WorldWideScience

Sample records for buoys

  1. National Data Buoy Center Buoy Locations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Buoy table consists of location information, ownership, and general geographic descriptions of buoys and weather stations. In addition to buoys operated by the...

  2. NDBC Standard Meteorological Buoy Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) distributes meteorological data from moored buoys maintained by NDBC and others. Moored buoys are the weather sentinels of the...

  3. The universal buoy system

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, Neil [Subsea Technology Services Inc., Houston, TX (United States); Bone, David [Ocean Resources Ltd., Dartmouth, Nova Scotia (Canada)

    2000-07-01

    This paper presents the evolution of a high stability buoys from the initial concept of a Sea Sentinel data acquisition buoy, to Mobil's Zafiro Flare buoy and the East Spar Sea Commander control buoy deployed offshore Australia 1996 and the Moss gas E-M field control buoy recently installed. Given the current economic climate in the offshore oil and gas industry, there is a need to exploit cost effective technologies for marginal field developments, involving long distant tie - backs [30 to 100 km]. Sea Commander provides an alternative solution for the safe, economic management of a remote sub sea production facility. This technology is applicable for both shallow and deep water developments. Ocean Resource/Mentor Sub sea have extended the range of the buoy solutions from control and chemical injection to reservoir pressure maintenance, water injection and power distribution/control of ESP's for well production boosting. Design concepts have also been developed for a complete process and sub sea storage facility for remote fields. A comparison of buoy based solutions compared with existing technologies will identify significant Capex advantages together with Opex reductions for both NPV and life cycle cost profiles. System availability and board ability will also be addressed. The buoy can be readily decommissioned/transported, therefore is ideally suited for multi-field deployment/amortisation. (author)

  4. Development of drifting buoys

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.; Peshwe, V.B.; Tengali, S.

    Polar orbiting satellites equipped with random access data collection and position fixing systems have made long-term remote oceanographic/meteorological observations possible by means of instrumented drifting buoys fitted with ARGOS telementry...

  5. Buoy Dynamics in Subsurface Zones

    Directory of Open Access Journals (Sweden)

    Randy Guillen

    2009-01-01

    Full Text Available The objective of this paper is to find the tension acting on a line that anchors a buoy submerged just beneath the surface of the ocean. Since the problem statement only gives the geometric shapes and dimensions of the buoy, we must use calculus to find its volume and surface area through integration of the volumes and surfaces of revolution formed by the specific parts of the buoy along an axis. The volume and surface area determine the buoyancy force and force of gravity, the two forces acting on the buoy that affect the tension in the line. After calculating this data, we were able to conclude that the tension affecting the line would be approximately 78 kN if the buoy was made of 1% carbon steel with a thickness of 6.35 mm. This problem is useful in several engineering disciplines.

  6. The universal buoy system (TUBS)

    Energy Technology Data Exchange (ETDEWEB)

    Bone, D.; Cousins, T.

    2000-07-01

    This paper will present the evolution of a high stability buoyant structure from the initial concept of a Sea Sentinel data acquisition buoy, to Mobil's Zafiro Flare buoy and the Sea Commander East Spar control buoy deployed offshore Australia which has been in successful operation since 1996 and the Mossgas E-M field control buoy currently being commissioned. Given the current economic climate in the offshore oil and gas industry, there is a need to exploit cost effective technologies for marginal field developments, involving long distant tie-backs [30 to 100 km]. The TUBS initiative provides an alternative solution for the safe, economic and management of a remote subsea production facility. This technology is applicable for both shallow and deepwater developments. (author)

  7. Mooring Line for an Oceanographic Buoy System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A mooring line for an oceanographic buoy system includes four sections. The first section is a protected cable that is connectable to the buoy. The second section...

  8. Advanced Approach of Multiagent Based Buoy Communication

    Directory of Open Access Journals (Sweden)

    Gediminas Gricius

    2015-01-01

    Full Text Available Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys, which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information.

  9. 46 CFR 180.70 - Ring life buoys.

    Science.gov (United States)

    2010-10-01

    ... the ring life buoy. (3) Each floating waterlight installed after March 11, 1997, on a vessel carrying... 46 Shipping 7 2010-10-01 2010-10-01 false Ring life buoys. 180.70 Section 180.70 Shipping COAST...) LIFESAVING EQUIPMENT AND ARRANGEMENTS Ring Life Buoys and Life Jackets § 180.70 Ring life buoys. (a) A...

  10. 46 CFR 117.70 - Ring life buoys.

    Science.gov (United States)

    2010-10-01

    ... the body of the ring life buoy. (3) Each floating waterlight installed after March 11, 1997, on a... 46 Shipping 4 2010-10-01 2010-10-01 false Ring life buoys. 117.70 Section 117.70 Shipping COAST... Ring Life Buoys and Life Jackets § 117.70 Ring life buoys. (a) A vessel must have one or more ring...

  11. On the Optimization of Point Absorber Buoys

    Directory of Open Access Journals (Sweden)

    Linnea Sjökvist

    2014-05-01

    Full Text Available A point absorbing wave energy converter (WEC is a complicated dynamical system. A semi-submerged buoy drives a power take-off device (PTO, which acts as a linear or non-linear damper of the WEC system. The buoy motion depends on the buoy geometry and dimensions, the mass of the moving parts of the system and on the damping force from the generator. The electromagnetic damping in the generator depends on both the generator specifications, the connected load and the buoy velocity. In this paper a velocity ratio has been used to study how the geometric parameters buoy draft and radius, assuming constant generator damping coefficient, affects the motion and the energy absorption of a WEC. It have been concluded that an optimal buoy geometry can be identified for a specific generator damping. The simulated WEC performance have been compared with experimental values from two WECs with similar generators but different buoys. Conclusions have been drawn about their behaviour.

  12. Evaporation duct assessment from meteorological buoys

    Science.gov (United States)

    Hitney, Herbert V.

    2002-07-01

    The evaporation duct over the sea is usually assessed using bulk meteorological measurements. This paper investigates the utility of meteorological buoys as a source for these bulk measurements and compares evaporation duct assessments using two buoys in southern California waters separated by 128 km. A simple radio propagation experiment at 2.4 GHz between one of the buoys and the coast on an 18.2 km path is described. Observed propagation loss from this experiment is compared to modeled loss based on the meteorological measurements at each buoy. The purpose of this paper is to investigate radio propagation effects using established and accepted methods already described in the literature. Accordingly, no discussion of atmospheric surface layer meteorology affecting radio propagation is given.

  13. Sonar location system for freely floating buoys

    Science.gov (United States)

    Bird, I. G.

    1983-05-01

    A rf interrogated sonar location system for freely floating buoys is described. The location of an array of up to three buoys may be determined on an almost continuous basis within a radius of 500 m from a shipboard monitoring station. Location accuracy of typically ±0.5 m at 200-m range, low cost, and ease of operation are the major features of the system.

  14. The O-Buoy Chemical Network

    Science.gov (United States)

    Matrai, P. A.; Williams, C. R.; Rauschenberg, C. D.

    2012-12-01

    Autonomous, sea ice-tethered buoys ("O-Buoys") are being deployed across the Arctic sea ice for long-term atmospheric measurements, with several O-Buoys having been deployed within the Hudson Bay, Beaufort Sea, and the North Pole. These buoys provide in-situ measurements of ozone, CO_{2} and BrO, as well as meteorological parameters, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term,in-situ observations of atmospheric chemistry have been made at coastal sites or islands near the coast, leaving large spatial and temporal gaps that O-Buoys can overcome. The significant uncertainty that remains in our understanding of the temporal and spatial variability in these parameters as well as the magnitude and/or frequency of long (CO_{2}) and short (ozone depletion) patterns can be overcome. Advances in floatation, communications, power management, and sensor hardware have been made to the original design to overcome the challenges of diminished Arctic sea ice which have resulted in our longest deployments into the summer so far.

  15. Evaluating Effectiveness of DART Buoy Networks

    CERN Document Server

    Percival, Donald B; Gica, Edison; Huang, Paul Y; Mofjeld, Harold O; Spillane, Michael C; Titov, Vasily V

    2016-01-01

    A performance measure for a DART tsunami buoy network has been developed. The measure is based on a statistical analysis of simulated forecasts of wave heights outside an impact site and how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami height time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis (SIFT) database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 hrs. The ana...

  16. [Design and experimentation of marine optical buoy].

