WorldWideScience

Sample records for burial ground hanford

  1. CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS

    International Nuclear Information System (INIS)

    SWAN, R.J.; LAKES, M.E.

    2007-01-01

    The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations

  2. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    International Nuclear Information System (INIS)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena

  3. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena. (JRD)

  4. Characterization of the Hanford 300 area burial grounds. Decontamination and decommissioning regulatory issues

    International Nuclear Information System (INIS)

    Morris, F.A.; Smith, R.F.; Phillips, S.J.

    1979-03-01

    The Hanford 300 Area Burial Grounds characterization project has identified four management alternatives for disposition of the burial grounds. These alternatives are: (1) abandonment, (2) entombment, (3) perpetual care, and (4) exhumation and translocation. Major Federal statutes and regulations that could apply to management alternatives are identified along with the constraints that applicable laws could impose. This analysis includes explicit attention to the uncertainty surrounding various legal constraints. Also specified are legislative developments as well as trends in other agencies and the courts, obtained by review of legislative proceedings, statutes and regulations, that could result in legislation or policies posing additional constraints

  5. Hanford facility dangerous waste permit application, low-level burial grounds

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, 'operating' treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20)

  6. Hanford facility dangerous waste permit application, low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, R.H.

    1997-08-12

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20).

  7. Assessment of Hanford burial grounds and interim TRU storage

    International Nuclear Information System (INIS)

    Geiger, J.F.; Brown, D.J.; Isaacson, R.E.

    1977-08-01

    A review and assessment is made of the Hanford low level solid radioactive waste management sites and facilities. Site factors considered favorable for waste storage and disposal are (1) limited precipitation, (2) a high deficiency of moisture in the underlying sediments (3) great depth to water table, all of which minimize radionuclide migration by water transport, and (4) high sorbtive capacity of the sediments. Facilities are in place for 20 year retrievable storage of transuranic (TRU) wastes and for disposal of nontransuranic radioactive wastes. Auxiliary facilities and services (utilities, roads, fire protection, shops, etc.) are considered adequate. Support staffs such as engineering, radiation monitoring, personnel services, etc., are available and are shared with other operational programs. The site and associated facilities are considered well suited for solid radioactive waste storage operations. However, recommendations are made for study programs to improve containment, waste package storage life, land use economy, retrievability and security of TRU wastes

  8. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, A.; Pitts, M. [Pajarito Scientific Corporation, 2976 Rodeo Park Drive East, Santa Fe, NM 87505 (United States); Ludowise, J.D.; Valentinelli, P. [Washington Closure Hanford, 2620 Fermi Ave., Richland, WA 99354 (United States); Grando, C.J. [ELR Consulting, Inc., 15247 Wilbur Rd., La Conner, WA 98257 (United States); Haggard, D.L. [WorleyParsons Polestar, 601 Williams Blvd., Richland, WA 99354 (United States)

    2013-07-01

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

  9. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-03-30

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require

  10. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    International Nuclear Information System (INIS)

    2006-01-01

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require

  11. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.

    1979-10-01

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport.

  12. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.

    1979-10-01

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport

  13. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Waste Burial Grounds

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    2000-01-01

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  14. Geohydrology of the 218-W-5 Burial Ground, 200-West Area, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, B.N.

    1990-05-01

    Construction a disposal facility for solid, mixed low-level radioactive and hazardous wastes at the Hanford Site in southeastern Washington State (Figure 1) is planned. A site-specific performance assessment for each new disposal facility to ensure that wastes will be isolated from the environment is required. To demonstrate the adequacy of the facility for isolating the wastes, computer codes are used to simulate the physical processes that could cause the waste to migrate to underground water supplies or to the land's surface. The purpose of this report is provide a compilation and interpretation of geologic and hydrologic data available use in the performance assessment modeling. A variety of data are needed to model flow and transport from a solid-waste burial trench. These data include soil water content, soil moisture potential, saturated and unsaturated hydraulic conductivity, and phase mineralogy of the soils and sediments within the vadose zone. The hydrologic data that are critical for quantifying the water storage and transport properties for unsaturated soils require a characterization of the heterogeneities of various soil layers and the moisture characteristic curves for these layers. Hydraulic properties and mineralogic data for the saturated sediments are also important for modelling the flow and transport of wastes in the unconfined aquifer. This report begins with a discussion of the procedures and methods used to gather data both in the field and in the laboratory. This is followed by a summary of the geology, including the stratigraphic framework, lithofacies, and mineralogic/geochemical characteristics of the suprabasalt sediments. The hydrology of the region of the site is discussed next. In this discussion, the characteristics of the uppermost aquifer(s), unsaturated zone, and the various hydrogeologic units are presented. 54 refs., 39 figs., 11 tabs.

  15. Graphics-based site information management at Hanford TRU burial grounds

    International Nuclear Information System (INIS)

    Rod, S.R.

    1992-01-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and data base techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three-dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualizations of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations

  16. Graphics-based site information management at Hanford TRU burial grounds

    International Nuclear Information System (INIS)

    Rod, S.R.

    1992-04-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and database techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three- dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualization of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations

  17. The Remediation of Hanford's Last Low-Level Waste Burial Grounds in the 300 Area: 618-7 and 618-1

    International Nuclear Information System (INIS)

    Haass, M.J.

    2009-01-01

    Under the U.S. Department of Energy's (DOE) River Corridor Closure Project, Washington Closure Hanford (WCH) has completed remediation of more than seven low-level waste (LLW) burial grounds in the 300 Area of the Hanford Site. The records of decision for the burial grounds required excavation, characterization, and transport of contaminated material to a Resource Conservation and Recovery Act of 1976-compliant hazardous waste landfill. This paper discusses the challenges and lessons learned from remediating the last two major burial grounds in the 300 Area: 618-7 and 618-1. The 618-7 Burial Ground was in operation from 1960 through 1973, during which it received waste from the production of Zircaloy (zirconium alloy) jacketed metallic uranium fuel rods and thoria targets for the production of uranium-233. Its major remediation challenges included the recovery, characterization, and disposal of 550 drums and disposal of two compressed gas cylinders that were suspected to contain highly toxic chemicals. Approximately 100 of the drums contained Zircaloy metal turnings that could be pyrophoric under certain conditions. Remediation activities were completed in December 2008. The 618-1 Burial Ground was in operation from 1945 (i.e., the beginning of Hanford operations) through 1951. It received waste from 300 Area laboratories that conducted experimental work associated with World War II and Cold War era processes for fuel fabrication and the production of plutonium. Some of the wastes were associated with highly radioactive irradiated material. Remediation of this burial ground is still in progress and is expected to be completed by June 2009. Information presented in this paper will be an aid to those involved in the planning, design, and remediation of burial grounds located on the DOE complex. (authors) Remediation of the 618-7 Burial Ground was completed in December 2008; the 618-1 Burial Ground is proceeding without incident and is expected to be completed in June

  18. Decommissioning and decontamination (burial ground stabilization) studies

    International Nuclear Information System (INIS)

    Cline, J.F.

    1980-01-01

    The decommissioning and decontamination of retired Hanford facilities and the future use of surrounding landscapes require isolation of contaminated wastes from the biosphere. Burial ground stabilization studies were conducted to determine the effectiveness of physical barriers for isolating contaminated wastes in shallow-land burial sites from plants and animals. This study was undertaken to determine the effectiveness of using a layer of loose rock between the waste and the surface soil covering to prevent both plant root and animal penetrations

  19. Estimation of the release and migration of nickel through soils and groundwater at the Hanford Site 218-E-12B Burial Ground

    International Nuclear Information System (INIS)

    Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.

    1994-05-01

    An assessment was performed to evaluate release and transport of nickel from large metal components containing nickel-bearing alloys at the Hanford Site 218-E-12B Burial Ground. The potential for nickel within the components to enter groundwater under the burial site was investigated by examining available data on the site's geology, geochemistry, and geohydrology to develop a conceptual model for release and transport of nickel from the components. In addition, laboratory studies were performed to provide information needed for the model, but which was not available from existing databases. Estimates of future concentrations of nickel radioisotopes ( 59 Ni and 63 Ni) and total elemental nickel in the unconfined aquifer and in the Columbia River were developed based on this information

  20. Burial Ground Expansion Hydrogeologic Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gaughan , T.F.

    1999-02-26

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  1. Environmental assessment for Trench 33 widening in 218-W-5 Low-Level Burial Ground, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-07-01

    This environmental assessment (EA) has been prepared to assess potential environmental impacts associated with the US Department of Energy''s proposed action: to widen and operated the unused Trench 33 in the 218-W-5 Low-Level Burial Ground. Information contained herein will be used by the US Department of Energy, Richland Operations Office Manager, to determine if the Proposed Action is a major federal action significantly affecting the quality of the human environment. If the Proposed Action is determined to be major and significant, an environmental impact statement will be prepared. If the Proposed Action is determined not to be major and significant, a Finding of No significant Impact will be issued and the action may proceed

  2. Environmental assessment for Trench 33 widening in 218-W-5 Low-Level Burial Ground, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This environmental assessment (EA) has been prepared to assess potential environmental impacts associated with the US Department of Energy`s proposed action: to widen and operated the unused Trench 33 in the 218-W-5 Low-Level Burial Ground. Information contained herein will be used by the US Department of Energy, Richland Operations Office Manager, to determine if the Proposed Action is a major federal action significantly affecting the quality of the human environment. If the Proposed Action is determined to be major and significant, an environmental impact statement will be prepared. If the Proposed Action is determined not to be major and significant, a Finding of No significant Impact will be issued and the action may proceed.

  3. Cleanup Verification Package for the 118-F-1 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    E. J. Farris and H. M. Sulloway

    2008-01-10

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  4. 118-B-1 burial ground excavation treatability test report

    International Nuclear Information System (INIS)

    1995-08-01

    This treatability investigation focused on the feasibility of excavating, analytical screening, and handling waste materials from the 118-B-1 Burial Ground located in the 100 B/C Area of the Hanford Site. The 118-B-1 Burial Ground consists of approximately 24 trenches on a 7-acre parcel. Solid low-level radioactive wastes and other debris and trash associated with reactor operations were disposed in 28 burial grounds in the 100 Area between 1944 and 1973. The majority of waste generated from routine reactor operations was placed in seven primary burial grounds, including 118-B-1. The 118-B-1 Burial Ground was selected as the location to perform this treatability test based on the availability of historical data for this site, and because it was thought to be representative of other primary-use burial grounds in the 100 Area. Geophysical surveys were conducted over the burial ground to map the concentrations of waste and aid in the selection of test pit excavation locations. The test plan developed for this study integrated the Streamlined Approach for Environmental Restoration (SAFER), a US Department of Energy (DOE) initiative based on both the Data Quality Objective (DQO) process and the observational approach. This treatability test is the first one at the Hanford Site to use the SAFER approach. The purpose of this study was (1) to support development of the Proposed Plan and Record of Decision, which would identify the approach to be used for burial ground remediation and (2) to provide specific engineering information for receiving waste generated from the 100 Area removal actions. The results of the treatability test can be used to determine the feasibility of performing excavation, analytical screening, and handling of burial ground materials from similar burial grounds

  5. Waste analysis plan for the low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Haas, C.R.

    1996-09-19

    This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds (LLBG) which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.

  6. Waste analysis plan for the low-level burial grounds

    International Nuclear Information System (INIS)

    Barnes, B.M.

    1996-01-01

    This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds that are located in the 200 East and 200 West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize and obtain and analyze representative samples of waste managed at this unit

  7. Examination of representative drum from 618-9 Burial Ground

    International Nuclear Information System (INIS)

    Duncan, D.R.; Bunnell, L.R.

    1992-10-01

    The work described in this report was conducted in pursuance of Task E of the Pacific Northwest Laboratory Solid Waste Technology Support Program for Westinghouse Hanford Company. Task E calls for a determination of the corrosion rate of low-carbon steels under typical Hanford Site conditions. To meet this objective, Pacific Northwest Laboratory examined one intact drum that was judged to be representative of the largely intact drums excavated at the 618-9 Burial Ground located west of the 300 Area at the Hanford Site. Six samples were examined to characterize the drum, its composition, and its corrosion and corrosion products. The drum, which was found empty, was constructed of low-carbon steel. Its surface appeared relatively sound. The drum metal varied in thickness, but the minimum thickness in the samples was near 0.020 in. The corrosion corresponds to approximately 25 to 35 mils of metal loss, roughly a 1 mil/yr corrosion rate. Corrosion products were goethite and maghymite, expected products of iron buried in soil. Apparently, the drum leaked some time ago, but the cause of the leakage is unknown because records of the drums and their burial are limited. The drum was empty when found, and it is possible that it could have failed by pitting rather than by general corrosion. A pitting rate of about 3.5 mils/yr would have caused loss of drum integrity in the time since burial

  8. Hydrogeology of the 200 Areas low-level burial grounds

    International Nuclear Information System (INIS)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.

    1989-01-01

    This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text

  9. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  10. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  11. Low-Level Burial Grounds Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1989-01-01

    The single dangerous waste permit identification number issued to the Hanford Site by the US Environmental Protection Agency and the Washington State Department of Ecology is US Environmental Protection Agency/State Identification Number WA 7890008967. This identification number encompasses a number of waste management units within the Hanford Site. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as co-operator of the Low-Level Burial Grounds, the waste management unit addressed by this permit application. The Low-Level Burial Grounds Dangerous Waste Permit Application consists of both a Part A and a Part B Permit Application. The original Part A, submitted in November 1985, identified landfills, retrievable storage units, and reserved areas. An explanation of subsequent Part A revisions is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology

  12. Low-Level Burial Grounds Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1989-01-01

    The single dangerous waste permit identification number issued to the Hanford Site by the US Environmental Protection Agency and the Washington State Department of Ecology is US Environmental Protection Agency/State Identification Number WA 7890008967. This identification number encompasses a number of waste management units within the Hanford Site. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as co-operator of the Low-Level Burial Grounds, the waste management unit addressed by this permit application. The Low-Level Burial Grounds Dangerous Waste Permit Application consists of both a Part A and a Part B Permit Application. The original Part A, submitted in November 1985, identified landfills, retrievable storage units, and reserved areas. An explanation of subsequent Part A revisions is provided at the beginning of the Part A section. Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology

  13. Cleanup Verification Package for the 618-2 Burial Ground

    International Nuclear Information System (INIS)

    Thompson, W.S.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities

  14. Cleanup Verification Package for the 618-2 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  15. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    International Nuclear Information System (INIS)

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs

  16. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  17. Geologic Descriptions for the Solid-Waste Low Level Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, Bruce N.; Lanigan, David C.

    2007-09-23

    This document provides the stratigraphic framework and six hydrogeologic cross sections and interpretations for the solid-waste Low Level Burial Grounds on the Hanford Site. Four of the new cross sections are located in the 200 West Area while the other two are located within the 200 East Area. The cross sections display sediments of the vadose zone and uppermost unconfined aquifer.

  18. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    International Nuclear Information System (INIS)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.; Thompson, C.J.; Evans, J.C.; Hulstrom, L.C.

    2000-01-01

    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground

  19. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.; Thompson, C.J.; Evans, J.C.; Hulstrom, L.C.

    2000-05-01

    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground.

  20. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Rodovsky, T.J.

    2006-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  1. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    TRodovsky, T.J.

    2007-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  2. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  3. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  4. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  5. Sampling and Analysis Instruction for Borehole Sampling at 118-B-1 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    W. S. Thompson

    2007-04-02

    The Washington Closure Hanford (WCH) Field Remediation Project has removed all of the disposed materials and contaminated soil from the 118-B-1 Burial Ground with the exception of tritium-contaminated soil that is believed to extend from the bottom of the present excavation to groundwater and is believed to contribute to tritium contamination observed at down-gradient monitoring Well 199-B8-6. This sampling and analysis instruction (SAI) provides the requirements for sample collection and laboratory analysis for characterization of the vertical distribution of tritium contamination in the vadose zone soil below the 118-B-1 Burial Ground remedial action excavation.

  6. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Ludowise

    2009-06-17

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

  7. Closure Plan for Active Low Level Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    2000-11-16

    This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during

  8. Cleanup Verification Package for the 118-F-2 Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.; Anselm, K.A.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-2 Burial Ground. This burial ground, formerly called Solid Waste Burial Ground No. 1, was the original solid waste disposal site for the 100-F Area. Eight trenches contained miscellaneous solid waste from the 105-F Reactor and one trench contained solid waste from the biology facilities

  9. Great Moravian burial grounds in Rajhrad and Rajhradice

    OpenAIRE

    Hendrychová, Soňa

    2015-01-01

    The diploma thesis presented deals with an overall assessment of the Great Moravian burial ground in Rajhrad (Brno- venkov), which was excavated in the years 1972 to 1976. The work is based on a catalogue of this burial ground and the neighbouring one in Rajhradice published by Čeněk Staňa. It follows individual aspects of funeral rites at a necropolis and evaluates the inventory of the graves. Based on the findings, the work dates the burial ground, compares with burial ground in Rajhradice ...

  10. Fire hazards analysis for solid waste burial grounds

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  11. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

  12. Low-Level Burial Grounds dangerous waste permit application: Request for exemption from lined trench requirements and from land disposal restrictions for residual liquid at 218-E-12B Burial Ground Trench 94

    International Nuclear Information System (INIS)

    1992-10-01

    This document has been prepared and is being submitted to the respective agencies to satisfy three objectives of the US Department of Energy (DOE) Richland Field Office (DOE-RL) concerning Trench 94 of the 218-E-12B Burial Ground. The 218-E-12B Burial Ground is located in the 200 East Area of the Hanford Facility. Figure 1-1 shows the general location of the Hanford Site. The 218-E-12B Burial Ground is one of eight burial grounds included in the Low-Level Burial Grounds (LLBG), a treatment, storage and/or disposal (TSD) unit. Decommissioned, defueled naval submarine reactor compartments (SRCs) contain radioactivity caused by exposure of structural components to neutrons during normal operation of the submarines. After all the alternatives were evaluated in the US Department of the Navy 1984 environmental impact statement (EIS) (USN 1984), land burial of the SRCs was selected as the preferred disposal option. The SRCs currently are sent to Trench 94 of the 218-E-12B Burial Ground. In addition to radioactivity, the SRCs disposed in. The DOE-RL's three objectives in preparing and submitting this document are as follows. Request from Ecology an exemption from dangerous waste landfill liner and leachate collection and removal system (hereinafter referred to as liner/leachate system) requirements for Trench 94 of the 218-E-12B Burial Ground. Petition Ecology to exempt residual liquid in the SRCs from land disposal restrictions. Obtain EPA Region 10 review and comment on the request to Ecology for exemption from liner/leachate system requirements

  13. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

  14. Tritium in the burial ground of the Savannah River Site

    International Nuclear Information System (INIS)

    Hyder, M.L.

    1993-06-01

    This memorandum reviews the available information on tritium-contaminated material discarded to burial grounds. Tritium was the first isotope studied because it represents the most immediate concern with regard to release to the environment. Substantial amounts of tritium are known to be present in the ground water underneath the area, and outcropping of this ground water in springs and seeps has been observed. The response to this release of tritium from the burial ground is a current concern. The amount of tritium emplaced in the burial ground facilities is very uncertain, however, some general conclusions can be made. In particular, most of the tritium buried is associated with spent equipment and other waste, rather than spent melts. Correspondingly, most of the tritium in the ground water seems to be associated with burials of this type, rather than the spent melts. Maps are presented showing the location of burials of tritiated waste by type, and the location of the largest individual burials according to COBRA records

  15. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  16. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  17. Waste migration studies at the Savannah River Plant burial ground

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Grant, M.W.; Hoeffner, S.L.; King, C.M.

    1985-01-01

    The low-level radioactive waste burial ground at the Savannah River Plant is a typical shallow-land-burial disposal site in a humid region. Studies of waste migration at this site provide generic data for designing other disposal facilities. A program of field, laboratory, and modeling studies for the SRP burial ground has been conducted for several years. Recent results of lysimeter tests, soil-water chemistry studies, and transport modeling are reported. The lysimeter experiments include ongoing tests with 40 lysimeters containing a variety of defense wastes, and recently concluded lysimeter tests with tritium and plutonium waste forms. The tritium lysimeter operated 12 years. In chemistry studies, measurements of soil-water distribution coefficients (K/sub d/) were concluded. Current emphasis is on identification of trace organic compounds in groundwater from the burial site. Development of the dose-to-man model was completed, and the computer code is available for routine use. 16 refs., 2 figs., 2 tabs

  18. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Ludowise, J.D.

    2006-01-01

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project

  19. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  20. Rusenikha Burial Ground: interdisciplinary approach to monument investigation

    Directory of Open Access Journals (Sweden)

    Nikitina Tatyana B.

    2017-07-01

    Full Text Available The article presents the results of excavations at Rusenikha burial ground of Mari culture dating back to the medieval period obtained as a result of bioarcheological research. The research conducted by the authors is based on the atomic-absorption photometry method. Study of mineral composition allowed to classify the burials of Rusenikha burial mound into 2 conventional groups. The bone tissue located in burials of the first group contain exceedingly high concentrations of zinc, copper, lead and manganese with low calcium content, and low to average strontium content. Bones feature average or low mineralization. Of special interest is an individual group of skeletons with high zinc and manganese content, and very low strontium content. The differences determined on the basis of studying the mineral composition of bone tissue have been confirmed by an analysis of archaeological material: planigraphy, funerary rite and item inventory.

  1. Estimated erosion rate at the SRP burial ground

    International Nuclear Information System (INIS)

    Horton, J.H.; Wilhite, E.L.

    1978-04-01

    The rate of soil erosion at the Savannah River Plant (SRP) burial ground can be calculated by means of the universal soil loss equation. Erosion rates estimated by the equation are more suitable for long-term prediction than those which could be measured with a reasonable effort in field studies. The predicted erosion rate at the SRP burial ground ranges from 0.0007 cm/year under stable forest cover to 0.38 cm/year if farmed with cultivated crops. These values correspond to 170,000 and 320 years, respectively, to expose waste buried 4 ft deep

  2. Shallow ground burial of low-level waste

    International Nuclear Information System (INIS)

    Camilleri, A.; Cooper, M.B.; Hargrave, N.J.; Munslow-Davies, L.

    1989-01-01

    Acceptance criteria for the disposal of low-level radioactive wastes are presented for adoption throughout Australia, a continent in which there are readily available areas in arid, sparsely inhabited places, likely to be suitable as sites for shallow ground burial. Drawing upon overseas practices and experiences, criteria have been developed for low-level waste disposal and are intended to be applicable and relevant to the Australian situation. Concentration levels have been derived for a shallow ground burial facility assuming a realistic institutional control period of 200 years. A comparison is made between this period and institutional control for 100 years and 300 years. Longer institutional control periods enable the acceptance of higher concentrations of radionuclides of intermediate half-lives. Scenarios, which have been considered, include current Australian pastoral practices and traditional Aboriginal occupancy. The derived radionuclide concentration levels for the disposal of low level wastes are not dissimilar to those developed in other countries. 17 refs., 6 tabs., 1 fig

  3. Burial of a Man-At-Arms in Kudash I Burial Ground

    Directory of Open Access Journals (Sweden)

    Kazantseva Olga A.

    2017-07-01

    Full Text Available The article features a comprehensive analysis of items discovered in male burial 160 of Kudash I burial ground – a unique source of materials for the research of interactions between the local and foreign population on the Middle Kama region in 3rd – 5th centuries A.D. The monument is located in Bardymsky district of Perm Krai. The complex of metal objects comprises a set of personal protective armament rarely discovered in the Kama region: an open-work helmet, a set of plate armour, a sword, a spear head, a knife and "crooked scythes". The article contains a description of the grave, its structure, morphology and classification of findings, as well as the results of an investigation of the manufacturing technology of the following armament and implements: sword, spear head, knife, and "crooked scythe" conducted using the metallographic method. It also features a graphical reconstruction of the warriors’s protective armament – the helmet. The authors determined counterparts of the grave complex discovered at archaeological sites in the Middle Kama region and the Altai Mountains. The apparel of the man-at-arms represents a unique set of protective and offensive armament. The armour of the deceased is complemented by an open-work ceremonial helmet with an aventail, which suggests that the grave belonged to a military commander. The date of burial was determined on the basis of artefact study results as late 4th – early 5th centuries A.D.

  4. Waste analysis plan for the low-level burial grounds. Revision 2

    International Nuclear Information System (INIS)

    Pratt, D.A.

    1997-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste 5 acceptance process, sampling methodologies, analytical techniques, and overall 6 processes that are undertaken for waste accepted for disposal at the Low-Level 7 Burial Grounds (LLBG), which are located in the 200 East and 200 West Areas of 8 the Hanford Facility, Richland, Washington. Because dangerous waste does not 9 include the source, special nuclear, and by-product material components of 10 mixed waste, radionuclides are not within the scope of this documentation. 11 The information on radionuclides is provided only for general knowledge. The 12 LLBG also receive low-level radioactive waste for disposal. The requirements 13 of this WAP are not applicable to this low-level waste

  5. Biobarriers used in shallow-burial ground stabilization

    International Nuclear Information System (INIS)

    Cline, J.F.

    1979-03-01

    These data show that cobblestone can be effective as a barrier to burrowing animals and insects, but not totally effective as a barrier to plant roots. Because of variable weather patterns at Hanford, five to six year studies are recommended for further evaluation of the effectiveness of different materials as biobarriers to radioactive substances. The following criteria must be met to present plant roots from entering buried waste and transporting radioactive or other elements to the soil surface where they can enter the food web: (1) the burial zone beneath the cover should be kept dry; (2) enough soil or other water-retaining substance should be placed in the cover to hold annual precipitation; (3) plants or other substances should be placed in the cover to remove soil moisture from site each year via evaporation and plant transpiration; and (4) different additions to the cover should be designed and placed over the buried waste to prevent burrowing animals from causing channelization of water through the cover to the lower levels. Stone size appeared to affect the plants' rate of root growth since root growth slowed in the air spaces between stones. Root toxin was 100% effective as a means of keeping roots out of the buried waste; this method could be used as a barrier modification where no plant cover is needed. 9 figures, 2 tables

  6. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  7. Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris

  8. Ground-water contribution to dose from past Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  9. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    International Nuclear Information System (INIS)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H.; Serne, R.J.; Cantrell, K.J.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied

  10. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  11. 618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J. W.

    2012-06-28

    A “lessons learned” is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

  12. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.; Capron, J.M.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes

  13. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  14. CSER 91-003, Addendum 1: Criticality Safety Evaluation Report for postponed retrieval of three container sequences in the burial ground

    International Nuclear Information System (INIS)

    Bhatia, S.L.

