WorldWideScience

Sample records for buoys

  1. Loading/unloading buoy. Laste/lossebye

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Smedal, A.; Syvertsen, K.

    1994-07-04

    The invention relates to a buoy for use in loading or unloading of a flowable medium, especially oil. The buoy is at its lower end arranged for connection to at least one transfer line and further being arranged to be introduced into a submerged downwardly open receiving space in a floating vessel. The buoy forms in operation a transfer connection between the transfer line and a tube system on the vessel. The buoy comprises an outer buoyancy member arranged for releasable locking to the receiving space of the vessel by means of a locking mechanism arranged therein, and centrally in the outer member a rotatably mounted member which forms a passage for medium and at its ends is arranged for connection to the transfer line and the tube system on the vessel, respectively. The buoy at its upper end is connected to a means for hoisting and introducing the buoy into the receiving space of the vessel. 8 figs.

  2. Buoy-Rope-Drum Wave Power System

    Directory of Open Access Journals (Sweden)

    Linsen Zhu

    2013-01-01

    Full Text Available A buoy-rope-drum wave power system is a new type of floating oscillating buoy wave power device, which absorbs energy from waves by buoy-rope-drum device. Based on the linear deep water wave theory and pure resistive load, with cylinder buoy as an example, the research sets up the theoretical model of direct-drive buoy-rope-drum wave power efficiency and analyzes the influence of the mass and load of the system on its generating efficiency. It points out the two main categories of the efficient buoy-rope-drum wave power system: light thin type and resonance type, and optimal designs of their major parameters are carried out on the basis of the above theoretical model of generating efficiency.

  3. Buoy Dynamics in Subsurface Zones

    Directory of Open Access Journals (Sweden)

    Randy Guillen

    2009-01-01

    Full Text Available The objective of this paper is to find the tension acting on a line that anchors a buoy submerged just beneath the surface of the ocean. Since the problem statement only gives the geometric shapes and dimensions of the buoy, we must use calculus to find its volume and surface area through integration of the volumes and surfaces of revolution formed by the specific parts of the buoy along an axis. The volume and surface area determine the buoyancy force and force of gravity, the two forces acting on the buoy that affect the tension in the line. After calculating this data, we were able to conclude that the tension affecting the line would be approximately 78 kN if the buoy was made of 1% carbon steel with a thickness of 6.35 mm. This problem is useful in several engineering disciplines.

  4. On the Optimization of Point Absorber Buoys

    Directory of Open Access Journals (Sweden)

    Linnea Sjökvist

    2014-05-01

    Full Text Available A point absorbing wave energy converter (WEC is a complicated dynamical system. A semi-submerged buoy drives a power take-off device (PTO, which acts as a linear or non-linear damper of the WEC system. The buoy motion depends on the buoy geometry and dimensions, the mass of the moving parts of the system and on the damping force from the generator. The electromagnetic damping in the generator depends on both the generator specifications, the connected load and the buoy velocity. In this paper a velocity ratio has been used to study how the geometric parameters buoy draft and radius, assuming constant generator damping coefficient, affects the motion and the energy absorption of a WEC. It have been concluded that an optimal buoy geometry can be identified for a specific generator damping. The simulated WEC performance have been compared with experimental values from two WECs with similar generators but different buoys. Conclusions have been drawn about their behaviour.

  5. NDBC Standard Meteorological Buoy Data, 1970-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) distributes meteorological data from moored buoys maintained by NDBC and others. Moored buoys are the weather sentinels of the...

  6. An array effect of wave energy farm buoys

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2012-12-01

    Full Text Available An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion. Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.

  7. Advanced Approach of Multiagent Based Buoy Communication.

    Science.gov (United States)

    Gricius, Gediminas; Drungilas, Darius; Andziulis, Arunas; Dzemydiene, Dale; Voznak, Miroslav; Kurmis, Mindaugas; Jakovlev, Sergej

    2015-01-01

    Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys), which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information.

  8. Advanced Approach of Multiagent Based Buoy Communication

    Directory of Open Access Journals (Sweden)

    Gediminas Gricius

    2015-01-01

    Full Text Available Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys, which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information.

  9. Novel ocean energy permanent magnet linear generator buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, K.; Agamloh, E.B.; Jouanne, A. von; Wallace, A.K.; Prudell, J.; Kimble, K.; Aills, J.; Schmidt, E.; Schacher, A. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-3211 (United States); Chan, P.; Sweeny, B. [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331-3211 (United States)

    2006-07-15

    This paper describes the research, design, construction and prototype testing process of a novel ocean energy direct drive permanent magnet linear generator buoy. The buoy employs the vertical component of the motion of ocean waves to power a linear generator. The generator consists of a permanent magnet field system (mounted on the central translator shaft) and an armature, in which the power is generated (mounted on the buoy). The translator shaft is anchored to the sea floor, and the buoy/floater moves armature coils relative to the permanent magnet translator to induce voltages. The electrical and mechanical structures of the buoy generator are provided, along with performance characteristics, including voltage, current and developed power. (author)

  10. Drifting buoy data collected by the National Data Buoy Center (NDBC) in oceans world-wide from 1984-05-01 to 1998-10-27

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains drifting buoy data collected from May 1984 through October 1998 from buoys deployed by the National Data Buoy Center, Stennis Space Center,...

  11. Mooring Line for an Oceanographic Buoy System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A mooring line for an oceanographic buoy system includes four sections. The first section is a protected cable that is connectable to the buoy. The second section is...

  12. Evaluating the Effectiveness of DART® Buoy Networks Based on Forecast Accuracy

    Science.gov (United States)

    Percival, Donald B.; Denbo, Donald W.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.

    2018-03-01

    A performance measure for a DART® tsunami buoy network has been developed. DART® buoys are used to detect tsunamis, but the full potential of the data they collect is realized through accurate forecasts of inundations caused by the tsunamis. The performance measure assesses how well the network achieves its full potential through a statistical analysis of simulated forecasts of wave amplitudes outside an impact site and a consideration of how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami amplitude time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART® buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 h. The analysis also shows how the forecasts are degraded (larger minimum RMSE among the remaining buoys) when one or more buoys become inoperative. The RMSEs provide a way to assess array augmentation or redesign such as moving buoys to more optimal locations. Examples are shown for buoys off the Aleutian Islands and off the West Coast of South America for impact sites at Hilo HI and along the US West Coast (Crescent City CA and Port San Luis CA, USA). A simple measure (coded green, yellow or red) of the current status of the network's ability to deliver accurate forecasts is proposed to flag the urgency of buoy repair.

  13. Evaluating the Effectiveness of DART® Buoy Networks Based on Forecast Accuracy

    Science.gov (United States)

    Percival, Donald B.; Denbo, Donald W.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.

    2018-04-01

    A performance measure for a DART® tsunami buoy network has been developed. DART® buoys are used to detect tsunamis, but the full potential of the data they collect is realized through accurate forecasts of inundations caused by the tsunamis. The performance measure assesses how well the network achieves its full potential through a statistical analysis of simulated forecasts of wave amplitudes outside an impact site and a consideration of how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami amplitude time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART® buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 h. The analysis also shows how the forecasts are degraded (larger minimum RMSE among the remaining buoys) when one or more buoys become inoperative. The RMSEs provide a way to assess array augmentation or redesign such as moving buoys to more optimal locations. Examples are shown for buoys off the Aleutian Islands and off the West Coast of South America for impact sites at Hilo HI and along the US West Coast (Crescent City CA and Port San Luis CA, USA). A simple measure (coded green, yellow or red) of the current status of the network's ability to deliver accurate forecasts is proposed to flag the urgency of buoy repair.

  14. Shallow Water Optical Water Quality Buoy

    Science.gov (United States)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  15. Pacific Ocean buoy temperature date - TAO/TRITON database & National Buoy Data Center database

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pacific Ocean buoy temperature data. This dataset is associated with the following publication: Carbone, F., M. Landis, C.N. Gencarelli, A. Naccarato, F. Sprovieri,...

  16. Numerical study of hydrodynamic behavior and conversion efficiency of a two-buoy wave energy converter

    Science.gov (United States)

    Yang, Cen; Zhang, Yong-liang

    2018-04-01

    In this paper we propose a two-buoy wave energy converter composed of a heaving semi-submerged cylindrical buoy, a fixed submerged cylindrical buoy and a power take-off (PTO) system, and investigate the effect of the fixed submerged buoy on the hydrodynamics of the heaving semi-submerged buoy based on the three-dimensional potential theory. And the dynamic response of the semi-submerged buoy and the wave energy conversion efficiency of the converter are analyzed. The difference of the hydrodynamics and the wave energy conversion efficiency of a semi-submerged buoy converter with and without a fixed submerged buoy is discussed. It is revealed that the influence of the fixed submerged buoy on the exciting wave force, the added mass, the radiation damping coefficient and the wave energy conversion efficiency can be significant with a considerable variation, depending on the vertical distance between the heaving semi-submerged buoy and the fixed submerged buoy, the diameter ratio of the fixed submerged buoy to the heaving semi-submerged buoy and the water depth.

  17. Oceanographic measurements from the Texas Automated Buoy System (TABS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Texas Automated Buoy System contains daily oceanographic measurements from seven buoys off the Texas coast from Brownsville to Sabine. The Texas General Land...

  18. Development of drifting buoys

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.; Peshwe, V.B.; Tengali, S.

    transmeters. This paper discusses the design aspects and performance characteristics of these buoys presenting a small fraction of the considerable data set acquired. The requiremnts for further inclusion of certain sensors and hardware are described...

  19. IABP Drifting Buoy Pressure, Temperature, Position, and Interpolated Ice Velocity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The International Arctic Buoy Programme (IABP) maintains a network of drifting buoys to provide meteorological and oceanographic data for real-time operational...

  20. Design of a Low-cost Oil Spill Tracking Buoy

    Science.gov (United States)

    Zhao, Y.; Hu, X.; Yu, F.; Dong, S.; Chen, G.

    2017-12-01

    As the rapid development of oil exploitation and transportation, oil spill accidents, such as Prestige oil spill, Gulf of Mexico oil spill accident and so on, happened frequently in recent years which would result in long-term damage to the environment and human life. It would be helpful for rescue operation if we can locate the oil slick diffusion area in real time. Equipped with GNSS system, current tracking buoys(CTB), such as Lagrangian drifting buoy, Surface Velocity Program (SVP) drifter, iSLDMB (Iridium self locating datum marker buoy) and Argosphere buoy, have been used as oil tracking buoy in oil slick observation and as validation tools for oil spill simulation. However, surface wind could affect the movement of oil slick, which couldn't be reflected by CTB, thus the oil spill tracking performance is limited. Here, we proposed an novel oil spill tracking buoy (OSTB) which has a low cost of less than $140 and is equipped with Beidou positioning module and sails to track oil slick. Based on hydrodynamic equilibrium model and ocean dynamic analysis, the wind sails and water sails are designed to be adjustable according to different marine conditions to improve tracking efficiency. Quick release device is designed to assure easy deployment from air or ship. Sea experiment was carried out in Jiaozhou Bay, Northern China. OSTB, SVP, iSLDMB, Argosphere buoy and a piece of oil-simulated rubber sheet were deployed at the same time. Meanwhile, oil spill simulation model GNOME (general NOAA operational modeling environment) was configured with the wind and current field, which were collected by an unmanned surface vehicle (USV) mounted with acoustic Doppler current profilers (ADCP) and wind speed and direction sensors. Experimental results show that the OSTB has better relevance with rubber sheet and GNOME simulation results, which validate the oil tracking ability of OSTB. With low cost and easy deployment, OSTB provides an effective way for oil spill numerical

  1. A Floating Ocean Energy Conversion Device and Numerical Study on Buoy Shape and Performance

    Directory of Open Access Journals (Sweden)

    Ruiyin Song

    2016-05-01

    Full Text Available Wave and current energy can be harnessed in the East China Sea and South China Sea; however, both areas are subject to high frequencies of typhoon events. To improve the safety of the ocean energy conversion device, a Floating Ocean Energy Conversion Device (FOECD with a single mooring system is proposed, which can be towed to avoid severe ocean conditions or for regular maintenance. In this paper, the structure of the FOECD is introduced, and it includes a catamaran platform, an oscillating buoy part, a current turbine blade, hydraulic energy storage and an electrical generation part. The numerical study models the large catamaran platform as a single, large buoy, while the four floating buoys were modeled simply as small buoys. Theoretical models on wave energy power capture and efficiency were established. To improve the suitability of the buoy for use in the FOECD and its power harvesting capability, a numerical simulation of the four buoy geometries was undertaken. The shape profiles examined in this paper are cylindrical, turbinate (V-shaped and U-shaped cone with cylinder, and combined cylinder-hemisphere buoys. Simulation results reveal that the suitability of a turbinate buoy is the best of the four types. Further simulation models were carried out by adjusting the tip radius of the turbinate buoy. Three performance criteria including suitability, power harvesting capability and energy capture efficiency were analyzed. It reveals that the turbinate buoy has almost the same power harvesting capabilities and energy capture efficiency, while its suitability is far better than that of a cylindrical buoy.

  2. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    Science.gov (United States)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  3. A loading/unloading buoy; Laste/losseboeye

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Smedal, A.; Syvertsen, K.

    1994-10-10

    The invention relates to a buoy design for use in the offshore loading or unloading of crude oil in particular. The buoy comprises an outer buoyancy member arranged to be introduced and secured in a submerged downwardly open receiving space in a floating vessel, and a central member which is rotatably mounted in the outer member and is intended for anchoring to the sea bed and arranged for passage of medium between a transfer line which, in operation, is coupled to the lower end of the central member and a tube system on the vessel. The central member is provided with a lower extension body having an outer peripheral portion abutting on and essentially corresponding to the outer periphery of the adjacent end of the outer buoyancy member, and having a lower portion which is downwardly tapering from the outer peripheral portion. A number of fastening means for fastening of the upper ends of anchoring lines for anchoring of the buoy are fastened at intervals along the periphery of the outer peripheral portion of the extension body, and the extension body comprises at least one buoyancy chamber for buoyancy or ballast material. 6 figs.

  4. The November 2011 irruption of buoy barnacles Dosima fascicularis ...

    African Journals Online (AJOL)

    Buoy barnacles not uncommonly strand in the region attached to feathers, plastic litter and other small objects, but the 2011 irruption saw exceptional numbers of unusually large colonies (average 23.5 individuals; SD 18.5), most of ... Buoy barnacles were first observed at sea off the Cape Peninsula on 2 November 2011.

  5. An autonomous drifting buoy system for long term pCO2 observation

    Science.gov (United States)

    Nakano, Y.; Fujiki, T.; Wakita, M.; Azetsu-Scott, K.; Watanabe, S.

    2009-04-01

    Many studies have been carried out around the world to understand what happens to carbon dioxide (CO2) once it is emitted into the atmosphere, and how it relates to long-term climate change. However, the sea surface pCO2 observations on volunteer observation ships and research vessels concentrated in the North Atlantic and North Pacific. To assess the spatial and temporal variations of surface pCO2 in the global ocean, new automated pCO2 sensor which can be used in platform systems such as buoys or moorings is strongly desired. We have been developing the small drifting buoy system (diameter 250-340 mm, length 470 mm, weight 15 kg) for pCO2 measurement, with the support of the Japan EOS Promotion Program (JEPP), the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The objective is to provide simplified, automated measurements of pCO2 over all the world's oceans, an essential factor in understanding how the ocean responds to climate change. The measurement principle for the pCO2 sensor is based on spectrophotometry (e.g. Lefèvre et al., 1993; Degrandpre et al., 1995). The CO2 in the surrounding seawater equilibrates with the indicator solution across the gas permeable membranes. The equilibration process causes a change of pH in the indicator solution, which results in the change of optical absorbance. The pCO2 is calculated from the optical absorbance of the pH indicator solution equilibrated with CO2 in seawater through a gas permeable membrane. In our analytical system, we used an amorphous fluoropolymer tubing form of AF-2400 by DuPontTM for the gas permeable membrane due to its high gas permeability coefficients. The measurement system of the sensor consisted mainly of a LED light source, optical fibers, a CCD detector, and a downsized PC. The measured data were transmitted to the laboratory by satellite communication (Argos system). In the laboratory experiment, we obtained a high response time (less than 2 minutes) and a precision

  6. Design of Buoys for Mounting Wind Turbines at Exposed Sites

    Science.gov (United States)

    Erdoğan, Beytullah; Çelıkkol, Barbaros; Swift, Robinson

    2018-04-01

    In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire's Center of Ocean Renewable Energy testing site located off the Isles of Shoals, New Hampshire. The buoys are to be moored by a catenary chain system. To evaluate wave response, two Froude-scaled models were constructed, tested, and compared at the Ocean Engineering wave tank at the University of New Hampshire. These buoys have been implemented and compared with wave tank measurements of the spar displacement at a reference elevation 2.44 m above the mean water level.

  7. Evidence that grey seals (Halichoerus grypus use above-water vision to locate baited buoys

    Directory of Open Access Journals (Sweden)

    Arne Fjälling

    2007-01-01

    Full Text Available Fishing gear in the Baltic is often raided by grey seals (Halichoerus grypus. The seals remove the fish and damage the nets, or entangle themselves and drown. In order to develop ways of mitigating the seals-fisheries conflict, it is important to know exactly how the seals locate the fishing gear. A field experiment was conducted in order to clarify whether seals use their vision above water to do this. Bait (herring; Clupea harengus was attached to the anchor lines of buoys of the type that is commonly used to mark the position of fishing gear. In all, 643 buoys were set. Some of the buoys (210 were also fitted with camera traps. Weather data were collected from official weather stations nearby. Bait loss (mean 18% was significantly correlated with buoy size (P = 0.002 and wind speed (P = 0.04. There was a significant association between bait loss and seal observations near the buoys (P = 0.05. Five photos of grey seals were obtained from the camera traps. No fish-eating birds, such as cormorants or mergansers, were ever observed near the buoys or caught on camera. It was concluded that a main cause of missing bait was scavenging by grey seals, and that they did use above-water vision to locate the buoys. It was also concluded that wind strength (i.e. wave action contributed tothe bait loss. The camera trap buoys had a somewhat lower bait loss than the other buoys (P = 0.054, which was attributed to a scaring effect. Neither the number of seal observations nor the bait loss differed significantly between the 2 study areas in the experiment (P = 0.43 and P = 0.83, respectively. Bait loss was not affected by the buoy colour (red, white, or grey; P = 0.87. We suggest that the findings of this experiment could be put into practice in a seal-disturbed area by deploying a number of decoy buoys, or by hiding live buoys below the surface of the water. This would increase the cost of foraging for the seals, and hence discourage them from exploiting

  8. Numerical modelling of the HAB Energy Buoy: Stage 1

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    This report presents the results of the first stage of the project "Numerical modelling of the HAB Energy Buoy". The objectives of this stage are to develop a numerical model of the HAB Energy Buoy, a self-reacting wave energy device consisting of two heaving bodies, and to investigate a number...... and a summary of the main findings is presented. A numerical model of the HAB Energy Buoy has been developed in the frequency domain using two alternative formulations of the equations of motion. The model is capable of predicting the power capture, motion response, and power take-off loads of the device...... configuration are imposed to give a more realistic prediction of the power capture and help ensure a fair comparison. Recommendations with regard to the HAB design are finally suggested....

  9. Satellite-tracked drifting buoy observations in the south equatorial current in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Michael, G.S.

    two buoys moved north and the third moved south. Over the open sea regime the buoys moved with a speed of approximately 30 cm/s at an angle of about 35 degrees to the left of the wind. The overall tendencies seen in the buoy drift are similar to those...

  10. IPAB Antarctic Drifting Buoy Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The World Climate Research Programme (WCRP) International Programme for Antarctic Buoys (IPAB), through participating research organizations in various countries,...

  11. Rancang Bangun Instrumen Sistem Buoy Menggunakan A-Wsn Protokol Zigbee Untuk Pengamatan Ekosistem Pesisir (Development of Buoy System Instrument using A-WSN ZigBee Protocol for Coastal Ecosystem Monitoring

    Directory of Open Access Journals (Sweden)

    Acta Withamana

    2013-12-01

    Full Text Available Luasnya perairan dan lingkungan laut yang tidak bersahabat menimbulkan tantangan tersendiri untuk diobservasi. Aktivitas observasi secara konvensional di laut, yang menggunakan kapal sebagai wahana bergerak, membutuhkan biaya yang tinggi dan tidak efisien untuk memperoleh resolusi spasial dan temporal yang diinginkan. Buoy tertambat telah lama digunakan sebagai salah satu pilihan untuk aktivitas observasi laut. Namun ukuran yang besar dari rancangan buoy yang ada pada umumnya tidak cocok untuk pengamatan ekosistem pesisir. Perkembangan teknologi semikonduktor yang pesat melahirkan konsep wireless sensor network (WSN. Komunikasi protokol ZigBee memiliki kelebihan penggunaan energi yang efisien dan kemudahan pemasangan. Riset ini dilakukan untuk mengembangkan instrumen buoy tertambat dan menguji apakah WSN dapat diaplikasikan di wilayah pesisir. Buoy tertambat yang dikembangkan memiliki kinerja yang baik dan stabil sebagai wahana instrumen. Kinerja jaringan ZigBee menunjukan tingkat keberhasilan pengiriman data sebesar 100% pada uji coba statis. Menggunakan empat buah baterai NiMH, instrumen ini dapat bekerja selama kurang lebih 39 jam untuk coordinator dan router, serta 89 jam untuk end device. Pengujian di lapangan menunjukan hasil terburuk sebesar 84.94% keberhasilan pengiriman data pada E1, dan hasil terbaik sebesar 100% keberhasilan pengiriman data pada R1 dan E3. Data suhu permukaan laut yang diterima juga dapat menggambarkan sebaran suhu permukaan di Pulau Panggang. Hasil penelitian memberikan gambaran bahwa Instrumen Sistem Buoy Menggunakan A-Wsn Protokol Zigbee sangat berpotensi untuk digunakan dalam pengamatan ekosistem pesisir. Kata kunci: instrumen, buoy tertambat, ZigBee, suhu permukaan laut, observasi pesisir   Ocean observation has become a challenge due to its vast and rough condition. The conventional observation, for example using ship as a mobile platform, is very expensive and inefficient to obtain desired spatial and temporal

  12. United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat

    Science.gov (United States)

    Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.

    2012-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed

  13. Hardware design of a submerged buoy system based on electromagnetic inductive coupling

    Directory of Open Access Journals (Sweden)

    Song Dalei

    2016-01-01

    Full Text Available This paper mainly introduces the hardware design of a new type of ocean buoy for multi-scale marine dynamic process. The buoy system can collect a number of real-time marine environment data and then transmit all the data back to the landing site through wireless module. The authors mainly designed the hardware circuit of the buoy system, including data collection system, data communication system, data storage system. Due to the buoy system will complete the marine observation work continuously for at least a month, so we add the low power consumption function which can realize the intermittent work for the data collection system. This paper also introduces the electromagnetic induction coupling technology of underwater sensors, the sea surface communication network technology, etc. The system can also extends to the ecological regional anomaly monitoring and the early warning of disaster weather.

  14. Real-time and on-demand buoy observation system for tsunami and crustal displacement

    Science.gov (United States)

    Takahashi, N.; Imai, K.; Ishihara, Y.; Fukuda, T.; Ochi, H.; Suzuki, K.; Kido, M.; Ohta, Y.; Imano, M.; Hino, R.

    2017-12-01

    We develop real-time and on-demand buoy observation system for tsunami and crustal displacement. It is indispensable for observation of crustal displacement to understand changes of stress field related to future large earthquakes. The current status of the observation is carried out by using a vessel with an interval of a few times per a year. When a large earthquake occurs, however, we need dense or on-demand observation of the crustal displacement to grasp nature of the slow slip after the rupture. Therefore, we constructed buoy system with a buoy station, wire-end station, seafloor unit and acoustic transponders for crustal displacement, and we installed a pressure sensor on the seafloor unit and GNSS system on the buoy in addition to measurement of e distance between the buoy and the seafloor acoustic transponders. Tsunami is evaluated using GNSS data and pressure data sent from seafloor. Observation error of the GNSS is about 10 cm. The crustal displacement is estimated using pressure sensor for vertical and acoustic measurement for horizontal. Using current slack ratio of 1.58, the observation error for the measurement of the crustal displacement is about 10 cm. We repeated three times sea trials and confirmed the data acquisition with high data quality, mooring without dredging anchor in the strong sea current with a speed of 5.5 knots. Current issues to be resolved we face are removing noises on the acoustic data transmission, data transmission between the buoy and wire-end stations, electrical consumption on the buoy station and large observation error on the crustal displacement due to large slack ratio. We consider the change of the acoustic transmission for pressure data, replace of a GNSS data logger with large electrical consumption, and reduce of the slack ratio, and search method to reduce resistance of the buoy on the sea water. In this presentation, we introduce the current status of the technical development and tsunami waveforms recorded on our

  15. Power Production Analysis of the OE Buoy WEC for the CORES Project

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report describes the analysis performed on the OE Buoy for the CORES project by the wave energy group at Aalborg University, Denmark. OE Buoy is a type of Oscillating Water Column (OWC) wave energy converter as part of the CORES project. This type of device is one of the most developed...... to extract energy from the ocean (1). Typically, a Wells turbine is used for the Power Take Off (PTO) for OWCs. The Wells turbine has the advantage that it is self-rectifying – with the ability to operate with either direction of airflow, which changes during each cycle of the wave. This type of turbine...... which a total of 39 hours of power production data was collected. A data acquisition system was used to sample the sensors on board and the generator shaft power time-series data was used in the analysis here. A wave-rider buoy, located at the site of OE Buoy and operated by the Marine Institute Ireland...

  16. FOULING ORGANISMS OF BUOYS WITHIN MAKHACHKALA SEAPORT

    Directory of Open Access Journals (Sweden)

    C. N. Imachova

    2011-01-01

    Full Text Available It is investigated biofouling buoys within Makhachkala seaport. Seasonal dynamics of development of community, structure species and trophic structure is revealed. It is established vertical zonality in distribution of fouling.

  17. Rip current monitoring using GPS buoy system

    Science.gov (United States)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  18. Analysis of Floating Buoy of a Wave Power Generating Jack-Up Platform Haiyuan 1

    Directory of Open Access Journals (Sweden)

    Date Li

    2013-01-01

    Full Text Available The paper focuses on the performance of floating buoys of a wave power generating jack-up platform called Haiyuan 1, in order to work out the optimum designed draft and hydraulic pressure. The performance of the buoy, especially its delivered power, is an important issue in designing oscillating buoy wave energy converter. In this case, major factors affect the performance including incident wave, designed draft, and hydraulic pressure on the buoy. To find out the relationship among design draft, hydraulic pressure, and delivered power, the key point is to precisely estimate wave induced motion of the buoy. Three-dimensional theory and time domain method based on potential theory were adopted in the paper. Unlike ship and other floating structures, motion of wave energy converter (WEC buoy in wave will be weakened because of energy take-off, which will cause significant draft changing with time. Thus, draft changing should be taken into consideration as well. In addition, green water problem occurs more frequently than that in ship and other floating structures and also might the reduce delivered power. Therefore, green water problem will also be taken into account when choosing the optimum designed draft and hydraulic pressure. The calculation indicates that the optimum designed draft is 0.935 m, while the optimum designed hydraulic pressure is 30 kN.

  19. US program in anchored data buoy and the other fixed observation platforms

    Science.gov (United States)

    McCall, J. C.

    The NOAA Data Buoy Office (NOBO) develops and operates moored buoys in all U.S. coastal and offshore waters from New England to Hawaii (including the Great Lakes) to provide real-time environmental measurements in data-sparse areas for the National Weather Service and other public and private users. The NOBO also has a program for development, deployment, and operation of drifting buoys, which provide environmental measurements in the South Atlantic and Pacific from Chili to Australia and in the Northern Hemisphere. In addition, NOBO develops, deploys, and operates special purpose environmental measuring systems for other government agencies, particularly for petroleum-related purposes, and has an engineering development effort in procuring new and improved sensor and communications systems.

  20. Meteorological buoy measurements in the Iceland Sea, 2007-2009

    Science.gov (United States)

    Nína Petersen, Guðrún

    2017-10-01

    The Icelandic Meteorological Office (IMO) conducted meteorological buoy measurements in the central Iceland Sea in the time period 2007-2009, specifically in the northern Dreki area on the southern segment of the Jan Mayen Ridge. Due to difficulties in deployment and operations, in situ measurements in this region are sparse. Here the buoy, deployment and measurements are described with the aim of giving a future user of the data set information that is as comprehensive as possible. The data set has been quality-checked, suspect data removed and the data set made publicly available from PANGAEA Data Publisher (PANGAEA.876206" target="_blank">https://doi.org/10.1594/PANGAEA.876206).

  1. Analytical Study on an Oscillating Buoy Wave Energy Converter Integrated into a Fixed Box-Type Breakwater

    Directory of Open Access Journals (Sweden)

    Xuanlie Zhao

    2017-01-01

    Full Text Available An oscillating buoy wave energy converter (WEC integrated to an existing box-type breakwater is introduced in this study. The buoy is installed on the existing breakwater and designed to be much smaller than the breakwater in scale, aiming to reduce the construction cost of the WEC. The oscillating buoy works as a heave-type WEC in front of the breakwater towards the incident waves. A power take-off (PTO system is installed on the topside of the breakwater to harvest the kinetic energy (in heave mode of the floating buoy. The hydrodynamic performance of this system is studied analytically based on linear potential-flow theory. Effects of the geometrical parameters on the reflection and transmission coefficients and the capture width ratio (CWR of the system are investigated. Results show that the maximum efficiency of the energy extraction can reach 80% or even higher. Compared with the isolated box-type breakwater, the reflection coefficient can be effectively decreased by using this oscillating buoy WEC, with unchanged transmission coefficient. Thus, the possibility of capturing the wave energy with the oscillating buoy WEC integrated into breakwaters is shown.

  2. Oceansat-2 and RAMA buoy winds: A comparison

    Indian Academy of Sciences (India)

    rate Numerical Weather Prediction (NWP) model analysis over the data sparse oceanic region. Sea ... Among the three tropical oceans, Pacific, Atlantic ..... which obviously causes bias. ... side, and will increase mean buoy winds relative.

  3. On theory and simulation of heaving-buoy wave-energy converters with control

    Energy Technology Data Exchange (ETDEWEB)

    Eidsmoen, H.

    1995-12-01

    Heaving-buoy wave-energy converters with control were studied. The buoy is small compared to the wavelength. The resonance bandwidth is then narrow and the energy conversion in irregular waves can be significantly increased if the oscillatory motion of the device can be actively controlled, and the power output from the converter will vary less with time than the wave power transport. A system of two concentric cylinders of the same radius, oscillating in heave only, is analysed in the frequency-domain. The mathematical model can be used to study a tight-moored buoy, as well as a buoy reacting against a submerged body. The knowledge of the frequency-domain hydrodynamic parameters is used to develop frequency-domain and time-domain mathematical models of heaving-buoy wave energy converters. The main emphasis is on using control to maximize the energy production and to protect the machinery of the wave-energy converter in very large waves. Three different methods are used to study control. (1) In the frequency-domain explicit analytical expressions for the optimum oscillation are found, assuming a continuous sinusoidal control force, and from these expressions the optimum time-domain oscillation can be determined. (2) The second method uses optimal control theory, using a control variable as the instrument for the optimisation. Unlike the first method, this method can include non-linearities. But this method gives numerical time series for the state variables and the control variable rather than analytical expressions for the optimum oscillation. (3) The third method is time-domain simulation. Non-linear forces are included, but the method only gives the response of the system to a given incident wave. How the different methods can be used to develop real-time control is discussed. Simulations are performed for a tight-moored heaving-buoy converter with a high-pressure hydraulic system for energy production and motion control. 147 refs., 38 figs., 22 tabs.

  4. An improvement of the GPS buoy system for detecting tsunami at far offshore

    Science.gov (United States)

    Kato, T.; Terada, Y.; Nagai, T.; Kawaguchi, K.; Koshimura, S.; Matsushita, Y.