    Science.gov (United States)

    Yang, Yue-Zhong; Sun, Zhao-Hua; Cao, Wen-Xi; Li, Cai; Zhao, Jun; Zhou, Wen; Lu, Gui-Xin; Ke, Tian-Cun; Guo, Chao-Ying

    2009-02-01

    Marine optical buoy is of important value in terms of calibration and validation of ocean color remote sensing, scientific observation, coastal environment monitoring, etc. A marine optical buoy system was designed which consists of a main and a slave buoy. The system can measure the distribution of irradiance and radiance over the sea surface, in the layer near sea surface and in the euphotic zone synchronously, during which some other parameters are also acquired such as spectral absorption and scattering coefficients of the water column, the velocity and direction of the wind, and so on. The buoy was positioned by GPS. The low-power integrated PC104 computer was used as the control core to collect data automatically. The data and commands were real-timely transmitted by CDMA/GPRS wireless networks or by the maritime satellite. The coastal marine experimentation demonstrated that the buoy has small pitch and roll rates in high sea state conditions and thus can meet the needs of underwater radiometric measurements, the data collection and remote transmission are reliable, and the auto-operated anti-biofouling devices can ensure that the optical sensors work effectively for a period of several months.

  17. Oceanographic measurements from the Texas Automated Buoy System (TABS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Texas Automated Buoy System contains daily oceanographic measurements from seven buoys off the Texas coast from Brownsville to Sabine. The Texas General Land...

  18. 33 CFR 62.23 - Beacons and buoys.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beacons and buoys. 62.23 Section... UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.23 Beacons and buoys. (a... navigation. The primary components of the U.S. Aids to Navigation System are beacons and buoys. (b)...

  19. Dynamics of anchor last deployment of submersible buoy system

    Science.gov (United States)

    Zheng, Zhongqiang; Xu, Jianpeng; Huang, Peng; Wang, Lei; Yang, Xiaoguang; Chang, Zongyu

    2016-02-01

    Submersible buoy systems are widely used for oceanographic research, ocean engineering and coastal defense. Severe sea environment has obvious effects on the dynamics of submersible buoy systems. Huge tension can occur and may cause the snap of cables, especially during the deployment period. This paper studies the deployment dynamics of submersible buoy systems with numerical and experimental methods. By applying the lumped mass approach, a three-dimensional multi-body model of submersible buoy system is developed considering the hydrodynamic force, tension force and impact force between components of submersible buoy system and seabed. Numerical integration method is used to solve the differential equations. The simulation output includes tension force, trajectory, profile and dropping location and impact force of submersible buoys. In addition, the deployment experiment of a simplified submersible buoy model was carried out. The profile and different nodes' velocities of the submersible buoy are obtained. By comparing the results of the two methods, it is found that the numerical model well simulates the actual process and conditions of the experiment. The simulation results agree well with the results of the experiment such as gravity anchor's location and velocities of different nodes of the submersible buoy. The study results will help to understand the conditions of submersible buoy's deployment, operation and recovery, and can be used to guide the design and optimization of the system.

  20. Model Predictive Control of Buoy Type Wave Energy Converter

    OpenAIRE

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop control...

  1. Rip current monitoring using GPS buoy system

    Science.gov (United States)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  2. Directional waverider buoy in Indian waters - Experiences of NIO

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    Information on directional waves is extremely important in the design of harbour structures, such as breakwaters and jetties and to study the sediment transport pattern. Till recent days our country has been using waverider buoys which give all wave...

  3. Determination of wave direction using an orbital following buoy

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Almeida, A.M.; Vaithiyanathan, R.; Vethamony, P.

    Software has been developed in FORTRAN language using a personal computer for the determination of wave direction from time series measurements of heave, pitch and roll of an orbital following buoy. The method of digital band pass filtering describ...

  4. Response of surface buoy moorings in steady and wave flows

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; SanilKumar, V.

    A numerical model has been developed to evaluate the dynamics of surface buoy mooring systems under wave and current loading. System tension response and variation of tension in the mooring line at various depths have been evaluated for deep water...

  5. Observing Ocean Surface Waves with GPS-Tracked Buoys

    OpenAIRE

    Herbers, T. H. C.; Jessen, P.F.; Janssen, T.T.; Colbert, D.B.; MacMahan, J.H.

    2012-01-01

    The article of record as published may be located at http://dx.doi.org/10.1175/JTECH-D-11-00128.1 Surface-following buoys are widely used to collect routine ocean wave measurements. While accelerometer and tilt sensors have been used for decades to measure the wave-induced buoy displacements, alternative global positioning system (GPS) sensor packages have been introduced recently that are generally smaller, less expensive, and do not require calibration. In this study, the capabi...

  6. NOAA marine environmental buoy data from the National Data Buoy Center for March 2004 (NCEI Accession 0001418)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological data were collected using buoy and other instruments from fixed platforms in the North Pacific Ocean and other locations. Data were collected and...

  7. Sea-Change in Ocean Observations on Moored Buoys from the National Data Buoy Center (NDBC)

    Science.gov (United States)

    Bouchard, R. H.; Elliott, J.; Pounder, D.; Kern, K.

    2014-12-01

    The presentation will provide the technical specifications, the systems engineering processes, and preliminary results from laboratory and field tests, as the National Data Buoy Center (NDBC) undertakes a fundamental and broad transformation (sea-change) of its ocean observing systems on moored buoys. This transformation is necessary to gain efficiencies in maintaining operational ocean observation networks and to increase their reliability, which will reduce maintenance costs. The presentation will also compare and contrast existing and planned systems. The Self-Contained Ocean Observations Payload (SCOOP) takes advantage of the advances in communications and small, efficient, multi-purpose sensors to reduce the size and costs of systems and expand the suite of available real-time ocean observations. The communications will allow NDBC to increase the precision and decrease the latency of the observations. The hallmark of SCOOP is the modularity of the payloads that allow NDBC to host specialized systems, for the oceanographic research community, which may include observing ocean acidification and algal blooms, and tracking marine life, alongside its standard suite of meteorological, oceanographic, and wave systems. SCOOP will include cameras, primarily to document vandalism incidents, but they can also serve to corroborate many of the automatic observations. The two-year integration project - focused on recapitalization of NDBC's network of Hurricane Weather buoys - is aided by NDBC's 40 years of experience with marine observations and its continually improving approach to testing. Testimony to the rigor of NDBC's development and test procedures is that the World Meteorological Organization and the Intergovernmental Ocean Commission have designated NDBC as the first Regional Marine Instrumentation Center (RMIC). Integral to the fielding of these new systems is a Mission Control Center (MCC) performing the real-time, specialized monitoring and analyses and

  8. Drifting buoy data from buoy casts in a world wide distribution as part of the Tropical Ocean Global Atmosphere (TOGA) from 1989-07-01 to 1989-07-31 (NODC Accession 8900227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data were collected using buoy casts in a world wide distribution from July 1, 1989, to July 31, 1989. Data were submitted by National Data Buoy...

  9. Oceansat–2 and RAMA buoy winds: A comparison

    Indian Academy of Sciences (India)

    S Indira Rani; M Das Gupta

    2013-12-01

    Sea surface vector winds from scatterometers onboard satellites play an important role to make accurate Numerical Weather Prediction (NWP) model analysis over the data sparse oceanic region. Sea surface winds from Oceansat-2 scatterometer (OSCAT) over the Indian Ocean were validated against the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA) buoy winds to establish the accuracy of OSCAT winds. The comparison of OSCAT winds against RAMA buoy winds for a period of one year (2011) shows that the wind speeds and directions derived from OSCAT agree with RAMA buoy winds. The monthly mean wind speeds from both OSCAT and RAMA buoy show maximum value during the monsoon period as expected. In the complete annual cycle (2011), the monthly mean root mean square differences in the wind speed and wind direction were less than ∼2.5 ms−1 and ∼20°, respectively. The better match between the OSCAT and RAMA buoy wind is observed during Indian summer monsoon (June–September). During monsoon 2011, the root mean square differences in wind speed and wind direction were less than 1.9 ms−1 and 11°, respectively. Collocation of scatterometer winds against equatorial and off-equatorial buoys clearly brought out the monsoon circulation features. Collocation of Advanced Scatterometer (ASCAT) winds on-board European Space Agency (ESA) MeTop satellite with respect to RAMA buoy winds during monsoon 2011 also showed that the OSCAT wind statistics are comparable with that of ASCAT over the Indian Ocean, and indicates that the accuracy of both the scatterometers over the Indian Ocean are essentially the same.