    1994-01-01

    The restricted underground burial time of 20 years for galvanized drums and 18 years for painted drums was selected based on structural integrity analysis and the application of conservative criticality safety principles because there is no established reliable real life behavior (corrosion) test data on such 55 gallon standard drums buried under the environmental conditions at Hanford. Efforts have been made to establish data to support the extension of the design life of these drums. The data so far obtained suggest a drum lifetime of twice the current restricted value, but the body of data is not enough to conclude this amount of time with certainty. This Criticality Safety Evaluation Report (CSER) Addendum establishes the technical basis for extending the underground storage time of only three drum sequences in the Hanford waste burial grounds which expire soon. The three drum sequences were originally scheduled for retrieval this year based on conservative assumptions about container lifetime in the burial ground. Evaluation of the recent retrieval data on physical contents of such containers and a corrosion study of the drums under the environmental conditions at Hanford burial grounds show that these drums can remain buried without loss of integrity much longer than the restricted storage time without posing any safety concern. Based on this review, it is concluded that a conditional approval of extending the underground storage time by 5 years beyond the expiration date(s) of these three placements is justified. This amendment will permit the Pilot Scale Retrieval operations of the buried drums for integrity inspection, drum material corrosion behavior, and inspection and repackaging of TRU waste currently underway at Hanford to proceed and to be in compliance with the applicable Criticality Prevention Specifications

  15. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  16. Technical data summary: Plan for closure of the 643-G burial ground

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    This report involves the actions of closing the 643-G burial ground which involves waste removal, stabilization, and capping. Remedial action involves the removing of the transuranic waste and closing of the grid wells. The closure cap for the burial site will consist of native soil, clay, and gravel. This will assure long-term physical and chemical stability. (MB)

  17. Ancient tombs in China and shallow ground burial of solid low-intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Huang Yawen; Gu Cunli

    1987-01-01

    Having reviewed the experiences with ancient tombs in China, particularly the experiences with tomb siting, configuration of tombs, backfilling materials, civil engineering techniques, sealing techniques, drainage system, antiseptic techniques, a comparison between the ancient tombs and the shallow ground burial of solid radioactive wastes is made. The authors believe that the brilliant achievements of ancient tombs in China in keeping ancient corpses and funeral objects are a historical evidence for safety of shallow ground burial of radioactive wastes, and that the main experiences with the ancient tombs may be useful to shallow ground burial of solid radioactive wastes

  18. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  19. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    International Nuclear Information System (INIS)

    None

    1980-01-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  20. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  1. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    International Nuclear Information System (INIS)

    Murphy, E. S.; Holter, G. M.

    1980-01-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  2. Low-level burial grounds dangerous waste permit application design documents

    International Nuclear Information System (INIS)

    1990-08-01

    This document serves a supplement to the already existing ''Low-Level Burial Ground Dangerous Waste Permit Application Design Documents.'' This paper contains information regarding drawings, construction specifications, and liner/leachate compatibility test plans

  3. On the Semantics of Plates from the Shilovka Burial Ground

    Directory of Open Access Journals (Sweden)

    Fonyakova (Chuvilo Natalia A.

    2013-03-01

    Full Text Available Among the finds made on the sites located in the Middle Volga region and Siberia, ivory plaques of high artistic value used to adorn combat saddle pommel are met. They would bear floral ornamentation or depict hunting scenes, reflecting the spiritual world of a nomad warrior. These images are dated widely, but not later than the 7th or 8th centuries. They were drawn with a sharp cutter and blackened down the lines. Of special interest are the bone plates from the Shilovka burial ground site (Uyanovsk oblast with the following images: two dragons in a heraldic posture, deer hunt scenes, horsemen in ambush, fight with a bear, and defense of the fortress. In the author’s opinion, the Shilovka plates depict a dramatic episode in the life of a Turkic warlord, which occurred in the midst of hostilities. During the hunt, a huge bear was unleashed against him. Part of his heavily armed convoy (or suite fled; some soldiers got ambushed (the enemy shot them from armor-piercing bows. Saving his life, the captain knelt and bent his bow, whose string broke at the most inopportune moment. Perhaps he died fighting a bear. One can assume that it was a stratagem of the enemy, which decided the outcome of the war. The symbol of victory on the plates is represented by the dragons, frozen in a heraldic posture, and expressing the basic principle of life characteristic of the nomad warriors in the Early Middle Ages: prosperity and well-being at a price of war and victories. The plaques were placed into the winner’s grave.

  4. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  5. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  6. GPR and bulk ground resistivity surveys in graveyards: locating unmarked burials in contrasting soil types.

    Science.gov (United States)

    Hansen, James D; Pringle, Jamie K; Goodwin, Jon

    2014-04-01

    With graveyards and cemeteries globally being increasingly designated as full, there is a growing need to identify unmarked burial positions to find burial space or exhume and re-inter if necessary. In some countries, for example the U.S. and U.K., burial sites are not usually re-used; however, most graveyard and cemetery records do not have maps of positions. One non-invasive detection method is near-surface geophysics, but there has been a lack of research to-date on optimal methods and/or equipment configuration. This paper presents three case studies in contrasting burial environments, soil types, burial styles and ages in the U.K. Geophysical survey results reveal unmarked burials could be effectively identified from these case studies that were not uniform or predicted using 225 MHz frequency antennae GPR 2D 0.5 m spaced profiles. Bulk ground electrical surveys, rarely used for unmarked burials, revealed 1 m probe spacings were optimal compared to 0.5 m, with datasets needing 3D detrending to reveal burial positions. Results were variable depending upon soil type; in very coarse soils GPR was optimal; whereas resistivity was optimal in clay-rich soils and both were optimal in sandy and black earth soils. Archaeological excavations revealed unmarked burials, extra/missing individuals from parish records and a variety of burial styles from isolated, brick-lined, to vertically stacked individuals. Study results, evidence unmarked burial targets were significantly different from clandestine burials of murder victims which are used as analogues. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Initial site characterization and evaluation of radionuclide contaminated soil waste burial grounds

    International Nuclear Information System (INIS)

    Phillips, S.J.; Reisenauer, A.E.; Rickard, W.H.; Sandness, G.A.

    1977-02-01

    A survey of historical records and literature containing information on the contents of 300 Area and North Burial Grounds was completed. Existing records of radioactive waste location, type, and quantity within each burial ground facility were obtained and distributed to cooperating investigators. A study was then initiated to evaluate geophysical exploration techniques for mapping buried waste materials, waste containers, and trench boundaries. Results indicate that a combination of ground penetrating radar, magnetometer, metal detector, and acoustic measurements will be effective but will require further study, hardware development, and field testing. Drilling techniques for recovering radionuclide-contaminated materials and sediment cores were developed and tested. Laboratory sediment characterization and fluid transport and monitoring analyses were begun by installation of in situ transducers at the 300 North Burial Ground site. Biological transport mechanisms that control radionuclide movement at contaminated sites were also studied. Flora and fauna presently inhabiting specific burial ground areas were identified and analyzed. Future monitoring of specific mammal populations will permit determination of dose rate and pathways of contaminated materials contained in and adjacent to burial ground sites

  8. Ground resistance influences lizard burial in dry and wet sand

    Science.gov (United States)

    Sharpe, Sarah; Kuckuk, Robyn; Goldman, Daniel

    2012-11-01

    Many terrestrial animals move within soil in which water content can vary, and little is known about how water content affects locomotor performance. To investigate the effect of water content on burial, we created controlled dry and wet substrates. We used 0.3 mm glass particles and varied water content W, the mass of water to mass of dry loosely packed sand. Drag force on a submerged 1.6 cm diameter rod increased by a factor of 4 as W increased from 0 to 0.03, after which force increases were small. Drag force in wet media periodically fluctuated with time and corresponded with surface fracturing. We characterized how W affected burial performance and strategy of a generalist burrower, the ocellated skink lizard (Chalcides ocellatus). High speed x-ray imaging was used to measure head, body and limb kinematics in substrates with W= 0 and W= 0.03. In both states during burial the body was maintained in a curved posture and the animal moved using a start-stop motion. During movement, the head oscillated and the forelimb on the convex side of the body was used to push the animal forward. Both speed and angular excursion of the head oscillation decreased in the W= 0.03 state. The differences in locomotion were attributed to the changing resistance force within the media.

  9. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  10. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  11. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Proctor, M.L.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the 'metal line' of the P-10 Tritium Separation Project.

  12. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Proctor

    2006-06-13

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the "metal line" of the P-10 Tritium Separation Project.

  13. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    International Nuclear Information System (INIS)

    Halliwell, Stephen

    2013-01-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  14. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Stephen [VJ Technologies Inc, 89 Carlough Road, Bohemia, NY (United States)

    2013-07-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  15. Chemical speciation of plutonium in the radioactive waste burial ground at the Savannah River Plant

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1978-08-01

    The plutonium chemical species in two types of samples from the Savannah River Plant burial ground for radioactive waste were identified. Samples analyzed were water and sediment from burial ground monitoring well C-17 and soil from an alpha waste burial trench. Soluble plutonium in the monitoring well was less than 12A in diameter, was cationic, and contained about 43% Pu(VI) and 25% Pu(IV). The equilibrium distribution coefficient (K /sub d/) for soluble plutonium from the well water (pH 7) to burial ground soil was about 60. Soil plutonium from the waste trench was not cation-exchanged; 78% of the soil plutonium was associated with metallic oxides in the soil. Approximately 9% of the Pu was contained in the crystalline soil matrix. Thus, about 87% of the plutonium in the soil was in a relatively immobile form. Ion-exchangeable and organic acid forms of plutonium amounted to only about 2.5% each. The bulk of the plutonium now on burial ground soils will be immobile except for movement of soil particles containing plutonium. 6 tables

  16. Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    This report is a summary of radionuclide sorption studies conducted to determine the performance of the low-level waste burial ground at the Savannah River Plant. Distribution coefficients for 60 Co, 90 Sr, 99 Tc, 106 Ru, 125 Sb, 129 I, 137 Cs, and /sup 238/239/Pu are reported. The effects of cations, anions, pH, radionuclide concentration and other variables on radionuclide sorption were evaluated. The pH and radionuclide concentration are the two major factors influencing radionuclide sorption. The pH range observed in the burial ground indicates that a wide range in the amount of radionuclide sorption is to be expected in the burial ground. These laboratory studies are useful for setting upper and lower limits on radionuclide mobility. 30 refs., 15 figs., 16 tabs

  17. Riding Horse Harness (Based on Materials from the Chulkovo Burial Ground

    Directory of Open Access Journals (Sweden)

    Grishakov Valeriy V.

    2013-12-01

    Full Text Available The items of riding horse harness (bits with psalia, stirrups, buckles, decorations of bridles are analyzed in the article on the basis of the materials from the Chulkovo (Murom burial ground site of the 8th-10th centuries, located on right bank of the Oka river. It has been established that the use of horse harness items by the Muroma culture population, which had left the Chulkovo burial ground, is in full correspondence with the general traditions of the Finno-Ugric peoples of the Volga river region characteristic of the 8th-10th centuries. The shapes of the bits correspond to both the steppe (bits with S-shaped and straight psalia and the local traditions (bits with two and three moving rings. A tendency to uniformity is observed in the tradition of stirrups production. The main differences of the Muroma burial grounds from the neighboring Mordovian ones consist in the presence of horse burials (not known among the Mordovians, and, on the other hand, in a practically complete lack of horse harness in the funeral set of human burials. It can be assumed that the importance of cavalry with the Muromа was lower than with the Mordovians who were living next to the steppe world.

  18. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  19. Low-level burial grounds dangerous waste permit application

    International Nuclear Information System (INIS)

    1990-07-01

    This document is submitted to request an exemption for Trench 94 from dangerous waste landfill liner and leachate collection and removal system (hereinafter referred to as liner/leachate system) requirements. This exemption request is based on an evaluation which demonstrates that burial in Trench 94 of cathodically protected submarine reactor compartments (SRC), which contain lead and polychlorinated biphenyls (PCB) as hazardous constituents, is as effective as disposal in a landfill having a liner/leachate system. This demonstration also considers the effectiveness of burial in Trench 94 in terms of preventing long-term migration of contaminants to groundwater or surface water. Modeling results indicate that release of contaminants to the groundwater or surface water will not occur until after long periods of time and that even after reaching the groundwater, contaminants will not be in excess of current regulatory limits, such as drinking water standards. Chapter 1.0 provides introductory information concerning this request, including the scope of the exemption request and relevant background information. The five subsequent chapters provide information needed to support the exemption request. Chapter 2.0 discusses the regulatory basis for the exemption request and presents performance objectives related to regulatory requirements. Chapter 3.0 provides a description of the site and its operation. Chapter 4.0 describes the wastes subject to this exemption request Chapter 5.0 discusses the performance of the disposal site with respect to performance objectives. Finally, Chapter 6.0 presents the actual request for exemption from requirements for a liner/leachate system. 30 refs., 13 figs., 6 tabs

  20. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 1, The report and Appendix A, Progress report for the period October 1 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This report documents recent progress on ground-water monitoring projects for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste (NRDW) Landfill. The existing ground-water monitoring projects for the first two facilities named in the paragraph above are currently being expanded by adding new wells to the networks. During the reporting period, sampling of the existing wells continued on a monthly basis, and the analytical results for samples collected from September through November 1986 are included and discussed in this document. 8 refs., 41 figs., 7 tabs.

  1. The distinguishing characteristics of interlayer oxidation zone and burial ancient ground oxidation zone

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Zhou Wenbin

    1998-01-01

    The author discusses the main characteristics of interlayer oxidation zones and the burial ancient ground oxidation zones of Uranium deposit No. 512 in Xinjiang Uigur municipality. The epigenetic genesis, depending on some aquifer, the tongue-like in section, having the zonation along dip direction and having certain mineral assemblage are the typical features for interlayer oxidation zones

  2. Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Gaschott, L.J.

    1995-01-01

    This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility

  3. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-10-02

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies.

  4. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    International Nuclear Information System (INIS)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-01-01

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies

  5. Transuranic element uptake and cycling in a forest over an old burial ground

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Tuckfield, J.C.

    1992-01-01

    The consequences of returning the Savannah River Site (SRS) burial ground area to general public access at the time of completion of the SRS mission is being investigated. This study includes evaluation of the radiological impact to inhabitants of the area under a number of scenarios that include the return of the land to farming or forestry use with or without exhumation of the buried waste

  6. Geophysical Investigation of the 618-10 and 618-11 Burial Grounds, 300-FF-2 Operable Unit

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Bolin, D.J.; Mitchell, T.H.

    1997-09-01

    This document summarizes the results of geophysical investigations conducted at two radioactive solid waste burial grounds, 618-10 and 618-11. The burial grounds are located approximately 4.5 miles and 7 miles north of the 300 Area, respectively. These sites are within the 300-FF-2 Operable Unit, where geophysical techniques are being used to characterize the distribution of solid waste in the subsurface as part of the Limited Field Investigations for this operable unit

  7. Two items: Transcription of a presentation by Dr. E. L. Albenesius, ''SRS burial ground operation from an historical perspective''; video tape entitled ''Burial ground operation''

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1992-01-01

    On February 6, 1992, approximately 35 SRS personnel from DOE, WSRC, and Dames and Moore attended a very informative talk given by Dr. E.L. Albenesius who discussed the operation of the SRS Burial Ground from an historical perspective. Dr. Albenesius, a Du Point retiree, formerly served as research manager of SRL's Environmental Effects and Solid Waste Management Technology Divisions among other assignments. One notable point Dr. Albenesius made was in answer to a question concerning what was the most important thing that could be done to reduce the hazard to man from buried waste. His response was to remove as much plutonium as practical prior to closure. In order to preserve this valuable information for the record, the program was audiotaped from which a point-by-point chronological transcription, with minor editing, was prepared

  8. Low-Level Burial Grounds Dangerous Waste Permit Application design documents

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents the Functional Design Criteria for trenches to be constructed to receive solid radioactive mixed waste (RMW) from on and offsite generators. The new RMW disposal facilities are considered modifications to or lateral expansion of the existing low-level waste burial grounds. The new facilities upgrade the existing disposal practice for RMW to the minimum technology requirements of the Resource Conservation and Recovery Act. The proposed locations for the two facilities are: 218-E-10 for drag-off-waste packages and, 218-W-4C for non drag-off waste packages

  9. Radiological status of the ground water beneath the Hanford Site, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, P. A.; Wilbur, J. S.

    1981-04-01

    Operations at the Hanford Site since 1944 have resulted in the discharge to the ground of large volumes of process cooling water and low-level liquid radioactive waste. Radioactivity and chemical substances have been carried with these discharges and have reached the Hanford ground water. For many years wells have been used as ground-water sampling structures to gather data on the distribution and movement of these discharges as they interact with the unconfined ground water beneath the Hanford Site. During 1980, 317 such structures were sampled at various times for radionuclide and chemical contaminants. Data collected during 1980 describe the movement of tritium and ruthenium-106 and the nonradioactive nitrate plume as well as their response to the influences of ground-water flow, ionic dispersion, and radioactive decay.

  10. Chronology of the Third – Fifth Centuries Male Graves from the Tarasovo Burial Ground

    Directory of Open Access Journals (Sweden)

    Goldina Rimma D.

    2016-09-01

    Full Text Available The article focuses on the chronological attribution of male graves from the late Mazunino stage of the Tarasovo burial ground and is a sequel to an earlier article about dating of the early Nyrgynda stage (1st – 2nd centuries of the same site. The three main methods employed in this research include those of formal typology, cultural stratigraphy and the nearest neighbor method. Eighty-six male graves of the third-fifth centuries were analyzed, with 12 identified as a result: first half of the 3rd c. AD (group 1, second half of the 3rd c. AD (2; 3rd c. (3; first half of the 4th c. (group 4; second half of the 3rd – 4th c. (5; third quarter of the 4th c. (6; fourth quarter of the 4th c. (group 7; second half of the 4th c. (8; second half of the 4th – 5th c. (9; 4th – 5th cc. (10; second half of the 3rd – 5th cc. (11 and 3rd – 5th cc. (12. This article minutes investigates the first six groups, while the rest will be covered in the next publication. Artifacts form the third – fifth century female graves of the Tarasovo burial ground will be studied separately.

  11. Interim Action Proposed Plan for the old radioactive waste burial ground (643-E)

    International Nuclear Information System (INIS)

    McFalls, S.

    1995-12-01

    This Interim Action Proposed (IAPP) is issued by the U.S. Department of Energy (DOE), which functions as the lead agency for SRS remedial activities, and with concurrence by the U.S. Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The purpose of this IAPP is to describe the preferred interim remedial action for addressing the Old Radioactive Waste Burial Ground (ORWBG) unit located in the Burial Ground Complex (BGC) at the Savannah River Site (SRS) in Aiken, South Carolina. On December 21, 1989, SRS was included on the National Priorities List (NPL). In accordance with Section 120 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), DOE has negotiated a Federal Facility Agreement (FFA, 1993) with EPA and SCDHEC to coordinate remedial activities at SRS. Public participation requirements are listed in Sections 113 and 117 of CERCLA. These requirements include establishment of an Administrative Record File that documents the selection of remedial alternatives and allows for review and comment by the public regarding those alternatives. The SRS Public Involvement Plan (PIP) (DOE, 1994) is designed to facilitate public involvement in the decision-making process for permitting closure, and the selection of remedial alternatives. Section 117(a) of CERCLA, 1980, as amended, requires publication of a notice of any proposed remedial action

  12. Geophysical investigation of trench 4, Burial Ground 218-W-4C, 200 west area

    International Nuclear Information System (INIS)

    Kiesler, J.P.

    1994-01-01

    This report contains the results of a geophysical investigation conducted to characterize Trench 4, located in Burial Ground 218-W-4C, 200 West Area. Trench 4 is where transuranic (TRU) waste is stored. The primary objective of these geophysical investigations was to determine the outer edges of the trench/modules and select locations for plate-bearing tests. The test locations are to be 5 to 8 ft. beyond the edges of the trench. Secondary objectives include differentiating between the different types of waste containers within a given trench, determining the amount of soil cover over the waste containers, and to locate the module boundaries. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were the methods selected for this investigation

  13. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  14. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1997-01-01

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  15. Chronology of the 1st–2nd Century Graves from the Tarasovo Burial Ground

    Directory of Open Access Journals (Sweden)

    Goldina Rimma D.

    2016-03-01

    Full Text Available The article focuses on the chronology of graves dating back to the early (1st – 2nd centuries AD – Nyrgynda stage of the 1st – 5th century Tarasovo burial ground, a classical monument attributed to the Cheganda culture of the Pyany Bor cultural-historical community. Cultural stratigraphy is applied as a research method. Artifacts from the early stage were correlated for 37 male and 102 female complexes, separately. The analysis of grave goods from male burials showed the following three chronological groups, that can be distinguished at the Nyrgynda stage: 1st century (group 1, 2nd century (group 2 and 1st – 2nd centuries AD (group 3. The goods from female graves are more representative and various, so three more groups with shorter chronological lives can be singled out: the fi rst half of the 2nd century (group 2а, the second half of the 2nd century (group 2б and the 1st – fi rst half of the 2nd century (group 4. Certainly, the suggested chronology leaves room for any eventual corrections subject to new findings.

  16. Groundwater flow and tritium migration from the SRS Old Burial Ground to Fourmile Branch

    International Nuclear Information System (INIS)

    Flach, G.P.; Hamm, L.L.; Harris, M.K.

    1996-04-01

    The objectives of this investigation are twofold. The initial goal is to devise and demonstrate a technique for directly incorporating fine-scale lithologic data into heterogeneous hydraulic conductivity fields, for improved groundwater flow and contaminant transport model accuracy. The ultimate goal is to rigorously simulate past and future tritium migration from the SRS Old Burial Ground towards Fourmile Branch, to better understand the effects of various remediation alternatives such as no action and capping. Large-scale variability in hydraulic conductivity is usually the main influence on field-scale groundwater flow patterns and dispersive transport, following the relative locations of recharge and discharge areas. Incorporating realistic hydraulic conductivity heterogeneity into flow and transport models is paramount to accurate simulations, particularly for contaminant migration. Sediment lithologic descriptions and geophysical logs typically offer finer spatial resolution, and therefore more potential information about heterogeneity, than other site characterization data

  17. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

  18. Treatability tests on water from a low-level waste burial ground

    International Nuclear Information System (INIS)

    Taylor, P.A.

    1990-01-01

    Lab-scale treatability tests on trench water from a low-level waste burial ground have shown that the water can be successfully treated by existing wastewater treatment plants at Oak Ridge National Laboratory. Water from the four most highly contaminated trenches that had been identified to date was used in the treatability tests. The softening and ion exchange processes used in the Process Wastewater Treatment Plant removed Sr-90 from the trench water, which was the only radionuclide present at above the discharge limits. The air stripping and activated carbon adsorption processes used in the Nonradiological Wastewater Treatment Plant removed volatile and semi-volatile organics, which were the main contaminants in the trench water, to below detection limits. 6 refs., 2 figs., 7 tabs

  19. Treatability tests on water from a low-level waste burial ground

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.

    1990-01-01

    Lab-scale treatability tests on trench water from a low-level waste burial ground have shown that the water can be successfully treated by existing wastewater treatment plants at Oak Ridge National Laboratory. Water from the four most highly contaminated trenches that had been identified to date was used in the treatability tests. The softening and ion exchange processes used in the Process Wastewater Treatment Plant removed Sr-90 from the trench water, which was the only radionuclide present at above the discharge limits. The air stripping and activated carbon adsorption processes used in the Nonradiological Wastewater Treatment Plant removed volatile and semi-volatile organics, which were the main contaminants in the trench water, to below detection limits. 6 refs., 2 figs., 7 tabs.

  20. Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.

    1983-12-31

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affect nuclide migration. Several complexation mechanisms for plutonium migration were investigated.

  1. Burial Grounds and Dead Lovers: Places of Interment in the Gothic Modernism of the American South

    Directory of Open Access Journals (Sweden)

    Arthur Redding

    2017-10-01

    Full Text Available In Cities of the Dead, Joseph Roach speculates that “Modernity itself might be understood as a new way of handling (and thinking about the dead” (1996, p. 48. Roach (following Foucault argues that a whole array of rationalized spatial practices emerged during the Enlightenment designed to enforce policies of segregation and hygiene, demarcating the social and metaphysical lines that were necessary to distinguish black from white, civilization from nature, citizen from foreigner, past from present, reason from supernatural or folk forms of knowing, and—ultimately—living from dead. In this sense, “gothic” romanticism represented the development of a sort of unnatural chiaroscuro effect, whereby such boundaries and lines of distinction became blurred, where dead flesh becomes re-animated, where corpses risen from graves come to contaminate the spaces of the living. In contradistinction to formations that “view the dead as hermetically sealed off from contemporaneous life, quarantined into the past,” gothic cultural productions, as Eric Anderson et al. have argued recently in Undead Souths, reveal “how the dead contain cultural vibrancy in the present” (2015, p. 2. This essay, rethinking traditional understandings of “Southern Gothic” by emphasizing the world-making power of the dead, explores texts about burial grounds by modernist writers from the American South, William Faulkner’s As I Lay Dying (1930 and Frances Newman’s Dead Lovers are Faithful Lovers (1928. En route, I consider Freudian and other understandings of mourning from a spatial perspective, focusing on variously abortive or failed funereal dramas of interment and burial.

  2. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs

  3. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  4. Beads of the Birsk Burial Ground in the Context of the Antiquities of the Early Middle Ages

    Directory of Open Access Journals (Sweden)

    Ruslanova Rida Raisovna

    2016-04-01

    Full Text Available Early Middle Ages in the Southern Urals is the time of the tumultuous ethnocultural processes, that is an echo of the era of the Great Migration. At this time, the bakhmutinskaya culture was formed (3rd-8th centuries A.D.. The Birsk burial ground is one of the unique monuments of this period – it appeared in the second third of the 1st millennium B.C. The Birsk burial ground is a fiducial monument for studying history, ethno-cultural, migration and trade processes occurring in the Southern Urals, and the content in the composition of grave goods makes it supplies an important source in the study of early medieval history of East European forest. A variety of types of beads from the Birsk burial ground allows suggesting that the necropolis was one of the major points on the caravan trade and exchange path. According to it, the exchange could take place on imports of products (furs, honey, metals. The article describes a set of beads from the Birsk burials – evidence of a monument in the system of early medieval antiquities (3rd-8th centuries A.D.. The complex morpho-technological research dealt with 218 complexes containing 6705 instances of beads and jewelry. The feature of the monument is the presence of necklaces jewelry from all the selected materials along with the material. The Birsk burial ground demonstrates various forms of products, colors used glass for monochrome and polychrome decorations. The presented work can be used in the study of material culture and trade exchange operations of the medieval population of the Urals.

  5. Roman Bronze Vessels From the Late Sarmatian Burial of the Lebedevka Burial-Ground in Western Kazakhstan

    Directory of Open Access Journals (Sweden)

    Treister Mikhail Yuryevich

    2015-12-01

    Full Text Available This paper is devoted to studying cultural monuments – bronze vessels, a jug and a basin from the barrow no. 1/1967 of the Lebedevka Late Sarmatian burial mound (Western Kazakhstan, dating back to the middle of the 3rd century AD at the latest. These items do not find exact parallels among the bronze vessels of provincial Rome. Although the shape of the jug handle with a curved leaf turned upright between two horizontally arranged swan heads has parallels on the so-called “composite jug with handles” (“gegliederten Henkelkrügen”, the cylindrical form of the jug’s neck peculiar of the glass jugs of allegedly Syrian manufacture of the second half of the 3rd-4th centuries AD is very unusual. Even more unusual is a basin with horizontally bent rim and elaborate handles with pearls on a high narrow stand-ring. The XRF analyses of the Lebedevka jug’s metal revealed that its body and handle were made of a copper-based alloy with very high admixtures of zinc (24-27 % and inconsiderable additions of lead (up to 3 %. A similar alloy was used for manufacturing a vessel in the form of a crouching young negro from Niederbieber. Most objects of provincial Roman import reached Western Kazakhstan via the Bosporan kingdom along the Northern branch of the Silk Road. The above discussed bronze vessels from Lebedevka let suggest, that the nomads could receive some import articles that were brought along the caravan routes leading from Egypt and Syria to the East.

