (BWP) is conducting a comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the Department of Energy - Field Office Idaho (DOE-ID). As part of the RI/FS, an ISV scoping study on the treatability of the SDA mixed low-level and mixed TRU waste is being performed for applicability to remediation of the waste at the Radioactive Waste Management Complex (RWMC). The ISV project being conducted at the INEL by EG ampersand G Idaho, Inc. consists of a treatability investigation to collect data to satisfy nine CERCLA criteria with regards to the SDA. This treatability investigation involves a series of experiments and related efforts to study the feasibility of ISV for remediation of mixed and TRU waste disposed of at the SDA

  13. DOE's plan for buried transuranic (TRU) contaminated waste

    International Nuclear Information System (INIS)

    Mathur, J.; D'Ambrosia, J.; Sease, J.

    1987-01-01

    Prior to 1970, TRU-contaminated waste was buried as low-level radioactive waste. In the Defense Waste Management Plan issued in 1983, the plan for this buried TRU-contaminated waste was to monitor the buried waste, take remedial actions, and to periodically evaluate the safety of the waste. In March 1986, the General Accounting Office (GAO) recommended that the Department of Energy (DOE) provide specific plans and cost estimates related to buried TRU-contaminated waste. This plan is in direct response to the GAO request. Buried TRU-contaminated waste and TRU-contaminated soil are located in numerous inactive disposal units at five DOE sites. The total volume of this material is estimated to be about 300,000 to 500,000 m 3 . The DOE plan for TRU-contaminated buried waste and TRU-contaminated soil is to characterize the disposal units; assess the potential impacts from the waste on workers, the surrounding population, and the environment; evaluate the need for remedial actions; assess the remedial action alternatives; and implement and verify the remedial actions as appropriate. Cost estimates for remedial actions for the buried TRU-contaminated waste are highly uncertain, but they range from several hundred million to the order of $10 billion

  14. Risk and cost tradeoffs for remote retrieval of buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-12-31

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program`s technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste.

  15. Fate of gaseous tritium and carbon-14 released from buried low-level radioactive waste

    International Nuclear Information System (INIS)

    Striegl, R.G.

    1988-01-01

    Microbial decomposition, chemical degradation, and volatilization of buried low-level radioactive waste results in the release of gases containing tritium ( 3 H) and carbon-14 ( 14 C) to the surrounding environment. Water vapor, carbon dioxide, and methane that contain 3 H or 14 C are primary products of microbial decomposition of the waste. Depending on the composition of the waste source, chemical degradation and volatilization of waste also may result in the production of a variety of radioactive gases and organic vapors. Movement of the gases in materials that surround waste trenches is affected by physical, geochemical, and biological mechanisms including sorption, gas-water-mineral reactions, isotopic dilution, microbial consumption, and bioaccumulation. These mechanisms either may transfer 3 H and 14 C to solids and infiltrating water or may result in the accumulation of the radionuclides in plant or animal tissue. Gaseous 3 H or 14 C that is not transferred to other forms is ultimately released to the atmosphere

  16. In situ vitrification of buried waste sites

    International Nuclear Information System (INIS)

    Shade, J.W.; Thompson, L.E.; Kindle, C.H.

    1991-04-01

    In situ vitrification (ISV) is a remedial technology initially developed to treat soils contaminated with a variety of organics, heavy metals, and/or radioactive materials. Recent tests have indicated the feasibility of applying the process to buried wastes including containers, combustibles, and buried metals. In addition, ISV is being considered for application to the emplacement of barriers and to the vitrification of underground tanks. This report provides a review of some of the recent experiences of applying ISV in engineering-scale and pilot-scale tests to wastes containing organics, the Environmental Protection Agency (EPA) Toxic metals buried in sealed containers, and buried ferrous metals, with emphasis on the characteristics of the vitrified product and adjacent soil. 9 refs., 2 figs., 3 tabs

  17. Discarding processing method for radioactive waste

    International Nuclear Information System (INIS)

    Komura, Shiro; Kato, Hiroaki; Hatakeyama, Takao; Oura, Masato.

    1992-01-01

    At first, in a discrimination step, extremely low level radioactive wastes are discriminated to metals and concretes and further, the metal wastes are discriminated to those having hollow portions and those not having hollow portions, and the concrete wastes are discriminated to those having block-like shape and those having other shapes respectively. Next, in a processing step, the metal wastes having hollow portions are applied with cutting, devoluming or packing treatment and block-like concrete wastes are applied with surface solidification treatment, and concrete wastes having other shapes are applied with crushing treatment respectively. Then, the extremely low level radioactive wastes contained in a container used exclusively for transportation are taken out, in a movable burying facility with diffusion inhibiter kept at a negative pressure as required, in a field for burying operation, and buried in a state that they are isolated from the outside. Accordingly, they can be buried safely and efficiently. (T.M.)

  18. Radioactive wastes - inventories and classification

    International Nuclear Information System (INIS)

    Brennecke, P.; Hollmann, A.

    1992-01-01

    A survey is given of the origins, types, conditioning, inventories, and expected abundance of radioactive wastes in the future in the Federal Republic of Germany. The Federal Government's radioactive waste disposal scheme provides that radioactive wastes be buried in deep geological formations which are expected to ensure a maintenance-free, unlimited and safe disposal without intentional excavation of the wastes at a later date. (orig./BBR) [de

  19. Training requirements and responsibilities for the Buried Waste Integrated Demonstration at the Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Vega, H.G.; French, S.B.; Rick, D.L.

    1992-09-01

    The Buried Waste Integrated Demonstration (BWID) is scheduled to conduct intrusive (hydropunch screening tests, bore hole installation, soil sampling, etc.) and nonintrusive (geophysical surveys) studies at the Radioactive Waste Management Complex (RWMC). These studies and activities will be limited to specific locations at the RWMC. The duration of these activities will vary, but most tasks are not expected to exceed 90 days. The BWID personnel requested that the Waste Management Operational Support Group establish the training requirements and training responsibilities for BWID personnel and BWID subcontractor personnel. This document specifies these training requirements and responsibilities. While the responsibilities of BWID and the RWMC are, in general, defined in the interface agreement, the training elements are based on regulatory requirements, DOE orders, DOE-ID guidance, state law, and the nature of the work to be performed

  20. Buried Waste Integrated Demonstration FY-93 Deployment Plan

    International Nuclear Information System (INIS)

    Bonnenberg, R.W.; Heard, R.E.; Milam, L.M.; Watson, L.R.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year 1993 effort will deploy seven major field demonstrations at the Idaho National Engineering Laboratory's (INEL's) Radioactive Waste Management Complex Cold Test Pit. These major demonstrations are Remote Characterization System, Remote Excavation System, Overburden Removal, Waste Isolation, Contamination Control Unit, Rapid Monitoring Unit, and Fixation of Soil Surface Contamination. This document is the basic operational planning document for BWID deployment of the INEL field demonstrations. Additional sections deal briefly with four nonINEL field and laboratory demonstrations (Buried Waste Retrieval, Arc Melter Vitrification, Graphite DC Plasma Arc Melter, and Fixed Hearth Plasma Process) and with four INEL laboratory demonstrations (Electrostatic Curtain, Thermal Kinetics, Multiaxis Crane Control System, and Dig-Face Characterization)

  1. Exhumation of radioactive solid wastes buried for fourteen years

    International Nuclear Information System (INIS)

    Horton, J.H.

    1977-03-01

    Twenty-five linear feet of a low-level beta-gamma waste trench was excavated fourteen years after the waste was buried. The waste included wood, steel, plastics, cotton cloth, rubber, and paper. Cardboard boxes not enclosed in plastic were the only materials to deteriorate visibly. Apparently, decades would be required for all cellulose materials to decompose, and plastics and metals would survive indefinitely

  2. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    International Nuclear Information System (INIS)

    Loomis, G.G.; Farnsworth, R.K.

    1997-01-01

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m 3 of transuranic (TRU) waste is co-mingled with over 170,000 m 3 of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste

  3. 'Hydrotechnical' problems of burying radioactive waste

    International Nuclear Information System (INIS)

    Nagy, Z.; Buday, G.

    2008-01-01

    The paper describes the design and construction problems of an underground storage facility of nuclear wastes. Special attention ids paid to the role of underground water. After detailed surveys the construction works of the Hungarian Radioactive Waste Storage Facility at Bataapati begun in 2005. The construction of the two 1700 m long inclines are near to the level of the planned storage chambers, today. (TRA)

  4. Storing solid radioactive wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate

  5. Performance of a buried radioactive high level waste (HLW) glass after 24 years

    International Nuclear Information System (INIS)

    Jantzen, Carol M.; Kaplan, Daniel I.; Bibler, Ned E.; Peeler, David K.; John Plodinec, M.

    2008-01-01

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in a lysimeter in the SRS burial ground for 24 years. Lysimeter leachate data was available for the first 8 years. The glass was exhumed in 2004. The glass was predicted to be very durable and laboratory tests confirmed this. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with results of other laboratory and field tests. Radionuclide profiling for alpha, beta, and 137 Cs indicated that Pu was not enriched in the soil while 137 Cs and 9 deg. C Sr were enriched in the first few centimeters surrounding the glass. Lysimeter leachate data indicated that 9 deg. C Sr and 137 Cs leaching from the glass was diffusion controlled

  6. Search and mapping of the old buried tailings with radioactive wastes at the urban territory

    International Nuclear Information System (INIS)

    Molchanov, O. I.; Soroka, Y. N.; Podrezov, A. A.; Soroka, M. N.

    2017-01-01

    The article presents results of investigation on search and mapping of the old buried tailings with radioactive wastes on the territory of Kamianske City. For solving the problem used complex of methods. These methods are as follows: soil-gas 222 Rn measurement and measurement of 222 Rn flux density from the ground surface, gamma-radiation survey, prospecting drilling, gamma-ray logging and laboratory analysis of radionuclides. The leading method in this complex was the method of soil-gas 222 Rn measurement. Using this method location of the tailings has been precisely defined. The tailings boundaries have been contoured in the plan. Other methods permitted to define such parameters as thickness of the wastes, their volume (∼330 000 m 3 ), radionuclide and chemical composition. It was found that radioactive residues occur at a depth from 2 to 11 m and contain in its composition 226 Ra, 210 Pb and 210 Po in the range from 8370 to 37270 Bq kg -1 .(authors)

  7. Grouting as a remedial technique for buried low-level radioactive wastes

    International Nuclear Information System (INIS)

    Spalding, B.P.; Hyder, L.K.; Munro, I.L.

    1985-01-01

    Seven grout formulations were tested in the laboratory for their ability to penetrate and to reduce the hydraulic conductivities of soils used as backfills for shallow land burial trenches. Soils from two sites, in Oak Ridge, TN, and Maxey Flats, KY were used and both are classified as Typic Dystrochrepts. Three soluble grout formulations (sodium silicate, polypropenamide [polyacrylamide], and 1,3-Benzenediol [resorcinol]-formaldehyde) were able to both penetrate soil and sand columns and reduce hydraulic conductivities from initial values of ca. 10 -4 m s -1 to -8 m s -1 . Three particulate grouts (lime [calcium oxide]-fly ash, fly ash-cement-bentonite, and bentonite alone) could not penetrate columns; such formulations would, therefore, be difficult to inject into closed burial trenches. Field demonstrations with both sodium silicate and polyacrylamide showed that grout could be distributed throughout a burial trench and that waste-backfill hydraulic conductivity could be reduced several orders of magnitude. Field grouting with polyacrylamide reduced the mean hydraulic conductivity of nine intratrench monitoring wells from 10 -4 to 10 -8 m s -1 . Grouting of low-level radioactive solid waste in situ, therefore, should be an effective technique to correct situations where leaching of buried wastes has or will result in groundwater contamination

  8. Processing vessel for high level radioactive wastes

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi

    1998-01-01

    Upon transferring an overpack having canisters containing high level radioactive wastes sealed therein and burying it into an underground processing hole, an outer shell vessel comprising a steel plate to be fit and contained in the processing hole is formed. A bury-back layer made of dug earth and sand which had been discharged upon forming the processing hole is formed on the inner circumferential wall of the outer shell vessel. A buffer layer having a predetermined thickness is formed on the inner side of the bury-back layer, and the overpack is contained in the hollow portion surrounded by the layer. The opened upper portion of the hollow portion is covered with the buffer layer and the bury-back layer. Since the processing vessel having a shielding performance previously formed on the ground, the state of packing can be observed. In addition, since an operator can directly operates upon transportation and burying of the high level radioactive wastes, remote control is no more necessary. (T.M.)

  9. Buried Waste Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities

  10. SEARCH AND MAPPING OF THE OLD BURIED TAILINGS WITH RADIOACTIVE WASTES AT THE URBAN TERRITORY.

    Science.gov (United States)

    Molchanov, O I; Soroka, Y N; Podrezov, A A; Soroka, M N

    2017-11-01

    The article presents results of investigation on search and mapping of the old buried tailings with radioactive wastes on the territory of Kamianske City. For solving the problem used complex of methods. These methods are as follows: soil-gas 222Rn measurement and measurement of 222Rn flux density from the ground surface, gamma-radiation survey, prospecting drilling, gamma-ray logging and laboratory analysis of radionuclides. The leading method in this complex was the method of soil-gas 222Rn measurement. Using this method location of the tailings has been precisely defined. The tailings boundaries have been contoured in the plan. Other methods permitted to define such parameters as thickness of the wastes, their volume (~330 000 m3), radionuclide and chemical composition. It was found that radioactive residues occur at a depth from 2 to 11 m and contain in its composition 226Ra, 210Pb and 210Po in the range from 8370 to 37 270 Bq kg-1. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval

  12. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  13. A process for ensuring regulatory compliance at the INEL`s buried waste integrated demonstrations

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, P.G.; Watson, L.R.; Blacker, P.B. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1993-03-01

    The Buried Waste Integrated Demonstration Program is funded by the Department of Energy Office of Technology Development. The mission of this Integrated Demonstration is to identify, evaluate, and demonstrate a suite of innovative technologies for the remediation of radioactive and hazardous waste buried throughout the DOE complex between 1950 and 1970. The program approach to development of a long-range strategy for improving buried waste remediation capabilities is to combine systems analysis with already identified remediation needs for DOE complex buried waste. The systems analysis effort has produced several configuration options (a top-level block diagram of a cradle-to-grave remediation system) capable of remediating the transuranic-contaminated waste pits and trenches at the Idaho National Engineering Laboratory. Technologies for demonstration are selected using three criteria: (a) the ability to satisfy a specific buried waste need, (b) the ability to satisfy functional and operational requirements defined for functional sub-elements in a configuration option, and (c) performance against Comprehensive Environmental Restoration and Compensation Liability Act selection criteria, such as effectiveness, implementability, and cost. Early demonstrations experienced problems with missed requirements, prompting the Buried Waste Integrated Demonstration Program Office to organize a Corrective Action Team to identify the cause and recommend corrective actions. The result of this team effort is the focus of this paper.

  14. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  15. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  16. Low-level radioactive wastes in subsurface soils

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-01-01

    Low-level radioactive wastes will continue to be buried in shallow-land waste disposal sites. Several of the burial sites have been closed because of the problems that developed as a result of poor site characteristics, types of waste buried, and a number of other environmental factors. Some of the problems encountered can be traced to the activities of microorganisms. These include microbial degradation of waste forms resulting in trench cover subsidence, production of radioactive gases, and production of microbial metabolites capable of complexation, solubilization, and bioaccumulation of radionuclides. Improvements in disposal technology are being developed to minimize these problems. These include waste segregation, waste pretreatment, incineration, and solidification. Microorganisms are also known to enhance and inhibit the movement of metals. Little is known about the role of autotrophic microbial transformations of radionuclides. Such microbial processes may be significant in light of improved disposal procedures, which may result in reductions in the organic content of the waste disposed of at shallow-land sites. 102 references, 5 figures, 19 tables

  17. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination.

    Science.gov (United States)

    Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A

    2018-02-08

    Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods.

  18. Radioactive waste processing container

    International Nuclear Information System (INIS)

    Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    A radioactive waste processing container used for processing radioactive wastes into solidification products suitable to disposal such as underground burying or ocean discarding is constituted by using cements. As the cements, calcium sulfoaluminate clinker mainly comprising calcium sulfoaluminate compound; 3CaO 3Al 2 O 3 CaSO 4 , Portland cement and aqueous blast furnace slug is used for instance. Calciumhydroxide formed from the Portland cement is consumed for hydration of the calcium sulfoaluminate clinker. According, calcium hydroxide is substantially eliminated in the cement constituent layer of the container. With such a constitution, damages such as crackings and peelings are less caused, to improve durability and safety. (I.N.)

  19. Methodology of safety evaluation about land disposal of low level radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1986-01-01

    Accompanying the progress of the construction project of low level radioactive waste storage facilities in Aomori Prefecture, the full scale land disposal of low level radioactive wastes shows its symptom also in Japan. In this report, the scientific methodology to explain the safety about the land disposal of low level radioactive wastes is discussed. The land disposal of general wastes by shallow burying has already had sufficient results. In the case of low level radioactive wastes, also the land disposal by shallow burying is considered. Low level radioactive wastes can be regarded as one form of industrial wastes, as there are many common parts in the scientific and theoretical base of the safety. Attention is paid most to the contamination of ground water. Low level radioactive wastes are solid wastes, accordingly the degree of contamination should be less. The space in which ground water existes, the phenomena of ground water movement, the phenomena of ground water dispersion and Fick's law, the adsorption effect of strata, and the evaluation of source term are explained. These are the method to analyze the degree of contamination from safety evaluation viewpoint. (Kako, I.)

  20. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  1. Integrated approach to hazardous and radioactive waste remediation

    International Nuclear Information System (INIS)

    Hyde, R.A.; Reece, W.J.

    1994-01-01

    The US Department of Energy Office of Technology Development is supporting the demonstration, and evaluation of a suite of waste retrieval technologies. An integration of leading-edge technologies with commercially available baseline technologies will form a comprehensive system for effective and efficient remediation of buried waste throughout the complex of DOE nuclear facilities. This paper discusses the complexity of systems integration, addressing organizational and engineering aspects of integration as well as the impact of human operators, and the importance of using integrated systems in remediating buried hazardous and radioactive waste

  2. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  3. Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Corey, J.C.; Adriano, D.C.; Decker, O.D.; Griggs, R.D.

    1989-01-01

    Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months

  4. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  5. The puzzle of nuclear wastes. Radioactive threat to your health..

    International Nuclear Information System (INIS)

    2007-01-01

    This document, published by the French association 'Sortir du nucleaire' (Get out of nuclear), gives some information on what is radioactivity, the radioactive materials as a risk for living organisms, nuclear wastes all over France (list and map of the storage sites, power plants and fuel cycle centers), nuclear wastes at every step of the nuclear connection, the insolvable problem of high activity wastes, burying nuclear wastes in order to better forget them, radioactivity as a time bomb for our health, radioactive effluents as an under-estimated risk, artificial radioactivity already responsible for the death of 61 million people in the world, and so on

  6. Design criteria burial containers for non-transuranic solid radioactive waste

    International Nuclear Information System (INIS)

    Hammond, J.E.

    1976-01-01

    The criteria, replace HW-83959 and apply to containers constructed specifically for the containment of beta-gamma radioactively contaminated waste removed from an area controlled by radiation work procedures, transported across an uncontrolled area where there is risk of a radiation release to the environs, and buried in an approved radioactive waste burial ground

  7. Geophysical surveys for buried waste detection at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Sandness, G.A.; Rising, J.L.; Kimbrough, J.R.

    1979-12-01

    This report describes a series of geophysical surveys performed at the Idaho National Engineering Laboratory (INEL). The main purpose of the surveys was to evaluate techniques, principally ground-penetrating radar, for detecting and mapping radioactive wastes buried in shallow trenches and pits. A second purpose was to determine the feasibility of using ground-penetrating radar to measure the depth of basalt bedrock. A prototype geophyscal survey system developed by the US Department of Energy's Pacific Northwest Laboratory was used for this study. Radar, magnetometer, and metal detector measurements were made at three sites in the Radioactive Waste Management Complex (RWMC) at INEL. Radar measurements were made at fourth site adjacent to the RWMC. The combination of three geophysical methods was shown to provide considerable information about the distribution of buried waste materials. The tests confirmed the potential effectiveness of the radar method, but they also pointed out the need for continued research and development in ground-penetrating radar technology. The radar system tested in this study appears to be capable of measuring the depth to basalt in the vicinity of the RWMC

  8. Exhumation test with aged radioactive solid wastes

    International Nuclear Information System (INIS)

    Horton, J.H.

    1977-01-01

    The deterioration of solid radioactive waste buried in soil is an important consideration when estimating the migration of radionuclides from the burial site, planning procedures for exhuming buried waste, and evaluating hazards caused by intentional or unintentional uncovering of the waste. This report presents observations during the excavation of low-level waste buried for 14 years in the humid environment of the Savannah River Plant. The radiation dose rates that were used to define the limits for low-level beta-gamma wastes were <50 mR/hr from an unshielded package or <50 mR/hr at 10 feet from a truck load. The waste was buried in sandy clay soil trenches more than 20 feet above the water table and covered with soil soon after burial. Rainfall for the area averages 47 inches per year. Because of the higher water permeability in backfilled soil than in undisturbed soil, perched water was sometimes found in the bottom of some trenches. However, the duration and/or extent of perched water is limited so that most waste is not subjected to water-saturated soil. The waste uncovered included wood, steel, plastics, cotton cloth, rubber, and paper. Cardboard boxes not enclosed in plastic were the only materials that deteriorated visibly. Apparently, decades would be required for all cellulose materials to decompose; plastics, rubber, and metals will probably survive indefinitely

  9. Radioactive waste processing field

    International Nuclear Information System (INIS)

    Ito, Minoru.

    1993-01-01

    Storing space for radioactive wastes (storage tunnels) are formed underground of the sea bottom along coast. A plurality of boreholes through which sea water flows are pored vertically in a direction intersecting underground streams of brine in the ground between the tunnels and seaside. Sea water introduction pipes are joined to the upper side walls of the boreholes. The sea water introduction pipes have introduction ports protruded under the sea level of the coastal sea area region. Since sea water flows from the introduction ports to the boreholes passing through the sea water introduction pipes, sea water is always filled in the boreholes. Therefore, brine is sufficiently supplied toward the land by sea water from the boreholes, the underground stream of brine is negligibly small. This can prevent radioactive contamination due to flow of the underground water when radioactive wastes are buried in the underground near coast. (I.N.)

  10. Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project

    International Nuclear Information System (INIS)

    Griebenow, B.E.

    1992-01-01

    This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report

  11. TNX Burying Ground: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    The TNX Burying Ground, located within the TNX Area of the Savannah River Plant (SRP), was originally built to dispose of debris from an experimental evaporator explosion at TNX in 1953. This evaporator contained approximately 590 kg of uranyl nitrate. From 1980 to 1984, much of the waste material buried at TNX was excavated and sent to the SRP Radioactive Waste Burial Grounds for reburial. An estimated 27 kg of uranyl nitrate remains buried at TNX. The TNX Burying Ground consists of three sites known to contain waste and one site suspected of containing waste material. All four sites are located within the TNX security fenceline. Groundwater at the TNX Burying Ground was not evaluated because there are no groundwater monitoring wells installed in the immediate vicinity of this waste site. The closure options considered for the TNX Burying Ground are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated

  12. Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes

    International Nuclear Information System (INIS)

    Surma, J.E.; Freeman, C.J.; Powell, T.D.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.

    1993-06-01

    The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600 degrees C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation

  13. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  14. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  15. Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program

    International Nuclear Information System (INIS)

    Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.; Thieme, R.E.

    1988-02-01

    In 1970, the US Atomic Energy Commission established a ''transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as ''buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containing mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs

  16. Operation for Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Kamizono, Hideki

    2008-01-01

    The Rokkasho Low Level Radioactive Waste (LLW) Disposal Center is located in Oishitai, Rokkasho-mura, Kamikitagun, of Aomori Prefecture. This district is situated in the southern part of Shimohita Peninsula in the northeastern corner of the prefecture, which lies at the northern tip of Honshu, Japan's main island. The Rokkasho LLW Disposal Center deals with only LLW generated by operating of nuclear power plants. The No.1 and No.2 disposal facility are now in operation. The disposal facilities in operation have a total dispose capacity of 80,000m 3 (equivalent to 400,000 drums). Our final business scope is to dispose of radioactive waste corresponding to 600,000 m 3 (equivalent to 3000,000 drums). For No.1 disposal facility, we have been disposing of homogeneous waste, including condensed liquid waste, spent resin, solidified with cement and asphalt, etc. For No.2 disposal facility, we can bury a solid waste solidified with mortar, such as activated metals and plastics, etc. Using an improved construction technology for an artificial barrier, the concrete pits in No.2 disposal facility could be constructed more economical and spacious than that of No.1. Both No.1 and No.2 facility will be able to bury about 200,000 waste packages (drums) each corresponding to 40,000 m 3 . As of March 17, 2008, Approximately 200,00 waste drums summing up No.1 and No.2 disposal facility have been received from Nuclear power plants and buried. (author)

  17. Integrated test schedule for buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Brown, J.T.; McDonald, J.K.

    1992-05-01

    The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ''windows of opportunity'' schedule. The ''windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M

  18. Development and testing of techniques for in-ground stabilization, size reduction, and safe removal of radioactive wastes stored in containments buried in ground

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Christodoulou, Apostolos

    2013-01-01

    Since the 1950's radioactive wastes from a number of laboratories have been stored below ground at the Hanford site, Washington State, USA, in vertical pipe units (VPUs) made of five 200 litre drums without tops or bottoms, and in caissons, made out of corrugated pipe, or concrete and typically 2,500 mm in diameter. The VPU's are buried of the order of 2,100 mm below grade, and the caissons are buried of the order of 6,000 mm below grade. The waste contains fuel pieces, fission products, and a range of chemicals used in the laboratory processes. This can include various energetic reactants such as un-reacted sodium potassium (NaK), potassium superoxide (KO 2 ), and picric acid, as well as quantities of other liquids. The integrity of the containments is considered to present unacceptable risks from leakage of radioactivity to the environment. This paper describes the successful development and full scale testing of in-ground augering equipment, grouting systems and removal equipment for remediation and removal of the VPUs, and the initial development work to test the utilization of the same basic augering and grouting techniques for the stabilization, size reduction and removal of caissons. (authors)

  19. Summary of radioactive solid waste received in the 200 Areas during calendar year 1993

    International Nuclear Information System (INIS)

    Anderson, J.D.; Hagel, D.L.

    1994-09-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ''Hanford Site Solid Waste Acceptance Criteria,'' (WHC 1988), liquid waste data are not included in this document

  20. Annual technology assessment and progress report for the buried transuranic waste program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Berreth, P.D.

