WorldWideScience

Sample records for bupranolol

  1. Differences in the Antinociceptive Effects and Binding Properties of Propranolol and Bupranolol Enantiomers.

    Science.gov (United States)

    Martin, Loren J; Piltonen, Marjo H; Gauthier, Josee; Convertino, Marino; Acland, Erinn L; Dokholyan, Nikolay V; Mogil, Jeffrey S; Diatchenko, Luda; Maixner, William

    2015-12-01

    Recent efforts have suggested that the β-adrenergic receptor (β-AR) system may be a novel and viable therapeutic target for pain reduction; however, most of the work to date has focused on the β(2)-adrenergic receptor (AR). Here, we compared the antinociceptive effects of enantiomeric configurations of propranolol and bupranolol, two structurally similar nonselective β-blocking drugs, against mouse models of inflammatory and chronic pain. In addition, we calculated in silico docking and measured the binding properties of propranolol and bupranolol for all 3 β-ARs. Of the agents examined, S-bupranolol is superior in terms of its antinociceptive effect and exhibited fewer side effects than propranolol or its associated enantiomers. In contrast to propranolol, S-bupranolol exhibited negligible β-AR intrinsic agonist activity and displayed a full competitive antagonist profile at β(1)/β(2)/β(3)-ARs, producing a unique blockade of β(3)-ARs. We have shown that S-bupranolol is an effective antinociceptive agent in mice without negative side effects. The distinctive profile of S-bupranolol is most likely mediated by its negligible β-AR intrinsic agonist activity and unique blockade of β(3)-AR. These findings suggest that S-bupranolol instead of propranolol may represent a new and effective treatment for a variety of painful conditions. The S enantiomer of bupranolol, a β-receptor antagonist, shows greater antinociceptive efficacy and a superior preclinical safety profile and it should be considered as a unique β-adrenergic receptor compound to advance future clinical pain studies. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Sensitive enantioanalysis of β-blockers via field-amplified sample injection combined with water removal in microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Ma, Yanhua; Zhang, Huige; Rahman, Zia Ur; Wang, Weifeng; Li, Xi; Chen, Hongli; Chen, Xingguo

    2014-10-01

    In this study, an on-line sample preconcentration technique, field-amplified sample injection combined with water removal by electroosmotic flow (EOF) pump, was applied to realize a highly sensitive chiral analysis of β-blocker enantiomers by MEEKC. The introduction of a water plug in capillary before the electrokinetic injection provided the effective preconcentration of chiral compounds. And then the water was moving out of the column from the injection end under the effect of the EOF, which avoided dilution of the stacked β-blocker enantiomers concentration suffering from the presence of water in separation buffer. Moreover, the addition of H3 PO4 and methanol in the sample solution greatly improved the enhancement efficiency further. Under optimized conditions, more than 2700-fold enhancement in sensitivity was obtained for each enantiomer of bupranolol (BU), alprenolol (AL), and propranolol (PRO) via electrokinetic injection. LODs were 0.10, 0.10, 0.12, 0.11, 0.02, and 0.02 ng/mL for S-BU, R-BU, S-AL, R-AL, S-PRO, and R-PRO, respectively. Eventually, the proposed method was successfully applied to the determination of BU, AL, and PRO in serum samples with good recoveries ranging from 93.4 to 98.2%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The review of identification and assay methods of β-blockers

    Directory of Open Access Journals (Sweden)

    Ольга Олександрівна Віслоус

    2015-10-01

    Full Text Available Every year the number of β-blockers on the pharmaceutical market is increasing, requiring systematization of their standardization methods.Aim of research. The aim of our research is to study literature data about identification and assay methods of β-blockers with different direction of action – selective (praktolol, metoprolol, atenolol, acebutolol, betaxolol, bevantolol, bisoprolol, celiprolol, esmolol, epanolol, esatenolol, nebivolol, Talinolol, non-selective (alprenolol, Oxprenololum, pindolol, propranolol, timolol, sotalol, nadolol, mepindolol, karteol, tertatolol, bopindolol, bupranolol, penbutolol, kloranolol and combined (labetalol, carvedilol.Methods. The analytical review of literature sources about β-blockers analysis by physical, chemical, and physicochemical methods.Results. After literature sources’ analyzing it was found that physical and physicochemical constants are basically used for β-blockers pharmacopoeial analysis; both physicochemical values and chemical reactions are used in forensic analysis, resulting in the article.It was founded that titration methods, mostly acid-base titration method, are used for β-blockers assay in the analysis of substances. For β-blockers detection in biological fluids and dosage forms, active pharmaceutical ingredients and metabolites mixture separation one should prefer physicochemical methods, such as gas chromatography and liquid chromatography, absorption UV-Visible spectroscopy, fluorometry, etc.Conclusion. The results have shown can be used for the further search of the identification and assay optimal methods of β-blockers both pure and mixed with other active substances and excipients

  4. Synthesis of 1,2-benzisothiazolyloxypropanolamine derivatives and investigation of their activity at beta-adrenoceptors.

    Science.gov (United States)

    Morini, Giovanni; Pozzoli, Cristina; Menozzi, Alessandro; Comini, Mara; Poli, Enzo

    2005-10-01

    The synthesis of 3-methoxy-1,2-benzisothiazole derivatives, substituted in position 5- (compounds 1-7) or 7- (compounds 8-14), with oxypropanolaminic side chains and the pharmacological investigation on their activity at beta-adrenoceptors are described. Compounds were prepared in an attempt to explore the ability of the benzisothiazole ring to interact with the beta-adrenoceptor site and to establish whether oxypropanolaminic derivatives recognise the beta3-adrenoceptor subtype. All the products were tested on rat atria, bladder and small intestine, which preferentially (but not exclusively) express beta1-, beta2- and beta3-adrenoceptors, respectively. When compared with the reference, non-specific, beta-adrenoceptor agonist isoprenaline, the products tested did not show any consistent beta-adrenoceptor agonistic activity in the different models. Most compounds relaxed smooth muscle preparations, but such effect was resistant to the blockade by propranolol (1 micromol/l), ICI 118,551 (1 micromol/l) or bupranolol (1-10 micromol/l), thus excluding that the spasmolytic effect involves any beta-adrenoceptors. When tested as antagonists, some of these products showed a concentration-dependent attenuation of the isoprenaline-induced effects in rat atria, without affecting beta-adrenoceptor-mediated relaxation in smooth muscle. These data confirm the ability of the benzisothiazole ring to interact with beta-adrenoceptors, but the substitution in 5- or 7-positions with oxypropanolaminic groups does not generate compounds endowed with specific activity at beta3-adrenoceptors. Conversely, most of these compounds behave as (specific) antagonists at beta1- (cardiac) adrenoceptors. At the maximum concentrations tested (1-100 micromol/l), these compounds also exert direct spasmolytic and negative chronotropic effects, which could be related to a blockade of Ca2+-dependent mechanisms at an intracellular level and/or an anaesthetic-like activity at plasma membranes.