  10. Prediksi Umur Kelelahan Struktur Keel Buoy Tsunami dengan Metode Spectral Fatigue Analysis

    Directory of Open Access Journals (Sweden)

    Angga Yustiawan

    2012-09-01

    Full Text Available Salah satu komponen dari Indonesia Tsunami Early Warning System (InaTEWS adalah surface buoy. Surface buoy selama beroperasi di laut akan menerima beban akibat gelombang yang relatif besar, bersifat dinamis dan acak, yang dapat menyebabkan beban berulang pada struktur keel buoy. Apabila terjadi secara terus-menerus, beban ini dapat mengakibatkan terjadinya kerusakan pada struktur keel dari surface buoy. Tujuan penelitian ini untuk mengetahui umur kelelahan struktur keel buoy tsunami dengan metode spectral fatigue analysis, dimana struktur keel buoy tsunami merupakan penghubung antara tali tambat (mooring line dengan surface buoy. Struktur keel buoy ini terbuat dari material poros bekas pakai. Untuk menentukan umur kelelahan struktur keel buoy ini, telah dilakukan pembuatan diagram sebaran gelombang (wave scatter diagram selama setahun pada koordinat 108.3417 BT dan 10.3998 LS. Selanjutnya dilakukan uji olah gerak buoy dan beban gelombang untuk mendapatkan fungsi transfer tegangan pada keel buoy. Pembuatan spektrum gelombang untuk masing-masing kondisi laut dilakukan untuk memperoleh respon tegangan pada struktur keel buoy. Hasil pengujian material berupa kurva SN digunakan sebagai basis dalam menentukan umur kelelahan. Hasil dari penelitian menunjukkan bahwa umur kelelahan struktur keel buoy tsunami akibat beban gelombang sekitar 11 tahun untuk berbagai kondisi laut (sea state di perairan yang ditinjau.

  11. LKB-Based Evaporation Duct Model Comparison with Buoy Data.

    Science.gov (United States)

    Babin, Steven M.; Dockery, G. Daniel

    2002-04-01

    A wave-riding catamaran with a mast-traveling sensor package (profiling buoy) was developed to make fine-scale atmospheric measurements within the first meter above the ocean surface. These measurements are used to generate time-averaged modified refractivity (M) profiles that are then compared with those determined from four evaporation duct models based on the surface layer theory of Liu, Katsaros, and Businger (LKB). Model inputs are derived from measurements from masts on the R/V Chessie and from a tethered sea surface temperature buoy. Because electromagnetic propagation is critically dependent on the M-profile slopes, different analytical techniques are employed to compare the curvature of the model profiles with that of the profiles measured by the profiling buoy. One comparison criterion was to use the rms M slope difference between the model and a curve fit to the buoy profile data. Another analytical technique was to use the rms M difference after mean M removal between the model and the buoy profiles. Using these criteria for comparison of these models with the data seems to indicate that the model-derived profiles may be missing some phenomena in the surface layer such as wave effects. Overall, however, the shapes of the measured M profiles showed log-linear characteristics near the surface. One interesting result is that each model was better at approximating the M-profile curvature for stable than for unstable conditions.

  12. Investigation on the Oscillating Buoy Wave Power Device

    Institute of Scientific and Technical Information of China (English)

    苏永玲; 游亚戈; 郑永红

    2002-01-01

    An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excitedby waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical or hydraulic de-vice. Compared with an Oscillating Water Column (OWC) wave power device, the OD has the same capture width ratio as the OWC does, but much higher secondary conversion efficiency. Moreover, the chamber of the OWC, which is the mostexpensive and difficult part to be built, is not necessary for the OD, so it is easier to construct an OD. In this paper, a nu-merical calculation is conducted for an optimal design of the OD firstly, then a model of the device is built and, a model testis carded out in a wave tank. The results show that the total efficiency of the OD is much higher than that of the OWC andthat the OD is a promising wave power device.

  13. Buoy Relay Method for Instantaneous Fluid Flow with Free Surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Several methods have been used to approximate free surface boundaries in finite-difference numerical simulations. Each of these methods has its advantages and disadvantages. This paper presents a new technique for the numerical solution of transient incompressible free surface fluid flows. This powerful method, which is based on the concepts of "Buoy positioning" and "Buoy relaying", successfully represents the free surface using a Lagrangian method on a Eulerian grid by directly solving the free surface evolution equation. The Eulerian finite-difference forms of the full Navier-Stokes equations are solved by the Successive over Relaxation (SOR) method with a set of buoys to keep track of the free surface. The capabilities of the analysis procedure are demonstrated through viscous free surface fluid flow examples. The method is simpler and more efficient than other methods especially in treating complicated free boundary configurations.

  14. Numerical simulation of a floating buoy in surface waves

    Science.gov (United States)

    Altazin, Thomas; Golay, Frédéric; Fraunié, Philippe

    2016-04-01

    A numerical method based on volumic penalization is developed to track a floating body in a two phase flows (air and water). Fast computations on parallel computer are performed thanks to an adaptative mesh refinement following a numerical entropy criterion together with a variable time step depending on the mesh size. Applications concern the motion of a floating buoy in a surface wave field and the induced perturbation of the wave and atmospheric fields by the buoy. Presented cases concern a breaking wave and a second order Stokes wave as initial conditions. Acknowledgements : This research was supported by the Modtercom and CHEF projects of Region PACA, when applications on windage of floating buoys are related to the SUBCORAD LEFE-INSU project.

  15. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator...... is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop controller. The objective of the wave energy converter is to harvest as much energy from sea as possible....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  16. A Buoy for Continuous Monitoring of Suspended Sediment Dynamics

    Directory of Open Access Journals (Sweden)

    Andreas Güntner

    2013-10-01

    Full Text Available Knowledge of Suspended Sediments Dynamics (SSD across spatial scales is relevant for several fields of hydrology, such as eco-hydrological processes, the operation of hydrotechnical facilities and research on varved lake sediments as geoarchives. Understanding the connectivity of sediment flux between source areas in a catchment and sink areas in lakes or reservoirs is of primary importance to these fields. Lacustrine sediments may serve as a valuable expansion of instrumental hydrological records for flood frequencies and magnitudes, but depositional processes and detrital layer formation in lakes are not yet fully understood. This study presents a novel buoy system designed to continuously measure suspended sediment concentration and relevant boundary conditions at a high spatial and temporal resolution in surface water bodies. The buoy sensors continuously record turbidity as an indirect measure of suspended sediment concentrations, water temperature and electrical conductivity at up to nine different water depths. Acoustic Doppler current meters and profilers measure current velocities along a vertical profile from the water surface to the lake bottom. Meteorological sensors capture the atmospheric boundary conditions as main drivers of lake dynamics. It is the high spatial resolution of multi-point turbidity measurements, the dual-sensor velocity measurements and the temporally synchronous recording of all sensors along the water column that sets the system apart from existing buoy systems. Buoy data collected during a 4-month field campaign in Lake Mondsee demonstrate the potential and effectiveness of the system in monitoring suspended sediment dynamics. Observations were related to stratification and mixing processes in the lake and increased turbidity close to a catchment outlet during flood events. The rugged buoy design assures continuous operation in terms of stability, energy management and sensor logging throughout the study period

  17. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block...

  18. Data circulation and services of the RON data buoy network

    Science.gov (United States)

    Picone, Marco; Morucci, Sara; Nardone, Gabriele

    2014-05-01

    This paper reviews the services of the Italian data buoy network (RON, Rete Ondametrica Nazionale). The RON run 15 directional moored buoys, real-time transmitting, uniformly distributed along the Italian coasts. Data have been collected since 1989 at 8 measurement stations; in 1999 two other stations were added and the remaining five buoys were moored in 2001. From 2010 all stations are equipped with meteorological instruments. Buoys collect the main physical parameters useful in defining the sea state such as significant and maximum wave height, peak and mean period, wave direction, sea surface temperature, air temperature, wind speed and direction, atmospheric pressure, relative humidity. The RON provides real-time of wave and meteorological parameters every 30 minutes. Buoys transmit data to shore stations within 15 NM and a small dataset via Inmarsat-D+. All shore stations are connected to the control centre based in Rome, using 2 Mbps xDSL channels, implementing a virtual private network. Very deeply procedures have been implemented in order to validate date: L1 and L2 algorithms have been applied in order to make data compliant with international standards. Data are monthly analysed and published in the Wave National Bulletin. Further investigations have been implemented, including statistical analysis, in order to define wave climate, extreme events, sea storms, storm surges, and related meteorological information. This kind of data is very useful for all tasks and scientific activities of national interest for the protection, enhancement and improvement for the marine environment. The technical and scientific support contributes to the better environmental governance, providing a wide range of information in several key areas such as: collection, processing, management and diffusion of marine data; protection of water resources and of marine and coastal areas; monitoring of marine environmental quality; prevention and mitigation of impacts of polluted

  19. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...... estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....