    1984-11-01

    The US Department of Energy (DOE) is responsible for developing and implementing methods for the safe and environmentally acceptable disposal of radioactive waste. In 1983, DOE formulated a comprehensive plan to manage transuranic (TRU) defense waste. The DOE plan for buried TRU waste is to monitor it, take remedial actions as necessary, and reevaluate its safety periodically. The DOE strategy reflects concern that, based on present technology, retrieval and processing of buried waste may be risky and costly. To implement the DOE plan, EG and G Idaho, Inc., prime contractor at the Idaho National Engineering Laboratory (INEL), has developed a strategy for long-term management of the 2 million cubic feet of INEL buried TRU waste. That strategy involves four main activities: (a) environmental monitoring, (b) remedial action if necessary, (c) assimilation of data from both special studies and ongoing waste management activities, and (d) selection of a long-term management alternative in 1995. This report, submitted as the first in a series of annual reports, summarizes the buried TRU waste activities performed in fiscal year (FY) 1984 at the INEL in response to the DOE plan. Specifically, technologies applicable to buried waste confinement, retrieval, certification, and processing have been assessed, a long-range plan to conduct buried wasted studies over the next ten years has been prepared, and retrieval and soil management alternatives have been evaluated. 17 references, 7 figures, 1 table

  1. Utilization of crushed radioactive concrete for mortar to fill waste container void space

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Ohnishi, Kazuhiko; Oguri, Daiichiro; Ueki, Hiroyuki

    2004-01-01

    Minimizing the volume of radioactive waste generated during dismantling of nuclear power plants is a matter of great importance. In Japan waste forms buried in a shallow burial disposal facility as low level radioactive waste must be solidified by cement or other materials with adequate strength and must provide no harmful opening. The authors have developed an improved method to minimize radioactive waste volume by utilizing radioactive concrete for fine aggregate for mortars to fill void space in waste containers. Tests were performed with pre-placed concrete waste and with filling mortar using recycled fine aggregate produced from concrete. It was estimated that the improved method substantially increases the waste fill ratio in waste containers, thereby decreasing the total volume of disposal waste. (author)

  2. Summary of radioactive solid waste received in the 200 Areas during calendar year 1990

    International Nuclear Information System (INIS)

    Anderson, J.D.; McCann, D.C.; Poremba, B.E.

    1991-04-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy-Richland Operations Office under contract AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1990. This report does not include solid radioactive wastes in storage or disposal in other areas or facilities such as the underground tank farms. Unless packaged within the scope of Hanford Site radioactive solid waste acceptance criteria, liquid waste data are not included in this document. 10 refs., 1 tab

  3. DOE complex buried waste characterization assessment

    International Nuclear Information System (INIS)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m 3 of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993)

  4. Summary of radioactive solid waste received in the 200 Areas during calendar year 1992

    International Nuclear Information System (INIS)

    Anderson, J.D.; Hagel, D.L.

    1992-05-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms, or backlog wastes. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document

  5. Summary of radioactive solid waste received in the 200 Areas during calendar year 1994

    International Nuclear Information System (INIS)

    Anderson, J.D.; Hagel, D.L.

    1995-08-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document

  6. Summary of radioactive solid waste received in the 200 Areas during calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.D.; Hagel, D.L.

    1995-08-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

  7. Melter development needs assessment for RWMC buried wastes

    International Nuclear Information System (INIS)

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended

  8. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1979-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container. 30 claims

  9. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1977-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container

  10. Radioactive Waste Management Complex low-level waste radiological performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  11. Radioactive Waste Management Complex low-level waste radiological performance assessment

    International Nuclear Information System (INIS)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected

  12. On permission of waste-burying business in Tokai Research Establishment, Japan Atomic Energy Research Institute (Answer)

    International Nuclear Information System (INIS)

    1995-01-01

    As to this case written in the title which was inquired on July 19, 1994, from the prime minister, and changed partly on November 21, 1994, the Nuclear Safety Commission answered to the prime minister as follows after the prudent deliberation. As for the application of the criteria for permission, the technical capability is adequate, and the results of the examination of safety by the expert committee for examining nuclear fuel safety is adequate. It was judged that the safety after the permission of this waste-burying business can be secured. The expert committee reported on the policy of the investigation and deliberation, and the contents of the investigation and deliberation, such as the basic location conditions, namely, site, weather, ground, hydraulics, earthquakes and social environment, the radioactive wastes to be buried, the method of determining radioactivity concentration, the expected time of changing the measures to be taken for security, the safety design for the waste-burying facility related to radiation control, environment safety, earthquakes, fires and explosion, the loss of electric power and the standards and criteria to be conformed, and the assessment of dose equivalent in normal state, after finishing the period of control and safety evaluation, and the course of the investigation and deliberation. (K.I.)

  13. Radionuclide transport modelling for a buried near surface low level radioactive waste

    International Nuclear Information System (INIS)

    Terzi, R.

    2004-01-01

    The disposal of radioactive waste, which is the last step of any radioactive waste management policy, has not yet been developed in Turkey. The existing legislation states only the discharge limits for the radioactive wastes to be discharged to the environment. The objective of this modelling study is to assist in safety assessment and selecting disposal site for gradually increasing non-nuclear radioactive wastes. This mathematical model has been developed for the environmental radiological assessment of near surface disposal sites for the low and intermediate level radioactive wastes. The model comprised of three main components: source term, geosphere transport and radiological assessment. Radiation dose for the babies (1 years age) and adults (≥17 years age) have been computed for the radionuclides Cesium 137 (Cs-137) and Strontium 90 (Sr-90), having the activity of 1.10 12 Becquerel(Bq), in radioactive waste through transport of radionuclide in liquid phase with the various pathways. The model consisted of first order ordinary differential equations was coded as a TCODE file in MATLAB program. The radiation dose to man for the realist case and low probability case have been calculated by using Runge-Kutta solution method in MATLAB programme for radionuclide transport from repository to soil layer and then to the ground water(saturated zone) through drinking water directly and consuming agricultural and animal products pathways in one year period. Also, the fatal cancer risk assessment has been made by taking into account the annual dose received by people. Various dose values for both radionuclides have been found which depended on distribution coefficient, retardation factor and dose conversion factors. The most important critical parameters on radiological safety assessment are the distribution coefficient in soil layer, seepage velocity in unsaturated zone and thickness of the unsaturated zone (soil zone). The highest radiation dose and average dose to

  14. Summary of radioactive solid waste received in the 200 Areas during calendar year 1995

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1996-01-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1995. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document. This annual report provides a summary of the radioactive solid waste received in the both the 200-East and 200-West Areas during the calendar year 1995

  15. Summary of radioactive solid waste received in the 200 Areas during calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1996-06-06

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1995. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document. This annual report provides a summary of the radioactive solid waste received in the both the 200-East and 200-West Areas during the calendar year 1995.

  16. In situ vitrification: Application to buried waste

    International Nuclear Information System (INIS)

    Callow, R.A.; Thompson, L.E.

    1991-01-01

    Two in situ vitrification field tests were conducted in June and July 1990 at Idaho National Engineering Laboratory. In situ vitrification is a technology for in-place conversion of contaminated soils into a durable glass and crystalline waste form and is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate buried waste structures found at Idaho National Engineering Laboratory. In particular, these tests were designed as part of a treatability study to provide essential information on field performance of the process under conditions of significant combustible and metal wastes, and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology provided valuable operational control for successfully processing the high metal content waste. The results indicate that in situ vitrification is a feasible technology for application to buried waste. 2 refs., 5 figs., 2 tabs

  17. Summary of radioactive solid waste received in the 200 areas during calendar year 1997

    International Nuclear Information System (INIS)

    Hagel, D.L.

    1998-01-01

    Waste Management Federal Services of Hanford Inc. manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office under contract DE-AC06-87RL10930. These facilities include storage areas and disposal sites for radioactive solid waste. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1997. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Cafeteria, liquid waste data are not included in this document

  18. Summary of radioactive solid waste received in the 200 areas during calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hagel, D.L.

    1998-06-25

    Waste Management Federal Services of Hanford Inc. manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office under contract DE-AC06-87RL10930. These facilities include storage areas and disposal sites for radioactive solid waste. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1997. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Cafeteria, liquid waste data are not included in this document.

  19. Radioactive waste treatment apparatus

    International Nuclear Information System (INIS)

    Abrams, R.F.; Chellis, J.G.

    1983-01-01

    Radioactive waste treatment apparatus is disclosed in which the waste is burned in a controlled combustion process, the ash residue from the combustion process is removed and buried, the gaseous effluent is treated in a scrubbing solution the pH of which is maintained constant by adding an alkaline compound to the solution while concurrently extracting a portion of the scrubbing solution, called the blowdown stream. The blowdown stream is fed to the incinerator where it is evaporated and the combustibles in the blowdown stream burned and the gaseous residue sent to the scrubbing solution. Gases left after the scrubbing process are treated to remove iodides and are filtered and passed into the atmosphere

  20. Review Of Concrete Biodeterioration In Relation To Buried Nuclear Waste

    International Nuclear Information System (INIS)

    Turick, C.

    2012-01-01

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  1. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  2. Summary of radioactive solid waste received in the 200 areas during calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-05-21

    Rust Federal Services of Hanford Inc. manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office under contract DE-AC06-87RL10930. These facilities include storage areas and disposal sites for radioactive solid waste. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1996. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document.

  3. Detection and mapping of buried waste

    International Nuclear Information System (INIS)

    Stahl, G.; Odenweller, J.; Huff, D.

    1996-01-01

    A major environmental concern today is the characterization, remediation, and monitoring of Federal waste sites, such as those operated by the Department of Energy (DOE). A significant amount of hazardous waste is buried at known sites on DOE reservations. Determining the exact location of buried waste trenches is an important step in the characterization and remediation of these sites. Remotely sensed imagery offers a rich source of information for accomplishing this task. This paper presents a case study conducted at Solid Waste Storage Area 4 (SWSA 4) at Oak Ridge National Laboratory. Historical aerial photography and recently collected multispectral imagery were analyzed to determine the precise locations of the buried trenches. A comparison of the results to recent ground measurements indicates the strengths and weaknesses of the remote sensing approach. Further analysis of these ground data also provides an understanding of the phenomenology that gives rise to the imagery signatures associated with the trenches. Application of these techniques can significantly reduce the costs of site remediation. By knowing the trench locations precisely, rather than the general locations, remediation alternatives to contain and isolate the waste materials can be tailored appropriately

  4. Leak test of the pipe line for radioactive liquid waste

    International Nuclear Information System (INIS)

    Machida, Chuji; Mori, Shoji.

    1976-01-01

    In the Tokai Research Establishment, most of the radioactive liquid waste is transferred to a wastes treatment facility through pipe lines. As part of the pipe lines a cast iron pipe for town gas is used. Leak test has been performed on all joints of the lines. For the joints buried underground, the test was made by radioactivity measurement of the soil; and for the joints in drainage ditch by the pressure and bubble methods. There were no leakage at all, indicating integrity of all the joints. On the other hand, it is also known by the other test that the corrosion of inner surface of the piping due to liquid waste is only slight. The pipe lines for transferring radioactive liquid waste are thus still usable. (auth.)

  5. Legal aspects of sub-seabed disposal of radioactive waste

    International Nuclear Information System (INIS)

    Reyners, P.

    1981-10-01

    In connection with methods for disposal of highly radioactive waste, that consisting of burying such waste in the sub-seabed arouses an increasingly marked interest among specialists. Apart from the technical difficulties still to be overcome and current safety assessments, this method gives rise to quite considerable legal and political problems. Their solution will undoubtedly have a bearing on its chances of being implemented. (NEA) [fr

  6. Progress in long-lived radioactive waste management and disposal at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Triay, I.R.; Matthews, M.L.; Eriksson, L.G.

    2001-01-01

    The Salado Formation is buried more than 350 m beneath the sands and cacti of the Chihuahuan Desert and hosts the Waste Isolation Pilot Plant (WIPP) deep geological repository at a depth of approximately 650 m. Since the WIPP repository is at least 10 years ahead of any other repository development for long-lived radioactive waste, other radioactive waste management organizations and institutions could benefit both scientifically and politically from sharing the lessons learned at WIPP. Benefits would include using existing expertise and facilities to cost-effectively address and solve program-specific issues and to train staff. The characteristics of the WIPP repository and infrastructure are described in this paper. (author)

  7. Progress in long-lived radioactive waste management and disposal at the waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Triay, I R; Matthews, M L [U.S. Dept. of Energy Carlsbad Field Office, New Mexico (United States); Eriksson, L G [GRAM, Inc., Albuquerque, NM (United States)

    2001-07-01

    The Salado Formation is buried more than 350 m beneath the sands and cacti of the Chihuahuan Desert and hosts the Waste Isolation Pilot Plant (WIPP) deep geological repository at a depth of approximately 650 m. Since the WIPP repository is at least 10 years ahead of any other repository development for long-lived radioactive waste, other radioactive waste management organizations and institutions could benefit both scientifically and politically from sharing the lessons learned at WIPP. Benefits would include using existing expertise and facilities to cost-effectively address and solve program-specific issues and to train staff. The characteristics of the WIPP repository and infrastructure are described in this paper. (author)

  8. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    Science.gov (United States)

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  9. Test plan for buried waste containment system materials

    International Nuclear Information System (INIS)

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100 degrees C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs

  10. Buried for ever. The US experience of radioactive waste disposal

    International Nuclear Information System (INIS)

    Resnikoff, Marvin.

    1987-01-01

    The United States is the largest producer of radioactive wastes and has considerable experience, not all good, of shallow disposal methods for low level wastes. Indeed, as a result of leakage and contamination, three sites have been closed down and there is concern over another site, at Barnwell in South Carolina. This chapter analyses the geological and technical problems of each of the sites from the viewpoint of the environmental pressure group, the Sienna Club. The sites are at Maxey Flats, Kentucky; Sheffield, Illinois; West Valley, New York; Barnwell; Richland, Washington and Beatly, Nevada. The problems have been those situated in the humid, northern regions where there has been excessive ground water, degradation of waste containers, subsidence and erosion, the presence of chelating agents and a lack of stabilisation and funding for long-term care. In the semi-arid western sites the problems are fewer. However, the cost of transporting the waste to them is high. It is suggested that some of the low-level wastes should be reclassified as high-level wastes and should be disposed of deep underground. (UK)

  11. Virtual environmental applications for buried waste characterization technology evaluation report

    International Nuclear Information System (INIS)

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year

  12. Virtual environmental applications for buried waste characterization technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  13. Long-lived radioactive waste and nuclear plant decommissioning a legacy to future generations

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1996-01-01

    Radioactive waste is an inevitable by-product of all uses of radioactive substances. This is the case of natural radioactivity as well as for artificially produced radioactive isotopes, and it is easy to overlook the significance of the waste problem in the case of technologically enhanced natural radioactivity. Several options are available for the disposal of radioactive waste and the paper considers these in detail from the point of view of the possible future impact of radiation doses to individuals or populations. Particular consideration is given to the use of deep disposal at stable geological sites as a means of dealing with large amounts of radioactive waste. It should not be forgotten that some of what we term waste today need not necessarily always be so. Indeed, there is a good case to make for the recycling of low activity materials rather than the uneconomic expedient of burying them. The paper will consider the possible recycling of valuable materials following suitable reprocessing and dilution and mention the dose implications of examples of such re-utilisation of radioactive materials

  14. Long-lived radioactive waste and nuclear plant decommissioning a legacy to future generations

    Energy Technology Data Exchange (ETDEWEB)

    McAulay, I R [Trinity Coll., Dublin (Ireland). Physical Lab.

    1996-10-01

    Radioactive waste is an inevitable by-product of all uses of radioactive substances. This is the case of natural radioactivity as well as for artificially produced radioactive isotopes, and it is easy to overlook the significance of the waste problem in the case of technologically enhanced natural radioactivity. Several options are available for the disposal of radioactive waste and the paper considers these in detail from the point of view of the possible future impact of radiation doses to individuals or populations. Particular consideration is given to the use of deep disposal at stable geological sites as a means of dealing with large amounts of radioactive waste. It should not be forgotten that some of what we term waste today need not necessarily always be so. Indeed, there is a good case to make for the recycling of low activity materials rather than the uneconomic expedient of burying them. The paper will consider the possible recycling of valuable materials following suitable reprocessing and dilution and mention the dose implications of examples of such re-utilisation of radioactive materials.

  15. Suggestions on R and D work of high-level radioactive waste disposal in China

    International Nuclear Information System (INIS)

    Xu Guoqing

    2012-01-01

    The difference between repository and generic underground facilities is described. Some differences and similarities of site selection between the low and medium radioactive waste disposal, nuclear power station and high-level radioactive waste repository are also discussed here. We trend to extremely emphasize the safety of high-level radioactive waste disposal because of high toxicity, long half-life and long safety disposal period of this kind of radioactive wastes; because radioactive waste in the repository is of high specific activities and buried in depth, it would be difficult to meddle with its safety. In case of repository system being destroyed, the author considers that in the stages of regional and area site selection, the first task is to investigate regional tectonic stability. Some problems about disposal options and others are also discussed in this paper. (author)

  16. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    International Nuclear Information System (INIS)

    Smith, A.M.; Rice, P.; Hyde, R.; Peterson, R.

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment's capability to control contamination spread

  17. Alternatives to control subsidence at low-level radioactive waste burial sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.

    1981-09-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have experienced geotechnical subsidence problems and may require stabilization. Ground surface manifestations of subsidence include: large cracks, basins, and cave-ins. Subsidence is primarily caused by void filling, and physicochemical degradation and solubilization of buried wastes. These surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass, pile driving and in situ incineration engineering alternatives were selected for further development

  18. In situ vitrification of buried waste: Containment issues and suppression systems

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.

    1992-03-01

    Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) are developing a remedial action technology for buried waste through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment process originally developed for the US Department of Energy (DOE) to stabilize soils contaminated with transuranic waste. ISV tests with buried waste forms have demonstrated that the processing of buried waste is more dynamic than the processing of soils. This paper will focus on the issue of containment of the gases released during the processing of buried waste and on engineered suppression systems to alleviate transient events associated with dynamic off-gassing from the ISV melt

  19. In situ vitrification of buried waste: Containment issues and suppression systems

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.

    1992-01-01

    Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) are developing a remedial action technology for buried waste through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment process originally developed for the U.S. Department of Energy (DOE) to stabilize soils contaminated with transuranic waste. ISV tests with buried waste forms have demonstrated that the processing of buried waste is more dynamic than the processing of soils. This paper will focus on the issue of containment of the gases released during the processing of buried waste and on engineered suppression systems to alleviate transient events associated with dynamic off-gassing from the ISV melt. (author)

  20. Buried waste integrated demonstration FY 94 deployment plan

    International Nuclear Information System (INIS)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  2. Defense Waste Management Plan for buried transuranic-contaminated waste, transuranic-contaminated soil, and difficult-to-certify transuranic waste

    International Nuclear Information System (INIS)

    1987-06-01

    GAO recommended that DOE provide specific plans for permanent disposal of buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; cost estimates for permanent disposal of all TRU waste, including the options for the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; and specific discussions of environmental and safety issues for the permanent disposal of TRU waste. Purpose of this document is to respond to the GAO recommendations by providing plans and cost estimates for the long-term isolation of the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste. This report also provides cost estimates for processing and certifying stored and newly generated TRU waste, decontaminating and decommissioning TRU waste processing facilities, and interim operations

  3. Shallow land burial of radioactive wastes

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Rose, R.R.

    1985-01-01

    The authors discuss low-level, solid radioactive wastes buried in the ground since the startup of nuclear operations by the Manhattan Engineer District in the early 1940's. These operations were originally intended to be temporary so the primary consideration in locating land burial sites was their accessibility from the source of waste production. Early land-burial facilities were located on large reservations owned by the U.S. Atomic Energy Commission (AEC) and operated by their prime contractors. Shallow land burial consists of excavating a trench or vault, emplacing the waste, minimizing void space within the disposal unit, and covering the waste with earth to control access to the waste. Problems encountered in the land-burial of radioactive wastes are classified into areas which relate to the environmental characteristics of the sites, waste characteristics, operational practices and control, and predictive capability. The most serious environmentally related problems involve water management. Water provides primary vehicle for both erosional processes, which affect the structural integrity of the waste trenches, and for the migration of radionuclides. Although there is consensus that the current level of off-site movement of radionuclides from operating burial grounds does not constitute an immediate health hazard, there is less certainty with respect to the ability of the facilities to provide long-term containment and isolation

  4. In-situ stabilization of radioactively contaminated low-level solid wastes buried in shallow trenches: an assessment

    International Nuclear Information System (INIS)

    Arora, H.S.; Tamura, T.; Boegly, W.J.

    1980-09-01

    The potential effectiveness of materials for in-situ encapsulation of low-level, radioactively contaminated solid waste buried in shallow trenches is enumerated. Cement, clay materials, and miscellaneous sorbents, aqueous and nonaqueous gelling fluids and their combinations are available to solidify contaminated free water in trenches, to fill open voids, and to minimize radionuclide mobility. The success of the grouting technique will depend on the availability of reliable geohydrologic data and laboratory development of a mix with enhanced sorption capacity for dominant radionuclides present in the trenches. A cement-bentonite-based grout mix with low consistency for pumping, several hours controlled rate of hardening, negligible bleeding, and more than 170 kPa (25 psi) compressive strength are a few of the suggested parameters in laboratory mix development. Cost estimates of a cement-bentonite-based grout mix indicate that effective and durable encapsulation can be accomplished at a reasonable cost (about $113 per cubic meter). However, extensive implementation of the method suggests the need for a field demonstration of the method. 53 references

  5. Microbial transformation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Francis, A.J.

    1980-06-01

    Microorganisms play a significant role in the transformation of the radioactive waste and waste forms disposed of at shallow-land burial sites. Microbial degradation products of organic wastes may influence the transport of buried radionuclides by leaching, solubilization, and formation of organoradionuclide complexes. The ability of indigenous microflora of the radioactive waste to degrade the organic compounds under aerobic and anaerobic conditions was examined. Leachate samples were extracted with methylene chloried and analyzed for organic compounds by gas chromatography and mass spectrometry. In general, several of the organic compounds in the leachates were degraded under aerobic conditions. Under anaerobic conditions, the degradation of the organics was very slow, and changes in concentrations of several acidic compounds were observed. Several low-molecular-weight organic acids are formed by breakdown of complex organic materials and are further metabolized by microorganisms; hence these compounds are in a dynamic state, being both synthesized and destroyed. Tributyl phosphate, a compound used in the extraction of metal ions from solutions of reactor products, was not degraded under anaerobic conditions

  6. Development of a teleoperated backhoe for buried waste excavation

    International Nuclear Information System (INIS)

    Burks, B.L.; Killough, S.M.; Thompson, D.H.

    1992-01-01

    For nearly five decades the United States (US) Department of Energy (DOE) and its predecessor agencies have engaged in broad-based research and development activities as well as nuclear weapons component production. As a by-product of these activities, large quantities of waste materials have been granted. One of the most common approaches used for solid waste storage was to bury waste containers in pits and trenches. With the current emphasis on environmental restoration, DOE now plans to either retrieve much of the legacy of buried waste or stabilize the waste in place via in situ vitrification or other means. Because of the variety of materials that have been buried over the years, the hazards of retrieval are significant if performed using conventional manned operations. The potential hazards, in addition to radiation exposure, include pyrophorics, toxic chemicals, and explosives. Although manifests exist for much of the buried waste, these records are often incomplete compared to today's requirements. Because of the potential hazards and uncertainty about waste contents and container integrity, it is highly desirable to excavate these wastes using remotely operated equipment. In this paper the authors describe the development of a teleoperated military tractor called the Small Emplacement Excavator (SEE). Development of the SEE is being funded jointly by both DOE and the US Army. The DOE sponsor is the Office of Technology Development (OTD) Robotics Program. The US Army sponsor is the Program Manager for Ammunition Logistics, Picatinny Arsenal. The primary interest for DOE is in the application to remote excavation of buried waste, while the primary emphasis for the US Army is in the remote retrieval of unexploded ordnance. Technical requirements for these two tasks are very similar and, therefore, justify a joint development project. 1 ref

  7. Implementation plans for buried transuranic waste and stored special-case waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bullock, M.G.; Rodriguez, R.R.

    1987-05-01

    This document presents the current implementation plans for buried transuranic waste and stored special-case waste at the Idaho National Engineering Laboratory. Information contained in this report was also included in several Department of Energy (DOE) planning documents for the Defense Transuranic Waste Program. This information can be found in the following DOE documents: Comprehensive Implementation Plan for the DOE Defense Buried TRU Waste Program; Defense Waste Management Plan for Buried Transuranic-Contaminated Waste, Transuranic-Contaminated Waste, Transuranic-Contaminated Soil, and Difficult-to-Certify Transuranic Waste; and Defense Special-Case Transuranic Waste Implementation Plan. 11 refs

  8. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail.

  9. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    International Nuclear Information System (INIS)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail

  10. Anaerobic digestion of low-level radioactive cellulosic and animal wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Strandberg, G.W.; Patton, B.D.; Harrington, F.E.

    1983-02-01

    A preliminary process design and a cost estimate have been made for a volume reduction plant for low-level, solid radioactive wastes generated at ORNL. The process is based on extension of existing anaerobic digestion technology and on laboratory studies indicating the feasibiity of this technology for digestion of the organic portion of low-level, solid radioactive wastes. A gaseous effluent (CO 2 and CH 4 ) is vented in the process, and a liquid ffluent containing undigested solids is filtered to remove solids, which are buried. The liquid is discharged to the low-level liquid waste system at ORNL. Overall volume reduction of solid waste by this process is estimated to be approximately 20:1. Costs appear to be comparable to costs for compaction. The process design is conservative, and several potential improvements which could increase efficiency are discussed in this report

  11. Buried Waste Integrated Demonstration Strategy Plan

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report

  12. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  13. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  14. End effectors and attachments for buried waste excavation equipment

    International Nuclear Information System (INIS)

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER ampersand WM) Department's needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications

  15. Some legal aspects on high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    1997-01-01

    In Japan, it is considered to be an urgent problem to prepare the system for the research and execution of high level radioactive waste disposal. Under what regulation scheme the disposal should be done has not been sufficiently examined. In this research, the examination was carried out on the legal aspects of high level radioactive waste disposal as follows. First, the current legislation on the disposal in Japan was analyzed, and it was made clear that high level radioactive waste disposal has not been stipulated clearly. Next, on the legal choices which are conceivable on the way the legislation for high level radioactive waste disposal should be, from the aspects of applying the law on regulating nuclear reactors and others, applying the law on nuclear power damage reparation, and industrialization by changing the government ordinances, those were arranged in six choices, and the examination was carried out for each choice from the viewpoints of the relation with the base stipulation for waste-burying business, the speciality of high level radioactive waste disposal as compared with other actions of nuclear power business, the coordination with existing nuclear power of nuclear power business, the coordination with existing nuclear power law system and the formation of national consensus. In this research, it was shown that the execution of high level radioactive waste disposal as the business based on the separate legislation is the realistic choice. (K.I.)

  16. Retrieval of buried waste using conventional equipment

    International Nuclear Information System (INIS)

    Valentich, D.J.

    1994-01-01

    A field test was conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive test pit 841 m 3 in volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, vessels, vaults, pipes, and beams were also placed in the pit. These materials were intended to simulate the type of waste found in existing TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were also observed

  17. Buried Waste Program (BWP) data qualification manual

    International Nuclear Information System (INIS)

    Casey, C.; Larson, R.A.; Harris, G.A.

    1989-06-01

    The Data Qualification Manual (DQM) has been developed to discuss the process required to qualify data generated for the Buried Waste Program (BWP). The data from the BWP tasks conducted at the Radioactive Waste Management Complex (RWMC) and elsewhere will lead to remedial decisions being made which are governed by federal regulations administered by the Environmental Protection Agency (EPA). Data qualification is the process of insuring that only data of planned and known qualities are used to make a decision or answer a question. Although it is the Data Integrity Review Committee's (DIRC) responsibility to insure that the quality of all BWP data is ultimately verified and validated, all personnel who participate in the data gathering process will affect the quality of the data and must be responsible for knowing what is required to produce data of the planned quality. Therefore this manual is addressed to all participants in a data-gathering task. This manual discusses requirements to support data qualification in several areas, including: the sampling and analysis plan; data quality objectives and PARCC goals; sample custody documentation; quality assurance; assembly of the data qualification package; and existing data. 23 refs., 4 figs., 6 tabs

  18. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    DOTSON, PATRICK WELLS; GALLOWAY, ROBERT B.; JOHNSON JR, CARL EDWARD

    1999-01-01

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  19. Field-scale permeation testing of jet-grouted buried waste sites

    International Nuclear Information System (INIS)

    Loomis, G.G.; Zdinak, A.P.