    2012-12-01

    We have developed a GPS buoy system for detecting a tsunami before its arrival at coasts and thereby mitigating tsunami disaster. The system was first deployed in 1997 for a short period in the Sagami bay, south of Tokyo, for basic experiments, and then deployed off Ofunato city, northeastern part of Japan, for the period 2001-2004. The system was then established at about 13km south of Cape Muroto, southwestern part of Japan, since 2004. Five tsunamis of about 10cm have been observed in these systems, including 2001 Peru earthquake (Mw8.3), 2003 Tokachi-oki earthquake (Mw8.3), 2004 Off Kii Peninsula earthquake (Mw7.4), 2010 Chile earthquake (Mw8.8), and 2011 Tohoku-Oki earthquake (Mw9.0). These experiments clearly showed that GPS buoy is capable of detecting tsunami with a few centimeter accuracy and can be monitored in near real time by applying an appropriate filter, real-time data transmission using radio and dissemination of obtained records of sea surface height changes through internet. Considering that the system is a powerful tool to monitor sea surface variations due to wind as well as tsunami, the Ministry of Land, Infrastructure, Transport and Tourism implemented the system in a part of the Nationwide Ocean Wave information network for Ports and HArbourS (NOWPHAS) system and deployed the system at 15 sites along the coasts around the Japanese Islands. The system detected the tsunami due to the 11th March 2011 Tohoku-Oki earthquake with higher than 6m of tsunami height at the site Off South Iwate (Kamaishi). The Japan Meteorological Agency that was monitoring the record updated the level of the tsunami warning to the greatest value due to the result. Currently, the GPS buoy system uses a RTK-GPS which requires a land base for obtaining precise location of the buoy by a baseline analysis. This algorithm limits the distance of the buoy to, at most, 20km from the coast as the accuracy of positioning gets much worse as the baseline distance becomes longer

  5. A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2014-12-01

    Full Text Available To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

  6. Control strategies to optimise power output in heave buoy energy convertors

    International Nuclear Information System (INIS)

    Abu Zarim, M A U A; Sharip, R M

    2013-01-01

    Wave energy converter (WEC) designs are always discussed in order to obtain an optimum design to generate the power from the wave. Output power from wave energy converter can be improved by controlling the oscillation in order to acquire the interaction between the WEC and the incident wave.The purpose of this research is to study the heave buoys in the interest to generate an optimum power output by optimising the phase control and amplitude in order to maximise the active power. In line with the real aims of this study which investigate the theory and function and hence optimise the power generation of heave buoys as renewable energy sources, the condition that influence the heave buoy must be understand in which to propose the control strategies that can be use to control parameters to obtain optimum power output. However, this research is in an early stage, and further analysis and technical development is require

  7. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  8. Buoy observation for typhoon in southeast of Taiwan during summers of 2015 and 2016

    Science.gov (United States)

    Hsieh, C. Y.; Yang, Y. J.; Chang, M. H.; Chang, H. I.; Jan, S.; Wei, C. L.

    2016-12-01

    The western North Pacific is the most active area for the typhoon in the world, and typhoon caused disasters in this area. The marine observations are very important for the typhoon prediction. National Taiwan University (NTU) was developed a real-time data buoy system for typhoon observation. This buoy not only collected meteorological data, but also measured the temperature and salinity profiles of ocean's upper 500 m. The buoys, NTU1 and NTU2, were moored about 375 km and 175 km, respectively, from the southernmost tip of Taiwan. In summer of 2015, NTU1 buoy equipped with temperature and humidity probes, wind sensor, pyranometer, barometer, conductivity-temperature-depth (CTD) recorders, and temperature-pressure recorders. In summer of 2016, NTU1 and NTU2 buoys installed more instruments, such as rain gauge, net radiometer, and current meter, etc. During the observation period, there were three typhoons (Chan-hom, Soudler, and Goni) in 2015 and one typhoon (Nepartak) in 2016 approached buoy. Goni passed south and west side of NTU1 and the air pressure dropped around 25 hPa. Nepartak passed north side of NTU1 and south side of NTU2. The minimum distance between center of typhoon and NTU1 and NTU2 were about 11.48 km and 4.85 km, respectively. The NTU2 buoy recorded a maximum wind gust of 44 m/s, thickness of mixed layer increased to 120 m, and sea-surface temperature dropped 3 °C. In addition, the typhoon induced the near inertial internal motion for a couple of days. Applied the in-situ data to derive the net heat flux and its variations were from 600 W/m2 to -1000W/m2 during typhoon period. It indicate that the ocean provide energy to typhoon around this area. Moreover, the sum of sensible and latent heat flux calculated from observation data was 4.5 times than satellite-based products.

  9. Meteorological buoy measurements in the Iceland Sea, 2007–2009

    Directory of Open Access Journals (Sweden)

    G. N. Petersen

    2017-10-01

    Full Text Available The Icelandic Meteorological Office (IMO conducted meteorological buoy measurements in the central Iceland Sea in the time period 2007–2009, specifically in the northern Dreki area on the southern segment of the Jan Mayen Ridge. Due to difficulties in deployment and operations, in situ measurements in this region are sparse. Here the buoy, deployment and measurements are described with the aim of giving a future user of the data set information that is as comprehensive as possible. The data set has been quality-checked, suspect data removed and the data set made publicly available from PANGAEA Data Publisher (https://doi.org/10.1594/PANGAEA.876206.

  10. High frequency monitoring of the coastal marine environment using the MAREL buoy.

    Science.gov (United States)

    Blain, S; Guillou, J; Tréguer, P; Woerther, P; Delauney, L; Follenfant, E; Gontier, O; Hamon, M; Leilde, B; Masson, A; Tartu, C; Vuillemin, R

    2004-06-01

    The MAREL Iroise data buoy provides physico-chemical measurements acquired in surface marine water in continuous and autonomous mode. The water is pumped 1.5 m from below the surface through a sampling pipe and flows through the measuring cell located in the floating structure. Technological innovations implemented inside the measuring cell atop the buoy allow a continuous cleaning of the sensor, while injection of chloride ions into the circuit prevents biological fouling. Specific sensors for temperature, salinity, oxygen and fluorescence investigated in this paper have been evaluated to guarantee measurement precision over a 3 month period. A bi-directional link under Internet TCP-IP protocols is used for data, alarms and remote-control transmissions with the land-based data centre. Herein, we present a 29 month record for 4 parameters measured using a MAREL buoy moored in a coastal environment (Iroise Sea, Brest, France). The accuracy of the data provided by the buoy is assessed by comparison with measurements of sea water weekly sampled at the same site as part of SOMLIT (Service d'Observation du Milieu LIToral), the French network for monitoring of the coastal environment. Some particular events (impact of intensive fresh water discharges, dynamics of a fast phytoplankton bloom) are also presented, demonstrating the worth of monitoring a highly variable environment with a high frequency continuous reliable system.

  11. An overview of a moored ocean data buoy programme

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.

    This paper addresses the rationale. history, strategy and management techniques used in the developmcnt of NIO oceanographic data buoy programme. The system is used for short term as well as long term oceanographic observations. The technical...

  12. Drifting buoy data observed during 1992 and assembled by the Responsible National Oceanographic Data Center (RNODC) for Drifting Buoy Data (NODC Accession 9300091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and meteorological data were collected from drifting buoys from a World-Wide distribution from 01 January 1992 to 31 December 1992. Data were processed by...

  13. 33 CFR 149.321 - How many ring life buoys must be on each deepwater port?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How many ring life buoys must be on each deepwater port? 149.321 Section 149.321 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Lifesaving Equipment Manned Deepwater Port Requirements § 149.321 How many ring life buoys must be...

  14. Fatigue Life Prediction of the Keel Structure of a Tsunami Buoy Using Spectral Fatigue Analysis Method

    Directory of Open Access Journals (Sweden)

    Angga Yustiawan

    2013-09-01

    Full Text Available One  of  the  components  of  the  Indonesia  Tsunami  Early  Warning  System  (InaTEWS  is  a  surface  buoy.  The  surface buoy  is  exposed  to  dynamic  and  random  loadings  while  operating  at  sea,  particularly  due  to  waves.  Because  of  the cyclic  nature  of  the  wave  load,  this  may  result  in  a fatigue  damage  of  the  keel  structure,  which  connects  the  mooring line  with  the  buoy  hull.  The  operating  location  of  the buoy  is  off  the  Java  South  Coast  at  the  coordinate (10.3998  S, 108.3417  E. To  determine  the  stress  transfer  function, model  tests  were  performed,  measuring  the  buoy  motions  and the stress at the mooring line. A spectral fatigue analysis method is applied for the purpose of estimating the fatigue life of the keel structure. Utilizing the  model-test results, the S-N curve obtained in a previous study and the  wave data at the buoy location, it is found that the fatigue life of the keel structure is approximately 11 years.

  15. UpTempO Buoys for Understanding and Prediction

    Science.gov (United States)

    2015-09-30

    warming and fall cooling, and interannually as sea ice retreats and the warming season lengthens . The effort is a contribution to the multi-investigator...trajectory through late September, and time series of buoy thermistors (upper) and the 4 m depth salinity sensor time series (lower). Various stages in

  16. MONITORING HIGH-FREQUENCY OCEAN SIGNALS USING LOW-COST GNSS/IMU BUOYS

    Directory of Open Access Journals (Sweden)

    Y.-L. Huang

    2016-06-01

    Full Text Available In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS or Precise Point Positioning (PPP solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  17. Determination of wave direction using an orbital following buoy

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Almeida, A.M.; Vaithiyanathan, R.; Vethamony, P.

    Software has been developed in FORTRAN language using a personal computer for the determination of wave direction from time series measurements of heave, pitch and roll of an orbital following buoy. The method of digital band pass filtering describ...

  18. Review of 5kW wave energy LOPF buoy design study and test

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    The purpose of this project was to document the mechanical power production against a target power curve of a 5kW grid connected wave energy buoy in Nissum Bredning at Helligsø. This test site is typically used for open sea testing of scale 1:10 devices in irregular waves. In order to better adapt...... to the moderate wave height, the buoy was down sized by a factor of 3 and a new lower target power curve for the buoy was agreed to. Downsizing the project also had the advantage that it is more cost effective and fast to experiment with small wave energy devices than with big devices, at an early development...... stage, in line with the TRL and four phases development (proof of concept, design and feasibility study, field trials and half or full‐scale trials) promoted by AAU and supported by the marine renewable energy sector. To complement this, the IEC 114 standards define 3 stages of testing (1=small scale...

  19. Method and system for connecting a loading buoy to a floating vessel. Fremgangsmte og system for tilkopling av en lastebye til et flytende farty

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Kleppest, H.; Smedal, A.

    1994-07-04

    The invention deals with a method and a system for connecting a submerged loading/unloading buoy to a submerged receiving space in a floating vessel, for transfer of a medium, especially oil, to or from the vessel, wherein the buoy is anchored to the sea bed and is connected to a transfer line for medium. According to one variant of the method, a sink line is lowered from the vessel through the receiving space, an auxiliary buoy being attached to the sink line end, possible via an additional line, and the auxiliary buoy being caused to come to the water surface. A suitably marked pick-up line, which is connected to the buoy, is taken up and connected to the sink line, whereafter the vessel by a positioning means is moved into position above the submerged buoy and said lines are pulled up through the receiving space, so that the buoy is hoisted up and moved to a locking position therein, whereafter the buoy is locked in place in the receiving space. The vessel is provided with a hoisting means to hoist up said lines and the buoy, and also with a service shaft connecting the receiving space to the deck of the vessel. 9 figs.

  20. Drifting buoy data observed during 1985 through 1989 and assembled by the Responsible National Oceanographic Data Center (RNODC) for Drifting Buoy Data (NODC Accession 9100057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and meteorological data were collected from drifting buoys from a World-Wide distribution from 2 January 1985 to 31 December 1989. Data were processed by...

  1. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    Science.gov (United States)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  2. Dynamic analysis of propulsion mechanism directly driven by wave energy for marine mobile buoy

    Science.gov (United States)

    Yu, Zhenjiang; Zheng, Zhongqiang; Yang, Xiaoguang; Chang, Zongyu

    2016-07-01

    Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science. Great progress has been made, however the technology in this area is far from maturity in theory and faced with many difficulties in application. A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB, especially with consideration of hydrodynamic force. The principle of wave-driven propulsion mechanism is briefly introduced. To set a theory foundation for study on the MMB, a dynamic model of the propulsion mechanism of the MMB is obtained. The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations. A simplified form of the motion equations is reached by omitting terms with high order small values. The relationship among the heave motion of the buoy, stiffness of the elastic components, and the forward speed can be obtained by using these simplified equations. The dynamic analysis show the following: The angle of displacement of foil is fairly small with the biggest value around 0.3 rad; The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy; The relationship among heaven motion, stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle, therefore, the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant. The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.

  3. System for Monitoring, Determining, and Reporting Directional Spectra of Ocean Surface Waves in Near Realtime from a Moored Buoy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A moored buoy floating at the ocean surface and anchored to the seafloor precisely measures acceleration, pitch, roll, and Earth's magnetic flux field of the buoy...

  4. Response of surface buoy moorings in steady and wave flows

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; SanilKumar, V.

    A numerical model has been developed to evaluate the dynamics of surface buoy mooring systems under wave and current loading. System tension response and variation of tension in the mooring line at various depths have been evaluated for deep water...

  5. Oceanographic temperature and salinity measurements collected using drifting buoys in the Arctic Ocean from 2003 to 2006 (NODC Accession 0014672)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic temperature and salinity measurements collected using drifting buoys in the Arctic Ocean. Data from JAMSTEC drifting buoys which were deployed both as...

  6. Modeling long period swell in Southern California: Practical boundary conditions from buoy observations and global wave model predictions

    Science.gov (United States)

    Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.

    2016-02-01

    Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive models of beach erosion, coastal flooding, and alongshore transport of sediment, biota and pollutants. On highly sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and nearshore model prediction error is often dominated by uncertainty in offshore boundary conditions. Offshore islands and shoals, and coastline curvature, create complex sheltering patterns over the 250km span of southern California (SC) shoreline. Here, regional wave model skill in SC was compared for different offshore boundary conditions created using offshore buoy observations and global wave model hindcasts (National Oceanographic and Atmospheric Administration Wave Watch 3, WW3). Spectral ray-tracing methods were used to transform incident offshore swell (0.04-0.09Hz) energy at high directional resolution (1-deg). Model skill is assessed for predictions (wave height, direction, and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Model skill using buoy-derived boundary conditions is higher than with WW3-derived boundary conditions. Buoy-driven nearshore model results are similar with various assumptions about the true offshore directional distribution (maximum entropy, Bayesian direct, and 2nd derivative smoothness). Two methods combining offshore buoy observations with WW3 predictions in the offshore boundary condition did not improve nearshore skill above buoy-only methods. A case example at Oceanside harbor shows strong sensitivity of alongshore sediment transport predictions to different offshore boundary conditions. Despite this uncertainty in alongshore transport magnitude, alongshore gradients in transport (e.g. the location of model accretion and erosion zones) are determined by the local bathymetry, and are similar for all predictions.

  7. Worldwide Buoy Technology Survey. Volume 1. Report

    Science.gov (United States)

    1991-02-01

    1522.2.9.3 The Remearch Instituite Netherlands (3tARIN) 155 2.2.9.4 Marine Analytics .. .. .. .. L.2.9.5 D&"a Sipyards . 157 2.2.10 Norway 2 .2-1.1 ~Ticn Plat...dependents who are in financial distress and a deep sea pilotage authority. It is not a governmental organization but it was created by an act of...hoisting power (t) 15.0 15.0 15.0 15.0 f FIGURE 2-35 JAPAN’S BUOY jI 91 objectives, financial cutbacks, etc. which is impacting their services. Among

  8. A locking mechanism for securing a loading buoy to a vessel. Lsemekanisme for fastgjring av en lastebye til et farty

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Smedal, A.

    1994-07-04

    The invention relates to a locking mechanism for securing a loading/unloading buoy on a vessel. The buoy is of the type to be introduced into a submerged downwardly open receiving space in the vessel, and to be fastened in a releasable manner in the receiving space. The mechanism comprises hydraulically actuated locking elements, mounted about horizontal axes at the sides of the receiving space, to pivot between the locking and releasing positions, the buoy having a peripheral collar having a downwards facing abutment edge for engagement with the locking elements in the locking position thereof. 6 figs.

  9. ASSIMILATION OF REAL-TIME DEEP SEA BUOY DATA FOR TSUNAMI FORECASTING ALONG THAILAND’S ANDAMAN COASTLINE

    Directory of Open Access Journals (Sweden)

    Seree Supharatid

    2008-01-01

    Full Text Available The occurrence of 2004 Indian Ocean tsunami enhanced the necessity for a tsunami early warning system for countries bordering the Indian Ocean, including Thailand. This paper describes the assimilation of real-time deep sea buoy data for tsunami forecasting along Thailand’s Andaman coastline. Firstly, the numerical simulation (by the linear and non-linear shallow water equations was carried out for hypothetical cases of tsunamigenic earthquakes with epicenters located in the Andaman micro plate. Outputs of the numerical model are tsunami arrival times and the maximum wave height that can be expected at 58 selected communities along Thailand Andaman coastline and two locations of DART buoys in the Indian Ocean. Secondly, a “neural” network model (GRNN was developed to access the data from the numerical computations for subsequent construction of a tsunami database that can be displayed on a web-based system. This database can be updated with the integration from two DART buoys and from several GRNN models.

  10. PacIOOS Water Quality Buoy AW (WQB-AW): Ala Wai, Oahu, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  11. PacIOOS Water Quality Buoy KN (WQB-KN): Kilo Nalu, Oahu, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  12. Meteorological, oceanographic, and buoy data from JAMSTEC from five drifting buoys, named J-CAD (JAMSTEC Compact Arctic Drifter) in the Arctic Ocean from 2000 to 2003 (NODC Accession 0002201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1999, JAMSTEC and MetOcean Data System Ltd. developed a new drifting buoy, named J-CAD (JAMSTEC Compact Arctic Drifter), to conduct long-term observations in the...

  13. 33 CFR 165.812 - Security Zones; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker 96.0, New Orleans...

    Science.gov (United States)

    2010-07-01

    ... River, Southwest Pass Sea Buoy to Mile Marker 96.0, New Orleans, LA. 165.812 Section 165.812 Navigation..., Southwest Pass Sea Buoy to Mile Marker 96.0, New Orleans, LA. (a) Location. Within the Lower Mississippi... Lower Mississippi River mile marker 96.0 in New Orleans, Louisiana. These moving security zones...

  14. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    Science.gov (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  15. NODC Standard Format Drifting Buoy (F156) Data (1975-1994) (NODC Accession 0014200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data type contains time series ocean circulation data determined by tracking the movement of drifting buoys, drogues or other instrumented devices. Movement is...

  16. Drifting and moored buoy data observed during 2015 and assembled by the Global Data Assembly Center for Drifting Buoy Data (formerly Responsible National Oceanographic Data Center (RNODC)), Canada (NCEI Accession 0156004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Buoy data is available in real time to platform operators via telecommunications providers and distributed on the Global Telecommunications System (GTS) of the World...

  17. Comparison of heaving buoy and oscillating flap wave energy converters

    Science.gov (United States)

    Abu Bakar, Mohd Aftar; Green, David A.; Metcalfe, Andrew V.; Najafian, G.

    2013-04-01

    Waves offer an attractive source of renewable energy, with relatively low environmental impact, for communities reasonably close to the sea. Two types of simple wave energy converters (WEC), the heaving buoy WEC and the oscillating flap WEC, are studied. Both WECs are considered as simple energy converters because they can be modelled, to a first approximation, as single degree of freedom linear dynamic systems. In this study, we estimate the response of both WECs to typical wave inputs; wave height for the buoy and corresponding wave surge for the flap, using spectral methods. A nonlinear model of the oscillating flap WEC that includes the drag force, modelled by the Morison equation is also considered. The response to a surge input is estimated by discrete time simulation (DTS), using central difference approximations to derivatives. This is compared with the response of the linear model obtained by DTS and also validated using the spectral method. Bendat's nonlinear system identification (BNLSI) technique was used to analyze the nonlinear dynamic system since the spectral analysis was only suitable for linear dynamic system. The effects of including the nonlinear term are quantified.

  18. PacIOOS Water Quality Buoy 03 (WQB-03): Kiholo Bay, Big Island, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  19. PacIOOS Water Quality Buoy 04 (WQB-04): Hilo Bay, Big Island, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  20. Long-Term Observations of Atmospheric CO2, O3 and BrO over the Transitioning Arctic Ocean Pack-ice: The O-Buoy Chemical Network

    Science.gov (United States)

    Matrai, P.

    2016-02-01

    Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).

  1. A system for rotatably mounting a vessel to a loading buoy. System for dreibar tilkopling av et flytende farty til en lastebye

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Smedal, A.; Syvertsen, K.

    1994-07-04

    The invention relates to a system for rotatable mounting of a floating vessel to a submerged loading/unloading buoy which is anchored to the sea bed. The buoy is adapted to be introduced into and fastened in a releasable manner in a submerged downwardly open receiving space in the vessel, and is during operation connected to at least one transfer line and forming a transfer connection between this line and a tube system on the vessel. The buoy comprises an outer member which is arranged to be rigidly fastened in the receiving space, and a central inner member which is rotatably mounted in the outer member, so that the vessel is able to turn about the central member when the buoy is fastened in the receiving space. Further, the upper end of the central member is connected to the tube system of the vessel through a swivel means and through at least one flexible joint means respectively. 3 figs.

  2. Downwelling radiation at the sea surface in the central Mediterranean: one year of shortwave and longwave irradiance measurements on the Lampedusa buoy

    Science.gov (United States)

    di Sarra, Alcide; Bommarito, Carlo; Anello, Fabrizio; Di Iorio, Tatiana; Meloni, Daniela; Monteleone, Francesco; Pace, Giandomenico; Piacentino, Salvatore; Sferlazzo, Damiano

    2017-04-01

    An oceanographic buoy has been developed and deployed in August 2015 about 3.3 miles South West of the island of Lampedusa, at 35.49°N, 12.47°E, in the central Mediterranean Sea. The buoy was developed within the Italian RITMARE flagship project, and contributes to the Italian fixed-point oceanographic observation network. The buoy is an elastic beacon type and is intended to study air-sea interactions, propagation of radiation underwater, and oceanographic properties. The buoy measurements complement the atmospheric observations carried out at the long-term Station for Climate Observations on the island of Lampedusa (www.lampedusa.enea.it; 35.52°N, 12.63°E), which is located about 15 km E-NE of the buoy. Underwater instruments and part of the atmospheric sensors are presently being installed on the buoy. Measurements of downwelling shortwave, SW, and longwave, LW, irradiance, have been made since September 2015 with a Kipp and Zonen CMP21 pyranometer and a Kipp and Zonen CGR4 pyrgeometer, respectively. The radiometers are mounted on a small platform at about 7 m above sea level, on an arm protruding southward of the buoy. High time resolution data, at 1 Hz, have been acquired since December 2015, together with the sensors' attitude. Data from the period December 2015-December 2016 are analyzed and compared with measurements made on land at the Station for Climate Observations at 50 m above mean sea level. This study aims at deriving high quality determinations of the downwelling radiation over sea in the central Mediterranean. The following aspects will be discussed: - representativeness of time averaging of irradiance measurements over moving platforms; - comparison of downwelling irradiance measurements made over land and over ocean, and identification of possible correction strategies to infer irradiances over the ocean from close by measurements made over land; - influence of dome cleaning on the quality of measurements; - envisaging possible corrections

  3. Buoy and Generator Interaction with Ocean Waves: Studies of a Wave Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Lindroth, Simon

    2011-07-01

    On March 13th, 2006, the Div. of Electricity at Uppsala Univ. deployed its first wave energy converter, L1, in the ocean southwest of Lysekil. L1 consisted of a buoy at the surface, connected through a line to a linear generator on the seabed. Since the deployment, continuous investigations of how L1 works in the waves have been conducted, and several additional wave energy converters have been deployed. This thesis is based on ten publications, which focus on different aspects of the interaction between wave, buoy, and generator. In order to evaluate different measurement systems, the motion of the buoy was measured optically and using accelerometers, and compared to measurements of the motion of the movable part of the generator - the translator. These measurements were found to correlate well. Simulations of buoy and translator motion were found to match the measured values. The variation of performance of L1 with changing water levels, wave heights, and spectral shapes was also investigated. Performance is here defined as the ratio of absorbed power to incoming power. It was found that the performance decreases for large wave heights. This is in accordance with the theoretical predictions, since the area for which the stator and the translator overlap decreases for large translator motions. Shifting water levels were predicted to have the same effect, but this could not be seen as clearly. The width of the wave energy spectrum has been proposed by some as a factor that also affects the performance of a wave energy converter, for a set wave height and period. Therefore the relation between performance and several different parameters for spectral width was investigated. It was found that some of the parameters were in fact correlated to performance, but that the correlation was not very strong. As a background on ocean measurements in wave energy, a thorough literature review was conducted. It turns out that the Lysekil project is one of quite few projects that

  4. Oceanographic Multisensor Buoy Based on Low Cost Sensors for Posidonia Meadows Monitoring in Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sandra Sendra

    2015-01-01

    Full Text Available There are some underwater areas with high ecological interest that should be monitored. Posidonia and seagrasses exert considerable work in protecting the coastline from erosion. In these areas, many animals and organisms live and find the grassland food and the protection against predators. It is considered a bioindicator of the quality of coastal marine waters. It is important to monitor them and maintain these ecological communities as clean as possible. In this paper, we present an oceanographic buoy for Posidonia meadows monitoring. It is based on a set of low cost sensors which are able to collect data from water such as salinity, temperature, and turbidity and from the weather as temperature, relative humidity, and rainfall, among others. The system is mounted in a buoy which keeps it isolated to possible oxidation problems. Data gathered are processed using a microcontroller. Finally the buoy is connected with a base station placed on the mainland through a wireless connection using a FlyPort module. The network performance is checked in order to ensure that no delays will be generated on the data transmission. This proposal could be used to monitor other areas with special ecological interest and for monitoring and supervising aquaculture activities.

  5. Quantifying Electromagnetic Wave Propagation Environment Using Measurements From A Small Buoy

    Science.gov (United States)

    2017-06-01

    ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A SMALL BUOY by Andrew E. Sweeney June 2017 Thesis Advisor: Qing Wang...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE QUANTIFYING ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A...the Coupled Air Sea Processes and Electromagnetic (EM) ducting Research (CASPER), to understand air-sea interaction processes and their representation

  6. Buoy observations of the influence of swell on wind waves in the open ocean

    Energy Technology Data Exchange (ETDEWEB)

    Violante-Carvalho, N.; Robinson, I.S. [University of Southampton (United Kingdom). Oceanography Centre; Ocampo-Torres, F.J. [CICESE, Ensenada (Mexico). Dpto. de Oceanografia Fisica

    2004-04-01

    The influence of longer (swell) on shorter, wind sea waves is examined using an extensive database of directional buoy measurements obtained from a heave-pitch-roll buoy moored in deep water in the South Atlantic. This data set is unique for such an investigation due to the ubiquitous presence of a young swell component propagating closely in direction and frequency with the wind sea, as well as a longer, opposing swell. Our results show, within the statistical limits of the regressions obtained from our analysis when compared to measurements in swell free environments, that there is no obvious influence of swell on wind sea growth. For operational purposes in ocean engineering this means that power-laws from fetch limited situations describing the wind sea growth can be applied in more realistic situations in the open sea when swell is present. (author)

  7. NODC Standard Product: NOAA Marine environmental buoy database Webdisc (7 disc set) (NCEI Accession 0090141)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This CD-ROM set contains the historic archive of meteorological and oceanographic data collected by moored buoys and C-MAN stations operated by the NOAA National...

  8. Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate

    KAUST Repository

    Giraldi, Loic; Le Maî tre, Olivier P.; Mandli, Kyle T.; Dawson, Clint N.; Hoteit, Ibrahim; Knio, Omar

    2017-01-01

    on polynomial chaos expansion to construct a surrogate model of the wave height at the buoy location. A correlated noise model is first proposed in order to represent the discrepancy between the computational model and the data. This step is necessary, as a

  9. Moball-Buoy Network: A Near-Real-Time Ground-Truth Distributed Monitoring System to Map Ice, Weather, Chemical Species, and Radiations, in the Arctic

    Science.gov (United States)

    Davoodi, F.; Shahabi, C.; Burdick, J.; Rais-Zadeh, M.; Menemenlis, D.

    2014-12-01

    The work had been funded by NASA HQ's office of Cryospheric Sciences Program. Recent observations of the Arctic have shown that sea ice has diminished drastically, consequently impacting the environment in the Arctic and beyond. Certain factors such as atmospheric anomalies, wind forces, temperature increase, and change in the distribution of cold and warm waters contribute to the sea ice reduction. However current measurement capabilities lack the accuracy, temporal sampling, and spatial coverage required to effectively quantify each contributing factor and to identify other missing factors. Addressing the need for new measurement capabilities for the new Arctic regime, we propose a game-changing in-situ Arctic-wide Distributed Mobile Monitoring system called Moball-buoy Network. Moball-buoy Network consists of a number of wind-propelled self-powered inflatable spheres referred to as Moball-buoys. The Moball-buoys are self-powered. They use their novel mechanical control and energy harvesting system to use the abundance of wind in the Arctic for their controlled mobility and energy harvesting. They are equipped with an array of low-power low-mass sensors and micro devices able to measure a wide range of environmental factors such as the ice conditions, chemical species wind vector patterns, cloud coverage, air temperature and pressure, electromagnetic fields, surface and subsurface water conditions, short- and long-wave radiations, bathymetry, and anthropogenic factors such as pollutions. The stop-and-go motion capability, using their novel mechanics, and the heads up cooperation control strategy at the core of the proposed distributed system enable the sensor network to be reconfigured dynamically according to the priority of the parameters to be monitored. The large number of Moball-buoys with their ground-based, sea-based, satellite and peer-to-peer communication capabilities would constitute a wireless mesh network that provides an interface for a global

  10. Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters.

    Science.gov (United States)

    Dubelaar, G B; Gerritzen, P L; Beeker, A E; Jonker, R R; Tangen, K

    1999-12-01

    The high costs of microscopical determination and counting of phytoplankton often limit sampling frequencies below an acceptable level for the monitoring of dynamic ecosystems. Although having a limited discrimination power, flow cytometry allows the analysis of large numbers of samples to a level that is sufficient for many basic monitoring jobs. For this purpose, flow cytometers should not be restricted to research laboratories. We report here on the development of an in situ flow cytometer for autonomous operation inside a small moored buoy or on other platforms. Operational specifications served a wide range of applications in the aquatic field. Specific conditions had to be met with respect to the operation platform and autonomy. A small, battery-operated flow cytometer resulted, requiring no external sheath fluid supply. Because it was designed to operate in a buoy, we call it CytoBuoy. Sampling, analysis, and radio transmission of the data proceed automatically at user-defined intervals. A powerful feature is the acquisition and radio transmission of full detector pulse shapes of each particle. This provides valuable morphological information for particles larger than the 5-microm laser focus. CytoBuoy allows on-line in situ particle analysis, estimation of phytoplankton biomass, and discrimination between different phytoplankton groups. This will increase the applicability of flow cytometry in the field of environmental monitoring. Copyright 1999 Wiley-Liss, Inc.

  11. Saildrone fleet could help replace aging buoys

    Science.gov (United States)

    Voosen, Paul

    2018-03-01

    In April, two semiautonomous drones, developed by Saildrone, a marine tech startup based in Alameda, California, in close collaboration with the National Oceanic and Atmospheric Administration in Washington, D.C., are set to return from an 8-month tour of the Pacific Ocean. This the first scientific test for the drones, which are powered only by the wind and sun, in the Pacific Ocean. The voyage is an important step in showing that such drones, carrying 15 different sensors, could help replace an aging and expensive array of buoys that are the main way scientists sniff out signs of climate-disrupting El Niño events. If successful, scientists envision fleets of similar drones spreading across the ocean, inviting thoughts of what it could be like to do oceanography without a ship.

  12. Physical and optical data collected from drifting buoys between May 1993 - December 1996 (NODC Accession 0000586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling and downwelling irradiances were collected from surface optical drifter buoys off the California coast (NE Pacific limit-180) from 05 May 1993 to 06...

  13. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  14. NODC Standard Product: NOAA Marine environmental buoy database 1993 with Updates (19 disc set) (NCEI Accession 0095199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of CD-ROMs holds marine meteorological, oceanographic, and wave spectra data collected by moored buoys and C-MAN (Coastal-Marine Automated Network) stations...

  15. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    Science.gov (United States)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and

  16. Comparison of ERA-Interim waves with buoy data in the eastern Arabian Sea during high waves

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.

    at two locations in eastern Arabian Sea One location is a deep water location and another one is a shallow water location The comparison of significant wave height (SWH) between ERA dataset and buoy data at both the locations shows good correlation...

  17. Directional wave and temperature data from seven buoys at Point Reyes, CA, 1996-2002 (NODC Accession 0000760)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave data were collected from 7 buoys in Point Reyes, California, from 06 December 1996 to 25 July 2002. Data were collected as part of the Coastal Data Information...

  18. Directional wave and temperature data from nine buoys in Gray's Harbor, Washington, 1994-2002 (NODC Accession 0000756)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave data were collected from 9 buoys in Grays Harbor, Washington, from 01 January 1994 to 24 July 2002. Data were collected as part of the Coastal Data Information...

  19. Improvement of tsunami detection in timeseries data of GPS buoys with the Continuous Wavelet Transform

    Science.gov (United States)

    Chida, Y.; Takagawa, T.