  6. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  7. Thawing of permafrost may disturb historic cattle burial grounds in East Siberia

    Directory of Open Access Journals (Sweden)

    Boris A. Revich

    2011-11-01

    Full Text Available Climate warming in the Arctic may increase the risk of zoonoses due to expansion of vector habitats, improved chances of vector survival during winter, and permafrost degradation. Monitoring of soil temperatures at Siberian cryology control stations since 1970 showed correlations between air temperatures and the depth of permafrost layer that thawed during summer season. Between 1900s and 1980s, the temperature of surface layer of permafrost increased by 2–4°C; and a further increase of 3°C is expected. Frequent outbreaks of anthrax caused death of 1.5 million deer in Russian North between 1897 and 1925. Anthrax among people or cattle has been reported in 29,000 settlements of the Russian North, including more than 200 Yakutia settlements, which are located near the burial grounds of cattle that died from anthrax. Statistically significant positive trends in annual average temperatures were established in 8 out of 17 administrative districts of Yakutia for which sufficient meteorological data were available. At present, it is not known whether further warming of the permafrost will lead to the release of viable anthrax organisms. Nevertheless, we suggest that it would be prudent to undertake careful monitoring of permafrost conditions in all areas where an anthrax outbreak had occurred in the past.

  8. Annual progress report of burial ground studies at Oak Ridge National Laboratory: period ending September 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Duguid, J.O.

    1976-10-01

    Offsite radioactivity releases in the Clinch River are less than 1 percent of the amount allowable for unrestricted use of the water. However, studies were conducted on the radioactivity contributions to the Clinch River from the buried waste at ORNL and on implementing corrective measures. The /sup 60/Co-organic complexes present in ground water near trench 7 are present in two molecular weight fractions, one greater than 700 and one less than 700, with 85 percent of the /sup 60/Co being transported with the lighter fraction. The chemical composition of this fraction may be composed of natural organics or EDTA. The calculated discharge of /sup 90/Sr from burial ground 4 to White Oak Creek showed a decrease in the discharge corresponding to a decrease in precipitation. The calculated discharge does not agree with stream-monitoring data, and it is believed that the stream-monitoring data are in error or that a new source of /sup 90/Sr is present in the drainage. Drainage improvements for the burial ground have been installed. Alpha radioactivity was found in water samples from burial ground 5, and the water from one seep had both /sup 244/Cm and /sup 238/Pu. Corrective measures were applied to reduce the amount of water moving through the buried waste. Four trenches were sealed with a near-surface plastic membrane. Procedures for design of a bentonite-shale mixture were developed, and data show that an adequate sealing material can be made using 10 percent bentonite. This material will be used for near-surface sealing of both past and current burial grounds. Two computer codes for calculation of water movement and radionuclide transport were completed and are being applied to seepage trench 7 to predict the future behavior of the waste. 11 tables, 12 fig. (DLC)

  9. Long-term sequential monitoring of controlled graves representing common burial scenarios with ground penetrating radar: Years 2 and 3

    Science.gov (United States)

    Schultz, John J.; Walter, Brittany S.; Healy, Carrie

    2016-09-01

    Geophysical techniques such as ground-penetrating radar (GPR) have been successfully used for forensic searches to locate clandestine graves and physical evidence. However, additional controlled research is needed to fully understand the applicability of this technology when searching for clandestine graves in various environments, soil types, and for longer periods of time post-burial. The purpose of this study was to determine the applicability of GPR for detecting controlled graves in a Spodosol representing multiple burial scenarios for Years 2 and 3 of a three-year monitoring period. Objectives included determining how different burial scenarios are factors in producing a distinctive anomalous response; determining how different GPR imagery options (2D reflection profiles and horizontal time slices) can provide increased visibility of the burials; and comparing GPR imagery between 500 MHz and 250 MHz dominant frequency antennae. The research site contained a grid with eight graves representing common forensic burial scenarios in a Spodosol, a common soil type of Florida, with six graves containing a pig carcass (Sus scrofa). Burial scenarios with grave items (a deep grave with a layer of rocks over the carcass and a carcass wrapped in a tarpaulin) produced a more distinctive response with clearer target reflections over the duration of the monitoring period compared to naked carcasses. Months with increased precipitation were also found to produce clearer target reflections than drier months, particularly during Year 3 when many grave scenarios that were not previously visible became visible after increased seasonal rainfall. Overall, the 250 MHz dominant frequency antenna imagery was more favorable than the 500 MHz. While detection of a simulated grave may be difficult to detect over time, long term detection of a grave in a Spodosol may be possible if the disturbed spodic horizon is detected. Furthermore, while grave visibility increased with the 2D

  10. Electromagnetic survey of the K1070A burial ground at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Emery, M.S.

    1993-01-01

    The K1070A burial ground, located at the K-25 Site on the Oak Ridge Reservation, received chemical and radioactive wastes from the late 1940s until 1975. Analysis of water samples collected from nearby monitoring wells indicates that contamination is migrating offsite. In November 1991, Oak Ridge National Laboratory (ORNL) personnel collected high-resolution electrical terrain conductivity data at the K1070A burial ground. A Model EM31 terrain conductivity meter manufactured by Geonics Limited was used in conjunction with the ORNL-developed Ultrasonic Ranging and Data System (USRADS) to perform the survey. The purposeof the survey was to provide Environmental Restoration (ER) staff with a detailed map of the spatial variation of the apparent electrical conductivity of the shallow subsurface (upper 3 m) to assist them in siting future monitoring wells closer to the waste area without drilling into the buried waste

  11. Electromagnetic survey of the K1070A burial ground at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Nyquist, J.E.; Emery, M.S.

    1993-01-01

    The K1070A burial ground, located at the K-25 Site on the Oak Ridge Reservation, received chemical and radioactive wastes from the late 1940s until 1975. Analysis of water samples collected from nearby monitoring wells indicates that contamination is migrating offsite. In November 1991, Oak Ridge National Laboratory (ORNL) personnel collected high-resolution electrical terrain conductivity data at the K1070A burial ground. A Model EM31 terrain conductivity meter manufactured by Geonics Limited was used in conjunction with the ORNL-developed Ultrasonic Ranging and Data System (USRADS) to perform the survey. The purposeof the survey was to provide Environmental Restoration (ER) staff with a detailed map of the spatial variation of the apparent electrical conductivity of the shallow subsurface (upper 3 m) to assist them in siting future monitoring wells closer to the waste area without drilling into the buried waste.

  12. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    Science.gov (United States)

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  13. Corrective Measures Study Modeling Results for the Southwest Plume - Burial Ground Complex/Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Harris, M.K.

    1999-01-01

    Groundwater modeling scenarios were performed to support the Corrective Measures Study and Interim Action Plan for the southwest plume of the Burial Ground Complex/Mixed Waste Management Facility. The modeling scenarios were designed to provide data for an economic analysis of alternatives, and subsequently evaluate the effectiveness of the selected remedial technologies for tritium reduction to Fourmile Branch. Modeling scenarios assessed include no action, vertical barriers, pump, treat, and reinject; and vertical recirculation wells

  14. Evaluation of the Fate and Transport of Tritium Contaminated Groundwater from the 618-11 Burial Ground

    International Nuclear Information System (INIS)

    Vermeul, Vince R.; Bergeron, Marcel P.; Dresel, P EVAN.; Freeman, Eugene J.; Peterson, R E.; Thorne, Paul D.

    2005-01-01

    Tritium transport simulations were conducted to model the mechanisms associated with dilution, dispersion, and radioactive decay that attenuate the 618-11 Burial Ground tritium plume and limit the risk associated with exposure to the Columbia River and Energy Northwest water supply wells. A comparison of simulated and observed tritium concentrations at two downgradient monitoring wells indicated that the model was a reasonable representation of the tritium concentrations immediately downgradient of the site (699-13-3A) and near the leading edge of the plume (699-13-0A). This good match increased confidence in the conceptual model, its numeric implementation, and ultimately the validity of predictive simulations of tritium fate and transport. Three release scenarios were investigated to measure the impact of the tritium plume at primary receptor locations under different conditions. The three cases were (1) a pulse release of tritium from the burial ground that was the best fit between observed and simulated tritium concentrations; (2) a continuing, decaying source beneath the burial ground through 2015, the milestone for source removal under the River Corridor Closure Contract; and (3) a pulse release as in the best fit case but at twice the concentration. For the best fit case, the model predicts that the maximum tritium concentration will decline to below the drinking water standard by 2031 For the other two release scenarios, maximum tritium concentrations declined to below the drinking water standard by 2040 and 2037, respectively. Tritium from the 618-11 burial ground is not expected to migrate to the Columbia River or to the Energy Northwest water supply wells at concentrations that would pose a significant risk

  15. Hanford ground-water data base management guide and user's manual

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs

  16. Applicability of a generic monitoring program for radioactive waste burial grounds at Oak Ridge National Laboratory and Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    Six burial grounds were evaluated at Oak Ridge to determine which would be most suitable for testing the generic monitoring approach, and two were selected. Burial Ground 4 was chosen because it is known to be leaking radioactivity and a monitoring program is desirable to determine the source, pattern and extent of the leakage. Burial Ground 6 was chosen because the most complete radiologic and geologic data is available and modern burial practices have been utilized at this site. At the Idaho National Engineering Laboratory (INEL) only one burial ground exists, the Radioactive Waste Management Complex (RWMC). The data available on the burial grounds are insufficient for an adequate understanding of radionuclide migration patterns and accordingly, inadequate for the design of reliable monitoring programs. It was decided, therefore, that preliminary monitoring programs should be designed in order to obtain additional data for a later implementation of reliable monitoring programs. The monitoring programs designed for ORNL consist primarily of the installation of surface water monitoring stations, the surveillance of trench sump wells, a test boring program to study subsurface geologic conditions, a ground water sampling program and the installation of instrumentation, specifically infiltrometers and evaporation pans, to develop data on site water balances. The program designed for the INEL burial ground includes installation of trench sumps, a ground water monitoring program, test borings to further define subsurface geohydrologic conditions and the installation of instrumentation to develop data on the site water balance. The estimated costs of implementing the recommended programs are about $420,820 for monitoring Burial Grounds 4 and 6 at Oak Ridge and $382,060 for monitoring the RWMC at INEL. 12 figures.

  17. Analysis of Chemical Composition of Non-Ferrous Metal Items from the Ananyino Burial Ground

    Directory of Open Access Journals (Sweden)

    Saprykina Irina А.

    2016-03-01

    Full Text Available The article presents results of an analysis conducted by the authors in order to study chemical composition of items from non-ferrous metals found on the Ananyino burial ground. A number of research methods, including OES, XRF and TXRF was applied to study a selection of 387 samples of arrow- and spearheads, celts, tail-pieces, warhammers, poleaxes, knives and daggers, as well as items of attire and jewelry, some sporadic details of harness and bridle. The fi ndings are quite comparable. The results were classifi ed by the geochemical principle of 1,0% alloyage threshold. It was found out that the sample primarily consists of copper items, including “pure” copper and copper with a wide range of trace elements (particularly, Ni, As, Sb. The core (48% consists of copper items with traces of antimony and arsenic, or “pure” copper (7%, tin or triple bronze (40%; it also includes some other types of alloys based on copper or silver (5%. As the analysis has shown, complex ores seem to be the most probable source of copper. Traditionally, the Urals, the Sayan and the Altay Mountains, Kazakhstan and the Northern Caucasus were regarded as the most probable minefi elds to supply ores to the barren regions of Eastern Europe. While ore sources for products made of metallurgical “pure” copper are localized within the Ural mining and metallurgical region, metal sources for items cast from different groups of alloys (rather than imports of ready-made products require further research.

  18. Groundwater transport modeling of constituents originating from the Burial Grounds Complex

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, P.F.; Shupe, M.G.; Spalding, C.P. [GeoTrans, Inc., Sterling, VA (US)

    1992-10-30

    The Savannah River Site (SRS), operates a number of sites for the land disposal of various leachable radionuclide, organic, and inorganic wastes. Located within the General Separations Area (GSA) of SRS are the Low Level Radioactive Waste Disposal Facility (LLRWDF) and the Old Burial Ground (OBG). A portion of the LLRWDF has been designated as the Mixed Waste Management Facility (MWMF). The OBG began receiving waste in 1952 and was closed in 1974. Various wastes, including transuranic, intermediate and low level beta-gamma, and solvents, were received during this period of operation. In 1969, prior to the closing of the OBG, a portion of the MWMF/LLRWDF (the MWMF) began receiving waste. GeoTrans, Inc. was contracted by WSRC to conduct a numerical modeling study to assess groundwater flow and contaminant transport in the vicinity of the MWMF in support of an Alternate Concentration Limits demonstration for the Part B permit. The project was divided into two phases: development of a groundwater flow model of the hydrogeologic system underlying the MWMF which includes the entire GSA, and development of a solute transport model to assess migration of 19 designated constituents of concern (COCs) over a period 30 years into the future. The first phase was completed in May of 1992 and the results documented in GeoTrans (1992). That report serves as the companion volume to the present contaminant transport modeling report. The transport study is intended to develop predictions of concentration and mass flux of the 19 COCs at downgradient exposure points over the 30 year period of interest. These results are to be used in human health and ecological risk assessments which are also being performed in support of the Part B permit.

  19. A study of the burial ground used for radioactive waste at the Little Forest area near Lucas Heights New South Wales

    International Nuclear Information System (INIS)

    Isaacs, S.R.; Mears, K.F.

    1977-12-01

    This report describes the laboratory and field work connected with the study of the fate of radionuclides already buried at the burial ground of the AAEC Research Establishment at Lucas Heights. The study complements and expands investigations made before the burial ground was established. The very slow movement of radioactivity from the buried waste is confirmed by environmental monitoring. The ion exchange capacity of the soil and the minimal groundwater velocity both contribute to the retention of radioactivity in the area. A simple model is developed to demonstrate the capacity of the burial area for radioactive waste. (Author)

  20. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Executive summary

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written to provide guidance to managers and site operators on how ground-water transport codes should be selected for assessing burial site performance. There is a need for a formal approach to selecting appropriate codes from the multitude of potentially useful ground-water transport codes that are currently available. Code selection is a problem that requires more than merely considering mathematical equation-solving methods. These guidelines are very general and flexible and are also meant for developing systems simulation models to be used to assess the environmental safety of low-level waste burial facilities. Code selection is only a single aspect of the overall objective of developing a systems simulation model for a burial site. The guidance given here is mainly directed toward applications-oriented users, but managers and site operators need to be familiar with this information to direct the development of scientifically credible and defensible transport assessment models. Some specific advice for managers and site operators on how to direct a modeling exercise is based on the following five steps: identify specific questions and study objectives; establish costs and schedules for achieving answers; enlist the aid of professional model applications group; decide on approach with applications group and guide code selection; and facilitate the availability of site-specific data. These five steps for managers/site operators are discussed in detail following an explanation of the nine systems model development steps, which are presented first to clarify what code selection entails

  1. Fabrics from the 9th-11th-century burial grounds located in the Vetluga-Vyatka interfluve area

    Directory of Open Access Journals (Sweden)

    Orfinskaya Olga V.

    2014-06-01

    Full Text Available The article summarizes primary results of technological analysis of textile fragments (45 items from the Mari 9th-10th-century burials located at the Rusenikha and Nizhnyaja Strelka burial ground sites in the Vetluga-Vyatka interfluve area. Six textile groups have been singled out: 1 woolen fabric of plain weave; 2 woolen fabrics of twill weave; 3 plain weave cloths from plant fibers; 4 silk fabrics; 5 cords and cord tassels from woolen yarn; 6 fragments of felt. They are remains of garments, mats and fabrics used for wrapping funerary gifts. An attempt to reconstruct the cut of individual parts of the garments has been made by the authors.

  2. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 1, Text

    International Nuclear Information System (INIS)

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-02-01

    This report describes the progress of 12 Hanford ground-water monitoring projects for the period July 1 to September 30, 1988. During this quarter, field activities at the 300 Area process trenches, the Nonradioactive Dangerous Waste Landfill, the 183-H Solar Evaporation Basins, the 1324-N/NA Surface Impoundment and Percolation Ponds, the 1301-N and 1325-N Liquid Waste Disposal Facilities, and the 216-A-36B Crib consisted of ground-water sampling and analyses, and water-level monitoring. The 200 Area Low-Level Burial Grounds section includes well development data, sediment analysis, and water-level measurements. Ground-water sampling was begun at this site, and results will be included in next quarter's report. Twelve new wells were installed during the quarter, two at the 216-A-29 Ditch, size at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells are included in this report. Driller's logs and other drilling and site characterization data will be provided in the next quarterly report. At the 2101-M Pond, construction was completed on four wells, and initial ground-water samples were taken. The drilling logs, geophysical logging data, and as-built diagrams are included in this report in Volume 2. 19 refs., 24 figs., 39 tabs

  3. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  4. Evaluation of the Fate and Transport of Tritium Contaminated Groundwater from the 618-11 Burial Ground

    International Nuclear Information System (INIS)

    Vermeul, Vince R.; Bergeron, Marcel P.; Dresel, P Evan; Freeman, Eugene J.; Peterson, R E.; Thorne, Paul D.

    2005-01-01

    Tritium transport simulations were conducted to model the mechanisms associated with dilution, dispersion, and radioactive decay that attenuate the 618-11 tritium plume and limit the risk associated with exposure to the Columbia River and Energy Northwest water supply wells. A comparison of simulated and observed tritium concentrations at two downgradient monitoring wells indicated that the model was a reasonable representation of the tritium concentrations immediately downgradient of the site (699-13-3A) and near the leading edge of the plume (699-13-0A). This good match increased confidence in the conceptual model, its numeric implementation, and ultimately, the validity of predictive simulations of tritium fate and transport. Three release scenarios were investigated to measure the impact of the tritium plume at primary receptor locations under different conditions. The three cases were (1) a pulse release of tritium from the burial ground that was the best fit between observed and simulated tritium concentrations; (2) a continuing, decaying source beneath the burial ground through 2015, the milestone for source removal under the River Corridor Closure Contract; and (3) a pulse release as in the best fit case but at twice the concentration. For the best fit case, the model predicts that the maximum tritium concentration will decline to below the drinking water standard by 2031 For the other two release scenarios, maximum tritium concentrations declined to below the drinking water standard by 2040 and 2037, respectively. Tritium from the 618-11 burial ground is not expected to migrate to the Columbia River or to the Energy Northwest water supply wells at concentrations that would pose a significant risk

  5. SP-100 ground engineering system at Hanford. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The SP-100 reactor is intended to provide a reliable power source for space applications. The reactor development program includes a ground test of the reactor systems to demonstrate that reliability and safety issues have been resolved. The use of an existing containment structure provides a unique facility with large safety margins and ample space. Preliminary seismic analysis shows that current site earthquake criteria can be met. The building is currently utilized to house engineering personnel, and the containment area is in use as an assembly facility. Only minimal activity is required to activate major support systems. All of the principal support facilities are in close proximity to the proposed test site. The various systems and facilities and their status are identified

  6. Locating Ground-Water Discharge in the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

    1997-01-01

    A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity ''hotspots'' yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom

  7. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground Environmental Surveillance Programs

    Energy Technology Data Exchange (ETDEWEB)

    Denham, D. H.; Eddy, P. A.; Hawley, K. A.; Jaquish, R. E.; Corley, J. P.

    1981-07-01

    This Addendum supplements, and to some extent replaces, the preliminary description of environmental radiological surveillance programs for low-level waste burial grounds (LLWBG) used in the parent document, 11 Technology, Safety and Costs of DecolliTlissioning a Reference Low-Level Waste Burial Ground, 11 NUREG/ CR-0570. The Addendum provides additional detail and rationale for the environmental radiological surveillance programs for the two referenced sites and inventories described in NUREG/CR-0570. The rationale and performance criteria herein are expected to be useful in providing guidance for determining the acceptability of environmental surveillance programs for other inventories and other LLWBG sites. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are reference facilities considered in this Addendum, and as described in the parent document (NUREG/CR-0570). The two sites are assumed to have the same capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology, and hydrology of the two reference sites are typical of existing western and eastern sites, altnough a single population distribution was chosen for both. Each reference burial ground occupies about 70 hectares and includes 180 trenches filled with a total of 1.5 x 10{sup 6} m{sup 3} of radioactive waste. In acldition, there are 10 slit trenches containing about 1.5 x 10{sup 3} m{sup 3} of high beta-gamma activity waste. In this Addendum environmental surveillance programs are described for the several periods in the life of a LLWBG: preoperational (prior to nuclear waste receipt); operational (including interim trench closures); post-operational (after all nuclear waste is received), for both short-term {up to three years) and long-term (up to 100 years) storage and custodial care; and decommissioning (only for the special case of waste removal). The specific

  8. Geohydrology and ground-water quality beneath the 300 Area, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Bond, F.W.

    1979-06-01

    Ground water enters the 300 Area from the northwest, west, and southwest. However, throughout most of the 300 Area, the flow is to the east and southeast. Ground water flows to the northeast only in the southern portion of the 300 Area. Variations in level of the Columbia River affected the ground-water system by altering the level and shape of the 300 Area watertable. Large quantities of process waste water, when warmed during summer months by solar radiation or cooled during winter months by ambient air temperature, influenced the temperature of the ground water. Leaking pipes and the intentional discharge of waste water (or withdrawal of ground water) affected the ground-water system in the 300 Area. Water quality tests of Hanford ground water in and adjacent to the 300 Area showed that in the area of the Process Water Trenches and Sanitary Leaching Trenches, calcium, magnesium, sodium, bicarbonate, and sulfate ions are more dilute, and nitrate and chloride ions are more concentrated than in surrounding areas. Fluoride, uranium, and beta emitters are more concentrated in ground water along the bank of the Columbia River in the central and southern portions of the 300 Area and near the 340 Building. Test wells and routine ground-water sampling are adequate to point out contamination. The variable Thickness Transient (VTT) Model of ground-water flow in the unconfined aquifer underlying the 300 Area has been set up, calibrated, and verified. The Multicomponent Mass Transfer (MMT) Model of distribution of contaminants in the saturated regime under the 300 Area has been set up, calibrated, and tested

  9. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  10. Opisthorchiasis in infant remains from the medieval Zeleniy Yar burial ground of XII-XIII centuries AD

    Directory of Open Access Journals (Sweden)

    Sergey Mikhailovich Slepchenko

    2015-01-01

    Full Text Available We present a paleoparasitological analysis of the medieval Zeleniy Yar burial ground of the XII-XII centuries AD located in the northern part of Western Siberia. Parasite eggs, identified as eggs of Opisthorchis felineus, were found in the samples from the pelvic area of a one year old infant buried at the site. Presence of these eggs in the soil samples from the infant’s abdomen suggests that he/she was infected with opisthorchiasis and imply consumption of undercooked fish. Ethnographic records collected among the population of the northern part of Western Siberia reveal numerous cases of feeding raw fish to their children. Zeleniy Yar case of opisthorchiasis suggests that this dietary custom has persisted from at least medieval times.

  11. Opisthorchiasis in infant remains from the medieval Zeleniy Yar burial ground of XII-XIII centuries AD

    Science.gov (United States)

    Slepchenko, Sergey Mikhailovich; Gusev, Alexander Vasilevich; Ivanov, Sergey Nikolaevich; Svyatova, Evgenia Olegovna

    2015-01-01

    We present a paleoparasitological analysis of the medieval Zeleniy Yar burial ground of the XII-XII centuries AD located in the northern part of Western Siberia. Parasite eggs, identified as eggs of Opisthorchis felineus, were found in the samples from the pelvic area of a one year old infant buried at the site. Presence of these eggs in the soil samples from the infant’s abdomen suggests that he/she was infected with opisthorchiasis and imply consumption of undercooked fish. Ethnographic records collected among the population of the northern part of Western Siberia reveal numerous cases of feeding raw fish to their children. Zeleniy Yar case of opisthorchiasis suggests that this dietary custom has persisted from at least medieval times. PMID:26602874

  12. Opisthorchiasis in infant remains from the medieval Zeleniy Yar burial ground of XII-XIII centuries AD.

    Science.gov (United States)

    Slepchenko, Sergey Mikhailovich; Gusev, Alexander Vasilevich; Ivanov, Sergey Nikolaevich; Svyatova, Evgenia Olegovna

    2015-12-01

    We present a paleoparasitological analysis of the medieval Zeleniy Yar burial ground of the XII-XII centuries AD located in the northern part of Western Siberia. Parasite eggs, identified as eggs of Opisthorchis felineus, were found in the samples from the pelvic area of a one year old infant buried at the site. Presence of these eggs in the soil samples from the infant's abdomen suggests that he/she was infected with opisthorchiasis and imply consumption of undercooked fish. Ethnographic records collected among the population of the northern part of Western Siberia reveal numerous cases of feeding raw fish to their children. Zeleniy Yar case of opisthorchiasis suggests that this dietary custom has persisted from at least medieval times.

  13. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  14. A review of hydrologic and geologic conditions related to the radioactive solid-waste burial grounds at Oak Ridge National Laboratory, Tennessee

    Science.gov (United States)

    Webster, D.A.

    1976-01-01

    Solid waste contaminated by radioactive matter has been buried in the vicinity of Oak Ridge National Laboratory since 1944. By 1973, an estimated six million cubic feet of such material had been placed in six burial grounds in two valleys. The practice initially was thought of as a safe method for permanently removing these potentially hazardous substances from man's surroundings, but is now que.3tionable at this site because of known leaching of contaminants from the waste, transport in ground water, and release to the terrestrial and fluvial environments. This review attempts to bring together in a single document information from numerous published and unpublished sources regarding the past criteria used for selecting the Oak Ridge burial-ground sites, the historical development and conditions of these facilities as of 1974, the geologic framework of the Laboratory area and the movement of water and water-borne contaminants in that area, the effects of sorption and ion exchange upon radionuclide transport, and a description and evaluation of the existing monitoring system. It is intended to assist Atomic Energy Commission (now Energy Research and Development Administration) officials in the formulation of managerial decisions concerning the burial grounds and present monitoring methods. Sites for the first three burial grounds appear to have been chosen during and shortly after World War II on the basis of such factors as safety, security, and distance from sources of waste origin. By 1950, geologic criteria had been introduced, and in the latter part of that decade, geohydrologic criteria were considered. While no current criteria have been defined, it becomes evident from the historical record that the successful containment of radionuclides below land surface for long periods of time is dependent upon a complex interrelationship between many geologic, hydrologic, and geochemical controls, and any definition of criteria must include consideration of these

  15. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  16. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA, HANFORD, WASHINGTON

    International Nuclear Information System (INIS)

    Petersen, S.W.

    2010-01-01

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM(reg s ign) system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m (328 ft) and 200 m (656 ft)) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  17. Hanford Site ground-water monitoring for January through June 1988

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs

  18. Annual Status Report (FY2015) Performance Assessment for the Disposal of Low-Level Waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R. [INTERA, Inc., Austin, TX (United States); Mehta, S. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2016-02-01

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Burial Grounds (LLBGs) since September 26, 1988. These estimates area calculated using the original does methodology developed in the performance assessment (PA) analysis (WHC-EP-0645).

  19. Ground-penetrating radar investigations conducted in the 100 areas, Hanford Site: Fiscal Year 1992

    International Nuclear Information System (INIS)

    Bergstrom, K.A.