    1996-01-01

    The Idaho National Engineering Laboratory (INEL) conducted field-scale hydraulic conductivity testing of simulated buried waste sites with improved confinement. The improved confinement was achieved by jet grouting the buried waste, thus creating solid monoliths. The hydraulic conductivity of the monoliths was determined using both the packer technique and the falling head method. The testing was performed on simulated buried waste sites utilizing a variety of encapsulating grouts, including high-sulfate-resistant Portland cement, TECT, (a proprietary iron oxide cement) and molten paraffin. By creating monoliths using in-situ jet grouting of encapsulating materials, the waste is simultaneously protected from subsidence and contained against further migration of contaminants. At the INEL alone there is 56,000 m 3 of buried transuranic waste commingled with 170,000--224,000 m 3 of soil in shallow land burial. One of the options for this buried waste is to improve the confinement and leave it in place for final disposal. Knowledge of the hydraulic conductivity for these monoliths is important for decision-makers. The packer tests involved coring the monolith, sealing off positions within the core with inflatable packers, applying pressurized water to the matrix behind the seal, and observing the water flow rate. The falling head tests were performed in full-scale 3-m-diameter, 3-m-high field-scale permeameters. In these permeameters, both water inflow and outflow were measured and equated to a hydraulic conductivity

  20. Buried Transuranic Waste Studies Program at the Idaho National Engineering Laboratory: Annual technology assessment and progress report

    International Nuclear Information System (INIS)

    Low, J.O.; Allman, D.W.; Shaw, P.G.; Sill, C.W.

    1987-01-01

    In-situ grouting, an improved-confinement technology that could be applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste, is being investigated by EG and G Idaho, Inc. In situ grouting has been demonstrated as the culmination of a two-year engineering feasibility test at the INEL. In situ stabilization and hydrologic isolation of a simulated buried TRU waste trench at an arid site were performed using an experimental dynamic compaction in situ grouting process developed by Rockwell Hanford Operations (RHO). A series of laboratory evaluations relative to the grout permeation characteristics of microfine particulate cements with INEL-type soil was performed prior to the grouting operations. In addition, an extensive pre-grouting hydrologic assessment of the test trench was performed to support the performance assessment analysis. Laboratory testing of various chemical materials yielded a suitable hydrologic tracer for use in the hydrologic monitoring phase of the experiment. Various plutonium transport laboratory evaluations were performed to assess the plutonium retention capabilities of a microfine grout/INEL-soil waste product similar to that expected to result if the grout is injected in situ into the INEL test trench. The test trench will be hydrologically assessed in FY 1987 to determine if the RHO grouting system attained the performance acceptance criteria of the experiment. The report includes a technology assessment of buried waste technologies developed by other DOE sites. Field demonstrations at ORNL and Hanford are reported under this technology assessment. Also included is information on activities related to buried waste management at the INEL. These include environmental surveillance of the Radioactive Waste Management Complex and the Subsurface Migration Studies Program

  1. Multi-method characterization of low-level radioactive waste at two Sandia National Laboratories environmental restoration sites

    International Nuclear Information System (INIS)

    Johnson, C.E. Jr.; Galloway, R.B.; Dotson, P.W.

    1999-01-01

    This paper discusses the application of multiple characterization methods to radioactive wastes generated by the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) Project during the excavation of buried materials at the Classified Waste Landfill (CWLF) and the Radioactive Waste Landfill (RWL). These waste streams include nuclear weapon components and other refuse that are surface contaminated or contain sealed radioactive sources with unknown radioactivity content. Characterization of radioactive constituents in RWL and CWLF waste has been problematic, due primarily to the lack of documented characterization data prior to burial. A second difficulty derives from the limited information that ER project personnel have about weapons component design and testing that was conducted in the early days of the Cold War. To reduce the uncertainties and achieve the best possible waste characterization, the ER Project has applied both project-specific and industry-standard characterization methods that, in combination, serve to define the types and quantities of radionuclide constituents in the waste. The resulting characterization data have been used to develop waste profiles for meeting disposal site waste acceptance criteria

  2. Buried Waste Integrated Demonstration stakeholder involvement model

    International Nuclear Information System (INIS)

    Kaupanger, R.M.; Kostelnik, K.M.; Milam, L.M.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy (DOE) Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. Stakeholder participation in the DOE Environmental Management decision-making process is critical to remediation efforts. Appropriate mechanisms for communication with the public, private sector, regulators, elected officials, and others are being aggressively pursued by BWID to permit informed participation. This document summarizes public outreach efforts during FY-93 and presents a strategy for expanded stakeholder involvement during FY-94

  3. In-situ thermoelectric stabilization of radioactive wastes

    International Nuclear Information System (INIS)

    Brouns, R.A.; Timmerman, C.L.

    1982-02-01

    A new process for stabilizing buried radioactive wastes without exhumation is being developed by Pacific Northwest Laboratory (PNL). The process, known as in situ vitrification, converts waste and contaminated soil to a durable glass and crystalline material by passing an electric current between electrodes placed in the ground. Joule heating created by the flowing current has generated temperatures over 1700 0 C which cause the soil to melt and dissolve or encapsulate the wastes. Engineering-scale tests conducted in the laboratory have melted approximately 45 kgs (30 liters) of soil at a time by this technique. Encouraging results from these engineering-scale tests led to the design and construction of a pilot-scale field test unit which has solidified approximately 9000 kg of simulated contaminated soil per test. Test results and evaluations to date have been very promising. No detectable migration of hazardous species into uncontaminated soil has been found, and volatilization during melting has been very low. Leach studies have found the vitrified soil to be a highly durable waste form similar to pyrex glass. Electrical power costs to solidify a disposal site have been calculated at less than $70 per cubic meter ($2/ft 3 ) of waste. Future activities include both radioactive and nonradioactive pilot and large-scale tests

  4. Concerning enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material

    International Nuclear Information System (INIS)

    1988-01-01

    The Atomic Safety Commission of Japan, after examining a report submitted by the Science and Technology Agency concerning the enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material, has approved the plan given in the report. Thus, laws and regulations concerning procedures for application for waste burying business, technical standards for implementation of waste burying operation, and measures to be taken for security should be established to ensure the following. Matters to be described in the application for the approval of such business and materials to be attached to the application should be stipulated. Technical standards concerning inspection of waste burying operation should be stipulated. Measures to be taken for the security of waste burying facilities and security concerning the transportation and disposal of nuclear fuel material should be stipulated. Matters to be specified in the security rules should be stipulated. Matters to be recorded by waste burying business operators, measures to be taken to overcome dangers and matters to be reported to the Science and Technology Agency should be stipulated. (Nogami, K.)

  5. The fixation of radioactive wastes in cement

    International Nuclear Information System (INIS)

    Kulichenko, V.V.; Dukhovich, F.S.; Volkova, O.I.; Boyarinova, M.V.

    1976-01-01

    The authors study the leaching behaviour of the main long-lived fission products 90 Sr and 137 Cs. It is found that 90 Sr and 137 Cs have high elution values, namely (2-12) x 10 -2 resp. (2-6) x 10 -2 g/cm 2 /24h, independently of the type of waste. On the basis of these results, maximum concentrations for the solutions in the cement/solution mixtures are proposed. Further studies relate to the formation of radiolysis gas in the waste fixed to cement. Experiments are described to make use of the empty space in the containers, filled with solid waste by filling them with mixtures of cement and liquid radioactive waste of 10 -4 to 1- 6 Ci. The ratio solution/cement should amount to 0.5. The containers are then buried underground. This method of combined waste storage helped to reduce the cost for the storage of liquid waste by about 40-50%. (RB) [de

  6. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R&D) demonstrations, non-INEL R&D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document.

  7. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    International Nuclear Information System (INIS)

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R ampersand D) demonstrations, non-INEL R ampersand D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document

  8. Annual technology assessment and progress report for the Buried Transuranic Waste Program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Low, J.O.

    1985-12-01

    An improved-confinement technology as applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste is being investigated. An improved-confinement technology, in situ grouting, is being demonstrated in a 2-year engineering feasibility test at the INEL. Grout formulation and development were completed by Oak Ridge National Laboratory in Tennessee to support the in situ grouting test. Three grout formulations have been adapted to the arid, unsaturated soil conditions at the INEL: ordinary particulate grout; microfine penetration grout; soil grout. Three test trenches were constructed north of the INEL's Subsurface Disposal Area (SDA). Nonradioactive waste forms closely resembling TRU waste buried at the INEL have been fabricated and are ready for emplacement into these test trenches. A literature search for a simulated (analog) TRU tracer was completed as well as a chemical characterization of the INEL soil. Data developed from the chemistry characterization and literature search have been inputed into the selection and laboratory testing of the TRU analog tracers. Simulated TRU tracers will be loaded into waste forms prior to emplacement into the test trenches. Test trench data acquisition instrumentation will be installed during waste form emplacement. Instrumentation will monitor for moisture movement and tracer detection. Plans for test completion in FY-1986 are also shown. Various buried waste improved-confinement technologies performed by other Department of Energy sites were assessed for applicability to the INEL buried TRU waste. Primary demonstrations were performed at the Hanford site in Washington and at ORNL. This report also includes information on accomplishments of related activities at the INEL such as the program for Environmental Surveillance of the Radioactive Waste Management complex as well as the Subsurface Migration Studies. 18 refs., 11 figs., 12 tabs

  9. Removal of overburden soils from buried waste sites

    International Nuclear Information System (INIS)

    Rice, P.M.

    1994-01-01

    Transuranic (TRU) waste buried in pits and trenches is covered with a soil cap, or overburden, to shed water. During retrieval operations, the overburden (expected to be clean) must be removed carefully to avoid breaching the soil/waste matrix within a pit or trench and to confine any possible local spot contamination. This necessitates removal in precise (7.6- to 15.25-cm) increments with a high degree of accuracy. In addition, during overburden removal the overburden must be characterized to a depth that exceeds each cut of soil. A field demonstration was conducted to evaluate a technology for removing overburden soils a the Radioactive Waste Management Complex (RWMC), Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL). The demonstration evaluated equipment performance and techniques for removing overburden soil and controlling contamination and dust. To evaluate the performance of these techniques during removal operations, personnel took air particulate samples, physical measurements of the soil cuts, maneuverability measurements, and rate of soil removal data. The overburden was spiked at specific locations and depths with rare earth tracers to provide a medium for evaluating samples. Analysis to determine the precision and accuracy of the soil removal, amount of dust generated, and potential spread of contamination was performed

  10. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  11. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  12. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  13. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  14. Radioactive waste management complex low-level waste radiological composite analysis

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  15. Radioactive waste management complex low-level waste radiological composite analysis

    International Nuclear Information System (INIS)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective

  16. Buried Waste Integrated Demonstration Plan

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented

  17. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  18. Full-scale retrieval of simulated buried transuranic waste

    International Nuclear Information System (INIS)

    Valentich, D.J.

    1993-09-01

    This report describes the results of a field test conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive) test pit (1,100 yd 3 volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, tanks, vaults, pipes, and beams, were also placed in the pit. These materials were intended to simulate the type of wastes found in TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were observed. The feasibility of teleoperating reading equipment was also addressed

  19. Buried pipeline leak-detection technique and instruments using radioactive tracers

    International Nuclear Information System (INIS)

    Zhou Shuxuan; Lu Qingqian; Tang Yonghua

    1987-01-01

    For detecting and locating leaks on buried pipelines, a leak-detection technique and related instruments have been developed. Some quantity of fluid mixed with a radioactive tracer is injected. After the pipeline is cleaned, a leak-detector is put into and moves along the pipline to monitor the leaked radioactivity and to record both the radioactive signal and the time signal on a magnetic tape. From the signal curves, it can be judged whether there are any leaks on the pipeline and, if any, where they are

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  1. Burying nuclear trash where it will stay put. Second of four articles

    International Nuclear Information System (INIS)

    Faltermayer, E.

    1979-01-01

    The issue of radioactive waste disposal threatening the growth of fission power is discussed. The challenge of burying such waste material has turned into an emotional debate by alarmists and it is feared that the government, which is responsible for waste disposal, may foul the job; e.g., the burial of wastes from atomic weapons programs has been postponed, and wastes have leaked into the ground from poorly designed temporary storage tanks. California, Maine, Wisconsin, and Iowa have imposed moratoria on new reactor starts until a satisfactory method of waste disposal has been demonstrated. The first demonstration of deep burial is scheduled for the mid- or late 1980s in a salt deposit near Carlsbad, New Mexico. The Federal government will then have to decide where to put permanent repositories, and 9 states have prohibited the burial of radioactive wastes within their borders. It takes centuries for radioactives wastes to decay, but they do decay. The industrial world routinely uses hundreds of dangerous materials (mercury, arsenic, etc.) that stay at full strength forever. These are usually dumped carelessly. Radioactive waste disposal will be far underground and sites carefully chosen. Some opponents of fission power agree that radioactive wastes can be interred safely. The only reason for hurrying a demonstration burial of reactor wastes is political. It would undercut the moratorium movement, and it will be at least 10 years before the results can be appraised. Various rock formations for storage have been assessed, with emphasis on the thick, flat beds of salt in Southwest US. Muchenergy remains in radioactive wastes, leading the author to say that burying fuel is foolish, since it may later have to be exhumed

  2. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  3. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  4. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  6. Recycle operations as a methodology for radioactive waste volume reduction

    International Nuclear Information System (INIS)

    Rasmussen, G.A.

    1985-01-01

    The costs for packaging, transportation and burial of low-level radioactive metallic waste have become so expensive that an alternate method of decontamination for volume reduction prior to disposal can now be justified. The operation of a large-scale centralized recycle center for decontamination of selected low level radioactive waste has been proven to be an effective method for waste volume reduction and for retrieving valuable materials for unlimited use. The centralized recycle center concept allows application of state-of-the-art decontamination technology resulting in a reduction in utility disposal costs and a reduction in overall net amount of material being buried. Examples of specific decontamination process activities at the centralized facility will be reviewed along with a discussion of the economic impact of decontamination for recycling and volume reduction. Based on almost two years of operation of a centralized decontamination facility, a demonstrated capability exists. The concept has been cost effective and proves that valuable resources can be recycled

  7. Geotechnical reduction of void ratio in low-level radioactive waste burial sites: treatment alternatives

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.; McGuire, H.E.

    1981-01-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have proven to be unstable. Some surface feature manifestations such as large cracks, basins, and cave-ins are caused by voids filling and physico-chemical degradation and solubilization of the buried wastes which could result in the release of contamination. The surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. As a guideline, a reduction of the voids within the waste to 80% or more of maximum relative dry density (a measure of in situ voids within the waste) is proposed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass and pile driving engineering alternatives were selected for further development

  8. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  9. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  10. Buried for ever: The US experience of radioactive waste disposal

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1987-01-01

    The United States is the largest producer of radioactive wastes, and has considerable experience with shallow disposal methods. This experience is mixed, with major problems of leakage and contamination occurring in those sites in the wetter eastern part of the country. As a result three sites have been closed down, and there is concern about the potential hazards at the remaining eastern site at Barnwell, South Carolina. This paper, written from the perspective of the national environmental pressure group, the Sierra Club, analyses the geological and technical problems at each of the sites, and suggests the lessons that can be learned from this experience

  11. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 1

    International Nuclear Information System (INIS)

    1995-05-01

    This report presents a comprehensive inventory of the radiological and nonradiological contaminants in waste buried or projected to be buried from 1984 through 2003 in the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The project to compile the inventory is referred to as the recent and projected data task. The inventory was compiled primarily for use in a baseline risk assessment under the Comprehensive Environmental Response, Compensation, and Liability Act. The compiled information may also be useful for environmental remediation activities that might be necessary at the RWMC. The information that was compiled has been entered into a database termed CIDRA-the Contaminant Inventory Database for Risk Assessment. The inventory information was organized according to waste generator and divided into waste streams for each generator. The inventory is based on waste information that was available in facility operating records, technical and programmatic reports, shipping records, and waste generator forecasts. Additional information was obtained by reviewing the plant operations that originally generated the waste, by interviewing personnel formerly employed as operators, and by performing nuclear physics and engineering calculations. In addition to contaminant inventories, information was compiled on the physical and chemical characteristics and the packaging of the 99 waste streams. The inventory information for waste projected to be buried at the SDA in the future was obtained from waste generator forecasts. The completeness of the contaminant inventories was confirmed by comparing them against inventories in previous reports and in other databases, and against the list of contaminants detected in environmental monitoring performed at the RWMC

  12. The treatment of radioactive waste in Institute of Nuclear Physics of Uzbekistan

    International Nuclear Information System (INIS)

    Radyuk, R.I.

    2001-01-01

    Full text: The main purpose of radioactive waste treatment is security of humanity and environment for future. The formation of radioactive waste in Institute of Nuclear Physics connects with scientific and research works on reactor and cyclotron. There are works in the field of radiochemistry, activation analysis, research of material. It is connected with some different materials used in practical work: mountain rock, food-stuffs, biological materials and other. The Institute of Nuclear Physics has enterprise, making radioactive isotopes. In consequence of this work radioactive wastes form. Average annual volume of liquid radioactive waste is 2000 m 3 in year. During normal work of nuclear reactor and enterprise of radioactive isotope small part of radionuclides with gaseous waste gets in environment. The content of inert gas does not exceed 2% of permissible level . Value of radionuclides fall out in area from 0.5 Km to 10 Km does not differ global fall out and changes from 1.1.10 6 Bq/km 2 to 1.6.10 7 Bq/km 2 month (permissible doze - 5.6.10 8 Bq/km 2 .month). The solid radioactive waste of medium and low activity are burying on Republic point of radioactive waste storage. Annual volume of solid radioactive waste is 60 m 3 in year and total radioactivity is 10 11 Bk. The solid radioactive waste of high activity are going to of Chelyabinsk. The liquid radioactive waste belong to second and third group of radioactive waste (classification of IAEA). The decontamination of liquid radioactive waste are made on the station of liquid radioactive waste treatment by method of sedimentation and distillation. The productivity of this plant is 15m 3 in day. Before treatment liquid radioactive waste is analyzed to determine chemical and radiochemical composition. It is solution with content of salt from 0.8 g/l to 15 g/l, salt Ca 2+ and Mg 2+ - 20 mg-eqv/l, oxygen - 100 mg O 2 /l , activity from 10 2 Bq/l to 10 4 Bq/l. The radionuclides composition of liquid radioactive

  13. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  14. FY-94 buried waste integrated demonstration program report

    International Nuclear Information System (INIS)

    1994-01-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER/WM) needs and objectives. This document summarizes previous demonstrations and describes the FY-94 BWID technology development and demonstration activities. Sponsored by the DOE Office of Technology Development (OTD), BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process

  15. A program for evolution from storage to disposal of radioactive wastes at CRNL

    International Nuclear Information System (INIS)

    Dixon, D.F.

    1985-10-01

    This report reviews past and current radioactive waste management practices at the Chalk River Nuclear Laboratories (CRNL) and outlines the proposed future program. For nearly 40 years, radioactive wastes have been generated at CRNL and have also been received there on a continuing basis from hospitals, industries, universities and miscellaneous other sources across Canada. The solid wastes now at CRNL have been either stored or buried and their total consolidated volume is approaching 50 000 m 3 . Much of that waste will require disposal as will the future wastes of similar character. The waste management program plan describes the proposed development of safe disposal facilities which could be built on site to accommodate most, if not all, of the radioactive wastes for which CRNL has responsibility. Three reference disposal concepts, each potentially capable of accepting a portion of the wastes, are described. One of these, the intrusion-resistant shallow land burial (SLB) concept, could be suitable for disposal of most of the CRNL wastes. It is proposed that a prototype SLB facility be designed, constructed and operated on the CRNL property and filled by 1992 to provide a focus for disposal research and development programs and to accumulate experience in all aspects of waste management. 53 refs

  16. Radioactive Waste Management Complex performance assessment: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  17. Radioactive Waste Management Complex performance assessment: Draft

    International Nuclear Information System (INIS)

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations

  18. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  19. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  20. First use of in situ vitrification on radioactive wastes

    International Nuclear Information System (INIS)

    Bowlds, L.

    1992-01-01

    A high-temperature method for containing hazardous wastes, which was first developed in the 1980s, is being adapted for the in situ treatment of buried radioactive wastes by the US DOE's Idaho National Engineering Laboratory (INEL), following its recent report on successful preliminary tests. The method, called in situ vitrification (ISV), is an electrically induced thermal process that melts and fuses soil and wastes into a glass-like material at least as strong as natural obsidian or granite. Gases released during the process are captured and treated by an off-gas treatment system. After the wastes are vitrified, they could be left in place, or the mass could be broken up and transported to a disposal site. The glass-like substance would be chemically and physically similar to obsidian and from 4 to 10 times more durable than typical borosilicate glasses used to immobolize high-level nuclear wastes

  1. Active waste disposal monitoring at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-10-01

    This report describes an active waste disposal monitoring system proposed to be installed beneath the low-level radioactive disposal site at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory, Idaho. The monitoring instruments will be installed while the waste is being disposed. Instruments will be located adjacent to and immediately beneath the disposal area within the unsaturated zone to provide early warning of contaminant movement before contaminants reach the Snake River Plain Aquifer. This study determined the optimum sampling techniques using existing monitoring equipment. Monitoring devices were chosen that provide long-term data for moisture content, movement of gamma-emitting nuclides, and gas concentrations in the waste. The devices will allow leachate collection, pore-water collection, collection of gasses, and access for drilling through and beneath the waste at a later time. The optimum monitoring design includes gas sampling devices above, within, and below the waste. Samples will be collected for methane, tritium, carbon dioxide, oxygen, and volatile organic compounds. Access tubes will be utilized to define the redistribution of radionuclides within, above, and below the waste over time and to define moisture content changes within the waste using spectral and neutron logging, respectively. Tracers will be placed within the cover material and within waste containers to estimate transport times by conservative chemical tracers. Monitoring the vadose zone below, within, and adjacent to waste while it is being buried is a viable monitoring option. 12 refs., 16 figs., 1 tab

  2. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  3. Nuclear waste--does burying it bury the problem

    International Nuclear Information System (INIS)

    Thomas, R.A.

    1979-01-01

    This article discusses the Department of Energy (DOE)'s undergrounsd nuclear waste repository which is scheduled for startup in 1981 in New Mexico, and tries to explain why this project is being plagued by delays and uncertainties. The facility, known as the Waste Isolation Pilot Plant (WIPP), faces such problems as the question of the geologic security of the tentative site, citizens' objections about the location, as well as some licensing problems and concerns about overland transport of the large amounts of highly radioactive wastes that will fill the repository

  4. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  5. Radioactive Waste in Perspective

    International Nuclear Information System (INIS)

    2011-01-01

    Large volumes of hazardous wastes are produced each year, however only a small proportion of them are radioactive. While disposal options for hazardous wastes are generally well established, some types of hazardous waste face issues similar to those for radioactive waste and also require long-term disposal arrangements. The objective of this NEA study is to put the management of radioactive waste into perspective, firstly by contrasting features of radioactive and hazardous wastes, together with their management policies and strategies, and secondly by examining the specific case of the wastes resulting from carbon capture and storage of fossil fuels. The study seeks to give policy makers and interested stakeholders a broad overview of the similarities and differences between radioactive and hazardous wastes and their management strategies. Contents: - Foreword; - Key Points for Policy Makers; - Executive Summary; - Introduction; - Theme 1 - Radioactive and Hazardous Wastes in Perspective; - Theme 2 - The Outlook for Wastes Arising from Coal and from Nuclear Power Generation; - Risk, Perceived Risk and Public Attitudes; - Concluding Discussion and Lessons Learnt; - Strategic Issues for Radioactive Waste; - Strategic Issues for Hazardous Waste; - Case Studies - The Management of Coal Ash, CO 2 and Mercury as Wastes; - Risk and Perceived Risk; - List of Participants; - List of Abbreviations. (authors)

  6. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  7. Shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Daniel, D.E.

    1983-01-01

    Low-level radioactive waste has been produced since the early 1940's. Most of it has been buried in shallow pits at 11 existing sites. Several of the existing sites have performed poorly. Inability to control flow of surface and ground water into and out of disposal pits has been the most important problem. Lack of attention to design of earthen covers over the waste and improper emplacement of the waste in the pits have also contributed to poor performance. Several steps are recommended for improving disposal practices: (1) Waste settlement can be minimized by stacking wastes neatly into pits rather than dumping them randomly; (2) the earthen cover can be made to perform better by making it thicker and by maintaining it properly; and (3) groundwater contamination can be minimized by siting disposal facilities at locations with favorable geohydrologic characteristics. In addition, improved designs are needed for earthen covers, and technology for predicting ground water contamination in the saturated/unsaturated soils that underlie the waste also needs improvement

  8. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    International Nuclear Information System (INIS)

    Williams, J.P.; Wicks, G.G.; Clark, D.E.; Lodding, A.R.

    1991-01-01

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP

  9. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  10. Characterization of organics in leachates from low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Iden, C.R.; Nine, B.; Chang, C.

    1979-01-01

    Low-level radioactive wastes generated by the nuclear industry, universities, research institutions, and hospitals are disposed of in shallow-land trenches and pits. In 1962 the first commercial disposal site was opened in Beatty, Nevada. Since then, the industry has grown to include three private companies operating six disposal areas located in sparsely populated areas: at Maxey Flats (Morehead), Kentucky; Beatty, Nevada; Sheffield, Illinois; Barnwell, South Carolina; West Valley, New York; and Richland, Washington. Although the facilities are operated by private industry, they are located on public land and are subject to federal and state regulation. Although inventories of the radioactive materials buried in the disposal sites are available, no specific records are kept on the kinds and quantities of organic wastes buried. In general, the organic wastes consist of contaminated paper, packing materials, clothing, plastics, ion-exchange resins, scintillation vials, solvents, chemicals, decontamination fluids, carcasses of experimental animals, and solidification agents. Radionuclides such as 14 C, 3 H, 90 Sr, 134 137 Cs, 60 Co, 241 Am, and 238 239 240 Pu have been identified in leachate samples collected from several trenches at Maxey Flats and West Valley. The purpose of this report is to identify some of the organic compounds present in high concentrations in trench leachates at the disposal sites in order to begin to evaluate their effect on radionuclide mobilization and contamination of the environment

  11. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  13. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  14. Report for slot cutter proof-of-principle test, Buried Waste Containment System project. Revision 1

    International Nuclear Information System (INIS)

    1998-01-01

    Several million cubic feet of hazardous and radioactive waste was buried in shallow pits and trenches within many US Department of Energy (US DOE) sites. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. Many of the hazardous materials in these waste sites are migrating into groundwater systems through plumes and leaching. On-site containment is one of the options being considered for prevention of waste migration. This report describes the results of a proof-of-principle test conducted to demonstrate technology for containing waste. This proof-of-principle test, conducted at the RAHCO International, Inc., facility in the summer of 1997, evaluated equipment techniques for cutting a horizontal slot beneath an existing waste site. The slot would theoretically be used by complementary equipment designed to place a cement barrier under the waste. The technology evaluated consisted of a slot cutting mechanism, muck handling system, thrust system, and instrumentation. Data were gathered and analyzed to evaluate the performance parameters

  15. Report for slot cutter proof-of-principle test, Buried Waste Containment System project. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-21

    Several million cubic feet of hazardous and radioactive waste was buried in shallow pits and trenches within many US Department of Energy (US DOE) sites. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. Many of the hazardous materials in these waste sites are migrating into groundwater systems through plumes and leaching. On-site containment is one of the options being considered for prevention of waste migration. This report describes the results of a proof-of-principle test conducted to demonstrate technology for containing waste. This proof-of-principle test, conducted at the RAHCO International, Inc., facility in the summer of 1997, evaluated equipment techniques for cutting a horizontal slot beneath an existing waste site. The slot would theoretically be used by complementary equipment designed to place a cement barrier under the waste. The technology evaluated consisted of a slot cutting mechanism, muck handling system, thrust system, and instrumentation. Data were gathered and analyzed to evaluate the performance parameters.