  20. 78 FR 46410 - Requested Administrative Waiver of the Coastwise Trade Laws: Vessel TWO BUOYS ONE GULL...

    Science.gov (United States)

    2013-07-31

    ... GULL; Invitation for Public Comments AGENCY: Maritime Administration, Department of Transportation... the applicant the intended service of the vessel TWO BUOYS ONE GULL is: Intended Commercial Use...

  1. A Floating Ocean Energy Conversion Device and Numerical Study on Buoy Shape and Performance

    Directory of Open Access Journals (Sweden)

    Ruiyin Song

    2016-05-01

    Full Text Available Wave and current energy can be harnessed in the East China Sea and South China Sea; however, both areas are subject to high frequencies of typhoon events. To improve the safety of the ocean energy conversion device, a Floating Ocean Energy Conversion Device (FOECD with a single mooring system is proposed, which can be towed to avoid severe ocean conditions or for regular maintenance. In this paper, the structure of the FOECD is introduced, and it includes a catamaran platform, an oscillating buoy part, a current turbine blade, hydraulic energy storage and an electrical generation part. The numerical study models the large catamaran platform as a single, large buoy, while the four floating buoys were modeled simply as small buoys. Theoretical models on wave energy power capture and efficiency were established. To improve the suitability of the buoy for use in the FOECD and its power harvesting capability, a numerical simulation of the four buoy geometries was undertaken. The shape profiles examined in this paper are cylindrical, turbinate (V-shaped and U-shaped cone with cylinder, and combined cylinder-hemisphere buoys. Simulation results reveal that the suitability of a turbinate buoy is the best of the four types. Further simulation models were carried out by adjusting the tip radius of the turbinate buoy. Three performance criteria including suitability, power harvesting capability and energy capture efficiency were analyzed. It reveals that the turbinate buoy has almost the same power harvesting capabilities and energy capture efficiency, while its suitability is far better than that of a cylindrical buoy.

  2. System for Monitoring, Determining, and Reporting Directional Spectra of Ocean Surface Waves in Near Realtime from a Moored Buoy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A moored buoy floating at the ocean surface and anchored to the seafloor precisely measures acceleration, pitch, roll, and Earth's magnetic flux field of the buoy...

  3. Oceanographic profile Temperature and Salinity measurements collected during the Arctic Buoy Program using drifting buoy in the Arctic from 1985-1994 (NCEI Accession 0001497)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between 1985 and 1994, the Polar Science Center at the University of Washington deployed 24 ARGOS data buoys in ice floes on the Arctic Ocean, from which six...

  4. Drifting buoy data observed during 1992 and assembled by the Responsible National Oceanographic Data Center (RNODC) for Drifting Buoy Data (NODC Accession 9300091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and meteorological data were collected from drifting buoys from a World-Wide distribution from 01 January 1992 to 31 December 1992. Data were processed by...

  5. Drifting buoy data observed during 1985 through 1989 and assembled by the Responsible National Oceanographic Data Center (RNODC) for Drifting Buoy Data (NODC Accession 9100057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and meteorological data were collected from drifting buoys from a World-Wide distribution from 2 January 1985 to 31 December 1989. Data were processed by...

  6. Development of an autonomous sea ice tethered buoy for the study of ocean-atmosphere-sea ice-snow pack interactions: the O-buoy

    Directory of Open Access Journals (Sweden)

    T. N. Knepp

    2009-09-01

    Full Text Available A buoy based instrument platform (the "O-buoy" was designed, constructed, and field tested for year-round measurement of ozone, bromine monoxide, carbon dioxide, and meteorological variables over Arctic sea ice. The O-buoy operated in an autonomous manner with daily, bi-directional data transmissions using Iridium satellite communication. The O-buoy was equipped with three power sources: primary lithium-ion battery packs, rechargeable lead acid packs, and solar panels that recharge the lead acid packs, and can fully power the O-buoy during summer operation. This system was designed to operate under the harsh conditions present in the Arctic, with minimal direct human interaction, to aid in our understanding of the atmospheric chemistry that occurs in this remote region of the world. The current design requires approximately yearly maintenance limited by the lifetime of the primary power supply. The O-buoy system was field tested in Elson Lagoon, Barrow, Alaska from February to May 2009, and here we describe the design and present preliminary data.

  7. Fluid Structure Interaction Modeling of the Dynamic of a Semi Submerged Buoy

    OpenAIRE

    Hajwal, Shatha Hameed; Nasser, Hamza Zeidan

    2013-01-01

    This thesis presents a study of buoy systems for wave’s energy by focusing on the development of a model in which modeling of a wave energy conversation is in operation. Throughout the thesis, the buoyancy and motion of the submerged body has been used to describe the wave-buoy interaction. The mathematical model for an investigating buoyancy and the dynamic heave response of this buoy under the two different load cases be considered as a single degree of freedom, which have natural character...

  8. Evidence that grey seals (Halichoerus grypus use above-water vision to locate baited buoys

    Directory of Open Access Journals (Sweden)

    Arne Fjälling

    2013-10-01

    Full Text Available Fishing gear in the Baltic is often raided by grey seals (Halichoerus grypus. The seals remove the fish and damage the nets, or entangle themselves and drown. In order to develop ways of mitigating the seals-fisheries conflict, it is important to know exactly how the seals locate the fishing gear. A field experiment was conducted in order to clarify whether seals use their vision above water to do this. Bait (herring; Clupea harengus was attached to the anchor lines of buoys of the type that is commonly used to mark the position of fishing gear. In all, 643 buoys were set. Some of the buoys (210 were also fitted with camera traps. Weather data were collected from official weather stations nearby. Bait loss (mean 18% was significantly correlated with buoy size (P = 0.002 and wind speed (P = 0.04. There was a significant association between bait loss and seal observations near the buoys (P = 0.05. Five photos of grey seals were obtained from the camera traps. No fish-eating birds, such as cormorants or mergansers, were ever observed near the buoys or caught on camera. It was concluded that a main cause of missing bait was scavenging by grey seals, and that they did use above-water vision to locate the buoys. It was also concluded that wind strength (i.e. wave action contributed tothe bait loss. The camera trap buoys had a somewhat lower bait loss than the other buoys (P = 0.054, which was attributed to a scaring effect. Neither the number of seal observations nor the bait loss differed significantly between the 2 study areas in the experiment (P = 0.43 and P = 0.83, respectively. Bait loss was not affected by the buoy colour (red, white, or grey; P = 0.87. We suggest that the findings of this experiment could be put into practice in a seal-disturbed area by deploying a number of decoy buoys, or by hiding live buoys below the surface of the water. This would increase the cost of foraging for the seals, and hence discourage them from exploiting

  9. Levelized Cost of Energy for a Backward Bent Duct Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-12-01

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.

  10. PacIOOS Water Quality Buoy AW (WQB-AW): Ala Wai, Oahu, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  11. PacIOOS Water Quality Buoy 04 (WQB-04): Hilo, Big Island, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  12. Physical and optical data collected from drifting buoys between May 1993 - December 1996 (NODC Accession 0000586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling and downwelling irradiances were collected from surface optical drifter buoys off the California coast (NE Pacific limit-180) from 05 May 1993 to 06...

  13. PacIOOS Water Quality Buoy 03 (WQB-03): Kiholo Bay, Big Island, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  14. NODC Standard Format Drifting Buoy (F156) Data (1975-1994) (NODC Accession 0014200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data type contains time series ocean circulation data determined by tracking the movement of drifting buoys, drogues or other instrumented devices. Movement is...

  15. NODC Standard Product: NOAA Marine environmental buoy database Webdisc (7 disc set) (NODC Accession 0090141)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This CD-ROM set contains the historic archive of meteorological and oceanographic data collected by moored buoys and C-MAN stations operated by the NOAA National...

  16. Wind wave spectra gathered by anchored data buoys (NODC Accession 9900175)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind wave spectra data were collected using anchored data buoys in various place such as Coastal Waters of Western US, Gulf of Mexico, South Pacific Ocean, Great...