    2017-12-01

    The observation data of GPS buoys which are installed in the offshore of Japan are used for monitoring not only waves but also tsunamis in Japan. The real-time data was successfully used to upgrade the tsunami warnings just after the 2011 Tohoku earthquake. Huge tsunamis can be easily detected because the signal-noise ratio is high enough, but moderate tsunami is not. GPS data sometimes include the error waveforms like tsunamis because of changing accuracy by the number and the position of GPS satellites. To distinguish the true tsunami waveforms from pseudo-tsunami ones is important for tsunami detection. In this research, a method to reduce misdetections of tsunami in the observation data of GPS buoys and to increase the efficiency of tsunami detection was developed.Firstly, the error waveforms were extracted by using the indexes of position dilution of precision, reliability of GPS satellite positioning and satellite number for calculation. Then, the output from this procedure was used for the Continuous Wavelet Transform (CWT) to analyze the time-frequency characteristics of error waveforms and real tsunami waveforms.We found that the error waveforms tended to appear when the accuracy of GPS buoys positioning was low. By extracting these waveforms, it was possible to decrease about 43% error waveforms without the reduction of the tsunami detection rate. Moreover, we found that the amplitudes of power spectra obtained from the error waveforms and real tsunamis were similar in the component of long period (4-65 minutes), on the other hand, the amplitude in the component of short period (< 1 minute) obtained from the error waveforms was significantly larger than that of the real tsunami waveforms. By thresholding of the short-period component, further extraction of error waveforms became possible without a significant reduction of tsunami detection rate.

  20. Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate

    KAUST Repository

    Giraldi, Loic

    2017-04-07

    This work addresses the estimation of the parameters of an earthquake model by the consequent tsunami, with an application to the Chile 2010 event. We are particularly interested in the Bayesian inference of the location, the orientation, and the slip of an Okada-based model of the earthquake ocean floor displacement. The tsunami numerical model is based on the GeoClaw software while the observational data is provided by a single DARTⓇ buoy. We propose in this paper a methodology based on polynomial chaos expansion to construct a surrogate model of the wave height at the buoy location. A correlated noise model is first proposed in order to represent the discrepancy between the computational model and the data. This step is necessary, as a classical independent Gaussian noise is shown to be unsuitable for modeling the error, and to prevent convergence of the Markov Chain Monte Carlo sampler. Second, the polynomial chaos model is subsequently improved to handle the variability of the arrival time of the wave, using a preconditioned non-intrusive spectral method. Finally, the construction of a reduced model dedicated to Bayesian inference is proposed. Numerical results are presented and discussed.

  1. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy

    Science.gov (United States)

    Tender, Leonard M.; Gray, Sam A.; Groveman, Ethan; Lowy, Daniel A.; Kauffman, Peter; Melhado, Julio; Tyce, Robert C.; Flynn, Darren; Petrecca, Rose; Dobarro, Joe

    2008-05-01

    Here we describe the first demonstration of a microbial fuel cell (MFC) as a practical alternative to batteries for a low-power consuming application. The specific application reported is a meteorological buoy (ca. 18-mW average consumption) that measures air temperature, pressure, relative humidity, and water temperature, and that is configured for real-time line-of-sight RF telemetry of data. The specific type of MFC utilized in this demonstration is the benthic microbial fuel cell (BMFC). The BMFC operates on the bottom of marine environments, where it oxidizes organic matter residing in oxygen depleted sediment with oxygen in overlying water. It is maintenance free, does not deplete (i.e., will run indefinitely), and is sufficiently powerful to operate a wide range of low-power marine-deployed scientific instruments normally powered by batteries. Two prototype BMFCs used to power the buoy are described. The first was deployed in the Potomac River in Washington, DC, USA. It had a mass of 230 kg, a volume of 1.3 m3, and sustained 24 mW (energy equivalent of ca. 16 alkaline D-cells per year at 25 °C). Although not practical due to high cost and extensive in-water manipulation required to deploy, it established the precedence that a fully functional scientific instrument could derive all of its power from a BMFC. It also provided valuable lessons for developing a second, more practical BMFC that was subsequently used to power the buoy in a salt marsh near Tuckerton, NJ, USA. The second version BMFC has a mass of 16 kg, a volume of 0.03 m3, sustains ca. 36 mW (energy equivalent of ca. 26 alkaline D-cells per year at 25 °C), and can be deployed by a single person from a small craft with minimum or no in-water manipulation. This BMFC is being further developed to reduce cost and enable greater power output by electrically connecting multiple units in parallel. Use of this BMFC powering the meteorological buoy highlights the potential impact of BMFCs to enable long

  2. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Français Océan et Climat dans l'Atlantique Equatorial (SEQUAL/FOCAL) project from 1980-01-25 to 1985-12-18 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  3. WATER TEMPERATURE and Other Data from DRIFTING BUOY From World-Wide Distribution from 19910101 to 19910331 (NODC Accession 9100101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting Buoy Data from the Canadian Data Center, submitted by Mr. Gerald P Lesblam, Marine Environmental Data Service (MEDS) Ottawa, Ontario, Canada in GF-3 format...

  4. WATER TEMPERATURE and Other Data from DRIFTING BUOY From World-Wide Distribution from 19781122 to 19810113 (NODC Accession 8600071)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 359 Drifting Surface Buoys were deployed in the Southern Hemisphere oceans from November 22, 1978 to January 13, 1981 as part of the First Global Atmospheric...

  5. Meteorological and other data from moored buoys in Prince William Sound (Gulf of Alaska) in support of the Sound Ecosystem Analysis (SEAS) project from 08 October 1991 to 16 December 1998 (NODC Accession 0000482)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and other data were collected from Prince William Sound (Gulf of Alaska) from moored buoys from 08 October 1991 to 16 December 1998. Buoys are part of...

  6. Data from a Directional Waverider Buoy off Waimea Bay, North Shore, Oahu during December 2001 - July 2004 (NODC Accession 0001626)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through various funding channels, the Department of Oceanography at the University of Hawaii (UH) has maintained a Datawell Directional Waverider Buoy roughly 5 km...

  7. Data from a Directional Waverider Buoy off Kailua Bay, Windward Oahu, Hawaii during August 2000 - July 2004 (NODC Accession 0001660)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through various funding channels, the Department of Oceanography at the University of Hawaii (UH) has maintained a Datawell Mark 2 Directional Waverider Buoy roughly...

  8. Selection of the optimum combination of responses for Wave Buoy Analogy - An approach based on local sensitivity analysis

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2016-01-01

    One method to estimate the wave spectrum onboard ships is to use measured ship responses. In this method, known also as Wave Buoy Analogy, amongst various responses that are available from sensor measurements, a couple of responses (at least three) are usually utilized. Selec-tion of the best com...

  9. Oceanographic profile temperature, salinity and pressure measurements collected using moored buoy in the Indian Ocean from 2001-2006 (NODC Accession 0002733)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity measurements in the Equatorial Indian from 2001 to 2006 from the TRITON (TRIANGLE TRANS-OCEAN BUOY NETWORK); JAPAN AGENCY FOR MARINE-EARTH...

  10. Toward detection of marine vehicles on horizon from buoy camera

    Science.gov (United States)

    Fefilatyev, Sergiy; Goldgof, Dmitry B.; Langebrake, Lawrence

    2007-10-01

    This paper presents a new technique for automatic detection of marine vehicles in open sea from a buoy camera system using computer vision approach. Users of such system include border guards, military, port safety and flow management, sanctuary protection personnel. The system is intended to work autonomously, taking images of the surrounding ocean surface and analyzing them on the subject of presence of marine vehicles. The goal of the system is to detect an approximate window around the ship and prepare the small image for transmission and human evaluation. The proposed computer vision-based algorithm combines horizon detection method with edge detection and post-processing. The dataset of 100 images is used to evaluate the performance of proposed technique. We discuss promising results of ship detection and suggest necessary improvements for achieving better performance.

  11. Heaving buoys, point absorbers and arrays.

    Science.gov (United States)

    Falnes, Johannes; Hals, Jørgen

    2012-01-28

    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required.

  12. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  13. The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets

    Science.gov (United States)

    Corlett, G. K.; Barton, I. J.; Donlon, C. J.; Edwards, M. C.; Good, S. A.; Horrocks, L. A.; Llewellyn-Jones, D. T.; Merchant, C. J.; Minnett, P. J.; Nightingale, T. J.; Noyes, E. J.; O'Carroll, A. G.; Remedios, J. J.; Robinson, I. S.; Saunders, R. W.; Watts, J. G.

    The Advanced Along-Track Scanning Radiometer (AATSR) was launched on Envisat in March 2002. The AATSR instrument is designed to retrieve precise and accurate global sea surface temperature (SST) that, combined with the large data set collected from its predecessors, ATSR and ATSR-2, will provide a long term record of SST data that is greater than 15 years. This record can be used for independent monitoring and detection of climate change. The AATSR validation programme has successfully completed its initial phase. The programme involves validation of the AATSR derived SST values using in situ radiometers, in situ buoys and global SST fields from other data sets. The results of the initial programme presented here will demonstrate that the AATSR instrument is currently close to meeting its scientific objectives of determining global SST to an accuracy of 0.3 K (one sigma). For night time data, the analysis gives a warm bias of between +0.04 K (0.28 K) for buoys to +0.06 K (0.20 K) for radiometers, with slightly higher errors observed for day time data, showing warm biases of between +0.02 (0.39 K) for buoys to +0.11 K (0.33 K) for radiometers. They show that the ATSR series of instruments continues to be the world leader in delivering accurate space-based observations of SST, which is a key climate parameter.

  14. Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System from 2007-04-25 to 2016-12-31 (NCEI Accession 0159578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System. Ten stations are located from the mouth of the Susquehanna river near...

  15. Determining slack tide with a GPS receiver on an anchored buoy

    Science.gov (United States)

    Valk, M.; Savenije, H. H. G.; Tiberius, C. C. J. M.; Luxemburg, W. M. J.

    2014-07-01

    In this paper we present a novel method to determine the time of occurrence of tidal slack with a GPS receiver mounted on an anchored buoy commonly used to delineate shipping lanes in estuaries and tidal channels. Slack tide occurs when the tide changes direction from ebb to flood flow or from flood to ebb. The determination of this point in time is not only useful for shipping and salvaging, it is also important information for calibrating tidal models, for determining the maximum salt intrusion and for the further refinement of the theory on tidal propagation. The accuracy of the timing is well within 10 min and the method - able to operate in real time - is relatively cheap and easy to implement on a permanent basis or in short field campaigns.

  16. An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

    Directory of Open Access Journals (Sweden)

    Sinpyo Hong

    2015-05-01

    Full Text Available An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG, mooring line spring constant, and fair-lead location on the turbine’s motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT, the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

  17. Temperature, salinity, and other data from buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993 (NODC Accession 9800040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and other data were collected using buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993. Data were collected by the...

  18. CRED Sea Surface Temperature (SST) Buoy; NWHI, LAY; Long: -171.74252, Lat: 25.77290 (WGS84); Sensor Depth: 0.33m; Data Range: 20030724-20040923.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  19. CRED Sea Surface Temperature (SST) Buoy; AMSM, TUT; Long: -170.56228, Lat: -14.28372 (WGS84); Sensor Depth: 0.33m; Data Range: 20060218-20080223.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  20. CRED Sea Surface Temperature (SST) Buoy; NWHI, KUR; Long: -178.34327, Lat: 28.41817 (WGS84); Sensor Depth: 0.19m; Data Range: 20080929-20090916.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  1. CRED Sea Surface Temperature (SST) Buoy; AMSM, TUT; Long: -170.83339, Lat: -14.32838 (WGS84); Sensor Depth: 0.19m; Data Range: 20050806-20060221.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  2. CRED Sea Surface Temperature (SST) Buoy; AMSM, TUT; Long: -170.76310, Lat: -14.36667 (WGS84); Sensor Depth: 0.19m; Data Range: 20070616-20080115.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  3. CRED Sea Surface Temperature (SST) Buoy; NWHI, KUR; Long: -178.34322, Lat: 28.41813 (WGS84); Sensor Depth: 0.19m; Data Range: 20090916-20100918.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  4. CRED Sea Surface Temperature (SST) Buoy; NWHI, LAY; Long: -171.74250, Lat: 25.77240 (WGS84); Sensor Depth: 0.33m; Data Range: 20040924-20060910.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  5. Temperature profile and other data collected using moored buoy in the Pacific Ocean (30-N to 30-S) as part of the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project from 06 November 1977 to 24 March 1978 (NODC Accession 8200053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Air pressure, current, wind and temperature time series data were collected from moored buoys from TOGA Area in Pacific (30 N to 30 S). Buoy data from the equatorial...

  6. WATER TEMPERATURE and Other Data from DRIFTING BUOY From TOGA Area - Pacific (30 N to 30 S) from 19921208 to 19930719 (NODC Accession 9500059)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The drifting buoy data set in this accession was collected from TOGA Area - Pacific (30 N to 30 S) in Equatorial Pacific, North of Australia as part of Tropical...

  7. Directional Bias of TAO Daily Buoy Wind Vectors in the Central Equatorial Pacific Ocean from November 2008 to January 2010

    Directory of Open Access Journals (Sweden)

    Ge Peng

    2014-07-01

    Full Text Available This article documents a systematic bias in surface wind directions between the TAO buoy measurements at 0°, 170°W and the ECMWF analysis and forecasts. This bias was of the order 10° and persisted from November 2008 to January 2010, which was consistent with a post-recovery calibration drift in the anemometer vane. Unfortunately, the calibration drift was too time-variant to be used to correct the data so the quality flag for this deployment was adjusted to reflect low data quality. The primary purpose of this paper is to inform users in the modelling and remote-sensing community about this systematic, persistent wind directional bias, which will allow users to make an educated decision on using the data and be aware of its potential impact to their downstream product quality. The uncovering of this bias and its source demonstrates the importance of continuous scientific oversight and effective user-data provider communication in stewarding scientific data. It also suggests the need for improvement in the ability of buoy data quality control procedures of the TAO and ECMWF systems to detect future wind directional systematic biases such as the one described here.

  8. Evaluation of HY-2A Scatterometer Wind Vectors Using Data from Buoys, ERA-Interim and ASCAT during 2012–2014

    Directory of Open Access Journals (Sweden)

    Jianyong Xing

    2016-05-01

    Full Text Available The first Chinese operational Ku-band scatterometer on board Haiyang-2A (HY-2A, launched in August 2011, is designed for monitoring the global ocean surface wind. This study estimates the quality of the near-real-time (NRT retrieval wind speed and wind direction from the HY-2A scatterometer for 36 months from 2012 to 2014. We employed three types of sea-surface wind data from oceanic moored buoys operated by the National Data Buoy Center (NDBC and the Tropical Atmospheric Ocean project (TAO, the European Centre for Medium Range Weather Forecasting (ECMWF reanalysis data (ERA-Interim, and the advanced scatterometer (ASCAT to calculate the error statistics including mean bias, root mean square error (RMSE, and standard deviation. In addition, the rain effects on the retrieval winds were investigated using collocated Climate Prediction Center morphing method (CMORPH precipitation data. All data were collocated with the HY-2A scatterometer wind data for comparison. The quality performances of the HY-2A NRT wind vectors data (especially the wind speeds were satisfactory throughout the service period. The RMSEs of the HY-2A wind speeds relative to the NDBC, TAO, ERA-Interim, and ASCAT data were 1.94, 1.73, 2.25, and 1.62 m·s−1, respectively. The corresponding RMSEs of the wind direction were 46.63°, 43.11°, 39.93°, and 47.47°, respectively. The HY-2A scatterometer overestimated low wind speeds, especially under rainy conditions. Rain exerted a diminishing effect on the wind speed retrievals with increasing wind speed, but its effect on wind direction was robust at low and moderate wind speeds. Relative to the TAO buoy data, the RMSEs without rain effect were reduced to 1.2 m·s−1 and 39.68° for the wind speed direction, respectively, regardless of wind speed. By investigating the objective laws between rain and the retrieval winds from HY-2A, we could improve the quality of wind retrievals through future studies.

  9. CURRENT DIRECTION, ICE - MOVEMENT - DIRECTION and other data from DRIFTING BUOY in the World-Wide Distribution from 1990-01-01 to 1991-03-31 (NODC Accession 9100102)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting Buoy Data from the Canadian Data Center, submitted by Mr. Jean Gagron, Marine Environmental Data Service (MEDS) Ottawa, Ontario, Canada in GF-3 format for...

  10. Water temperature, salinity, and surface meteorology measurements collected from the Tropical Moored Buoys Array in the equatorial oceans from November 1977 to March 2017. (NODC Accession 0078936)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Tropical Moored Buoy Array Program is a multi-national effort to provide data in real-time for climate research and forecasting. Major components include...

  11. Real-time current, wave, temperature, salinity, and meteorological data from Gulf of Maine Ocean Observing System (GoMOOS) buoys, 11/30/2003 - 12/7/2003 (NODC Accession 0001259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Maine Ocean Observing System (GoMOOS) collected real-time data with buoy-mounted instruments (e.g., accelerometers and Acoustic Doppler Current...

  12. Temperature data from buoy casts in the North Atlantic Ocean from the COLUMBUS and HMAS SWAN from 01 August 1928 to 04 September 1932 (NODC Accession 0000242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data were collected using buoy casts from the COLUMBUS and HMAS SWAN from August 1, 1928 to September 4, 1932 in the North Atlantic Ocean. Data were...

  13. Significant Wave Heights, Periods, and Directions, and Air and Sea Temperature Data from a Directional Waverider Buoy off Diamond Head, Oahu during March-April 2000 (NODC Accession 0000475)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A directional waverider buoy located about one nautical mile south of Diamond Head, Oahu, provided an approximately 10-day time series of wave characteristics and...

  14. Measurement of Near-Surface Salinity, Temperature and Directional Wave Spectra using a Novel Wave-Following, Lagrangian Surface Contact Buoy

    Science.gov (United States)

    Boyle, J. P.

    2016-02-01

    Results from a surface contact drifter buoy which measures near-surface conductivity ( 10 cm depth), sea state characteristics and near-surface water temperature ( 2 cm depth) are described. This light (righting. It has a small above-surface profile and low windage, resulting in near-Lagrangian drift characteristics. It is autonomous, with low power requirements and solar panel battery recharging. Onboard sensors include an inductive toroidal conductivity probe for salinity measurement, a nine-degrees-of-freedom motion package for derivation of directional wave spectra and a thermocouple for water temperature measurement. Data retrieval for expendable, ocean-going operation uses an onboard Argos transmitter. Scientific results as well as data processing algorithms are presented from laboratory and field experiments which support qualification of buoy platform measurements. These include sensor calibration experiments, longer-term dock-side biofouling experiments during 2013-2014 and a series of short-duration ocean deployments in the Gulf Stream in 2014. In addition, a treatment method will be described which appears to minimize the effects of biofouling on the inductive conductivity probe when in coastal surface waters. Due to its low cost and ease of deployment, scores, perhaps hundreds of these novel instruments could be deployed from ships or aircraft during process studies or to provide surface validation for satellite-based measurements, particularly in high precipitation regions.

  15. Extreme Wave Analysis by Integrating Model and Wave Buoy Data

    Directory of Open Access Journals (Sweden)

    Fabio Dentale

    2018-03-01

    Full Text Available Estimating the extreme values of significant wave height (HS, generally described by the HS return period TR function HS(TR and by its confidence intervals, is a necessity in many branches of coastal science and engineering. The availability of indirect wave data generated by global and regional wind and wave model chains have brought radical changes to the estimation procedures of such probability distribution—weather and wave modeling systems are routinely run all over the world, and HS time series for each grid point are produced and published after assimilation (analysis of the ground truth. However, while the sources of such indirect data are numerous, and generally of good quality, many aspects of their procedures are hidden to the users, who cannot evaluate the reliability and the limits of the HS(TR deriving from such data. In order to provide a simple engineering tool to evaluate the probability of extreme sea-states as well as the quality of such estimates, we propose here a procedure based on integrating HS time series generated by model chains with those recorded by wave buoys in the same area.

  16. Physical profile data collected in the Equatorial Pacific during cruises to service the TAO array, a network of deep ocean moored buoys, from 2007-04-07 to the present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of the Tropical Atmosphere Ocean (TAO) Program, the National Data Buoy Center (NDBC) was responsible for the at-sea collection, quality control and...

  17. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  18. Variations in return value estimate of ocean surface waves - a study based on measured buoy data and ERA-Interim reanalysis data

    Science.gov (United States)

    Muhammed Naseef, T.; Sanil Kumar, V.

    2017-10-01

    An assessment of extreme wave characteristics during the design of marine facilities not only helps to ensure their safety but also assess the economic aspects. In this study, return levels of significant wave height (Hs) for different periods are estimated using the generalized extreme value distribution (GEV) and generalized Pareto distribution (GPD) based on the Waverider buoy data spanning 8 years and the ERA-Interim reanalysis data spanning 38 years. The analysis is carried out for wind-sea, swell and total Hs separately for buoy data. Seasonality of the prevailing wave climate is also considered in the analysis to provide return levels for short-term activities in the location. The study shows that the initial distribution method (IDM) underestimates return levels compared to GPD. The maximum return levels estimated by the GPD corresponding to 100 years are 5.10 m for the monsoon season (JJAS), 2.66 m for the pre-monsoon season (FMAM) and 4.28 m for the post-monsoon season (ONDJ). The intercomparison of return levels by block maxima (annual, seasonal and monthly maxima) and the r-largest method for GEV theory shows that the maximum return level for 100 years is 7.20 m in the r-largest series followed by monthly maxima (6.02 m) and annual maxima (AM) (5.66 m) series. The analysis is also carried out to understand the sensitivity of the number of observations for the GEV annual maxima estimates. It indicates that the variations in the standard deviation of the series caused by changes in the number of observations are positively correlated with the return level estimates. The 100-year return level results of Hs using the GEV method are comparable for short-term (2008 to 2016) buoy data (4.18 m) and long-term (1979 to 2016) ERA-Interim shallow data (4.39 m). The 6 h interval data tend to miss high values of Hs, and hence there is a significant difference in the 100-year return level Hs obtained using 6 h interval data compared to data at 0.5 h interval. The

  19. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data.

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.; Hithin, N.K.

    and studied the validity of these observations against ship-reported and buoy data. Many studies have been undertaken on how best to use the data available from satellite observation systems in wave models (Mastenbroek, 1994; Young and Glowacki, 1996... Sea wave model. Journal of Geophysical Research 10, 5829–5849. Young, I.R., 1994. Global ocean wave statistics obtained from satellite observations. Applied Ocean Research 16, 235-248. Young, I.R., Glowacki, T.J., 1996. Assimilation of altimeter...

  20. Current meter and temperature profile data from current meter and buoy casts in the TOGA area of Pacific Ocean from 29 March 1991 to 24 December 1993 (NODC Accession 9900057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using current meter and buoy casts in the TOGA area of Pacific Ocean from 29 March 1991 to 24 December...

  1. Temperature profile and current speed/direction data from ADCP, XBT, buoy, and CTD casts in the Northwest Pacific Ocean from 01 March 1989 to 01 June 1995 (NODC Accession 0000031)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and current speed/direction data were collected using ADCP, XBT, buoy, and CTD casts in the Northwest Pacific Ocean from 01 March 1989 to 01 June...

  2. Applications to marine disaster prevention spilled oil and gas tracking buoy system

    CERN Document Server

    2017-01-01

    This book focuses on the recent results of the research project funded by a Grant-in-Aid for Scientific Research (S) of the Japan Society for the Promotion of Science (No. 23226017) from FY 2011 to FY 2015 on an autonomous spilled oil and gas tracking buoy system and its applications to marine disaster prevention systems from a scientific point of view. This book spotlights research on marine disaster prevention systems related to incidents involving oil tankers and offshore platforms, approaching these problems from new scientific and technological perspectives. The most essential aspect of this book is the development of a deep-sea underwater robot for real-time monitoring of blowout behavior of oil and gas from the seabed and of a new type of autonomous surface vehicle for real-time tracking and monitoring of oil spill spread and drift on the sea surface using an oil sensor. The mission of these robots is to provide the simulation models for gas and oil blowouts or spilled oil drifting on the sea surface w...

  3. Current meter and temperature profile data from current meter and buoy casts in the TOGA area of Pacific Ocean from 27 April 1993 to 09 June 1994 (NODC Accession 9700042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using current meter and buoy casts in the TOGA area of Pacific Ocean from 27 April 1993 to 09 June 1994....

  4. Physical profile and meteorological data from CTD casts during cruises to service the TAO/TRITON buoys in the equatorial Pacific from 02 March 2002 to 22 November 2002 (NODC Accession 0000945)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical profile data and meteorological data were collected from CTD casts in the equatorial Pacific Ocean during cruises to to service the TAO/TRITON buoy array....

  5. Physical profile data collected in the Equatorial Pacific during cruises to service the TAO/TRITON array, a network of deep ocean moored buoys, February 23 - December 16, 2005 (NODC Accession 0002644)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 2005, CTD data were collected in the equatorial Pacific Ocean during cruises to service the TAO/TRITON array, a network of deep ocean moored buoys to support...

  6. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, MAR; Long: -170.63382, Lat: 25.44643 (WGS84); Sensor Depth: 0.00m; Data Range: 20051016-20060907.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  7. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, PHR; Long: -175.81593, Lat: 27.85397 (WGS84); Sensor Depth: 0.00m; Data Range: 20040927-20060912.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  8. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, KUR; Long: -178.34453, Lat: 28.41852 (WGS84); Sensor Depth: 0.00m; Data Range: 20060917-20080929.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  9. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20040919-20050411.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  10. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20030718-20030826.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  11. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20020911-20030718.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  12. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); PRIA, PAL; Long: -162.10283, Lat: 05.88468 (WGS84); Sensor Depth: 0.00m; Data Range: 20020315-20021024.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  13. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); CNMI, SAI; Long: 145.72285, Lat: 15.23750 (WGS84); Sensor Depth: 0.00m; Data Range: 20030819-20050921.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  14. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20050411-20060904.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  15. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); PRIA, PAL; Long: -162.10282, Lat: 05.88467 (WGS84); Sensor Depth: 0.00m; Data Range: 20040330-20060325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  16. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20030826-20040809.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  17. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); AMSM, ROS; Long: -168.16025, Lat: -14.55134 (WGS84); Sensor Depth: 0.00m; Data Range: 20060307-20080312.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  18. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); AMSM, ROS; Long: -168.16018, Lat: -14.55140 (WGS84); Sensor Depth: 0.00m; Data Range: 20020224-20040208.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  19. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); AMSM, ROS; Long: -168.16018, Lat: -14.55140 (WGS84); Sensor Depth: 0.00m; Data Range: 20040208-20060307.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  20. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, PHR; Long: -175.81590, Lat: 27.85408 (WGS84); Sensor Depth: 0.00m; Data Range: 20011026-20020917.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  1. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, KUR; Long: -178.34455, Lat: 28.41863 (WGS84); Sensor Depth: 0.00m; Data Range: 20020922-20030806.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  2. Response of Land-Sea Interface in Xiamen Bay to Extreme Weather Events Observed with the Ecological Dynamic Buoy Array, a Multifunctional Sensors System

    Science.gov (United States)

    Wu, J.; Hong, H.; Pan, W.; Zhang, C.

    2016-12-01

    Recent climate observations suggest that global climate change may result in an increase of extreme weather events (such as tropical cyclones, intense precipitation i.e. heavy rains) in frequency and/or intensity in certain world regions. Subtropical coastal regions are often densely populated areas experiencing rapid development and widespread changes to the aquatic environment. The biogeochemical and ecological responses of coastal systems to extreme weather events are of increasing concern. Enhanced river nutrients input following rain storms has been linked to the ecological responses at land-sea interface. These land-sea interactions can be studied using multifunctional sensors systems. In our study, the Ecological Dynamic Buoy Array, a monitoring system with multiple sensors, was deployed in Xiamen Bay for near real time measurements of different parameters. The Ecological Dynamic Buoy Array is a deep water net cage which functions in long-term synchronous observation of dynamic ecological characteristics with the support of an aerograph, water-watch, LOBO (Land/Ocean Biogeochemical Observatory), ADCP, CTD chain system, YSI vertical profiler, flow cytometer, sea surface camera, and "communication box". The study showed that rain storms during multiple typhoons resulted in greater fluctuations of salinity, N concentration, and other water environmental conditions, which might have been connected with algal blooms (so-called red tide) in Xiamen Bay.

  3. Temperature, current meter, and other data from moored buoy as part of the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) project, 15 July 1974 - 16 September 1974 (NODC Accession 7601674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, current meter, and other data were collected using moored buoy from July 15, 1974 to September 16, 1974. Data were submitted by University of Rhode...

  4. Upper ocean currents and sea surface temperatures (SST) from Satellite-tracked drifting buoys (drifters) as part of the Global Drifter Program for Hawaii region 1980/02/01 - 2009/03/31 (NODC Accession 0063296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global...

  5. Temperature profile data from moored buoy in the Gulf of Alaska as part of the Trans-Alaska Pipeline System project, from 1989-06-10 to 1989-10-25 (NODC Accession 9900193)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using moored buoy in the Gulf of Alaska from June 10, 1989 to October 25, 1989. Data were submitted by Dr. Chirk Chu from the...

  6. Circulation and hydrological characteristics of the North Aegean Sea: a contribution from real-time buoy measurements

    Directory of Open Access Journals (Sweden)

    K. NITTIS

    2002-06-01

    Full Text Available In the framework of the POSEIDON Project, a network of open sea oceanographic buoys equipped with meteorological and oceanographic sensors has been operational in the Aegean Sea since 1998. The analysis of upper-ocean physical data (currents at 3m, temperature and salinity at 3-40m depths collected during the last 2 years from the stations of the North Aegean basin indicates a strong temporal variability of flow field and hydrological characteristics in both synoptic and seasonal time scales. The northern part of the basin is mainly influenced by the Black Sea Water outflow and the mesoscale variability of the corresponding thermohaline fronts, while the southern stations are influenced by the general circulation of the Aegean Sea with strong modulations caused by the seasonally varying atmospheric forcing.

  7. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20050411-20060904.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  8. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); PRIA, PAL; Long: -162.10289, Lat: 05.88463 (WGS84); Sensor Depth: 1.00m; Data Range: 20080401-20090515.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  9. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); PRIA, PAL; Long: -162.10280, Lat: 05.88468 (WGS84); Sensor Depth: 1.00m; Data Range: 20060326-20071017.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  10. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); PRIA, PAL; Long: -162.10282, Lat: 05.88467 (WGS84); Sensor Depth: 1.00m; Data Range: 20040330-20060325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  11. Bacteriology, wind wave spectra, and benthic organism data from moored buoy casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 1978-02-01 to 1979-05-03 (NODC Accession 7900247)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bacteriology, wind wave spectra, and benthic organism data were collected using moored buoy casts and other instruments in the Gulf of Mexico from February 1, 1978...

  12. Characterization Of Ocean Wind Vector Retrievals Using ERS-2 High-Resolution Long-Term Dataset And Buoy Measurements

    Science.gov (United States)

    Polverari, F.; Talone, M.; Crapolicchio, R. Levy, G.; Marzano, F.

    2013-12-01

    The European Remote-sensing Satellite (ERS)-2 scatterometer provides wind retrievals over Ocean. To satisfy the needs of high quality and homogeneous set of scatterometer measurements, the European Space Agency (ESA) has developed the project Advanced Scatterometer Processing System (ASPS) with which a long-term dataset of new ERS-2 wind products, with an enhanced resolution of 25km square, has been generated by the reprocessing of the entire ERS mission. This paper presents the main results of the validation work of such new dataset using in situ measurements provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). The comparison indicates that, on average, the scatterometer data agree well with buoys measurements, however the scatterometer tends to overestimates lower winds and underestimates higher winds.

  13. Mooring Mechanics. A Comprehensive Computer Study. Volume II. Three Dimensional Dynamic Analysis of Moored and Drifting Buoy Systems

    Science.gov (United States)

    1976-12-01

    11w; R R + R N~ow; Rop oc cp Ep R•-op E R -cIE + PEB x Rp and A Ep = OgC]E + EW’EB]E X Wp+ W E Bxx where; WEB is the angular velocity of the buoy. Let...viscous drag forces are proportional to the square of the relative fluid veloicty is used. In Figure 2.1 ow Roc +Rcp + pw "’"VEw VEc + WEB x Rcp + [fpw]E...LI *cZc MW I *-U OJL Z-14 l’- wix .JO-4 1 0- .CJN Z-WO- L)--f’- 1- 09 1 - M _ LIX - I XO-’- *-M WWWV-4 +>(X- .. *-i V-4"N QLI "L I X ~ Z - <x li _j

  14. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20011017-20020120.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  15. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20040622-20040808.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  16. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20050413-20060904.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  17. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10289, Lat: 05.88463 (WGS84); Sensor Depth: 1.00m; Data Range: 20080401-20100410.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  18. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10282, Lat: 05.88467 (WGS84); Sensor Depth: 1.00m; Data Range: 20040330-20060325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  19. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MID; Long: -177.34402, Lat: 28.21788 (WGS84); Sensor Depth: 1.00m; Data Range: 20011022-20020325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  20. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20040919-20050411.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  1. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10280, Lat: 05.88468 (WGS84); Sensor Depth: 1.00m; Data Range: 20060326-20080401.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  2. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MID; Long: -177.34402, Lat: 28.21788 (WGS84); Sensor Depth: 1.00m; Data Range: 20020724-20020920.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  3. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20020423-20020910.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  4. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20020911-20030305.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  5. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MAR; Long: -170.63382, Lat: 25.44652 (WGS84); Sensor Depth: 1.00m; Data Range: 20021001-20030321.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  6. CTD, current meter, meteorological buoy, and bottle data from the Gulf of Mexico from the ALPHA HELIX and other platforms in support of LATEX A from 18 March 1993 to 23 September 1993 (NODC Accession 9400149)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, current meter, meteorological buoy, and bottle data were collected from the Gulf of Mexico from the ALPHA HELIX and other platforms. Data were collected by...