  16. Controlling radioactive waste

    International Nuclear Information System (INIS)

    Wurtinger, W.

    1992-01-01

    The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.) [de

  17. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  18. Transport of radioactive wastes

    International Nuclear Information System (INIS)

    Stuller, C.

    2003-01-01

    In this article author describes the system of transport and processing of radioactive wastes from nuclear power of Slovenske elektrarne, plc. It is realized the assurance of transport of liquid and solid radioactive wastes to processing links from places of their formation, or of preliminary storage and consistent transports of treated radioactive wastes fixed in cement matrix of fibre-concrete container into Rebublic storage of radioactive wastes in Mochovce

  19. Buried waste integrated demonstration fiscal year 1992 close-out report

    International Nuclear Information System (INIS)

    Cannon, P.G.; Kostelnik, K.M.; Owens, K.J.

    1993-02-01

    The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially-available baseline technologies form a comprehensive remediation system for the effective and efficient remediation of buried waste disposed of throughout the US Department of Energy complex. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY)-91. This report summarizes the activities of the BWID Program during FY-92

  20. Waste inventory, waste characteristics and waste repositories in Japan

    International Nuclear Information System (INIS)

    Shimooka, K.

    1997-01-01

    There are two types of repositories for the low level radioactive wastes in Japan. One is a trench type repository only for concrete debris generated from the dismantling of the research reactor. According to the safety assurance system, Japan Atomic Energy Research Institute (JAERI) has disposed of the concrete debris arose from the dismantling of the Japan Power Demonstration Reactor (JPDR). The other type is the concreted pit with engineered barriers. Rokkasho Low Level Radioactive Waste Disposal Center has this type of repository mainly for the power plant wastes. Japan Nuclear Fuel Ltd. (JNFL) established by electric power companies is the operator of the LLW disposal project. JNFL began the storage operation in 1992 and buried approximately 60,000 drums there. Two hundred thousand drums of uniformly solidified, waste may be buried ultimately. 4 refs, 3 tabs

  1. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  2. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  3. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  4. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  5. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  6. Development of high-frequency induction melting system for radioactive solid wastes

    International Nuclear Information System (INIS)

    Kawaguchi, Ichiro; Yamazaki, Seichiro; Takahashi, Noriaki; Kugai, Katsutoshi; Yokozawa, Minoru

    2004-01-01

    Kawasaki Heavy Industries, Ltd. developed an active insulation (AI) method radiofrequency melting system as a new melting treatment system of radioactive solid wastes and proved production of waste satisfied the treatment performances and burying by repeating many practical melting tests. The melting vessel uses a low-priced ceramic canister with nonelectrical conductivity, which is able to treat wastes with large amount of inorganic substances. The wastes melted in the canister is taken out the canister itself from radiofrequency melting reactor and solidified after cooling. The cool canister is stored in 2001 metal drum filling up a gap with mortal for laying underground. New radiofrequency melting reactor, 1/3 scale melting test, estimation of scale effects, melting tests for practical use and the total system are explained. (S.Y.)

  7. Long-range plan for buried transuranic waste studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Low, J.O.

    1985-12-01

    This document presents a plan to perform detailed studies of alternatives considered for the long-term management of buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The studies will provide the technical basis for DOE to make a decision on the future management of that waste. Although the waste is currently being handled in an acceptable manner, new solutions are continually being researched to improve management techniques. Three alternatives are being considered: (a) leave the waste as is; (b) improve in situ confinement of the waste; and (c) retrieve, process, and certify the waste for disposal at a federal repository. Fourteen studies are described in this plan for Alternatives 2 and 3. The leave-as-is alternative involves continuing present procedures for managing the buried waste. An ongoing environmental surveillance program, a low-level-waste stabilization program, and enhanced subsurface migration studies begun in FY-1984 at the INEL will provide data for the decision-making process for the INEL buried TRU waste. These ongoing studies for the leave-as-is alternative are summarized in this plan in limited detail. The improved-confinement alternative involves leaving the waste in place, but providing additional protection against wind, water penetration, erosion, and plant and animal intrusion. Several studies proposed under this alternative will examine special techniques to immobilize or encapsulate the buried waste. An in situ grouting study was implemented at the INEL starting in FY-1985 and will be completed at the end of FY-1986 with the grouting of a simulated INEL buried TRU waste trench. Studies of the third alternative will investigate improved retrieval, processing, and certification techniques. New equipment, such as industrial manipulators and excavating machinery, will be tested in the retrieval studies. Processing and certification studies will examine rapidly changing or new technologies

  8. Field test plan: Buried waste technologies, Fiscal Year 1995

    International Nuclear Information System (INIS)

    Heard, R.E.; Hyde, R.A.; Engleman, V.S.; Evans, J.D.; Jackson, T.W.

    1995-06-01

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management

  9. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  10. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  11. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  13. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  14. Geotechnical aspects of deep ocean radioactive waste disposal

    International Nuclear Information System (INIS)

    Freeman, T.J.

    1990-01-01

    The methods that might be used to bury radioactive waste in the deep ocean, and their likely effect on the sediment barrier, have been the subject of an international research program performed during the last ten years. This paper reviews the geotechnical aspects of deep ocean disposal and discusses how far the research performed has gone towards providing the information needed to assess this form of disposal. Considerable progress has been made during the course of the international program towards understanding the processes involved in the emplacement of heat generating waste (HGW) into the deep ocean bed and the subsequent interactions between the waste and the sediments. These processes do not appear to have a deleterious effect on the barrier properties of the sediments, and it is concluded that it is likely that HGW could be emplaced in the deep ocean in such a way that the seabed would provide an effective containment for the radionuclides

  15. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  16. Latex-modified grouts for in-situ stabilization of buried transuranic/mixed waste

    International Nuclear Information System (INIS)

    Allan, M.L.

    1996-06-01

    The Department of Applied Science at Brookhaven national Laboratory was requested to investigate latex-modified grouts for in-situ stabilization of buried TRU/mixed waste for INEL. The waste exists in shallow trenches that were backfilled with soil. The objective was to formulate latex-modified grouts for use with the jet grouting technique to enable in-situ stabilization of buried waste. The stabilized waste was either to be left in place or retrieved for further processing. Grouting prior to retrieval reduces the potential release of contaminants. Rheological properties of latex-modified grouts were investigated and compared with those of conventional neat cement grouts used for jet grouting

  17. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  18. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  19. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  20. An interim report of the Subcommittee on Radioactive Waste Countermeasures: measures for radioactive waste treatment and disposal

    International Nuclear Information System (INIS)

    1984-01-01

    The Subcommittee on Radioactive Waste Countermeasures has studied on the measures for land disposal of low-level radioactive wastes and ultra-low-level radioactive wastes and the measures for treatment and disposal of high-level radioactive wastes and transuranium wastes. The results of studies so far are presented as an interim report. In disposal of low-level radioactive wastes, the land disposal is being required increasingly. The measures according to the levels of radioactivity are necessary. For the ultra-low-level radioactive wastes, their occurrence in large quantities is expected along with reactor decommissioning. In disposal of the high-level radioactive wastes, the present status is a transition toward the practical stages. Transuranium wastes should increase in their arising in the future. (Mori, K.)

  1. The role of performance assessment in the evaluation of remedial action alternatives for the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rood, A.S.; Case, M.J.

    1988-01-01

    The Idaho National Engineering Laboratory (INEL) is operated by the Department of Energy (DOE) and is involved in nuclear research and development. The Radioactive Waste Management Complex (RWMC) at the INEL serves as a disposal facility for low level radioactive wastes generated onsite. Transuranic (TRU) wastes received from other DOE sites are currently stored at the RWMC, but were buried at the facility from 1952 until 1970. Recent findings of the Subsurface Investigations Program have determined that migration of TRU nuclides and hazardous materials from the RWMC has occurred. The primary source of organics in the buried TRU waste was generated by the Rocky Flats Plant. The INEL has proposed an aggressive four-year action plan for buried TRU waste. As a part of this plan, a task has been identified to evaluate existing remedial technologies for preventing further contaminant migration or removing the source of TRU radionuclides and nonradioactive hazardous material from the RWMC. A systems approach is being applied to evaluate, compare and recommend technologies or combinations of technologies. One criterion used in the evaluation is the net risk reduction afforded by each proposed remedial action. The method used to develop the criterion relies on models to assess the potential pathways and scenarios for the migration of radioactive and nonradioactive materials and the subsequent exposure of individuals to those materials. This paper describes the approach used to assess the performance of various remedial actions and the results obtained to date

  2. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  3. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  5. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  6. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  7. What to do with radioactive wastes?

    International Nuclear Information System (INIS)

    2006-01-01

    This power point presentation (82 slides) gives information on what is a radioactive waste, radioactivity and historical review of radioactivity, radioactive period, natural radioactivity (with examples of data), the three main radiation types (α, β, γ), the origin of radioactive wastes (nuclear power, research, defense, other), the proportion of radioactive wastes in the total of industrial wastes in France, the classification of nuclear wastes according to their activity and period, the quantities and their storage means, the 1991 december 30 law (France) related to the radioactive waste management, the situation in other countries (Germany, Belgium, Canada, USA, Finland, Japan, Netherlands, Sweden, Switzerland), volume figures and previsions for the various waste types in 2004, 2010 and 2020, the storage perspectives, the French national debate on radioactive waste management and the objective of perpetuated solutions, the enhancement of the public information, the 15 June 2006 law on a sustainable management of radioactive materials and wastes with three main axis (deep separation and transmutation, deep storage, waste conditioning and long term surface storage), and the development of a nuclear safety and waste culture that could be extended to other types of industry

  8. Shallow land burial of solid low-level radioactive wastes - 30 years of experience at the Savannah River Plant

    International Nuclear Information System (INIS)

    Stone, J.A.; Fenimore, J.W.; Hawkins, R.H.; Oblath, S.B.; Ryan, J.P. Jr.

    1983-01-01

    Solid radioactive wastes from production of nuclear materials at the Savannah River Plant (SRP) are buried in shallow trenches on a 79-hectare plot within the SRP site. The SRP burial ground, in use since 1953, has provided containment for about 370,000 m 3 of waste containing 10 7 Ci that have been buried through 1982. Site characteristics, operating practices, and monitoring results are described. Extensive field and laboratory studies aimed at developing a fundamental understanding of the soil/waste/water system of the SRP burial ground are discussed. Leaching and migration of buried radionuclides have been monitored by assays of soil cores and by periodic sampling of numerous groundwater wells. Except for tritium, none of the radionuclides have migrated significantly from the waste. Generally, traces of alpha and nonvolatile beta/gamma emitters that have entered the groundwater can be detected only by ultra-low-level radiochemical analyses. Current research efforts include: (1) migration of individual radionuclides such as 60 Co, 90 Sr, 99 Tc, 106 Ru, 129 I, 137 Cs, 238 Pu, and 239 Pu (plus nonradioactive materials such as mercury); (2) groundwater chemistry under buried waste, to determine fundamental transport mechanisms; (3) radionuclide migration from well characteized sources emplaced in lysimeters; (4) laboratory measurements of sorption on burial ground soil. In addition to ensuring continued safe operation, the ongoing waste migration studies provide technical guidance for site operations and decommissioning

  9. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  10. Radioactive waste processing

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    The description is given of a process for treating radioactive waste whereby a mud of radioactive waste and cementing material is formed in a mixer. This mud is then transferred from the mixer to a storage and transport container where it is allowed to harden. To improve transport efficiency an alkali silicate or an alkaline-earth metal silicate is added to the mud. For one hundred parts by weight of radioactive waste in the mud, twenty to one hundred parts by weight of cementing material are added and five to fifty parts by weight of silicate, the amount of waste in the mud exceeding the combined amount of cementing and silicate material [fr

  11. History of disposal of radioactive wastes into the ground at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Coobs, J.H.; Gissel, J.R.

    1986-10-01

    Since the beginning of operations at the Oak Ridge National Laboratory (ORNL) in 1943, shallow land burial has been used for the disposal of solid low-level radioactive waste. These wastes have originated from nearly every operating facility, and from 1955 to 1963, ORNL's solid waste storage areas were designated by the Atomic Energy Commission (AEC) as the Southern Regional Burial Ground. During this period, about one million cubic feet of solid waste from various off-site installations were buried in solid waste storage areas (SWSAs) 4 and 5. Six SWSAs have been used since land burial operations began at ORNL in early 1944. ORNL has generated liquid radioactive waste since the separation of plutonium began in 1944. The majority of these wastes are classified as process (low-level) waste and are derived from evaporator condensate and cooling water from process vessels, and from building drains and surface drainage from contaminated areas. Process wastes are monitored at sampling stations located strategicially throughout the plant, and for nearly 15 years (1944 to 1957) they were discharged directly into White Oak Creek without being treated chemically to remove radionuclides. A smaller quantity of intermediate-level wastes (ILW) originate from the radiochemical separation process and from test reactors. The collection, treatment, and methods of disposal of ILW from the years 1943 to 1981 are described. Over this period of time there was a great deal of variation in the amounts and types of radioactive liquid wastes generated.

  12. History of disposal of radioactive wastes into the ground at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Coobs, J.H.; Gissel, J.R.

    1986-10-01

    Since the beginning of operations at the Oak Ridge National Laboratory (ORNL) in 1943, shallow land burial has been used for the disposal of solid low-level radioactive waste. These wastes have originated from nearly every operating facility, and from 1955 to 1963, ORNL's solid waste storage areas were designated by the Atomic Energy Commission (AEC) as the Southern Regional Burial Ground. During this period, about one million cubic feet of solid waste from various off-site installations were buried in solid waste storage areas (SWSAs) 4 and 5. Six SWSAs have been used since land burial operations began at ORNL in early 1944. ORNL has generated liquid radioactive waste since the separation of plutonium began in 1944. The majority of these wastes are classified as process (low-level) waste and are derived from evaporator condensate and cooling water from process vessels, and from building drains and surface drainage from contaminated areas. Process wastes are monitored at sampling stations located strategicially throughout the plant, and for nearly 15 years (1944 to 1957) they were discharged directly into White Oak Creek without being treated chemically to remove radionuclides. A smaller quantity of intermediate-level wastes (ILW) originate from the radiochemical separation process and from test reactors. The collection, treatment, and methods of disposal of ILW from the years 1943 to 1981 are described. Over this period of time there was a great deal of variation in the amounts and types of radioactive liquid wastes generated

  13. Long-range plan for buried transuranic waste studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Berreth, P.D.; Fischer, D.K.; Suckel, R.A.

    1984-11-01

    This document presents a plan to perform detailed studies of alternatives considered for the long-term management of buried transuranic waste at the INEL. The studies will provide the technical basis for DOE to make a decision on the future management of that waste. Although the waste is currently being handled in an acceptable manner, new solutions are continually being researched to improve handling techniques. Three alternatives are being considered: (a) leave the waste as is; (b) improve in situ confinement of the waste; (c) retrieve, process, and certify the waste for disposal at a federal repository. Fifteen studies are described in this plan for the latter two alternatives. The leave-as-is alternative involves continuing present procedures for managing the buried waste. An ongoing environmental surveillance program, a low-level-waste stabilization program, and enhanced subsurface migration studies begun in FY-1984 at the INEL will provide data for the decision-making process for INEL buried TRU waste. These ongoing studies for the leave-as-is alternative are summarized in this plan in limited detail. The improved-confinement alternative involves leaving the waste in place, but providing additional protection against wind water penetration, erosion, and plant and animal intrusion. Several studies proposed will examine special techniques to immobilize or encapsulate the buried waste. Studies of the third alternative will investigate improved retrieval, processing and certification techniques. New equipment, such as industrial manipulators and excavating machinery, will be tested in the retrieval studies. Processing and certification studies will examine rapidly changing or new technologies. 19 references, 8 figures, 4 tables

  14. Nuclear imperatives and public trust: Dealing with radioactive waste

    International Nuclear Information System (INIS)

    Carter, L.J.

    1987-01-01

    What should be done with the radioactive wastes that are accumulating from nuclear power plants throughout the world? Should spent nuclear fuel be reprocessed despite complications surrounding the containment of radioactivity despite complications surrounding the containment of radioactivity and the safeguarding of explosive plutonium from terrorists? Or is there another solution to this pressing problem? The author advocates treating spent nuclear fuel as waste -- rather than as recyclable material -- and burying it in deep geologic repositories. Moreover, he contends that because of its size, geologic diversity, and technical sophistication, the United States should be able to establish a system of nuclear waste isolation that is technically and politically robust enough to be a model for the rest of the world. The key to a successful repository siting effort is to select a relatively small number of carefully screened deep geologic repositories for intensive investigation, the author maintains. Potential risk can be further minimized by harnessing technology to develop engineered barriers that complement natural geologic barriers. Emphasizing that geology and technology are not the only factors that stand in the way of success, the author calls for a carefully mapped strategy. Policies should incorporate means to avoid environmental conflict, the locality eventually chosen should receive meaningful benefits, and the door should be kept open for eventual retrieval of spent fuel if the reprocessing of plutonium ever becomes safe enough to make economic and political sense

  15. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  16. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  18. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  19. Management of radioactive waste: A review

    OpenAIRE

    Luis Paulo Sant'ana; Taynara Cristina Cordeiro

    2016-01-01

    The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from co...

  20. Method of storing radioactive wastes

    International Nuclear Information System (INIS)

    Adachi, Toshio; Hiratake, Susumu.

    1980-01-01

    Purpose: To reduce the radiation doses externally irradiated from treated radioactive waste and also reduce the separation of radioactive nuclide due to external environmental factors such as air, water or the like. Method: Radioactive waste adhered with radioactive nuclide to solid material is molten to mix and submerge the radioactive nuclide adhered to the surface of the solid material into molten material. Then, the radioactive nuclide thus mixed is solidified to store the waste in solidified state. (Aizawa, K.)

  1. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  2. Natural analogue study for low-and-intermediate level radioactive waste shallow burial disposal

    International Nuclear Information System (INIS)

    Gu Cunli; Fan Zhiwen; Huang Yawen; Cui Anxi; Liu Xiuzheng; Zhang Jinshen

    1995-01-01

    The paper makes a comparison of low-and-intermediate level radioactive waste shallow burial disposal with Chinese ancient tombs in respects of siting, engineering structures, design principle and construction procedures. Results showed that Chinese ancient tombs are very good analogue for low-and-intermediate level radioactive waste shallow burial disposal. Long-term preservation of ancient tombs and buried objects demonstrated that low-and-intermediate level radioactive waste shallow burial disposal would be safe if suitable sites were selected, reasonable engineering structures and good backfill materials were adopted, and scientific construction procedures were followed. The paper reports for the first time the testing results of certain ancient tomb backfill materials. The results indicated that the materials have so low a permeability as 1.5 x 10 -8 cm/s , and strong adsorption to radionuclides Co and Cs with the distribution coefficients of 1.4 x 10 4 mL/g and 2.1 x 10 4 mL/g, and the retardation factors of 4.4 x 10 4 and 7.7 x 10 4 respectively. Good performance of these materials is important assurance of long-term preservation of the ancient tombs. These materials may be considered to be used as backfill materials in low-and-intermediate level radioactive shallow burial disposal. (4 figs., 10 tabs.)

  3. Radioactive waste in Federal Germany

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1988-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) is responsible for the long-term storage and disposal of radioactive waste according to the Federal Atomic Energy Act. On behalf of the Federal Minister of the Environment, Nature Conservation and Nuclear Safety, since 1985, the PTB has been carrying out annual inquiries into the amounts of radioactive waste produced in the Federal Republic of Germany. Within the scope of this inquiry performed for the preceding year, the amounts of unconditioned and conditioned waste are compiled on a producer- and plant-specific basis. On the basis of the inquiry for 1986 and of data presented to the PTB by the waste producers, future amounts of radioactive waste have been estimated up to the year 2000. The result of this forecast is presented. In the Federal Republic of Germany two sites are under consideration for disposal of radioactive waste. In the abandoned Konrad iron mine in Salzgitter-Bleckenstedt it is intended to dispose of such radioactive waste which has a negligible thermal influence upon the host rock. The Gorleben salt dome is being investigated for its suitability for the disposal of all kinds of solid and solidified radioactive wastes, especially of heat-generating waste. Comparing the estimated amount of radioactive wastes with the capacity of both repositories it may be concluded that the Konrad and Gorleben repositories will provide sufficient capacity to ensure the disposal of all kinds of radioactive waste on a long-term basis in the Federal Republic of Germany. 1 fig., 2 tabs

  4. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  5. Method for calcining radioactive wastes

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; McElroy, J.L.; Mendel, J.E.

    1979-01-01

    A method for the preparation of radioactive wastes in a low leachability form involves calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix

  6. Evolution in radioactive waste countermeasures

    International Nuclear Information System (INIS)

    Moriguchi, Yasutaka

    1984-01-01

    The establishment of radioactive waste management measures is important to proceed further with nuclear power development. While the storage facility projects by utilities are in progress, large quantity of low level wastes are expected to arise in the future due to the decommissioning of nuclear reactors, etc. An interim report made by the committee on radioactive waste countermeasures to the Atomic Energy Commission is described as follows: the land disposal measures of ultra-low level and low level radioactive wastes, that is, the concept of level partitioning, waste management, the possible practice of handling wastes, etc.; the treatment and disposal measures of high level radioactive wastes and transuranium wastes, including task sharing among respective research institutions, the solidification/storage and the geological formation disposal of high level wastes, etc. (Mori, K.)

  7. ORNL radioactive waste operations

    International Nuclear Information System (INIS)

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  8. A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site - 8210

    International Nuclear Information System (INIS)

    G J Shott; V Yucel; L Desotell

    2008-01-01

    In 1986, 21 m 3 of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milliSievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the NTS can meet

  9. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  10. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  11. Deep underground disposal of radioactive waste in the United Kingdom

    International Nuclear Information System (INIS)

    Mathieson, J.

    1995-01-01

    The UK Government's radioactive waste disposal policy is for intermediate-level waste, and low-level waste as necessary, to be buried in a deep underground repository, and Nirex is the company, owned by the nuclear industry, charged with developing that deep facility. The Company's current focus is on surface-based geological investigations to determine the suitability of a potential repository site near Sellafield, Cumbria, in north-west England. Nirex's next step is to construct a deep underground laboratory (rock characterization facility, or RCF). Subject to a successful outcome from these investigations, Nirex will submit a planning application for the 650m deep repository at the end of this decade; this will be the subject of a further public inquiry. The timetable for the project assumes that a deep repository, capable of taking 400,000m 3 of waste, will be available by about 2010. In 1994, the UK Government began reviewing the future of the nuclear power industry and, as a separate exercise, radioactive waste management and disposal policy. Both reviews involved widespread consultations. The radwaste review has concentrated on three aspects: general policies; legal aspects of disposal (including safety requirements); and the principles of site selection and the protection of human health. Preliminary conclusions of the main radwaste review were published in August 1994. These confirmed that government continued to favor disposal rather than extended surface storage of waste. The final outcome of the review, including institutional aspects, is expected in the Spring of 1995

  12. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  13. Buried waste integrated demonstration Fiscal Year 1993 close-out report

    International Nuclear Information System (INIS)

    Owens, K.J.; Hyde, R.A.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy Environmental Restoration and Waste Management needs and objectives. BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated BWID at the Idaho National Engineering Laboratory. This report summarizes the activities of the BWID program during FY-93

  14. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  15. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  16. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  17. Buried Waste Integrated Demonstration lessons learned: 1993 technology demonstrations

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Owens, K.J.

    1994-01-01

    An integrated technology demonstration was conducted by the Buried Waste Integrated Demonstration (BWID) at the Idaho National Engineering Laboratory Cold Test Pit in the summer of 1993. This program and demonstration was sponsored by the US Department of Energy Office of Technology Development. The demonstration included six technologies representing a synergistic system for the characterization and retrieval of a buried hazardous waste site. The integrated technology demonstration proved very successful and a summary of the technical accomplishments is presented. Upon completion of the integrated technology demonstration, cognizant program personnel participated in a lessons learned exercise. This exercise was conducted at the Simplot Decision Support Center at Idaho State University and lessons learned activity captured additional information relative to the integration of technologies for demonstration purposes. This information will be used by BWID to enhance program planning and strengthen future technology demonstrations

  18. Microbial transformation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Francis, A.J.

    1982-01-01

    Micro-organisms play a significant role in the transformation of the radioactive waste and waste forms disposed of at shallow-land burial sites. Microbial degradation products of organic wastes may influence the transport of buried radionuclides by leaching, solubilization, and formation of organoradionuclide complexes. The ability of indigenous microflora of the radioactive waste to degrade the organic compounds under aerobic and anaerobic conditions was examined. Leachate samples were extracted with methylene chloride and analysed for organic compounds by gas chromatography and mass spectrometry. In general, several of the organic compounds in the leachates were degraded under aerobic conditions. Addition of a nitrogen source increased the rate of decomposition. Under anaerobic conditions, the degradation of the organics was very slow, and changes in concentrations of several acidic compounds were observed. Several low-molecular-weight organic acids are formed by breakdown of complex organic materials and are further metabolized by micro-organisms; hence these compounds are in a dynamic state, being both synthesized and destroyed. Addition of a nitrogen source had only a slight effect on these degradation rates. Tributyl phosphate, a compound used in the extraction of metal ions from solutions of reactor products, was not degraded under anaerobic conditions. The formation of straight- and branched-chain aliphatic acids and their long residence time in an anaerobic environment could significantly affect the migration of radionuclides from the disposal sites. The chemical and biological stabilities of the synthetic chelating and decontamination agents and of naturally occurring and microbially synthesized radionuclide complexes are among the major factors determining the mobility of radionuclides from a burial environment into the biosphere. (author)

  19. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  20. Analysis of the geological stability of a hypothetical radioactive waste repository in a bedded salt formation

    International Nuclear Information System (INIS)

    Tierney, M.S.; Lusso, F.; Shaw, H.R.

    1978-01-01

    This document reports on the development of mathematical models used in preliminary studies of the long-term safety of radioactive wastes deeply buried in bedded salt formations. Two analytical approaches to estimating the geological stability of a waste repository in bedded salt are described: (a) use of probabilistic models to estimate the a priori likelihoods of release of radionuclides from the repository through certain idealized natural and anthropogenic causes, and (b) a numerical simulation of certain feedback effects of emplacement of waste materials upon ground-water access to the repository's host rocks. These models are applied to an idealized waste repository for the sake of illustration

  1. Methodology development for radioactive waste treatment of CDTN/BR - liquid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Morais, Carlos Antonio de

    1996-01-01

    The radioactive liquid wastes generated in Nuclear Technology Development Centre (CDTN) were initially treated by precipitation/filtration and then the resulting wet solid wastes were incorporated in cement. These wastes were composed of different chemicals and different radioactivities and were generated by different sectors. The objective of the waste treatment method was to obtain minimum wet solid waste volume and decontamination and minimum operational cost. The composition of the solid wastes were taken into consideration for compatible cementation process. Approximately 5,400 litres of liquid radioactive wastes were treated by this process during 1992-1995. The volume reduction was 1/24 th and contained 20% solids. (author)

  2. Radioactive waste: show time? - 16309

    International Nuclear Information System (INIS)

    Codee, Hans; Verhoef, Ewoud

    2009-01-01

    Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. For the situation in the Netherlands, it is obvious that a period of long term storage is needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. An organisation such as COVRA - the radioactive waste organisation in the Netherlands - can only function when it has good, open and transparent relationship with the public and particularly with the local population. If we tell people that we safely store radioactive waste for 100 years, they often ask: 'That long?' How can we explain the long-term aspect of radioactive waste management in a way people can relate to? In this paper, an overview is given of the activities of COVRA on the communication of radioactive waste management. (authors)

  3. Technological and organizational aspects of radioactive waste management

    International Nuclear Information System (INIS)

    2005-01-01

    This document comprises collected lecture on radioactive waste management which were given by specialists of the Radioactive Waste Management Section of the IAEA, scientific-industrial enterprise 'Radon' (Moscow, RF) and A.A. Bochvar's GNTs RF VNIINM (Moscow, RF) on various courses, seminars and conferences. These lectures include the following topics: basic principles and national systems of radioactive waste management; radioactive waste sources and their classification; collection, sorting and initial characterization of radioactive wastes; choice of technologies of radioactive waste processing and minimization of wastes; processing and immobilization of organic radioactive wastes; thermal technologies of radioactive waste processing; immobilization of radioactive wastes in cements, asphalts, glass and polymers; management of worked out closed radioactive sources; storage of radioactive wastes; deactivation methods; quality control and assurance in radioactive waste management

  4. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O.; Thompson, L.E.; McGrail, B.P.