  17. Mooring System of Ocean Turbulence Observation Based on Submerged Buoy

    Institute of Scientific and Technical Information of China (English)

    SONG Da-lei; SUN Jing-jing; XUE Bing; JIANG Qian-li; WU Bing-wei

    2013-01-01

    A comparison experiment has been taken in the Kiaochow Bay between a newly designed mooring turbulence observation instrument (MTOI) and microstructure profiler MSS60 made by Sea & Sun.The whole observing system is based on a submerged buoy,in which the turbulence observation instrument is embedded,with a streamline-shape floating body,which is made of buoyancy material of glass microsphere.For the movement of seawater and the cable shaking strongly anytime influence the behaviors of the floating body,the accelerate sensors are used for the vibration measurement in the instrument together with the shear probe sensor.Both the vibration data and the shear data are acquired by the instrument at the same time.During data processing,the vibration signals can be removed and leave the shear data which we really need.In order to prove the reliability of the new turbulence instrument MTOI,a comparison experiment was designed.The measuring conditions are the same both in time and space.By this way,the two groups of data are comparable.In this paper,the conclusion gives a good similarity of 0.93 for the two groups of shear data in dissipation rate.The processing of the data acquired by MTOI is based on the cross-spectrum analysis,and the dissipation rate of it matches the Nasmyth spectrum well.

  18. Typhoon generated surface gravity waves measured by NOMAD-type buoys

    Science.gov (United States)

    Collins, Clarence O., III

    This study examines wind-generated ocean surface waves as measured by NOMAD-type buoys during the ONR-sponsored Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment in 2010. 1-D measurements from two new Extreme Air-Sea Interaction (EASI) NOMAD-type buoys were validated against measurements from established Air-Sea Interaction Spar (ASIS) buoys. Also, during ITOP, 3 drifting Miniature Wave Buoys, a wave measuring marine radar on the R/V Roger Revelle, and several overpasses of JASON-1 (C- and Ku-band) and -2 (Ku-band) satellite altimeters were within 100 km of either EASI buoy. These additional measurements were compared against both EASI buoys. Findings are in line with previous wave parameter inter-comparisons. A corroborated measurement of mean wave direction and direction at the peak of the spectrum from the EASI buoy is presented. Consequently, this study is the first published account of directional wave information which has been successfully gathered from a buoy with a 6 m NOMAD-type hull. This result may be applied to improve operational coverage of wave direction. In addition, details for giving a consistent estimate of sea surface elevation from buoys using strapped down accelerometers are given. This was found to be particularly important for accurate measurement of extreme waves. These technical studies established a high level of confidence in the ITOP wave measurements. Detailed frequency-direction spectra were analyzed. Structures in the wave field were described during the close passages of 4 major tropical cyclones (TC) including: severe tropical storm Dianmu, Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. In addition, significant swell was measured from a distant 5th TC, Typhoon Malakas. Changes in storm direction and intensity are found to have a profound impact on the wave field. Measurements of extreme waves were explored. More extreme waves were measured during TCs which coincided with times of increased wave

  19. The validation of HY-2 altimeter measurements of a significant wave height based on buoy data

    Institute of Scientific and Technical Information of China (English)

    WANG Jichao; ZHANG Jie; YANG Jungang

    2013-01-01

    HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be calibrated and validated before being put into use. Based on the in-situ buoys from the Nation-al Data Buoy Center (NDBC), Ku-band significant wave heights (SWH, hs) of HY-2 altimeter are validated. Eleven months of HY-2 altimeter Level 2 products data are chose from October 1, 2011 to August 29, 2012. Using NDBC 60 buoys yield 902 collocations for HY-2 by adopting collocation criteria of 30 min for tempo-ral window and 50 km for a spatial window. An overall RMS difference of the SWH between HY-2 and buoy data is 0.297 m. A correlation coefficient between these is 0.964. An ordinary least squares (OLS) regression is performed with the buoy data as an independent variable and the altimeter data as a dependent vari-able. The regression equation of hs is hs(HY-2)=0.891×hs(NDBC)+0.022. In addition, 2016 collocations are matched with temporal window of 30 min at the crossing points of HY-2 and Jason-2 orbits. RMS difference of Ku-band SWH between the two data sets is 0.452 m.

  20. Earth resources technology satellite /ERTS/ data collection and transmission buoys for inland, neritic and oceanic waters

    Science.gov (United States)

    Chapman, W. S.; Yen, H. H.

    1974-01-01

    As a result of a consortium of several industries and organizations, an economical, versatile, and stable data collection and transmission buoy has been designed, developed, and deployed to gather and transmit water quality data to a ground receiving station at three-minute intervals and to the earth resources technology satellite (ERTS) as it passes over the deployed buoy every 12 hours. The buoy system, designed for both fresh and salt water application, gathers data inclusive of temperature measurement, conductivity, relative acidity, dissolved oxygen, current speed, and direction. The mechanical design philosophy used to determine and satisfy boundary conditions involving stability, ease of deployment, servicing and maintenance, minimal manufacturing costs, and fresh and salt water installation capability is discussed. The development of peripheral handling equipment and anchoring systems is described.

  1. Control strategies to optimise power output in heave buoy energy convertors

    International Nuclear Information System (INIS)

    Wave energy converter (WEC) designs are always discussed in order to obtain an optimum design to generate the power from the wave. Output power from wave energy converter can be improved by controlling the oscillation in order to acquire the interaction between the WEC and the incident wave.The purpose of this research is to study the heave buoys in the interest to generate an optimum power output by optimising the phase control and amplitude in order to maximise the active power. In line with the real aims of this study which investigate the theory and function and hence optimise the power generation of heave buoys as renewable energy sources, the condition that influence the heave buoy must be understand in which to propose the control strategies that can be use to control parameters to obtain optimum power output. However, this research is in an early stage, and further analysis and technical development is require

  2. WindSat satellite comparisons with nearshore buoy wind data near the U.S. west and east coasts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; SHI Hanqing; YU Hong; YI Xin

    2016-01-01

    Nearshore wind speeds retrieved by WindSat are validated by a comparison with the moored buoy observations near the U.S. west and east coasts. A 30 min and 25 km collection window is used for the WindSat wind data and buoy measurements from January 2004 to December 2014. Comparisons show that the overall root-mean-square error is better than 1.44 m/s near the U.S. coasts, and the result for the east coast is better than that for the west coast. The retrieval accuracy of the descending portions is slightly better than that of the ascending portions. Most buoy-to-buoy variations are not significantly correlated with the coastal topography, the longitude and the distance from the shore or satellite-buoy separation distance. In addition, comparisons between a polarimetric microwave radiometer and a microwave scatterometer are accomplished with the nearshore buoy observations from 2007 to 2008. The WindSat-derived winds tend to be lower than the buoy observations near the U.S. coasts. In contrast, the QuikSCAT-derived winds tend to be higher than the buoy observations. Overall, the retrieval accuracy of WindSat is slightly better than that of QuikSCAT, and these satellite-derived winds are sufficiently accurate for scientific studies.

  3. On theory and simulation of heaving-buoy wave-energy converters with control

    Energy Technology Data Exchange (ETDEWEB)

    Eidsmoen, H.

    1995-12-01

    Heaving-buoy wave-energy converters with control were studied. The buoy is small compared to the wavelength. The resonance bandwidth is then narrow and the energy conversion in irregular waves can be significantly increased if the oscillatory motion of the device can be actively controlled, and the power output from the converter will vary less with time than the wave power transport. A system of two concentric cylinders of the same radius, oscillating in heave only, is analysed in the frequency-domain. The mathematical model can be used to study a tight-moored buoy, as well as a buoy reacting against a submerged body. The knowledge of the frequency-domain hydrodynamic parameters is used to develop frequency-domain and time-domain mathematical models of heaving-buoy wave energy converters. The main emphasis is on using control to maximize the energy production and to protect the machinery of the wave-energy converter in very large waves. Three different methods are used to study control. (1) In the frequency-domain explicit analytical expressions for the optimum oscillation are found, assuming a continuous sinusoidal control force, and from these expressions the optimum time-domain oscillation can be determined. (2) The second method uses optimal control theory, using a control variable as the instrument for the optimisation. Unlike the first method, this method can include non-linearities. But this method gives numerical time series for the state variables and the control variable rather than analytical expressions for the optimum oscillation. (3) The third method is time-domain simulation. Non-linear forces are included, but the method only gives the response of the system to a given incident wave. How the different methods can be used to develop real-time control is discussed. Simulations are performed for a tight-moored heaving-buoy converter with a high-pressure hydraulic system for energy production and motion control. 147 refs., 38 figs., 22 tabs.