  7. Bacteriology data from moored buoy casts and other instruments in the Delaware Bay and North Atlantic Ocean during the Ocean Continental Shelf (OCS-Mid Atlantic Ocean) project, 1976-11-05 to 1977-08-16 (NODC Accession 7800207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bacteriology data were collected using moored buoy casts and other instruments in the Delaware Bay and North Atlantic Ocean from November 5, 1976 to August 16, 1977....

  8. Physical and fluorescence data collected using moored buoy casts as part of the IDOE/POLYMODE (International Decade of Ocean Exploration / combination of USSR POLYGON project and US MODE) from 07 December 1975 to 03 January 1977 (NODC Accession 7700569)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and fluorescence data were collected using moored buoy from May 4, 1975 to December 18, 1975. Data were submitted by Massachusetts Institute of Technology;...

  9. Temperature and upwelling / downwelling irradiance data from drifting buoy in the Southern Oceans as part of the Joint Global Ocean Flux Study/Southern Ocean (JGOFS/Southern Ocean) project, from 1994-12-25 to 1998-06-28 (NODC Accession 9900183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and upwelling / downwelling irradiance data were collected using drifting buoy in the Southern Oceans from December 25, 1994 to June 28, 1998. Data were...

  10. Sea Surface Temperature data collected from buoys deployed world-wide in support of the U.S. Coast Guard Office of Search and Rescue (CG-SAR) program from 2004-03-24 to 2016-09-30 (NCEI Accession (0098145) (NCEI Accession 0098145)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NCEI accessions contains Sea Surface Temperature (SST) data collected from buoys deployed in support of the U.S. Coast Guard Office of Search and Rescue...

  11. Uncertainty quantification and inference of Manning's friction coefficients using DART buoy data during the Tōhoku tsunami

    KAUST Repository

    Sraj, Ihab; Mandli, Kyle T.; Knio, Omar; Dawson, Clint N.; Hoteit, Ibrahim

    2014-01-01

    Tsunami computational models are employed to explore multiple flooding scenarios and to predict water elevations. However, accurate estimation of water elevations requires accurate estimation of many model parameters including the Manning's n friction parameterization. Our objective is to develop an efficient approach for the uncertainty quantification and inference of the Manning's n coefficient which we characterize here by three different parameters set to be constant in the on-shore, near-shore and deep-water regions as defined using iso-baths. We use Polynomial Chaos (PC) to build an inexpensive surrogate for the G. eoC. law model and employ Bayesian inference to estimate and quantify uncertainties related to relevant parameters using the DART buoy data collected during the Tōhoku tsunami. The surrogate model significantly reduces the computational burden of the Markov Chain Monte-Carlo (MCMC) sampling of the Bayesian inference. The PC surrogate is also used to perform a sensitivity analysis.

  12. Uncertainty quantification and inference of Manning's friction coefficients using DART buoy data during the Tōhoku tsunami

    KAUST Repository

    Sraj, Ihab

    2014-11-01

    Tsunami computational models are employed to explore multiple flooding scenarios and to predict water elevations. However, accurate estimation of water elevations requires accurate estimation of many model parameters including the Manning\\'s n friction parameterization. Our objective is to develop an efficient approach for the uncertainty quantification and inference of the Manning\\'s n coefficient which we characterize here by three different parameters set to be constant in the on-shore, near-shore and deep-water regions as defined using iso-baths. We use Polynomial Chaos (PC) to build an inexpensive surrogate for the G. eoC. law model and employ Bayesian inference to estimate and quantify uncertainties related to relevant parameters using the DART buoy data collected during the Tōhoku tsunami. The surrogate model significantly reduces the computational burden of the Markov Chain Monte-Carlo (MCMC) sampling of the Bayesian inference. The PC surrogate is also used to perform a sensitivity analysis.

  13. Temperature profile and pressure data collected using moored buoy from the Atlantic Ocean with support from the IDOE/POLYMODE (International Decade of Ocean Exploration / combination of USSR POLYGON project and US MODE) from 04 May to 18 December 1975 (NODC Accession 7601247)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using moored buoy from the Atlantic Ocean from May 4, 1975 to December 18, 1975. Data were submitted by...

  14. Physical, current, and other data from CTD casts, current meters, and drifting buoys from the NOAA ship Mt Mitchell in the Persian Gulf as part of the Straits of Hormuz project from 26 February 1992 to 22 June 1992 (NODC Accession 9600082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, and other data were collected from CTD casts, current meters, and drifting buoys from the NOAA ship Mt Mitchell in the Persian Gulf and other...

  15. Temperature and pressure data collected using drifting buoy and profiling floats from the North Atlantic Ocean in part of the IDOE/POLYMODE (International Decade of Ocean Exploration / combination of USSR POLYGON project and US MODE) from 1975-01-10 to 1981-05-31 (NODC Accession 8700121)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and pressure data were collected using drifting buoy and profiling floats from CHAIN, GILLISS, OCEANUS, and ENDEAVOR from the North Atlantic Ocean from...

  16. Surface meteorological data collected from Offshore Buoy by Center for Coastal Margin Observation and Prediction (CMOP) and assembled by Northwest Association of Networked Ocean Observation Systems (NANOOS) in the Columbia River Estuary and North East Pacific Ocean from 2004-05-17 to 2017-08-01 (NCEI Accession 0162183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162183 contains biological, chemical, meteorological and physical data collected at Offshore Buoy, a fixed station in the Columbia River estuary -...

  17. Rancang Bangun Maximum Power Point Tracking pada Panel Photovoltaic Berbasis Logika Fuzzy di Buoy Weather Station

    Directory of Open Access Journals (Sweden)

    Bayu Prima Juliansyah Putra

    2013-09-01

    Full Text Available Salah satu aplikasi yang sering digunakan dalam bidang energi terbarukan adalah panel photovoltaic. Panel ini memiliki prinsip kerja berdasarkan efek photovoltaic dimana lempengan logam akan menghasilkan energi listrik apabila diberi intensitas cahaya. Untuk menghasilkan daya keluaran panel yang maksimal, maka diperlukan suatu algoritma yang biasa disebut Maximum Power Point Tracking (MPPT.MPPT yang diterapkan pada sistem photovoltaic berfungsi untuk mengatur nilai tegangan keluaran panel sehingga titik ker-janya beroperasi pada kondisi maksimal. Algoritma MPPT pada panel ini telah dilakukan dengan menggunakan logika fuzzy melalui mikrokontroler Arduino Uno sebagai pem-bangkit sinyal Pulse Width Modulation (PWM yang akan dikirimkan menuju DC-DC Buck Boost Converter. Keluaran dari buck boost converterakan dihubungkan secara langsung dengan buoy weather station untuk menyuplai energi listrik tiap komponen yang berada di dalamnya. Untuk menguji performansi dari algoritma MPPT yang telah dirancang, maka sistem akan diuji menggunakan variasi beban antara metode direct-coupled dengan MPPT menggunakan logika fuzzy. Hasil pengujian menunjukkan bahwa MPPT dengan logika fuzzy dapat menghasilkan daya maksimum daripada direct-coupled. Pada sistem panel photovoltaic ini memiliki range efisiensi 33.07589 % hingga 74.25743 %. Daya mak-simal dapat dicapai oleh sistem untuk tiap variasi beban dan efisiensi maksimal dapat dicapai pada beban 20 Ohm dari hasil pengujian sistem MPPT.

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the Drifting Buoy in the Indian Ocean, South Atlantic Ocean and others from 2001-11-20 to 2007-05-08 (NODC Accession 0117495)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117495 includes Surface underway, biological, chemical, meteorological and physical data collected from Drifting Buoy in the Indian Ocean, South...

  19. Numerical simulation and experimental analysis for a Risers Uphold Sub-Surface Buoy (BSR); Simulacao numerica e ensaio experimental da Boia de Sub-superficie de Suporte de Risers - BSSR

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jairo B. de; Almeida, Jose Carlos L. de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Rangel, Marcos; Fernandes, Antonio C.; Santos, Melquisedec F. dos; Sales Junior, Joel Sena [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    This paper presents results, numeric and experimental, due to installation operation of a Risers Uphold Sub-Surface Buoy, (BSR). This kind of installation developed by PETROBRAS is unique in the world. The work of BSR installation was based on a numeric pre analysis to verify the system and determine the main parameters to be experimentally verified. The second phase of the work was the experimental analysis in a deep water ocean basin. s. The work describes the BSR and their main accessories, the experimental environment and the model constructed in aluminum in a 1:12 scale and the main results. (author)

  20. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from time series and profile observations using CTD, Niskin bottle,and other instruments near CenGOOS buoy off the coast of Mississippi in the Gulf of Mexico from 2012-10-15 to 2014-04-22 (NCEI Accession 0131199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains time series profile (discrete bottle) data that were collected at the GenGOOS buoy off the coast of Mississippi. The CenGOOS 3-m...

  1. Dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients collected from profile, discrete sampling, and time series observations using CTD, Niskin bottle, and other instruments from R/V Gulf Challenger near a buoy off the coast of New Hampshire, U.S. in the Gulf of Maine from 2011-01-11 to 2015-11-18 (NCEI Accession 0142327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains discrete measurements of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients collected at the buoy off...

  2. Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA.

    Science.gov (United States)

    Heddam, Salim

    2016-09-01

    This paper proposes multilayer perceptron neural network (MLPNN) to predict phycocyanin (PC) pigment using water quality variables as predictor. In the proposed model, four water quality variables that are water temperature, dissolved oxygen, pH, and specific conductance were selected as the inputs for the MLPNN model, and the PC as the output. To demonstrate the capability and the usefulness of the MLPNN model, a total of 15,849 data measured at 15-min (15 min) intervals of time are used for the development of the model. The data are collected at the lower Charles River buoy, and available from the US Environmental Protection Agency (USEPA). For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The performances of the models are evaluated using a set of widely used statistical indices. The performance of the MLPNN and MLR models is compared with the measured data. The obtained results show that (i) the all proposed MLPNN models are more accurate than the MLR models and (ii) the results obtained are very promising and encouraging for the development of phycocyanin-predictive models.

  3. Field evaluation of remote wind sensing technologies: Shore-based and buoy mounted LIDAR systems

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, Thomas [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-11-03

    In developing a national energy strategy, the United States has a number of objectives, including increasing economic growth, improving environmental quality, and enhancing national energy security. Wind power contributes to these objectives through the deployment of clean, affordable and reliable domestic energy. To achieve U.S. wind generation objectives, the Wind and Water Power Program within the Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE) instituted the U.S. Offshore Wind: Removing Market Barriers Program in FY 2011. Accurate and comprehensive information on offshore wind resource characteristics across a range of spatial and temporal scales is one market barrier that needs to be addressed through advanced research in remote sensing technologies. There is a pressing need for reliable offshore wind-speed measurements to assess the availability of the potential wind energy resource in terms of power production and to identify any frequently occurring spatial variability in the offshore wind resource that may impact the operational reliability and lifetime of wind turbines and their components and to provide a verification program to validate the “bankability” of the output of these alternative technologies for use by finance institutions for the financing of offshore wind farm construction. The application of emerging remote sensing technologies is viewed as a means to cost-effectively meet the data needs of the offshore wind industry. In particular, scanning and buoy mounted LIDAR have been proposed as a means to obtain accurate offshore wind data at multiple locations without the high cost and regulatory hurdles associated with the construction of offshore meteorological towers. However; before these remote sensing technologies can be accepted the validity of the measured data must be evaluated to ensure their accuracy. The proposed research will establish a unique coastal ocean test-bed in the Mid-Atlantic for

  4. Optimization and Annual Average Power Predictions of a Backward Bent Duct Buoy Oscillating Water Column Device Using the Wells Turbine.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Christopher S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Willits, Steven M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fontaine, Arnold A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This Technical Report presents work completed by The Applied Research Laboratory at The Pennsylvania State University, in conjunction with Sandia National Labs, on the optimization of the power conversion chain (PCC) design to maximize the Average Annual Electric Power (AAEP) output of an Oscillating Water Column (OWC) device. The design consists of two independent stages. First, the design of a floating OWC, a Backward Bent Duct Buoy (BBDB), and second the design of the PCC. The pneumatic power output of the BBDB in random waves is optimized through the use of a hydrodynamically coupled, linear, frequency-domain, performance model that links the oscillating structure to internal air-pressure fluctuations. The PCC optimization is centered on the selection and sizing of a Wells Turbine and electric power generation equipment. The optimization of the PCC involves the following variables: the type of Wells Turbine (fixed or variable pitched, with and without guide vanes), the radius of the turbine, the optimal vent pressure, the sizing of the power electronics, and number of turbines. Also included in this Technical Report are further details on how rotor thrust and torque are estimated, along with further details on the type of variable frequency drive selected.

  5. Method for deploying and recovering a wave energy converter

    Science.gov (United States)

    Mundon, Timothy R

    2017-05-23

    A system for transporting a buoy and a heave plate. The system includes a buoy and a heave plate. An outer surface of the buoy has a first geometrical shape. A surface of the heave plate has a geometrical shape complementary to the first geometrical shape of the buoy. The complementary shapes of the buoy and the heave plate facilitate coupling of the heave plate to the outer surface of the buoy in a transport mode.

  6. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

    Directory of Open Access Journals (Sweden)

    Kyoung-Rok Lee

    2013-12-01

    Full Text Available A floating Oscillating Water Column (OWC wave energy converter, a Backward Bent Duct Buoy (BBDB, was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

  7. Field tests of acoustic telemetry for a portable coastal observatory

    Science.gov (United States)

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  8. Sea state estimation from an advancing ship – A comparative study using sea trial data

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Stredulinsky, David C.

    2012-01-01

    of a traditional wave rider buoy. The paper studies the ‘wave buoy analogy’, and a large set of full-scale motion measurements is considered. It is shown that the wave buoy analogy gives fairly accurate estimates of integrated sea state parameters when compared to corresponding estimates from real wave rider buoys...

  9. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Science.gov (United States)

    2010-07-01

    ...′ passing 600 yards northerly of Middle Ground Lighted Bell Buoy 25A, to a point bearing 145°, 1.25 miles... through Handkerchief Shoal Buoy 16, to a point bearing 215° from Stone Horse North End Lighted Bell Buoy 9; thence 35° to Stone Horse North End Lighted Bell Buoy 9; thence 70° to a point bearing 207° from Pollock...

  10. Levels of Cd, Cu, Pb and V in marine sediments in the vicinity of the Single Buoy Moorings (SBM3) at Mina Al Fahal in the Sultanate of Oman.

    Science.gov (United States)

    Al-Husaini, Issa; Abdul-Wahab, Sabah; Ahamad, Rahmalan; Chan, Keziah

    2014-06-15

    Recently in the Sultanate of Oman, there has been a rapid surge of coastal developments. These developments cause metal contamination, which may affect the habitats and communities at and near the coastal region. As a result, a study was conducted to assess the level of metal contamination and its impact on the marine sediments in the vicinity of the Single Buoy Moorings 3 (SBM3) at Mina Al Fahal in the Sultanate of Oman. Marine subtidal sediment samples were collected from six different stations of the SBM3 for the period ranging from June 2009 to April 2010. These samples were then analyzed for their level and distribution of the heavy metals of cadmium (Cd), copper (Cu), lead (Pb) and vanadium (V). Overall, low concentrations of all four heavy metals were measured from the marine sediments, indicating that the marine at SBM3 is of good quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Department of Energy WindSentinel Loan Program Description

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sturges, Mark H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-01

    The U.S. Department of Energy (DOE) currently owns two AXYS WindSentinel buoys that collect a comprehensive set of meteorological and oceanographic data to support resource characterization for wind energy offshore. The two buoys were delivered to DOE’s Pacific Northwest National Laboratory (PNNL) in September, 2014. After acceptance testing and initial performance testing and evaluation at PNNL’s Marine Sciences Laboratory in Sequim, Washington, the buoys have been deployed off the U.S. East Coast. One buoy was deployed approximately 42 km east of Virginia Beach, Virginia from December, 2014 through June, 2016. The second buoy was deployed approximately 5 km off Atlantic City, New Jersey in November, 2015. Data from the buoys are available to the public. Interested parties can create an account and log in to http://offshoreweb.pnnl.gov. In response to a number of inquiries and unsolicited proposals, DOE’s Wind Energy Technologies Office is implementing a program, to be managed by PNNL, to lend the buoys to qualified parties for the purpose of acquiring wind resource characterization data in areas of interest for offshore wind energy development. This document describes the buoys, the scope of the loans, the process of how borrowers will be selected, and the schedule for implementation of this program, including completing current deployments.

  12. Densimetry in compressed fluids by combining hydrostatic weighing and magnetic levitation

    International Nuclear Information System (INIS)

    Masui, R.; Haynes, W.M.; Chang, R.F.; Davis, H.A.; Sengers, J.M.H.L.

    1984-01-01

    A magnetic suspension densimeter is described that has been built for measuring the density of compressed liquids at pressures up to 15 MPa in the temperature range 20 0 --200 0 C with an uncertainty of 0.1%. The densimeter combines the principle of magnetic levitation of a buoy with that of liquid density determination by hydrostatic weighing. To accomplish this, the support coil is suspended from an electronic balance, and the balance readings are recorded (1) with the buoy at rest, and (2) with the buoy in magnetic suspension. Details are given of the construction of the cell, coil, buoy, and thermostat. The procedure is described by which cell and buoy are aligned so that the suspended buoy does not touch the cell wall. Test data on the densities of seven different liquids were obtained at room temperature. They agree with reliable literature values to within 0.1%. In a separate experiment, the bulk thermal expansion coefficient of the buoy material was determined. This experiment and its results are also given here

  13. 46 CFR 160.050-5 - Sampling, tests, and inspection.

    Science.gov (United States)

    2010-10-01

    ... one from which any sample ring life buoy failed the buoyancy or strength test, the sample shall... ring life buoys with this subpart. The manufacturer shall provide means to secure any test that is not... procedures. Table 160.050-5(e)—Sampling for Buoyancy Tests Lot size Number of life buoys in sample 100 and...

  14. Method and apparatus for production of subsea hydrocarbon formations

    Energy Technology Data Exchange (ETDEWEB)

    Bladford, J.

    1996-07-18

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration. (author) figs.

  15. Study of hydrodynamic characteristics of a Sharp Eagle wave energy converter

    Science.gov (United States)

    Zhang, Ya-qun; Sheng, Song-wei; You, Ya-ge; Huang, Zhen-xin; Wang, Wen-sheng

    2017-06-01

    According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.

  16. Adaption of egg and larvae sampling techniques for lake sturgeon and broadcast spawning fishes in a deep river

    Science.gov (United States)

    Roseman, Edward F.; Kennedy, Gregory W.; Craig, Jaquelyn; Boase, James; Soper, Karen

    2011-01-01

    In this report we describe how we adapted two techniques for sampling lake sturgeon (Acipenser fulvescens) and other fish early life history stages to meet our research needs in the Detroit River, a deep, flowing Great Lakes connecting channel. First, we developed a buoy-less method for sampling fish eggs and spawning activity using egg mats deployed on the river bottom. The buoy-less method allowed us to fish gear in areas frequented by boaters and recreational anglers, thus eliminating surface obstructions that interfered with recreational and boating activities. The buoy-less method also reduced gear loss due to drift when masses of floating aquatic vegetation would accumulate on buoys and lines, increasing the drag on the gear and pulling it downstream. Second, we adapted a D-frame drift net system formerly employed in shallow streams to assess larval lake sturgeon dispersal for use in the deeper (>8 m) Detroit River using an anchor and buoy system.

  17. Robust wavebuoys for the marginal ice zone: Experiences from a large persistent array in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Martin J. Doble

    2017-08-01

    Full Text Available An array of novel directional wavebuoys was designed and deployed into the Beaufort Sea ice cover in March 2014, as part of the Office of Naval Research 'Marginal Ice Zone' experiment. The buoys were designed to drift with the ice throughout the year and monitor the expected breakup and retreat of the ice cover, forced by waves travelling into the ice from open water. Buoys were deployed from fast-and-light air-supported ice camps, based out of Sachs Harbour on Canada’s Banks Island, and drifted westwards with the sea ice over the course of spring, summer and autumn, as the ice melted, broke up and finally re-froze. The buoys transmitted heave, roll and pitch timeseries at 1 Hz sample frequency over the course of up to eight months, surviving both convergent ice dynamics and significant waves-in-ice events. Twelve of the 19 buoys survived until their batteries were finally exhausted during freeze-up in late October/November. Ice impact was found to have contaminated a significant proportion of the Kalman-filter-derived heave records, and these bad records were removed with reference to raw x/y/z accelerations. The quality of magnetometer-derived buoy headings at the very high magnetic field inclinations close to the magnetic pole was found to be generally acceptable, except in the case of four buoys which had probably suffered rough handling during transport to the ice. In general, these new buoys performed as expected, though vigilance as to the veracity of the output is required.

  18. Estimation of excitation forces for wave energy converters control using pressure measurements

    Science.gov (United States)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  19. Assessment and Analysis of QuikSCAT Vector Wind Products for the Gulf of Mexico: A Long-Term and Hurricane Analysis

    Directory of Open Access Journals (Sweden)

    Eurico D’Sa

    2008-03-01

    Full Text Available The northern Gulf of Mexico is a region that has been frequently impacted in recent years by natural disasters such as hurricanes. The use of remote sensing data such as winds from NASA’s QuikSCAT satellite sensor would be useful for emergency preparedness during such events. In this study, the performance of QuikSCAT products, including JPL’s latest Level 2B (L2B 12.5 km swath winds, were evaluated with respect to buoy-measured winds in the Gulf of Mexico for the period January 2005 to February 2007. Regression analyses indicated better accuracy of QuikSCAT’s L2B DIRTH, 12.5 km than the Level 3 (L3, 25 km wind product. QuikSCAT wind data were compared directly with buoy data keeping a maximum time interval of 20 min and spatial interval of 0.1° (≈10 km. R2 values for moderate wind speeds were 0.88 and 0.93 for L2B, and 0.75 and 0.89 for L3 for speed and direction, respectively. QuikSCAT wind comparisons for buoys located offshore were better than those located near the coast. Hurricanes that took place during 2002-06 were studied individually to obtain regressions of QuikSCAT versus buoys for those events. Results show QuikSCAT’s L2B DIRTH wind product compared well with buoys during hurricanes up to the limit of buoy measurements. Comparisons with the National Hurricane Center (NHC best track analyses indicated QuikSCAT winds to be lower than those obtained by NHC, possibly due to rain contamination, while buoy measurements appeared to be constrained at high wind speeds. This study has confirmed good agreement of the new QuikSCAT L2B product with buoy measurements and further suggests its potential use during extreme weather conditions in the Gulf of Mexico.

  20. WATER TEMPERATURE and Other Data from 19920801 to 19930930 (NODC Accession 9600022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The drifting buoy data from 28 drifting buoys in this accession was collected as part of Coupled Ocean-Atmosphere Response Experiment (COARE) over a one year period...

  1. Validation of multi-channel scanning microwave radiometer onboard OCEANSAT - 1

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Harikrishnan, M.

    IRS-P4 (OCEASAT-1) was the first operational oceanographic satellite that India has launched. An extensive validation campaign was unleashed immediately after its launch in May 1999. Various platforms (Ship, Moored buoy, Drifting buoy, Autonomous...

  2. Validation of sea surface temperature, wind speed and integrated water vapour from MSMR measurements. Project report

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    IRS-P4 (OCEANSAT-1) is the first operational oceanographic satellite that India has launched. An extensive validation campaign was unleashed immediately after its launch in May 1999. Various platforms (viz., ship, moored buoy, drifting buoy...

  3. Extreme Hurricane-Generated Waves in Gulf of Mexico

    National Research Council Canada - National Science Library

    Alberto, Carlos; Fernandes, Santos

    2005-01-01

    .... Data from seven National Data Buoy Center (NDBC) buoys in the Gulf of Mexico, together with an array of pressure and pressure-velocity sensors deployed on the Florida Panhandle shelf during the Office of Naval Research (ONR...

  4. Real-Time Seismic Data from the Bottom Sea

    Directory of Open Access Journals (Sweden)

    Xavier Roset

    2018-04-01

    Full Text Available An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  5. Real-Time Seismic Data from the Bottom Sea.

    Science.gov (United States)

    Roset, Xavier; Trullols, Enric; Artero-Delgado, Carola; Prat, Joana; Del Río, Joaquin; Massana, Immaculada; Carbonell, Montserrat; Barco de la Torre, Jaime; Toma, Daniel Mihai

    2018-04-08

    An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  6. Evolution Strategies with Optimal Covariance Matrix Update Applied to Sustainable Wave Energy

    DEFF Research Database (Denmark)

    Rodríguez Arbonès, Dídac

    plants requires large financial investments. A common type of wave energy plants are buoy farms. These farms consist of a group of buoys moored to the sea floor. The buoys capture the movement of the waves and pump hydraulic fluid onshore, where a turbine generates power. Constructive and destructive...... power modelling, gradient information is not available and one has to resort to derivative-free optimization methods. Furthermore, not all possible buoy configurations can be implemented. The daily operation of wave energy plants introduces constraints on the layouts that can be achieved in practice......Modern society depends heavily on fossil fuels. We rely on this source of energy for everything, from food and clothing production to daily transportation. Even the Internet is mostly powered by these sources of energy. This reliance has led us to a high-risk situation where all that we take...

  7. The grand challenge of developing in situ observational oceanography in South Africa

    CSIR Research Space (South Africa)

    Roberts, M

    2010-12-01

    Full Text Available , underwater temperature recorders (UTRs), wave buoys, as well as locally developed in situ measurement sensor and platform prototypes (dial-out UTRs, coastal and deep ocean buoys) have been incorporated into a regional in-situ observational network. A modular...

  8. Levels of Cd, Cu, Pb and V in marine sediments in the vicinity of the Single Buoy Moorings (SBM3) at Mina Al Fahal in the Sultanate of Oman

    International Nuclear Information System (INIS)

    Al-Husaini, Issa; Abdul-Wahab, Sabah; Ahamad, Rahmalan; Chan, Keziah

    2014-01-01

    Highlights: • Assessed metal contamination in the SBM3 marine sediments of Mina Al Fahal, Oman. • Examined heavy metal concentration levels of Cd, Cu, Pb and V. • Mean concentration in the sediments, from highest to lowest, is V > Cu > Pb > Cd. • Highest concentration of V due to waste discharges from nearby heavy tanker traffic. • ICP-OES found low concentrations of all four heavy metals; SMB3 region in good quality. - Abstract: Recently in the Sultanate of Oman, there has been a rapid surge of coastal developments. These developments cause metal contamination, which may affect the habitats and communities at and near the coastal region. As a result, a study was conducted to assess the level of metal contamination and its impact on the marine sediments in the vicinity of the Single Buoy Moorings 3 (SBM3) at Mina Al Fahal in the Sultanate of Oman. Marine subtidal sediment samples were collected from six different stations of the SBM3 for the period ranging from June 2009 to April 2010. These samples were then analyzed for their level and distribution of the heavy metals of cadmium (Cd), copper (Cu), lead (Pb) and vanadium (V). Overall, low concentrations of all four heavy metals were measured from the marine sediments, indicating that the marine at SBM3 is of good quality

  9. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    Science.gov (United States)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  10. Bottom Slamming on Heaving Point Absorber Wave Energy Devices

    DEFF Research Database (Denmark)

    De Backer, Griet; Vantorre, Marc; Frigaard, Peter

    2010-01-01

    shapes are considered: a hemisphere and two conical shapes with deadrise angles of 30 and 45, with a waterline diameter of 5 m. The simulations indicate that the risk of rising out of the water is largely dependent on the buoy draft and sea state. Although associated with power losses, emergence......Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy...... occurrence probabilities can be significantly reduced by adapting the control parameters. The magnitude of the slamming load is severely influenced by the buoy shape. The ratio between the peak impact load on the hemisphere and that on the 45 cone is approximately 2, whereas the power absorption is only 4...

  11. Operational use of ocean surface drifters for tracking spilled oil

    International Nuclear Information System (INIS)

    Aamo, O. M.; Jensen, H.

    1997-01-01

    The use of Argos-positioned surface drifters by Norwegian engineers to monitor oil slicks in the North Sea was discussed. The system that was tested in June 1996 during the Norwegian Clean Seas Association oil-on-water exercise consisted of several GPS-positioned Argos drift trackers, an Argos receiver, a GPS navigator for the ship's position, and a PC with software for logging and displaying positions. Results of the field trial have been positive in that the system worked as expected. The range of direct transmission of signals from the buoys to the ship was about three nautical miles. The degree of accuracy of the relative positioning between the buoy GPS and the ship-borne GPS navigator was similar to the absolute positioning of single buoys. For best results, a minimum of two buoys and the use of lithium cells to increase battery capacity, were recommended. 3 refs., 5 figs

  12. Real-time directional wave data collection

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.; Pednekar, P.S.

    The wave measurements carried out along the east and west coasts off India at 13 locations using the directional waverider buoys are referred in this paper. The total number of buoy days are 4501 and out of which the data collected are 4218 days...

  13. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A; Basu, S.K.; Kumar, R.; Sarkar, A

    prediction when NCMRWF winds blended with MSMR winds are utilised in the wave model. A comparison between buoy and TOPEX wave heights of May 2000 at 4 buoy locations provides a good match, showing the merit of using altimeter data, wherever it is difficult...

  14. OBS Technologies and permanent seismic Stations at Sea

    Science.gov (United States)

    Makris, J.; Nikolova, S. B.

    2003-04-01

    An off-shore telemetric system was developed during last 2 years. It consists of a buoy unit, OBS with seismic sensor and digitizer at the sea floor and coaxial cable for transferring data from the sea. The buoy unit includes all components for recording and transmitting data to the base station. A solar panel and wind generator are the sources of energy that charge the batteries in the buoy. An Omni directional antenna and a radio modem are used for data transfer. The buoy can be connected also to mobile network or satellite. The Seismic recording unit is SEDIS IV developed in GeoPro GmbH which is a 6 channel data logger equipped with a hard disk of 30 GByte capacity and a flash memory of 0.5 Gbyte which can continuously record at different sampling rate (from 31.25 to 1000sps). The operating system for SEDIS IV is LINUX, with possible data compression, event location and extraction. The data transfer and supply of the power to seismometer and ADC unit in OBS sphere is done through coaxial cable, connecting the buoy unit and OBS. The whole system was tested for a period of one month (October 2002) within frame of Nestor program in Pilos (Greece) and worked successfully.

  15. GPS water level measurements for Indonesia's Tsunami Early Warning System

    Directory of Open Access Journals (Sweden)

    T. Schöne

    2011-03-01

    Full Text Available On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements.

    The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS (Rudloff et al., 2009 combines GPS technology and ocean bottom pressure (OBP measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information.

    The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  16. 46 CFR 160.050-3 - Materials.

    Science.gov (United States)

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoy, Life Ring, Unicellular Plastic § 160...) Unicellular plastic. The unicellular plastic material used in fabrication of the buoy body shall meet the... degradation. (e) Thread. Each thread must meet the requirements of subpart 164.023 of this chapter. Only one...

  17. Wave Power Demonstration Project at Reedsport, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Downie, Bruce [Project Manager

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  18. The Subduction Experiment. Cruise Report, R/V Oceanus, Cruise Number 240 Leg 3, Subduction 1 Mooring Deployment Cruise, 17 June - 5 July 1991

    Science.gov (United States)

    1993-03-01

    Meteorological instrumentation was mounted to both the discus and toroid buoys. A two I part aluminum tower was attached to both buoy types. The top...Temperature Thermistor -5 to +300C 1/2 time average Thermometrics Measured during first 4K @ 25 0 C half of avg. period. Air Temperature Thermistor -10

  19. Modeling and Simulation of a Wave Energy Converter INWAVE

    Directory of Open Access Journals (Sweden)

    Seung Kwan Song

    2017-01-01

    Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.

  20. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas

    DEFF Research Database (Denmark)

    Doubrawa, Paula; Barthelmie, Rebecca Jane; Pryor, Sara C.

    2015-01-01

    and combine all scenes into one wind speed map. QuikSCAT winds undergo a seasonal correction due to lack of data during the cold season that is based on its ratio relative to buoy time series. All processing steps reduce the biases of the individual maps relative to the buoy observed wind climates. The remote...

  1. 75 FR 32451 - Reedsport OPT Wave Park, LLC; Notice of Application Accepted for Filing, Ready for Environmental...

    Science.gov (United States)

    2010-06-08

    ...Buoy would have a maximum diameter of 36 feet, extend 29.5 feet above the water surface, and have a draft of 115 feet. A power/fiber optic cable would exit the bottom of each PowerBuoy, descending to the seabed in a lazy ``S'' shape with subsurface floats attached to the cable and a clump weight at the...