    1991-08-01

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs

  5. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  6. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores R, J.H.; Pena, P.; Lopez, A.

    2006-01-01

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  7. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  8. Thermal treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.; Stich, W.

    1993-01-01

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  9. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  10. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  11. Buried Waste Integrated Demonstration fiscal Year 1994 close-out report

    International Nuclear Information System (INIS)

    Owen, K.J.

    1995-07-01

    The Buried Waste integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy Environmental Restoration and Waste Management needs and objectives. BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Department of Energy Office of Technology Development initiated BMD at the Idaho National Engineering Laboratory. This report summarizes the activities of the BWID program during Fiscal Year 1994. In Fiscal Year 1995, these activities are transitioning into the Landfill Stabilization Focus Area

  12. Storage facility for radioactive wastes

    International Nuclear Information System (INIS)

    Okada, Kyo

    1998-01-01

    Canisters containing high level radioactive wastes are sealed in overpacks in a receiving building constructed on the ground. A plurality of storage pits are formed in a layered manner vertically in multi-stages in deep underground just beneath the receiving building, for example underground of about 1000m from the ground surface. Each of the storage pits is in communication with a shaft which vertically communicates the receiving building and the storage pits, and is extended plainly in a horizontal direction from the shaft. The storage pit comprises an overpack receiving chamber, a main gallery and a plurality of galleries. A plurality of holes for burying the overpacks are formed on the bottom of the galleries in the longitudinal direction of the galleries. A plurality of overpack-positioning devices which run in the main gallery and the galleries by remote operation are disposed in the main gallery and the galleries. (I.N.)

  13. Annual technology assessment and progress report for the Buried Transuranic Waste Studies Program at the Idaho National Engineering Laboratory (1987)

    International Nuclear Information System (INIS)

    Loomis, G.G.; Low, J.O.

    1988-01-01

    This report presents FY-87 activities for the Buried Transuranic (TRU) Waste Studies Program at the Idaho National Engineering Laboratory (INEL). This program investigates techniques to provide long-term confinement of buried TRU waste, as well as methods of retrieval. The confinement method of in situ grouting was examined in a simulated shallow-land buried TRU waste pit constructed adjacent to the RWMC TRU waste burial pits. The in situ grouting technique involved an experimental dyanmic compaction process which simultaneously grouts and compacts the waste. The simulated waste pit consisted of regions of randomly dumped drums, stacked boxes, and stacked drums, thus representing the various conditions of buried waste at the RWMC. Simulated waste and airborne tracers were loaded into the various simulated buried waste containers. Pregrouting and post-grouting data, such as hydraulic conductivity, were obtained to assess the hydrological integrity of the grouted waste material. In addition, post-grouting destructive examinations were performed and the results analyzed. Retrieval and processing of the TRU buried waste is also being examined at the INEL. At a conceptual level, retrieval of TRU buried waste involves a movable containment building to confine airborne particulate, heavy equipment to remove the waste, processing equipment, and equipment to control the air quality within the building. Studies were performed in FY-87 to identify containment building requirements such as type, mobility, and ventilation. An experimental program to demonstrate the retrieval technique using existing INEL heavy equipment has also been identified. 11 refs., 17 figs., 11 tabs

  14. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  15. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  16. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  17. Radioactive waste problems in Russia

    International Nuclear Information System (INIS)

    Bridges, O.; Bridges, J.W.

    1995-01-01

    The collapse of the former Soviet Union, with the consequent shift to a market driven economy and demilitarisation, has had a profound effect on the nuclear and associated industries. The introduction of tighter legislation to control the disposal of radioactive wastes has been delayed and the power and willingness of the various government bodies responsible for its regulation is in doubt. Previously secret information is becoming more accessible and it is apparent that substantial areas of Russian land and surface waters are contaminated with radioactive material. The main sources of radioactive pollution in Russia are similar to those in many western countries. The existing atomic power stations already face problems in the storage and safe disposal of their wastes. These arise because of limited on site capacity for storage and the paucity of waste processing facilities. Many Russian military nuclear facilities also have had a sequence of problems with their radioactive wastes. Attempts to ameliorate the impacts of discharges to important water sources have had variable success. Some of the procedures used have been technically unsound. The Russian navy has traditionally dealt with virtually all of its radioactive wastes by disposal to sea. Many areas of the Barents, Kola and the Sea of Japan are heavily contaminated. To deal with radioactive wastes 34 large and 257 small disposal sites are available. However, the controls at these sites are often inadequate and illegal dumps of radioactive waste abound. Substantial funding will be required to introduce the necessary technologies to achieve acceptable standards for the storage and disposal of radioactive wastes in Russia. (author)

  18. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  19. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  20. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  1. Radioactive waste management - a safe solution

    International Nuclear Information System (INIS)

    1993-01-01

    This booklet sets out current United Kingdom government policy regarding radioactive waste management and is aimed at reassuring members of the public concerned about the safety of radioactive wastes. The various disposal or, processing or storage options for low, intermediate and high-level radioactive wastes are explained and sites described, and the work of the Nuclear Industry Radioactive Waste Executive (NIREX) is outlined. (UK)

  2. Radioactive waste below regulatory concern

    International Nuclear Information System (INIS)

    Neuder, S.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission (NRC) published two notices in the Federal Register concerning radioactive waste below regulatory concern. The first, a Commission Policy Statement and Implementation Plan published August 29, 1986, concerns petition to exempt specific radioactive waste streams from the regulations. The second, an Advanced Notice of Proposed Rulemaking published Decemger 2, 1986, addresses the concept of generic rulemaking by the NRC on radioactive wastes that are below regulatory concern. Radioactive waste determined to be below regulatory concern would not be subject to regulatory control and would not need to go to a licensed low-level radioactive waste disposal site. The Policy Statement and Implementation Plan describe (1) the information a petitioner should file in support of a petition to exempt a specific waste stream, (2) the decision criteria the Commission intends to use for judging the petition, and (3) the internal administrative procedures to use be followed in order to permit the Commission to act upon the petition in an expedited manner

  3. Radioactive waste management - the Indian scenario

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2008-01-01

    In India, nuclear power generation programme and application of radioisotopes for health care and various other application is increasing steadily. With resultant increase in generation of radioactive waste, emphasis is on the minimization of generation of radioactive waste by deploying suitable processes and materials, segregation of waste streams at sources, recycle and re-use of useful components of waste and use of volume reduction techniques. The minimization of the radioactive waste is also essential to facilitate judicious use of the scarce land available for disposal, to reduce impact on the environment due to disposal and, finally to optimize the cost of radioactive waste management. This paper presents a bird's eye view of radioactive waste management programme in the country today

  4. Potential for creation of a salt dome following disposal of radioactive waste in a salt layer

    International Nuclear Information System (INIS)

    Fries, G.

    1987-01-01

    The study aims at quantifying the possibility of creation of a salt dome from a salt layer in which heat-emitting radioactive waste would be buried. Volume 1 describes the results of numerical computer simulations, and of laboratory-scale models in centrifuges. Volume 2 envisages, in a geological perspective, the origin of salt domes, the mechanisms of thei formation, and the associated parameters [fr

  5. Potential for creation of a salt dome following disposal of radioactive waste in a salt layer

    International Nuclear Information System (INIS)

    Charo, L.; Habib, P.

    1987-01-01

    The study aims at quantifying the possibility of creation of a salt dome from a salt layer in which heat-emitting radioactive waste would be buried. Volume 1 describes the results of numerical computer simulations, and of laboratory-scale models in centrifuges. Volume 2 envisages, in a geological perspective, the origin of salt domes, the mechanisms of their formation, and the associated parameters [fr

  6. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  7. Regulation on radioactive waste management

    International Nuclear Information System (INIS)

    1999-01-01

    A national calculator control system for the metropolitan radioactive waste banks was developed in 1999. The NNSA reviewed by the regulations the feasibility of some rectification projects for uranium ore decommissioning and conducted field inspections on waste treating systems and radioactive waste banks at the 821 plant. The NNSA realized in 1999 the calculator control for the disposal sites of low and medium radioactive waste. 3 routine inspections were organized on the reinforced concrete structures for disposal units and their pouring of concrete at waste disposal site and specific requirements were put forth

  8. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  9. Radioactive wastes management development in Chile

    International Nuclear Information System (INIS)

    Mir, S.A.; Cruz, P.F.; Rivera, J.D.; Jorquera, O.H.

    1994-01-01

    A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future

  10. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    International Nuclear Information System (INIS)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak

    2016-01-01

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment

  11. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  12. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  13. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  14. In situ grouting of buried transuranic waste

    International Nuclear Information System (INIS)

    Spalding, B.P.; Lee, S.Y.

    1987-01-01

    This task is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34,000 liters of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. The grout was also completely contained within the two trenches as no grout constituents were observed in the 12 perimeter ground water monitoring wells. Polyacrylamide grout was selected for field demonstration over polyacrylate grout because of its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty of controlling the set time of the acrylate polymerization process in the presence of potassium ferricyanide. Based on preliminary degradation monitoring, polyacrylamide was estimated to have a microbiological half-life of 115 years in the test soil. However, this calculated value is likely to be conservatively low because microbial degradation of the grout set accelerator or residual monomer may be contributing most to the measured microbial respiration. Addition work, using 14 C-labeled acrylate and acrylamide grouts, is being carried out to more accurately estimate the grouts' microbiological half-life

  15. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  16. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  17. Intruder dose pathway analysis for the onsite disposal of commercial radioactive waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Peloquin, R.A.; Napier, B.A.

    1984-10-01

    Because of uncertainties associated with assessing the potential risks from onsite burials of commercial radioactive waste, the US Nuclear Regulatory Commission (NRC) has amended its regulations to provide greater assurance that buried radioactive material will not present a hazard to public health and safety. The amended regulations now require licensees to apply for approval of proposed procedures for onsite disposal pursuant to 10 CFR 20.302. The NRC technically reviews these requests on a case-by-case basis. These technical reviews require modeling potential pathways to man and projecting radiation dose commitments. This paper contains a summary of our efforts to develop human-intrusion scenarios and to modify a version of the MAXI computer program for potential use by the NRC in reviewing applications for onsite radioactive waste disposal. The ONSITE/MAXI1 computer software package contains four computer codes. ONSITE is the interactive user interface that allows the end-user to simply and efficiently create and use the radiation-exposure scenarios. MAXI1 is then used with the scenario information to calculate the maximum annual dose to the exposed individual from selected pathways. 1 figure

  18. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  19. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  20. In situ grouting of buried transuranic waste with polyacrylamide

    International Nuclear Information System (INIS)

    Spalding, B.P.; Lee, S.Y.; Farmer, C.D.; Hyder, L.K.; Supaokit, P.

    1987-01-01

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs

  1. In situ grouting of buried transuranic waste with polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, B.P.; Lee, S.Y.; Farmer, C.D.; Hyder, L.K.; Supaokit, P.

    1987-01-01

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs.

  2. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  3. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-09

    The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.

  4. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    International Nuclear Information System (INIS)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-01

    The principal approaches for management of radioactive waste are commonly termed ''delay and decay'', ''concentrate and contain'' and ''dilute and disperse''. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case

  5. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  6. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  7. Classification of Radioactive Waste. General Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste.

  8. Classification of Radioactive Waste. General Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste

  9. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  10. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  11. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  12. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  13. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  14. Monitoring of radioactive wastes

    International Nuclear Information System (INIS)

    Houriet, J.Ph.

    1982-08-01

    The estimation of risks presented by final disposal of radioactive wastes depends, among other things, on what is known of their radioisotope content. The first aim of this report is to present the current state of possibilities for measuring (monitoring) radionuclides in wastes. The definition of a global monitoring system in the framework of radioactive waste disposal has to be realized, based on the information presented here, in accordance with the results of work to come and on the inventory of wastes to be stored. Designed for direct measurement of unpackaged wastes and for control of wastes ready to be stored, the system would ultimately make it possible to obtain all adaquate information about their radioisotope content with regard to the required disposal safety. The second aim of this report is to outline the definition of such a global system of monitoring. Designed as a workbase and reference source for future work by the National Cooperative for the Storage of Radioactive Waste on the topic of radioactive waste monitoring, this report describes the current situation in this field. It also makes it possible to draw some preliminary conclusions and to make several recommendations. Centered on the possibilities of current and developing techniques, it makes evident that a global monitoring system should be developed. However, it shows that the monitoring of packaged wastes will be difficult, and should be avoided as far as possible, except for control measurements

  15. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  16. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  17. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  18. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  19. National inventory of radioactive wastes

    International Nuclear Information System (INIS)

    1997-01-01

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.)

  20. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  1. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  2. Supercompaction of radioactive waste at NPP Krsko

    International Nuclear Information System (INIS)

    Fink, K.; Sirola, P.

    1996-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as a political tool, brought the final radioactive repository siting effort to a stop. Although small amounts of radioactive waste are produced in research institutes, hospitals and industry, major source of radioactive waste in Slovenia is the Nuclear Power Plant Krsko. When Krsko NPP was originally built, plans were made to construct a permanent radioactive waste disposal facility. This facility was supposed to be available to receive waste from the plant long before the on site storage facility was full. However, the permanent disposal facility is not yet available, and it became necessary to retain the wastes produced at the plant in the on-site storage facility for an extended period of time. Temporary radioactive storage capacity at the plant site has limited capacity and having no other options available NPP Krsko is undertaking major efforts to reduce waste volume generated to allow normal operation. This article describes the Radioactive Waste Compaction Campaign performed from November, 1994 through November, 1995 at Krsko NPP, to enhance the efficiency and safety of storage of radioactive waste. The campaign involved the retrieval, segmented gamma-spectrum measurement, dose rate measurement, compaction, re-packaging, and systematic storage of radioactive wastes which had been stored in the NPP radioactive waste storage building since plant commissioning. (author)

  3. Mixed radioactive and chemotoxic wastes (RMW)

    International Nuclear Information System (INIS)

    Dejonghe, I.P.

    1991-01-01

    During the first decades of development of nuclear energy, organizations involved in the management of nuclear wastes had their attention focused essentially on radioactive components. The impression may have prevailed that, considering the severe restrictions on radioactive materials, the protection measured applied for radioactive components of wastes would be more than adequate to cope with potential hazards from non radioactive components associated with radioactive wastes. More recently it was acknowledged that such interpretation is not necessarily justified in all cases since certain radioactive wastes also contain non-negligible amounts of heavy metals or hazardous organic components which, either, do not decay, or are subject to completely different decay (decomposition) mechanisms. The main purposes of the present study are to analyze whether mixed radioactive wastes are likely to occur in Europe and in what form, whether one needs a basis for integration for evaluating various forms of toxicity and by which practical interventions possible problems can be avoided or at least reduced. (au)

  4. The perception of radioactive waste among the people of Africa

    International Nuclear Information System (INIS)

    Baba, G.A.

    2005-01-01

    Full text: West Africa is one of the Africa's most populated regions, with a total population of approximately 200 million people. The West African sub-region comprises of sixteen different countries, which are as follows: Nigeria, Benin, Togo, Ghana, Code Ivore, Guinea, Guinea Bissau, Liberia, Sierra-Leone, Gambia, Senegal, Mauritania, Western Sahara, Mali, Burkina Faso and Niger Republique. Apart from Nigeria, Senegal and Ghana all the other remaining' countries are extremely poor and unviable. As a result of this the sub-region has been experiencing a lot of civil unrest, countries like Liberia, Sierra Leon and Code Ivore have been experiencing civil wars since the early 1990s. In addition to the already existing problems of trafficking in drugs, arms, humans and weaponry trade within the sub-region. Today the sub-region is experiencing the coming of a new evil deal called 'Trade in radio active waste'; which involves the transporting Of radioactive wastes from the developed countries to it's waste bin in West Africa, where it is unsafely buried after collecting millions of dollars from It's original owners. Recent statistics have revealed that most of the people involved in the evil businesses of trafficking in drugs, human, arms and trading in weaponry, are diverting in to the so called evil business of 'Trade in Radioactive waste' because this new illegal trade financially exceeds the rest of the above listed evil businesses

  5. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1989-01-01

    This book discusses the sources and health effects of radioactive wastes. It reveals the techniques to concentrate and immobilize radioactivity and examines the merits of various disposal ideas. The book, which is designed for the lay reader, explains the basic science of atoms,nuclear particles,radioactivity, radiation and health effects

  6. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  7. Radioactive waste material melter apparatus

    International Nuclear Information System (INIS)

    Newman, D.F.; Ross, W.A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs

  8. The transport of radioactive waste

    International Nuclear Information System (INIS)

    Appleton, P.R.; Poulter, D.R.

    1989-01-01

    Regulations have been developed to ensure the safe transport of all radioactive materials by all modes (road, rail, sea and air). There are no features of radioactive waste which set it aside from other radioactive materials for transport, and the same regulations control all radioactive material transport. These regulations and their underlying basis are described in this paper, and their application to waste transport is outlined. (author)

  9. Application of biological barriers in maintaining the integrity of radioactivity in shallow burial grounds

    International Nuclear Information System (INIS)

    Cline, J.F.

    1979-05-01

    Stabilization of a shallow burial site requires some means of keeping buried radioactive wastes in place and preventing the movement of radioactive elements into the biosphere by various vectors present in the soil covering the burial site. By placing a barrier between the surface of the soil and the buried wastes, it would be possible to isolate the wastes from the biosphere and eliminate the movement of radioactive elements into the environment. An effective biobarrier would make it possible to grow plants over the buried wastes regardless of rooting habits; the plants would stabilize the surface soil, prevent wind erosion, and transpire soil water back into the air, thus preventing it from percolating downward through the buried wastes. This report summarizes the finding of a study undertaken to determine the effectiveness of natural cobblestones as a long-term biobarrier. In the initial field study, we investigated whether a thick layer of cobblestones would prevent plant roots and burrowing animals from reaching contaminated materials and transferring radionuclides to the soil surface. In a subsequent greenhouse study, three modifications of the cobblestone barrier were tested, including the addition of another layer of stones, one of asphalt, and one of a root toxin. These data show that cobblestone can be effective as a barrier to burrowing animals and insects, but not totally effective as a barrier to plant roots. Because of variable weather patterns at Hanford, five to six year studies are recommended for further studies on the effectiveness of different materials as biobarriers to radioactive substances. Stone size appeared to affect the plants' rate of root growth since root growth slowed in the air spaces between stones. Root toxin was 100% effective as a means of keeping roots out of the buried waste; this method could be used as a barrier modification where no plant cover is needed

  10. Low-level radioactive biomedical wastes

    International Nuclear Information System (INIS)

    Casarett, G.W.

    A summary of the management and hazards of low-level radioactive biomedical wastes is presented. The volume, disposal methods, current problems, regulatory agencies, and possible solutions to disposal problems are discussed. The benefits derived from using radioactivity in medicine are briefly described. Potential health risks are discussed. The radioactivity in most of the radioactive biomedical waste is a small fraction of that contained naturally in the human body or in the natural environment. Benefit-risk-cost considerations are presented. The cost of managing these wastes is getting so high that a new perspective for comparison of radioactivity (facts, risks, costs, benefits and trade-offs) and alternate approaches to minimize the risk and cost and maximize the benefits is suggested

  11. New evolution on the high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Koumoto, Harumi

    2001-01-01

    On nuclear power generation, spent fuel is formed and reaches to about 30 ton from a 1 million kW class large power plant. As some nations deal with the spent fuel itself to waste, Japan adopts a reprocessing and recycling route to recover uranium and plutonium reusable for nuclear fuels by reprocessing of the spent fuels. As waste liquid containing about one ton of cinder (fission product) formed by nuclear fission after its recovery, a glass solid solidifying this to a stable glassy state is called the high level radioactive wastes (HLW). As it has extremely high radioactivity which continues for long term in spite of its decay with elapsing time, safety security must be paid enough attention to its countermeasure. Therefore, as a result of long-term research and development in Japan as well as in many other nations, it is admitted to be the most preferable countermeasure to bury HLW into deep stratum to safely isolate from human life environment for its scientific and technical method. Here was introduced on a framework of its disposal business in Japan of which preparation rapidly advanced as a turning point of 2000 at a center of its technical and regulative advancement. (G.K.)

  12. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  13. Infiltration properties of covering soil into the void of buried concrete waste due to fluctuation of ground water level and its prevention

    International Nuclear Information System (INIS)

    Takatsu, Tadashi; Tadano, Hideki; Abe, Satoshi; Imai, Jun; Yanagisawa, Eiji; Mitachi, Toshiyuki

    1999-01-01

    Low level radioactive concrete waste will be produced in future by breaking up the nuclear facilities, and the waste will be disposed in shallow depth of ground. In order to prepare for those situation, it is needed to clarify the infiltration properties of the covering soil into the void of buried concrete waste due to the fluctuation of ground water level and to develop the prevention methods against the infiltration of the covering soil. In this study, full-scale concrete structure specimens were broken up, and were compacted in large scale testing boxes and a series tests changing water level up and down in the concrete waste and covering soil were performed. From the test results, it was found that the appropriate filter installed between the covering soil and the concrete waste, enable us to prevent the infiltration of covering soil into the void of concrete waste. (author)

  14. Krsko NPP radioactive waste characteristics

    International Nuclear Information System (INIS)

    Skanata, D.; Kroselj, V.; Jankovic, M.

    2007-01-01

    In May 2005 Krsko NPP initiated the Radioactive Waste Characterization Project and commissioned its realization to the consulting company Enconet International, Zagreb. The Agency for Radwaste Management was invited to participate on the Project. The Project was successfully closed out in August 2006. The main Project goal consisted of systematization the existing and gathering the missing radiological, chemical, physical, mechanical, thermal and biological information and data on radioactive waste. In a general perspective, the Project may also be considered as a part of broader scope of activities to support state efforts to find a disposal solution for radioactive waste in Slovenia. The operational low and intermediate level radioactive waste has been structured into 6 waste streams that contain evaporator concentrates and tank sludges, spent ion resins, spent filters, compressible and non-compressible waste as well as specific waste. For each of mentioned waste streams, process schemes have been developed including raw waste, treatment and conditioning technologies, waste forms, containers and waste packages. In the paper the main results of the Characterization Project will be briefly described. The results will indicate that there are 17 different types of raw waste that have been processed by applying 9 treatment/conditioning technologies. By this way 18 different waste forms have been produced and stored into 3 types of containers. Within each type of container several combinations should be distinguished. Considering all of this, there are 34 different types of waste packages altogether that are currently stored in the Solid Radwaste Storage Facility at the Krsko NPP site. Because of these findings a new identification system has been recommended and consequently the improvement of the existing database on radioactive waste has been proposed. The potential areas of further in depth characterization are indicated. In the paper a brief description on the

  15. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  16. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  18. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  19. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  20. [Microbiological Aspects of Radioactive Waste Storage].

    Science.gov (United States)

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  1. Management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated. Cement solidification and bituminization unit has come into trial run. Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities. Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces. Disposal of low and intermediate level radioactive wastes pursues the policy of 'regional disposal'. Four repositories have been planned to be built in northwest, southwest, south and east China respectively. A program for treatment and disposal of high level radioactive waste has been made

  2. Sponsored research on radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The report is in chapters entitled: introduction (background, responsibilities, options, structure of the programme); strategy development; disposal of accumulations; disposal of radioactive waste arisings; quality assurance for waste conditioning quality assurance related to radioactive waste disposal (effectiveness of different rock types as natural barriers to the movement of radioactivity, and non-site specific factors in the design of repositories; radiological assessment; environmental studies; research and development to meet requirements specific to UKAEA wastes; long term research (processes for the solidification of highly active liquid wastes); plutonium contamination waste minimisation. (U.K.)

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  4. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  5. Radioactive waste interim storage in Germany

    International Nuclear Information System (INIS)

    2015-12-01

    The short summary on the radioactive waste interim storage in Germany covers the following issues: importance of interim storage in the frame of radioactive waste management, responsibilities and regulations, waste forms, storage containers, transport of vitrified high-level radioactive wastes from the reprocessing plants, central interim storage facilities (Gorleben, Ahaus, Nord/Lubmin), local interim storage facilities at nuclear power plant sites, federal state collecting facilities, safety, radiation exposure in Germany.

  6. Communication from the Radioactive Waste Service

    CERN Multimedia

    2011-01-01

    The Radioactive Waste service of the Radiation protection Group informs you that as of 15 April 2011 radioactive waste can be delivered to the waste treatment centre (Bldg. 573) only during the following hours: Mon- Thu: 08:00 – 11:30 / 13:30 – 16:00 Fri : 08:00 – 11:30 An electronic form must be filled in before the arrival of the waste at the treatment centre: https://edh.cern.ch/Document/General/RadioactiveWaste for further information, please call 73171.

  7. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  8. Method of processing radioactive solid wastes

    International Nuclear Information System (INIS)

    Ootaka, Hisashi; Aizu, Tadashi.

    1980-01-01

    Purpose: To improve the volume-reducing effect for the radioactive solids wastes by freezing and then pulverizing them. Method: Miscellaneous radioactive solid wastes produced from a nuclear power plant and packed in vinyl resin bags are filled in a drum can and nitrogen gas at low temperature (lower than 0 0 C) from a cylinder previously prepared by filling liquid nitrogen (at 15kg/cm 2 , -196 0 C) to freeze the radioactive solid wastes. Thereafter, a hydraulic press is inserted into the drum can to compress and pulverize the thus freezed miscellaneous radioactive solid wastes into powder. The powder thus formed does not expand even after removing the hydraulic press from the drum can, whereby the volume reduction of the radioactive solid wastes can be carried out effectively. (Horiuchi, T.)

  9. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  10. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  11. A leak-detection instrument for long buried pipelines based on radioactive tracer measurements

    International Nuclear Information System (INIS)

    Lu Qingqian; Zhou Shuxuan; Tang Yonghua; Sun Xiaolei; Hu Xusheng; Li Deyi; Yin Liqiang

    1987-01-01

    The instrument introduced provides a means for leak detection of long buried pipelines based on the radioactive tracer technique. The principle, block diagram and performances for the instrument are described. The leak-detecting method and the determination of some related parameters are also presented. Leak-detection sensitivity of the instrument is 185 kBq (5 μCi). Accuracy for leak localization is within 2.5 m (per km). It is suitable for the buried light oil (gasoline, kerosene, diesel oil) and industrial water pipelines with a diameter of 15 or 20 cm. The detection length for a single operation reaches up to 50 km

  12. Investigation of the subsurface environment at the Idaho National Engineering Laboratory Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Russell, B.F.; Mizell, S.A.; Hull, L.C.; Smith, T.H.; Lewis, B.D.; Barraclough, J.T.; Humphrey, T.G.