  4. The S1 buoy station, Po River delta: data handling and presentation

    Directory of Open Access Journals (Sweden)

    Alessandro COLUCCELLI

    2006-12-01

    Full Text Available The technical setting of the mete-oceanographic buoy at site S1 south of the Po River delta is presented. The station was deployed by Istituto di Scienze Marine (ISMAR of CNR of Bologna, in cooperation with the local Regional Government and Environmental Agencies (ARPA of E. Romagna, and ADRICOSM. The buoy mooring and data flow architecture is discussed, with some emphasis on the WWW data presentation. The possible integration with other remote stations, data and mete-oceanographic operational activities is also proposed.

  5. An autonomous drifting buoy system for long term pCO2 observation

    Science.gov (United States)

    Nakano, Y.; Fujiki, T.; Wakita, M.; Azetsu-Scott, K.; Watanabe, S.

    2009-04-01

    Many studies have been carried out around the world to understand what happens to carbon dioxide (CO2) once it is emitted into the atmosphere, and how it relates to long-term climate change. However, the sea surface pCO2 observations on volunteer observation ships and research vessels concentrated in the North Atlantic and North Pacific. To assess the spatial and temporal variations of surface pCO2 in the global ocean, new automated pCO2 sensor which can be used in platform systems such as buoys or moorings is strongly desired. We have been developing the small drifting buoy system (diameter 250-340 mm, length 470 mm, weight 15 kg) for pCO2 measurement, with the support of the Japan EOS Promotion Program (JEPP), the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The objective is to provide simplified, automated measurements of pCO2 over all the world's oceans, an essential factor in understanding how the ocean responds to climate change. The measurement principle for the pCO2 sensor is based on spectrophotometry (e.g. Lefèvre et al., 1993; Degrandpre et al., 1995). The CO2 in the surrounding seawater equilibrates with the indicator solution across the gas permeable membranes. The equilibration process causes a change of pH in the indicator solution, which results in the change of optical absorbance. The pCO2 is calculated from the optical absorbance of the pH indicator solution equilibrated with CO2 in seawater through a gas permeable membrane. In our analytical system, we used an amorphous fluoropolymer tubing form of AF-2400 by DuPontTM for the gas permeable membrane due to its high gas permeability coefficients. The measurement system of the sensor consisted mainly of a LED light source, optical fibers, a CCD detector, and a downsized PC. The measured data were transmitted to the laboratory by satellite communication (Argos system). In the laboratory experiment, we obtained a high response time (less than 2 minutes) and a precision

  6. Development of an Indian Ocean moored buoy array for climate studies

    Digital Repository Service at National Institute of Oceanography (India)

    McPhaden, M.J.; Kuroda, Y.; Murty, V.S.N.

    Ocean 5 Year Plan Figure 4. Implementation schedule and ship time requirements (in sea days) for establishing the moored buoy array. Ship time in 2006 (highlighted by an asterisk) is an estimate of the actual amount that will be used on mooring...

  7. Numerical modeling of a spherical buoy moored by a cable in three dimensions

    Science.gov (United States)

    Zhu, Xiangqian; Yoo, Wan-Suk

    2016-05-01

    Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code ProteusDS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.

  8. 33 CFR 74.20-1 - Buoy and vessel use costs.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Buoy and vessel use costs. 74.20-1 Section 74.20-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION CHARGES FOR COAST GUARD AIDS TO NAVIGATION WORK Aids to Navigation Costs § 74.20-1...

  9. An improvement of the GPS buoy system for detecting tsunami at far offshore

    Science.gov (United States)

    Kato, T.; Terada, Y.; Nagai, T.; Kawaguchi, K.; Koshimura, S.; Matsushita, Y.

    2012-12-01

    We have developed a GPS buoy system for detecting a tsunami before its arrival at coasts and thereby mitigating tsunami disaster. The system was first deployed in 1997 for a short period in the Sagami bay, south of Tokyo, for basic experiments, and then deployed off Ofunato city, northeastern part of Japan, for the period 2001-2004. The system was then established at about 13km south of Cape Muroto, southwestern part of Japan, since 2004. Five tsunamis of about 10cm have been observed in these systems, including 2001 Peru earthquake (Mw8.3), 2003 Tokachi-oki earthquake (Mw8.3), 2004 Off Kii Peninsula earthquake (Mw7.4), 2010 Chile earthquake (Mw8.8), and 2011 Tohoku-Oki earthquake (Mw9.0). These experiments clearly showed that GPS buoy is capable of detecting tsunami with a few centimeter accuracy and can be monitored in near real time by applying an appropriate filter, real-time data transmission using radio and dissemination of obtained records of sea surface height changes through internet. Considering that the system is a powerful tool to monitor sea surface variations due to wind as well as tsunami, the Ministry of Land, Infrastructure, Transport and Tourism implemented the system in a part of the Nationwide Ocean Wave information network for Ports and HArbourS (NOWPHAS) system and deployed the system at 15 sites along the coasts around the Japanese Islands. The system detected the tsunami due to the 11th March 2011 Tohoku-Oki earthquake with higher than 6m of tsunami height at the site Off South Iwate (Kamaishi). The Japan Meteorological Agency that was monitoring the record updated the level of the tsunami warning to the greatest value due to the result. Currently, the GPS buoy system uses a RTK-GPS which requires a land base for obtaining precise location of the buoy by a baseline analysis. This algorithm limits the distance of the buoy to, at most, 20km from the coast as the accuracy of positioning gets much worse as the baseline distance becomes longer

  10. Dynamic analysis of propulsion mechanism directly driven by wave energy for marine mobile buoy

    Science.gov (United States)

    Yu, Zhenjiang; Zheng, Zhongqiang; Yang, Xiaoguang; Chang, Zongyu

    2016-05-01

    Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science. Great progress has been made, however the technology in this area is far from maturity in theory and faced with many difficulties in application. A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB, especially with consideration of hydrodynamic force. The principle of wave-driven propulsion mechanism is briefly introduced. To set a theory foundation for study on the MMB, a dynamic model of the propulsion mechanism of the MMB is obtained. The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations. A simplified form of the motion equations is reached by omitting terms with high order small values. The relationship among the heave motion of the buoy, stiffness of the elastic components, and the forward speed can be obtained by using these simplified equations. The dynamic analysis show the following: The angle of displacement of foil is fairly small with the biggest value around 0.3 rad; The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy; The relationship among heaven motion, stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle, therefore, the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant. The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.

  11. Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements

    Science.gov (United States)

    Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra

    2016-04-01

    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local

  12. Wave Observations from Central California: SeaSonde Systems and In Situ Wave Buoys

    Directory of Open Access Journals (Sweden)

    Regan M. Long

    2011-01-01

    Full Text Available Wave data from five 12-13 MHz SeaSondes radars along the central California coast were analyzed to evaluate the utility of operational wave parameters, including significant wave height, period, and direction. Data from four in situ wave buoys served to verify SeaSonde data and independently corroborate wave variability. Hourly averaged measurements spanned distance is 150 km alongshore × 45 km offshore. Individual SeaSondes showed statistically insignificant variation over 27 km in range. Wave height inter-comparisons between regional buoys exhibit strong correlations, approximately 0.93, and RMS differences less than 50 cm over the region. SeaSonde-derived wave data were compared to nearby buoys over timescales from 15 to 26 months, and revealed wave height correlations =0.85−0.91 and mean RMS difference of 53 cm. Results showed that height RMS differences are a percentage of significant wave height, rather than being constant independent of sea state. Period and directions compared favorably among radars, buoys, and the CDIP model. Results presented here suggest that SeaSondes are a reliable source of wave information. Supported by buoy data, they also reveal minimal spatial variation in significant wave height, period, and direction in coastal waters from ~45 km × ~150 km in this region of the central California coast. Small differences are explained by sheltering from coastal promontories, and cutoff boundaries in the case of the radars.

  13. Identifying the types of waves: A value adding study on the ocean observing data buoy system

    Science.gov (United States)

    Ramakrishnan, B.; Sannasiraj, S.; Sundar, V.