  2. A methodology for spectral wave model evaluation

    Science.gov (United States)

    Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.

    2017-12-01

    Model evaluation is accomplished by comparing bulk parameters (e.g., significant wave height, energy period, and mean square slope (MSS)) calculated from the model energy spectra with those calculated from buoy energy spectra. Quality control of the observed data and choice of the frequency range from which the bulk parameters are calculated are critical steps in ensuring the validity of the model-data comparison. The compared frequency range of each observation and the analogous model output must be identical, and the optimal frequency range depends in part on the reliability of the observed spectra. National Data Buoy Center 3-m discus buoy spectra are unreliable above 0.3 Hz due to a non-optimal buoy response function correction. As such, the upper end of the spectrum should not be included when comparing a model to these data. Bioufouling of Waverider buoys must be detected, as it can harm the hydrodynamic response of the buoy at high frequencies, thereby rendering the upper part of the spectrum unsuitable for comparison. An important consideration is that the intentional exclusion of high frequency energy from a validation due to data quality concerns (above) can have major implications for validation exercises, especially for parameters such as the third and fourth moments of the spectrum (related to Stokes drift and MSS, respectively); final conclusions can be strongly altered. We demonstrate this by comparing outcomes with and without the exclusion, in a case where a Waverider buoy is believed to be free of biofouling. Determination of the appropriate frequency range is not limited to the observed spectra. Model evaluation involves considering whether all relevant frequencies are included. Guidance to make this decision is based on analysis of observed spectra. Two model frequency lower limits were considered. Energy in the observed spectrum below the model lower limit was calculated for each. For locations where long swell is a component of the wave

  3. A system for offshore loading/unloading of a flowable medium, especially oil. System for offshore lasting/lossing av et strmbart medium, srlig olje

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Smedal, A.; Syvertsen, K.

    1994-07-04

    The invention deals with a system for transferring a flowable medium, especially oil, to or from a floating vessel. The system comprises a buoyancy unit in the form of a submerged buoy which is anchored to the sea bed and which is connected to at least one transfer line for medium, a downwardly open receiving means arranged on the vessel below the water surface and arranged for receipt and connection of the buoy, a hoisting means for raising the buoy for introduction thereof into the receiving means, and a means for allowing the vessel to turn about a vertical axis through the buoy when this is connected in the receiving means. The receiving means is a module arranged at a submerged location at the outer side of the hull of the vessel, and preferably is built into the low portion of the vessel, and the buoy comprises an outer buoyancy member and centrally therein a rotatably mounted member for the passage of medium. Further, in the inner space of the module there is provided a locking mechanism for releasable locking of the outer buoyancy member to the module, so that the outer member will turn about the central member with turing of the vessel, a coupling unit, which is associated with a tube system provided on the vessel for the transfer of medium, being connected to the central member through a swivel means. 6 figs.

  4. Real-time petroleum spill detection system

    International Nuclear Information System (INIS)

    Dakin, D.T.

    2001-01-01

    A real-time autonomous oil and fuel spill detection system has been developed to rapidly detect of a wide range of petroleum products floating on, or suspended in water. The system consists of an array of spill detection buoys distributed within the area to be monitored. The buoys are composed of a float and a multispectral fluorometer, which looks up through the top 5 cm of water to detect floating and suspended petroleum products. The buoys communicate to a base station computer that controls the sampling of the buoys and analyses the data from each buoy to determine if a spill has occurred. If statistically significant background petroleum levels are detected, the system raises an oil spill alarm. The system is useful because early detection of a marine oil spill allows for faster containment, thereby minimizing the contaminated area and reducing cleanup costs. This paper also provided test results for biofouling, various petroleum product detection, water turbidity and wave tolerance. The technology has been successfully demonstrated. The UV light source keeps the optic window free from biofouling, and the electronics are fully submerged so there is no risk that the unit could ignite the vapours of a potential oil spill. The system can also tolerate moderately turbid waters and can therefore be used in many rivers, harbours, water intakes and sumps. The system can detect petroleum products with an average thickness of less than 3 micrometers floating on the water surface. 3 refs., 15 figs

  5. Lateral Buoys - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic navigation charts (IENCs) were developed from available data used in maintenance of navigation channels. Users of these IENCs should be aware...

  6. Beyond Kickboards & Pull Buoys.

    Science.gov (United States)

    Armstrong, Charles W.; Imwold, Charles H.

    1983-01-01

    Swimming teachers must analyze their students' strokes for errors and provide constructive feedback. To do this requires mastering complex movement analysis techniques and feedback methods. An aquatics instructional methods course at Florida State University made use of strategies to develop these competencies. (PP)

  7. The Antifouling of ACLW-CAR Based on Ultrasonic Cleaner

    Science.gov (United States)

    Zhang, Guohua; Liu, Shixuan; Qin, Qingliang

    2017-10-01

    Equipped with ACLW-CAR, the buoy provided effective technical platform for on-site rapid monitoring of the chlorophyll and turbidity. Performance index and usage in the ocean buoy of ACLW-CAR was introduced. Ultrasonic cleaning method in seawater was developed for preventing ACLW-CAR from biofouling. Marine chlorophyll and turbidity data can serve for oceanographic research and marine resource exploitation.

  8. Untitled

    Indian Academy of Sciences (India)

    to retrieve on board, to memorize and store data and to supply power. Until the. 1960s the moored buoy system was commonly used: a buoy floating at the surface is moored by a rope, wire or chain using an anchor at the bottom. In the case of the sea floor observations the instrument is tethered by another rope near the ...

  9. The Coast Guard Proceedings of the Marine Safety and Security Council. Volume 72, Number 2, Summer 2015

    Science.gov (United States)

    2015-01-01

    we will increase maritime situational aware- ness through improved risk-based collection, analysis , and mitigation through improved waterway design...entrance buoys mark the seaward access to a waterway. Buoys can be either unlighted or lighted and display a rhythmic ashing light signal. They can...structures that provide a platform for a rhythmic , ashing light signal. This includes range lights that mark the centerline of a channel, sector

  10. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    Science.gov (United States)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the

  11. Designing a point-absorber wave energy converter for the Mediterranean Sea

    International Nuclear Information System (INIS)

    Archetti, Renata; Moreno Miquel, Adria; Antonini, Alessandro; Passoni, Giuseppe; Bozzi, Silvia; Gruosso, Giambattista; Scarpa, Francesca; Bizzozero, Federica; Giassi, Marianna

    2015-01-01

    This work aims to assess the potential for wave energy production in the Italian seas by the deployment of arrays of heaving point absorbers, specifically optimized for mild climates. We model a single-body WEC, consisting of a cylindrical heaving buoy, attached to a linear electric generator placed on the seabed. The model includes both hydrodynamic and electromechanical forces. The results show that the best buoy-generator configuration at the selected sites (Alghero and Mazara del Vallo) is given by a 6 to 10 kW device and with a buoy with diameter between 4 and 5 m. This device can be brought to resonance, increasing the performances, by adding a submerged sphere. These results are encouraging and enlarge the perspective on wave energy production in the Italian seas. [it

  12. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys Ocean Profiles

    Science.gov (United States)

    2017-01-01

    converted to engineering units by the TSK Converter and recorded on the laptop computer . A backup recording of the raw received signal is made with...S, V, internal waves/mixing Clouds and the Evolution of the SIZ in Beaufort and Chukchi Seas Schweiger Lindsay, Zhang, Maslanik, Lawrence...Atmospheric profiles (dropsondes, micro-aircraft), cloud top/base heights UpTempO buoys for understanding and prediction…. Steele UpTempO buoy

  13. Assessment of MTI Water Temperature Retrievals with Ground Truth from the Comanche Peak Steam Electric Station Cooling Lake

    International Nuclear Information System (INIS)

    Kurzeja, R.J.

    2002-01-01

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at the Squaw Creek reservoir at the Comanche Peak Steam Electric Station near Granbury Texas. Temperatures calculated for thirty-four images covering the period May 2000 to March 2002 are compared with water temperatures measured at 10 instrumented buoy locations supplied by the Savannah River Technology Center. The data set was used to examine the effect of image quality on temperature retrieval as well as to document any bias between the sensor chip arrays (SCA's). A portion of the data set was used to evaluate the influence of proximity to shoreline on the water temperature retrievals. This study found errors in daytime water temperature retrievals of 1.8 C for SCA 2 and 4.0 C for SCA 1. The errors in nighttime water temperature retrievals were 3.8 C for SCA 1. Water temperature retrievals for nighttime appear to be related to image quality with the largest positive bias for the highest quality images and the largest negative bias for the lowest quality images. The daytime data show no apparent relationship between water temperature retrieval error and image quality. The average temperature retrieval error near open water buoys was less than corresponding values for the near-shore buoys. After subtraction of the estimated error in the ground truth data, the water temperature retrieval error was 1.2 C for the open-water buoys compared to 1.8 C for the near-shore buoys. The open-water error is comparable to that found at Nauru

  14. Drones for Provision of Flotation Support in Simulated Drowning.

    Science.gov (United States)

    Bäckman, Anders; Hollenberg, Jacob; Svensson, Leif; Ringh, Mattias; Nordberg, Per; Djärv, Therese; Forsberg, Sune; Hernborg, Olof; Claesson, Andreas

    The feasibility and potential of using drones for providing flotation devices in cases of drowning have not yet been assessed. We hypothesize that a drone carrying an inflatable life buoy is a faster way to provide flotation compared with traditional methods. The purpose of this study is to explore the feasibility and efficiency of using a drone for delivering and providing flotation support to conscious simulated drowning victims. A simulation study was performed with a simulated drowning victim 100 m from the shore. A drone (DJI Phantom 4; dji, Shenzhen, China) equipped with an inflatable life buoy of 60 N was compared with traditional surf rescue swimming for providing flotation. The primary outcome was delay (minutes:seconds). A total number of 30 rescues were performed with a median time to delivery of the floating device of 30 seconds (interquartile range [IQR] = 24-32 seconds) for the drone compared with 65 seconds (IQR = 60-77 seconds) with traditional rescue swimming (P drone had an accuracy of 100% in dropping the inflatable life buoy drones to deliver inflatable life buoys is safe and may be a faster method to provide early flotation devices to conscious drowning victims compared with rescue swimming. Copyright © 2018 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  15. DRIFTER Web App Development Support

    Science.gov (United States)

    Davis, Derrick D.; Armstrong, Curtis D.

    2015-01-01

    During my 2015 internship at Stennis Space Center (SSC) I supported the development of a web based tool to enable user interaction with a low-cost environmental monitoring buoy called the DRIFTER. DRIFTERs are designed by SSC's Applied Science and Technology Projects branch and are used to measure parameters such as water temperature and salinity. Data collected by the buoys help verify measurements by NASA satellites, which contributes to NASA's mission to advance understanding of the Earth by developing technologies to improve the quality of life on or home planet. My main objective during this internship was to support the development of the DRIFTER by writing web-based software that allows the public to view and access data collected by the buoys. In addition, this software would enable DRIFTER owners to configure and control the devices.

  16. The U.S. Coast Guard’s Deepwater Force Modernization Plan: Can It Be Accelerated? Will It Meet Changing Security Needs?

    Science.gov (United States)

    2004-01-01

    Vehicle WAGB Ice Breaker WHEC High Endurance Cutter (also HEC) WIX Training Cutter WLB Seagoing Buoy Tender WLI Inland Buoy Tender WLIC Inland Construction...Foreign vessel inspections • Living marine resources protection • Marine and environmental science. The USCG website includes web pages for each mission...pp. 6–8 (available on the Web at http://www.uscg.mil/deepwater/. Mission Need. Most USCG Deepwater missions can be broken down into the functional

  17. Review of 2 kW grid connected LOPF tests in Nissum Bredning

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    This report has been prepared by Per Resen and Aalborg University for the ForskVE project 10878: 2 kW grid connected LOPF test buoy. AAU has the role of reviewing and advise on the data analysis, besides compiling this report. The purpose of this project was to document the mechanical power...... production against a target power curve of a 2kW grid connected wave energy buoy in Nissum Bredning at Helligsø....

  18. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  19. Hydrostatic Mooring System. Final Technical Report: Main Report plus Appendices A, B, and C - Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Jens Korsgaard

    2000-08-08

    The main conclusions from the work carried out under this contract are: An ordinary seafarer can learn by training on a simulator, to moor large tanker vessels to the Hydrostatic Mooring, safely and quickly, in all weather conditions up to storms generating waves with a significant wave height of 8 m. Complete conceptual design of the Hydrostatic Mooring buoy was carried out which proved that the buoy could be constructed entirely from commercially available standard components and materials. The design is robust, and damage resistant. The mooring tests had a 100% success rate from the point of view of the buoy being securely attached and moored to the vessel following every mooring attempt. The tests had an 80% success rate from the point of view of the buoy being adequately centered such that petroleum transfer equipment on the vessel could be attached to the corresponding equipment on the buoy. The results given in Table 3-2 of the mooring tests show a consistently improving performance from test to test by the Captain that performed the mooring operations. This is not surprising, in view of the fact that the Captain had only three days of training on the simulator prior to conducting the tests, that the maneuvering required is non-standard, and the test program itself lasted four days. One conclusion of the test performance is that the Captain was not fully trained at the initiation of the test. It may therefore be concluded that a thoroughly trained navigator would probably be able to make the mooring such that the fluid transfer equipment can be connected with reliability in excess of 90%. Considering that the typical standard buoy has enough power aboard to make eight mooring attempts, this implies that the probability that the mooring attempt should fail because of the inability to connect the fluid transfer equipment is of the order of 10{sup {minus}8}. It may therefore be concluded that the mooring operation between a Hydrostatic Mooring and a large

  20. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    Science.gov (United States)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by

  1. Time-Series Measurements of Atmospheric and Oceanic CO2 and O2 in the Western Gulf of Maine

    Science.gov (United States)

    2008-09-01

    is 2 meters in diameter and 3.5 m tall with a Surlyn foam flotation collar (Gilman Corporation). The Surlyn foam was cut with two chines so that...the flotation in the lightweight foam, the buoy with full 978-1-4244-2620-1/08/$25.00 ©2008 IEEE Report Documentation Page Form ApprovedOMB No. 0704...deployments, necessitating routine servicing (buoy pulled on deck in good weather and cleaned) (Figure 8). Modifications to a 90/10 copper -nickel

  2. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  3. Technologies for the marking of fishing gear to identify gear components entangled on marine animals and to reduce abandoned, lost or otherwise discarded fishing gear.

    Science.gov (United States)

    He, Pingguo; Suuronen, Petri

    2018-04-01

    Fishing gears are marked to establish and inform origin, ownership and position. More recently, fishing gears are marked to aid in capacity control, reduce marine litter due to abandoned, lost or otherwise discarded fishing gear (ALDFG) and assist in its recovery, and to combat illegal, unreported and unregulated (IUU) fishing. Traditionally, physical marking, inscription, writing, color, shape, and tags have been used for ownership and capacity purposes. Buoys, lights, flags, and radar reflectors are used for marking of position. More recently, electronic devices have been installed on marker buoys to enable easier relocation of the gear by owner vessels. This paper reviews gear marking technologies with focus on coded wire tags, radio frequency identification tags, Automatic Identification Systems, advanced electronic buoys for pelagic longlines and fish aggregating devices, and re-location technology if the gear becomes lost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The use of handheld GPS to determine tidal slack in estuaries

    Science.gov (United States)

    Lievens, M.; Savenije, H.; Luxemburg, W.

    2010-12-01

    The phase lag between the moment of high water and high water slack, respectively low water and low water slack, is a key parameter in tidal hydraulics which is often disregarded. Savenije (1992) found that there are simple analytical relations for estuary topography, wave celerity and phase lag, that can be derived from the equation for conservation of mass and momentum. At present, methods to determine the phase lag by measuring the moment of tidal slack in the field are often either inadequate or very expensive. To be sure if assumptions made for the analytical derivation are acceptable, measuring the ‘real’ moment of tidal slack in the field is necessary. The method to determine the exact moment of tidal slack, developed in this work, is based on the use of a simple handheld GPS at some locations in the Dutch part of the Scheldt estuary. The GPS device is attached to a shipping lane buoy, which is fixed to the bottom of the estuary with a long chain. The chain gives the buoy enough space for an amplitude of approximately 25 - 30 meters. The GPS device measures the location of the buoy every 30 seconds for a few days. The data from the GPS results in a nice view of the path that the buoy travelled. The moment that the buoy switches direction, should be the moment of tidal slack. The “GPS method” of measuring the phase lag would allow application on full estuary scale in the future. Besides that, we get more insight in the key parameter of slack times for tidal hydraulics. The results are also of key importance to commercial shipping, towage and salvage companies and other users of estuaries worldwide.

  5. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  6. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lamb, Bradford [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Prudell, Joseph [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Hammagren, Erik [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc., Charlottesville, VA (United States)

    2016-08-22

    This Project aims to satisfy objectives of the DOE’s Water Power Program by completing a system detailed design (SDD) and other important activities in the first phase of a utility-scale grid-connected ocean wave energy demonstration. In early 2012, Columbia Power (CPwr) had determined that further cost and performance optimization was necessary in order to commercialize its StingRAY wave energy converter (WEC). CPwr’s progress toward commercialization, and the requisite technology development path, were focused on transitioning toward a commercial-scale demonstration. This path required significant investment to be successful, and the justification for this investment required improved annual energy production (AEP) and lower capital costs. Engineering solutions were developed to address these technical and cost challenges, incorporated into a proposal to the US Department of Energy (DOE), and then adapted to form the technical content and statement of project objectives of the resulting Project (DE-EE0005930). Through Project cost-sharing and technical collaboration between DOE and CPwr, and technical collaboration with Oregon State University (OSU), National Renewable Energy Lab (NREL) and other Project partners, we have demonstrated experimentally that these conceptual improvements have merit and made significant progress towards a certified WEC system design at a selected and contracted deployment site at the Wave Energy Test Site (WETS) at the Marine Corps Base in Oahu, HI (MCBH).

  7. Special Purpose Buoys - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  8. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  9. Data communication for near shore applications

    OpenAIRE

    Stetenfeldt, Andreas

    2017-01-01

    The wave energy conversion concept developed at Uppsala University is based on a buoy at sea level that is connected to a linear generator on the sea bed. The movements of the buoy riding the waves gets converted into electricity by the reciprocal movements of the translator inside the generator. To be able to compensate the negative impact of water level variations on power production, which is especially important at sites with high tidal range, a sea level compensation system to be placed ...

  10. A wave parameters and directional spectrum analysis for extreme winds

    OpenAIRE

    Montoya Ramírez, Rubén Darío; Osorio Arias, Andres Fernando; Ortiz Royero, Juan Carlos; Ocampo-Torres, Francisco Javier

    2013-01-01

    In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical compar...

  11. Wave Energy, Lever Operated Pivoting Float LOPF Study

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg...... University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed...... for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency...

  12. Utilization of space technology for terrestrial solar power applications

    Science.gov (United States)

    Yasui, R. K.; Patterson, R. E.

    1974-01-01

    A description is given of the evolution of photovoltaic power systems designed and built for terrestrial applications, giving attention to problem areas which are currently impeding the further development of such systems. The rooftop testing of surplus solar panels is considered along with solar powered seismic observatories, solar powered portable radio sets, and design considerations identified from past experience. Present activities discussed are related to a solar powered on-shore beacon flasher system, a solar powered buoy, and a solar powered beacon flasher buoy.

  13. Assessment of the Water Levels and Currents at the Mississippi Bight During Hurricane Katrina.

    Science.gov (United States)

    Nwankwo, U. C.; Howden, S. D.; Dodd, D.; Wells, D. E.

    2017-12-01

    In an effort to extend the length of GPS baselines further offshore, the Hydrographic Science Research Center at the University of Southern Mississippi deployed a buoy which had a survey grade GPS receiver, an ADPC and a motion sensor unit in the Mississippi Bight in late 2004. The GPS data were initially processed using the Post Processed Kinematic technique with data from a nearby GPS base station on Horn Island. This processing technique discontinued when the storm (Hurricane Katrina) destroyed the base station in late August of 2005. However, since then a stand-alone positioning technique termed Precise Point Positioning (PPP) matured and allowed for the reprocessing of the buoy GPS data throughout Katrina. The processed GPS data were corrected for buoy angular motions using Tait Bryan transformation model. Tidal datums (Epoch 1983-2001) were transferred from the National Oceanic and Atmospheric Administration (NOAA) National Water Level at Waveland, Mississippi (Station ID 8747766) to the buoy using the Modified Range Ratio method. The maximum water level during the storm was found to be about 3.578m, relative to the transferred Mean Sea Level datum. The storm surge built over more than 24 hours, but fell back to normal levels in less than 3 hours. The maximum speed of the current with respect to the seafloor was recorded to be about 4knots towards the southeast as the storm surge moved back offshore.

  14. Tropical Pacific Observing for the Next Decade

    Science.gov (United States)

    Legler, David M.; Hill, Katherine

    2014-06-01

    More than 60 scientists and program officials from 13 countries met at the Scripps Institution of Oceanography for the Tropical Pacific Observing System (TPOS) 2020 Workshop. The workshop, although motivated in part by the dramatic decline of NOAA's Tropical Atmosphere Ocean (TAO) buoy reporting from mid-2012 to early 2014 (see http://www.bloomberg.com/news/2014-03-07/aging-el-nino-buoys-getting-fixed-as-weather-forecasts-at-risk.html), evaluated the needs for tropical Pacific observing and initiated efforts to develop a more resilient and integrative observing system for the future.

  15. A design proposal of real-time monitoring stations: implementation and performance in contrasting environmental conditions

    Directory of Open Access Journals (Sweden)

    Jose González

    2012-09-01

    Full Text Available With the aim of creating a real-time monitoring network for both oceanographic and meteorological data, a monitoring station conceptual design was developed. A common framework for software and electronics was adapted to different environmental conditions using two buoy approaches: one intended for oceanic waters, to be moored up to 30-40 m depth, where waves are the critical design factor, and one for continental waters (rivers, lakes and the inner part of estuaries, where currents are the critical design factor. When structures such as bridges are present in the area, the monitoring station can be installed on these structures, thus reducing its impact and increasing safety. In this paper, the design, implementation, operation and performance of these stations are described. A reliability index is calculated for the longest time series of the three related deployment options on the Galician coast: Cíes (oceanic buoy in front of the Ría de Vigo, Catoira (continental buoy in the Ulla river and Cortegada (installation in a bed in the Ría de Arousa.

  16. Reedsport PB150 Deployment and Ocean Test Project

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Phil [Ocean Power Technologies Inc., Pennington, NJ (United States)

    2016-06-03

    As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport (OR) was planned to consist of 10 PowerBuoys (Phase II)1, located 2.5 miles off the coast. U.S. Department of Energy (DOE) funding under a prior DOE Grant (DE-FG36-08GO88017) along with funding from PNGC Power, an Oregon-based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. The design and fabrication of the first PowerBuoy and factory testing of the power take-off subsystem were completed, and the power take-off subsystem was successfully integrated into the spar at the fabricator’s facility in Oregon. The objectives of this follow-on grant were: advance PB150B design from TRL 5/6 to TRL 7/8; deploy a single PB150 and operate autonomously for 2 years; establish O&M costs; collect environmental information; and establish manufacturing methodologies.

  17. A remote oil spill detection system for early warning of spills at waterfront or land-based facilities

    International Nuclear Information System (INIS)

    Parsons, M.J.; Stocky, W.D.; Westerlind, J.; Gram, H.R.; Jadamec, M.P.; Johnson, J.R.

    1992-01-01

    Early detection of spills during loading/unloading of crude oil or products at terminals or plants is essential for quickly stopping the spill and minimizing its impact. Such detection is particularly difficult at night or in remote areas. In order to provide a reliable and inexpensive spill detection system for such an application, a joint development process was undertaken to redesign an oil spill detection buoy system which had been successfully tested in the 1970s. The sensor's operation is based on the stimulated fluorescence of oil and selective wavelength detection of this fluorescence. The prototype system consists of a flotation buoy for remote deployment of the sensor, rechargeable battery supply, a land-based computer base station, and radio signal transmitter. The oil spill detection buoy was modified in 1991 and tested in the laboratory. Field trials are under way and tests to date have confirmed the unit's ability to detect oil and to differentiate between various types of oil and/or products, particularly if the software is alerted to the type of product being transferred. 2 figs

  18. Predicting Output Power for Nearshore Wave Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Henock Mamo Deberneh

    2018-04-01

    Full Text Available Energy harvested from a Wave Energy Converter (WEC varies greatly with the location of its installation. Determining an optimal location that can result in maximum output power is therefore critical. In this paper, we present a novel approach to predicting the output power of a nearshore WEC by characterizing ocean waves using floating buoys. We monitored the movement of the buoys using an Arduino-based data collection module, including a gyro-accelerometer sensor and a wireless transceiver. The collected data were utilized to train and test prediction models. The models were developed using machine learning algorithms: SVM, RF and ANN. The results of the experiments showed that measurements from the data collection module can yield a reliable predictor of output power. Furthermore, we found that the predictors work better when the regressors are combined with a classifier. The accuracy of the proposed prediction model suggests that it could be extremely useful in both locating optimal placement for wave energy harvesting plants and designing the shape of the buoys used by them.

  19. Linking the watershed to the schoolshed: teaching sustainable development in K-12 with the Chester RIver Watershed Observatory

    Science.gov (United States)

    Trembanis, A. C.; Levin, D.; Seidel, J.

    2012-12-01

    The Chester River has been the subject of ongoing scientific studies in response to both the Clean Water Act and the EPA's Chesapeake Bay Program initiatives. The Upper, Middle, and Lower Chester are on the Maryland Department of Environment's list of "impaired waters". The Chester River Watershed (CRW) Observatory is lead by the Center for Environment & Society at Washington College. Eight clusters representing 22 public and private K-12 schools in the CRW provide the sampling sites distributed throughout the watershed. Weather stations will be installed at these sites allowing monitoring of the watershed's microclimate. Each cluster will be assigned a Basic Observation Buoy (BOB), an easy to assemble inexpensive buoy platform for real-time water column and atmospheric condition measurements. The BOBs are fitted with a data sonde to collect similar data parameters (e.g. salinity, temperature) as the main stem Chesapeake Bay buoys do. These assets will be deployed and the data transmitted to the Chester River Geographic Information System site for archival and visual display. Curriculum already developed for the Chesapeake Bay Interpretive Buoy System by the NOAA Chesapeake Bay Office will be adapted to the Chester River Watershed. Social issues of water sustainability will be introduced using the Watershed Game (Northland NEMO ®). During 2011 NOAA's Chesapeake Bay Office completed curriculum projects including Chesapeake Exploration, Build-a-Buoy (BaBs) and Basic Observation Buoys (BOBs). These engaging projects utilize authentic data and hands-on activities to demonstrate the tools scientists use to understand system interactions in the Bay. Chesapeake Exploration is a collection of online activities that provides teachers and students with unprecedented access to Bay data. Students are guided through a series of tasks that explore topics related to the interrelation between watersheds, land-use, weather, water quality, and living resources. The BaBs and BOBs

  20. Nearshore Tests of the Tidal Compensation System for Point-Absorbing Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Valeria Castellucci

    2015-04-01

    Full Text Available The power production of the linear generator wave energy converter developed at Uppsala University is affected by variations of mean sea level. The reason is that these variations change the distance between the point absorber located on the surface and the linear generator located on the seabed. This shifts the average position of the translator with respect to the center of the stator, thereby reducing the generator output power. A device mounted on the point absorber that compensates for tides of small range by regulating the length of the connection line between the buoy at the surface and the linear generator has been constructed and tested. This paper describes the electro-mechanical, measurement, communication and control systems installed on the buoy and shows the results obtained before its connection to the generator. The adjustment of the line was achieved through a linear actuator, which shortens the line during low tides and vice versa. The motor that drives the mechanical device was activated remotely via SMS. The measurement system that was mounted on the buoy consisted of current and voltage sensors, accelerometers, strain gauges and inductive and laser sensors. The data collected were transferred via Internet to a Dropbox server. As described within the paper, after the calibration of the sensors, the buoy was assembled and tested in the waters of Lysekil harbor, a few kilometers from the Uppsala University research site. Moreover, the performance of the sensors, the motion of the mechanical device, the power consumption, the current control strategy and the communication system are discussed.

  1. A concise account of techniques available for shipboard sea state estimation

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2017-01-01

    This article gives a review of techniques applied to make sea state estimation on the basis of measured responses on a ship. The general concept of the procedures is similar to that of a classical wave buoy, which exploits a linear assumption between waves and the associated motions. In the frequ......This article gives a review of techniques applied to make sea state estimation on the basis of measured responses on a ship. The general concept of the procedures is similar to that of a classical wave buoy, which exploits a linear assumption between waves and the associated motions...

  2. Member states buoy up beleagured EMBL

    CERN Multimedia

    Balter, M

    1999-01-01

    EMBL's governing council, made up of delegates from the lab's 16 member countries, agreed in principle to meet the costs of a multimillion-dollar pay claim, the result of a recent ruling by the ILO in Geneva (1 page).

  3. Subsurface Buoy Forms for Array Applications

    Science.gov (United States)

    1990-10-01

    CIRCUMSCRIBED CIRCLES Figure 19. Derivation of a cycloid outline with relationship to familiar shape outlines. 35 An AutoLisp routine has been created to...An AutoLisp Program Routine Created to Construct the Torospherical Outlines Shown on the Previous Page Is Reproduced Below. (defun c.Iorodraw () input...F - 19.0 Case 7 f - 200 Case 8 f - 2 -0 A-26 An AutoLisp Routine Created to Enable Autocad to Construct the Dished and Flanged End Bell Outlines

  4. The Santander Atlantic Time-Series Station (SATS): A Time Series combination of a monthly hydrographic Station and The Biscay AGL Oceanic Observatory.

    Science.gov (United States)

    Lavin, Alicia; Somavilla, Raquel; Cano, Daniel; Rodriguez, Carmen; Gonzalez-Pola, Cesar; Viloria, Amaia; Tel, Elena; Ruiz-Villareal, Manuel

    2017-04-01

    Long-Term Time Series Stations have been developed in order to document seasonal to decadal scale variations in key physical and biogeochemical parameters. Long-term time series measurements are crucial for determining the physical and biological mechanisms controlling the system. The Science and Technology Ministers of the G7 in their Tsukuba Communiqué have stated that 'many parts of the ocean interior are not sufficiently observed' and that 'it is crucial to develop far stronger scientific knowledge necessary to assess the ongoing changes in the ocean and their impact on economies.' Time series has been classically obtained by oceanographic ships that regularly cover standard sections and stations. From 1991, shelf and slope waters of the Southern Bay of Biscay are regularly sampled in a monthly hydrographic line north of Santander to a depth of 1000 m in early stages and for the whole water column down to 2580 m in recent times. Nearby, in June 2007, the IEO deployed an oceanic-meteorological buoy (AGL Buoy, 43° 50.67'N; 3° 46.20'W, and 40 km offshore, www.boya-agl.st.ieo.es). The Santander Atlantic Time Series Station is integrated in the Spanish Institute of Oceanography Observing Sistem (IEOOS). The long-term hydrographic monitoring has allowed to define the seasonality of the main oceanographic facts as the upwelling, the Iberian Poleward Current, low salinity incursions, trends and interannual variability at mixing layer, and at the main water masses North Atlantic Central Water and Mediterranean Water. The relation of these changes with the high frequency surface conditions recorded by the Biscay AGL has been examined using also satellite and reanalysis data. During the FIXO3 Project (Fixed-point Open Ocean Observatories), and using this combined sources, some products and quality controled series of high interest and utility for scientific purposes has been developed. Hourly products as Sea Surface Temperature and Salinity anomalies, wave significant

  5. Modeling of a Point Absorber for Energy Conversion in Italian Seas

    Directory of Open Access Journals (Sweden)

    Renata Archetti

    2013-06-01

    Full Text Available In the present paper, we investigate the feasibility of wave electricity production in Italian seas by the deployment of the Seabased wave energy converter (WEC. A numerical model of the coupled buoy-generator system is presented, which simulates the behavior of the wave energy converter under regular waves of different wave heights and periods. The hydrodynamic forces, including excitation force, radiation impedance and hydrostatic force, are calculated by linear potential wave theory, and an analytical model is used for the linear generator. Two buoys of different radii are considered to explore the effect of buoy dimension on energy conversion and device efficiency. The power output is maximized by adding a submerged object to the floating buoy, in order to bring the system into resonance with the typical wave frequencies of the sites. The simulation results show a very good agreement with the published data on the Seabased WEC. The model is used to estimate energy production at eight Italian offshore locations. The results indicate that the degree of utilization of the device is higher than 20% at the two most energetic Italian sites (Alghero and Mazara del Vallo and that it can be considerably increased if the floating body is connected to a submerged object, thanks to the resonant behavior of the WEC. In this case, the degree of utilization of the device would be higher than 40% at most of the study sites, with the highest value at Mazara del Vallo. The work enlarges the perspective, to be confirmed by experimental tests and more accurate numerical modeling, on clean electric power production from ocean waves in the Italian seas.