    1994-01-01

    During Fiscal Year 1992, the Geophysics Group conducted forty- five Ground-Penetrating Radar (GPR) surveys in the 100 Areas (Figure 1) - Objectives for the investigations varied, from locating cribs, trenches and septic systems to helping site boreholes. The results of each investigation were delivered to clients in the form of a map that summarized the interpretation of a given site. No formal reports were prepared. The purpose of this document is to show where and why each of the surveys was conducted. The data and interpretation of each survey are available by contacting the Westinghouse Hanford Company, Geophysics Group. A map showing the location and basic parameters of each survey can be found in the Appendices of this report

  20. Environmental status of the Hanford Site for CY-1976

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.; Bramson, P.E.

    1977-05-01

    Environmental data were collected on the Hanford Site during 1976 for several environmental media including air, Columbia River water, wildlife, ambient radiation levels, soil and vegetation, as well as ditches, ponds and trenches near operating facilities. In addition, all roadways, railways, and active, as well as retired burial grounds were surveyed on a varying frequency to detect any abnormal levels of radioactivity. Highlights of the monitoring data collected are included

  1. Compliance For Hanford Waste Retrieval: Radioactive Air Emissions

    International Nuclear Information System (INIS)

    Simmons, F.M.

    2009-01-01

    (sm b ullet) Since 1970, approximately 38,000 suspect transuranic (TRU) and TRU waste cont∼iners have been placed in retrievable storage on the Hanford Site in the 200Area's burial grounds. (sm b ullet) TRU waste is defined as waste containing greater than 100 nanocuries/gram of alpha emitting transuranic isotopes with half lives greater than 20 years. (sm b ullet) The United States currentl∼permanently disposes of TRU waste at the Waste Isolation Pilot Plant (WIPP).

  2. Fire hazard analysis for the Westinghouse Hanford Company managed low-level mixed waste Trench 31 and 34

    International Nuclear Information System (INIS)

    Howard, B.J.

    1995-01-01

    This analysis is to assess comprehensively the risks from fire within the new lined landfills, provided by W-025 and designated Trench 31 and 34 of Burial Ground 218-W-5; they are located in the 200 West area of the Hanford Site, and are designed to receive low-level mixed waste

  3. On the Problem Related to Reconstructing the Social Structure of the Population that Had Founded Seliksa-Trofimovka (Ancient Mordovian Burial Ground in 4th—5th Centuries

    Directory of Open Access Journals (Sweden)

    Grishakov Valeriy V.

    2013-12-01

    Full Text Available The article is devoted to the problem of reconstruction of the social structure of the ancient Monrovian population that had established the 4th-5th-century Seliksa-Trofimovka burial ground in the Upper Sura river region. The materials of the male burials of the necropolis have been chosen for analysis as most socially informative. An attempt has been made to determine the relationship between the social status of the individual and its expression in ritual rites. The differences in the composition and quantity of grave goods made it possible to distinguish three groups of burials conventionally termed as "the poor", "the ordinary" and "the warriors." The latter group included three graves with swords. The necropolis has a row-based order layout; all the burials are on the ground level, with no traces of gravestones, and have the same northeast orientation. The property-based stratification in the analyzed community was apparently insignificant, while social stratification depended primarily on professional activities.

  4. The making of urban ‘healtheries’: the transformation of cemeteries and burial grounds in late-Victorian East London☆

    Science.gov (United States)

    Brown, Tim

    2013-01-01

    This paper focuses on the conversion of disused burial grounds and cemeteries into gardens and playgrounds in East London from around the 1880s through to the end of the century. In addition to providing further empirical depth, especially relating to the work of philanthropic organisations such as the Metropolitan Public Gardens Association, the article brings into the foreground debates regarding the importance of such spaces to the promotion of the physical and moral health of the urban poor. Of particular note here is the recognition that ideas about the virtuous properties of open, green space were central to the success of attempts at social amelioration. In addition to identifying the importance of such ideas to the discourse of urban sanitary reformers, the paper considers the significance of less virtuous spaces to it; notably here, the street. Building on Driver's work on ‘moral environmentalism’ and Osborne and Rose's on ‘ethicohygienic space,’ this paper goes on to explore the significance of habit to the establishing of what Brabazon called ‘healtheries’ in late-Victorian East London. PMID:24882920

  5. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-03-23

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a {gamma}-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured {gamma}-ray data acquired in an unusual configuration.

  6. The making of urban 'healtheries': the transformation of cemeteries and burial grounds in late-Victorian East London.

    Science.gov (United States)

    Brown, Tim

    2013-10-01

    This paper focuses on the conversion of disused burial grounds and cemeteries into gardens and playgrounds in East London from around the 1880s through to the end of the century. In addition to providing further empirical depth, especially relating to the work of philanthropic organisations such as the Metropolitan Public Gardens Association, the article brings into the foreground debates regarding the importance of such spaces to the promotion of the physical and moral health of the urban poor. Of particular note here is the recognition that ideas about the virtuous properties of open, green space were central to the success of attempts at social amelioration. In addition to identifying the importance of such ideas to the discourse of urban sanitary reformers, the paper considers the significance of less virtuous spaces to it; notably here, the street. Building on Driver's work on 'moral environmentalism' and Osborne and Rose's on 'ethicohygienic space,' this paper goes on to explore the significance of habit to the establishing of what Brabazon called 'healtheries' in late-Victorian East London.

  7. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  8. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  9. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

  10. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.

  11. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments

    International Nuclear Information System (INIS)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy's (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS

  12. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  13. Electromagnetic survey of the K1070A burial ground at the Oak Ridge K-25 Site, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Nyquist, J.E.; Emery, M.S.

    1993-01-01

    The K1070A burial ground, located at the K-25 Site on the Oak Ridge Reservation, received chemical and radioactive wastes from the late 1940s until 1975. Analysis of water samples collected from nearby monitoring wells indicates that contamination is migrating offsite. In November 1991, Oak Ridge National Laboratory (ORNL) personnel collected high-resolution electrical terrain conductivity data at the K1070A burial ground. A Model EM31 terrain conductivity meter manufactured by Geonics Limited was used in conjunction with the ORNL-developed Ultrasonic Ranging and Data System (USRADS) to perform the survey. The purposeof the survey was to provide Environmental Restoration (ER) staff with a detailed map of the spatial variation of the apparent electrical conductivity of the shallow subsurface (upper 3 m) to assist them in siting future monitoring wells closer to the waste area without drilling into the buried waste.

  14. Change of Grave Goods in the Middle 11th–13th Centuries in the Burial Grounds in the Lower Vetluga Area

    Directory of Open Access Journals (Sweden)

    Akilbaev Alexander V.

    2017-03-01

    Full Text Available The author examines changing patterns in the decoration set and metal elements of costume traceable by materials offered by the Old Mari burial grounds in the Lower Vetluga area and the neighboring Volga area starting from the middle 11th century. This process reflects trade and cultural contacts of the Lower Vetluga population in the middle of 11th – 13th centuries. The analysis of grave goods from a number of medieval Mari burial grounds in the Lower Vetluga, such as Vyzhum II, Vyzhum III, Dubovo, Rutka, Pochinok, Rusenikha, allowed distinguishing some artefacts originating from the territory of the Old Rus’ and more remote western territories: Finland, Scandinavia, the Baltic Sea zone. The dating and the analogies support the Old Russian origin of the majority of these artefacts. The study allowed linking some types of decoration to certain territories and tribes of the Northern Rus’ and identify their main production centers.

  15. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  16. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ``error`` in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand.

  17. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ''error'' in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand

  18. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs

  19. Resource book: Decommissioning of contaminated facilities at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs.

  20. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford

  1. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-11-01

    The Bear Creek Burial Grounds (BCBG) are located on the southwest flank of Pine Ridge ∼1.5 miles west of the Oak Ridge Y-12 Plant in Bear Creek Valley. This facility consists of several contiguous disposal sites identified as Burial Grounds A, B, C, and D. Each burial site consists of a series of trenches used for disposal of solid wastes and, in some cases, liquid wastes. Initially, the RCRA Closure/Postclosure plan for the BCBG was intended to apply to A Area, C-West, B Area, and the walk-in pits for BCBG. However, a plan was provided to include the B Area in the walk-in pits so that both areas cold be closed under one cap. The closure plan for B Area and the walk-in pits is presented in this document. The actual quantity and identity of materials is uncertain. The largest volume of material disposed in BCBG consists of uranium-contaminated industrial trash (paper, wood, steel, glass, and rubble)

  2. NRC Task Force report on review of the federal/state program for regulation of commercial low-level radioactive waste burial grounds

    International Nuclear Information System (INIS)

    1977-01-01

    The underlying issue explored in this report is that of Federal vs State regulation of commercial radioactive waste burial grounds. The need for research and development, a comprehensive set of standards and criteria, a national plan for low-level waste management, and perpetual care funding are closely related to the central issue and are also discussed. Five of the six commercial burial grounds are regulated by Agreement States; the sixth is regulated solely by the NRC (NRC also regulates Special Nuclear Material at the sites). The sites are operated commercially. The operators contribute to the perpetual care funds for the sites at varying rates. The States have commitments for the perpetual care of the decommissioned sites except for one site, located on Federally owned land. Three conclusions are reached. Federal control over the disposal of low-level waste should be increased by requiring joint Federal/State site approval, NRC licensing, Federal ownership of the land, and a Federally administered perpetual care program. The NRC should accelerate the development of its regulatory program for the disposal of low-level waste. The undisciplined proliferation of low-level burial sites must be avoided. NRC should evaluate alternative disposal methods, conduct necessary studies, and develop a comprehensive low-level waste regulatory program (i.e., accomplish the above recommendations) prior to the licensing of new disposal sites

  3. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  4. Three-dimensional ground-motion simulations of earthquakes for the Hanford area, Washington

    Science.gov (United States)

    Frankel, Arthur; Thorne, Paul; Rohay, Alan

    2014-01-01

    This report describes the results of ground-motion simulations of earthquakes using three-dimensional (3D) and one-dimensional (1D) crustal models conducted for the probabilistic seismic hazard assessment (PSHA) of the Hanford facility, Washington, under the Senior Seismic Hazard Analysis Committee (SSHAC) guidelines. The first portion of this report demonstrates that the 3D seismic velocity model for the area produces synthetic seismograms with characteristics (spectral response values, duration) that better match those of the observed recordings of local earthquakes, compared to a 1D model with horizontal layers. The second part of the report compares the response spectra of synthetics from 3D and 1D models for moment magnitude (M) 6.6–6.8 earthquakes on three nearby faults and for a dipping plane wave source meant to approximate regional S-waves from a Cascadia great earthquake. The 1D models are specific to each site used for the PSHA. The use of the 3D model produces spectral response accelerations at periods of 0.5–2.0 seconds as much as a factor of 4.5 greater than those from the 1D models for the crustal fault sources. The spectral accelerations of the 3D synthetics for the Cascadia plane-wave source are as much as a factor of 9 greater than those from the 1D models. The differences between the spectral accelerations for the 3D and 1D models are most pronounced for sites with thicker supra-basalt sediments and for stations with earthquakes on the Rattlesnake Hills fault and for the Cascadia plane-wave source.

  5. Burial ground as a containment system: 25 years of subsurface monitoring at the Savannah River Plant Facility

    International Nuclear Information System (INIS)

    Fenimore, J.W.

    1982-01-01

    As the Savannah River Plant (SRP) solid wastes containing small quantities of radionuclides are buried in shallow (20' deep) trenches. The hydrogeology of the burial site is described together with a variety of subsurface monitoring techniques employed to ensure the continued safe operation of this disposal facility. conclusions from over two decades of data collection are presented

  6. Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100&D3 and Y/ER-53&D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs.

  7. Corrosion assessment of submerged demineralizer system vessels for burial as high-integrity containers at the Hanford commercial waste disposal site

    International Nuclear Information System (INIS)

    1984-11-01

    The available corrosion literature was reviewed in order to estimate the extent of corrosion that would occur to electrically isolated Type 316L stainless steel buried at a depth of 14 m at the Hanford commercial low-level radioactive waste disposal site. After 300 y of exposure in Burbank loamy sand the estimated corrosion is as follows: the average uniform metal loss would be less than 1 mil; pitting penetration is estimated at 200 mil; and the pit density (assuming that all of the metal loss is due to pitting and that all of the pits are of uniform depth) should be less than 1 pit/ft 2 . 7 figures, 9 tables

  8. A Short History of Waste Management at the Hanford Site

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2010-01-01

    The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book 'Hanford: A Conversation about Nuclear Waste and Cleanup.'

  9. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-01-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details

  10. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.

    1989-06-01

    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

  11. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs

  12. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs

  13. Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford,Washington

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P Evan

    2004-10-25

    This document describes the monitoring plan to meet the requirements for interim status groundwater monitoring at Hanford Site low-level waste burial grounds as specified by 40 CFR 265, incorporated by reference in WAC 173-303-400. The monitoring will take place at four separate low-level waste management areas in the 200-West and 200-East Areas, in the central part of the site. This plan replaces the previous monitoring plan.

  14. Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Conner, K.R.

    2000-12-12

    This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

  15. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    International Nuclear Information System (INIS)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors

  16. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  17. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site

  18. Hanford contaminated sediment stabilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, L.E.; Key, K.T.; Higley, B.A.

    1977-03-01

    The major problems with radionuclide waste sites in the 200 Area plateau on the Hanford Reservation is the high degree of toxicity or Hazard Index (HI). Transport Factors (TF) are fortunately low but can increase with time and certainly with episodic events such as explosions or earthquakes. Two major tests involving surface affixation were sponsored by the Atlantic Richfield Hanford Company, one by Dowell using M-166 and the other by Battelle-Northwest comparing many different surface affixants. The latex emulsion, M-166, appeared to be well suited for the Hanford desert type area. Of the many surface affixants tested by Battelle-Northwest, Coherex and Aerospray appeared to be the best. As an emergency precaution, 200 barrels of M-166 were purchased for surface affixation in case of a range fire. The subsurface affixants laboratory and field tests include organic polymers, asphalt emulsions, concrete, AM-9, and sodium silicate-calcium chloride-foramide grouts. The applications were second containment (or leak prevention) of subsurface waste tanks and piping, grouting water wells to prevent contamination leaking to the water table, and encompassing cribs, trenches, burial grounds, and other subsurface sediment contaminations. Organic polymers added strength to the soil, but penetration of the viscous liquid was not as deep as desired; it may be good for situations requiring only a few inches penetration, such as well grouting. The asphalt emulsion looked promising as an easily injected well grouting material and it may also be good for encompassing subsurface contaminated sediment plumes. The sodium silicate-calcium chloride-foramide affixant appeared best for second containment of waste tanks but may require the help of asphalt emulsion to ensure good coverage.

  19. Hanford Site surface soil radioactive contamination control plan, March 1993

    International Nuclear Information System (INIS)

    Mix, P.D.; Winship, R.A.

    1993-04-01

    The Decommissioning and Resource Conservation and Recovery Act Closure Program is responsible to the US Department of Energy Richland Field Office, for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities and Resource Conservation and Recovery Act of 1976 closures at the Hanford Site. This program also manages the Radiation Area Remedial Action that includes the surveillance, maintenance, decontamination, and/or interim stabilization of inactive burial grounds, cribs, ponds, trenches, and unplanned release sites. This plan addresses only the Radiation Area Remedial Action activity requirements for managing and controlling the contaminated surface soil areas associated with these inactive sites until they are remediated as part of the Hanford Site environmental restoration process. All officially numbered Radiation Area Remedial Action and non-Radiation Area Remedial Action contaminated surface soil areas are listed in this document so that a complete list of the sites requiring remediation is contained in one document

  20. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

  1. Ground-water monitoring compliance projects for Hanford Site Facilities: Progress report for the period April 1--June 30, 1988: Volume 1, Text

    International Nuclear Information System (INIS)

    1988-09-01

    This is Volume 1 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses the projects; Volume 2 provides as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area and near the 216-A-36B Crib

  2. Quality Assurance Program Plan Waste Management Federal Services of Hanford, Inc

    International Nuclear Information System (INIS)

    VOLKMAN, D.D.

    1999-01-01

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program

  3. RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-04-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. In January 1993, the Closure Plan was revised to include inspection and maintenance criteria and to reflect that future monitoring and remediation would be conducted as part of the ongoing Comprehensive Environmental Response, Compensation, and Liability Act activities at the Oak Ridge Y-12 Plant. This Closure Plan revision is intended to reflect the placement of the Kerr Hollow Quarry debris at the Walk-In Pits, revise the closure dates, and acknowledge that the disposition of a monitoring well within the closure site cannot be verified

  4. Mound No. 24 of the Alebastrovo I Burial Ground and the Problem of Succession Among the Early Nomadic Cultures of the Southern Urals in the 6th – 4th and 3rd – 1st Centuries BC

    Directory of Open Access Journals (Sweden)

    Denis V. Maryksin

    2017-03-01

    Full Text Available The article focuses on one of the burial mounds – Alebastrovo I, which is situated in the middle reaches of the Ural river. The analysis of the burial rite and grave goods reveals the combination of features peculiar of the culture of early nomads from the 6th to the 4th centuries BC and later features typical for the 3rd – 1st centuries BC. The collective nature of the burial in a large square pit (burial no. 2 relates to early features. Such burials are typical for the 5th and 4th centuries BC. But a dagger with a direct crosshair and a crescent-shaped pommel found in the burial belongs to the 3rd – 1st centuries BC. Findings of a mirror, a spoon and a whorl also deserve special attention. On formal grounds a mirror belongs to the type “Skripkin 1.6” – with a flat disk without roll and stick in the form of a triangular stem. They appeared in Sauromatian time, but were not widespread. Most of these mirrors refer to the turn of the eras – the first centuries AD. However, in our view the mirror from Alebastrovo I has the greatest similarity with the mirror disks of the so-called “musical” mirrors, which date back to the 2nd half of the 4th century BC. The bone spoon belongs to the type I, peculiar of the Sauromatian-time things of the 6th – 4th centuries BC. However, the pattern is similar to that on the handle of the bone products of later time – the 3rd – 2nd centuries BC. Clay whorl has a pattern in the form of 4 sectors, decorated with grooves and pits. Analogies are available on this ornament spindles from the 3rd – 2nd centuries BC of the Kara-Abyz culture in the Southern Urals. According to the set of attributes, this burial mound dated to the second half of the 3rd - 2nd centuries BC. The finds from this burial mound confirm the conclusion of the first explorer B. F. Zhelezchikov about continuity of the development of the early nomadic culture of this region in the 6th – 3rd centuries BC.

  5. Documentation associated with the shipping of Hot-Cell Waste from WESF 225-B to the 200W (218-W-3AE) burial grounds under shipment number RSR-37338

    International Nuclear Information System (INIS)

    PAWLAK, M.W.

    1998-01-01

    The purpose of this report is to compile the records generated during the Packaging and Shipping of WESF Hot-Cell Waste from the 225-B Facility to 200W (218-W-3AE) burial grounds. A total of six 55-gallon drums were packaged and shipped using the Chem-Nuc Cask in accordance with WHC-SD-TP-SARP-025, Rev.0 ''Safety Analysis Report for Packaging (Onsite) for Type B Material in the CNS-14-215H Cask''

  6. Combining 3D seismic tomography and ground-penetrating radar to reveal the structure of a megalithic burial tomb

    Science.gov (United States)

    Mendes, Manuela; Caldeira, Bento; Borges, José

    2017-04-01

    This work describes a case study concerning a prehistoric buried tomb (around 3000 years B.C.) located near Évora (Portugal). This monument is a tomb completely buried with only five visible irregular small stones distributed in a circle of 3 meter in diameter. A multi-approach combining 3D seismic tomography and ground-penetrating radar (GPR) have been applied to identify hidden elements and arrangement of the stones, required prior to any excavation work. The methodology for the 3D seismic data acquisition involves a total of 24 shots recorded by four lines, with twelve fixed receivers each one. For the GPR survey was used a 400 MHz antenna which moves along parallel lines with 50 cm separation, over a 30x30 m2 area that contains the buried tomb; the GPR unit was configured to a horizontal rate of 50 scans per meter (1024 samples/scan) and a time window of 60 ns. This multi-approach procedure allowed defining: (i) the housing of the tomb in the basement structure; (ii) the presence of a hidden corridor; (iii) the description of the internal structure of the walls of the tomb; (iv) the state of preservation of the monument. Acknowledgements: This work is co-financed by the European Union through the European Regional Development Fund under COMPETE 2020 (Operational Program for Competitiveness and Internationalization) through the ICT project (UID / GEO / 04683/2013) under the reference POCI-01-0145 -FEDER-007690.

  7. Emergency preparedness hazards assessment for selected 100 Area Bechtel Hanford, Inc. facilities

    International Nuclear Information System (INIS)

    1997-07-01

    The emergency preparedness hazards assessment for Bechtel Hanford Inc. (BHI) facilities in the 100 Areas of the Hanford Site. The purpose of a hazards assessment is to identify the hazardous material at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. The hazards assessment is the technical basis for the facility emergency plans and procedures. There are many other buildings and past- practice burial grounds, trenches, cribs, etc., in the 100 Areas that may contain hazardous materials. Undisturbed buried waste sites that are not near the Columbia River are outside the scope of emergency preparedness hazards assessments because there is no mechanism for acute release to the air or ground water. The sites near the Columbia River are considered in a separate flood hazards assessment. This hazards assessment includes only the near-term soil remediation projects that involve intrusive activities

  8. Pre-1970 transuranic solid waste at the Hanford Site

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1995-01-01

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides

  9. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period April 1 to June 30, 1988: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This is Volume 2 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area (Appendix A) and near the 216-A-36B Crib (Appendix B). Volume 1 discusses the 10 projects. This work was supported by the US Department of Energy under Contract AC06-76RL01830.

  10. FINAL FRONTIER AT HANFORD TACKLING THE CENTRAL PLATEAU

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2008-03-04

    The large land area in the center of the vast Department of Energy (DOE) Hanford Site in southeast Washington State is known as 'the plateau'--aptly named because its surface elevations are 250-300 feet above the groundwater table. By contrast, areas on the 585-square mile Site that border the Columbia River sit just 30-80 feet above the water table. The Central Plateau, which covers an ellipse of approximately 70 square miles, contains Hanford's radiochemical reprocessing areas--the 200 East and 200 West Areas--and includes the most highly radioactive waste and contaminated facilities on the Site. Five 'canyons' where chemical processes were used to separate out plutonium (Pu), 884 identified soil waste sites (including approximately 50 miles of solid waste burial trenches), more than 900 structures, and all of Hanford's liquid waste storage tanks reside in the Central Plateau. (Notes: Canyons is a nickname given by Hanford workers to the chemical reprocessing facilities. The 177, underground waste tanks at Hanford comprise a separate work scope and are not under Fluor's management). Fluor Hanford, a DOE prime cleanup contractor at the Site for the past 12 years, has moved aggressively to investigate Central Plateau waste sites in the last few years, digging more than 500 boreholes, test pits, direct soil 'pushes' or drive points; logging geophysical data sets; and performing electrical-resistivity scans (a non-intrusive technique that maps patterns of sub-surface soil conductivity). The goal is to identify areas of contamination areas in soil and solid waste sites, so that cost-effective and appropriate decisions on remediation can be made. In 2007, Fluor developed a new work plan for DOE that added 238 soil waste-site characterization activities in the Central Plateau during fiscal years (FYs) 2007-2010. This number represents a 50 percent increase over similar work previously done in central Hanford. Work Plans are

  11. Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-12-08

    The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the

  12. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  13. Hanford Protective Barriers Program water-erosion studies, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, K.A.; Cadwell, L.L.; Walters, W.H.

    1990-06-01

    Pacific Northwest Laboratory (PNL) is conducting the water-erosion control task of the Hanford Protective Barriers Program to assess barrier stability against soil erosion and slumping. The purpose of the barriers is to protect shallow-burial waste sites at the Hanford Site from water infiltration, biointrusion, and surficial erosion for up to 10,000 years. These aboveground, mounded structures will consist of layered, fine-grained sediment and rock designed to direct surface- and ground-water pathways away from the buried waste. The fine-grained sediment for the barrier will be obtained from the McGee Ranch on the Hanford Site. The purpose of the FY 1989 field work was to test two hypotheses concerning the behavior of McGee Ranch soil: runoff may occur on very dry, fine-grained sediment prior to complete saturation and rainsplash is an important erosional process for this type of sediment. This report describes plot construction, sediment sampling, and calibration testing of the rainfall simulator. Baseline stratigraphic and sedimentologic data include bulk density and textural properties of sediment in the test plots. Baseline precipitation data consist of predetermined raindrop sizes, rainfall intensities, plot coverage, and operational data for the simulator. 10 refs., 3 figs., 4 tabs.

  14. Safety analysis of the Chernobyl accident origin decontamination waste burials in Belarus

    International Nuclear Information System (INIS)

    Skurat, V.V.; Shiryaeva, N.M.; Myshkina, N.K.; Gvozdev, A.A.; Serebryanyj, G.Z.; Golikova, N.B.

    2002-01-01

    Potential dangerous of the decontamination waste burials was estimated by means of the generalized multicompartmental model. Characteristics of 24 the most large and unfavorable decontamination waste burials are shown and an estimate of their safety is given. The burial effect zones were determined (100-300 m). A reliability of the forecasting estimate of potential dangerous radioactive contamination of ground waters near the burials was checked on example of the Dudichi decontamination waste burial

  15. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  16. Book review: Peregruznoe I Burial Ground: Results of Interdisciplinary Research : Monograph [Text] / M. A. Balabanova, E. V. Pererva [at al.]. – Volgograd : Izd-vo Volgogradskogo Filiala FGBOU VPO RANHiGS, 2014. – 360 p.

    Directory of Open Access Journals (Sweden)

    Tairov Aleksandr Dmitrievich

    2016-04-01

    Full Text Available The review concerns the monograph “Peregruznoe I Burial Ground: Results of Interdisciplinary Research. The book was prepared by the team of authors including archaeologists, anthropologists, paleosoil specialists, archaeozoologists. The review contains examination of materials and main conclusions for every chapter of the monograph. The monograph is devoted to the analysis of materials from 52 burial mounds dated from the Aeneolith to the Middle Ages. Most of them were erected in the Sarmatian period. In the review, the controversial points concerning the reconstruction of the paleodemographic and physicalgenetic structure of the buried Sarmatian population were pointed out. The authors consider that the gender disharmony of the Early and Middle Sarmatian samples was determined by the peculiarities of mounds formation of nomadic groups localized at the winter and summer nomad camps. This conclusion provokes some objections. As a positive moment, it should be noted that the authors have discovered new trends by means of analysis of cultural and chronological Sarmatian groups according to anthropological data. The monograph presents new interesting data related to reconstruction of the social structure of the Sarmatian societies, burial mound construction, the taxonomic composition of animals from grave pits and mounds. It is necessary to note, that the authors carried out a great deal of investigation and study. The monograph presents abundant scientific data. Interpretation of this material has a great potential which resources are far from being exhausted. The book is going to be a significant event not only for the study of the Volga-Ural steppe antiquities but for all over the Sarmatian archaeology.

  17. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    International Nuclear Information System (INIS)

    West, L.D.

    2011-01-01

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W and FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m 3 of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% (∼8,000 m 3 ) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  18. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.; Mitchell, P.J.; Argo, R.S.

    1985-02-01

    The report is comprised of a list of wells located on or near the Hanford Site. Information on location, construction and completion dates has been updated on wells existing from the days before construction of the Hanford Works to the present. 4 refs. (ACR)

  19. Environmental analysis burial of offsite low-level waste at SRP

    International Nuclear Information System (INIS)

    Poe, W.L.; Moyer, R.A.