    2007-05-01

    Understanding of the wave climate in a particular place of interest is one of the primary aspects of any ocean observing system. Engineers and scientists working in the area of coastal or offshore engineering require to have knowledge on the types of waves that predominantly prevailing not only for the design of the ocean structures but also to understand the physical behavior of ocean surface. For example, identification of breaking waves is given prime importance as it has potential to answer for many of the water-air interaction or turbulence mixing problems. On the other hand, group of waves in which successive wave heights exceed the significant value could exert tremendous forces on the ocean structures and may lead catastrophic damage to it. Apart from deriving the conventional information such as the significant wave periods, heights and the predominant direction of prevailing, knowledge on the existence of type of waves would certainly help the designers, engineers and researchers. In an attempt to classify the types of waves from the buoy measurements, a detailed experimental program was conducted in the Department of Ocean Engineering, Indian Institute of Technology Madras. The buoy model was subjected to variety of waves such as group and breaking waves. The challenging task of the study is to simulate the group and breaking waves in the controlled laboratory environment. For which, initially, these waves are simulated theoretically, which intern converted into first order wave paddle signals to simulate the waves in the flume. The buoy heave, surge and pitch motions were measured by using potentiometers and the non-contact motion capturing cameras. The experimentally obtained wave elevation and the buoy motions time histories were analyzed by statistical, continuous wavelet transformation and phase-time methods to find the traces of wave types. A careful step by step analysis of the buoy motions yields presence of wave groupiness and breaking events

  14. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-03 (NODC Accession 0104424)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  15. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during February 2015 (NODC Accession 0126669)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  16. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-01 (NCEI Accession 0070959)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  17. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during November 2015 (NCEI Accession 0139254)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  18. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during April 2016 (NCEI Accession 0150816)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  19. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-05 (NODC Accession 0119474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  20. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-06 (NODC Accession 0120329)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  1. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-11 (NODC Accession 0115123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  2. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-09 (NODC Accession 0113792)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  3. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-12 (NODC Accession 0101426)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  4. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during June 2015 (NCEI Accession 0129884)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  5. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-10 (NODC Accession 0114407)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  6. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during September 2015 (NCEI Accession 0136935)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  7. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-01 (NODC Accession 0116427)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  8. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-08 (NODC Accession 0095593)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  9. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during May 2016 (NCEI Accession 0153542)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  10. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-02 (NODC Accession 0104259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  11. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during July 2016 (NCEI Accession 0156326)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  12. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during May 2015 (NCEI Accession 0129415)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  13. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during December 2014 (NODC Accession 0125264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  14. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-10 (NODC Accession 0079513)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  15. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-07 (NODC Accession 0095565)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  16. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during August 2015 (NCEI Accession 0131704)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  17. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-11 (NODC Accession 0099948)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  18. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-02 (NODC Accession 0086627)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  19. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-05 (NODC Accession 0108385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  20. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-07 (NCEI Accession 0074922)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  1. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-10 (NODC Accession 0099428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  2. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during October 2014 (NODC Accession 0122591)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  3. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during September 2014 (NODC Accession 0122593)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  4. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-12 (NODC Accession 0083918)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  5. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during January 2016 (NCEI Accession 0142963)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  6. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-06 (NODC Accession 0092557)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  7. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-12 (NODC Accession 0115760)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  8. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during January 2015 (NODC Accession 0125752)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  9. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during February 2016 (NCEI Accession 0145373)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  10. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-05 (NODC Accession 0090313)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  11. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-04 (NCEI Accession 0072886)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  12. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-03 (NODC Accession 0088199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  13. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-08 (NODC Accession 0112958)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  14. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-07 (NODC Accession 0121505)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  15. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-09 (NODC Accession 0078579)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  16. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during November 2014 (NODC Accession 0122594)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  17. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during July 2015 (NCEI Accession 0130916)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  18. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-03 (NCEI Accession 0072077)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  19. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-09 (NODC Accession 0098547)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  20. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-01 (NODC Accession 0085139)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  1. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-01 (NODC Accession 0103632)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  2. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during September 2014 (NCEI Accession 0122592)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  3. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during October 2015 (NCEI Accession 0137949)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  4. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-05 (NCEI Accession 0073426)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  5. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during March 2015 (NODC Accession 0127371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  6. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-08 (NCEI Accession 0077456)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  7. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-04 (NODC Accession 0106521)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  8. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-03 (NODC Accession 0117682)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  9. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during April 2015 (NCEI Accession 0128073)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  10. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-04 (NODC Accession 0090312)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  11. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-06 (NCEI Accession 0074384)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  12. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-08 (NODC Accession 0122005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  13. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-02 (NODC Accession 0117491)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  14. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-06 (NODC Accession 0110477)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  15. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-02 (NCEI Accession 0071368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  16. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during March 2016 (NCEI Accession 0146738)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  17. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-07 (NODC Accession 0111971)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  18. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-11 (NODC Accession 0082371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  19. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-05 (NODC Accession 0002226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  20. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-04 (NODC Accession 0002176)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  1. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-08 (NODC Accession 0002380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  2. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-11 (NODC Accession 0002469)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  3. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-10 (NODC Accession 0002436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  4. Meteorological, oceanographic, and buoy data from JAMSTEC from five drifting buoys, named J-CAD (JAMSTEC Compact Arctic Drifter) in the Arctic Ocean from 2000 to 2003 (NODC Accession 0002201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1999, JAMSTEC and MetOcean Data System Ltd. developed a new drifting buoy, named J-CAD (JAMSTEC Compact Arctic Drifter), to conduct long-term observations in the...

  5. Drifting buoy and other data as part of the Outer Continental Drifting buoy and other data as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 June 1976 to 01 October 1976 (NODC Accession 7700020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy and other data was collected by the University of Washington (UW) as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP)....

  6. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during June 2016 (NCEI Accession 0155886)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  7. Drifting and moored buoy data observed during 2015 and assembled by the Global Data Assembly Center for Drifting Buoy Data (formerly Responsible National Oceanographic Data Center (RNODC)), Canada (NCEI Accession 0156004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Buoy data is available in real time to platform operators via telecommunications providers and distributed on the Global Telecommunications System (GTS) of the...

  8. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-06 (NODC Accession 0002309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  9. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during August 2016 (NCEI Accession 0156603)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  10. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-07 (NODC Accession 0002372)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  11. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during December 2015 (NCEI Accession 0140790)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  12. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-04 (NODC Accession 0118539)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  13. Data from a Directional Waverider Buoy off Waimea Bay, North Shore, Oahu during December 2001 - July 2004 (NODC Accession 0001626)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through various funding channels, the Department of Oceanography at the University of Hawaii (UH) has maintained a Datawell Directional Waverider Buoy roughly 5 km...

  14. Data from a Directional Waverider Buoy off Kailua Bay, Windward Oahu, Hawaii during August 2000 - July 2004 (NODC Accession 0001660)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through various funding channels, the Department of Oceanography at the University of Hawaii (UH) has maintained a Datawell Mark 2 Directional Waverider Buoy...

  15. WATER TEMPERATURE and Other Data from DRIFTING BUOY From World-Wide Distribution from 19781122 to 19810113 (NODC Accession 8600071)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 359 Drifting Surface Buoys were deployed in the Southern Hemisphere oceans from November 22, 1978 to January 13, 1981 as part of the First Global Atmospheric...

  16. NODC Standard Product: NOAA Marine environmental buoy database 1993 with Updates (19 disc set) (NODC Accession 0095199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of CD-ROMs holds marine meteorological, oceanographic, and wave spectra data collected by moored buoys and C-MAN (Coastal-Marine Automated Network)...

  17. Directional wave and temperature data from nine buoys in Gray's Harbor, Washington, 1994-2002 (NODC Accession 0000756)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave data were collected from 9 buoys in Grays Harbor, Washington, from 01 January 1994 to 24 July 2002. Data were collected as part of the Coastal Data Information...

  18. Directional wave and temperature data from seven buoys at Point Reyes, CA, 1996-2002 (NODC Accession 0000760)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave data were collected from 7 buoys in Point Reyes, California, from 06 December 1996 to 25 July 2002. Data were collected as part of the Coastal Data Information...

  19. Winter Sea Ice Deformation Measured by Autonomous Buoys During the N-ICE2015 Cruise in the Arctic Ocean North of Svalbard

    Science.gov (United States)

    Itkin, P.; Spreen, G.; Gerland, S.