    1984-01-01

    A comprehensive, 10-year plan to investigate radionuclide migration in the subsurface at the Radioactive Waste Management Complex (RWMC) has been prepared and initiated (in FY-84). The RWMC Subsurface Investigation is designed to address two objectives set forth by the DOE Idaho Operations Office: (1) determine the extent of radionuclide migration, if any, from the buried waste, and (2) develop and calibrate a computer model to simulate long-term radionuclide migration. At the RWMC, the Snake River Plain Aquifer underlies about 177 m of partially saturated, fractured basalts and thin sedimentary units. Three sedimentary units, accounting for no more than 20 m of the partially saturated thickness, appear to be continuous throughout the area. Thinner sedimentary units are discontinuous. Low-level waste and (prior to 1970) transuranic waste have been buried in the surficial sediments at the RWMC. The first burials took place in 1952. Due to the complicated disposal system, a comprehensive review of state-of-the-art vadose zone monitoring instrumentation and techniques, an analysis of conceptual migration pathways, and an evaluation of potential hazard from buried radionuclides were conducted to guide preparation of the investigation plan. The plan includes an overview of the RWMC facility, subsurface work conducted to date at the RWMC and other DOE laboratory facilities, an evaluation and selection of the methods and studies to be used, a radionuclide hazard evaluation, a cost analysis, and external peer review results. In addition, an Appendix contains the details for each method/study to be employed. 4 references, 5 figures, 1 table

  13. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  15. Spotting Radioactive Sources Buried Underground Using an Airborne Radiation Monitoring System

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Wengrowicz, U.; Beck, A.; Marcus, E.; Tirosh, D.

    2002-01-01

    This article provides theoretical background concerning the capability of the Airborne Radiation Monitoring System [1]to detect fission products buried at 1-meter depth under the ground surface,at a flight altitude of 100 meters above ground.The 137 Cs source was used as a typical fission product. The System monitors radioactive contamination in the air or on the ground using two 2 inch NaI(Tl) scintillation detectors and computerized accessories for analysis purposes

  16. Strategic areas in radioactive waste management. The viewpoint and work orientations of the Nea radioactive waste management committee

    International Nuclear Information System (INIS)

    1999-01-01

    The NEA Radioactive Waste Management Committee (RWMC) is a forum of senior operators, regulators, policy makers, and senior representatives of R and D institutions in the field of radioactive waste management. The Committee assists Member countries by providing objective guidance on the solution of radioactive waste problems, and promotes Safety in the short- and long-term management of radioactive waste. This report identifies some of the major challenges currently faced by national waste management programmes, and describes the strategic areas in which the RWMC should focus its efforts in future years. (author)

  17. Radioactive waste management in West Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.)

    1978-01-01

    The technologies developed in West Germany for radioactive waste management are widely reviewed. The first topic in this review paper is the disposal of low- and middle-level radioactive liquid wastes. Almost all these liquid wastes are evaporated, and the typical decontamination factor attained is 10/sup 4/ -- 10/sup 6/. The second topic is the solidification of residuals. Short explanation is given to bituminization and some new processes. The third topic is high-level liquid wastes. Degradation of glass quality due to various radiation is discussed. Embedding of small glass particles containing radioactive wastes into metal is also explained. Disposals of low-level solid wastes and the special wastes produced from reprocessing and mixed oxide fuel fabrication are explained. Final disposal of radioactive wastes in halite is discussed as the last topic. Many photographs are used to illustrate the industrial or experimental use of those management methods.

  18. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  19. Way of thinking and method of promotion of disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1993-01-01

    It is decided that the high level waste separated from spent fuel is solidified with glass, stored for 30-50 years to cool it down, and the final disposal is done under the responsibility of the government. As to the final disposal of high level waste, the method of enclosing glass-solidified waste in robust containers and burying them in deep stable strata to isolate from human environment is considered to be the safest. The significance of fuel reprocessing is the proper and safe separation and control of high level waste besides the reuse of unburned uranium and newly formed plutonium in spent fuel. The features of the high level waste solids are that their amount to be generated is little, the radioactivity attenuates with the lapse of time, the heat generation decreases with the lapse of time, and they are hard to elute and move. In order to prevent radioactive substances from appearing in human environment by being dissolved in groundwater, those are isolated with the combination of natural and artificial barriers. The requirements for the barriers are discussed. The research and development are in progress on the establishment of stratum disposal technology, the evaluation of suitability of geological environment and the selection of expected disposal grounds. (K.I.)

  20. Radioactive waste management - an educational challenge

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1991-01-01

    University Radioactive Waste Management educational programs are being actively advanced by the educational support activities of the Offices of Civilian Radioactive Waste Management (OCRWM) and Environmental Restoration and Waste Management (ERWM) of the DOE. The DOE fellowship program formats of funding students and requiring a practical research experience (practicum) at a DOE site has helped to combine the academic process with a practical work experience. Support for faculty in these programs is augmenting the benefits of the fellowship programs. The many job opportunities and funding sources for students which currently exists in the radioactive waste management area are fueling an increase in academic programs seeking recognition of their radioactive waste management curriculums

  1. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  2. MANAGEMENT OF RADIOACTIVE WASTES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    潘自强

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated.Cement solidification and bituminization unit has come into trial run.Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities.Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces.Disposal of low and intermediate level radioactive wastes pursues the policy of “regional disposal”.Four repositories have been planned to be built in northwest.southwest,south and east China respectively.A program for treatment and disposal of high level radioactive waste has been made.

  3. The Savannah River Plant low-level waste segregation program

    International Nuclear Information System (INIS)

    Wheeler, V.B.

    1987-01-01

    To extend the life of the Savannah River Plant (SRP) Radioactive Waste Burial Ground, a sitewide program has been implemented to segregate waste that is essentially free of contamination from routine radioactive waste. Much of the low-level waste disposed of as radioactive has no detectable contamination and can be buried in a sanitary landfill. A Landfill Monitoring Facility (LMF) will be constructed at SRP to house the state-of-the-art technology required to provide a final survey on the candidate waste streams that had previously been classified as radioactive. 3 figs

  4. Information on scientific and technological co-operation between the CMEA member countries in radioactive waste burial in geological formations

    International Nuclear Information System (INIS)

    Tolpygo, V.K.

    1984-02-01

    Research on radioactive waste treatment and disposal constitutes an important area of cooperation between the CMEA member countries. An important part in cooperation has been assigned to the study of systems for disposing radioactive waste of all kinds in geological formations. The cooperation which was initiated in 1971 was realized within the two research programmes scheduled for subsequent periods, viz. for 1971 to 1975, and from 1976 to 1983. Programme work for 1971 to 1975 included three major fields of research: theoretical and experimental research, scientific and technological research and methodological research. As regards methodological research and results of work by the plan for 1976 to 1983, comprehensive research on the methods of disposing radioactive waste in geological formations has been practically completed and documents relating to the industrial introduction of these methods have been prepared. The results of research renders it possible to properly organize from the standpoint of methodology surveying, designing of schematic diagrams and structures of all facilities involving the burial of radioactive waste in geological formations, the evaluation of suitability of the sanitary protection zone from the standpoint of environmental protection and the rational use of natural resources. The drawing of prognostic charts and the development of recommendations on the use of interior of the earth for burying radioactive waste make it possible for the planning bodies, ministries and agencies to evaluate the possibilities for underground burial of radioactive waste in selecting a site and in designing and construction of new nuclear power plants and other nuclear facilities

  5. Radioactive Waste and Clean-up: Introduction

    International Nuclear Information System (INIS)

    Collard, G.

    2007-01-01

    The primary mission of the Radioactive Waste and Clean-up division is to propose, to develop and to evaluate solutions for a safe, acceptable and sustainable management of radioactive waste. The Radioactive Waste and Clean-up division programme consists in research, studies, development and demonstration aiming to realise the objective of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation on radioactively contaminated sites. Indeed, it participates in the realisation of an objective which is to ensure that radioactive wastes are safely managed, transported, stored and disposed of, with a view to protecting human health and the environment, within a wider framework of an interactive and integrated approach to radioactive waste management and safety. We believe that nuclear energy will be necessary for the sustainable development of mankind in the 21st century, but we well understand that it would not be maintained if it is not proven that within benefits of nuclear energy a better protection of the environment is included. Although the current waste management practices are both technically and from the environmental point of view adequate, efforts in relation of future power production and waste management technologies should be put on waste minimisation. Therefore, the new and innovative reactors, fuel cycle and waste management processes and installations should be designed so that the waste generation can be kept in minimum. In addition to the design, the installations should be operated so as to create less waste; consideration should be given e.g. to keeping water chemistry clean and other quality factors. SCK-CEN in general and the Radioactive Waste and Clean-up division in particular are present in international groups preparing the development of innovative nuclear reactors, as Generation 4 and INPRO. Because performance assessments are often black boxes for the public, demonstration is needed for the acceptation of

  6. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dietz, D.N.

    1977-01-01

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  7. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  8. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  9. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  10. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  11. Method of solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Mihara, Shigeru; Yamashita, Koji; Sauda, Kenzo.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO 2 , they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  12. Radioactive waste management in a hospital.

    Science.gov (United States)

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  13. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  14. Radioactive Waste Management in A Hospital

    Science.gov (United States)

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  15. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  16. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  17. Sediment properties and water movement through shallow unsaturated alluvium at an arid site for disposal of low-level radioactive waste near Beatty, Nye County, Nevada

    Science.gov (United States)

    Fischer, Jeffrey M.

    1992-01-01

    A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.

  18. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  19. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  20. Session 1984-85. Radioactive waste. Minutes of evidence, Monday 17 June 1985. Nuclear Industry Radioactive Waste Executive

    International Nuclear Information System (INIS)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from the Nuclear Industry Radioactive Waste Executive, on the management and disposal of radioactive waste arising in the UK, under the headings: introduction; the structure of NIREX; the nature of radioactive waste; plans for the disposal of low and intermediate level wastes. Representatives of NIREX were examined on the subject of the memorandum and the minutes of evidence are recorded. (U.K.)

  1. Hypothetical accidents at disposal facilities for high-level liquid radioactive wastes and pulps

    International Nuclear Information System (INIS)

    Kabakchi, S.A.; Zagainov, V.A.; Lishnikov, A.A.; Nazin, E.R.

    1994-01-01

    Four accidents are postulated and analyzed for interim storage of high-level, liquid radioactive wastes at a fuel reprocessing facility. Normal waste storage operation is based on wastes stored in steel drums, partially buried in concrete canyons, and equipped with heat exchangers for cooling and ventilation systems for removal of explosive gases and vapors. The accident scenarios analyzed are: (1) shutdown of ventilation with open entrance and exit ventilation pipes, (2) shutdown of ventilation with closed entrance and exit ventilation pipes, (3) shutdown of the cooling system with normally functioning ventilation, and (4) simultaneous cooling and ventilation system failure (worst case). A mathematical model was developed and used to calculate radiation consequences of various accidents. Results are briefly presented for the worst case scenario and compared to an actual accident for model validation. 17 refs., 3 figs., 1 tab

  2. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  3. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  4. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  5. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  6. Radiation safety ensuring and environment protection dealing with radioactive waste management in the system of the special plants ''Radon''

    International Nuclear Information System (INIS)

    Zenkina, Lidia

    1999-01-01

    This presentation deals with the Russian special plants ''Radon'', a system of 16 regional plants devoted to radioactive waste management. The plants are intended to receive solid radioactive wastes and liquid radioactive wastes of low and medium levels of activity for reprocessing and final disposal. The following topics are discussed: (1) waste characterization, (2) storage construction, (3) preparation of waste for burial, (4) site selection, (5) tasks of the plant, (6) division of plant territory into zones, (7) radiation monitoring, (8) prevention of accidents and elimination of their consequences, (10) training of staff, (11) sanitary treatment of staff and equipment decontamination. Lack of financial means is a major problem. The closure of the Murmansk special plant Radon has caused great problems for the North-European District. The Leningrad special plant Radon has been forced to accept radioactive waste from the Arkhangelsk region. The exhaustion of reserve volumes for solid radioactive waste acceptance at this plant affects the entire North-Western Russia. At present, spent sources of ionising radiation are buried in shallow land-based storage facilities of well type. It was found on inspection that such burial of sources containing nuclides with half-life of more than 30 years must be stopped. Existing storages are inadequate for safe storage of such sources throughout their hazardous period, and are not adjusted for extraction of such sources in the future. The spent sources containing long-lived nuclides must be temporarily stored in transport containers in separate sections of solid waste storage facilities. In 1997, analysis of radiation state parameters for radioactive waste burial at special plants Radon showed that the radiation dose rate at working places and the average annual volumetric activity of radionuclides in the environment were within the admissible limits

  7. Radioactive waste programme in Latvia

    International Nuclear Information System (INIS)

    Salmins, A.

    2000-01-01

    An overview is made on the use of radioactive sources and waste management in Latvia. Brief overview of the development of national legal documents - the framework law of environmental protection; international agreements; the new law on radiation safety and nuclear safety; regulation of the Cabinet of Ministers - is given. The regulatory infrastructure in the nearest future is outlined. The institutional framework for radioactive waste management is described. Basic design of the repository and radioactive waste inventory are also given. The activities on the EU DG Environment project CASIOPEE are reported

  8. Collecting and identifying the radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, C. GH.

    2001-01-01

    The procedure 'Collecting and identifying the radioactive waste' applied by the Radioactive Waste Management Department, STDR, complies with the requirements of the competent authority concerning the radioactive source management. One of the most important tasks, requiring the application of this procedure, is collecting and identification of 'historical wastes' for which a complete book keeping does not exist from different reasons. The chapter 1 presents the procedure's goal and the chapter 2 defines the applicability field. Chapter 3 enlists the reference documents while the chapter 4 gives the definitions and abbreviations used in the procedure. Chapter 5 defines responsibilities of the operators implied in collecting, identification and characterization of the radioactive wastes, the producers of the radioactive wastes being implied. Chapter 6 gives the preliminary conditions for applying the procedure. Among these, the transport, collecting, processing, storing and characterization costs are implied, as well as the compliance with technical and different other condition. The procedure structure is presented in the chapter 7. In collecting radioactive wastes, two situations are possible: 1- the producer is able to prepare the wastes for transport and to deliver them to STDR; 2 - the wastes are received from the producer by a delegate STDR operator, properly and technically prepared. The producer must demonstrate by documents the origin and possession, analysis bulletins specifying, the radionuclides activity and measurement date, physical state and, in addition, for spent radiation sources, the series/number of the container and producer. In case the producer is not able to display all this information, the wastes are taken into custody by the STDR labs in view of their analysis. A record in writing is completed specifying the transfer of radioactive wastes from the producer to the STDR, a record which is sent to the national authority in charge with the

  9. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  10. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  11. Shifting paradigms in managing radioactive waste

    International Nuclear Information System (INIS)

    Le Bars, Y.; Pescatore, C.

    2004-01-01

    The Stakeholder involvement in policy making of radioactive waste management, has received considerable attention within the OECD. The Nea forum on Stakeholder confidence (FSC) was set up in 2000. A Nea recent publication entitled ''Learning and adapting to societal requirements for radioactive waste management'' brings together the key FSC findings and experience covering four years of work. Six main areas are targeted in this publication and are briefly described in this document: favourable candidates for issuing radioactive waste management policy, the design of the decision-making process, the social and ethical dimension, trust in the actors, Stakeholder involvement and the local dimension of radioactive waste management. (A.L.B.)

  12. Low-level radioactive waste management. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The management of radioactive waste is one of the most serious environmental problems facing Canadians. From the early industrial uses of radioactive material in the 1930s to the development of nuclear power reactors and the medical and experimental use of radioisotopes today, there has been a steady accumulation of waste products. Although the difficulties involved in radioactive waste management are considerable, responsible solutions are possible. This paper will discuss low-level radioactive waste, including its production, the amounts in storage, the rate of waste accumulation and possible strategies for its management. (author). 2 figs

  13. Radioactive waste treatment and handling in France

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1984-01-01

    Classification of radioactive wastes customary in France and the program of radiation protection in handling them are discussed. Various methods of radioactive waste processing and burial are considered. The French classification of radioactive wastes differs from one used in the other countries. Wastes are classified under three categories: A, B and C. A - low- and intermediate-level radioactive wastes with short-lived radionuclides (half-life - less than 30 years, negligible or heat release, small amount of long-lived radionuclides, especially such as plutonium, americium and neptunium); B - low- and intermediate-level radioactive wastes with long-lived radionuclides (considerable amounts of long-lived radionuclides including α-emitters, low and moderate-level activity of β- and γ-emitters, low and moderate heat release); C - high-level radioactive wastes with long-lived radionuclides (high-level activity of β- and γ-emitters, high heat release, considerable amount of long-lived radionuclides). Volumetric estimations of wastes of various categories and predictions of their growth are given. It is noted that the concept of closed fuel cycle with radiochemical processing of spent fuel is customary in France

  14. In situ vitrification application to buried waste: Interim report of intermediate field tests at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Callow, R.A.; Weidner, J.R.; Thompson, L.E.

    1991-02-01

    This report describes the two in situ vitrification field tests conducted in June and July 1990 at Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in- place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste, indicating the process is a feasible technology for application to buried waste

  15. In situ vitrification application to buried waste: Interim report of intermediate field tests at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Callow, R.A.; Weidner, J.R.; Thompson, L.E.

    1991-01-01

    This report describes the two in situ vitrification field tests conducted in July and July 1990 at Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in-place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste, indicating the process is a feasible technology for application to buried waste. 8 refs., 91 figs., 13 tabs

  16. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  17. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 8: Review of processes near a buried waste canister

    International Nuclear Information System (INIS)

    Lanza, F.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and infomation exchange among the Member countries participating in the NEA Seabed Working Group. This report investigates the phenomena arriving in the proximity of the waste package immersed in the sea sediments

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  19. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  20. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  1. Radioactive waste management regulatory framework in Mexico

    International Nuclear Information System (INIS)

    Barcenas, M.; Mejia, M.

    2001-01-01

    The purpose of this paper is to present an overview of the current regulatory framework concerning the radioactive waste management in Mexico. It is intended to show regulatory historical antecedents, the legal responsibilities assigned to institutions involved in the radioactive waste management, the sources of radioactive waste, and the development and preparation of national standards for fulfilling the legal framework for low level radioactive waste. It is at present the most important matter to be resolved. (author)

  2. Gamma ray energy spectrum of a buried radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Massey, N B

    1957-07-01

    Because of current attempts to utilize airborne gamma-ray scintillation spectrometers as a means of detecting and identifying buried radioactive mineral deposits, it has become important to study the effects of multiple scattering on the gamma-ray energy spectrum of a source buried in a semi-infinite medium. A series of ten experiments was made. First a scintillation detector was located in air at a fixed distance above a 250 microcurie cobalt-60 source suspended in a large tank. The level of water was raised from 25 cm below the source to 50 cm above, and the gamma-ray energy spectrum was observed. It was found that the high energy portion of the cobalt-60 spectrum remained identifiable even when the source was submerged more than five half-lengths. Further, the ratio of the counting rate of the total incident gamma radiation to the counting rate of the primary 1.33 MeV radiation was found to be very nearly linearly proportional to the depth of water cover. This leads to an empirical method for determining the depth of burial of a cobalt-60 point source. (author)

  3. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  4. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Motojima, Kenji; Kawamura, Fumio.

    1981-01-01

    Purpose: To increase the efficiency of removing radioactive cesium from radioactive liquid waste by employing zeolite affixed to metallic compound ferrocyanide as an adsorbent. Method: Regenerated liquid waste of a reactor condensation desalting unit, floor drain and so forth are collected through respective supply tubes to a liquid waste tank, and the liquid waste is fed by a pump to a column filled with zeolite containing a metallic compound ferrocyanide, such as with copper, zinc, manganese, iron, cobalt, nickel or the like. The liquid waste from which radioactive cesium is removed is dried and pelletized by volume reducing and solidifying means. (Yoshino, Y.)

  5. The management of radioactive waste in laboratories

    International Nuclear Information System (INIS)

    McLintock, I.S.

    1996-01-01

    Many laboratories in universities, colleges, research institutions and hospitals produce radioactive wastes. The recently-coined term for them is small users of radioactive materials, to distinguish them from concerns such as the nuclear industry. Until recently the accepted official view was that small users had few problems in disposing of their radioactive wastes. This misconception was dispelled in 1991 by the 12th Annual Report of the Radioactive Waste Management Advisory Committee. This book includes a description of the principles of the management and disposal of radioactive wastes from these laboratories. Its main intention, however, is to provide practical information and data for laboratory workers as well as for those responsible for management and ultimate disposal of radioactive wastes. I hope that it succeeds in this intention. (UK)

  6. Issues on safe radioactive waste management at ChNPP site in International Shelter Implementation Plan

    International Nuclear Information System (INIS)

    Bykov, V.; Kilochytska, T.; Gromyko, S.; Kadkin, Y.; Kondratiev, S.; Pavlenko, A.; Bogorinski, P.

    2003-01-01

    The International Shelter Implementation Plan (SIP) [1], is aimed to convert the ChNPP unit 4, destroyed by a beyond-design accident in 1986, into an environmentally safe facility by means of large-scale projects such as stabilization of the existing Sarcophagus (Shelter), construction of a New Safe Confinement (NSC), and installation of engineering and monitoring systems. This report presents some important safety issues concerning radioactive waste (RAW) management at the Shelter. One of the main problems of RAW management is to dispose of large volumes of RAW generated during ground preparation work. It is necessary that RAW be sorted carefully to separate low-active radioactive waste (LLW), which will be the majority, from high-level waste. Considering the fact that the Shelter is in the exclusion zone, the interim storage of LLW in this zone is possible, but a set of safety measures is required, e.g. prevention of dust generation or spreading of radioactivity with water. Another problem is high level RAW management. Highly radioactive fragments of the core, including fuel were ejected during the accident and are now buried under the man-made layer around the Shelter. Unanticipated disclosure of such fragments may happen during any ground preparation work as well as during clearing of premises inside the damaged buildings. Therefore, permanent radiation monitoring is required to prevent any intolerable exposure of workers. Unanticipated disclosure of high-active radioactive waste (HLW) could lead to considerable delay of any work. Since it is particularly difficult to remove HLW from those locations, which can not be easily accessed with removal equipment, such waste needs to be confined and properly shielded at in situ. Due to absence of a permanent HLW storage, an interim storage needs to be provided for in the territory of the Sarcophagus. (author)

  7. Low-level radioactive wastes

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.

    1988-01-01

    During dismantling operations of nuclear facilities radioctive and non radioactive wastes are produced. The distinction between both kinds of wastes is not easy. In each dismantling operation special care and rules are defined for the separation of wastes. Each case must be separately studied. The volume and the surface activites are analyzed. Part of the wastes had been disposed in a public environment. The regulations, the international recommendations, thetheoretical and experimental investigations in this field are presented. A regulation principle and examples of radioactivity limits, on the basis of international recommendations, are provided. Those limits are calculated from individual radiation dose that may reach human beings [fr

  8. Method of transporting radioactive slurry-like wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Yusa, H; Sugimoto, Y

    1975-06-30

    The object is to prevent blockage of a transporting tube to positively and effectively transport radioactive slurry wastes. A method of transporting radioactive slurry-like wastes produced in an atomic power plant, wherein liquid wastes produced in the power plant are diluted to form into a driving liquid, by which said radioactive slurry-like wastes are transported within the pipe, and said driving liquid is recovered as the liquid waste.

  9. National Inventory of Radioactive Wastes, Edition 1998

    International Nuclear Information System (INIS)

    Pallard, Bernard; Vervialle, Jean Pierre; Voizard, Patrice

    1998-01-01

    The National Radioactive Waste Inventory is an annual report of French National Agency for Radioactive Waste Management (ANDRA). The issue on 1998 has the following content: 1. General presentation; 2. Location of radioactive wastes in France; 3. Regional file catalogue; 4. Address directory; 5. Annexes. The inventory establishes the producer and owner categories, the French overseas waste sources, location of pollutant sides, spread wastes (hospitals, universities and industrial sector), railways terminals

  10. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  11. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  12. World ocean and radioactive wastes

    International Nuclear Information System (INIS)

    Kiknadze, O.E.; Sivintsev, Yu.V.

    2000-01-01

    The radioecological situation that took shape in the Arctic, North Atlantic Ocean and Far East regions as a result of radioactive waste marine disposal was assessed. Accurate account of radionuclides formation and decay in submerged water-water reactors of nuclear submarines suggests that total activity of radioactive waste disposed near the Novaya Zemlya amounted to 107 kCi by the end of 1999. Activity of radioactive waste disposed in the North Atlantic currently is not in excess of 430 kCi. It is pointed out that the Far East region heads the list in terms of total activity disposed (529 kCi). Effective individual dose for critical groups of population in the Arctic, North Atlantic and Far East regions was determined. The conclusion was made that there is no detrimental effect of the radioactive waste disposed on radioecological situation in the relevant areas [ru

  13. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Detilleux, E.

    1984-01-01

    The first part of this paper briefly describes the nuclear industry in Belgium and the problem of radioactive wastes with regard to their quality and quantity. The second part emphasizes the recent guidelines regarding the management of the nuclear industry in general and the radioactive wastes in particular. In this respect, important tasks are the reinforcement of administrative structures with regard to the supervision and the control of nuclear activities, the establishment of a mixed company entrusted with the covering of the needs of nuclear plants in the field of nuclear fuels and particularly the setting up of a public autonomous and specialized organization, the 'Public Organization for the Management of Radioactive Waste and Fissile Materials', in short 'O.N.D.R.A.F.'. This organization is in charge of the management of the transport, the conditioning, the storage and the disposal of radioactive wastes. (Auth.)

  14. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  15. Vitrification of hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Bickford, D.F.; Schumacher, R.

    1995-01-01

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification

  16. Hanford site implementation plan for buried, transuranic-contaminated waste

    International Nuclear Information System (INIS)

    1987-05-01

    The GAO review of DOE's Defense Waste Management Plan (DWMP) identified deficiencies and provided recommendations. This report responds to the GAO recommendations with regard to the Hanford Site. Since the issuance of the DWMP, an extensive planning base has been developed for all high-level and transuranic waste at the Hanford Site. Thirty-three buried sites have been identified as possibly containing waste that can be classified as transuranic waste. Inventory reports and process flowsheets were used to provide an estimate of the radionuclide and hazardous chemical content of these sites and approximately 370 additional sites that can be classified as low-level waste. A program undertaken to characterize select sites suspected of having TRU waste to refine the inventory estimates. Further development and evaluation are ongoing to determine the appropriate remedial actions, with the objectives of balancing long-term risks with costs and complying with regulations. 18 refs., 7 figs., 6 tabs

  17. National Syrian Program for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Othman, I.; Takriti, S.

    2009-06-01

    A national plan for radioactive waste management has been presented. It includes identifying, transport, recording, classifying, processing and disposal. It is an important reference for radioactive waste management for those dealing with radioactive waste, and presents a complete protection to environemnt and people. (author)

  18. A method for conditioning radioactive-wastes

    International Nuclear Information System (INIS)

    Cuaz, Daniel; Thiery, Daniel.

    1974-01-01

    Description is given of a method for conditioning radioactive-wastes, according to the main patent. This method is characterized in that the radioactive wastes are constituted by radio-elements incorporated with filtration and/or floculation promoters. This can be applied to radioactive effluent processing [fr

  19. Radioactive waste disposal sites: Two successful closures at Tinker Air Force Base

    International Nuclear Information System (INIS)

    McKenzie, G.; Mohatt, J.V.; Kowall, S.J.; Jarvis, M.F.

    1993-06-01

    This article describes remediation and closure of two radioactive waste disposal sites at Tinker Air Force Base, Oklahoma, making them exemption regulatory control. The approach consisted of careful exhumation and assessment of soils in sites expected to be contaminated based on historical documentation, word of mouth, and geophysical surveys; removal of buried objects that had gamma radiation exposure levels above background; and confirmation that the soil containing residual radium-226 was below an activity level equal to no more than a 10 mrem/yr annual dose equivalent. In addition, 4464 kg of chemically contaminated excavated soils were removed for disposal. After remediation, the sites met standards for unrestricted use. These sites were two of the first three Air Force radioactive disposal sites to be closed and were the first to be closed under Draft NUREG/CR-5512

  20. Predicted peak temperature-rises around a high-level radioactive waste canister emplaced in the deep ocean bed

    International Nuclear Information System (INIS)

    Kipp, K.L.