    1980-12-01

    The environmental effects of receipt and burial of low-level naval waste generated at Department of Energy Laboratories are assessed in this environmental analysis. Through 1979, this low-level DOE waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. DOE announced on October 26, 1979, that DOE-generated low-level waste would no longer be buried at commercial waste burial sites. SRP was selected to receive the naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only slightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared

  20. Effectiveness of a ground-surface polymer membrane covering as a method for limiting infiltration into burial trenches at Maxey Flats, Kentucky

    International Nuclear Information System (INIS)

    Lyverse, M.A.

    1987-01-01

    The Maxey Flats Disposal Site (MFDS) was operated as a shallow land burial site for low-level radioactive wastes for a period of 14 years (1963-1977). In 1977, radionuclides were found to be migrating from a closed disposal trench into an adjacent newly constructed trench. This discovery prompted closure of the site. Over time, deterioration of the shale and clay cover on the trenches had resulted from subsidence due to the collapse of buried metallic containers and the decomposition of various organic wastes within the trenches. This subsidence increased infiltration of water into the trenches as surface water was retained over the waste in potholes and small ponds. Although infiltration rates to the waste increased, seepage rates of leachate out of the bottom and sides of the trenches were very slow due to the low permeability of surrounding native shale soils (average hydraulic conductivity 4 x 10 -3 ft/day). In 1981, a program was implemented to correct deficiencies and stabilize the site. This paper describes the effectiveness of one design method where a low permeable (hydraulic conductivity -9 ft/sec) polyvinylchloride membrane cover (PVC) 0.015 to 0.020 inches thick was placed over the burial trenches. The covers were installed over trenches beginning in the fall of 1981. Each trench is equipped with several sumps for the collection and removal of leachate. Water-level data were collected on sumps from five trenches during the study period May 1978 to October 1984, which spanned a period prior to and after installation of the PVC cover. 3 references, 4 figures, 1 table

  1. Reengineering Hanford

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success

  2. Shallow land burial of radioactive wastes

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Rose, R.R.

    1985-01-01

    The authors discuss low-level, solid radioactive wastes buried in the ground since the startup of nuclear operations by the Manhattan Engineer District in the early 1940's. These operations were originally intended to be temporary so the primary consideration in locating land burial sites was their accessibility from the source of waste production. Early land-burial facilities were located on large reservations owned by the U.S. Atomic Energy Commission (AEC) and operated by their prime contractors. Shallow land burial consists of excavating a trench or vault, emplacing the waste, minimizing void space within the disposal unit, and covering the waste with earth to control access to the waste. Problems encountered in the land-burial of radioactive wastes are classified into areas which relate to the environmental characteristics of the sites, waste characteristics, operational practices and control, and predictive capability. The most serious environmentally related problems involve water management. Water provides primary vehicle for both erosional processes, which affect the structural integrity of the waste trenches, and for the migration of radionuclides. Although there is consensus that the current level of off-site movement of radionuclides from operating burial grounds does not constitute an immediate health hazard, there is less certainty with respect to the ability of the facilities to provide long-term containment and isolation

  3. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill I, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    International Nuclear Information System (INIS)

    1994-03-01

    This document refers to data concerning the Environmental Restoration Program implemented at the Oak Ridge Y-12 plant. Topics discussed include: Remediation plans for the burial grounds, sanitary landfill I, oil retention ponds, S-3 ponds, and the boneyard/burnyard at Y-12. This document also contains information about the environmental policies regulating the remediation

  4. Status of outdoor radioactive contamination at the Hanford Site

    International Nuclear Information System (INIS)

    McKinney, S.M.; Markes, B.M.

    1994-12-01

    This document summarizes the status of outdoor radioactive contamination near Hanford Site facilities and disposal sites. It defines the nature and areal extend of the radioactively contaminated areas and describes the historical, ongoing, and planned radiological monitoring and control activities. Radioactive waste has been disposed of to the soil column since shortly after the reactors and production facilities began operating. Radioactive liquid wastes were placed directly into the ground via liquid discharges to cribs, ponds, ditches, and reverse wells. Solid wastes were placed in trenches, burial vaults, and caissons. Although the Hanford Site covers 1,450 km 2 , the radioactively contaminated area is only about 36 km 2 or 2.5% of the original site. Over time, contamination has migrated from some of the waste management sites through various vectors (e.g., burrowing animals, deep-rooted vegetation, erosion, containment system failure) or has been deposited to the surface soil via spills and unplanned releases (e.g., line leaks/breaks, tank leaks, and stack discharges) and created areas of outdoor radioactivity both on and below the surface. Currently 26 km 2 are posted as surface contamination and 10 km 2 are posted as underground contamination

  5. Hanford site ER and WM needs

    International Nuclear Information System (INIS)

    Hunter, J.R.

    1993-01-01

    This paper provides an overview of the environmental restoration and waste management needs of the Hanford site. Since 1944, waste has been put into cribs, tanks, or various kinds of burial grounds. The waste volume produced per ton of processed material has dramatically decreased over this time period, but the amount of waste is still very large. Initially high-level processing wastes were stored in 149 single-shell tanks (SSTs), with a single carbon steel shell, backed by concrete. By the late 1950's some of these tanks were leaking, and the supernate was removed from the tanks, leaving salt cake material. Double shell tanks, holding roughly 1 million gallons each, have replaced the single shell tanks (28 in total). Cribs were used early, as the soil column was found to be perfect for retaining certain radionuclides. Solid wastes include retrievably stored transuranic wastes, and wastes generated since 1970. Wastes and fuel assemblies from EBR-2 and FFTF are included. Some TRU wastes were packaged in 55 gal drums, and dumped. A number of sites and reactors are being decontaminated, including canyon type facilities, processing facilities, the B Plant, the REDOX, D Plant, C Plant, and PUREX Plant, not all of which were even flushed before being shut down

  6. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  7. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  8. A long burial for radioactive wastes

    International Nuclear Information System (INIS)

    Takibaev, Zh.S.

    1998-01-01

    Several ways of radioactive wastes (RAW) burial are considered and characterized: - burial in geological formation deeply under ground; - dispatch RAW to cosmos; - transmutation of highly active and long-living radionuclides into short-living ones by means of nuclear transformation during irradiation of RAW with protons or neutrons; - burial RAW in mountains isolated from environment. Especial attention to RAW self-burial method on depth not less 1 km in Earth crust is paid. Self-burial (i. e. moving of whole RAW object down) is possible when temperature of object is above 1000 deg C and density ρ p is larger than density of surrounding it earth rock ρ r . Two methods of for maintaining of high temperature (>1000-1500 deg C) during quate large period (few hundreds years) are proposed : 1) Creation high temperature by means of residual energy emission by itself of RAW object. 2) Adaptation of reactor assembly ensuring high temperature during prolonged period (more hundred years) to RAW object

  9. Carbon sequestration via wood burial

    Directory of Open Access Journals (Sweden)

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  10. 78 FR 76574 - Burial Benefits

    Science.gov (United States)

    2013-12-18

    ..., Congress' clear motivation was to make burial benefits ``easier to administer, i.e., through existing VA...), the Government may pay up to $800 for the funeral and burial expenses of an employee who dies in...

  11. Shallow land burial handbook

    International Nuclear Information System (INIS)

    Stinton, L.H.

    1983-01-01

    The facility development phases (preliminary analysis, site selection, facility design and construction, facility operation, and facility closure/post-closure) are systematically integrated into a logical plan for developing near surface disposal plans. The Shallow Land Burial Handbook provides initial guidance and concepts for understanding the magnitude and the complexity of developing new low-level radioactive waste disposal facilities

  12. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    International Nuclear Information System (INIS)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the open-quotes as low as reasonably achievableclose quotes concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes

  13. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  14. Fluor Hanford Project Focused Progress at Hanford

    International Nuclear Information System (INIS)

    HANSON, R.D.

    2000-01-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL)

  15. Carbon Sequestration via Wood Burial

    Science.gov (United States)

    Zeng, N.

    2007-12-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which forest dead wood or old trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It was estimated that the carbon sequestration potential of forest wood harvest and burial is 10GtC y-1 with an uncertainty range of 5-15 GtC y-1. Based on data from North American logging industry, the cost was crudely estimated at $50/tC, significantly lower than the cost for power plant CO2 capture with geological storage, a carbon sequestration technique currently under most serious consideration. The low cost is largely because the CO2 capture is achieved at little cost by the natural process of photosynthesis. The technique is low tech, distributed, safe and can be stopped or reversed at any time. The relatively low cost may soon be competitive enough for large-scale implementation in a world-wide carbon trading market. In tropical regions with ongoing deforestation, wood burial instead of burning will immediately reduce that portion of the anthropogenic CO2 emission.

  16. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  17. Alternatives to shallow land burial

    International Nuclear Information System (INIS)

    Burton, B.W.

    1982-01-01

    During FY79 and FY80 the Los Alamos National Laboratory and its contractors performed a preliminary assessment of several alternatives to shallow land burial of low-level waste, including deeper burial, mined cavities, specially engineered storage buildings, well injection of liquid waste, and seabed disposal. Only deeper burial and mined cavities seem acceptable as near-term alternatives. A waste management program using a combination of disposal alternatives is recommended. Research needed to implement the deeper burial and mined cavity options is identified

  18. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for January 1 to March 31, 1988: Volume 9: Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the first quarter of calendar year 1988 (January through March). The data in this volume of Appendix C cover the following wells: 199-N-58; 199-N-59; 199-N-60; 199-N-61; 199-N-67. The data are presented in the following order: Well Completion Report/Title III Inspection List, As-Built Diagram, Logging Charts, and Drill Logs.

  19. Hanford transuranic storage corrosion review

    International Nuclear Information System (INIS)

    Nelson, J.L.; Divine, J.R.

    1980-12-01

    The rate of atmospheric corrosion of the transuranic (TRU) waste drums at the US Department of Energy's Hanford Project, near Richland, Washington, was evaluated by Pacific Northwest Laboratory (PNL). The rate of corrosion is principally contingent upon the effects of humidity, airborne pollutants, and temperature. Results of the study indicate that actual penetration of barrels due to atmospheric corrosion will probably not occur within the 20-year specified recovery period. Several other US burial sites were surveyed, and it appears that there is sufficient uncertainty in the available data to prevent a clearcut statement of the corrosion rate at a specific site. Laboratory and site tests are recommended before any definite conclusions can be made. The corrosion potential at the Hanford TRU waste site could be reduced by a combination of changes in drum materials (for example, using galvanized barrels instead of the currently used mild steel barrels), environmental exposure conditions (for example, covering the barrels in one of numerous possible ways), and storage conditions

  20. A review of the Hanford Site soil corrosion applicable to solid waste containers

    International Nuclear Information System (INIS)

    Divine, J.R.

    1991-05-01

    The first phase of the assessment of the soil corrosion in the solid waste burial grounds of the 200 Areas at the Hanford Site is completed with this review of both existing information developed at the site and relevant offsite information. Detailed soil corrosion data are needed for several reasons: (1) the possibility of predicting the damage to the containers of the retrievable stored transuranic waste that are under soil cover, (2) the feasibility of forecasting the state of waste containers being retrieved in remedial investigation/feasibility studies, (3) the capability of predicting subsidence of the soil over the waste containers, and (4) the capability of forecasting when stored lead shielding or hazardous chemicals might be exposed to the environment. Because corrosion in soils is dependent on the soil type, site-specific data are required even though offsite data can provide guidance on the type and the approximate extent of corrosion to expect. These data permit rough estimations of the corrosion rates of a variety of materials -- including carbon steels, cast irons, stainless steels, and lead -- in the Hanford Site soils. This report attempts to compile these data to facilitate current estimates of waste container longevity. However, because of the lack of well-documented, site-specific data, it is difficult to provide a definite life expectancy for waste containers and other structures. Consequently, additional data are essential for reliable container life estimates. 36 refs., 10 figs., 7 tabs

  1. The development of surface barriers at the Hanford Site

    International Nuclear Information System (INIS)

    Wing, N.R.; Gee, G.W.

    1994-03-01

    Engineered barriers are being developed to isolate wastes disposed of near the earth's surface at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. Much of the waste that would be disposed of by in-place stabilization currently is located in relatively shallow subsurface structures such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via the following pathways: plant, animal, and human intrusion; water infiltration; erosion; and the exhalation of noxious gases. Permanent isolation surface barriers have been proposed to protect wastes disposed of ''in place'' from the transport pathways identified previously (Figure 1). The protective barrier consists of a variety of different materials (e.g., fine soil, sand, gravel, riprap, asphalt, etc.) placed in layers to form an above-grade mound directly over the waste zone. Surface markers are being considered for placement around the periphery of the waste sites to inform future generations of the nature and hazards of the buried wastes. In addition, throughout the protective barrier, subsurface markers could be placed to warn any inadvertent human intruders of the dangers of the buried wastes (Figure 2)

  2. Beads from Inhumation Rite Burials of Gnezdovo Burial Mound

    Directory of Open Access Journals (Sweden)

    Dobrova Olga P.

    2017-12-01

    Full Text Available The beads from 33 inhumation burials at Gnezdovo burial mound are examined in the article. The beads (total 367 were crafted from stretched tube (258, stretched stick (3, winding (45, press molding (2 pcs., welding (2 pcs., and mosaic beads (9 pcs.. The burial mound contains virtually no broken beads, including the settlement's most common yellow glass beads. Besides glass beads, cornelian, crystal, amber and faience beads have been registered among the burial mound material, as well as beads crafted with metal. Apart from beads, grave inventories contained a series of pendants with a bead strung on a wire ring. The considered complexes contain five pendants of this type. Besides Gnezdovo, similar pendants have been discovered in Kiev, Timerev, Pskov and Vladimir barrows. A comparison between bead sets from Gnezdovo and Kiev burial mounds allows to conclude that the general composition and occurrence frequency of beads is identical for these burials. At the same time, beads crafted with rock crystal, cornelian and metal are more frequently discovered in Kiev inhumations.

  3. Hanford Site Environmental Report for calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  4. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  5. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-01-01

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  6. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report, January 1-March 31, 1988: Volume 3, Appendix A

    International Nuclear Information System (INIS)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E32-2; 299-E32-3; 299-E32-4; 299-E33-28; 299-E33-29. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs

  7. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period, January 1-March 31, 1988: Volume 6, Appendix (contd)

    International Nuclear Information System (INIS)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W7-5; 299-W7-6; 299-W8-1; 299-W9-1; 299-W10-13. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs

  8. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 5, Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W6-2; 299-W7-1; 299-W7-2; 299-W7-3; 299-W7-4. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  9. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 8, Appendix B (contd)

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W18-21; 299-W18-22; 299-W18-23; 299-W18-24. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  10. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report, January 1-March 31, 1988: Volume 3, Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E32-2; 299-E32-3; 299-E32-4; 299-E33-28; 299-E33-29. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  11. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 7, Appendix B (contd)

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wwlls completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W10-14; 299-W15-15; 299-W15-16; 299-W15-17; 299-W15-18. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  12. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 4, Appendix A (contd)

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E33-30; 299-E34-2; 299-E34-3; 299-E34-4; 299-E34-5; 299-E34-6. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  13. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period, January 1-March 31, 1988: Volume 6, Appendix B (contd)

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W7-5; 299-W7-6; 299-W8-1; 299-W9-1; 299-W10-13. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  14. Textiles from Scythian burial complexes

    OpenAIRE

    Elena Fialko; Yurii Boltryk

    2013-01-01

    In Northern Black Sea steppes were excavated more than three thousand Scythian burial mounds. In the studied burials were discovered large quantities of artifacts, but leather and textile items are preserved only in a few cases. Some ideas about Scythian costume are found in the works of Greek authors. In this regard, extremely important is the funerary complex dated with the 4th century BC, discovered in barrow Vishnevaja Moghila (Zaporizhia region, Ukraine). In the crypt, which remained und...

  15. Natural phenomena analyses, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1989-01-01

    Probabilistic seismic hazard studies completed for the Washington Public Power Supply System's Nuclear Plant 2 and for the US Department of Energy's N Reactor sites, both on the Hanford Site, suggested that the Lawrence Livermore National Laboratory seismic exposure estimates were lower than appropriate, especially for sites near potential seismic sources. A probabilistic seismic hazard assessment was completed for those areas that contain process and/or waste management facilities. the lower bound magnitude of 5.0 is used in the hazard analysis and the characteristics of small-magnitude earthquakes relatively common to the Hanford Site are addressed. The recommended ground motion for high-hazard facilities is somewhat higher than the Lawrence Livermore National Laboratory model and the ground motion from small-magnitude earthquakes is addressed separately from the moderate- to large-magnitude earthquake ground motion. The severe wind and tornado hazards determined for the Hanford Siste are in agreement with work completed independently using 43 years of site data. The low-probability, high-hazard, design-basis flood at the Hanford Site is dominated by dam failure on the Columbia River. Further evaluation of the mechanisms and probabilities of such flooding is in progress. The Hanford Site is downwind from several active Cascade volcanoes. Geologic and historical data are used to estimate the ashfall hazard

  16. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed

  17. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M. (comps.)

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  18. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  19. Managing soil moisture on waste burial sites

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.

    1991-11-01

    Shallow land burial is a common method of disposing of industrial, municipal, and low-level radioactive waste. The exclusion of water from buried wastes is a primary objective in designing and managing waste disposal sites. If wastes are not adequately isolated, water from precipitation may move through the landfill cover and into the wastes. The presence of water in the waste zone may promote the growth of plant roots to that depth and result in the transport of toxic materials to above-ground foliage. Furthermore, percolation of water through the waste zone may transport contaminants into ground water. This report presents results from a field study designed to assess the the potential for using vegetation to deplete soil moisture and prevent water from reaching buried wastes at the Idaho National Engineering Laboratory (INEL). Our results show that this approach may provide an economical means of limiting the intrusion of water on waste sites

  20. The Bahrain Burial Mound Project

    DEFF Research Database (Denmark)

    Laursen, Steffen; Johansen, Kasper Lambert

    2007-01-01

    the majority of burial mounds have been removed to make way for roads and housing, and in this process about 8000 mounds have been excavated; of these only c. 265 have been published. In 2006 the Bahrain Directorate for Culture & National Heritage and Moesgaard Museum decided on a collaborative project...... focussed on the Bahrain burial mounds. Within the framework of the Burial Mound Project aerial photos from 1959 have been orto-rectified and geo-referenced and so far a GIS-based digital map representing more than 60.000 mounds have been completed. With respect to the thousands of excavated mounds the huge...... process of linking relevant information to the mounds have been initiated in the course of which excavation data of individual monument is being fed into a relational database. Our preliminary study of the digital maps of the mound cemeteries has revealed an abundance of interesting patterns...

  1. 1988 Hanford riverbank springs characterization report

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1990-12-01

    This reports presents the results of a special study undertaken to characterize the riverbank springs (i.e., ground-water seepage) entering the Columbia River along the Hanford Site. Radiological and nonradiological analyses were performed. River water samples were also analyzed from upstream and downstream of the Site as well as from the immediate vicinity of the springs. In addition, irrigation return water and spring water entering the river along the shoreline opposite Hanford were analyzed. Hanford-origin contaminants were detected in spring water entering the Columbia River along the Hanford Site. The type and concentrations of contaminants in the spring water were similar to those known to exist in the ground water near the river. The location and extent of the contaminated discharges compared favorably with recent ground-water reports and predictions. Spring discharge volumes remain very small relative to the flow of the Columbia. Downstream river sampling demonstrates the impact of ground-water discharges to be minimal, and negligible in most cases. Radionuclide concentrations were below US Department of Energy Derived Concentration Guides (DCGs) with the exception 90 Sr near the 100-N Area. Tritium, while below the DCG, was detected at concentrations above the US Environmental Protection Agency drinking water standards in several springs. All other radionuclide concentrations were below drinking water standards. Nonradiological contaminants were generally undetectable in the spring water. River water contaminant concentrations, outside of the immediate discharge zones, were below drinking water standards in all cases. 19 refs., 5 figs., 12 tabs

  2. 20 CFR 416.1231 - Burial spaces and certain funds set aside for burial expenses.

    Science.gov (United States)

    2010-04-01

    ... spouse's, if any) burial expenses and kept separate from nonburial-related assets. Property other than.... Interest earned on excluded burial funds and appreciation in the value of excluded burial arrangements... exclusion of burial funds and accumulated interest and appreciation will continue to apply throughout a...

  3. MANAGEMENT OF TRANSURANIC (TRU) WASTE RETRIEVAL PROJECT RISKS SUCCESSES IN THE STARTUP OF THE HANFORD 200 AREA TRU WASTE RETRIEVAL PROJECT

    International Nuclear Information System (INIS)

    GREENWLL, R.D.

    2005-01-01

    A risk identification and mitigation method applied to the Transuranic (TRU) Waste Retrieval Project performed at the Hanford 200 Area burial grounds is described. Retrieval operations are analyzed using process flow diagramming. and the anticipated project contingencies are included in the Authorization Basis and operational plans. Examples of uncertainties assessed include degraded container integrity, bulged drums, unknown containers, and releases to the environment. Identification and mitigation of project risks contributed to the safe retrieval of over 1700 cubic meters of waste without significant work stoppage and below the targeted cost per cubic meter retrieved. This paper will be of interest to managers, project engineers, regulators, and others who are responsible for successful performance of waste retrieval and other projects with high safety and performance risks

  4. Interim Hanford Waste Management Technology Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The Interim Hanford Waste Management Technology Plan (HWMTP) is a companion document to the Interim Hanford Waste Management Plan (HWMP). A reference plan for management and disposal of all existing and certain projected future radioactive Hanford Site Defense Wastes (HSDW) is described and discussed in the HWMP. Implementation of the reference plan requires that various open technical issues be satisfactorily resolved. The principal purpose of the HWMTP is to present detailed descriptions of the technology which must be developed to close each of the technical issues associated with the reference plan identified in the HWMP. If alternative plans are followed, however, technology development efforts including costs and schedules must be changed accordingly. Technical issues addressed in the HWMTP and HWMP are those which relate to disposal of single-shell tank wastes, contaminated soil sites, solid waste burial sites, double-shell tank wastes, encapsulated 137 CsCl and 90 SrF 2 , stored and new solid transuranic (TRU) wastes, and miscellaneous wastes such as contaminated sodium metal. Among the high priority issues to be resolved are characterization of various wastes including early determination of the TRU content of future cladding removal wastes; completion of development of vitrification (Hanford Waste Vitrification Plant) and grout technology; control of subsidence in buried waste sites; and development of criteria and standards including performance assessments of systems proposed for disposal of HSDW. Estimates of the technology costs shown in this report are made on the basis that all identified tasks for all issues associated with the reference disposal plan must be performed. Elimination of, consolidation of, or reduction in the scope of individual tasks will, of course, be reflected in corresponding reduction of overall technology costs

  5. Hanford site environment

    International Nuclear Information System (INIS)

    Isaacson, R.E.

    1976-01-01

    A synopsis is given of the detailed characterization of the existing environment at Hanford. The following aspects are covered: demography, land use, meteorology, geology, hydrology, and seismology. It is concluded that Hanford is one of the most extensively characterized nuclear sites

  6. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  7. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1992-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides a land use plan for the Hanford Site and presents a picture of what is currently known and anticipated in accordance with DOE Order 4320.1B. Site Development Planning. The HSDP wig be updated annually as future decisions further shape the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  8. Master schedule for CY-1983 Hanford environmental surveillance routine sampling program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.; Dirkes, R.L.

    1982-12-01

    The current schedule of data collection for the routine Hanford environmental surveillance and ground-water monitoring programs at the Hanford Site is presented. The purpose of the programs is to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs. Radiological monitoring data are reported for air (particulate filter and gases/vapor), Columbia River water, sanitary water, onsite pond water, foodstuffs (whole milk, leafy vegetables, fruit, wheat/alfalfa, beef, poultry/eggs), wildlife, soil and vegetation, and direct radiation. Information is also given for on site radiation control audit surveys (roadway, railway, aerial, and waste disposal sites, and the Hanford ground-water monitoring program

  9. Hanford Site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W. [eds.] [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality.

  10. Master schedule for CY-1980 Hanford Environmental Surveillance Routine Program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Houston, J.R.; Eddy, P.A.

    1979-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site is presented. The enviromental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in Manual Chapter 0513, and to monitor Hanford operations for compliance with applicable environmental criteria given in Manual Chapter 0524 and Washington State Water Quality Standards. Data are reported on the following topics: air; Columbia River; sanitary water; surface water; ground water; foodstuffs; wildlife; soil and vegetation; external radiation measurement; portable instrument surveys; and surveillance of waste disposal sites;

  11. Hanford Site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  12. Hanford Site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality

  13. Hanford Site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E.

    1991-01-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  14. Hanford Site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  15. Hanford Site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E. [eds.

    1991-12-20

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  16. Report on waste burial charges

    International Nuclear Information System (INIS)

    1993-05-01

    One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This third revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988 and 1991, superseding the values given in the July 1991 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1993 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992

  17. Textiles from Scythian burial complexes

    Directory of Open Access Journals (Sweden)

    Elena Fialko

    2013-12-01

    Full Text Available In Northern Black Sea steppes were excavated more than three thousand Scythian burial mounds. In the studied burials were discovered large quantities of artifacts, but leather and textile items are preserved only in a few cases. Some ideas about Scythian costume are found in the works of Greek authors. In this regard, extremely important is the funerary complex dated with the 4th century BC, discovered in barrow Vishnevaja Moghila (Zaporizhia region, Ukraine. In the crypt, which remained undisturbed over time, was found a burial of a Scythian girl. The unique condition of preservation of the textiles and leather findings allowed reconstructing the entire costume of the Scythian. It consisted of six layers of clothing. Various pieces of clothing were made from different materials: white linen cloth, orange satin fabric, reddish-brown fur, black cloth, fur, red skin. This discovery is one of a kind in the Northern Black Sea region, which is currently a reference example of female costume of early nomads of the region.

  18. DOE program for improvement practices for shallow burial of radioactive waste

    International Nuclear Information System (INIS)

    Dieckhoner, J.E.

    1978-01-01

    The practice of burying solid radioactive waste in relatively shallow pits or trenches at government nuclear sites dates back to the Manhattan Project. In some cases, where local conditions were considered unfavorable, intersite shipment of waste has been required. This general concept was later used at commercially-operated sites under Federal or state regulation. The purpose, scope, and results of a DOE program begun several years ago for improvements of burial ground disposal methods are reviewed. The program includes the re-evaluation of the original siting and of operating practices at existing burial grounds (including monitoring for migration of activity); the development of improved criteria for siting of new grounds that might be required as the defense site operations continue; and development of corrective measures such as diking and better draining for possible unsatisfactory conditions that might be detected. The possible applications of these findings to commercial burial grounds is discussed

  19. Hanford Site Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  20. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J.; Yancey, E.F.

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs

  1. Master schedule for CY-1984 Hanford environmental surveillance routine sampling program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Price, K.R.; Eddy, P.A.; Carlile, J.M.V.