  6. Wave Energy from the North Sea: Experiences from the Lysekil Research Site

    Science.gov (United States)

    Leijon, Mats; Boström, Cecilia; Danielsson, Oskar; Gustafsson, Stefan; Haikonen, Kalle; Langhamer, Olivia; Strömstedt, Erland; Stålberg, Magnus; Sundberg, Jan; Svensson, Olle; Tyrberg, Simon; Waters, Rafael

    2008-05-01

    This paper provides a status update on the development of the Swedish wave energy research area located close to Lysekil on the Swedish West coast. The Lysekil project is run by the Centre for Renewable Electric Energy Conversion at Uppsala University. The project was started in 2004 and currently has permission to run until the end of 2013. During this time period 10 grid-connected wave energy converters, 30 buoys for studies on environmental impact, and a surveillance tower for monitoring the interaction between waves and converters will be installed and studied. To date the research area holds one complete wave energy converter connected to a measuring station on shore via a sea cable, a Wave Rider™ buoy for wave measurements, 25 buoys for studies on environmental impact, and a surveillance tower. The wave energy converter is based on a linear synchronous generator which is placed on the sea bed and driven by a heaving point absorber at the ocean surface. The converter is directly driven, i.e. it has no gearbox or other mechanical or hydraulic conversion system. This results in a simple and robust mechanical system, but also in a somewhat more complicated electrical system.

  7. A system for use in offshore petroleum production; System for anvendelse ved offshore petroleumsproduksjon

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Mjoeen, S.A.; Smedal, A.; Syvertsen, K.

    1994-10-31

    The invention relates to a system for use in offshore oil and gas production from production wells on the sea bed. The system comprises a submerged buoy having an outer buoyancy member which is arranged for introduction and releasable fastening in a submerged, downwardly open receiving space in a vessel, and a central member which is rotatably mounted in the outer member and is anchored to the sea bed and is connected to at least one transfer line extending from a respective production well up to the buoy, a shaft extending between the receiving space and the deck of the vessel. The system comprises a swivel unit which is installed at the lower end of the shaft so that it is limitedly raisable and lowerable, and which is connected to a tube system on the vessel, the swivel unit comprising inner and outer mutually rotatable swivel members and at its underside is provided with a number of coupling heads for interconnection with corresponding connectors arranged at the upper ends of the topical number of transfer lines, these lines at their upper end being suspended at the upper end of the central member of the buoy. 6 figs.

  8. A system for use in offshore petroleum production; System for anvendelse ved offshore petroleumsproduksjon

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.G.; Mjoeen, S.A.; Smedal, A.; Syvertsen, K.

    1997-07-08

    The invention concerns a system for use in offshore oil and gas production from production wells on the sea bed. The system comprises a submerged buoy having an outer buoyancy member which is arranged for introduction and releasable fastening in a submerged, downwardly open receiving space in a vessel, and a central member which is rotatory mounted in the outer member and is anchored to the sea bed and is connected to at least one transfer line extending from a respective production well up to the buoy, and a shaft extending between the receiving space and the deck of the vessel. The system includes a swivel unit which is installed at the lower end of the shaft so that it is limitedly raising and lowering, and which is connected to a tube system on the vessel. The swivel unit comprises inner and outer mutually rotatable swivel members and at its underside is provided with a number of coupling heads for interconnection with corresponding connectors arranged at the upper ends of the topical number of transfer lines. These lines are suspended at the upper end of the central member of the buoy. 6 figs.

  9. A system for transportation of hydrocarbons at sea; System for transport av hydrokarboner til havs

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Smedal, A.

    1997-04-01

    To exploit the offshore oil and gas fields economically it is important to use suitable methods and equipment for transporting the oil and gas to the landing sites. The present invention concerns a system for transportation of hydrocarbons to the landing sites. It consists of one or more loading buoys and a number of preferably conventional tankers and at least one offshore loading ship arranged to receive hydrocarbons from the loading buoy to which it is connected by means of a coupling device in the ship`s bow. The tankers have in their sterns arrangements to convey the fluid through flexible tubes from complementary arrangements in the bow of the loading ship. The loading ship and the tanker have a position reference system for mutual dynamical positioning. The entire operation of connecting the tubes and transferring the fluid flow takes place with both ships moving, at least at steerage way. The invention aims to provide efficient use of the expensive special ships that are needed to communicate with the loading buoys. Another aim is to reduce the need for expensive specialized equipment onboard both the loading ships and the tankers. 5 figs.

  10. Public safety around dams : proposed technical bulletins

    Energy Technology Data Exchange (ETDEWEB)

    Raska, C [BC Hydro, Burnaby, BC (Canada); Rowat, L [Ontario Power Generation Inc., Niagara Falls, ON (Canada)

    2009-07-01

    This presentation provided an introduction to the Canadian Dam Association (CDA) public safety guideline and proposed technical bulletins for exterior danger and warning signs; waterway booms and buoys; and audible and visual alerts for water conveyance structures. The presentation outlined the hierarchy of documents for principles, guidelines and technical bulletins. Effective signage includes signs in which the text is sized according to the viewing distance; the message identifies the hazard and the actions to take; and the wording is understood by the public. The criteria for effective booms and buoys were discussed in terms of visibility of booms; types of buoys to use; distance between booms floats; design issues for headpond application versus tailrace application; angling to facilitate self-rescue; and distance from structure. Proposed criteria for audible and visual alerts were also discussed. The audible and visual danger signal should have a designated signal reception area where people can recognize and react to the signal. If a visual signalling device is used, it should be red to indicate danger. Maintenance and inspection tests should be performed regularly on audible and visual signalling devices. 1 ref., 2 figs.

  11. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    Science.gov (United States)

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  12. Influence of material selection on the structural behavior of a wave energy converter

    Directory of Open Access Journals (Sweden)

    Cândida M. S. P. Malça

    2014-09-01

    Full Text Available In the last decades, the world energy demand has raised significantly. Concerning this fact, wave energy should be considered as a valid alternative for electricity production. Devices suitable to harness this kind of renewable energy source and convert it into electricity are not yet commercially competitive. This paper is focused on the selection and analysis of different types of elastic materials and their influence on the structural behavior of a wave energy converter (WEC. After a brief characterization of the device, a tridimensional computer aided design (3D CAD numerical model was built and several finite element analyses (FEA were performed through a commercial finite element code. The main components of the WEC, namely the buoy, supporting cables and hydraulic cylinder were simulated assuming different materials. The software used needs, among other parameters, the magnitude of the resultant hydrodynamic forces acting upon the floating buoy obtained from a WEC time domain simulator (TDS which was built based on the WEC dynamic model previously developed. The Von Mises stress gradients and displacement fields determined by the FEA demonstrated that, regardless of the WEC component, the materials with low Young's modulus seems to be unsuitable for this kind of application. The same is valid for the material yield strength since materials with a higher yield strength lead to a better structural behavior of WEC components because lower stress and displacement values were obtained. The developed 3D CAD numerical model showed to be suitable to analyze different combinations of structural conditions. They could depend of different combinations of buoy position and resultant hydrodynamic forces acting upon the buoy, function of the specific sea wave parameters found on the deployment site.

  13. The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic

    Science.gov (United States)

    Ferreira, B. P.; Costa, M. B. S. F.; Coxey, M. S.; Gaspar, A. L. B.; Veleda, D.; Araujo, M.

    2013-06-01

    In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009-2010 El Niño event was equivalent to the anomaly observed during the 1997-1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions.

  14. Effects of Damping Plate and Taut Line System on Mooring Stability of Small Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2015-01-01

    Full Text Available Ocean wave energy can be used for electricity supply to ocean data acquisition buoys. A heaving buoy wave energy converter is designed and the damping plate and taut line system are used to provide the mooring stability for better operating conditions. The potential flow assumption is employed for wave generation and fluid structure interactions, which are processed by the commercial software AQWA. Effects of damping plate diameter and taut line linking style with clump and seabed weights on reduction of displacements in 6 degrees of freedom are numerically studied under different operating wave conditions. Tensile forces on taut lines of optimized mooring system are tested to satisfy the national code for wire rope utilization.

  15. On heat and moisture exchanges between the sea surface and the atmosphere during the medalpex

    International Nuclear Information System (INIS)

    Colacino, M.; Purini, R.

    1988-01-01

    Data collected by a buoy, moored in the Ligurian Sea about 27 nautical miles off the coast during the period 1 March-31 May, 1982, are analysed. The buoy was equipped by the Institute for Naval Automation (IAN) of the Italian National Research Council (CNR) during the Mediterrenean Alpine Experiment (Medalpex), join program of the Alpine Experiment (Alpex). Exchanges of heat and mass across the air-sea interface are computed from the collected data and comparisons with existing values are made. The resulting agreement confirms the strong interaction between the sea and the atmosphere in some peculiar situation, and lends weight to the oceanographic hypotesis for the statistical occurrence of deeping of orographic cyclones in the Liguro-Provencal basin

  16. Innovative technologies (DIY instruments and data sonification) for engaging volunteers to participate in marine environmental monitoring programs.

    Science.gov (United States)

    Piera, J.

    2016-02-01

    In recent years the promotion of marine observations based on volunteer participation, known as Citizen Science, has provided environmental data with unprecedented resolution and coverage. The Citizen Science based approach has the additional advantage to engage people by raising awareness and knowledge of marine environmental problems. The technological advances in embedded systems and sensors, enables citizens to create their own devices (known as DIY, Do-It-Yourself, technologies) for monitoring the marine environment. Within the context of the CITCLOPS project (www.citclops.eu), a DIY instrument was developed to monitor changes on water transparency as a water quality indicator. The instrument, named KdUINO, is based on quasi-digital sensors controlled by an open-hardware (Arduino) board. The sensors measure light irradiance at different depth and the instrument automatically calculates the light diffuse attenuation Kd coefficient to quantify the water transparency. The buoy construction is an ideal activity for creative STEM programming. Several workshops in high schools were done to show to the students how to construct their own buoy. Some of them used the buoy to develop their own scientific experiments. In order to engage students more motivated in artistic disciplines, the research group developed also a sonification system that allows creating music and graphics using KdUINO measurements as input data.

  17. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis

    Science.gov (United States)

    Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.

    2018-04-01

    Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.

  18. Arctic Observing Experiment (AOX) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Rigor, Ignatius [Applied Physics Lab, University of Washington; Johnson, Jim [Applied Physics Lab, University of Washington; Motz, Emily [National Ice Center; Bisic, Aaron [National Ice Center

    2017-06-30

    Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support for research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).

  19. Evolution of Summer Ocean Mixed Layer Heat Content and Ocean/Ice Fluxes in the Arctic Ocean During the Last Decade

    Science.gov (United States)

    Stanton, T. P.; Shaw, W. J.

    2014-12-01

    Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.

  20. Oceanic Precondition and Evolution of the Indian Ocean Dipole Events

    Science.gov (United States)

    Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.

    2008-12-01

    Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.

  1. GODAE, SFCOBS - Surface Temperature Observations, 1998-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  2. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  3. Computational Model and Numerical Simulation for Submerged Mooring Monitoring Platform’s Dynamical Response

    Directory of Open Access Journals (Sweden)

    He Kongde

    2015-01-01

    Full Text Available Computational model and numerical simulation for submerged mooring monitoring platform were formulated aimed at the dynamical response by the action of flow force, which based on Hopkinson impact load theory, taken into account the catenoid effect of mooring cable and revised the difference of tension and tangential direction action force by equivalent modulus of elasticity. Solved the equation by hydraulics theory and structural mechanics theory of oceaneering, studied the response of buoy on flow force. The validity of model were checked and the results were in good agreement; the result show the buoy will engender biggish heave and swaying displacement, but the swaying displacement got stable quickly and the heaven displacement cause vibration for the vortex-induced action by the flow.

  4. CURRENT - DIRECTION and Other Data from ESSO DEUTSCHLAND and Other Platforms From Arabian Sea and Others from 19011027 to 19890807 (NODC Accession 9000154)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data consists of ship drift data collected using drifting buoys from six merchant ships, collected for the German Oceanographic Data Center (Deutsches...

  5. Steel catenary risers supported by subsurface buoy

    OpenAIRE

    Adebayo, Addayo

    2011-01-01

    Master's thesis in Offshore technology Oil and gas exploration and production activities in deep and ultra deep waters in hostile environments necessitates the need to develop innovative riser systems capable of ensuring transfer of fluids from the seabed to a floating vessel and vice versa, with little or no issues with respect to influences of environmental loads and vessel motions. Over the years, studies have shown that the conventional flexible riser and steel catenary riser config...

  6. Global Near Real-Time Temperature and Salinity Profile Data from the GTSPP project from 23 January 2001 to 30 March 2001 (NODC Accession 0000443)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...

  7. International Comprehensive Ocean-Atmosphere Data Set (ICOADS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface marine observational records from ships, buoys, and other platform types are processed and binned creating monthly global and regional grids of the...

  8. Storm-Driven Mixing and Potential Impact on the Arctic Ocean

    National Research Council Canada - National Science Library

    Yang, Jiayan

    2004-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean...

  9. Physical and meteorological delayed-mode full-resolution data from the Tropical Atmosphere Ocean (TAO) array in the Equatorial Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Atmosphere Ocean (TAO) array of moored buoys spans the tropical Pacific. Moorings within the array measure surface meteorological and upper-ocean...

  10. (WRFDA) for WRF non-hydrostatic mesoscale model

    Indian Academy of Sciences (India)

    Sujata Pattanayak

    2018-05-22

    May 22, 2018 ... Keywords. WRF-NMM; WRFDA; single observation test; eigenvalues; eigenvector; correlation; tropical .... The per- turbation variables here are defined as deviations ..... Synop, Sound, Metar, Pilot, Buoy, Ships, Airep,. Geoamv ...

  11. Global Near Real-Time Temperature and Salinity Profile Data from the GTSPP project from 27 February 2001 to 30 May 2001 (NODC Accession 0000575)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...

  12. Cloud amount/frequency, NITRATE and other data from VOLNA, AKADEMIK VERNADSKIY and other platforms from 1976-05-20 to 1977-10-02 (NODC Accession 7900258)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current speed/direction, depth and other data were collected using meteorological sensors, secchi disk, buoy, and bottle casts casts from multiple ships from...

  13. Passive Acoustic Studies of North Atlantic Right Whales

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Passive acoustic monitoring buoys have been deployed in shallow waters between North Carolina and Northern Florida since 2003. These units are bottom mounted...

  14. Global Near Real-Time Temperature and Salinity Profile Data from the GTSPP project from 26 May 2001 to 31 August 2001 (NODC Accession 0000578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...

  15. Global Near Real-Time Temperature and Salinity Profile Data from the GTSPP project from 25 November 2000 to 30 April 2001 (NODC Accession 0000572)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...

  16. Global Near Real-Time Temperature and Salinity Profile Data from the GTSPP project from 15 June 2002 to 29 October 2003 (NODC Accession 0001214)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...

  17. Global Near Real-Time Temperature and Salinity Profile Data from the GTSPP project from 07 April 2001 to 29 June 2001 (NODC Accession 0000576)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...

  18. 50 CFR 86.13 - What is boating infrastructure?

    Science.gov (United States)

    2010-10-01

    ... to tie up. These features include, but are not limited to: (a) Mooring buoys (permanently anchored... boats to reach the shore); (i) Restrooms; (j) Retaining walls; (k) Bulkheads; (l) Dockside utilities; (m...

  19. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chang

    2015-02-01

    Full Text Available It is of great importance and urgency for Taiwan to develop offshore wind power. However, relevant data on offshore wind energy resources are limited. This study imported wind speeds measured by a tidal station and a buoy into the software WAsP to estimate the high-altitude wind speeds in the two areas. A light detection and ranging (Lidar system was set up near the tidal station and buoy. High-altitude wind speeds measured by the Lidar system were compared with the WAsP-estimated values, and it was discovered that the two data sets were consistent. Then, long-term wind speed data observed by buoys and tidal stations at various locations were imported into WAsP to forecast wind speeds at heights of 55–200 m on the west coast of Taiwan. The software WAsP Engineering was used to analyze the extreme wind speeds in the same areas. The results show that wind speeds at 100 m are approximately 9.32–11.24 m/s, which means that the coastal areas of west Taiwan are rich in wind energy resources. When a long-term 10-min average wind speed is used, the extreme wind speed on the west coast is estimated to be between 36.4 and 55.3 m/s.

  20. Physical measurements of breaking wave impact on a floating wave energy converter

    Science.gov (United States)

    Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison

    2013-04-01

    Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.

  1. Measurement of Seafloor Deformation in the Marine Sector of the Campi Flegrei Caldera (Italy)

    Science.gov (United States)

    Iannaccone, Giovanni; Guardato, Sergio; Donnarumma, Gian Paolo; De Martino, Prospero; Dolce, Mario; Macedonio, Giovanni; Chierici, Francesco; Beranzoli, Laura

    2018-01-01

    We present an assessment of vertical seafloor deformation in the shallow marine sector of the Campi Flegrei caldera (southern Italy) obtained from GPS and bottom pressure recorder (BPR) data, acquired over the period April 2016 to July 2017 in the Gulf of Pozzuoli by a new marine infrastructure, MEDUSA. This infrastructure consists of four fixed buoys with GPS receivers; each buoy is connected by cable to a seafloor multisensor module hosting a BPR. The measured maximum vertical uplift of the seafloor is about 4.2 ± 0.4 cm. The MEDUSA data were then compared to the expected vertical displacement in the marine sector according to a Mogi model point source computed using only GPS land measurements. The results show that a single point source model of deformation is able to explain both the GPS land and seafloor data. Moreover, we demonstrate that a network of permanent GPS buoys represents a powerful tool to measure the seafloor vertical deformation field in shallow water. The performance of this system is comparable to on-land high-precision GPS networks, marking a significant achievement and advance in seafloor geodesy and extending volcano monitoring capabilities to shallow offshore areas (up to 100 m depth). The GPS measurements of MEDUSA have also been used to confirm that the BPR data provide an independent measure of the seafloor vertical uplift in shallow water.

  2. Output characteristics of floating type wave power generator system using a ball screw; Fuyugata nejishiki haryoku hatsuden sochi no shutsuryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Abe, T; Omata, K [Meiji University, Tokyo (Japan)

    1996-10-27

    A floating type wave power generator system using a ball screw is proposed. Output characteristics are simulated on the supposition of its employment aboard a navigational aid buoy. The relative linear movement produced by waves between the main body and float is transmitted via a load column to a ball nut and is converted into a rotary movement of a threaded shaft engaging the ball nut. Attached to the bottom end of the threaded shaft is a one-way clutch which connects to the generator axle when the relative velocity between the float and main body is positive. The simulation was conducted for a wave activated power generation buoy, 2.6m in outer diameter, 4.5m in length, and 6000kg in total mass. The buoy generated a mechanical output of 340kW when exposed to a sinusoidal wave 2.5 seconds in period and 40cm in wave height. A tank test was performed using a reduced scale model consisting of a ball screw, bicycle dynamo, and float, with the main body being 318mm in diameter and 833mm in length, when an average output of 4.51W was obtained at 60% efficiency. The results of the experiment agreed in some degree with the results of calculation, verifying the righteousness of the theoretical formula. 3 refs., 7 figs., 4 tabs.

  3. Radiotracer application in bedload transport: case studies at Calcutta port

    International Nuclear Information System (INIS)

    Pendharkar, A.S.; Yelgoankar, V.N.; Pant, H.J.; Saravana Kumar, U.; Mendhekar, G.N.; Navada, S.V.

    1994-01-01

    Radioactive isotopes as tracers are widely used to study the dynamic behaviour of sediments in navigation channels in harbours, estuaries and in rivers. Four radioactive tracer experiments were carried out in Calcutta Port during 1985-1992, to investigate the suitability of the dumping sites for the dredged sediments. Two experiments were carried out off Sagar island and the other two were carried out off Haldia river buoy. For all the experiments radiotracers used was 46 Sc labelled 1% scandium glass powder having the same specific gravity and particle size distribution as the natural sediment in the areas of investigation. About 370 GBq (10 Ci) each off Sagar island and 185 GBq (5 Ci) each off Haldia river buoy was used. An extensive background survey of the area was carried out using waterproof scintillation detectors to measure the natural radiation level prior to the experiments. The tracer was released on to the sea bed and its movement was followed by waterproof scintillation detector. The studies indicate the general direction of movement of sediment in the area of interest and it is found to be away from the shipping channels. The velocity of transport is calculated from transport diagrams of two successive trackings. The transport thickness E, estimated for the experiments off Haldia river buoy, is about 2 to 3 cm. (author). 3 refs., 7 figs., 2 tabs

  4. WATER TEMPERATURE and Other Data from FIXED PLATFORM From World-Wide Distribution from 19860101 to 19880630 (NODC Accession 8800250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains drifting buoy data archived by Marine Environmental Data Service (MEDS), Canada. The data were collected between January 1986 and June 1988....

  5. case study nigeria pstn

    African Journals Online (AJOL)

    user

    telecommunications industry all over the world is ever burgeoning. Its growth is buoyed ... developing countries depends, among other things, on the ... countries are rushing to modernize their ..... However, most operators prefer to outsource.

  6. Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region

    International Nuclear Information System (INIS)

    Jang, Mi; Shim, Won Joon; Han, Gi Myung; Rani, Manviri; Song, Young Kyoung; Hong, Sang Hee

    2017-01-01

    The role of marine plastic debris and microplastics as a carrier of hazardous chemicals in the marine environment is an emerging issue. This study investigated expanded polystyrene (EPS, commonly known as styrofoam) debris, which is a common marine debris item worldwide, and its additive chemical, hexabromocyclododecane (HBCD). To obtain a better understanding of chemical dispersion via EPS pollution in the marine environment, intensive monitoring of HBCD levels in EPS debris and microplastics was conducted in South Korea, where EPS is the predominant marine debris originate mainly from fishing and aquaculture buoys. At the same time, EPS debris were collected from 12 other countries in the Asia-Pacific region, and HBCD concentrations were measured. HBCD was detected extensively in EPS buoy debris and EPS microplastics stranded along the Korean coasts, which might be related to the detection of a quantity of HBCD in non-flame-retardant EPS bead (raw material). The wide detection of the flame retardant in sea-floating buoys, and the recycling of high-HBCD-containing EPS waste inside large buoys highlight the need for proper guidelines for the production and use of EPS raw materials, and the recycling of EPS waste. HBCD was also abundantly detected in EPS debris collected from the Asia-Pacific coastal region, indicating that HBCD contamination via EPS debris is a common environmental issue worldwide. Suspected tsunami debris from Alaskan beaches indicated that EPS debris has the potential for long-range transport in the ocean, accompanying the movement of hazardous chemicals. The results of this study indicate that EPS debris can be a source of HBCD in marine environments and marine food web. - Highlights: • A brominated flame retardant, HBCD, was assessed in EPS debris and microplastics. • HBCD was widely detected in EPS debris from the Asia-Pacific coastal region. • Additive HBCD are dispersed via EPS pollution in marine environments. • EPS debris can be a

  7. Precise mean sea level measurements using the Global Positioning System

    Science.gov (United States)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  8. 18 CFR 1304.205 - Other water-use facilities.

    Science.gov (United States)

    2010-04-01

    ... concrete is allowable; asphalt is not permitted. (b) Tables or benches for cleaning fish are permitted on... TVA. (3) Buoys must conform to the Uniform State Waterway Marking system. (f) Structures shall not be...

  9. OceanSITES RAMA daily in-situ data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — OceanSITES daily in-situ data. OceanSITES Global Tropical Moored Buoy Array Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA)...

  10. Temperature, salinity and other measurements found in dataset OSD taken from the SEIFU MARU (Call Sign JIVB) (Operation dates: 1993 to present), RYOFU MARU (Call sign JGZK; Operation date: 08.1966 - 05.1995) and other platforms in the Coastal N Pacific, North Pacific and other locations from 1964 to 2000 (NODC Accession 0000483)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle, buoy, and CTD casts from several research vessels in the North/South Pacific Ocean from 01...

  11. Optical and physical data collected by drifters during June 2000 - March 2001 in support of the Global Ocean Ecosystem Dynamics program (NODC Accession 0000581)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling and downwelling irradiance data were collected from surface drifter buoys off the California and Oregon coast from 04 June 2000 to 24 March 2001 (non...

  12. System for Reporting High Resolution Ocean Pressures in Near Realtime for the Purposes of Tsunami Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This invention is the NOAA Deep ocean Assessment and Reporting of Tsunami (DART) system, which utilizes a seafloor tsunameter linked to an ocean surface buoy via...

  13. METOCEAN Data Systems Drifters (NODC Accession 9900163)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature data were collected using drifting buoys in the Southern Oceans from 08 November 1997 to 18 February 1998. Data were submitted by Oregon...

  14. Oceanographic and marine meteorological observations in the Northwest Pacific ocean during 1998 (NODC Accession 0000070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, plankton, and nutrients data were collected using buoy and CTD casts in the Northwest Pacific Ocean. Data were collected from 22 January 1998 to...

  15. Physical, meteorological, and other data from FIXED PLATFORM in the North Pacific in support of the North Pacific Study Program from 01 August 1968 to 01 June 1971 (NODC Accession 7200359)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological , and other data were collected from FIXED PLATFORM from 01 August 1968 to 01 June 1971. Data were collected from buoy BRAVO by Scripps...

  16. WAVE DIRECTION and Other Data from GILLISS from 19740903 to 19740918 (NODC Accession 7601715)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean wave property data collected from the SAIL Pitch-roll Buoy as part of the 1974 Atlantic Tropical Experiment (GATE) project that was part of the Global...

  17. Current meter - direction and other data from FIXED PLATFORMS in support of the Brine Disposal project from 1979-10-01 to 1980-01-01 (NODC Accession 8000049)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter - direction and other data were collected from FIXED PLATFORMS from 01 October 1979 to 01 January 1980. Data were collected by the National Data Buoy...

  18. CURRENT DIRECTION, ICE - MOVEMENT - DIRECTION and other data from DRIFTING PLATFORM in the NW Atlantic from 1993-06-10 to 1993-09-23 (NODC Accession 9400065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Positioning System (GPS) tracked drifting buoy data in this accession was collected in NW Atlantic (limit-40 W) between June 10, 1993 and September 23,...

  19. Saipan 2005 Sea Surface Temperature and Meteorological Enhanced Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site Saipan, CNMI (15.2375N, 145.72283W) ARGOS Buoy ID 26105 Time series data from this mooring provide high resolution sea surface temperature, and surface...

  20. Results of the Royal Society Joint Air-Sea Interaction Project (JASIN): proceedings of a Royal Society discussion meeting held on 2 and 3 June 1982

    National Research Council Canada - National Science Library

    Charnock, H; Pollard, R. T

    1983-01-01

    ... of the North Atlantic about 150 km across with use of buoys, ships, balloons and aircraft to observe the structure of the upper ocean and the lower atmosphere, and their interaction with each other and with...

  1. Numerical simulation and observations of very severe cyclone ...

    Indian Academy of Sciences (India)

    1Indian National Centre for Ocean Information Services, Pragathi Nagar, Hyderabad 500 090, India. 2Centre .... moored and wave rider buoys are represented by pink and blue respectively. ..... Further, slight shift in the peak frequency of the.

  2. Oceanographic profile temperature and salinity measurements collected using MRB in the Atlantic from 1985 to 1994 (NODC Accession 0000700)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between 1985 and 1994, the Polar Science Center at the University of Washington deployed 24 ARGOS data buoys in ice floes on the Arctic Ocean, from which six...

  3. MADIS Maritime Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Martime data includes NOAA and Non-NOAA ship and buoy data that covers the globe. The Coastal-Marine Automated Network (C-MAN) a bouy network maintained by the...

  4. 77 FR 20295 - United States Navy Restricted Area, Menominee River, Marinette Marine Corporation Shipyard...

    Science.gov (United States)

    2012-04-04

    ... to the point of origin. The restricted area will be marked by a lighted and signed floating buoy line... supervision or contract to a local military or Naval authority, vessels of the United States Coast Guard, and...

  5. CURRENT DIRECTION, ICE - MOVEMENT - DIRECTION and other data from DRIFTING PLATFORM in the NW Atlantic from 1992-05-01 to 1993-06-13 (NODC Accession 9300136)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The drifting buoy data in this accession was collected over a one year period from bouys deployed by Science Applications, Inc., Raleigh NC in NW Atlantic (limit-40...

  6. Physical profile data collected by NOAA Ship Ronald H. Brown and NOAA Ship KA'IMIMOANA during the year 2006 in the equatorial Pacific Ocean, 2006-01 to 2006-11 (NODC Accession 0012641)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD data were collected in the equatorial Pacific Ocean, during 2006, to service the TAO/TRITON array, a network of deep ocean moored buoys to support research and...

  7. Characteristics of waves off Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; AshokKumar, K.; Anand, N.M.

    Directional wave measurements were carried out using Datawell directional waverider buoy off Goa along west coast of India during the south west monsoon period in 1996 and the results are presented. Theoretical joint distribution of wave height...

  8. Assessment of Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast

    Science.gov (United States)

    Wang, Y. H.; Walter, R. K.; Ruttenberg, B.; White, C.

    2017-12-01

    Offshore renewable energy along the central California coastline has gained significant interest in recent years. We present a comprehensive analysis of near-surface wind datasets available in this region to facilitate future estimates of wind power generation potential. The analyses are based on local NDBC buoys, satellite-based measurements (QuickSCAT and CCMP V2.0), reanalysis products (NARR and MERRA), and a regional climate model (WRF). There are substantial differences in the diurnal signal during different months among the various products (i.e., satellite-based, reanalysis, and modeled) relative to the local buoys. Moreover, the datasets tended to underestimate wind speed under light wind conditions and overestimate under strong wind conditions. In addition to point-to-point comparisons against local buoys, the spatial variations of bias and error in both the reanalysis products and WRF model data in this region were compared against satellite-based measurements. NARR's bias and root-mean-square-error were generally small in the study domain and decreased with distance from coastlines. Although its smaller spatial resolution is likely to be insufficient to reveal local effects, the small bias and error in near-surface winds, as well as the availability of wind data at the proposed turbine hub heights, suggests that NARR is an ideal candidate for use in offshore wind energy production estimates along the central California coast. The framework utilized here could be applied in other site-specific regions where offshore renewable energy is being considered.

  9. Relative influences of the metocean forcings on the drifting ice pack and estimation of internal ice stress gradients in the Labrador Sea

    Science.gov (United States)

    Turnbull, I. D.; Torbati, R. Z.; Taylor, R. S.

    2017-07-01

    Understanding the relative influences of the metocean forcings on the drift of sea ice floes is a crucial component to the overall characterization of an ice environment and to developing an understanding of the factors controlling the ice dynamics. In addition, estimating the magnitude of the internal stress gradients on drifting sea ice floes generated by surrounding ice cover is important for modeling operations, informing the design of offshore structures and vessels in ice environments, and for the proper calibration of Discrete Element Models (DEM) of fields of drifting ice floes. In the spring of 2015 and 2016, four sea ice floes offshore Makkovik, Labrador were tagged with satellite-linked ice tracking buoys along with one satellite-linked weather station on each floe to transmit wind speed and direction. Twenty satellite-linked Lagrangian surface ocean current tracking buoys were also deployed in the open water adjacent to the targeted ice floes. In this paper, the dynamics of the four ice floes are explored in terms of the relative proportions which were forced by the wind, current, sea surface topography, Coriolis, and internal stress gradients. The internal ice stress gradients are calculated as residuals between the observed accelerations of the floes as measured by the tracking buoys and the sums of the other metocean forcings. Results show that internal ice stress gradients accounted for up to 50% of the observed forcing on the floes, and may have reached up to around 0.19 kPa.

  10. A Concept for Differential Absorption Lidar and Radar Remote Sensing of the Earth's Atmosphere and Ocean from NRHO Orbit

    Science.gov (United States)

    Hu, Y.; Marshak, A.; Omar, A.; Lin, B.; Baize, R.

    2018-02-01

    We propose a concept that will put microwave and laser transmitters on the Deep Space Gateway platform for measurements of the Earth's atmosphere and ocean. Receivers will be placed on the ground, buoys, Argo floats, and cube satellites.

  11. CURRENT DIRECTION, ICE - MOVEMENT - DIRECTION and other data from DRIFTING PLATFORM from 1976-04-05 to 1991-10-16 (NODC Accession 9300195)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The drifting buoy data in this accession was collected from 120 stations over 15 year period by US Coast Guard, Groton, CT. The data was collected between April 5,...

  12. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea

    KAUST Repository

    Jiang, Houshuo; Farrar, J. Thomas; Beardsley, Robert C.; Chen, Ru; Chen, Changsheng

    2009-01-01

    [1] Mesoscale atmospheric modeling over the Red Sea, validated by in-situ meteorological buoy data, identifies two types of coastal mountain gap wind jets that frequently blow across the longitudinal axis of the Red Sea: (1) an eastward

  13. Data from moored current meters, temperature and salinity from a historical mooring placed in Hood Canal, Puget Sound, February - April 1980 (NODC Accession 0000680)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, and other data were collected from moored buoys in Hood Canal and the Puget Sound from 08 February 1980 to 10 April 1980. Data were collected by...