    1978-06-01

    A simple mathematical model of heat conduction was used to evaluate the peak temperature-rise along the wall of a canister of high-level radioactive waste buried in deep ocean sediment. Three different amounts of vitrified waste, corresponding to standard Harvest, large Harvest, and AVM canisters, and three different waste loadings were studied. Peak temperature-rise was computed for the nine cases as a function of canister geometry and storage time between reprocessing and burial. Lower waste loadings or longer storage times than initially envisaged are necessary to prevent the peak temperature-rise from exceeding 200 0 C. The use of longer, thinner cylinders only modestly reduces the storage time for a given peak temperature. Effects of stacking of waste canisters and of close-packing were also studied. (author)

  1. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  2. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  3. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Takahashi, Toshihiko; Maruko, Morihisa; Takamura, Yoshiyuki.

    1981-01-01

    Purpose: To effectively separate radioactive claddings from the slurry of wasted ion exchange resins containing radioactive claddings. Method: Wasted ion exchange resins having radioactive claddings (fine particles of iron oxides or hydroxide adhered with radioactive cobalt) are introduced into a clad separation tank. Sulfuric acid or sodium hydroxide is introduced to the separation tank to adjust the pH value to 3 - 6. Then, sodium lauryl sulfate is added for capturing claddings and airs are blown from an air supply nozzle to generate air bubbles. The claddings are detached from the ion exchange resins and adhered to the air bubbles. The air bubbles adhered with the claddings float up to the surface of the liquid wastes and then forced out of the separation tank. (Ikeda, J.)

  4. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Katada, Katsuo.

    1986-01-01

    Purpose: To improve the management for radioactive wastes containers thereby decrease the amount of stored matters by arranging the radioactive wastes containers in the order of their radioactivity levels. Method: The radiation doses of radioactive wastes containers arranged in the storing area before volume-reducing treatment are previously measured by a dosemeter. Then, a classifying machine is actuated to hoist the containers in the order to their radiation levels and the containers are sent out passing through conveyor, surface contamination gage, weight measuring device and switcher to a volume-reducing processing machine. The volume-reduced products are packed each by several units to the storing containers. Thus, the storing containers after stored for a certain period of time can be transferred in an assembled state. (Kawakami, Y.)

  5. Radioactive waste disposal. Facts, problems and responsible action

    International Nuclear Information System (INIS)

    Finckh, E.; Seitz, M.

    1994-01-01

    In a first part, natural science and technology aspects of waste management are outlined: basic concepts of radioactivity; properties, detection and primary effects of radioactive radiation; biological effect of radioactivity and radiation; general geological bases; composition of spent fuel elements; interim storage and transport; reprocessing of spent fuels; classification and treatment of radioactive wastes; emplacement possibilities for radioactive wastes; possible ways of radionuclides from the repository back into the biosphere; comparative consideration of the risks involved in nuclear waste management. The second part of the paper deals with ethical and theological aspects of radioactive waste management. (orig./HP) [de

  6. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    International Nuclear Information System (INIS)

    Greg Shott; Vefa Yucel; Lloyd Desotell

    2008-01-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  7. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  8. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  9. Elements of a radioactive waste management course

    International Nuclear Information System (INIS)

    Fentiman, A.W.

    1994-01-01

    The demand for scientists, engineers, and technicians with expertise in radioactive waste management is growing rapidly. Many universities, government agencies, and private contractors are developing courses in radioactive waste management. Two such courses have been developed at The Ohio State University. In support of that course development, two surveys were conducted. One survey went to all nuclear engineering programs in the US to determine what radioactive waste management courses are currently being taught. The other went to 600 waste management professionals, asking them to list the topics they think should be included in a radioactive waste management course. Four key elements of a course in radioactive waste management were identified. They are (a) technical information, (b) legal and regulatory framework, (c) communicating with the public, and (d) sources of information on waste management. Contents of each of the four elements are discussed, and results of the surveys are presented

  10. Recent experience with the land burial of solid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Meyer, G.L.

    1976-01-01

    Low-level, nuclear fuel cycle wastes are being disposed of at six commercially operated sites in the United States of America. Similar wastes resulting from Federal activities are being disposed of at five Federally operated sites. The hydrology, geology, climate and operational practices at these sites vary greatly. At three sites in the wetter eastern United States which have low-permeability burial media, it is difficult to keep water from getting into the trenches. Two commercial burial sites in New York and Kentucky have not performed as planned. Authorization to operate these facilities was based on site analyses which, it was believed, demonstrated that the buried radioactive wastes would not migrate from the site during their hazardous lifetime (i.e. for hundreds of years). In ten years or less, however, radioactivity has been detected offsite from these two sites. Radioactivity has migrated offsite from the Federal burial site at Oak Ridge National Laboratory, also. State and Federal authorities have stated that the radioactivity in the environment around the site was not a health hazard at this time. Information is presented on recent disposal practices and experience at these three low-level burial facilities. Based on this experience, the paper (1) briefly describes operations and problems at the sites; (2) suggests factors which led to the problems; (3) identifies problems which appear to be generic to disposal in humid climates; (4) identifies specific problems which could either reduce the ability to predict the impact of disposal operations or reduce the retention capability of the site; and (5) recommends improvements which can be made in site selection, development, and operation to reduce the environmental impact of the site. (author)

  11. Requirements for a radioactive waste data base

    International Nuclear Information System (INIS)

    Sato, Y.; Kobayashi, I.; Kikuchi, M.

    1990-01-01

    With the progress of nuclear fuel cycle in Japan, various types of radioactive waste will generate at each nuclear facility in the cycle. Therefor generated volume and stored quantity of waste will be supposed to increase. From the viewpoints of safety and public acceptance, by using mainframe computer it is necessary that the treatment of historical waste data, the estimation of generated waste volume and stored quantity and the investigation of research and development status of waste processing and disposal are carried out. This paper proposes design and development of the radioactive waste data base which is able to properly and correctly manage and grasp numerical and/or documentary information for generated radioactive waste. So the data base will be expected to use for planning the future management of radioactive waste. (author)

  12. Actions of a protocol for radioactive waste management

    International Nuclear Information System (INIS)

    Sousa, Joyce Caroline de Oliveira; Andrade, Idalmar Gomes da Silva; Frazão, Denys Wanderson Pereira; Abreu, Lukas Maxwell Oliveira de; França, Clyslane Alves; Macedo, Paulo de Tarso Silva de

    2017-01-01

    Radioactive wastes are all those materials generated in the various uses of radioactive materials, which can not be reused and which have radioactive substances in quantities that can not be treated as ordinary waste. All management of these wastes must be carried out carefully, including actions ranging from its collection to the point where they are generated to their final destination. However, any and all procedures must be carried out in order to comply with the requirements for the protection of workers, individuals, the public and the environment. The final product of the study was a descriptive tutorial on the procedures and actions of a standard radioactive waste management protocol developed from scientific publications on radiation protection. The management of radioactive waste is one of the essential procedures in the radiological protection of man and the environment where the manipulation of radioactive materials occurs. The standard radioactive management protocol includes: collection, segregation of various types of wastes, transport, characterization, treatment, storage and final disposal. The radioactive wastes typology interferes with sequencing and the way in which actions are developed. The standardization of mechanisms in the management of radioactive waste contributes to the radiological safety of all those involved

  13. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Yamamoto, Masayuki; Hashimoto, Naro

    2002-02-01

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  14. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  15. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  16. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  17. Database basic design for safe management radioactive waste

    International Nuclear Information System (INIS)

    Son, D. C.; Ahn, K. I.; Jung, D. J.; Cho, Y. B.

    2003-01-01

    As the amount of radioactive waste and related information to be managed are increasing, some organizations are trying or planning to computerize the management on radioactive waste. When we consider that information on safe management of radioactive waste should be used in association with national radioactive waste management project, standardization of data form and its protocol is required, Korea Institute of Nuclear Safety(KINS) will establish and operate nationwide integrated database in order to effectively manage a large amount of information on national radioactive waste. This database allows not only to trace and manage the trend of radioactive waste occurrence and in storage but also to produce reliable analysis results for the quantity accumulated. Consequently, we can provide necessary information for national radioactive waste management policy and related industry's planing. This study explains the database design which is the essential element for information management

  18. Radioactive waste management for a radiologically contaminated hospitalized patient

    International Nuclear Information System (INIS)

    Pina Jomir, G.; Michel, X.; Lecompte, Y.; Chianea, N.; Cazoulat, A.

    2015-01-01

    Radioactive waste management in the post-accidental phase following caring for a radiologically contaminated patient in a hospital decontamination facility must be anticipated at a local level to be truly efficient, as the volume of waste could be substantial. This management must comply with the principles set out for radioactive as well as medical waste. The first step involves identification of radiologically contaminated waste based on radioactivity measurement for volume reduction. Then, the management depends on the longest radioactive half-life of contaminative radionuclides. For a half-life inferior to 100 days, wastes are stored for their radioactivity to decay for at least 10 periods before disposal like conventional medical waste. Long-lived radioactive waste management implies treatment of liquid waste and special handling for sorting and packaging before final elimination at the French National Agency for Radioactive Waste Management (ANDRA). Following this, highly specialized waste management skills, financial responsibility issues and detention of non-medical radioactive sources are questions raised by hospital radioactive waste management in the post-accidental phase. (authors)

  19. Method of processing radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kikuchi, M; Funabashi, K; Yusa, H; Horiuchi, S

    1978-12-21

    Purpose: To decrease the volume of radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid. Method: The concentration ratio of sodium hydroxide to boric acid by weight in radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid is adjusted in the range of 0.28 - 0.4 by means of a pH detector and a sodium concentration detector. Thereafter, the radioactive liquid wastes are dried into powder and then discharged.

  20. Ruthenium separation device from radioactive waste

    International Nuclear Information System (INIS)

    Ayabe, Osao.

    1988-01-01

    Purpose: To efficiently oxidize ruthenium in radioactive wastes and evaporize ruthenium tetraoxide after oxidization thereof, thereby improve the separation and recovery rate. Constitution: The device comprises an oxidization vessel for supplying an oxidizing agent into radioactive wastes to oxidize ruthenium in the wastes into ruthenium tetraoxide, and a distillation vessel for introducing radioactive wastes after oxidization, distillating under heating ruthenium tetraoxide leached into the wastes and evaporizing ruthenium tetraoxide. By dividing the device into the oxidizing vessel and the distillation vessel, the oxidizing treatment and the distilling treatment can individually be operated optimally to improve the separation and recovery rate of ruthenium. (Takahashi, M.)

  1. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  2. Radioactive waste management in Switzerland

    International Nuclear Information System (INIS)

    Hugi, M.

    2011-01-01

    The Federal Nuclear Safety Inspectorate ENSI is the Supervisory Authority for Nuclear Safety and Security of Swiss Nuclear Facilities. The responsibilities include the evaluation and operational monitoring of the existing five Swiss nuclear power plants, the radioactive waste disposals and the nuclear research facilities. The supervisory area includes project planning, operational issues, and decommissioning of plants. ENSI supervises the formation, handling and storage of radioactive waste, the work on deep geological disposal and the transport of radioactive materials. The disposal of radioactive waste is regulated by the Swiss Nuclear Energy Act (2005) and the Nuclear Energy Ordinance (2005). The protection of humans and the environment must be guaranteed permanently. Waste disposal must be carried out in the own country by deep geological repositories. The licensing procedure for the disposal facilities is concentrated at the federal level, the cooperation of the location canton, neighboring cantons and the neighboring countries is ensured. The general license for the deep geological repository is subject to an optional referendum. The polluter pays principle applies to the disposal of radioactive waste. The waste producers are legally obliged to dispose of them and have founded the National Cooperative for the Storage of Radioactive Waste (Nagra). The federal government is responsible for waste from medicine, industry and research (MIF). The Federal Council approved the waste management certificate for low and intermediate level waste (SMA) in 1988. High-level-waste (HAA) and long-live-intermediate-level-waste (LMA), where approved in 2006. Nagra's disposal concept envisages two separate deep geological repositories for SMA and HAA / LMA in a suitable, tectonically stable, low-permeability rock formation. If a site meets both the SMA and HAA / LMA storage requirements, the selection process may result in a common location for all radioactive waste. Until the

  3. Radioactive wastes. The management of nuclear wastes. Waste workshop, first half-year - Year 2013-2014

    International Nuclear Information System (INIS)

    Esteoulle, Lucie; Rozwadowski, Elodie; Duverger, Clara

    2014-01-01

    The first part of this report first presents radioactive wastes with their definition, and their classification (radioactivity level, radioactive half-life). It addresses the issue of waste storage by presenting the different types of storage used since the 1950's (offshore storage, surface warehousing, storage in deep geological layer), and by discussing the multi-barrier approach used for storage safety. The authors then present the French strategy which is defined in the PNGMDR to develop new management modes on the long term, to improve existing management modes, and to take important events which occurred between 2010 and 2012 into account. They also briefly present the Cigeo project (industrial centre of geological storage), and evoke controversies related to the decision to locate this project in Bure (existence of geological cracks and defects, stability and tightness of the clay layer, geothermal potential of the region, economic cost). The second part proposes an overview of the issue of nuclear waste management. The author recalls the definition of a radioactive waste, indicates the origins of these wastes and their classification. She proposes a history of the radioactive waste: discovery of radioactivity, military industrialisation and awareness of the dangerousness of radioactive wastes, nuclear wastes and recent incidents (West Valley, La Hague, Windscale). An overview of policies of nuclear waste management is given: immersion of radioactive wastes, major accidental releases, solutions on the short term and on the medium term

  4. Decontamination and decommissioning of TAN radioactive liquid-waste-evaporator system (PM-2A). Final report

    International Nuclear Information System (INIS)

    Smith, D.L.

    1983-03-01

    This report describes the decontamination and decommissioning of the Test Area North (TAN) liquid waste evaporator (PM-2A). The PM-2A facility included the aboveground evaporator system, two underground holding tanks and feedlines, an electrical distribution subsystem, and one above ground concrete tank. Much surface soil of the PM-2A area was also radioactively contaminated. Stabilization of the liquid and sludge in the holding tanks, a major task, was achieved by pumping most of the liquid into 55-gal drums and mixing it with cement. The drums were buried in the Radioactive Waste Management Complex (RWMC). The remaining liquid and sludge were dried in place by layers of diatomaceous earth. The most contaminated surface soil was removed, and the area backfilled with clean topsoil and graded, reducing the surface radiation field to background. A 6-ft-high chain link fence now surrounds the area. Most of the area was seeded to crested wheatgrass. 46 figures, 9 tables

  5. Method for processing powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide; Nakayama, Yasuyuki.

    1978-01-01

    Purpose: To solidify radioactive wastes with ease and safety at a high reaction speed but with no boiling by impregnating the radioactive wastes with chlorostyrene. Method: Beads-like dried ion exchange resin, powdery ion exchange resin, filter sludges, concentrated dried waste liquor or the like are mixed or impregnated with a chlorostyrene monomer dissolving therein a polymerization initiator such as methyl ethyl ketone peroxide and benzoyl peroxide. Mixed or impregnated products are polymerized to solid after a predetermined of time through curing reaction to produce solidified radioactive wastes. Since inflammable materials are used, this process has a high safety. About 70% wastes can be incorporated. The solidified products have a strength as high as 300 - 400 kg/cm 3 and are suitable to ocean disposal. The products have a greater radioactive resistance than other plastic solidification products. (Seki, T.)

  6. Radioactive waste treatment

    International Nuclear Information System (INIS)

    Alter, U.

    1988-01-01

    For the Federal Government the safe disposal of waste from nuclear power plants constitutes the precondition for their further operation. The events in the year 1987 about the conditioning and transport of low activity waste and medium activity waste made it clear that it was necessary to intensify state control and to examine the structures in the field of waste disposal. A concept for the control of radioactive waste with negligible heat development (LAW) from nuclear installations is presented. (DG) [de

  7. A common-sense probabilistic approach to assessing inadvertent human intrusion into low-level radioactive waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    Black, P.; Hooten, M.; Black, K.; Moore, B.; Rawlinson, S.; Barker, L.

    1997-01-01

    Each site disposing of low-level radioactive waste is required to prepare and maintain a site-specific performance assessment (1) to determine potential risks posed by waste management systems to the public, and the environment, and (2) to compare these risks to established performance objectives. The DOE Nevada Operations Office, Waste Management Program recently completed a one-year study of site-specific scenarios for inadvertent human intrusion by drilling into buried low-level radioactive waste sites, as part of ongoing performance assessment studies. Intrusion scenarios focus on possible penetration of buried waste through drilling for sources of groundwater. The probability of drilling penetration into waste was judged to be driven primarily by two settlement scenarios: (1) scattered individual homesteaders, and (2) a community scenario consisting of a cluster of settlers that share drilling and distribution systems for groundwater. Management control factors include institutional control, site knowledge, placards and markers, surface barriers, and subsurface barriers. The Subject Matter Experts concluded that institutional control and site knowledge may be important factors for the first few centuries, but are not significant over the evaluation period of 10,000 years. Surface barriers can be designed that would deter the siting of a drill rig over the waste site to an effectiveness of 95%. Subsurface barriers and placards and markers will not as effectively prevent inadvertent human intrusion. Homestead and community scenarios were considered by the panel to render a site-specific probability of around 10% for inadvertent human intrusion. If management controls are designed and implemented effectively, then the probability of inadvertent human intrusion can be reduced to less than 1%

  8. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  9. Radioactive Waste and Clean-up Division

    International Nuclear Information System (INIS)

    Collard, G.

    2001-01-01

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites

  10. Characterization of the solid radioactive waste from Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Lautaru, V.; Bujoreanu, D.

    2005-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from each other. For a CANDU type reactor, the occurrence of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  11. China's status and strategy of radioactive waste management

    International Nuclear Information System (INIS)

    Bi Decai

    2001-01-01

    China has a forty-year history of nuclear industry and nuclear technology application. Safety management of radioactive wastes has been the great concern of related regulatory authorities. After the national policy on regional disposal for low and intermediate level radioactive waste was enacted in 1992, the management of radioactive wastes gradually focused on disposal. Currently, the strategies for radioactive waste management in China are: (a) storing high level radioactive wastes temporarily and launching the study of vitrification and deep geological disposal of high level liquid waste, treating spent fuels from PWR by reprocessing; (b) implementing regional disposal policy for low and intermediate level wastes, implementing cement solidification for low and intermediate level liquid waste before disposal, carrying out bulk casting shallow land disposal technology and hydraulic-fractured cement solidification for deep geological disposal in some special regions under specific conditions, treating low and intermediate level solid radioactive wastes by cement solidification after incineration or by compressing before final disposal; (c) stabilizing the tailing repository by reinforcing embankment, constructing flood dam and overlaying plantation; and (d) developing and formulating laws, regulations, and standards to ensure safe management of radioactive wastes. When establishing standards, other than to follow the generic principles and requirements, emphasis should be placed on the following principles: safety the first, economy, disposal of radioactive wastes as focus, and introduction of international advanced standards as possible. (author)

  12. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  13. Waterproofing improvement of radioactive waste asphalt solid

    International Nuclear Information System (INIS)

    Adachi, Katsuhiko; Yamaguchi, Takashi; Ikeoka, Akira.

    1981-01-01

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 60 0 C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  14. Identification and characterization of radioactive wastes

    International Nuclear Information System (INIS)

    RANDRIAMORA, T.H.

    2007-01-01

    As the goal of the radioactive waste management is to protect human health and the environment, without imposing excessive constraints to the future generations, this work consists with of the identification of the radioactive waste existing in Madagascar, theirs characterizations for their later conditioning and their final storage. In this work, we used a dosimeter GRAETZ X5 C and a portable spectrometer EXPLORANIUM GR 135. These apparatuses have a great advantage at the user level because of their capacity to measure the equivalent dose rate, to identify, search and locate radiocative elements. The establishment of national center for radioactive waste management for the conditioning and the storage of spent sealed sources is the best solution for radioactive waste management in Madagascar. [fr

  15. Radioactive waste management perspectives in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Mohamad Hakiman Mohamad Yusoff; Muhammad Zahid Azrmi

    2009-01-01

    Waste Technology Development Centre (WasTeC) has been mandated to carry out radioactive waste management activities since 1984. The main objective of WasTeC is to deal with radioactive waste in a manner that protects health and the environment now and in the future, without imposing undue burdens on the future generations. This centre provides services for waste generators within Nuclear Malaysia and also for external waste generators. Services provided include transportation of radioactive waste, decontamination, treatment and storage. This paper will discuss on procedure for applying for services, responsibility of waste generator, responsibility of waste operator, need to comply with waste acceptance criteria and regulations related to management of radioactive waste. (Author)

  16. DOE program for improvement practices for shallow burial of radioactive waste

    International Nuclear Information System (INIS)

    Dieckhoner, J.E.

    1978-01-01

    The practice of burying solid radioactive waste in relatively shallow pits or trenches at government nuclear sites dates back to the Manhattan Project. In some cases, where local conditions were considered unfavorable, intersite shipment of waste has been required. This general concept was later used at commercially-operated sites under Federal or state regulation. The purpose, scope, and results of a DOE program begun several years ago for improvements of burial ground disposal methods are reviewed. The program includes the re-evaluation of the original siting and of operating practices at existing burial grounds (including monitoring for migration of activity); the development of improved criteria for siting of new grounds that might be required as the defense site operations continue; and development of corrective measures such as diking and better draining for possible unsatisfactory conditions that might be detected. The possible applications of these findings to commercial burial grounds is discussed

  17. Institutional arrangements for radioactive waste management

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-01-01

    The existing organizational structure and regulations for management of high-level and TRU wastes are likely to become ineffective if left unchanged. Recommendations for institutional reforms include the establishment of a National Radioactive Waste Authority in the U.S. and of an International Radioactive Waste Commission under IAEA

  18. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.; Frye-O'Bryant, R.C.

    1992-01-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches

  19. Spanish program on disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.; Ramos Salvador, L.; Martines Martinez, A.

    1977-01-01

    The Spanish Energetic Program assumes an installed nuclear electrical power of 23.000 MWe by the year 1985. Therefore, Spain is making an effort in the managment of radioactive wastes, that can be synthesized in the following points: 1.- Make-up and review of the regulation on the management of radioactive wastes. 2.- Development of the processes and equipment for the treatment of solid, liquid and gaseous wastes from the CNEN ''Juan Vigon'', as well as those from the Nuclear Center of Soria. Solidification studies of RAA wastes arisen from the reprocessing. 3.- Evaluation of radioactive waste treatment systems of the new installed nuclear power plants. Assistance to the nuclear and radioactive facilities operators. 4.- Increase the storage capacity of the pilot repository for solid radioactive wastes of categories 1 and 2 IAEA, located in Sierra Albarrana. Studies of adequate geological formation for storage of solid wastes of IAEA categories 3 and 4. 5.- Studies about long term surface storage systems for solidified RAA wastes arisen from the reprocessing [es

  20. Buried waste remote survey of the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Richardson, B.S.; Noakes, M.W.; Griebenow, B.E.; Josten, N.E.

    1991-01-01

    Burial site characterization is an important first step in the restoration of subsurface disposal sites. Testing and demonstration of technology for remote buried waste site characterization were performed at the Idaho National Engineering Laboratory (INEL) by a team from five US Department of Energy (DOE) laboratories. The US Army's Soldier Robot Interface Project (SRIP) vehicle, on loan to the Oak Ridge National Laboratory (ORNL), was used as a remotely operated sensor platform. The SRIP was equipped with an array of sensors including terrain conductivity meter, magnetometer, ground-penetrating radar (GPR), organic vapor detector, gamma-based radar detector, and spectrum analyzer. The testing and demonstration were successfully completed and provided direction for future work in buried waste site characterization

  1. Optimization of the radioactive waste storage

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio

    2005-01-01

    Radioactive waste storage is the practice adopted in countries where the production of small quantities of radioactive waste does not justify the immediate investment in the construction of a repository. Accordingly, at IPEN, treated radioactive wastes, mainly solid compacted, have been stored for more than 20 years, in 200 dm 3 drums. The storage facility is almost complete and must be extended. Taking into account that a fraction of these wastes has decayed to a very low level due to the short half - life of some radionuclides and considering that 'retrieval for disposal as very low level radioactive waste' is one of the actions suggested to radioactive waste managers, the Laboratory of Waste Management of IPEN started a project to apply the concepts of clearance levels and exemption limits to optimize the radioactive waste storage capacity . This study has been carried out by determining the doses and costs related to two main options: either to maintain the present situation or to open the packages and segregate the wastes that may be subject to clearance, using the national, two international clearance levels and the annual public limit. Doses and costs were evaluated as well as the collective dose and the detriment cost. The analytical solution among the evaluated options was determined by using the technique to aid decision making known as cost-benefit analysis. At last, it was carried out the sensitivity analysis considering all criteria and parameters in order to assess the robustness of the analytical solution. This study can be used as base to other institutions or other countries with similar nuclear programs. (author)

  2. Method and device of decontaminating radioactive solid wastes

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Tamada, Masami.

    1983-01-01

    Purpose: To surely enable grinding for the inner surface of hollow radioactive solid wastes such as pipeways or valves, as well as enable to decontaminate these solid wastes to such a level as being capable of processing in the same manner for the ordinary wastes. Method: A grinding piece abutting resiliently against the inner surface of a hollow radioactive solid wastes to be contaminated is attached at the top end of a flexible shaft, and the inner surface of the radioactive solid wastes is ground while rotating and slightly reciprocating, as well as axially moving the flexible shaft. Consequently, since the grinding piece is always abutted against the inner surface of the radioactive solid wastes just following after the profile of the inner surface, and the flexible shaft is resiliently flexed corresponding to the profile of the inner surface of the radioactive solid wastes, even an inner surface of radioactive solid wastes with a complicated configuration can surely be ground entirely. This surely enables to remove radioactive claddings and contaminated layers deposited on the surface. (Yoshihara, H.)

  3. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  4. Exposing the faults: the geological case against the plans by UK NIREX to dispose of radioactive waste

    International Nuclear Information System (INIS)

    Richardson, P.J.

    1989-01-01

    NIREX has given the strong impression throughout is recent public consultation exercise connected with underground disposal of low and intermediate level waste that the problem is one of public and political acceptability, rather than one of a technical nature. This is not the place in which to list the considerable failings of this latest attempt. Nevertheless, the results of the consultation process show quite clearly that it has no mandate from the British public to develop a single, national deep repository for the burial of radioactive waste. There is considerable opposition to this method of managing radioactive waste and a quite reasonable suspicion of the claims by NIREX concerning the supposed integrity and safety of this deep burial option. This report gives substance to those suspicions and spells out in detail the significant areas of uncertainty in the concept of effective geological containment of hazardous radioactive elements, which remain dangerous for tens of thousands of years. Because the science of geology is essentially retrospective rather than predictive, NIREX's plans for a single, national, deep 'repository' depend heavily upon a wide range of assumptions about the geological and hydrogeological regimes in certain areas of the United Kingdom (UK). This report demonstrates that these assumptions are based on a limited understanding of UK geology and on unvalidated and simplistic theoretical models of geological processes, the performance of which can never be directly tested over the long time-scales involved. An extensive public relations exercise cannot hide the unavoidable technical uncertainties associated with burying radioactive waste. Dumping radioactive waste is foolhardy and irresponsible in the face of these unknowns. NIREX's proposals offer no guarantees for the safe and effective containment of radioactivity. They are deeply flawed. This report exposes the faults. (author)

  5. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  6. Optimization of Concrete Composition in Radioactive Waste Management

    International Nuclear Information System (INIS)

    IIija, P.