    1983-12-01

    This report provides the current schedule of data collection for the routine Hanford environmental surveillance and ground-water Monitoring Programs at the Hanford Site. The purpose is to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs. The routine sampling schedule provided herein does not include samples that are planned to be collected during FY-1984 in support of special studies, special contractor support programs, or for quality control purposes

  2. Hanford Site Composite Analysis Technical Approach Description: Hanford Site Disposition Baseline.

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, M. A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Dockter, R. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-10-02

    The permeability of ground surfaces within the U.S. Department of Energy’s (DOE) Hanford Site strongly influences boundary conditions when simulating the movement of groundwater using the Subsurface Transport Over Multiple Phases model. To conduct site-wide modeling of cumulative impacts to groundwater from past, current, and future waste management activities, a site-wide assessment of the permeability of surface conditions is needed. The surface condition of the vast majority of the Hanford Site has been and continues to be native soils vegetated with dryland grasses and shrubs.

  3. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE: RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    International Nuclear Information System (INIS)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-01-01

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity(trademark) surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects

  4. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  5. Hanford Site Infrastructure Plan

    International Nuclear Information System (INIS)

    1990-01-01

    The Hanford Site Infrastructure Plan (HIP) has been prepared as an overview of the facilities, utilities, systems, and services that support all activities on the Hanford Site. Its purpose is three-fold: to examine in detail the existing condition of the Hanford Site's aging utility systems, transportation systems, Site services and general-purpose facilities; to evaluate the ability of these systems to meet present and forecasted Site missions; to identify maintenance and upgrade projects necessary to ensure continued safe and cost-effective support to Hanford Site programs well into the twenty-first century. The HIP is intended to be a dynamic document that will be updated accordingly as Site activities, conditions, and requirements change. 35 figs., 25 tabs

  6. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  7. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  8. Hanford cultural resources laboratory

    International Nuclear Information System (INIS)

    Wright, M.K.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act

  9. 20 CFR 61.205 - Burial expense.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Burial expense. 61.205 Section 61.205... § 61.205 Burial expense. (a) When the death of a person listed in § 61.1(a) results from an injury caused by a war-risk hazard, the Office shall pay reasonable burial expenses up to the amount specified...

  10. Managing risk at Hanford

    International Nuclear Information System (INIS)

    Hesser, W.A.; Stillwell, W.G.; Rutherford, W.A.

    1994-01-01

    Clearly, there is sufficient motivation from Washington for the Hanford community to pay particular attention to the risks associated with the substantial volumes of radiological, hazardous, and mixed waste at Hanford. But there is also another reason for emphasizing risk: Hanford leaders have come to realize that their decisions must consider risk and risk reduction if those decisions are to be technically sound, financially affordable, and publicly acceptable. The 560-square miles of desert land is worth only a few thousand dollars an acre (if that) -- hardly enough to justify the almost two billion dollars that will be spent at Hanford this year. The benefit of cleaning up the Hanford Site is not the land but the reduction of potential risk to the public and the environment for future generations. If risk reduction is our ultimate goal, decisions about priority of effort and resource allocation must consider those risks, now and in the future. The purpose of this paper is to describe how Hanford is addressing the issues of risk assessment, risk management, and risk-based decision making and to share some of our experiences in these areas

  11. Washing and caustic leaching of Hanford tank sludges

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Rapko, B.M.; Colton, N.G.

    1994-01-01

    Methods are being developed to treat and dispose of large volumes of radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site. The wastes will be partitioned into high-level waste (HLW) and low-level waste (LLW) fractions. The HLW will be vitrified into borosilicate glass and disposed of in a geologic repository, while the LLW will be immobilized in a glass matrix and will likely be disposed of by shallow burial at the Hanford Site. The wastes must be pretreated to reduce the volume of the HLW fraction, so that vitrification and disposal costs can be minimized. The current baseline process for pretreating Hanford tank sludges is to leach the sludge under caustic conditions, then remove the solubilized components of the sludge by water washing. Tests of this method have been performed with samples taken from several different tanks at Hanford. The results of these tests are presented in terms of the composition of the sludge before and after leaching. X-ray diffraction and scanning electron microscopy coupled with electron dispersive x-ray techniques have been used to identify the phases in the untreated and treated sludges

  12. Thermal identification of clandestine burials: A signature analysis and image classification approach

    Science.gov (United States)

    Servello, John A.

    Clandestine burials, the interred human remains of forensic interest, are generally small features located in isolated environments. Typical ground searches can be both time-consuming and dangerous. Thermal remote sensing has been recognized for some time as a possible search strategy for such burials that are in relatively open areas; however, there is a paucity of published research with respect to this application. This project involved image manipulation, the analyses of signatures for "graves" of various depths when compared to an undisturbed background, and the use of image classification techniques to tease out these features. This research demonstrates a relationship between the depth of burial disturbance and the resultant signature. Further, image classification techniques, especially object-oriented algorithms, can be successfully applied to single band thermal imagery. These findings may ultimately decrease burial search times for law enforcement and increase the likelihood of locating clandestine graves.

  13. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  14. Environmental surveillance at Hanford for CY-1975 data

    International Nuclear Information System (INIS)

    Blumer, P.J.; Fix, J.J.; Speer, D.R.

    1976-04-01

    This document contains detailed data collected by the Hanford Environmental Surveillance program during 1975. Environmental Surveillance responsibilities at Hanford are divided between Hanford Environmental Health Foundation (HEHF) and Battelle-Northwest (BNW). HEHF is responsible for measuring all nonradiological air quality and sanitary water parameters of interest. BNW is responsible for measuring radiological parameters in all environmental media of significance and for measuring both radiological and nonradiological parameters of Columbia River water and ground water. A brief description of the method and location of sample collection during 1975 is included. Data are tabulated on the content of specific radionuclides in surface air. Columbia River water, drinking water, ground water, foods, fish, and wild animals. Data are also included on content of NO 2 and SO 2 in air, nitrates in Columbia River water, ground water, and drinking water, and water quality of samples of Columbia River water collected at various sampling locations

  15. DEEP VADOSE ZONE CONTAMINATION DUE TO RELEASES FROM HANFORD SITE TANKS

    International Nuclear Information System (INIS)

    JARAYSI MN

    2008-01-01

    CH2M HILL Hanford Group, Inc. (the Hanford Tank Farm Operations contractor) and the Department of Energy's Office of River Protection have just completed the first phase of the Hanford Single-Shell Tank RCRA Corrective Action Program. The focus of this first phase was to characterize the nature and extent of past Hanford single-shell tank releases and to characterize the resulting fate and transport of the released contaminants. Most of these plumes are below 20 meters, with some reaching groundwater (at 60 to 120 meters below ground surface [bgs])

  16. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    International Nuclear Information System (INIS)

    Fecht, K.R.; Lillie, J.T.

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area

  17. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, K R; Lillie, J T

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area.

  18. Limits for the burial of the Department of Energy transuranic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Healy, J.W.; Rodgers, J.C.

    1979-01-15

    Potential limits for the shallow earth burial of transuranic elements were examined by simplified models of the individual pathways to man. Pathways examined included transport to surface steams, transport to ground water, intrusion, and people living on the burial ground area after the wastes have surfaced. Limits are derived for each pathway and operational limits are suggested based upon a dose to the organ receiving the maximum dose rate of 0.5 rem/y after 70 years of exposure for the maximum exposed individual.

  19. Limits for the burial of the Department of Energy transuranic wastes

    International Nuclear Information System (INIS)

    Healy, J.W.; Rodgers, J.C.

    1979-01-01

    Potential limits for the shallow earth burial of transuranic elements were examined by simplified models of the individual pathways to man. Pathways examined included transport to surface steams, transport to ground water, intrusion, and people living on the burial ground area after the wastes have surfaced. Limits are derived for each pathway and operational limits are suggested based upon a dose to the organ receiving the maximum dose rate of 0.5 rem/y after 70 years of exposure for the maximum exposed individual

  20. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  1. Exploration of the burial apartments in tomb complex AS 68. Preliminary report of the 2013 fall season

    Directory of Open Access Journals (Sweden)

    Hana Vymazalová

    2015-12-01

    Full Text Available Exploration of the tomb complex of king’s daughter Sheretnebty, which was discovered in 2012, continued in the archaeological season of 2013. In October–November, the work concentrated on the underground parts of the tombs, including the burial shafts and burial chambers. In tomb AS 68c, two shafts were unusually deep; at a depth of 11.00 m under the ground the burial chambers of a man and a woman had been hewn. The man’s chamber contained a large sarcophagus of fine limestone and the remains of his burial and his tomb equipment, while the woman’s chamber remained largely unfinished and contained her rather simple burial placed on the floor. The so far discovered evidence indicates that this was the burial of Princess Sheretnebty. Another four shafts in the tomb contained four other burials of a female and three males, most probably the couple’s descendants. In addition, the shafts in the two western rock-cut tombs were explored. In the tomb of Shepespuptah (AS 68b, a single shaft was dug in the tomb’s chapel, while the tomb owner was buried in a burial chamber south of the chapel. The shaft in the chapel was large but reached only 1.40 m deep and was never finished and never used for burial. The two shafts in the tomb of Duaptah (AS 68a revealed the burials of two men; the southern shaft belonged to Duaptah himself while the northern shaft to a certain Nefermin. The burials were mostly very simple, and all of them were disturbed by tomb robbers. The preserved bones might, however, still reveal important details about the individuals buried in the rock-cut tombs, and they will therefore be studied in order to trace the family relationships among the tomb owners.

  2. Sediment Burial Intolerance of Marine Macroinvertebrates.

    Directory of Open Access Journals (Sweden)

    Vicki J Hendrick

    Full Text Available The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura, the queen scallop (Aequipecten opercularis and the sea squirt (Ciona intestinalis were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris and the anemone (Sagartiogeton laceratus, showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa. With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally

  3. Sediment Burial Intolerance of Marine Macroinvertebrates.

    Science.gov (United States)

    Hendrick, Vicki J; Hutchison, Zoë L; Last, Kim S

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps

  4. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  5. Migration studies at the Savannah River Plant shallow land burial site

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Emslie, R.H.; Ryan, J.P. Jr.; King, C.M.

    1983-01-01

    Radionuclide migration from the Savannah River Plant low-level waste burial ground was studied in ongoing programs that provide generic data on a shallow land burial site in a humid region and support local waste disposal operations. Field, laboratory, and theoretical work continued in four areas. (1) Subsurface Monitoring: Groundwater around the burial ground was monitored for traces of radioactivity and mercury. (2) Lysimeter Tests: Gamma-emitting radionuclides were identified by sensitive methods in defense waste lysimeter percolate waters. Results from these and other lysimeters containing tritium, I-129, or Pu-239 sources are given. (3) Soil-Water Chemistry: Experiments on specific factors affecting migration of Cs-137 showed that potassium significantly increases cesium mobility, thus confirming observations with trench waters. Distribution coefficients for ruthenium were measured. (4) Transport Modeling: Efforts to refine and validate the SRL dose-to-man model continued. Transport calculations were made for tritium, Sr-90, Tc-99, and TRU radionuclides. 12 references, 3 tables

  6. Hanford Environmental Dose Reconstruction Project. Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M. [comps.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  7. Hanford Environmental Dose Reconstruction Project monthly report

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, A.H., Cannon, S.D.; Finch, S.M. (comps.)

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  8. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates

  9. DOE wants Hanford change

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Nine months ago, Energy Secretary Hazel O'Leary promised local officials running the agency's huge Hanford, Washington, weapon complex more control in directing its projected $57-billion waste cleanup. Earlier this month, she returned to the site for a follow-on open-quotes summit,close quotes this time ordering teamwork with contractors, regulators and local activities

  10. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  11. Hanford Federal Facility state of Washington leased land

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This report was prepared to provide information concerning past solid and hazardous waste management practices for all leased land at the US DOE Hanford Reservation. This report contains sections including land description; land usage; ground water, air and soil monitoring data; and land uses after 1963. Numerous appendices are included which provide documentation of lease agreements and amendments, environmental assessments, and site surveys.

  12. Hanford Federal Facility state of Washington leased land

    International Nuclear Information System (INIS)

    1993-11-01

    This report was prepared to provide information concerning past solid and hazardous waste management practices for all leased land at the US DOE Hanford Reservation. This report contains sections including land description; land usage; ground water, air and soil monitoring data; and land uses after 1963. Numerous appendices are included which provide documentation of lease agreements and amendments, environmental assessments, and site surveys

  13. Physical and hydraulic properties of sediments and engineered materials associated with grouted double-shell tank waste disposal at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayer, M.J.; Heller, P.R.

    1993-09-01

    Numerical models are used to predict the fate of contaminants in the environment for durations of 10,000 years and more. At the Hanford Site, these models are being used to evaluate the potential health effects and environmental impacts associated with the disposal of double-shell tank waste in grouted vaults. These models require information on the properties of the earthen and manufactured materials that compose the vault system and its surroundings. This report documents the physical and hydraulic properties of the materials associated with burial of grouted double-shell tank waste at the Hanford Site.

  14. Hanford spent fuel inventory baseline

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1994-01-01

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors

  15. Shallow land burial technology: humid

    International Nuclear Information System (INIS)

    Davis, E.C.; Yeh, G.T.

    1984-01-01

    Applying engineered modifications to present shallow land burial (SLB) practices is one method of ensuring safe operation and improving overall disposal-site performance. Two such engineered modifications, trench lining and grouting, are being demonstrated and evaluated at the Oak Ridge National Laboratory (ORNL) Engineered Test Facility (ETF), using nine 28-m 3 experimental trenches containing compacted low-level waste (LLW). Concurrent to this field demonstration experiment, two finite-element hydrologic models have been developed to model water movement and solute transport at a waste disposal site. This paper covers progress made in these two areas during FY 1984. Though the economic analysis of the two trench treatments favored Hypalon lining (lining costs were 33% lower at this demonstration scale), results of field experiments examining waste hydrologic isolation favored the cement-bentonite grout treatment. Data from water pump-out and water pump-in tests, combined with observed intratrench water-level fluctuations, suggest that the original goal of constructing watertight liners in three experimental trenches was not achieved. In addition, trench-cover subsidence of approx. 2% of the total trench depth has been measured over two of the three lined trenches but has not occurred over any of the three grouted or three control (untreated) trenches. The evaluation of the two trench treatments is continuing. However, results indicate that the cement-bentonite treatment, implemented at a cost of $160/m 3 of grout, provides a degree of waste isolation not afforded by the lined and control trenches and should be considered for use at SLB sites with water-related problems. 11 references, 6 figures, 2 tables

  16. Hanford process review

    International Nuclear Information System (INIS)

    1991-12-01

    This report is a summary of past incidents at the US Department of Energy's (DOE) Hanford Site. The purpose of the report is to provide the major, significant, nuclear-safety-related incidents which incurred at the Hanford Site in a single document for ease of historical research. It should be noted that the last major accident occurred in 1980. This document is a summary of reports released and available to the public in the DOE Headquarters and Richland public reading rooms. This document provides no new information that has not previously been reported. This report is not intended to cover all instances of radioactivity release or contamination, which are already the subject of other major reviews, several of which are referenced in Section 1.3

  17. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  18. Sorption of trace cesium on 21 Hanford Site sediment types

    International Nuclear Information System (INIS)

    Routson, R.C.; Barney, G.S.; Smith, R.M.; Delegard, C.A.

    1980-03-01

    Sorption of trace cesium (Cs) was measured on 21 Hanford Site sediment types. A Box-Behnken statistical design was used to develop empirical-statistical equations predicting 137 Cs sorption as a function of the equilibrium concentrations of macroions Na + , K + , and Ca +2 in solution over the concentration ranges of 3.0 to 0.001M, 0.2 to 0.002M, and 0.2 to 0.002M, respectively. These equations are required to estimate trace Cs transport from Hanford ground disposal sites. Average Cs sorption equations for the 21 sediments will be presented and discussed

  19. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Youngs RR

    2007-06-01

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  20. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, Robert R.

    2007-06-29

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  1. Rooting depth and distributions of deep-rooted plants in the 200 Area control zone of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, E.L.; Gano, K.A.; Cadwell, L.L.

    1985-01-01

    This study was conducted to document rooting depths and distributions of deep-rooted plants common to the Hanford Site 200-Area plateau. The effort concentrated on excavating plant species suspected of having deep root systems, and species that have been reported in previous studies to contain radionuclides in above ground parts. The information obtained in this study will be useful in modeling radionuclide transport by plants and in designing covers and barriers for decommissioning low-level radioactive waste burial sites. Fourteen species including 58 individual plants were excavated to measure maximum rooting depth and root density distribution (g dry root/dm/sup 3/) through the root zone. Age and canopy volumes of shrubs were also determined. Eight of the 14 species excavated had average rooting depths of 150 cm or more. The two deepest rooted plants were antelope bitterbrush and sagebrush with average depths of 296 and 200 cm, respectively. Gray rabbitbrush had an average rooting depth of 183 cm. Summer annuals, Russian thistle and bursage, had average rooting depths of 172 and 162 cm, respectively. 7 references, 4 figures, 5 tables.

  2. Controlled preparation of wet granular media reveals limits to lizard burial ability

    Science.gov (United States)

    Sharpe, Sarah S.; Kuckuk, Robyn; Goldman, Daniel I.

    2015-07-01

    Many animals move within ground composed of granular media (GM); the resistive properties of such substrates can depend on water content and compaction, but little is known about how such parameters affect locomotion or the physics of drag and penetration. Using apparatus to control compaction of GM, our recent studies of movement in dry GM have revealed locomotion strategies of specialized dry-sand-swimming reptiles. However, these animals represent a small fraction of the diversity and presumed burial strategies of fossorial reptilian fauna. Here we develop a system to create states of wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus), a generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (≈ 30 s) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics and ‘slip’ were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ≈ 4× more resistive than dry GM. In total, our measurements indicate that while the rheology of the dry and wet GM differ substantially, the lizard's burial motor pattern is conserved across substrates, while its burial depth is largely constrained by environmental resistance.

  3. Master schedule for CY-1981 Hanford environmental surveillance routine program

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1980-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site is provided. Questions about specific entries should be referred to the authors since modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in Manual Chapter 0513, and to monitor Hanford operations for compliance with applicable environmental criteria given in Manual Chapter 0524 and Washington State Water Quality Standards. Air quality data obtained in a separate program are also reported. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Schedules are presented for the following subjects: air, Columbia River, sanitary water, surface water, ground water, foodstuffs, wildlife, soil and vegetation, external radiation measurement, portable instrument surveys, and surveillance of waste disposal sites. (JGB)

  4. Master schedule for CY-1981 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1980-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site is provided. Questions about specific entries should be referred to the authors since modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in Manual Chapter 0513, and to monitor Hanford operations for compliance with applicable environmental criteria given in Manual Chapter 0524 and Washington State Water Quality Standards. Air quality data obtained in a separate program are also reported. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Schedules are presented for the following subjects: air, Columbia River, sanitary water, surface water, ground water, foodstuffs, wildlife, soil and vegetation, external radiation measurement, portable instrument surveys, and surveillance of waste disposal sites

  5. Integrated environmental monitoring program at the Hanford Site

    International Nuclear Information System (INIS)

    Jaquish, R.E.

    1990-08-01

    The US Department of Energy's Hanford Site, north of Richland, Washington, has a mission of defense production, waste management, environmental restoration, advanced reactor design, and research development. Environmental programs at Hanford are conducted by Pacific Northwest Laboratory (PNL) and the Westinghouse Hanford Company (WHC). The WHC environmental programs include the compliance and surveillance activities associated with site operations and waste management. The PNL environmental programs address the site-wide and the of-site areas. They include the environmental surveillance and the associated support activities, such as dose calculations, and also the monitoring of environmental conditions to comply with federal and state environmental regulations on wildlife and cultural resources. These are called ''independent environmental programs'' in that they are conducted completely separate from site operations. The Environmental Surveillance and Oversight Program consists of the following projects: surface environmental surveillance; ground-water surveillance; wildlife resources monitoring; cultural resources; dose overview; radiation standards and calibrations; meteorological and climatological services; emergency preparedness

  6. Biomass burial and storage to reduce atmospheric CO2

    Science.gov (United States)

    Zeng, N.

    2012-04-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a theoretical carbon sequestration potential for wood burial is 10 ± 5 GtC/y, but probably 1-3 GtC/y can be realized in practice. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from forest industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  7. Hanford Waste Vitrification Plant hydrogen generation

    International Nuclear Information System (INIS)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H 2 . CO 2 , N 2 0, NO, and NH 3 . For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H 2 , CO, CO 2 , N 2 , N 2 O and NO

  8. Environmental monitoring at Hanford by the state of Washington

    International Nuclear Information System (INIS)

    Conklin, A.W.; Mooney, R.R.; Erickson, J.L.

    1990-01-01

    The Department of Social and Health Services' Office of Radiation Protection (ORP), Washington State's radiation control agency, has a mandate to protect the public from radiation. In 1985, ORP was instructed by the legislature to establish a statewide environmental radiological base line, beginning with Hanford, to verify federal environmental programs, and to enforce federal and state Clean Air Acts. The primary mission of the agency is to protect public health by active involvement in Hanford monitoring and oversight. The state's program was designed not to duplicate but to supplement existing programs and to identify any sampling gaps or problems. Split, side-by-side, and independent samples are collected, with analysis performed by the state's own laboratory. Media sampled have included surface and drinking water, seep and ground water, fruits and vegetables, milk, soils, and air particulates; ambient radiation levels have been determined. Special activities have included split sampling of river seeps with multiple agencies, preliminary dose assessment of early Hanford releases, investigations of 129 I in the environment and in Franklin County drinking water, verification of U.S. Department of Energy (DOE) data on erroneous alarms at the Hanford Plutonium Uranium Extraction Plant, split sampling with a DOE headquarters survey, and participation in several General Accounting Office investigations and a National Academy of Sciences review. The independence of ORP programs guarantees that the public has access to environmental data on the activities of DOE and its contractors. We will describe the interrelationship of ORP and Hanford programs and present results of ORP activities

  9. The Application of GPR in Florida for Detecting Forensic Burials

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Koppenjan; J. J. Schultz; S. Ono; H. Lee

    2003-01-01

    A study was performed at the University of Florida to measure ground penetrating radar(GPR) performance for detecting forensic burials. In controlled scenarios, 24 burials were constructed with pig cadavers. Two soils were utilized to represent two of the most common soil orders in Florida: an Entisol and an Ultisol. Graves were monitored on a monthly basis for time periods up to 21 months with grid data acquired with pulsed and swept-frequency GPR systems incorporating several different frequency antennas. A small subset of the graves was excavated to assess decomposition and relate to the GPR images during the test. The grave anomalies in the GPR depth profiles became less distinctive over time due to body decomposition and settling of the disturbed soil (backfill) as it compacted. Soil type was a major factor. Grave anomalies became more difficult to recognize over time for deep targets that were within clay. Forensic targets that were in sandy soil were recognized for the duration of this study. Time elapsed imagery will be presented to elucidate the changes, or lack thereof, of grave anomalies over the duration of this study. Further analysis was performed using Synthetic Aperture Radar (SAR) reconstruction of images in 2-D and 3-D.

  10. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  11. Neptunium storage at Hanford

    International Nuclear Information System (INIS)

    Alderman, C.J.; Shiraga, S.S.; Schwartz, R.A.; Smith, R.J.; Wootan, D.W.

    1993-06-01

    A decision must be made regarding whether the United State's stockpile of neptunium should be discarded into the waste stream or kept for the production of Pu-238. Although the cost of long term storage is not inconsequential, to dispose of the material means the closing of our option to maintain control over our Pu-238 stockpile. Within the Fuels and Materials Examination Facility at Hanford there exists a remotely operated facility that can be converted for neptunium storage. This paper describes the facility and the anticipated handling requirements

  12. Uprooting and burial of invasive alien plants

    DEFF Research Database (Denmark)

    Kollmann, Johannes Christian; Brink-Jensen, Kasper; Frandsen, Sally I.

    2011-01-01

    Invasive alien plants are a problem for conservation management, and control of these species can be combined with habitat restoration. Subsoil burial of uprooted plants is a new method of mechanical control, which might be suitable in disturbed habitats. The method was tested in Rosa rugosa...

  13. 77 FR 4676 - Parents Eligible for Burial

    Science.gov (United States)

    2012-01-31

    ... available space, and has no spouse or child who is buried, or surviving spouse or child who, upon death, may... death has no spouse or child who is buried, or surviving spouse or child who, upon death, may be... provides burial eligibility to those parents whose unmarried veteran son or daughter dies due to combat or...

  14. The Management of Risk by Burial Societies in South Africa ...

    African Journals Online (AJOL)

    It considers members\\' perceptions of the risks faced by the burial societies themselves. It explores the ways in which burial societies develop community and establish trust. It investigates the procedures that have been developed by burial societies, on the basis of the trust so established, for the management of their risks.

  15. Hanford inventory program user's manual

    International Nuclear Information System (INIS)

    Hinkelman, K.C.

    1994-01-01

    Provides users with instructions and information about accessing and operating the Hanford Inventory Program (HIP) system. The Hanford Inventory Program is an integrated control system that provides a single source for the management and control of equipment, parts, and material warehoused by Westinghouse Hanford Company in various site-wide locations. The inventory is comprised of spare parts and equipment, shop stock, special tools, essential materials, and convenience storage items. The HIP replaced the following systems; ACA, ASP, PICS, FSP, WSR, STP, and RBO. In addition, HIP manages the catalog maintenance function for the General Supplies inventory stocked in the 1164 building and managed by WIMS

  16. High integrity container evaluation for solid waste disposal burial containers

    International Nuclear Information System (INIS)

    Josephson, W.S.

    1996-01-01

    In order to provide radioactive waste disposal practices with the greatest measure of public protection, Solid Waste Disposal (SWD) adopted the Nuclear Regulatory Commission (NRC) requirement to stabilize high specific activity radioactive waste prior to disposal. Under NRC guidelines, stability may be provided by several mechanisms, one of which is by placing the waste in a high integrity container (HIC). During the implementation process, SWD found that commercially-available HICs could not accommodate the varied nature of weapons complex waste, and in response developed a number of disposal containers to function as HICs. This document summarizes the evaluation of various containers that can be used for the disposal of Category 3 waste in the Low Level Burial Grounds. These containers include the VECTRA reinforced concrete HIC, reinforced concrete culvert, and the reinforced concrete vault. This evaluation provides justification for the use of these containers and identifies the conditions for use of each

  17. Introduction to the Hanford Site

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal

  18. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  19. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  20. Hanford site waste tank characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order.

  1. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  2. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  3. HANFORD WASTE MINERALOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  4. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  5. Hanford Waste Mineralogy Reference Report

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  6. Hanford internal dosimetry program manual

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  7. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  8. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  9. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, S.D.; Finch, S.M. (comps.)

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  10. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  11. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  12. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  13. Deploying in situ bioremediation at the Hanford Site

    International Nuclear Information System (INIS)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1 4 ) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl 4 . Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy's Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process

  14. Deploying in situ bioremediation at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1{sub 4}) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl{sub 4}. Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy`s Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process.

  15. Master schedule for CY-1977 Hanford Environmental Surveillance Routine Program

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, P.J.; Myers, D.A.; Fix, J.J.

    1976-12-01

    Data are presented from the routine environmental surveillance program at the Hanford Site as conducted by the Environmental Evaluation Section of Battelle, Pacific Northwest Laboratory for ERDA. Tables are presented to show levels of radioactive and nonradioactive pollution in the Columbia River, sanitary water, surface water, ground water, foods, wildlife, soil, and vegetation. Data are also presented for external radiation measurements using thermoluminescent dosimeters, results of portable instrument surveys, and monitoring of waste disposal sites. (HLW)

  16. Sickly slaves, soldiers and sailors. Contextualising the Cape's 18th–19th century Green Point burials through isotope investigation

    NARCIS (Netherlands)

    Mbeki, Linda; Kootker, Lisette M.; Kars, Henk; Davies, Gareth R.