  14. Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with tide adaptation

    Science.gov (United States)

    Yang, Jing; Zhang, Da-hai; Chen, Ying; Liang, Hui; Tan, Ming; Li, Wei; Ma, Xian-dong

    2017-10-01

    A novel floating pendulum wave energy converter (WEC) with the ability of tide adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy's hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without tide adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the tide adaptation mechanism is much steadier with the change of the water level and always larger than that without the tide adaptation mechanism.

  15. Arrangement in a ship for loading/unloading of a flowable medium in open sea. Anordning ved et fartoey for lasting/lossing av et stroembart medium i aapen sjoe

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Smedal, A.; Syvertsen, K.

    1994-07-04

    The invention relates to an arrangement in a vessel for loading or unloading of a flowable medium, especially oil. The vessel is provided with a submerged downwardly open receiving space for receiving and securing a submarine buoy which is anchored to the sea bed and is coupled to at least one transfer line for medium. The receiving space is arranged at a submerged location at the outer side of the hull of the vessel and has an at least partly downwards essentially conically enlarged shape, for mating with a buoy of a corresponding outer shape. In connection with the receiving space there is provided a service shaft connecting the receiving space with the deck of the vessel. The receiving space preferably is formed from a module built into the bow portion of the vessel. 8 figs.

  16. A Study on Parametric Wave Estimation Based on Measured Ship Motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Iseki, Toshio

    2011-01-01

    The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics of the param......The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics...... of the parametric model are discussed by considering the results of a similar estimation concept based on Bayesian modelling. The purpose of the latter comparison is not to favour the one estimation approach to the other but rather to highlight some of the advantages and disadvantages of the two approaches....

  17. ESA STSE Project “Sea Surface Temperature Diurnal Variability: Regional Extend – Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    of the vertical extend of diurnal signals. Drifting buoys provide measurements close to the surface but are not always available. Moored buoys are generally not able to resolve the daily SST signal, which strongly weakens with depth within the upper water column. For such reasons, the General Ocean Turbulence......, atmospheric and oceanic modelling, bio-chemical processes and oceanic CO2 studies. The diurnal variability of SST, driven by the coincident occurrence of low enough wind and solar heating, is currently not properly understood. Atmospheric, oceanic and climate models are currently not adequately resolving...... the daily SST variability, resulting in biases of the total heat budget estimates and therefore, demised model accuracies. The ESA STSE funded project SSTDV:R.EX.-IM.A.M. aimed at characterising the regional extend of diurnal SST signals and their impact in atmospheric modelling. This study will briefly...

  18. DEVELOPING AND IMPLEMENTING AN ESTUARINE WATER QUALITY MONITORING, ASSESSMENT AND OUTREACH PROGRAM/THE MYSOUND PROJECT

    Science.gov (United States)

    EPA has developed a technology transfer handbook for the EMPACT MYSound Project. The handbook highlights information and monitoring technologies developed from the EMPACT Long Island Sound Marine Monitoring (MYSound) Project. As part of the MYSound effort, telemetering data-buoys...

  19. Environmental assessment of the south Texas outer continental shelf : biological investigations from 01 January 1961 to 01 December 1975 (NODC Accession 7600741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Biological and chemical data were collected using net, buoy, and bottle casts from the GUS III and LONGHORN in the Gulf of Mexico from 01 January 1961 to 01 December...

  20. Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Foltz, G.R.; Vialard, J.; PraveenKumar, B.; McPhaden, M.J.

    from a long-term moored buoy are used in conjunction with satellite, in situ, and atmospheric reanalysis datasets to analyze the seasonal mixed layer heat balance in the thermocline ridge region of the southwestern tropical Indian Ocean. This region...

  1. WATER TEMPERATURE and Other Data from DRIFTING PLATFORM From Chukchi Sea - NW Coast of Alaska from 1981-12-19 to 1982-01-01 (NODC Accession 8500079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data were collected by Flow Industries, Inc. under contract number 03-78-B01-61 to NOAA . The data are primarily from drifting ice buoys and were collected in...

  2. WATER TEMPERATURE and Other Data from DRIFTING PLATFORM From TOGA Area - Pacific (30 N to 30 S) from 19891031 to 19940722 (NODC Accession 9600093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The drifting buoy data in this accession was collected from 766 ARGOS-tracked SVP Lagrangian drifters in TOGA Area - Pacific (30 N to 30 S) as part of Tropical Ocean...

  3. Biofouling Organisms in the Field and for the Classroom.

    Science.gov (United States)

    Stout, Prentice K.

    1983-01-01

    Biofouling organisms are marine organisms that affix themselves to navigational buoys, floating docks, and pilings. Techniques for collecting these organisms for classroom use are described. General background information on the organisms and a list of common species are included. (JN)

  4. No habitat correlation of zooxanthellae in the coral genus Madracis on a Curacao reef

    NARCIS (Netherlands)

    Diekmann, O.E; Bak, R.P M; Tonk, L; Stam, W.T.; Olsen, J.L.

    2002-01-01

    Symbiotic dinoflagellates belonging to the genus Symbiodinium (zooxanthellae) play an important role in ecological specialization and physiological adaptation in corals, We examined the diversity and depth distribution of zooxanthellae in 5 morphospecies of Madracis at the Buoy I study-reef on

  5. Longshore currents and sediment trnsport along Kannirajapuram Coast, Tamilnadu, India

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Chandramohan, P.; AshokKumar, K.; Gowthaman, R.; Pednekar, P.S.

    The objective of the study was to estimate longshore current and sediment transport from measured wave data and from the observations on the littoral environment. A directional wave rider buoy was deployed at 12m water depth, 11 km off...

  6. Did a submarine landslide contribute to the 2011 Tohoku tsunami?

    KAUST Repository

    Tappin, David R.; Grilli, Stephan T.; Harris, Jeffrey C.; Geller, Robert J.; Masterlark, Timothy; Kirby, James T.; Shi, Fengyan; Ma, Gangfeng; Thingbaijam, Kiran Kumar; Mai, Paul Martin

    2014-01-01

    is also required. We infer the location of the proposed additional source based on an analysis of the travel times of higher-frequency tsunami waves observed at nearshore buoys. We further propose that the most likely additional tsunami source was a

  7. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    Directory of Open Access Journals (Sweden)

    L. Eymard

    1996-09-01

    Full Text Available The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period. Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies, and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical

  8. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    Science.gov (United States)

    Eymard, L.; Planton, S.; Durand, P.; Le Visage, C.; Le Traon, P. Y.; Prieur, L.; Weill, A.; Hauser, D.; Rolland, J.; Pelon, J.; Baudin, F.; Bénech, B.; Brenguier, J. L.; Caniaux, G.; de Mey, P.; Dombrowski, E.; Druilhet, A.; Dupuis, H.; Ferret, B.; Flamant, C.; Flamant, P.; Hernandez, F.; Jourdan, D.; Katsaros, K.; Lambert, D.; Lefèvre, J. M.; Le Borgne, P.; Le Squere, B.; Marsoin, A.; Roquet, H.; Tournadre, J.; Trouillet, V.; Tychensky, A.; Zakardjian, B.

    1996-09-01

    The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk

  9. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    Directory of Open Access Journals (Sweden)

    L. Eymard

    Full Text Available The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period. Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies, and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The

  10. Small Flux Buoy for Characterizing Marine Surface Layers

    Science.gov (United States)

    2013-06-01

    platform for air-sea interaction study since early 1960s (Fisher and Spiess 1963). It was designed to be a stable platform for mounting various types of...COARE algorithm. J. of Climate, 16, 571–591. Fisher F. H., and F. N. Spiess , 1963: FLIP-floating instrument platform. J. Acoust. Soc. Am., 35, 1633

  11. UpTempO Buoys for Understanding and Predictions

    Science.gov (United States)

    2016-02-28

    Steele Applied Physics Laboratory, University of Washington, 1013 NE 40th St, Seattle, WA 98105 phone: (206) 543-6586 fax: (206) 616-3142 email...ORGANIZATION NAME(S) AND ADDRESS(ES) University of Washington – Applied Physics Laboratory 8. PERFORMING ORGANIZATION REPORT NUMBER 4333...correlations depend on geography and environmental conditions. We will provide our data to users such as modelers and large-scale gridded SST data

  12. Physical and meteorological data from the Tropical Atmosphere Ocean (TAO) array in the tropical Pacific Ocean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Atmosphere Ocean (TAO) Array of 55 moored buoys spans the tropical Pacific from longitudes 165°E to 95°W between latitudes of approximately 8°S and...

  13. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. ... A case study using the TRMM Microwave Imager (TMI) and ... parameter is essential when the values of the parameter ...

  14. Spectral wave characteristics off Gangavaram, Bay of Bengal.

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Dubhashi, K.K.; Nair, T.M.B.

    the seasonal change in wind pattern. These data are provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado at http://www.cdc.noaa.gov/. Kumar and Sajiv (2010) compared the buoy measured wind data with the NCEP reanalysis data for a location...

  15. A new device for monitoring moorings

    Digital Repository Service at National Institute of Oceanography (India)

    Namboothiri, E.G.; Krishnakumar, V.

    A new device - Mooring Monitoring Unit (MMU), which consists of an inwater unit and a deck unit has been designed to monitor mooring in situ. This device helps tracing underwater moorings, once its marker buoy is removed either by accident or theft...

  16. Water Power Research | Water Power | NREL

    Science.gov (United States)

    Water Power Research Water Power Research NREL conducts water power research; develops design tools ; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo of a buoy designed around the oscillating water column principle wherein the turbine captures the

  17. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  18. Examples of, reasons for, and consequences of the poor quality of wind data from ships for the marine boundary layer - Implications for remote sensing

    Science.gov (United States)

    Pierson, Willard J., Jr.

    1990-01-01

    Wind reports by data buoys are used to demonstrate that these reports have in the past provided useful values for the synoptic scale winds and that at present these reports provide very reliable value for the synoptic scale winds. Past studies of wind reports by ships have revealed that the data are of poor quality, but the causes for this poor quality are not identified. Examples of the poor quality of wind data from ships are obtained by comparing ship reports with buoy reports and comparing reports of different kinds of ships with each other. These comparisons identify many different reasons for the poor quality of wind data from ships. Suggestions are made for improving the quality of ship data. The consequences of the poor quality of ship winds are described in terms of the effects on weather and wave forecasts. The implications for remotely sensed winds are discussed.

  19. Experimental results of rectification and filtration from an offshore wave energy system

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, C.; Staalberg, M.; Thorburn, K.; Leijon, M. [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity Research, Department of Engineering Science, Uppsala University, Box 534, 75121 Uppsala (Sweden); Lejerskog, E. [Seabased Industry AB, Dag Hammarskjoelds vaeg 52b, 75183 Uppsala (Sweden)

    2009-05-15

    The present paper presents results from a wave energy conversion that is based on a direct drive linear generator. The linear generator is placed on the seabed and connected to a buoy via a rope. Thereby, the natural wave motion is transferred to the translator by the buoy motion. When using direct drive generators, voltage and current output will have varying frequency and varying amplitude and the power must be converted before a grid connection. The electrical system is therefore an important part to study in the complete conversion system from wave energy to grid connected power. This paper will bring up the first steps in the conversion: rectification and filtration of the power. Both simulation studies and offshore experiments have been made. The results indicate that this kind of system works in a satisfactory way and a smooth DC power can be achieved with one linear generator. (author)

  20. Long-term wave climate at DanWEC

    DEFF Research Database (Denmark)

    Tetu, Amélie; Kofoed, Jens Peter

    andthe current network of sensors are also presented. The numerical model used toobtain the 35 years hindcast data is introduced together with its validation againstbuoy-measured data and with the description of the dataset utilised for thelong-term climate definition. The recommendations from [IEC 62600...... buoys are continuously recorded and the data is analysed on a quarterly basis. The directional wave measuring buoys were first installed in March 2015. As two years is not sufficient for long-term wave climate definition, modelled data was more appropriate for the task. Thelong-term wave climate around...... Hanstholm is defined in the present report using the hindcast data from the MIKE 21 Spectral Wave model provided by DHI, one of the partners of the project. Before the actual wave climate definition, a description of the site includinglocation and bathymetry is included. The historical wave data of the area...

  1. Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: A study based on satellite altimeter data

    Digital Repository Service at National Institute of Oceanography (India)

    Hithin, N.K.; SanilKumar, V.; Shanas, P.R.

    The variability of annual maximum and annual mean significant wave height (SWH) and wave period in the Central Arabian Sea is studied using satellite altimeter data from 1996 to 2012 at a deep water (water depth~3500 m) buoy location (15.5°N, 69...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity, oxygen and other variables collected from time series observations using Battelle Seaology pCO2 monitoring system (MApCO2) from MOORING Maria_Island_42S_148E deployment in the Tasman Sea, Pacific Ocean from 2012-04-17 to 2012-10-18 (NCEI Accession 0165305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements in the data set are made with a Battelle Seaology pCO2 monitoring system (MApCO2), a Seabird SBE16plusV2 CTD, mounted on a surface buoy similar to the...

  3. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  4. Offshore Wind Resource Estimation in Mediterranean Area Using SAR Images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods of m...

  5. Offshore wind mapping Mediterranean area using SAR

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    2013-01-01

    Satellite observations of the ocean surface, for example from Synthetic Aperture Radars (SAR), provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean Sea, where spatial wind information is only provided by sparse buoys, often with...

  6. An interactive software package for validating satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.

    to be highly correlated (r = 0.75) with the satellite data. Very good correlation (r = 0.80) is obtained for wind speed measured from both Moored buoy and Autonomous Weather Station. Night time SSTs are found to be closer to the satellite values for wind speed...

  7. Modeling marine surface microplastic transport to assess optimal removal locations

    NARCIS (Netherlands)

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics

  8. 75 FR 39915 - Marine Mammals; File No. 15483

    Science.gov (United States)

    2010-07-13

    ...) migrating past the coast of central Oregon between January and mid- April away from wave energy buoys, which... categorically excluded from the requirement to prepare an environmental assessment or environmental impact... angustirostris) annually during the experiment. In compliance with the National Environmental Policy Act of 1969...

  9. Interpreting behavioural data from Radio-Acoustic Positioning ...

    African Journals Online (AJOL)

    To detect behavioural patterns of individually tagged squid Loligo vulgaris reynaudii in a Radio-Acoustic Positioning Telemetry (RAPT) buoy array, trajectories reflecting the four dimensions of latitude, longitude, depth and time were plotted from data collected during field experiments in South Africa. Finding a continuous ...

  10. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    Science.gov (United States)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  11. Elements of the tsunami precursors' detection physics

    Science.gov (United States)

    Novik, Oleg; Ruzhin, Yuri; Ershov, Sergey; Volgin, Max; Smirnov, Fedor

    In accordance with the main physical principles and geophysical data, we formulated a nonlinear mathematical model of seismo-hydro-electromagnetic (EM) geophysical field interaction and calculated generation and propagation of elastic, EM, temperature and hydrodynamic seismically generated disturbances (i.e. signals) in the basin of a marginal sea. We show transferring of seismic and electromagnetic (EM) energy from the upper mantle beneath the sea into its depths and EM emission from the sea surface into the atmosphere. Basing on the calculated characteristics of the signals of different physical nature (computations correspond to measurements of other authors) we develop the project of a Lithosphere-Ocean-Atmosphere Monitoring System (LOAMS) including: a bottom complex, a moored ocean surface buoy complex, an observational balloon complex, and satellite complex. The underwater stations of the bottom complex of the LOAMS will record the earlier signals of seismic activation beneath a seafloor (the ULF EM signals outrun seismic ones, according to the above calculations) and localize the seafloor epicenter of an expected seaquake. These stations will be equipped, in particular, with: magnetometers, the lines for the electric field measurements, and magneto-telluric blocks to discover dynamics of physical parameters beneath a sea floor as signs of a seaquake and/or tsunami preparation process. The buoy and balloon complexes of the LOAMS will record the meteorological and oceanographic parameters' variations including changes of reflection from a sea surface (tsunami ‘shadows’) caused by a tsunami wave propagation. Cables of the balloon and moored buoy will be used as receiving antennas and for multidisciplinary measurements including gradients of the fields (we show the cases are possible when the first seismic EM signal will be registered by an antenna above a sea). Also, the project includes radio-tomography with satellite instrumentation and sounding of the

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... 2003 pp 61-77. Indian Ocean surface winds from NCMRWF analysis as compared to QuikSCAT and moored buoy winds ... Skills of different mesoscale models over Indian region during monsoon season: Forecast errors · Someshwar Das ... pp 247-258. Improvements in medium range weather forecasting system of India.

  13. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    Next, the evaluation has been carried out by comparing the OSCAR currents with currents measured by moored buoys ... measurements, to derive the surface current prod- uct, known ... ogy of surface currents based on drifter data. The ... and prediction (RAMA). ..... of satellite derived forcings on numerical ocean model sim-.

  14. 36 CFR 327.20 - Unauthorized structures.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Unauthorized structures. 327... CHIEF OF ENGINEERS § 327.20 Unauthorized structures. The construction, placement, or existence of any structure (including, but not limited to, roads, trails, signs, non-portable hunting stands or blinds, buoys...

  15. KSC Weather and Research

    Science.gov (United States)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  16. Comparisons of Means for Estimating Sea States from an Advancing Large Container Ship

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Andersen, Ingrid Marie Vincent; Koning, Jos

    2013-01-01

    to ship-wave interactions in a seaway. In the paper, sea state estimates are produced by three means: the wave buoy analogy, relying on shipboard response measurements, a wave radar system, and a system providing the instantaneous wave height. The presented results show that for the given data, recorded...

  17. A Comparison of sector-scan and dual Doppler wind measurements at Høvsøre Test Station – one lidar or two?

    DEFF Research Database (Denmark)

    Simon, Elliot; Courtney, Michael

    from the coast). Ground based remote sensing has numerous advantages over traditional in-situ (offshore met mast) and buoy based installations, mainly in terms or cost, complexity, and failure/delay risk. Since each lidar can only measure a portion of the wind vector, it is necessary to either deploy...

  18. Contextual background to the rapid increase in migration from ...

    African Journals Online (AJOL)

    user

    Buoyed by a sound economy and under pressure to redress past social ... the government adopted redistributive socialist fiscal policies (UNDP 2008). ... to South Africa, the United Kingdom, Australia, Canada and New Zealand. They ..... For many people, it was no longer worthwhile to go to work when the purchase price.

  19. A component of the Indian Climate Research Programme (ICRP)

    Indian Academy of Sciences (India)

    The Indian Climate Research Programme (ICRP) focuses on the study of climate variability and its impact on agriculture. To address the role of the Bay of Bengal in monsoon variability, a process study was organised during July-August 1999, deploying research ships, buoys, INSAT, coastal radar and conventional ...

  20. Coral Bleaching Products - Office of Satellite and Product Operations

    Science.gov (United States)

    satellite remotely sensed global sea surface temperature (SST) measurements and derived indices of coral HotSpots, Degree Heating Weeks, Time Series, SST Contour Charts, Ocean Surface Winds, and On-site Buoys as the product, are derived from Coral Bleaching HotSpots and Degree Heating Weeks (DHW) values measured

  1. Forecasting Future Sea Ice Conditions: A Lagrangian Approach

    Science.gov (United States)

    2015-09-30

    AVHRR, AMSRE) combining the bootstrap and NASA-Team algorithms (Fowler et al, 2013). The PP data product also assimilates buoy data, which... business as usual” or that hopes to benefit from environmental change. These issues are playing out now in the Arctic, as it shifts from white, ice

  2. 78 FR 42739 - Lifesaving Devices-Uninspected Commercial Barges and Sailing Vessels

    Science.gov (United States)

    2013-07-17

    ....482. Therefore, $18.67 * 1.482 = $27.70. Lifebuoy: $72. http://www.amazon.com/RING-BUOY-WHITE-COAST... more Indian tribes, on the relationship between the Federal Government and Indian tribes, or on the distribution of power and responsibilities between the Federal Government and Indian tribes. K. Energy Effects...

  3. 76 FR 7532 - Submission for OMB Review; Comment Request

    Science.gov (United States)

    2011-02-10

    ... Requirements. OMB Control Number: 0648-0351. Form Number(s): NA. Type of Request: Regular submission (extension... the gear is to be marked for the purposes of visibility (e.g., buoys, radar reflectors, or other... DEPARTMENT OF COMMERCE Submission for OMB Review; Comment Request The Department of Commerce will...

  4. 75 FR 55301 - Proposed Information Collection; Comment Request; Northeast Region Gear Identification Requirements

    Science.gov (United States)

    2010-09-10

    ...., buoys, radar reflectors, or other methods identified in the regulations). The number of gear in the case... be responsible for marking several strings of a given type of gear, or may use multiple different gear types that require marking for identification and visibility. The display of the identifying...

  5. Activities of the training vessel Umitaka-maru (KARE-15; UM-11-07 of the Tokyo University of Marine Science and Technology during the 53rd Japanese Antarctic Research Expedition in 2011/2012

    Directory of Open Access Journals (Sweden)

    Masato Moteki

    2015-11-01

    Full Text Available The training vessel Umitaka-maru of the Tokyo University of Marine Science and Technology (TUMSAT undertook a marine science cruise in the Indian sector of the Southern Ocean during the 2011/2012 austral summer. During the cruise, TUMSAT conducted five different collaborative research projects. These included two phase-VIII Japanese Antarctic Research Expedition (JARE-52 to -57 projects: "Responses of Antarctic Marine Ecosystems to Global Environmental Changes with Carbonate Systems", which is the sub-theme of the prioritized research project "Exploring Global Warming from Antarctica"; and the ordinary research project "Studies on Plankton Community Structure and Environment Parameters in the Southern Ocean". The other three collaborative research projects were those undertaken in conjunction with (1 the National Institute of Polar Research, entitled "Environment and Ecosystem Changes in the Southern Ocean"; (2 the Japan Agency for Marine-Earth Science and Technology (JAMSTEC, entitled "Deployment of the Southern Ocean Buoy" ; and (3 with Hokkaido University, entitled "Studies on Dynamics of Antarctic Bottom Water". The Umitaka-maru departed from Fremantle, Australia, on 27 December 2011, sailed to the study area around the marginal sea ice zone (mainly along 110°E and 140°E, and returned to Hobart, Australia, on 1 February 2012. The participants performed various net castings to qualitatively evaluate the vertical distribution of plankton communities, made physical observations, and measured chemical parameters. They also retrieved a year-round mooring that had been deployed the previous year, retrieved two surface drifting buoys that had been released by the ice breaker Shirase, and deployed a JAMSTEC buoy (m-TRITON. In addition, several acidified culture experiments using pteropods were conducted on board.

  6. Installation of deep water sub-sea equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, Jack; Demian, Nabil [SBM-IMODCO Inc., Houston, TX (UNited States)

    2004-07-01

    Offshore oil developments are being planned in water depths exceeding 2000 m. Lowering and positioning large, heavy sub sea hardware, using conventional methods, presents new technical challenges in these ultra deep waters. In 3000 m a safe lift using conventional steel cables will require more capacity to support the cable self weight than the static payload. Adding dynamic loads caused by the motions of the surface vessel can quickly cause the safe capacity of the wire to be exceeded. Synthetic ropes now exist to greatly reduce the lowering line weight. The lower stiffness of these synthetic ropes aggravate the dynamic line tensions due to vessel motions and relatively little is known about the interaction of these ropes on the winches and sheaves required for pay-out and haul-in of these lines under dynamic load. Usage of conventional winches would damage the synthetic rope and risk the hardware being deployed. Reliable and economic installation systems that can operate from existing installation vessels are considered vital for ultra deep-water oil development. The paper describes a Deep Water Sub-Sea Hardware Deployment system consisting of a buoy with variable, pressure-balanced buoyancy, which is used to offset most of the payload weight as it is lowered. The buoyant capacity is controlled by air pumped into the tank from the surface vessel through a reinforced hose. The buoy and payload motion are isolated from the deployment line surface dynamics using a simple passive heave compensator mounted between the buoy and the bottom of the deployment rope. The system components, functionality and dynamic behavior are presented in the paper. (author)

  7. The Experience of Using Autonomous Drifters for Studying the Ice Fields and the Ocean Upper Layer in the Arctic

    Directory of Open Access Journals (Sweden)

    S.V. Motyzhev

    2017-04-01

    Full Text Available The constructional and operational features of the BTC60/GPS/ice temperature-profiling drifters, developed in Marine Hydrophysical institute RAS for investigation of polar areas, are considered in this article. The drifters operated in completely automatic mode measuring air pressure, water temperatures at 17 depths down to 60 m, ocean pressures at 20, 40 and 60 m nominal depths and current locations. Accuracies of measurements were: +/-2 hPa for air pressure, +/-0.1°C for temperatures, +/-30 hPa for ocean pressure, 60 m for locations. Iridium satellite communication system was used for data transfer. Time delay between sample and delivery to a user did not exceed 10 minutes. More than 30 thermodrifters were developed in the Beaufort Sea – Canada Basin and central Arctic for the period from September 2012 to September 2014. Total duration of drifting buoys in operation was more of 4800 days. It was accepted the data of hourly samples about variability of ice-flows and ice field as a whole movements, thermo processes within upper water layer below ice, air pressure in near surface atmosphere of the Arctic region. The article includes some results of statistical analysis of data from drifter ID247950, the 3-year trajectory of which depended on the processes of transfer and evolution of ice fields in the Beaufort Sea – Canada Basin. Over a long period of time the Arctic buoy in-situ experiments allowed resulting about capability and reasonability to create reliable, technological and low-cost buoy network on basis of BTC60/GPS/ice drifters to monitor Arctic area of the World Ocean.

  8. Wave energy, lever operated pivoting float LOPF study

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, L.

    2012-11-01

    The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency, produce 610 MWh/y (609.497 kWh/y) with an average power output of 69.6 kW, which requires a generator capacity of 700 kW. It is expected the generator efficiency can be increased to 90% in the future. More specific calculations (from EnergiNet) show that with one generator of 695 kW the expected power production is 585 MWh/y; with a generator of 250 kW and 100 kW, the expected power production is 481 MWh/y and 182 MWh/y respectively. In addition there are several areas for future improvements for increased power production. (Author)

  9. Application of SMAP Data for Ocean Surface Remote Sensing

    Science.gov (United States)

    Fore, A.; Yueh, S. H.; Tang, W.; Stiles, B. W.; Hayashi, A.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission was launched January 31st, 2015. It is designed to measure the soil moisture over land using a combined active / passive L-band system. Due to the Aquarius mission, L-band model functions for ocean winds and salinity are mature and are directly applicable to the SMAP mission. In contrast to Aquarius, the higher resolution and scanning geometry of SMAP allow for wide-swath ocean winds and salinities to be retrieved. In this talk we present the SMAP Sea Surface Salinity (SSS) and extreme winds dataset and its performance. First we discuss the heritage of SMAP SSS algorithms, showing that SMAP and Aquarius show excellent agreement in the ocean surface roughness correction. Then, we give an overview of some newly developed algorithms that are only relevant to the SMAP system; a new galaxy correction and land correction enabling SSS retrievals up to 40 km from coast. We discuss recent improvements to the SMAP data processing for version 4.0. Next we compare the performance of the SMAP SSS to in-situ salinity measurements obtained from ARGO floats, tropical moored buoys, and ship-based data. SMAP SSS has accuracy of 0.2 PSU on a monthly basis compared to ARGO gridded data in tropics and mid-latitudes. In tropical oceans, time series comparison of salinity measured at 1 m depth by moored buoys indicates SMAP can track large salinity changes within a month. Synergetic analysis of SMAP, SMOS, and Argo data allows us to identify and exclude erroneous buoy data from assessment of SMAP SSS. The resulting SMAP-buoy matchup analysis gives a mean standard deviation (STD) of 0.22 PSU and correlation of 0.73 on weekly scale; at monthly scale the mean STD decreased to 0.17 PSU and the correlation increased to 0.8. In addition to SSS, SMAP provides a view into tropical cyclones having much higher sensitivity than traditional scatterometers. We validate the high-winds using collocations with SFMR during tropical cyclones as well as

  10. Seasonal Variation of Diurnal Cycle of Rainfall in the Eastern Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pednekar, S.; Katsumata, M.; Antony, M.K.; Kuroda, Y.; Unnikrishnan, A.S.

    The diurnal cycle of rainfall over the eastern equatorial Indian Ocean is studied for the period 23rd October 2001 to 31st October 2003 using the hourly data from the Triton buoy positioned at 1.5°S and 90°E. An analysis of the active and weak...

  11. Indian Ocean surface winds from NCMRWF analysis as compared

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  12. 77 FR 50926 - Security Zones; Certain Dangerous Cargo Vessels, Tampa, FL

    Science.gov (United States)

    2012-08-23

    ... (LPG), and ammonium nitrate. The security zones will start at buoys 3 and 4 in Tampa Bay ``F'' cut... propane gas, and ammonium nitrate. The security zones prohibit any vessel from entering within 500 yards.... We seek any comments or information that may lead to the discovery of a significant environmental...

  13. An Investigation of Momentum Exchange Parameterizations and Atmospheric Forcing for the Coastal Mixing and Optics Program

    Science.gov (United States)

    1998-09-01

    Stenner , 1996.] Figure 2.2. Coastal Mixing and Optics central 3 m discus buoy. [From Baumgartner and Anderson, 1997 (Figure 4).] 12 2.2.2. SoNIC...Meteorology, 78, 247-290. Stenner , R., 1996: Coastal Mixing and Optics Experimental Site (http://wavelet.apl.washington.edu/CMO/CMO_bath.html). Thiermann

  14. Equipment Grafting in Telecommunication Industry (Case Study ...

    African Journals Online (AJOL)

    The growth and pace of any industry is a veritable estimation of its viability. The telecommunications industry all over the world is ever burgeoning. Its growth is buoyed by development and technologies. These innovations do not necessarily have to instantaneously supplant the old rather they are procedurally applied to the ...

  15. On the Effects of Unsteady Flow Conditions on the Performance of a Cross Flow Hydrokinetic Turbine

    Science.gov (United States)

    2017-05-22

    Energy Renewable Energy ...Continental United States PNNL- 20963 Renewable and Sustainable Energy Reviews Sea Loads on Ships and Offshore Structures Aerodynamic Characteristics of Seven...of Marine Energy BEI Sensors Ocean Engineering Mechanics: With Applications US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Data Buoy Center.

  16. The impact of a grain of sand: increasing production speed in flexible risers generates significant savings in gas production

    NARCIS (Netherlands)

    Bokhorst, E. van; Blokland, H.

    2012-01-01

    Deep-sea oil and gas production normally involves the use of flexible risers that comprise a metal carcass with a large number of enveloping layers that safeguard the integrity of the pipe system. The flexible risers are hung from a floating platform and may be supported by several floating buoys to

  17. TNP

    African Journals Online (AJOL)

    denise

    and unstable direction, indicating either the presence of horizontal turbulence or a current reversal. Current and wind were poorly ... 2002. GPS antenna. Radio antenna. Radio transmitter. GPS housing. Spar buoy. Aluminium spar. Rubber shock-cords. Safety chains. PVC canvas. Steel rings. 10 kg steel weight. 0.6 m. 6 m.

  18. Rurality and resilience in education: place-based partnerships and ...

    African Journals Online (AJOL)

    In an ongoing longitudinal intervention study (STAR)1 we found that, although similarities existed in the way teachers promoted resilience, rural schools (in comparison to other STAR case schools) took longer to implement strategies to buoy support and found it difficult to sustain such support. Using rurality we wanted to ...

  19. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  20. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  1. 47 CFR 90.248 - Wildlife and ocean buoy tracking.

    Science.gov (United States)

    2010-10-01

    ...) Classes of emission are limited to N0N, A1A, A2A, A2B, F1B, J2B, F2A, F2B, and/or F8E. (d) The authorized... temperature range of −30° to +50° centigrade at normal supply voltage and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of +20 °C. For battery...

  2. Natural gas to buoy Trinidad and Tobago petroleum sector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Trinidad and Tobago's petroleum sector remains at a crossroads. While heavily reliant on oil and gas for domestic energy consumption and hard currency export earnings, the small Caribbean island nation faces some tough choices in reviving its hydrocarbon sector in the 1990s. Exploration and production of crude oil have stagnated in recent years, and domestic refinery utilization remains low at 36%. However, substantial natural gas reserves in Trinidad and Tobago offer the promise of a burgeoning natural gas based economy with an eye to liquefied natural gas and gas based petrochemical exports. Any solutions will involve considerable outlays by the government as well as a sizable infusion of capital by foreign companies. Therein lie some of the hard choices. The article describes the roles of oil and gas, foreign investment prospects, refining status, refining problems, gas sector foreign investment, and outlook for the rest of the 1990's

  3. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood

    2014-01-01

    by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model WEC and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  4. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...

  5. Directional waverider buoy in Indian waters - Experiences of NIO

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    , receiving/ recording unit, NIO's experience in mooring, deployment and retrieval operations etc. The paper also highlights various operational problems during the data collection programme. Suggestions and conclusions pertaining to operation, maintenance etc...

  6. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.; Farrar, J. T.; Weller, R. A.

    2013-01-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  7. 33 CFR 110.145 - Narragansett Bay, R.I.