    1999-01-01

    Low and Intermediate level radioactive waste re presents 95% of the total wastes that is conditioned into special concrete containers. Since these containers are to protect radioactive waste safely for about 300 years, the selection and precise control of physical and mechanical characteristics of materials is very important. After volume reduction and valuable components recovery, waste materials have to be conditioned for transport, storage and disposal. Conditioning is the waste management step in which radioactive wastes are immobilized and packed . In this paper methods and optimization of concrete container composition, used for storing radioactive waste, is presented

  7. Injection of radioactive waste by hydraulic fracturing at West Valley, New York. Volume 2. Text

    International Nuclear Information System (INIS)

    1978-05-01

    Results of a preliminary study are presented of the technical feasibility of radioactive waste disposal by hydraulic fracturing and injection into shale formations below the Nuclear Fuel Services Incorporated site at West Valley, New York. At this time there are approximately 600,000 gallons of high level neutralized Purex waste, including both the supernate (liquid) and sludge, and a further 12,000 gallons of acidic Thorex waste stored in tanks at the West Valley facilities. This study assesses the possibility of combining these wastes in a suitable grout mixture and then injecting them into deep shale formations beneath the West Valley site as a means of permanent disposal. The preliminary feasibility assessment results indicated that at the 850 to 1,250 feet horizons, horizontal fracturing and injection could be effectively achieved. However, a detailed safety analysis is required to establish the acceptability of the degree of isolation. The principal concerns regarding isolation are due to existing and possible future water supply developments within the area and the local effects of the buried valley. In addition, possible future natural gas developments are of concern. The definition of an exclusion zone may be appropriate to avoid problems with these developments. The buried valley may require the injections to be limited to the lower horizon depending on the results of further investigations

  8. Remediating the INEL's buried mixed waste tanks

    International Nuclear Information System (INIS)

    Kuhns, D.J.; Matthern, G.E.; Reese, C.L.

    1996-01-01

    The Idaho National Engineering Laboratory (INEL), formerly the National Reactor Testing Station (NRTS), encompasses 890 square miles and is located in southeast Idaho. In 1949, the United States Atomic Energy Commission, now the Department of Energy (DOE), established the NRTS as a site for the building and testing of nuclear facilities. Wastes generated during the building and testing of these nuclear facilities were disposed within the boundaries of the site. These mixed wastes, containing radionuclides and hazardous materials, were often stored in underground tanks for future disposal. The INEL has 11 buried mixed waste storage tanks regulated under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) ranging in size from 400 to 50,000 gallons. These tanks are constructed of either stainless or carbon steel and are located at 3 distinct geographic locations across the INEL. These tanks have been grouped based on their similarities in an effort to save money and decrease the time required to complete the necessary remediation. Environmental Restoration and Technology Development personnel are teaming in an effort to address the remediation problem systematically

  9. Instructive for radioactive solid waste management

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia

    2014-01-01

    An instructive is established for the management system of radioactive solid residues waste of the Universidad de Costa Rica, ensuring the collection, segregation, storage and disposal of waste. The radioactive solid waste have been segregated and transferred according to features and provisions of the Universidad de Costa Rica and CICANUM [es

  10. Latest developments in the predisposal of radioactive waste at the radioactive waste management department from ifin-hh

    International Nuclear Information System (INIS)

    Dragolici, F.; Dogaru, G.; Neacsu, E.

    2016-01-01

    The Radioactive Waste Management Department (DMDR) from IFIN-HH has a wide experience in the management of the non-fuel cycle radioactive wastes from all over Romania generated from nuclear techniques and technologies application, assuring the radiological safety and security of operators, population and environment. During 2011-2015 was implemented a major upgrading programme applied both on the technological systems of the building and on equipment. The paper describes the facility developments having the scope to share to the public and stakeholders the radioactive waste predisposal capabilities available at DMDR-IFIN-HH. As a whole, today DMDR-IFIN-HH represents a complete and complex infrastructure, assuring high quality services in all the steps related to the management of the institutional radioactive waste in Romania. (authors)

  11. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Frazier, D.H.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.; Watson, R.A.

    1977-04-01

    Goals are proposed for the national radioactive waste management program to establish a policy basis for the guidance and coordination of the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations, and analyses of selected primary literature and interviews of personnel concerned with waste management. Public concerns are identified, their relevance assessed, and a conceptual framework is developed that facilitates understanding of the dimensions and demands of the radioactive waste management problem. The nature and scope of the study are described along with the approach used to arrive at a set of goals appropriately focused on waste management

  12. Hydrogeology, ground-water flow, and tritium movement at low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Garklavs, George; Healy, R.W.

    1986-01-01

    Groundwater flow and tritium movement are described at and near a low-level radioactive waste disposal site near Sheffield, Illinois. Flow in the shallow aquifer is confined to three basins that ultimately drain into a stripmine lake. Most of the flow from the site is through a buried, pebbly sandfilled channel. Remaining flow is toward alluvium of an existing stream. Conceptual flow models for the two largest basins are used to improve definition of flow velocity and direction. Flow velocities range from about 25 to 2,500 ft/yr. Tritium was found in all three basins. The most extensive migration of tritium is coincident with buried channel. Tritium concentrations ranged from detection level to more than 300 nanocuries/L. (USGS)

  13. Interim storage of radioactive waste packages

    International Nuclear Information System (INIS)

    1998-01-01

    This report covers all the principal aspects of production and interim storage of radioactive waste packages. The latest design solutions of waste storage facilities and the operational experiences of developed countries are described and evaluated in order to assist developing Member States in decision making and design and construction of their own storage facilities. This report is applicable to any category of radioactive waste package prepared for interim storage, including conditioned spent fuel, high level waste and sealed radiation sources. This report addresses the following issues: safety principles and requirements for storage of waste packages; treatment and conditioning methods for the main categories of radioactive waste; examples of existing interim storage facilities for LILW, spent fuel and high level waste; operational experience of Member States in waste storage operations including control of storage conditions, surveillance of waste packages and observation of the behaviour of waste packages during storage; retrieval of waste packages from storage facilities; technical and administrative measures that will ensure optimal performance of waste packages subject to various periods of interim storage

  14. Characterization of the solid radioactive waste From Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Laotaru, V.

    2005-01-01

    Full text: During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from which other. For a CANDU type reactor, the appearance of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  15. Analyses of soils at commercial radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , CO 3 2- , SO 4 2- , Cl - , S 2-

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  17. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  18. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  19. Management of radioactive waste in FR Yugoslavia

    International Nuclear Information System (INIS)

    Plecas, I.

    1998-01-01

    In the last forty years, in FR Yugoslavia, as a result of the two research reactors operation and as a result of the radionuclides application in the medicine, industry and agriculture, radioactive waste materials of different levels of specific activity was generated. As a temporary solution, these radioactive waste materials are stored in the two interim storage facilities. Since the one of the storages is completely filled with the radioactive waste materials that are packed in the metal drums and plastic barrels, and the second one has a effective space for radioactive waste materials storing for the approximately next few years, attempts are made in the 'Vinca' institute of nuclear sciences in developing the immobilization process for the low and intermediate level radioactive waste materials and their safe disposal into the appropriate disposal system, that was adopted for such materials. Research work on optimization of the chosen techniques in treatment, conditioning, immobilization and storing the radioactive waste materials is in progress. Investigations are carrying out on materials that are adopted as components of the engineer trench system, in aim to improve their physical-chemical properties, mainly retention the radionuclides release from the disposal facility to environment, as well as their mechanical characteristics. Parallel with the optimization of the composition of the materials that will create the engineer trench system, optimization of the processes and matrix-radioactive waste mixture forms is in progress, and we hope that this work will influence the design of the future Yugoslav storage center, shallow land burial type, for low and intermediate level radioactive waste materials

  20. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  1. Progress on Radioactive Waste Treatment Facilities Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  2. Cryofracture as a tool for preprocessing retrieved buried and stored transuranic waste

    International Nuclear Information System (INIS)

    Loomis, G.G.; Winberg, M.R.; Ancho, M.L.; Osborne, D.

    1992-01-01

    This paper summarizes important features of an experimental demonstration of applying the Cryofracture process to size-reduce retrieved buried and stored transuranic-contaminated wastes. By size reducing retrieved buried and stored waste, treatment technologies such as thermal treatment can be expedited. Additionally, size reduction of the waste can decrease the amount of storage space required by reducing the volume requirements of storage containers. A demonstration program was performed at the Cryofracture facility by Nuclear Remedial Technologies for the Idaho National Engineering Laboratory. Cryofracture is a size-reducing process whereby objects are frozen to liquid nitrogen temperatures and crushed in a large hydraulic press. Material s at cryogenic temperatures have low ductility and are easily size-reduced by fracturing. Six 55-gallon drums and six 2 x 2 x 8 ft boxes containing simulated waste with tracers were subjected to the Cryofracture process. Data was obtained on (a) cool-down time, (b) yield strength of the containers, (c) size distribution of the waste before and after the Cryofracture process, (d) volume reduction of the waste, and (e) sampling of air and surface dusts for spread of tracers to evaluate potential contamination spread. The Cryofracture process was compared to conventional shredders and detailed cost estimates were established for construction of a Cryofracture facility at the Idaho National Engineering Laboratory

  3. Low-Activity Radioactive Wastes

    Science.gov (United States)

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  4. Management of very low-level radioactive waste

    International Nuclear Information System (INIS)

    Chapalain, E.; Damoy, J.; Joly, J.M.

    2003-01-01

    This document comprises 3 articles. The first article presents the concern of very low-level radioactive wastes generated in nuclear installations, the second article describes the management of the wastes issued from the dismantling operations of the ALS (linear accelerator of Saclay) and of the Saturn synchrotron both located in Saclay Cea's center. The last article presents the storage facility which is specifically dedicated to very low-level radioactive wastes. This storage facility, which is located at Morvilliers, near the 'Centre de l Aube' (used to store the low-, and medium-level, short-lived radioactive wastes), will receive the first packages next summer. Like the other storage facilities, it will be managed by ANDRA (national radioactive waste management agency)

  5. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  6. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Seki, Shuji.

    1992-01-01

    Liquid wastes are supplied to a ceramic filter to conduct filtration. In this case, a device for adding a powdery inorganic ion exchanger is disposed to the upstream of the ceramic filter. When the powdery inorganic ion exchanger is charged to the addition device, it is precoated to the surface of the ceramic filter, to conduct separation of suspended matters and separation of ionic nuclides simultaneously. Liquid wastes returned to a collecting tank are condensed while being circulated between the ceramic filter and the tank and then contained in a condensation liquid waste tank. With such a constitution, both of radioactive nuclides accompanied by suspended matters in the radioactive liquid wastes and ionic nuclides can be captured efficiently. (T.M.)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  8. Radioactive waste management: An international perspective

    International Nuclear Information System (INIS)

    Chan, C.Y.

    1992-01-01

    Scientists, governments, and the general public have devoted considerable attention to the subject of radioactive waste over the past 35 years. The subject has gained even more attention of late, owing to heightened awareness of environmental protection. Potential transboundary effects have further added to this interest, which today extends beyond local domains to regional and global levels. Almost all of the IAEA's Member States generate some radioactive wastes. The type of waste they produce varies, however, as do the quantities, which range from a few grams to several hundred tonnes of wastes per year. This article will summarize the status of waste management and disposal activities in IAEA Member States as well as providing a brief background on what radioactive waste is, where it comes from, and how it is managed

  9. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  10. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  11. Definition and compositions of standard wastestreams for evaluation of Buried Waste Integrated Demonstration treatment technologies

    International Nuclear Information System (INIS)

    Bates, S.O.

    1993-06-01

    The Buried Waste Integrated Demonstration (BWID) Project was organized at the Idaho National Engineering Laboratory to support research, development, demonstration, testing, and evaluation of emerging technologies that offer promising solutions to remediation of buried waste. BWID will identify emerging technologies, screen them for applicability to the identified needs, select technologies for demonstration, and then evaluate the technologies based on prescribed performance objectives. The technical objective of the project is to establish solutions to Environmental Restoration and Waste Management's technological deficiencies and improve baseline remediation systems. This report establishes a set of standard wastestream compositions that will be used by BWID to evaluate the emerging technologies. Five wastestreams are proposed that use four types of waste and a nominal case that is a homogenized combination of the four wastes. The five wastestreams will provide data on the compositional extremes and indicate the technologies' effectiveness over the complete range of expected wastestream compositions

  12. Radioactive waste management at nuclear power plant Cernavoda

    International Nuclear Information System (INIS)

    Raducea, D.

    2002-01-01

    Many human activities generate waste, but people are worried about wastes produced in nuclear power plants (NPPs). Their concern is an unjustified fear toward the hazards from radioactive waste, probably because in any country generating electric power by NPPs a lot of attention is paid to relevant parties involved in radioactive waste management. Significant attention is also given to the management of radioactive waste at the Cemavoda NPP. The general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment, is conceptually established. The overall programme provides the necessary facilities to adequately manage solid radioactive waste from Cemavoda NPP Unit 1 and will be capable of expansion when other units are brought into service. (author)

  13. Predisposal of Radioactive Waste from NPP 1000 MWe

    International Nuclear Information System (INIS)

    Suryantoro

    2007-01-01

    Predisposal of radioactive waste from NPP 1000 MW which was planned to be operated in 2016 has been conducted. In this study NPP applying PWR type was assumed. This assessment comprises all aspects of radioactive waste coming from NPP. One through cycle was chosen consequently no reprocessing step will be conducted. The assessment shows that technologically all radioactive waste treatment process rising from NPP operation has similarities to the existing radioactive waste process conducted by RWI which has lower scale of waste amount. (author)

  14. The solidification of radioactive waste

    International Nuclear Information System (INIS)

    Nagaya, Kiichi; Fujimoto, Yoshio; Hashimoto, Yasuo; Nomura, Ichiro

    1985-01-01

    A previous paper covered the decomposition and vitrification of Na 2 SO 4 (the primary component of the liquid waste from BWR) with silica. Now, in order to establish an integrated treatment system for the radioactive waste from BWR, this paper examines the effects of combining incinerator ash and other incinerator wastes with radioactive waste on the durability of the final vitrified products. A bench scale test plat consisting of a waiped file evaporator/dryer, a Joule-heated glass melter and SO 2 absorber was therefore put into operation and run safety for a period of 3000 hours. The combination of the radioactive waste with incinerator ash and the secondary waste of the incinerator was found to make no difference on the durability of the final vitrified products effecting no increase or decrease. Durability similar to that displayed in the beaker tests was proven, with the final vitrified products exhibiting a leaching rate less than 3 x 10 -4 g/cm 2 /day at 95 deg C. (author)

  15. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  16. The trends of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nomi, Mitsuhiko

    1977-01-01

    The disposal of radioactive wastes instead of their treatment has come to be important problem. The future development of nuclear fuel can not be expected unless the final disposal of nuclear fuel cycle is determined. Research and development have been made on the basis of the development project on the treatment of radioactive wastes published by Japan Atomic Energy Commission in 1976. The high level wastes produced by the reprocessing installations for used nuclear fuel are accompanied by strong radioactivity and heat generation. The most promising method for their disposal is to keep them in holes dug at the sea bottom after they are solidified. Middle or low level wastes are divided into two groups; one contains transuranium elements and the other does not. These wastes are preserved on the ground or in shallow strata, while the safe abandonment into the ground or the sea has been discussed about the latter. The co-operations among nations are necessary not only for peaceful utilization of atomic energy but also for radioactive waste disposal. (Kobatake, H.)

  17. Design and construction of low level radioactive waste disposal facility at Rokkasho storage center

    International Nuclear Information System (INIS)

    Takahashi, K.; Itoh, H.; Iimura, H.; Shimoda, H.

    1992-01-01

    Japan Nuclear Fuel Industries Co., Inc. (JNFI) which has been established to dispose through burial the low-level radioactive waste (LLW) produced by nuclear power stations over the country is now constructing Rokkasho LLW Storage Center at Rokkasho Village,Aomori Prefecture. At this storage center JNFI plans to bury about 200,000m 3 , of LLW (equivalent to about one million drums each with a 200 liter capacity), and ultimately plans to bury about 600,000m 3 about 3 million drums of LLW. About the construction of the burial facilities for the first-stage LLW equivalent to 200,000 drums (each with a 200-liter capacity) we obtained the government's permit in November, 1990 and set out the construction work from the same month, which has since been promoted favorably. The facilities are scheduled to start operation from December, 1992. This paper gives an overview of at these facilities

  18. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    International Nuclear Information System (INIS)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-01-01

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value

  19. Buried transuranic wastes at ORNL: Review of past estimates and reconciliation with current data

    International Nuclear Information System (INIS)

    Trabalka, J.R.

    1997-09-01

    Inventories of buried (generally meaning disposed of) transuranic (TRU) wastes at Oak Ridge National Laboratory (ORNL) have been estimated for site remediation and waste management planning over a period of about two decades. Estimates were required because of inadequate waste characterization and incomplete disposal records. For a variety of reasons, including changing definitions of TRU wastes, differing objectives for the estimates, and poor historical data, the published results have sometimes been in conflict. The purpose of this review was (1) to attempt to explain both the rationale for and differences among the various estimates, and (2) to update the estimates based on more recent information obtained from waste characterization and from evaluations of ORNL waste data bases and historical records. The latter included information obtained from an expert panel's review and reconciliation of inconsistencies in data identified during preparation of the ORNL input for the third revision of the Baseline Inventory Report for the Waste Isolation Pilot Plant. The results summarize current understanding of the relationship between past estimates of buried TRU wastes and provide the most up-to-date information on recorded burials thereafter. The limitations of available information on the latter and thus the need for improved waste characterization are highlighted

  20. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Sugimoto, Yoshikazu; Kikuchi, Makoto; Yusa, Hideo.

    1979-01-01

    Purpose: To obtain solidified radioactive wastes at high packing density by packing radioactive waste pellets in a container and then packing and curing a thermosetting resin therein. Method: Radioactive liquid wastes are dried into power and subjected to compression molding. The pellets thus obtained are supplied in a predetermined amount from the hopper to the inside of a drum can. Then, thermosetting plastic and a curing agent are filled in the drum can. Gas between the pellets is completely expelled by the intrusion of the thermosetting resin and the curing agent among the pellets. Thereafter, the drum can is heated by a heater and curing is effected. After the curing, the drum can is sealed. (Kawakami, Y.)

  1. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    International Nuclear Information System (INIS)

    Dziewinska, K.M.

    1998-01-01

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities

  2. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  3. Management of radioactive wastes of iodine therapy

    International Nuclear Information System (INIS)

    Silva, Andre R.M.; Santos, Helena C.

    2015-01-01

    The main objective of waste radioactive management is to ensure the protection of man and the preservation of the environment. The regulation that established the basis for the good radioactive waste management was elaborated by the Comissao Nacional de Energia Nuclear (CNEN), in 1985. It is the CNEN-NE-6:05: 'Management radioactive waste in radioactive facilities', which although it an important standard related to radioactive waste management and help largely in the design of a management system in radioactive facilities of radioisotope users, covers the topics in a general way and does not consider individuals aspects of the different plants, as is the case of nuclear medicine units. The main objective of this study is to show the segregation and safe packaging, avoiding unnecessary exposure of professionals involved and public individuals in general

  4. Plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Moriyama, Noboru

    1981-01-01

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  5. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Kira, Satoshi; Watanabe, Naotoshi; Nagaoka, Takeshi; Akane, Junta.

    1982-01-01

    Purpose: To obtain solidification products of radioactive wastes having sufficient monoaxial compression strength and excellent in water durability upon ocean disposal of the wastes. Method: Solidification products having sufficient strength and filled with a great amount of radioactive wastes are obtained by filling and solidifying 100 parts by weight of chlorinated polyethylene resin and 100 - 500 parts by weight of particular or powderous spent ion exchange resin as radioactive wastes. The chlorinated polyethylene resin preferably used herein is prepared by chlorinating powderous or particulate polyethylene resin in an aqueous suspending medium or by chlorinating polyethylene resin dissolved in an organic solvent capable of dissolving the polyethylene resin, and it is crystalline or non-crystalline chlorinated polyethylene resin comprising 20 - 50% by weight of chlorine, non-crystalline resin with 25 - 40% by weight of chlorine being particularly preferred. (Horiuchi, T.)

  6. Radioactive waste management; the realities as against the myths

    International Nuclear Information System (INIS)

    Williams, I.

    1980-01-01

    Nuclear power generation is now an essential requirement for the mankind in the current energy difficulties. The problem of radioactive waste management is arousing the opposition, but it must not inhibit the utilization of nuclear energy. Radioactive waste management concerns the whole course from its occurrence to its final disposal. The purpose of the management is then to protect absolutely the human beings of present and future generations from the danger of radioactivity. Radioactive wastes are varied much in their kinds and natures. While the management technology is nearly all established, the amounts of wastes are increasing. The following matters are described. Definition of radioactive waste management, fundamental strategies of the management, kinds of radioactive wastes, the present situation of radioactive waste management, and problems in the management. (J.P.N.)

  7. CEA and its radioactive wastes

    International Nuclear Information System (INIS)

    Marano, S.

    1999-01-01

    CEA annually produces about 3500 tons of radioactive wastes in its 43 basic nuclear installations. CEA ranks third behind EDF and Cogema. Low-level wastes (A wastes) are sent to ANDRA (national agency for the management of nuclear wastes)whereas medium-level wastes (B wastes) are stored by CEA itself. CEA has checked off its storing places and has set up an installation Cedra to process and store ancient and new nuclear wastes. 3 other installations are planned to operate within 6 years: Agate (Cadarache) will treat liquid effluents, Stella (Saclay) will process liquid wastes that are beta or gamma emitters, and Atena (Marcoule) will treat and store radioactive sodium coming from Phenix reactor and IPSN laboratories. The use of plasma torch for vitrifying wastes is detailed, the management of all the nuclear wastes produced by CEA laboratories and installations is presented. (A.C.)

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be

  9. Assessment of selected furnace technologies for RWMC waste

    International Nuclear Information System (INIS)

    Batdorf, J.; Gillins, R.; Anderson, G.L.

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste

  10. Note from the Radioactive Waste Section

    CERN Multimedia

    TS Department

    2008-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to announce that the radioactive waste treatment centre will be closed on Friday, 19 December. In addition, waste reception will be limited to a strict minimum on Thursday, 18 December. Users of the centre are requested to adjust their plans accordingly. For more information, call 73875.

  11. Technology applications for radioactive waste minimization

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1994-01-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry

  12. Electrochemistry and Radioactive Wastes: A Scientific Overview

    Directory of Open Access Journals (Sweden)

    Maher Abed Elaziz

    2015-12-01

    Full Text Available Radioactive wastes are arising from nuclear applications such as nuclear medicine and nuclear power plants. Radioactive wastes should be managed in a safe manner to protect human beings and the environment now and in the future. The management strategy depends on collection, segregation, treatment, immobilization, and disposal. The treatment process is a very important step in which the hazardous materials were converted to a more concentrated, less volume and less movable materials. Electrochemistry is the branch of chemistry in which the passage of electric current was producing a chemical change. Electrochemical treatment of radioactive wastes is widely used all over the world. It has a number of advantages and hence benefits. Electrochemistry can lead to remote, automatic control and increasing safety. The present work is focusing on the role of electrochemistry in the treatment of radioactive wastes worldwide. It contains the fundamentals of electrochemistry, the brief story of radioactive wastes, and the modern trends in the electrochemical treatment of radioactive wastes. An overview of electrochemical decomposition of organic wastes, electrochemical reduction of nitrates, electro- precipitation, electro- ion exchange, and electrochemical remediation of soil are outlined. The main operating factors, the mechanism of decontamination, energy consumption and examples of field trials are considered.

  13. The radiation protection and the radioactive wastes management

    International Nuclear Information System (INIS)

    Servais, F.; Woiche, Ch.; Hunin, Ch.

    2003-01-01

    This chapter concerns the radiation protection in relation with the radioactive waste management. Three articles make the matter of this file, the management of radioactive medical waste into hospitals, a new concept of waste storage on site, the protection devices on the long term with some lessons for the radioactive waste management. (N.C.)

  14. Transport of radioactive waste in Germany - a survey

    International Nuclear Information System (INIS)

    Alter, U.

    1995-01-01

    The transport of radioactive waste is centralised and coordinated by the German Railway Company (Deutsche Bahn AG, DB) in Germany. The conditioning of radioactive waste is now centralised and carried out by the Gesellschaft fuer Nucklear Service (GNS). The Germany Railway Company, DB, is totally and exclusively responsible for the transport, the GNS is totally and exclusively responsible for the conditioning of radioactive waste. The German Railway Company transports all radioactive waste from nuclear power plants, conditioning facilities and the existing intermediate storage facilities in Germany. In 1992 nearly 177 shipments of radioactive waste were carried out, in 1991 the total amount was 179 shipments. A brief description of the transport procedures, the use of different waste packages for radioactive waste with negligible heat generation and the transport routes within Germany will be given. For this purpose the inspection authorities in Germany have used a new documentation system, a special computer program for waste flow tracking and quality assurance and compliance assurance, developed by the electrical power companies in Germany. (Author)

  15. Outline of the radioactive waste management strategy at the national radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.F.; Tukhto, A.A.; Ivanov, V.B.

    2000-01-01

    The national Belarus radioactive waste disposal facility 'Ekores' was started in 1964 and was designed for radioactive waste coming from nuclear applications in industry, medicine and research. It is located in the neighbourhood of Minsk (2 Mil. people) and it is the only one in this country. In 1997 the Government initiated the project for the facility reconstruction. The main reconstruction goal is to upgrade radiological safety of the site by creating adequate safety conditions for managing radioactive waste at the Ekores disposal facility. This covers modernising technologies for new coming wastes and also that the wastes currently disposed in the pits are retrieved, sorted and treated in the same way as new coming wastes. The reconstruction project developed by Belarus specialists was reviewed by the IAEA experts. The main provisions of the revised project strategy are given in this paper. The paper's intention is to outline the technical measures which may be taken at standard 'old type Soviet Radon' disposal facility so as to ensure the radiological safety of the site. (author)

  16. Method for solidifying powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide.

    1978-01-01

    Purpose: To solidify powdery radioactive wastes through polymerization in a vessel at a high impregnation speed with no cloggings in pipes. Method: A drum can is lined with an inner liner layer of a predetermined thickness made of inflammable material such as glass fiber. A plurality of pipes for supplying liquid plastic monomer are provided in adjacent to the upper end face of the inflammable material or inserted between the vessel and the inflammable material. Then powdery radioactive wastes are filled in the vessel and the liquid plastic monomer dissolving therein a polymerization initiator is supplied through the pipes. The liquid plastic monomer impregnates through the inflammable material layer into the radioactive wastes and the plastic monomer is polymerized by the aid of the polymerization initiator after a predetermined of time to produce solidified plastic products of radioactive wastes. (Seki, T.)

  17. ANSTO's radioactive waste management policy. Preliminary environmental review

    International Nuclear Information System (INIS)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs

  18. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  19. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Kuribayashi, Hiroshi; Soda, Kenzo; Mihara, Shigeru.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and smoothly by adding oxidizers to radioactive liquid wastes. Method: Sulfuric acid, etc. are added to radioactive liquid wastes to adjust the pH value of the liquid wastes to less than 3.0. Then, ferrous sulfates are added such that the iron concentration in the liquid wastes is 100 mg/l. Then, after adjusting pH suitably to the drying powderization by adding alkali such as hydroxide, the liquid wastes are dried and powderized. The resultant powder is subjected to plastic solidification by using polymerizable liquid unsaturated polyester resins as the solidifying agent. The thus obtained solidification products are stable in view of the physical property such as strength or water proofness, as well as stable operation is possible even for those radioactive liquid wastes in which the content ingredients are unknown. (Takahashi, M.)

  20. Radioactive waste shredding: Preliminary evaluation

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Reimann, G.A.

    1994-07-01

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size