    2017-01-01

    Strontium isotope data of multiple dental enamel samples, and carbon and nitrogen isotope data of dentine and bone collagen samples from 27 individuals excavated from the mid-18th to mid-19th century Victoria & Albert Marina Residence paupers burial ground in the vicinity of Green Point, Cape Town,

  17. The disappearance of European smiths' burials

    Czech Academy of Sciences Publication Activity Database

    Ježek, Martin

    2015-01-01

    Roč. 25, č. 1 (2015), s. 121-143 ISSN 0959-7743 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M300021203 Institutional support: RVO:67985912 Keywords : elite * burial * forging tools * symbolic * ritual * prehistory * Early Middle Ages * Marxism-Leninism Subject RIV: AC - Archeology, Anthropology, Ethnology

  18. Women and the Hanford Site

    Science.gov (United States)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  19. Long-term environmental monitoring at Hanford, Washington

    International Nuclear Information System (INIS)

    Gray, R.H.

    1990-11-01

    Environmental monitoring has been an ongoing activity on the US Department of Energy's Hanford Site in southeastern Washington for over 45 years. Objectives are to detect and assess potential impacts of Site operations (nuclear and nonnuclear) on air, surface and ground water, foodstuffs, fish, wildlife, soils and vegetation. Data from monitoring efforts are used to calculate the overall radiological dose to humans working onsite or residing in nearby communities. In 1988, measured Hanford Site perimeter concentrations of airborne radionuclides were below applicable guidelines. In addition to monitoring radioactivity in fish and wildlife, population numbers of key species are determined. Chinook salmon (Oncorhynchus tshawytscha) spawning in the Columbia River at Hanford has increased in recent years with a concomitant increase in winter roosting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is increasing. The Hanford Site also serves as a refuge for Canada good (Branta canadensis) and great blue heron (Ardea herodias), and various plants and other animals, e.g., (Odocoileus hemionus) and coyote (Canis latrans). 32 refs., 4 figs

  20. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-12-14

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  1. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  2. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  3. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  4. PHYSICAL EFFECTS OF THE HANFORD WINDSTORMS OF JANUARY 11, 1972 AND JANUARY 21, 1972

    Energy Technology Data Exchange (ETDEWEB)

    Henager, C. H.; Fuquay, J. J.

    1972-06-01

    The windstorm of January 11 caused a minor amount of damage to the Hanford Reservation and Hanford vicinity. Damage sustained to Hanford Reservation structures (roofing, flashing, fences, windows) was approximately $20,000. One building did receive structural damage to roof members. Evidence that wind pressures did not reach 30 lb/ft{sup 2} during the January 11 windstorm was provided in the fact that specially designed exterior wall panels did not fail. These panels were designed and carefully proof-tested to insure that they would fail at a loading of 30 lb/ft{sup 2} as a requirement of structural safety in the original design-construction program in 1952-1954. There was one power outage on the Hanford Reservation due to the January 11 windstorm (Rattlesnake Mountain Observatory). Damage to power lines and electrical facilities amounted to about $1600. Damage to structures in the Hanford vicinity (excluding the Hanford Reservation) from the January 11 windstorm was estimated to cost $13,000. This does not include damage to private residences, etc., which has been estimated by others to be near $250,000. Power line damage in the Hanford vicinity amounted to about $80,000, of which $60,000 was accounted for in the loss of four transmission towers in the tie-line between Priest Rapids and Wanapum Dams. The January 21 windstorm, which struck Toppenish, Washington, was a straight-wind of the catabatic foehn type and not a tornado-type wind as described in newspaper accounts. No funnel cloud was associated with this windstorm. The maximum gust was about 85 mph at 30 ft above the ground. Cost estimates of damage in Toppenish were not available. There were no power outages or structural damage on the Hanford Reservation from the January 21 windstorm. Total damage to the Hanford Reservation from the two windstorms was estimated to be about $22,500.

  5. GPR Imaging of Clastic Dikes at the Hanford Site, Hanford, Washington

    International Nuclear Information System (INIS)

    Clement, William P.; Murray, Christopher J.

    2007-01-01

    We use ground penetrating radar (GPR) data to help determine the spatial distribution and the subsurface geometry of clastic injection dikes at the Hanford site. This information will help to improve the understanding of the hydrological role of these ubiquitous clastic dikes at the Hanford Site. We collected 100 MHz ground penetrating radar (GPR) 3D surface reflection data at two sites, the S-16 Pond and the Army Loop Road sites, and 2D reflection data along a 6.9 km linear transect near the Army Loop Road site. The dikes are distinguished in the GPR data by a strongly attenuated zone, disruptions in the continuity of reflections, and diffractions where reflections are disrupted. In general, the data quality is better at the Army Loop Road and Traverse sites than at the S-16 Pond site, probably due to the presence of cobbles at the S-16 Pond site. A high-moisture, fine-grained unit probably causes the strong reflections at the Army Loop Road site and the Traverse survey site. The signal penetration varies between 5 to 12 m below the land surface

  6. Burial trench dynamic compaction demonstration at a humid site

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1985-01-01

    This task has the objective of determining the degree of consolidation which can be achieved by dynamic compaction of a closed burial trench within a cohesive soil formation. A seven-year-old burial trench in Solid Waste Storage Area (SWSA) 6 of Oak Ridge National Laboratory (ORNL) was selected for this demonstration. This 251 m 3 trench contained about 80 Ci of mixed radionuclides, mostly 90 Sr, in 25 m 3 of waste consisting of contaminated equipment, dry solids, and demolition debris. Prior to compaction, a total trench void space of 79 m 3 was measured by pumping the trench full of water with corrections for seepage. Additional pre-compaction characterization included trench cap bulk density (1.68 kg/L), trench cap permeability (3 x 10 -7 m/s), and subsurface waste/backfill hydraulic conductivity (>0.01 m/s). Compaction was achieved by repeatedly dropping a 4-ton steel-reinforced concrete cylinder from heights of 4 to 8 m using the whipline of a 70-ton crane. The average trench ground surface was depressed 0.79 m, with some sections over 2 m, yielding a surveyed volumetric depression which totaled to 64% of the measured trench void space. Trench cap (0 to 60 cm) bulk density and permeability were not affected by compaction indicating that the consolidation was largely subsurface. Neither surface nor airborne radioactive contamination were observed during repeated monitoring during the demonstration. Dynamic compaction was shown to be an excellent and inexpensive (i.e., about $20/m 2 ) method to collapse trench void space, thereby hastening subsidence and stabilizing the land surface. 15 refs., 10 figs., 3 tabs

  7. The Hanford Site focus, 1994

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1994-03-01

    This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE's Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion

  8. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep borehole is located kilometers away.

  9. 1976 Hanford americium accident

    International Nuclear Information System (INIS)

    Heid, K.R.; Breitenstein, B.D.; Palmer, H.E.; McMurray, B.J.; Wald, N.

    1979-01-01

    This report presents the 2.5-year medical course of a 64-year-old Hanford nuclear chemical operator who was involved in an accident in an americium recovery facility in August 1976. He was heavily externally contaminated with americium, sustained a substantial internal deposition of this isotope, and was burned with concentrated nitric acid and injured by flying debris about the face and neck. The medical care given the patient, including the decontamination efforts and clinical laboratory studies, are discussed. In-vivo measurements were used to estimate the dose rates and the accumulated doses to body organs. Urinary and fecal excreta were collected and analyzed for americium content. Interpretation of these data was complicated by the fact that the intake resulted both from inhalation and from solubilization of the americium embedded in facial tissues. A total of 1100 μCi was excreted in urine and feces during the first 2 years following the accident. The long-term use of diethylenetriaminepentate (DTPA), used principally as the zinc salt, is discussed including the method, route of administration, and effectiveness. To date, the patient has apparently experienced no complications attributable to this extensive course of therapy, even though he has been given approximately 560 grams of DTPA. 4 figures, 1 table

  10. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Segall, P.

    1998-01-01

    Hanford's missions are to safely clean up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues

  11. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M. (comp.)

    1990-09-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.

  12. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  13. Hanford Site sustainable development initiatives

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project

  14. Migration of radionuclides following shallow land burial

    International Nuclear Information System (INIS)

    Sedlet, J.; Golchert, N.W.

    1980-01-01

    The site of a former nuclear laboratory and shallow land burial facility 25 km southwest of Chicago (USA) has been examined for radionuclide migration and residual radioactive materials. The radioactivity was produced during operations with the first nuclear reactors and associated research from 1943 to 1955. The chronology of events and details of the decommissioning procedures, including reactor burial, are described. Surface soil, surface water, soil borings drilled through and around the facility, and water from the dolomite aquifer and glacial till overburden were analyzed for a variety of radionuclides. The only nuclide found to have migrated out of the burial site is hydrogen-3, as tritiated water. This nuclide was detected in surface water, soil water, and nearby picnic wells. The concentrations in the wells show a seasonal fluctuation, from 0.1 nCi/t in the summer to 14 nCi/l in the recharging of the groundwater winter, that is attributed to by spring rains. Water migration rates in the glacial till and dolomite were estimated by several methods. The time of travel of water to the nearest well, 400 m from the facility, is estimated to be 58 months. The vertical and horizontal distribution of tritium in the glacial till was measured. The origin of the tritium, neutron-irradiated lithium, was established from measurements of the hydrogen isotopic ratios. Concentrations of other radionuclides in soil and water were normal, except for plutonium (at about twice fallout concentrations) in the first 2 m below the buried material. The solid-element nuclides have migrated very little. Exposure pathways and their associated doses, and procedures for retarding further migration are discUssed. (author)

  15. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  16. HANFORD SITE RIVER CORRIDOR CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  17. Shallow land burial - why or why not

    International Nuclear Information System (INIS)

    Thompson, W.T.; Ledbetter, J.O.; Rohlich, G.A.

    1979-01-01

    This paper summarizes a master's thesis on the state-of-the-art for shallow land burial of solid low-level radioactive wastes. The coverage of the thesis, which is condensed for this paper, ranges from site selection to problem case histories. Inherent in such coverage is the assessment of risk, the discussion of operational and management problems and the real significance of off-site migration. This topic is discussed in light of the stands taken that the migration is a serious problem and that it is not. Emphasis is on the engineering parameters of importance in site selection, and what pretreatment, if any, is needed

  18. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  19. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates

  20. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates

  1. Master schedule for CY-1982 Hanford environmental surveillance routine program

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1981-12-01

    This report provides the current schedule of data collection for the routine environmental surveillance program at the Hanford Site. The environmental surveillance program objectives are to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5484.1. The routine sampling schedule provided does not include samples which are planned to be collected during FY-1982 in support of special studies or for quality control purposes. In addition, the routine program outlined in this schedule is subject to modification during the year in response to changes in Site operations, program requirements, or unusual sample results. Sampling schedules are presented for the following: air; Columbia River; sanitary water; surface water; ground water; foodstuffs; wildlife; soil and vegetation; external radiation measurements; portable instrument surveys; and surveillance of waste disposal sites. (ATT)

  2. Master schedule for CY-1982 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1981-12-01

    This report provides the current schedule of data collection for the routine environmental surveillance program at the Hanford Site. The environmental surveillance program objectives are to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5484.1. The routine sampling schedule provided does not include samples which are planned to be collected during FY-1982 in support of special studies or for quality control purposes. In addition, the routine program outlined in this schedule is subject to modification during the year in response to changes in Site operations, program requirements, or unusual sample results. Sampling schedules are presented for the following: air; Columbia River; sanitary water; surface water; ground water; foodstuffs; wildlife; soil and vegetation; external radiation measurements; portable instrument surveys; and surveillance of waste disposal sites

  3. Hanford Environmental Dose Reconstruction Project. Monthly report, December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. [comps.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  4. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.; Macdonald, Q.C.; Schubert, S.E.

    1994-11-01

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changes in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.

  5. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  6. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  7. Mortality of Hanford radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, E.S.

    1979-01-01

    The effects of occupational exposure to low level ionizing radiation at the Hanford plant in southeastern Washington were investigated. Death rates were related to exposure status. To provide perspective, the rates were also compared with the death rates of the US population. (ACR)

  8. Mortality of Hanford radiation workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1979-01-01

    The effects of occupational exposure to low level ionizing radiation at the Hanford plant in southeastern Washington were investigated. Death rates were related to exposure status. To provide perspective, the rates were also compared with the death rates of the US population

  9. Appendix to RSC--Hanford report. Trip report, Hanford Works, March 30--April 14, 1948; see also GEH-14040, 14712

    Energy Technology Data Exchange (ETDEWEB)

    Wanta, R.C.; White, F.D.

    1948-04-14

    This trip was to provide an answer to these questions: Are Hanford meteorological instrumentation, methods, and records adequate? Do they conform to generally recognized practice? Are they effectively utilized? What is the percentage frequency of wind classified according to conditions normal, least favorable and most favorable for dilution? What is the habitability of the Wahluke Slope north and northeast of the Columbia River, considering stack gases, various stack heights, any pertinent meteorological features? What is the habitability if the only contaminating sources are the piles? In preparation for and in the event of a major catastrophe with attendant relief and evacuation operations, which additional observation should be taken: What weather data should be assembled from the general vicinity of Hanford: What sampling program should take place immediately after the event. To these may be added a question raised by Dr. Parker in connection with the high level of contamination at the ground in the vicinity of the separations. areas.

  10. TRACKING CLEAN UP AT HANFORD

    International Nuclear Information System (INIS)

    CONNELL, C.W.

    2005-01-01

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  11. Dialectics of Burial and Teritoriality in Barclays Ayakoroma's A ...

    African Journals Online (AJOL)

    This paper is conceived to investigate the subjects of death, burial, pride and territorial supremacy in African drama with special focus on A Matter of Honour by Barclays Ayakoroma. The study becomes crucial because the question of burial and struggle over rights of possession of a corpse by two parties has become a ...

  12. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  13. Customary right to befitting burial: a jurisprudential appraisal of four ...

    African Journals Online (AJOL)

    These symbols reveal unique rights for the people's entitlement. Among the rights to which an African is entitled is the right to befitting burial/funerals. This right comes with it, certain duties and/or obligations. The aim of this paper is to deconstruct the elements of applicable burial customs with a view to demonstrating their ...

  14. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    Science.gov (United States)

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  15. Numerical modelling of GPR electromagnetic fields for locating burial sites

    Science.gov (United States)

    Carcione, José M.; Karczewski, Jerzy; Mazurkiewicz, Ewelina; Tadeusiewicz, Ryszard; Tomecka-Suchoń, Sylwia

    2017-11-01

    Ground-penetrating radar (GPR) is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability). The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.

  16. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  17. History of Hanford Site Defense Production (Brief)

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2001-01-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  18. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D ampersand D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews

  19. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  20. Monitoring fish, wildlife, radionuclides and chemicals at Hanford, Washington

    International Nuclear Information System (INIS)

    Gray, R.H.

    1989-02-01

    Concern about the effects of potential releases from nuclear and non-nuclear activities on the US Department of Energy's Hanford Site in southeastern Washington has evolved over four decades into a comprehensive environmental monitoring and surveillance program. The program includes field sampling, and chemical and physical analyses of air, surface and ground water, fish, wildlife, soil, foodstuffs, and natural vegetation. In addition to monitoring radioactivity in fish and wildlife, population numbers of key species are determined, usually during the breeding season. Data from monitoring efforts are used to assess the environmental impacts of Hanford operations and calculate the overall radiological dose to humans onsite, at the Site perimeter, or residing in nearby communities. Chinook salmon (Oncorhynchus tshawytscha) spawning in the Columbia River at Hanford has increased in recent years with a concomitant increase in winter nesting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is also increasing. Nesting Canada goose (Branta canadensis) and great blue heron (Ardea herodias), and various other animals, e.g., mule deer (Odocoileus hemionus) and coyotes (Canis latrans) are common. Measured exposure to penetrating radiation and calculated radiation doses to the public are well below applicable regulatory limits. 35 refs., 4 figs

  1. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    Energy Technology Data Exchange (ETDEWEB)

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  2. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  3. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  4. Pollution prevention opportunity assessments at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Betsch, M.D., Westinghouse Hanford

    1996-06-26

    The Pollution Prevention Opportunity Assessment (PPOA) is a pro- active way to look at a waste generating activity and identify opportunities to minimize wastes through a cost benefit analysis. Hanford`s PPOA process is based upon the graded approach developed by the Kansas City Plant. Hanford further streamlined the process while building in more flexibility for the individual users. One of the most challenging aspects for implementing the PPOA process at Hanford is one overall mission which is environmental restoration, Now that the facilities are no longer in production, each has a different non- routine activity making it difficult to quantify the inputs and outputs of the activity under consideration.

  5. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs

  6. Integrated report on radionuclide migration at the Savannah River shallow land burial site

    International Nuclear Information System (INIS)

    Towler, O.A. Jr.

    1989-03-01

    The impact of the SRP Solid Radioactive Waste Burial Ground on the environment has been studied since the early 1970s in four subtasks: subsurface monitoring of groundwater, lysimeter tests of waste, soil-water chemistry effects, and radionuclide transport modeling. This document summarizes and integrates the results of the four subtasks. More information has been gathered on the behavior of radionuclides in a solid waste disposal facility located in a humid region than from any other waste disposal site in the world. The design of closure for the SRP Burial Ground has been given a firm technical basis. The limiting pathways for radionuclide migration have been determined to be infiltrating rainwater and root penetration. Closure designs must therefore address both these factors. The designs for new storage/disposal facilities have also been given a firm technical basis. The major conclusions are that tritium will be stored for decay and not allowed to contact the groundwater, waste containing long-lived radionuclides such as iodine-129 must be stored for later geologic disposal, and above and below ground concrete vaults should be used for disposal of other low-level radioactive waste. 61 refs., 18 figs. 8 tabs

  7. In situ grouting of low-level burial trenches with a cement-based grout

    International Nuclear Information System (INIS)

    Francis, C.W.; Spalding, B.P.

    1991-01-01

    A restoration technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at Oak Ridge National Laboratory (ORNL) is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in Solid Waste Storage Area 6 (SWSA 6) were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability and decreased potential for leachate migration following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. 7 refs., 3 figs., 5 tabs

  8. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Biota subject area of the Hanford Environmental Information System (HEIS) is to manage the data collected from samples of plants and animals. This includes both samples taken from the plant or animal or samples related to the plant or animal. Related samples include animal feces and animal habitat. Data stored in the Biota subject area include data about the biota samples taken, analysis results counts from population studies, and species distribution maps

  9. Hanford Generic Interim Safety Basis

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  10. Hanford Generic Interim Safety Basis

    International Nuclear Information System (INIS)

    Lavender, J.C.

    1994-01-01

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports

  11. 21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Fink, David; Augustinus, Paul; Rhodes, Ed; Bristow, Charles; Balco, Greg

    2015-04-01

    The McMurdo Dry Valleys, Antarctica, have been ice-free for at least 10 Ma. In Victoria Valley, the largest of the Dry Valleys, permafrosted yet still actively migrating dune-fields, occupy an area of ~8 km2 with dune thicknesses varying from ~5 to 70 meters. High-resolution ground penetrating radar (GPR) imaging of selected dunes reveal numerous unconformities and complex stratigraphy inferring cycles of sand accretion and deflation from westerly katabatic winter winds sourced from the East Antarctic Ice Sheet and anabatic summer winds sourced from the Ross Sea. Samples above permafrost depth were taken for OSL and cosmogenic 26Al/10Be burial ages. OSL ages from shallow (pre-history independent of depth. Correcting for minor post-burial production based on OSL ages, the minimum (integrated) burial period for these sand grains is 0.51+/- 0.12 Ma which represents the burial age at the time of arrival at the dune. A possible explanation is that this common burial signal reflects recycling episodes of exposure, deposition, burial and deflation, sufficiently frequent to move all grains towards a common pre-dune deposition history. However, it is unclear over what length of time this processes has been active and fraction of time the sand has been buried. Consequently we also analysed purified quartz aliquots of the same samples for a third and stable nuclide, 21Ne, to determine the total surface and burial exposure periods. Using the 21Ne/10Be system we obtain burial ages of 1.10 +/- 0.10 Ma. Further coring below permafrost is planned for austral summer 2015.

  12. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. HEIS is an information system with an inclusive database. Although the database is the nucleus of the system, HEIS also provides user access software: query-by-form data entry, extraction, and browsing facilities; menu-driven reporting facilities; an ad hoc query facility; and a geographic information system (GIS). These features, with the exception of the GIS, are described in this manual set. Because HEIS contains data from the entire Hanford Site, many varieties of data are included and have.been divided into subject areas. Related subject areas comprise several volumes of the manual set. The manual set includes a data dictionary that lists all of the fields in the HEIS database, with their definitions and a cross reference of their locations in the database; definitions of data qualifiers for analytical results; and a mapping between the HEIS software functions and the keyboard keys for each of the supported terminals or terminal emulators

  13. Hanford Site surface environmental surveillance

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1998-01-01

    Environmental surveillance of the Hanford Site and the surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to US Department of Energy (DOE) environmental protection policies, support DOE environmental management decisions, and provide information to the public. The Surface Environmental Surveillance Project (SESP) is a multimedia environmental monitoring program conducted to measure the concentrations of radionuclides and chemical contaminants in the environment and assess the integrated effects of these contaminants on the environment and the public. The monitoring program includes sampling air, surface water, sediments, soil, natural vegetation, agricultural products, fish, and wildlife. Functional elements inherent in the operation of the SESP include project management, quality assurance/control, training, records management, environmental sampling network design and implementation, sample collection, sample analysis, data management, data review and evaluation, exposure assessment, and reporting. The SESP focuses on those contaminant/media combinations calculated to have the highest potential for contributing to off-site exposure. Results of the SESP indicate that contaminant concentrations in the Hanford environs are very low, generally below environmental standards, at or below analytical detection levels, and indicative of environmental levels. However, areas of elevated contaminant concentrations have been identified at Hanford. The extent of these areas is generally limited to past operating areas and waste disposal sites

  14. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs

  15. Identification and Tracing Groundwater Contamination by Livestock Burial Sites

    Science.gov (United States)

    Ko, K.; Ha, K.; Park, S.; Kim, Y.; Lee, K.

    2011-12-01

    Foot-and-mouth disease (FMD) or hoof-and-mouth disease is a severe plague for animal farming that affects cloven-hoofed animals such as cattle, pigs, sheep, and goats. Since it is highly infectious and can be easily proliferated by infected animals, contaminated equipments, vehicles, clothing, people, and predators. It is widely known that the virus responsible for FMD is a picornavirus, the prototypic member of the genus Aphthovirus. A serious outbreak of foot-and-mouth disease, leading to the stamping out of 3.53 millions of pigs and cattle and the construction of 4,538 burial sites until 15th March, 2011. The build-up of carcass burial should inevitably produce leachate by the decomposition of buried livestock affecting the surround environment such as air, soil, groundwater, and surface water. The most important issues which are currently raised by scientists are groundwater contamination by leachate from the livestock burial sites. This study examined the current status of FMD outbreak occurred in 2010-2011 and the issues of groundwater contamination by leachate from livestock burial sites. The hydrogeochemical, geophysical, and hydrogeological studies were executed to identify and trace groundwater contamination by leachate from livestock burial sites. Generally livestock mortality leachate contains high concentrations of NH3-N, HCO3-, Cl-, SO42-, K+, Na+, P along with relative lesser amounts of iron, calcium, and magnesium. The groundwater chemical data around four burial sites showed high NH3-N, HCO3-, and K+ suggesting the leachate leakage from burial sites. This is also proved by resistivity monitoring survey and tracer tests. The simulation results of leachate dispersion showed the persistent detrimental impacts for groundwater environment for a long time (~50 years). It is need to remove the leachate of burial sites to prevent the dispersion of leachate from livestock burial to groundwater and to monitor the groundwater quality. The most important

  16. First Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-03-29

    The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 81 local earthquakes during the first quarter of FY 2010. Sixty-five of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, and 2009d). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (2.5 Mc) occurred on December 22 at depth 2.1 km. The average depth of the Wooded Island events during the quarter was 1.4 km with a maximum depth estimated at 3.1 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford SMA network was triggered several times by these events and the SMA recordings are discussed in section 6.0. During the last year some Hanford employees working within a few miles of the swarm area and individuals living directly across the Columbia River from the swarm center have reported feeling many of the larger magnitude events. Strong motion accelerometer (SMA) units installed directly above the swarm area at ground surface measured peak ground accelerations approaching 15% g, the largest values recorded at Hanford. This corresponds to strong shaking of the ground, consistent with what people in the local area have reported. However, the duration and magnitude of these swarm events should not result in any structural damage to facilities. The USGS performed a geophysical survey using satellite

  17. Shallow land burial of solid low-level radioactive wastes - 30 years of experience at the Savannah River Plant

    International Nuclear Information System (INIS)

    Stone, J.A.; Fenimore, J.W.; Hawkins, R.H.; Oblath, S.B.; Ryan, J.P. Jr.

    1983-01-01

    Solid radioactive wastes from production of nuclear materials at the Savannah River Plant (SRP) are buried in shallow trenches on a 79-hectare plot within the SRP site. The SRP burial ground, in use since 1953, has provided containment for about 370,000 m 3 of waste containing 10 7 Ci that have been buried through 1982. Site characteristics, operating practices, and monitoring results are described. Extensive field and laboratory studies aimed at developing a fundamental understanding of the soil/waste/water system of the SRP burial ground are discussed. Leaching and migration of buried radionuclides have been monitored by assays of soil cores and by periodic sampling of numerous groundwater wells. Except for tritium, none of the radionuclides have migrated significantly from the waste. Generally, traces of alpha and nonvolatile beta/gamma emitters that have entered the groundwater can be detected only by ultra-low-level radiochemical analyses. Current research efforts include: (1) migration of individual radionuclides such as 60 Co, 90 Sr, 99 Tc, 106 Ru, 129 I, 137 Cs, 238 Pu, and 239 Pu (plus nonradioactive materials such as mercury); (2) groundwater chemistry under buried waste, to determine fundamental transport mechanisms; (3) radionuclide migration from well characteized sources emplaced in lysimeters; (4) laboratory measurements of sorption on burial ground soil. In addition to ensuring continued safe operation, the ongoing waste migration studies provide technical guidance for site operations and decommissioning

  18. 25 CFR 20.324 - When can the Bureau provide Burial Assistance?

    Science.gov (United States)

    2010-04-01

    ... ASSISTANCE AND SOCIAL SERVICES PROGRAMS Direct Assistance Burial Assistance § 20.324 When can the Bureau provide Burial Assistance? In the absence of other resources, the Bureau can provide Burial Assistance for... 25 Indians 1 2010-04-01 2010-04-01 false When can the Bureau provide Burial Assistance? 20.324...

  19. Bone foreshafts from a clovis burial in southwestern montana.

    Science.gov (United States)

    Lahren, L; Bonnichsen, R

    1974-10-11

    Formal and functional analyses of bone artifacts from a Clovis burial in southwestern Montana suggest that they were constructed to serve as (detachable or nondetachable) foreshafts for attaching fluted projectile points to lance shafts.

  20. Effects of urban stream burial on nitrogen uptake and ...

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  1. Water problems at the West Valley burial site

    International Nuclear Information System (INIS)

    Kelleher, W.J.