    Science.gov (United States)

    2010-07-01

    ... area. Fixed mooring piles or stakes will not be allowed. (2) Anchorage B. Off the west shore of... mooring piles or stakes will not be allowed. (ii) Anchorage X-1, Naval explosives and ammunition handling... buoys for marking anchors or moorings in place will be allowed in this area. Fixed mooring piles or...

  8. Calibration and Validation of Inertial Measurement Unit for Wave Resolving Drifters

    Science.gov (United States)

    2013-12-01

    B. NAVAL RELEVANCE Safety and cost effectiveness are concerns for the U.S. Navy, as well. Investing significant capital and man-hours into...insulation, and Velcro ) are non-magnetic, which will be noteworthy later as we discuss the sensors. The WRD-B is a hollow spherical buoy 0.254m (10”) in

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This paper describes the variability in the diurnal range of SST in the north Indian Ocean using in situ measurements and tests the suitability of simple regression models in estimating the diurnal range.SST measurements obtained from 1556 drifting and 25 moored buoys were used to determine the diurnal range of SSTs.

  10. Environmental statement for Applications Technology Satellite program

    Science.gov (United States)

    1971-01-01

    The experiments, environmental impact, and applications of data collected by ATS are discussed. Data cover communications, navigation, meteorology, data collection (including data from small unattended remote stations such as buoys, seismology and hydrology monitors, etc.), geodesy, and scientific experiments to define the environment at synchronous orbit, and to monitor emissions from the sun.

  11. A Fourier Approximation Method for the Multi-Pump Multi-Piston Power Take-Off System

    NARCIS (Netherlands)

    Wei, Yanji; Barradas Berglind, Jose de Jesus; Muhammad Zaki Almuzakki, M.; van Rooij, Marijn; Wang, Ruoqi; Jayawardhana, Bayu; Vakis, Antonis I.

    2018-01-01

    In this work, a frequency-domain method for the numerical solution of the nonlinear dynamics of a wave energy converter with a pumping system is presented. To this end, a finite Fourier series is used to describe the nonlinear force components, i.e., the pumping force. The dynamics of the buoy and

  12. Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter

    NARCIS (Netherlands)

    Vakis, Antonis I.; Anagnostopoulos, John S.

    2016-01-01

    A multi-pump, multi-piston power take-off wave energy converter ((MPPTO)-P-2 WEC) has been proposed for use with a novel renewable energy harvester termed the Ocean Grazer. The (MPPTO)-P-2 WEC utilizes wave motion to pump via buoys connected to pistons working fluid within a closed circuit and store

  13. 33 CFR 165.T14-204 - Safety Zone; fixed mooring balls, south of Barbers Pt Harbor Channel, Oahu, Hawaii.

    Science.gov (United States)

    2010-07-01

    ..., south of Barbers Pt Harbor Channel, Oahu, Hawaii. 165.T14-204 Section 165.T14-204 Navigation and... Pt Harbor Channel, Oahu, Hawaii. (a) Location. The following area is a safety zone: All waters... position is approximately 2,500 yards south of Barbers Point Harbor channel buoy #2, Oahu, Hawaii. This...

  14. 75 FR 9531 - Magnuson-Stevens Act Provisions; Correction

    Science.gov (United States)

    2010-03-03

    ... for comment are not required pursuant to 5 U.S.C. 553, or any other law, the analytical requirements..., rod and reel, spear, trap, slurp gun, hand harvest. C. Charter fishery C. Bandit gear, buoy gear..., gillnet, hand harvest, seine, slurp gun, trap, spear, rod and reel, hook and line. 12. Recreational...

  15. Eight years of wind measurements from scatterometer for wind resource mapping in the Mediterranean Sea

    DEFF Research Database (Denmark)

    Furevik, Birgitte R.; Sempreviva, Anna Maria; Cavaleri, Luigi

    2011-01-01

    that the scatterometer is able to provide similar long-term statistics as available from buoy data, such as annual and monthly wind indexes. Such statistics is useful to give an overview of the climatology in the different areas. The correlation between QuikScat and in situ observations is degraded towards the coast...

  16. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Science.gov (United States)

    2010-07-01

    ... area shown on a Government chart. (5) No vessel may moor, anchor, or tie up to any pier, wharf, or... supervision may go alongside or in any manner moor to any Government-owned vessel, mooring buoy, or pontoon...); and the side boundaries of which are parallel tangents joining the semicircles. A forbidden anchorage...

  17. Evaluation of radiative fluxes over the north Indian Ocean

    Science.gov (United States)

    Ramesh Kumar, M. R.; Pinker, Rachel T.; Mathew, Simi; Venkatesan, R.; Chen, W.

    2018-05-01

    Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of radiation measurements; moreover, certain oceanic regions are substantially under-sampled, such as the north Indian Ocean. The National Institute of Ocean Technology, Chennai, India, under its Ocean Observation Program has deployed an Ocean Moored Network for the Northern Indian Ocean (OMNI) both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure radiation and rainfall, in addition to other basic meteorological parameters. They are also equipped with sensors to measure sub-surface currents, temperature, and conductivity from the surface up to a depth of 500 m. Observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the National Aeronautics and Space Administration (NASA) AQUA and TERRA satellites have been used to infer surface radiation over the north Indian Ocean. In this study, we focus only on the shortwave (SW↓) fluxes. The evaluations of the MODIS-based SW↓ fluxes against the RAMA observing network have shown a very good agreement between them, and therefore, we use the MODIS-derived fluxes as a reference for the evaluation of the OMNI observations. In an early deployment of the OMNI buoys, the radiation sensors were placed at 2 m above the sea surface; subsequently, the height of the sensors was raised to 3 m. In this study, we show that there was a substantial improvement in the agreement between the buoy observations and the satellite estimates, once the sensors were raised to higher levels. The correlation coefficient increased from 0.87 to 0.93, and both the bias and standard deviations decreased substantially.

  18. Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning

    Science.gov (United States)

    Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.

    2017-12-01

    Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree

  19. A distributed atmosphere-sea ice-ocean observatory in the central Arctic Ocean: concept and first results

    Science.gov (United States)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro

    2017-04-01

    To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.

  20. Spatial structure of directional wave spectra in hurricanes

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  1. Investigation of the relationship between hurricane waves and extreme runup

    Science.gov (United States)

    Thompson, D. M.; Stockdon, H. F.

    2006-12-01

    In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.

  2. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    Science.gov (United States)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  3. Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone

    Science.gov (United States)

    Morison, J.

    2016-02-01

    The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.

  4. 33 CFR 148.5 - How are terms used in this subchapter defined?

    Science.gov (United States)

    2010-07-01

    ... anchored in calm water free of wind, current, or tide conditions that would cause the tanker to move. Hose... ocean bottom when the tanker is underway, anchored, or moored, and subject to actual wind, waves... submerged turret loading buoys that can pump oil or natural gas and that has one or more of the following...

  5. 78 FR 69049 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Science.gov (United States)

    2013-11-18

    ... leading to the connecting Algonquin Pipeline Lateral. When the LNG vessel is on the buoy, wind and current... depending upon currents, winds, waves and other forces acting on the vessel at the time of the work... a 90-foot vessel powered with a 1,200 horsepower diesel engine with a four-pump seawater cooling...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The nature of the inherent temporal variability of surface winds is analyzed by comparison of winds obtained through different measurement methods. In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time ...

  7. Myanmar Report on Observance of Standards and Codes : Accounting and Auditing Module

    OpenAIRE

    World Bank

    2017-01-01

    Since launching fundamental political and economic reforms in 2011, Myanmar has been undergoing a major transformation aimed at increasing openness, empowerment and inclusion. The economic transition has witnessed an acceleration in growth, buoyed by improved macroeconomic management, increased gas production and exports, and stronger performance in the non-gas sectors as the economy opene...

  8. Third Ethiopia Economic Update : Strengthening Export Performance through Improved Competitiveness

    OpenAIRE

    World Bank Group

    2014-01-01

    Rising exports contributed to Ethiopia’s remarkable growth performance over the past decade. Buoyed by favorable external conditions, exports also helped create jobs and earn much-needed foreign exchange. The way Ethiopia created and nurtured a high-value horticulture industry and expanded its air services exports was an encouraging example of “self-discovery.”

  9. 75 FR 22228 - Regulated Navigation Area; Lake Champlain Bridge Construction Zone, NY and VT

    Science.gov (United States)

    2010-04-28

    ... the comment, if submitted on behalf of an association, business, labor union, etc.). You may review a... the public interest because the bridge will be a public convenience and because the RNA will provide... area will be marked with four white and orange-striped ``NO WAKE'' buoys to define the start and end of...

  10. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    Science.gov (United States)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  11. Stratified coastal ocean interactions with tropical cyclones

    Science.gov (United States)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  12. Parametric Sensitivity Analysis of the WAVEWATCH III Model

    Directory of Open Access Journals (Sweden)

    Beng-Chun Lee

    2009-01-01

    Full Text Available The parameters in numerical wave models need to be calibrated be fore a model can be applied to a specific region. In this study, we selected the 8 most important parameters from the source term of the WAVEWATCH III model and subjected them to sensitivity analysis to evaluate the sensitivity of the WAVEWATCH III model to the selected parameters to determine how many of these parameters should be considered for further discussion, and to justify the significance priority of each parameter. After ranking each parameter by sensitivity and assessing their cumulative impact, we adopted the ARS method to search for the optimal values of those parameters to which the WAVEWATCH III model is most sensitive by comparing modeling results with ob served data at two data buoys off the coast of north eastern Taiwan; the goal being to find optimal parameter values for improved modeling of wave development. The procedure adopting optimal parameters in wave simulations did improve the accuracy of the WAVEWATCH III model in comparison to default runs based on field observations at two buoys.

  13. The use of food grade oil in the prevention of vase tunicate fouling on mussel aquaculture gear

    Directory of Open Access Journals (Sweden)

    Jiselle A. BAKKER

    2011-01-01

    Full Text Available Current mitigation strategies against invasive tunicates on mussel aquaculture gear in Prince Edward Island concentrate on labour-intensive and costly fouling removal. Instead of removal, this study focused on preventing the settlement of the vase tunicate Ciona intestinalis and other fouling organisms by applying a layer of food grade oil to gear prior to recruitment. Laboratory tests established the adherence and persistence of shortening, a food grade oil with a melting point exceeding ambient water temperatures, to rope and mussels. In situ tests showed that shortening decreased C. intestinalis weight and abundance on buoys, spat collector ropes and collector plates but not on mussel socks. Fouling by algae and other tunicates was significantly reduced on most substrates. There were no detrimental effects of shortening treatment on mussel length and abundance on mussel socks, but total mussel weight was significantly lower on shortening-treated socks. Shortening treatment did not significantly affect mussel spat settlement on spat collector ropes, but further evaluation is required. Overall, shortening application has considerable potential for reducing tunicate and other fouling, particularly on buoys.

  14. In pursuit of repute

    International Nuclear Information System (INIS)

    Haddon, M.

    1997-01-01

    This article traces the emergence of reputation management at Shell after the abandonment of the planned sinking of the Brent Spar oil storage buoy due to public opinion aroused mainly by the successful Greenpeace campaign. The appointment of a reputation manager at Shell, and evaluation of investment proposals for their impact on Shell's reputation are reported. (UK)

  15. Observed development of the vertical structure of the marine boundary layer during the LASIE experiment in the Ligurian Sea

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Schiano, M.E.; Pensieri, S.

    2010-01-01

    sensors mounted on the buoy ODAS Italia1 located in the centre of the Gulf of Genoa. The evolution of the height (zi) of the MABL was monitored using radiosondes and a ceilometer on board of the N/O Urania. Here, we present the database and an uncommon case study of the evolution of the vertical structure...

  16. Download this PDF file

    African Journals Online (AJOL)

    The latter are typical of the. Gates (1952) majority of the Kuri animals on the islands. They are thought to be some form of adaptation (i.e. for swimming in the. 2421. 314. Gates (1952) aquatic milieu). Some people consider Kuri animals with this. 1260. Epstein (1971) type of horns as the only pure Kuri. Although the buoy-.

  17. 50 CFR 679.24 - Gear limitations.

    Science.gov (United States)

    2010-10-01

    ... vessel regulated under this part shall be marked with the following: (i) The vessel's name; and (ii) The... material standards: (i) Buoy bag line weather exception. In winds exceeding 45 knots (storm or Beaufort 9... mainline to 9.8 in (0.25 m) above the waterline in the absence of wind. (5) Have streamers constructed of...

  18. Comparison of AMSR-2 wind speed and sea surface temperature ...

    Indian Academy of Sciences (India)

    The SST–wind relation is analyzed using data both from the buoy and satellite. As a result, the low- SST is associated with low-wind condition (positive slope) in the northern part of the Bay of Bengal (BoB), while low SST values are associated with high wind conditions (negative slope) over the southern BoB. Moreover, the ...

  19. A preliminary ichthyoplankton survey of the Tsitsikamma National Park

    African Journals Online (AJOL)

    1994-03-03

    Mar 3, 1994 ... respectively (Figure 1)_ At the 20-m silltion a second, deep horizonllli haul was ... was controlled using a buoy tethered to the bongo frame,. 5 m long for the ..... 80 m (Shallow) = samples taken over 20, 40 & 80-m contours respectively with .... they are also thought to spawn in Algoa Bay (Beckley. 1986), and ...

  20. Communicating Wave Energy: An Active Learning Experience for Students

    Science.gov (United States)

    Huynh, Trongnghia; Hou, Gene; Wang, Jin

    2016-01-01

    We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…

  1. Evaluation of Sea Ice Kinematics and their Impact on Ice Thickness Distribution in the Arctic

    Science.gov (United States)

    2012-03-01

    operational and research data to interested users. The position error for these buoys has been estimated as 0.3 km by Thorndike and Colony (1980...1297–1300. ———, and ———,1999: Annular Modes in the Extratropical Circulations. Part II: Trends. J. Clim., 13, 1018–1036. Thorndike , A. S., and R

  2. 46 CFR 7.70 - Folly Island, SC to Hilton Head Island, SC.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Folly Island, SC to Hilton Head Island, SC. 7.70 Section... BOUNDARY LINES Atlantic Coast § 7.70 Folly Island, SC to Hilton Head Island, SC. (a) A line drawn from the...′ W. (Port Royal Sound Lighted Whistle Buoy “2PR”); thence to the easternmost extremity of Hilton Head...

  3. Singapore’s Defense Policy: Essential or Excessive?

    Science.gov (United States)

    2010-06-11

    Republic, Ecuador , El Salvador, Ghana, Greece, Guatemala, Honduras, India, Indonesia, Iran, Iraq, Israel, Jordan, Kenya, Malaysia, Mexico, Morocco...mitigating measures, it is timely to establish the appropriate context to ensure a focused and fruitful discussion of Singapore’s defense policy. As...regional allies. 41 Today, ASEAN has matured considerably as an organization, buoyed by the relative warmth and stability of regional relationships in

  4. On the warm pool dynamics in the southeastern Arabian Sea during April – May 2005 based on the satellite remote sensing and ARGO float data

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Krishna, S.M.; Nagaraju, A.; Somayajulu, Y.K.; RameshBabu, V.; Sengupta, D; Sindu, P.R.; Ravichandran, M.; Rajesh, G.

    profiles from an ARGO float (ID No. 2900345) in a 3°x1° box closer to ARMEX-II buoy (8.3°N, 72.68°E) in the SEAS during January – September 2005 revealed evolution of warm pool (SST>28°C) in spring 2005. The Argo data derived D20 (depth of 20°C isotherm...

  5. Open Source Initiative Powers Real-Time Data Streams

    Science.gov (United States)

    2014-01-01

    Under an SBIR contract with Dryden Flight Research Center, Creare Inc. developed a data collection tool called the Ring Buffered Network Bus. The technology has now been released under an open source license and is hosted by the Open Source DataTurbine Initiative. DataTurbine allows anyone to stream live data from sensors, labs, cameras, ocean buoys, cell phones, and more.

  6. 33 CFR 165.1404 - Apra Harbor, Guam-security zone.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated... surrounding Naval Mooring Buoy No. 702 (Located at 13°27′30.1″ N and 144°38′12.9″ E. Based on World Geodetic... unless authorized by the Captain of the Port, Guam. [COTP Guam Reg. 89-001, 55 FR 18725, May 4, 1990] ...

  7. Impact of sea breeze on wind-seas off Goa, west coast of India

    Indian Academy of Sciences (India)

    during November–May, winds in the coastal regions of India are dominated by sea breeze. It has an impact on the daily cycle of the sea state near the coast. The impact is quite significant when large scale winds are weak. During one such event, 1–15 April 1997, a Datawell directional waverider buoy was deployed in 23m ...

  8. Climate Prediction Center - ENSO FAQ

    Science.gov (United States)

    data buoys used to monitor ocean temperatures? What is climate variability? A prominent aspect of our Niño or La Niña? During an El Niño or La Niña, the changes in Pacific Ocean temperatures affect Pacific. Changes in the ocean surface temperatures affect tropical rainfall patterns and atmospheric winds

  9. Small-Scale Renewable Energy Converters for Battery Charging

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Ayob

    2018-03-01

    Full Text Available This paper presents two wave energy concepts for small-scale electricity generation. In the presented case, these concepts are installed on the buoy of a heaving, point-absorbing wave energy converter (WEC for large scale electricity production. In the studied WEC, developed by Uppsala University, small-scale electricity generation in the buoy is needed to power a tidal compensating system designed to increase the performance of the WEC in areas with high tides. The two considered and modeled concepts are an oscillating water column (OWC and a heaving point absorber. The results indicate that the OWC is too small for the task and does not produce enough energy. On the other hand, the results show that a hybrid system composed of a small heaving point absorber combined with a solar energy system would be able to provide a requested minimum power of around 37.7 W on average year around. The WEC and solar panel complement each other, as the WEC produces enough energy by itself during wintertime (but not in the summer, while the solar panel produces enough energy in the summer (but not in the winter.

  10. Study on operation conditions and an operation system of a nuclear powered submersible research vessel, 'report of working group on application of a very small nuclear reactor to an ocean research'

    International Nuclear Information System (INIS)

    Ura, Tamaki; Takamasa, Tomoji; Nishimura, Hajime

    2001-07-01

    JAERI has studied on design of a nuclear powered submersible research vessel, which will navigate under sea mainly in the Arctic Ocean, as a part of the design activity of advanced marine reactors. This report describes operation conditions and an operating system of the vessel, which were discussed by the specialists of hull design, sound positioning, ship motions and oceanography, etc. The design conditions on ship motions for submersible vessels were surveyed considering regulations in our country, and ship motions were evaluated in the cases of underwater and surface navigations taking account of observation activities in the Arctic Ocean. The effect of ship motions on the compact nuclear reactor SCR was assessed. A submarine transponder system and an on-ice communication buoy system were examined as a positioning and communication system, supposing the activity under ice. The interval between transponders or communication buoys was recommended as 130 km. Procedures to secure safety of nuclear powered submersible research vessel were discussed according to accidents on the hull or the nuclear reactor. These results were reflected to the concept of the nuclear powered submersible research vessel, and subjects to be settled in the next step were clarified. (author)

  11. DMP: Simple, Scalable, and Submerged; FINAL TECHNICAL REPORT (REDACTED VERSION)

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Mike; Delos-Reyes, Michael; McNatt, Cameron; Ozkan-Haller, Tuba; Klure, Justin; Kopf, Steven; Ai, Zhuan; Cleary, Casey; Goold, Caitlin; Vanithbuncha, Phattharawan

    2012-02-08

    At the start of work by M3 Wave under the current DOE funding, the DMP technology was nominally at TRL2 with some physical model testing completed. With DOE and OWET funding, much progress was made on several fronts including: cost of energy modeling, 1:50 scale model testing, numerical modeling, site evaluation, cost of mooring, construction, operations and maintenance, regulatory, and power take off. Since the technology is stationary on the ocean floor, arrays can be very dense. Even though overall efficiency is lower than buoys, the total power per acre of the technology looks to be at least twice the output per acre of known buoy WEC technologies. If the assumptions and inputs are correct, then DMP ocean power devices could be commercially competitive with other offshore renewable energy resources, such as off-shore wind power. Leveraging the data, analysis, and engineering conducted on this project, larger 1:6 scale testing was recently completed under separate funding. All aspects tested at 1:6 suggest that the DMP is a viable and disruptive technology, leading M3 Wave to continue development of the DMP.

  12. Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating

    Science.gov (United States)

    Merrick, R. A.; Hutchings, J. K.

    2015-12-01

    The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.

  13. Computing and Learning Year-Round Daily Patterns of Hourly Wind Speed and Direction and Their Global Associations with Meteorological Factors

    Directory of Open Access Journals (Sweden)

    Hsing-Ti Wu

    2015-08-01

    Full Text Available Daily wind patterns and their relational associations with other metocean (oceanographic and meteorological variables were algorithmically computed and extracted from a year-long wind and weather dataset, which was collected hourly from an ocean buoy located in the Penghu archipelago of Taiwan. The computational algorithm is called data cloud geometry (DCG. This DCG algorithm is a clustering-based nonparametric learning approach that was constructed and developed implicitly based on various entropy concepts. Regarding the bivariate aspect of wind speed and wind direction, the resulting multiscale clustering hierarchy revealed well-known wind characteristics of year-round pattern cycles pertaining to the particular geographic location of the buoy. A wind pattern due to a set of extreme weather days was also identified. Moreover, in terms of the relational aspect of wind and other weather variables, causal patterns were revealed through applying the DCG algorithm alternatively on the row and column axes of a data matrix by iteratively adapting distance measures to computed DCG tree structures. This adaptation technically constructed and integrated a multiscale, two-sample testing into the distance measure. These computed wind patterns and pattern-based causal relationships are useful for both general sailing and competition planning.

  14. Harnessing Alternative Energy Sources to Enhance the Design of a Wave Generator

    Science.gov (United States)

    Bravo, A.

    2017-12-01

    Wave energy has the power to replace a non-renewable source of electricity for a home near the ocean. I built a small-scale wave generator capable of producing approximately 5 volts of electricity. The generator is an array of 16 small generators, each consisting of 200 feet of copper wire, 12 magnets, and a buoy. I tested my design in the Pacific Ocean and was able to power a string of lights I had attached to the generator. While the waves in the ocean moved my buoys, my design was powered by the vertical motion of the waves. My generator was hit with significant horizontal wave motion, and I realized I wasn't taking advantage of that direction of motion. To make my generator produce more electricity, I experimented with capturing the energy of the horizontal motion of water and incorporated that into my generator design. My generator, installed in the ocean, is also exposed to sun and wind, and I am exploring the potential of solar and wind energy collection in my design to increase the electricity output. Once I have maximized my electricity output, I would like to explore scaling up my design.

  15. Study on operation conditions and an operation system of a nuclear powered submersible research vessel, 'report of working group on application of a very small nuclear reactor to an ocean research'

    Energy Technology Data Exchange (ETDEWEB)

    Ura, Tamaki [Tokyo Univ., Tokyo (Japan); Takamasa, Tomoji [Tokyo Univ. of Mercantile Marine, Tokyo (Japan); Nishimura, Hajime [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (JP)] [and others

    2001-07-01

    JAERI has studied on design of a nuclear powered submersible research vessel, which will navigate under sea mainly in the Arctic Ocean, as a part of the design activity of advanced marine reactors. This report describes operation conditions and an operating system of the vessel, which were discussed by the specialists of hull design, sound positioning, ship motions and oceanography, etc. The design conditions on ship motions for submersible vessels were surveyed considering regulations in our country, and ship motions were evaluated in the cases of underwater and surface navigations taking account of observation activities in the Arctic Ocean. The effect of ship motions on the compact nuclear reactor SCR was assessed. A submarine transponder system and an on-ice communication buoy system were examined as a positioning and communication system, supposing the activity under ice. The interval between transponders or communication buoys was recommended as 130 km. Procedures to secure safety of nuclear powered submersible research vessel were discussed according to accidents on the hull or the nuclear reactor. These results were reflected to the concept of the nuclear powered submersible research vessel, and subjects to be settled in the next step were clarified. (author)

  16. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1997-present, Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Precipitation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  17. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1987-present, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Salinity data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  18. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1988-2015, ADCP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Acoustic Doppler Current Profiler (ADCP) water currents data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA...

  19. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1988-2015, ADCP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Acoustic Doppler Current Profiler (ADCP) water currents data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA...

  20. Stationary Tether Device for Buoy Apparatus and System for Using

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A rigid, neutrally buoyant hydrodynamicaly-faired tether and associated fastening hardware that loosely holds a bathymetric float at a predetermined distance from a...

  1. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 1977-present, Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Temperature data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  2. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1989-present, Evaporation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Evaporation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  3. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1989-present, Evaporation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Evaporation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  4. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 1989-present, Evaporation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Evaporation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  5. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 1980-present, Position

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Position data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  6. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1980-present, Position

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Position data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  7. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1980-present, Position

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Position data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  8. Direct Drive Wave Energy Buoy – 33rd scale experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  9. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  10. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 1977-present, Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Wind data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 1988-2015, ADCP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Acoustic Doppler Current Profiler (ADCP) water currents data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA...

  12. 33 CFR 334.1325 - United States Army Restricted Area, Kuluk Bay, Adak, Alaska.

    Science.gov (United States)

    2010-07-01

    ..., longitude 176°33′47.4″ W (NAD 83). (b) The regulation. (1) No vessel, person, or other craft shall enter or... 176°33′47.4″ W (NAD 83). Each buoy has a white light, flashing at 3 second intervals with a 2 nautical... such other agencies as the Director, MDA-AK, Fort Richardson, Alaska, may designate. [72 FR 65669, Nov...

  13. 46 CFR 7.85 - St. Simons Island, GA to Little Talbot Island, FL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false St. Simons Island, GA to Little Talbot Island, FL. 7.85... BOUNDARY LINES Atlantic Coast § 7.85 St. Simons Island, GA to Little Talbot Island, FL. (a) A line drawn from latitude 31°04.1′ N. longitude 81°16.7′ W. (St. Simons Lighted Whistle Buoy “ST S”) to latitude 30...

  14. Monstrous ocean waves during typhoon Krosa

    Directory of Open Access Journals (Sweden)

    P. C. Liu

    2008-06-01

    Full Text Available This paper presents a set of ocean wave time series data recorded from a discus buoy deployed near northeast Taiwan in western Pacific that was operating during the passage of Typhoon Krosa on 6 October 2007. The maximum trough-to-crest wave height was measured to be 32.3 m, which could be the largest Hmax ever recorded.

  15. Towards an Autonomous Space In-Situ Marine Sensorweb

    Science.gov (United States)

    Chien, S.; Doubleday, J.; Tran, D.; Thompson, D.; Mahoney, G.; Chao, Y.; Castano, R.; Ryan, J.; Kudela, R.; Palacios, S.; hide

    2009-01-01

    We describe ongoing efforts to integrate and coordinate space and marine assets to enable autonomous response to dynamic ocean phenomena such as algal blooms, eddies, and currents. Thus far we have focused on the use of remote sensing assets (e.g. satellites) but future plans include expansions to use a range of in-situ sensors such as gliders, autonomous underwater vehicles, and buoys/moorings.

  16. North Texas Sediment Budget: Sabine Pass to San Luis Pass

    Science.gov (United States)

    2006-09-01

    concrete units have been placed over sand-filled fabric tube . .......................................33 Figure 28. Sand-filled fabric tubes protecting...system UTM Zone 15, NAD 83 Longshore drift directions King (in preparation) Based on wave hindcast statistics and limited buoy data Rollover Pass...along with descriptions of the jetties and limited geographic coordinate data1 (Figure 18). The original velum or Mylar sheets from which the report

  17. A sensor-based energy balance method for the distributed estimation of evaporation over the North American Great Lakes

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.; Gronewold, A.; Lenters, J. D.

    2014-12-01

    We introduce a novel energy balance method to estimate evaporation across large lakes using real-time data from moored buoys and mobile, satellite-tracked drifters. Our work is motivated by the need to improve our understanding of the water balance of the Laurentian Great Lakes basin, a complex hydrologic system that comprises 90% of the United States' and 20% of the world's fresh surface water. Recently, the lakes experienced record-setting water level drops despite above-average precipitation, and given that lake surface area comprises nearly one third of the entire basin, evaporation is suspected to be the primary driver behind the decrease in water levels. There has historically been a need to measure evaporation over the Great Lakes, and recent hydrological phenomena (including not only record low levels, but also extreme changes in ice cover and surface water temperatures) underscore the urgency of addressing that need. Our method tracks the energy fluxes of the lake system - namely net radiation, heat storage and advection, and Bowen ratio. By measuring each of these energy budget terms and combining the results with mass-transfer based estimates, we can calculate real-time evaporation rates on sub-hourly timescales. To mitigate the cost prohibitive nature of large-scale, distributed energy flux measurements, we present a novel approach in which we leverage existing investments in seasonal buoys (which, while providing intensive, high quality data, are costly and sparsely distributed across the surface of the Great Lakes) and then integrate data from less costly satellite-tracked drifter data. The result is an unprecedented, hierarchical sensor and modeling architecture that can be used to derive estimates of evaporation in real-time through cloud-based computing. We discuss recent deployments of sensor-equipped buoys and drifters, which are beginning to provide us with some of the first in situ measurements of overlake evaporation from Earth's largest lake

  18. Improvements to TAO Ocean Observations as a Result of Refresh Technology

    Science.gov (United States)

    Grissom, K.; Petraitis, D. C.; Pounder, D.

    2016-02-01

    The Tropical Atmosphere Ocean (TAO) array has been a major observational component of El Nino Southern Oscillation (ENSO) and climate prediction research since its completion in 1994 by NOAA's Pacific Marine Environmental Laboratory (PMEL). In 2005 operational responsibility and control of the TAO array was transitioned from PMEL to the National Data Buoy Center (NDBC). As part of the transition, a project for TAO Technology Refresh was developed to address equipment obsolescence and the need for higher data throughput in real-time. Completed in 2014, the "TAO Refresh" array has met the requirements of the NOAA transition plan and added new capabilities and value. These new capabilities include a reduced latency of data and increased real-time resolution from one observation per sensor each day to 144+ observations per sensor each day. Also, improvements in NDBC data management practices resulted in the development of a new TAO Automated Statistical Quality-control (TASQ) system that provides a real-time automated quality-control method based upon 20 years of historical data. In addition, an active method for gathering actionable evidence and combating vandalism was achieved through the installation of cameras on TAO buoys. With these enhanced capabilities, the TAO Refresh array is better positioned to support timely analyses of the diurnal cycle and high frequency weather phenomena that affect climate. An added benefit of the Refresh technology is the reduced sampling error due to the temporal averaging. For example, during a recent week long vandalism event at a Refresh buoy we have found an average error of 0.24°C (±0.17) in the subsurface temperature daily average, with the maximum error of 0.67°C. Historically, due to the limitations of real-time communications, these errors were masked within the daily average. However, with today's satellite system we can retrieve the full-resolution time series in real-time and improve the quality of our data.

  19. Did a submarine landslide contribute to the 2011 Tohoku tsunami?

    KAUST Repository

    Tappin, David R.

    2014-09-28

    Many studies have modeled the Tohoku tsunami of March 11, 2011 as being due entirely to slip on an earthquake fault, but the following discrepancies suggest that further research is warranted. (1) Published models of tsunami propagation and coastal impact underpredict the observed runup heights of up to 40 m measured along the coast of the Sanriku district in the northeast part of Honshu Island. (2) Published models cannot reproduce the timing and high-frequency content of tsunami waves recorded at three nearshore buoys off Sanriku, nor the timing and dispersion properties of the waveforms at offshore DART buoy #21418. (3) The rupture centroids obtained by tsunami inversions are biased about 60 km NNE of that obtained by the Global CMT Project. Based on an analysis of seismic and geodetic data, together with recorded tsunami waveforms, we propose that, while the primary source of the tsunami was the vertical displacement of the seafloor due to the earthquake, an additional tsunami source is also required. We infer the location of the proposed additional source based on an analysis of the travel times of higher-frequency tsunami waves observed at nearshore buoys. We further propose that the most likely additional tsunami source was a submarine mass failure (SMF—i.e., a submarine landslide). A comparison of pre- and post-tsunami bathymetric surveys reveals tens of meters of vertical seafloor movement at the proposed SMF location, and a slope stability analysis confirms that the horizontal acceleration from the earthquake was sufficient to trigger an SMF. Forward modeling of the tsunami generated by a combination of the earthquake and the SMF reproduces the recorded on-, near- and offshore tsunami observations well, particularly the high-frequency component of the tsunami waves off Sanriku, which were not well simulated by previous models. The conclusion that a significant part of the 2011 Tohoku tsunami was generated by an SMF source has important implications for

  20. Waves energy comes to surface

    International Nuclear Information System (INIS)

    Guezel, J.Ch.

    2006-01-01

    The wave- or thalasso-energy, potentially as promising as wind energy, have started to develop in Europe. Great Britain has already a good experience in this domain but France shows also ambitions in this beginning industry with several projects in progress. This article makes an overview of the existing tide-, current- and wave-powered generators: tide mills, underwater hydro-turbines, immersed linear generators, air-compression systems, buoy systems, etc. (J.S.)