    1979-01-01

    A history of the water problems encountered at the West Valley, New York, burial site is presented with recommendations concerning operation at this site to prevent migration of radioactivity off site. When a permit to bury wastes was first issued in 1963, the possibility of water ponding in trenches because of relatively impermeable soil was recognized. Water rose persistently in 3 completed trenches in the north burial area, so the permit was revised in 1968 to be more explicit on how the trenches should be constructed to minimize the entrance of water into completed trenches. Water has not risen in the 7 trenches in the south burial area, which were completed in accordance with the revised permit. Water continued to rise in the 4 trenches in the north burial area and in early 1975 water from 2 of these trenches began to seep out through the cover. Three of the trenches were pumped to halt this seepage. Monitoring of surface streams has indicated no large-scale migration of radioisotopes away from the burial site. However, extraneous sources of radioactivity made it impossible to detect small amounts of seepage. Soil samples taken in 1973 near the trenches confirmed that there was no large-scale underground migration. The borings did indicate the existence of perched groundwater near the problem trenches in the north burial area that could result in the horizontal migration of water in or out of trenches. The USGS is now making a detailed hydrogeological study of the burial area. Erosion control and prevention of water from entering completed trenches are the main environmental problems at the West Valley burial site

  2. A Site Wide Perspective on Uranium Geochemistry at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Brown, Christopher F.; Christensen, J. N.; Davis, Jim A.; Dresel, P. Evan; Liu, Chongxuan; Kelly, S. D.; McKinley, James P.; Serne, R. Jeffrey; Um, Wooyong

    2007-10-26

    Uranium (U) is an important risk-driving contaminant at the Hanford Site. Over 200,000 kg have been released to the vadose zone over the course of site operations, and a number of vadose zone and groundwater plumes containing the uranyl cation [UO22+, U(VI)] have been identified. U is recognized to be of moderate-to-high mobility, conditions dependent. The site is currently making decisions on several of these plumes with long-lasting implications, and others are soon to come. Uranium is one of nature’s most intriguing and chemically complex elements. The fate and transport of U(VI) has been studied over the long lifetime of the Hanford Site by various contractors, along with the Pacific Northwest National Laboratory (PNNL) and its collaborators. Significant research has more recently been contributed by the national scientific community with support from the U.S. Department of Energy’s (DOE) Office of Science through its Environmental Remediation Sciences Division (ERSD). This report represents a first attempt to integrate these findings into a cohesive view of the subsurface geochemistry of U at the Hanford Site. The objective is to inform all interested Hanford parties about the in-ground inventory of U and its geochemical behavior. This report also comments on the prospects for the development of a robust generic model to more accurately forecast future U(VI) migration at different Hanford waste sites, along with further research necessary to reach this goal.

  3. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  4. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  5. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  6. Public involvement in environmental surveillance at Hanford

    International Nuclear Information System (INIS)

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation's first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford's perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools

  7. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  8. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  9. The Hanford Site: An anthology of early histories

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford's early reactors were crucial to the sites's history; T-Plant made chemical engineering history; the UO 3 plant has a long history of service. PUREX Plant: the Hanford Site's Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon

  10. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system, FY 1993 status report

    International Nuclear Information System (INIS)

    Thorne, P.D.; Chamness, M.A.; Spane, F.A. Jr.; Vermeul, V.R.; Webber, W.D.

    1993-12-01

    The ground water underlying parts of the Hanford Site (Figure 1.1) contains radioactive and chemical contaminants at concentrations exceeding regulatory standards (Dresel et al. 1993). The Hanford Site Ground-Water Surveillance Project, operated by Pacific Northwest Laboratory (PNL), is responsible for monitoring the movement of these contaminants to ensure that public health and the environment are protected. To support the monitoring effort, a sitewide three-dimensional ground-water flow model is being developed. This report provides an update on the status of the conceptual model that will form the basis for constructing a numerical three-dimensional flow model for, the site. Thorne and Chamness (1992) provide additional information on the initial development of the three-dimensional conceptual model

  11. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  12. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    Schreck, R.I.

    1994-01-01

    The Hanford Environmental Information System (HEIS) Subject Area manuals are designed as reference guides, that is, each chapter provides the information needed to make best use of each subject area, its tables, and reporting capabilities. Each subject area is documented in a chapter in one of the subject area manuals. Because these are reference manuals, most of the information is also available in the online help system as well. See Section 5.4.2 of the HEIS User's Guide (DOE-RL 1994a) for a detailed description of the online help

  13. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    This report discusses the procedures that establish the configuration control processes for the Hanford Environmental Information System (HEIS) software. The procedures also provide the charter and function of the HEIS Configuration Control Board (CCB) for maintaining software. The software configuration control items covered under these procedures include the HEIS software and database structure. The configuration control processes include both administrative and audit functions. The administrative role includes maintaining the overall change schedule, ensuring consistency of proposed changes, negotiating change plan adjustments, setting priorities, and tracking the status of changes. The configuration control process audits to ensure that changes are performed to applicable standards

  14. Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters via Reduction by Zero-Valent Metals

    International Nuclear Information System (INIS)

    Yarmoff, Jory A.; Amrhein, Christopher

    1999-01-01

    Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental

  15. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  16. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  17. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  18. Overview of the Hanford risk management plan

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, T.G.

    1998-03-26

    The Project Hanford Management Contract called for the enhancement of site-wide decision processes, and development of a Hanford Risk Management Plan to adopt or develop a risk management system for the Hanford Site. This Plan provides a consistent foundation for Site issues and addresses site-wide management of risks of all types. It supports the Department of Energy planning and sitewide decision making policy. Added to this requirement is a risk performance report to characterize the risk management accomplishments. This paper presents the development of risk management within the context of work planning and performance. Also discussed are four risk elements which add value to the context.

  19. HEPA Filter Use at the Hanford Site

    International Nuclear Information System (INIS)

    Kriskovich, J. R.

    2002-01-01

    High Efficiency Particulate Air (HEPA) filters are relied upon at the Hanford site to support several different activities. Each facility relies upon the filters to provide the same function; remove radioactive particulate from various air streams. However, HEPA filters are operated in differing environmental conditions from one facility to another and the constituents in the air streams also differ. In addition, some HEPA filters at the Hanford site have been in service for several years. As a result, an assessment was performed which evaluated the service life and conditions of the HEPA filters at the Hanford site

  20. HEPA Filter Use at the Hanford Site

    International Nuclear Information System (INIS)

    KRISKOVICH, J.R.

    2002-01-01

    High Efficiency Particulate Air (HEPA) filters are relied upon at the Hanford site to support several different activities. Each facility relies upon the filters to provide the same function, remove radioactive particulate However, HEPA filters are operated in differing environmental conditions from one facility to another and the constituents in the air streams also differ. In addition, some HEPA filters at the Hanford site have been in service for several years. As a result, an assessment was performed which evaluated the service life and conditions of the HEPA filters at the Hanford site

  1. Overview of the Hanford risk management plan

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1998-01-01

    The Project Hanford Management Contract called for the enhancement of site-wide decision processes, and development of a Hanford Risk Management Plan to adopt or develop a risk management system for the Hanford Site. This Plan provides a consistent foundation for Site issues and addresses site-wide management of risks of all types. It supports the Department of Energy planning and sitewide decision making policy. Added to this requirement is a risk performance report to characterize the risk management accomplishments. This paper presents the development of risk management within the context of work planning and performance. Also discussed are four risk elements which add value to the context

  2. LIDAR-based coastal landscape reconstruction and harbour location: The Viking-age royal burial site of Borre (Norway)

    Science.gov (United States)

    Draganits, Erich; Doneus, Michael; Gansum, Terje

    2013-04-01

    Airborne light detection and ranging (LIDAR) has found wide application in archaeological research for the detection and documentation of archaeological and palaeo-environmental features. In this study we demonstrate the analysis of an LIDAR derived 1x1 m digital elevation model (DTM) combined with geoarchaeological research of the coastal Viking-age burial site in Borre, Olso Fjord (Norway). Borre is an exceptional burial site in Scandinavia, containing burial mounds up to 40 m in diameter and 6 m height, mentioned in Nordic Sagas, especially in the skaldic poem Ynglingatal, as the burial place of one or two kings of the Ynglinga dynasty. Archaeological findings and radiocarbon ages indicate that the Borre burial ground had been in use broadly between 600-1000 AD. Despite the reasonable expectation that a coastal site connected with the Viking kings of Vestfold, with hall buildings and ship graves demands a harbour, up to now no harbour has not been found with traditional archaeological surveys. Since the area of Borre is affected by a continuous land uplift related to glacial rebound of Scandinavia, any former harbour site is expected to be exposed to the land surface today. The present day vertical crustal uplift is calculated around 2.5 mm/yr in the area of Borre. Burial mounds and surrounding borrow pits as well as geomorphological features of the uplifted coast of Borre have been analysed by the 1x1 m LIDAR-DTM, using hillshade, slope and local relief model for visualisation. Altogether, 41 burial mounds and further 6 potential mounds are visible in the high-resolution DTM. A succession of more than 14 beach ridges, cross-cut by the burial mounds, is visible from the present shore line up to 18 m asl. They are more or less parallel and similar in size, except between at ca. 4-6 m asl, where the most prominent ridge is located, which probably has been enforced artificially. Using published shoreline displacement curves from nearby areas, the shore-line at

  3. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    Science.gov (United States)

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  4. The Semiotics of Pemature Burial: Feminism in a Postfeminist Age

    Directory of Open Access Journals (Sweden)

    Mary Hawkesworth

    2006-09-01

    Full Text Available In this article, I will explore how the death of feminism is represented in order to plumb the larger meanings embedded in proclamations of feminism’s symbolic death. I will begin by investigating two mechanisms by which feminism’s death has been produced to unearth the tacit values of feminism’s morticians. I will then consider competing accounts of the “signs of death” in order to explore how particular assumptions about the ontology of feminism are tied to specific forms of metaphorical death. Given the particular kind of distortion involved in the premature burial of a thriving global feminism, the final section of the article situates contemporary feminism’s death knell in the context of a gendered history of live burial practices. By excavating and interpreting such archaic practices, I will link the rhetorical burial of contemporary feminism to an ongoing effort to undermine feminist struggles for social justice.

  5. Hanford Laboratories monthly activities report, March 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-04-15

    This is the monthly report for the Hanford Laboratories Operation March 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  6. Hanford Laboratories monthly activities report, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-02-14

    This is the monthly report for the Hanford Laboratories Operation, January 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  7. Continuing study of mortality in Hanford workers

    International Nuclear Information System (INIS)

    Marks, S.; Gilbert, E.S.

    1979-10-01

    The mortality of workers at the Hanford Plant in southeastern Washington who have been exposed to penetrating external ionizing radiation is studied. Deaths are analyzed statistically and compared to standardized mortality ratios. Cancer deaths in particular are examined

  8. Hanford Laboratories monthly activities report, September 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-10-15

    The monthly report for the Hanford Laboratories Operation, September 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operations are discussed.

  9. Hanford Laboratories monthly activities report, November 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-12-16

    This is the monthly report for the Hanford Laboratories Operation, November 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  10. Hanford Laboratories monthly activities report, October 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-11-16

    The monthly report for the Hanford Laboratories Operation, October 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operations are discussed.

  11. Hanford Laboratories monthly activities report, April 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  12. Hanford Laboratories monthly activities report, May 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  13. Hanford Laboratories monthly activities report, March 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  14. Hanford Environmental Information System Configuration Management Plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Hanford Environmental Information System (HEIS) Configuration Management Plan establishes the software and data configuration control requirements for the HEIS and project-related databases maintained within the Environmental Restoration Contractor's data management department

  15. Hanford Laboratories monthly activities report, June 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-07-15

    This is the monthly report for the Hanford Laboratories Operation, June 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  16. Hanford Laboratories monthly activities report, April, 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics operation, programming, and radiation protection operation discussed.

  17. Hanford Laboratories monthly activities report, July 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-08-15

    This is the monthly report for the Hanford Laboratories Operation, July 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  18. Hanford Laboratories monthly activities report, August 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-09-16

    This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  19. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1992-03-01

    This report describes risk assessment methodology associated with the remedial action programs at the Hanford Reservation. Topics addressed include human health evaluation, pollutant and radionuclide transport through the environment, and environmental transport pathways

  20. Hanford Laboratories monthly activities report, July 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-14

    This is the monthly report for the Hanford Laboratories Operation, July 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  1. Hanford Laboratories monthly activities report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-11-15

    This is the monthly report for the Hanford Laboratories Operation, October 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  2. Hanford Laboratories monthly activities report, January 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-02-15

    This is the monthly report for the Hanford Laboratories Operation January 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  3. Hanford Laboratories monthly activities report, November 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-12-15

    This is the monthly report for the Hanford Laboratories Operation, November 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research.

  4. Hanford Laboratories monthly activities report, May 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-06-14

    The monthly report for the Hanford Laboratories Operation, May 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operation are discussed.

  5. Hanford Laboratories monthly activities report, August 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-09-15

    The monthly report for the Hanford Laboratories Operation, August 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.

  6. Hanford Laboratories monthly activities report, September 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-10-15

    This is the monthly report for the Hanford Laboratories Operation, September 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  7. Hanford Laboratories monthly activities report, February 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  8. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  9. Hanford Site Environmental Surveillance Master Sampling Schedule

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2002-01-16

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs. The document contains the CY 2002 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project.

  10. Hanford: The evolution of a dinosaur

    International Nuclear Information System (INIS)

    Fulton, J.

    1995-01-01

    This article describes how the Westinghouse Hanford Company is reinventing the US DOE's Hanford Site, turning a 1940s-era dinosaur into a 1990s-style business. The major topics covered include the following: breaking the logjam by ending the inefficient cost-plus days; Concentrating resources on resolving urgent safety issues; contract reform with more incentive, greater risk; finally reengineering: the next step

  11. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates

  12. Hanford Environmental Dose Reconstruction Project. Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. [comps.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  13. Hanford Environmental Dose Reconstruction Project Monthly Report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1992-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  14. Hanford Environmental Dose Reconstruction Project. Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. [comps.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  15. Hanford Environmental Dose Reconstruction Project. Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, S.D.; Finch, S.M. [comps.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  16. Environmental surveillance at Hanford for CY 1977

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1978-04-01

    Environmental data collected during 1977 show continued compliance by Hanford with all applicable state and federal regulations. Data were collected for most environmental media including air, Columbia River water, external radiation, foodstuffs (milk, beef, eggs, poultry, and produce) and wildlife (deer, fish, game birds, and oysters from Willapa Bay), as well as soil and vegetation samples. In general, offsite levels of radionuclides attributable to Hanford operations during 1977 were indistinguishable from background levels

  17. NHC's contribution to cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Chauve, H.D.

    1998-01-01

    The one billion dollars per year Project Hanford Management Contract (PHMC), managed by Fluor Daniel Hanford, calls for cleanup of the Hanford Site for the Department of Energy. Project Hanford comprises four major subprojects, each managed by a different major contractor. Numatec Hanford Corporation (NHC) is a fifth major subcontractor which provides energy and technology to each of the Hanford projects. NHC draws on the experience and capabilities of its parent companies, COGEMA and SGN, and relies on local support from its sister Company in Richland, COGEMA Engineering Corporation, to bring the best commercial practices and new technology to the Project

  18. Hanford Engineer Works technical manual

    Energy Technology Data Exchange (ETDEWEB)

    1944-05-01

    The uranium metal, as discharged from the piles in the 100 Areas, contains the alpha emitting product, plutonium, in concentration in the neighborhood of 150--250 grams per metric ton, along with similar amounts of beta and gamma fission elements. It is the purpose of the Separations Plant to effect the separation of this product from the uranium metal and fission elements, and to prepare a concentrated, relatively pure solution of plutonium nitrate as the final product of the Hanford Plant. This section of the manual discusses the chemistry of the separations process, describes the buildings and equipment provided for carrying out the various steps in the operation, and presents the detailed operating procedures used. There are included, in many instances, references to other documents presenting a more detailed view of a specific point in the process.

  19. Hanford Nuclear Energy Center study

    International Nuclear Information System (INIS)

    Harty, H.

    1976-01-01

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants

  20. Hanford Nuclear Energy Center study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1976-03-16

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants.

  1. Hanford cultural resources management plan

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C. (ed.)

    1989-06-01

    As a federal agency, the US Department of Energy (DOE) has been directed by Congress and the President to provide leadership in the preservation of prehistoric, historical, and cultural resources on lands it administers, to manage these in a spirit of stewardship for future generations, and to protect and preserve the rights of Native Americans to religious freedom. The purpose of this document is to describe how the DOE-Richland Operations (DOE-RL) will meet those responsibilities on the Hanford Site, pursuant to guidelines for Agency Responsibilities under the Historic Preservation Act (FR 53:31, February 17, 1988). This document is intended for multiple uses. Among other things, the text is designed as a manual for cultural resource managers to follow and as an explanation of the process of cultural resource regulatory compliance for the DOE-RL and Site contractors. 10 refs., 17 figs., 11 tabs.

  2. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  3. History of Hanford Site Defense Production (Brief)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  4. Hanford immobilized LAW product acceptance: Initial Tanks Focus Area testing data package

    Energy Technology Data Exchange (ETDEWEB)

    JD Vienna; A Jiricka; BP McGrail; BM Jorgensen; DE Smith; BR Allen; JC Marra; DK Peeler; KG Brown; IA Reamer; WL Ebert

    2000-03-08

    The Hanford Site's mission has been to produce nuclear materials for the US Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during plutonium production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The total volume of LAW requiring immobilization will include the LAW separated from the tank waste, as well as new wastes generated by the retrieval, pretreatment, and immobilization processes. Per the Tri-Party Agreement (1994), both the LAW and HLW will be vitrified. It has been estimated that vitrification of the LAW waste will result in over 500,000 metric tons or 200,000 m{sup 3} of immobilized LAW (ILAW) glass. The ILAW glass is to be disposed of onsite in a near-surface burial facility. It must be demonstrated that the disposal system will adequately retain the radionuclides and prevent contamination of the surrounding environment. This report describes a study of the impacts of systematic glass-composition variation on the responses from accelerated laboratory corrosion tests of representative LAW glasses. A combination of two tests, the product consistency test and vapor-hydration test, is being used to give indictations of the relative rate at which a glass could be expected to corrode in the burial scenario.

  5. Summary and evaluation of available hydraulic property data for the Hanford Site unconfined aquifer system

    International Nuclear Information System (INIS)

    Thorne, P.D.; Newcomer, D.R.

    1992-11-01

    Improving the hydrologic characterization of the Hanford Site unconfined aquifer system is one of the objectives of the Hanford Site Ground-Water Surveillance Project. To help meet this objective, hydraulic property data available for the aquifer have been compiled, mainly from reports published over the past 40 years. Most of the available hydraulic property estimates are based on constant-rate pumping tests of wells. Slug tests have also been conducted at some wells and analyzed to determine hydraulic properties. Other methods that have been used to estimate hydraulic properties of the unconfined aquifer are observations of water-level changes in response to river stage, analysis of ground-water mound formation, tracer tests, and inverse groundwater flow models

  6. Impact of Cultivation and Subsequent Burial on Cydia pomonella (Lepidoptera: Tortricidae) and Conotrachelus nenuphar (Coleoptera: Curculionidae).

    Science.gov (United States)

    Baughman, William B; Nelson, Peter N; Grieshop, Matthew J

    2015-06-01

    We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  7. Radionuclide releases to the atmosphere from Hanford Operations, 1944--1972. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. The first step in determining dose is to estimate the amount and timing of radionuclide releases to air and water. This report provides the air release information.

  8. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, T.J.

    2006-12-20

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  9. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    International Nuclear Information System (INIS)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Duncan, D.R.

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations

  10. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    Energy Technology Data Exchange (ETDEWEB)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  11. Shallow land burial technology development - arid

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Abeele, W.V.; Burton, B.W.; Hakonson, T.E.; Perkins, B.A.

    1982-01-01

    The experimental results obtained during FY-1982 on biointrusion barrier testing, migration barrier testing, and ground and surface water management system testing are described. The results of the small lysimeter study on biointrusion barriers are presented and the larger scale experiments in progress are described. The results of the experiments to determine the migration potential for water under unsaturated conditions are described. Preliminary results on the wick system experiment are presented. A comparison of model calculations and experimental results on the water movement experiments is also presented

  12. Effects of the Ben Franklin Dam on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1979-04-01

    A previous assessment of the effects of a Ben Franklin Dam on the Hanford Site made in 1967 was updated so that the potential adverse effects may be better understood in light of existing operations, current environmental and safety standards, and proposed facilities and operations. The major effects would probably arise from flooding of portions of the site by the reservoir associated with the dam and by the raising of the ground water table under the site. A preliminary analysis of the effects of the dam is presented, and a number of studies are recommended in order to fully evaluate and understand these potential impacts. The following seven tasks are identified and discussed: groundwater - hydrology analysis; soil liquefaction analysis; hydrostatic uplift and soil effects on structures; assessment of the potential for landsliding and sloughing; facility decommissioning; hydrothermal analysis; and, meteorological effects. Four other aspects commented upon in this report are: aquatic ecology, terrestrial ecology, socioeconomic effects, and public interaction. Possible effects on ongoing DOE-sponsored R and D are also noted. To the extent possible, cost estimates are developed for corrective actions which must be taken on the Hanford Site to accommodate the dam. Where this was not possible, appropriate courses of action leading to cost estimates are presented.

  13. The Hanford Environmental Dose Reconstruction (HEDR) Project: Technical approach

    International Nuclear Information System (INIS)

    Napier, B.A.; Freshley, M.D.; Gilbert, R.O.; Haerer, H.A.; Morgan, L.G.; Rhoads, R.E.; Woodruff, R.K.

    1990-01-01

    Historical measurements and current assessment techniques are being combined to estimate potential radiation doses to people from radioactive releases to the air, the Columbia River, soils, and ground water at the Hanford Site since 1944. Environmental contamination from these releases has been monitored, at varying levels of detail, for 45 yr. Phase I of the Hanford Environmental Reconstruction Project will estimate the magnitude of potential doses, their areal extends, and their associated uncertainties. The Phase I study area comprises 10 counties in eastern Washington and northern Oregon, within a 100-mi radius of the site, including a stretch of the Columbia River that was most significantly affected. These counties contain a range of projected and measured contaminant levels, environmental exposure pathways, and population groups. Phase I dose estimates are being developed for the periods 1944 through 1947 for air pathways and 1964 through 1966 for river pathways. Important radionuclide/pathway combinations include fission products, such as 131 I, in milk for early atmospheric releases and activation products, such as 32 P and 65 Zn, in fish for releases to the river. Potential doses range over several orders of magnitude within the study area. We will expand the time periods and study are in three successive phases, as warranted by results of Phase I

  14. Two Catacombs of Late Sarmatian Time From Pashkovsky Burial Mound no. 2

    OpenAIRE

    Limberis Natalya Yuryevna; Marchenko Ivan Ivanovich

    2015-01-01

    The article deals with two burials from the Kuban basin region excavated in Pashkovsky burial mound no. 2 belonging to Maeotian Pashkovskoe ancient settlement. The burials were made in catacombs of similar construction and orientation. The narrow grave entrances and grave chambers are situated in-line. The grave chambers of the catacombs adjoin one other that probably was the reason for plunder of a little earlier burial no. 2. There were the complete horse skeleton, the cow skull and the she...

  15. Mesolithic burial place in La Martina Cave (Dinant, Belgium)

    International Nuclear Information System (INIS)

    Dewez, M.; Gilot, E.; Groessens-Van-Dyck, M.C.; Cordy, J.M.

    1995-01-01

    The ''La Martina'' cave is located near Dinant (Belgium). Although the sediments had been shoveled out in the mid XIXth century, a calcic breccia has provided prehistoric bones. We can distinguish a Pleistocene fauna with cave bear, one Mesolithic burial place with two cromagnoid skeletons, from the 6th millennium BC, and some Holocene faunal remains. (authors). 7 refs

  16. The materiality of Funnelbeaker burial practice : Evidence from the microscope

    NARCIS (Netherlands)

    Gijn, van, A.L.; Marreiros J, Bicho N, Gibaja, J.F.

    2014-01-01

    Flint and amber artefacts from Dutch Funnelbeaker (3400-2900 cal BC) megaliths were examined from a biographical perspective, also involving microwear analysis. It is shown that both flint and amber contributed to the materiality of Funnelbeaker burial practices, which above all stressed the

  17. Scale and distribution of marine carbonate burial dissolution pores

    Directory of Open Access Journals (Sweden)

    Anjiang Shen

    2016-06-01

    Full Text Available It is gradually accepted that porosity can be created in burial settings via dissolution by organic acid; TSR derived or hydrothermal fluids. The role of deep-buried carbonate reservoirs is becoming more and more important since the degree and difficulty in petroleum exploration of shallow strata are increasing. A profound understanding of the development scale and prediction of the deep-buried carbonate reservoirs is economically crucial. In addition to the formation mechanism, scale and distribution of burial dissolution pores in burial settings are focused on in recent studies. This paper is based on case studies of deep-buried (>4500 m carbonate reservoirs from the Tarim Basin and Sichuan Basin. Case studies mentioned includes dissolution simulation experiments proposes that an open system is of crucial importance in the development of large-scale burial dissolution pores, the distribution pattern of which is controlled by lithology, pre-existing porosity, and pore throat structures. These findings provided the basis for evaluation and prediction of deep-buried carbonate reservoirs.

  18. Redefining kin and family social relations: burial societies and ...

    African Journals Online (AJOL)

    The omnipresence of death and dying in Botswana (due to the AIDS pandemic, social victimization, road-related carnage and so on), does not necessarily precipitate despondency; instead it underwrites commitments by members of burial societies to new sensibilities and to imaginative interventions that regenerate, rather ...

  19. Chemical and Mechanical processes during burial diagenesis of chalk

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine; Lind, Ida

    1998-01-01

    Burial diagenesis of chalk is a combination of mechanical compaction and chemical recrystallization as well as cementation. We have predicted the characteristic trends in specific surface resulting from these processes. The specific surface is normally measured by nitrogen adsorption but is here...

  20. Vegetation communities associated with the 100-Area and 200-Area facilities on the Hanford Site

    International Nuclear Information System (INIS)

    Stegen, J.A.

    1994-01-01

    The Hanford Site, Benton County, Washington, lies within the broad semi-arid shrub-steppe vegetation zone of the Columbia Basin. Thirteen different habitat types on the Hanford Site have been mapped in Habitat Types on the Hanford Site: Wildlife and Plant Species of Concern (Downs et al. 1993). In a broad sense, this classification is correct. On a smaller scale, however, finer delineations are possible. This study was conducted to determine the plant communities and estimate vegetation cover in and directly adjacent to the 100 and 200 Areas, primarily in relation to waste sites, as part of a comprehensive ecological study for the Compensation Environmental Response, Compensation, and Liability Act (CERCLA) characterization of the 100 and 200 Areas. During the summer of 1993, field surveys were conducted and a map of vegetation communities in each area, including dominant species associations, was produced. The field surveys consisted of qualitative community delineations. The community delineations described were made by field reconnaissance and are qualitative in nature. The delineations were made by visually determining the dominant plant species or vegetation types and were based on the species most apparent at the time of inspection. Additionally, 38 transects were run in these plant communities to try to obtain a more accurate representation of the community. Because habitat disturbances from construction/operations activities continue to occur in these areas, users of this information should be cautious in applying these maps without a current ground survey. This work will complement large-scale habitat maps of the Hanford Site