    2015-12-01

    The motion of the sea ice cover in the Arctic Ocean north of Svalbard is characterized by fast sea ice drift (10 to 70 km/day) during the winter season. The Norwegian Young sea ICE cruise (N-ICE2015) took place in that region from January till June 2015. During this period more than 40 buoys in nested arrays at the distance of 5 to 100 km apart from each other were deployed in 2 deployments (in January/February and in April/May). The buoy types include drifters, snow buoys, ice-mass balance buoys, radiation buoys and wave buoys. The buoys were deployed on the first- and second-year ice that was characteristic for the region. The sea ice dynamics measured by these buoy arrays are explored in relation to the changing atmospheric forcing and internal ice stress during the experiment. The deformation rates obtained from the buoy array are on average higher than measured by buoy experiments in other Arctic regions by earlier experiments. Our preliminary results show a strong connection of the deformation events to the atmospheric forcing. The high sea ice drift speed associated to strong winds is connected to high deformation rates, while the low speeds in the calm periods are connected to the low deformation rates. While it is known that the relationship between the deformation rate and the spatial scale over which it is measured can be represented by a power law (Stern and Lindsay, 2009, JGR), we find that the exponent is not constant over time and space during the experiment. For high ice drift speeds, associated with high wind speeds and a more loose ice cover, the exponent becomes more negative than for lower ice drift speeds and a compressed ice cover. Figure: Locations of buoy deployments and buoy types for all the buoys deployed during the N-ICE2015 cruise.

  20. System of long- effect navigation buoy using in freezing area%冰区长效灯浮标系统

    Institute of Scientific and Technical Information of China (English)

    孔令臣; 刘祥玉; 阚卫明; 陈永红

    2014-01-01

    文章针对目前国内冰标存在的供电期短、助航效能不明显、保养维护周期短、航标作业量大等缺点,研制出新型长效灯浮标。其采用高性能锂电池和太阳能电池组合的供电系统,在原φ1.4 m冰标基础上,增大显形面积及焦面高度。长效灯浮标降低了能源维护周期,提高了助航效能,减少换标作业,降低单点标体成本,初步实现了我国北方冰冻港口灯浮标的长效化。%The-present-ice-navigation-buoy-exist-several-disadvantages,-such-as-short-term-power-supply,-inconspicuous-navi-gation-performance,-shortdated-maintenance-cycle,-large-arduous-buoy-operation-task.-In-view-of-these-disadvantages,-we-developed-a-new-type-of-long-effect-navigation-buoy-which-has-high-performance-lithium-and-solar-battery-power-in-its-power-supply-system;and-on-the-basis-of-the-original-φ1.4-meter-ice-navigation-buoy,-visualization-area-and-focal-plane-height-were-increased.-The-long-effect-navigation-buoy-reduced-energy-maintenance-cycles,-improved-the-navigation-efficiency,-lessened-arduous-buoy-operation-task-and-reduced-the-cost-of-buoy-on-single-point.-The-breach-made-sense-in-the-initial-realization-of-the-long-effect-navigation-buoy-using-in-the-frozen-port-in-northern-China.

  1. Analysis for the Deployment of Single-Point Mooring Buoy System Based on Multi-Body Dynamics Method

    Institute of Scientific and Technical Information of China (English)

    CHANG Zong-yu; TANG Yuan-guang; LI Hua-jun; YANG Jian-ming; WANG Lei

    2012-01-01

    Deployment of buoy systems is one of the most important procedures for the operation of buoy system.In the present study,a single-point mooring buoy system which contains surface buoy,cable segments with components,anchor and so on is modeled by applying multi-body dynamics method.The motion equations are developed in discrete node description and fully Cartesian coordinates.Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board.The trajectories and velocities of different nodes without current and with current in buoy system are obtained.The transient tension force of each part of the cable is analyzed in the process of deployment.Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration.This work is helpful for design and deployment planning of buoy system.

  2. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    Science.gov (United States)

    Woolway, R Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  3. Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

    OpenAIRE

    Laurence Zsu-Hsin Chuang; Jong-Hao Wang; Li-Chung Wu

    2013-01-01

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining ...

  4. Comparison of WindSat and buoy-measured ocean products from 2004 to 2013

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; SHI Hanqing; DU Huadong; ZHU Enze ZHANG Zhihua; FANG Xun

    2016-01-01

    To evaluate the ocean surface wind vector and the sea surface temperature obtained from WindSat, we compare these quantities over the time period from January 2004 to December 2013 with moored buoy measurements. The mean bias between the WindSat wind speed and the buoy wind speed is low for the low frequency wind speed product (WSPD_LF), ranging from –0.07 to 0.08 m/s in different selected areas. The overall RMS error is 0.98 m/s for WSPD_LF, ranging from 0.82 to 1.16 m/s in different selected regions. The wind speed retrieval result in the tropical Ocean is better than that of the coastal and offshore waters of the United States. In addition, the wind speed retrieval accuracy of WSPD_LF is better than that of the medium frequency wind speed product. The crosstalk analysis indicates that the WindSat wind speed retrieval contains some cross influences from the other geophysical parameters, such as sea surface temperature, water vapor and cloud liquid water. The mean bias between the WindSat wind direction and the buoy wind direction ranges from –0.46° to 1.19° in different selected regions. The overall RMS error is 19.59° when the wind speed is greater than 6 m/s. Measurements of the tropical ocean region have a better accuracy than those of the US west and east coasts. Very good agreement is obtained between sea surface temperatures of WindSat and buoy measurements in the tropical Pacific Ocean; the overall RMS error is only 0.36°C, and the retrieval accuracy of the low latitudes is better than that of the middle and high latitudes.

  5. Monitoring High-Frequency Ocean Signals Using Low-Cost Gnss/imu Buoys

    Science.gov (United States)

    Huang, Yu-Lun; Kuo, Chung-Yen; Shih, Chiao-Hui; Lin, Li-Ching; Chiang, Kai-wei; Cheng, Kai-Chien

    2016-06-01

    In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU) that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS) or Precise Point Positioning (PPP) solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  6. Power Production Analysis of the OE Buoy WEC for the CORES Project

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report describes the analysis performed on the OE Buoy for the CORES project by the wave energy group at Aalborg University, Denmark. OE Buoy is a type of Oscillating Water Column (OWC) wave energy converter as part of the CORES project. This type of device is one of the most developed to ex...... meant that it was not possible to fully implement the method, as the efficiency data was too sparsely distributed as a function of Tz and Hs, but the method used here is based on the Equimar protocol to give an approximate estimate of the yearly power production......., was used to determine the wave statistics for the sea conditions which coincided with the OE Buoy device data, in order to estimate the efficiency of the device as a function of the sea state (for example as a function of the mean zero down period, Tz, and, significant wave height, Hs) as described below....... This may then be used to estimate the yearly power production of the device at the test site location or another location, by using the long-term wave statistics for the given site. Additionally, the power production for a given scale of device may be estimated by applying the appropriate scaling...

  7. Continuous wavelet transform analysis of acceleration signals measured from a wave buoy.

    Science.gov (United States)

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-01-01

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188

  8. Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

    Directory of Open Access Journals (Sweden)

    Laurence Zsu-Hsin Chuang

    2013-08-01

    Full Text Available Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals.

  9. The ODAS Italia 1 buoy: More than forty years of activity in the Ligurian Sea

    Science.gov (United States)

    Canepa, Elisa; Pensieri, Sara; Bozzano, Roberto; Faimali, Marco; Traverso, Pierluigi; Cavaleri, Luigi

    2015-06-01

    The Ligurian Sea plays a relevant role in driving both the circulation of the Western Mediterranean Sea and the weather and climate of the area. In order to better understand the peculiarities of this basin, the Oceanographic Data Acquisition System (ODAS) Italia 1 buoy was developed and deployed in the early '70s. Throughout the years, the buoy has been fitted with updated measuring and data acquiring systems. Since 2003 the buoy has been part of the Mediterranean Moored Multi-sensor Array network of fixed open ocean observatories with the W1-M3A identifier and presently constitutes one of the Mediterranean sites of the European FixO3 network. Recently, a deep-ocean sub-surface mooring line was, and is, deployed close to it in relation to specific projects. This multidisciplinary observing system is able to perform both long-term operational and ad-hoc monitoring from the lower atmosphere to the deep ocean. It is used for analysis of air-sea interaction processes, study of the physical proprieties of the water column, bio-geo-chemical monitoring of the sea, meteorological and oceanographic model evaluation, calibration of remotely sensed measurements, and development of innovative marine monitoring technologies. After reporting some historical notes and the description of the observing system, this paper summarises and reviews the main oceanographic and atmospheric studies performed during the last 15 years using the data acquired on board.

  10. Oceanographic Multisensor Buoy Based on Low Cost Sensors for Posidonia Meadows Monitoring in Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sandra Sendra

    2015-01-01

    Full Text Available There are some underwater areas with high ecological interest that should be monitored. Posidonia and seagrasses exert considerable work in protecting the coastline from erosion. In these areas, many animals and organisms live and find the grassland food and the protection against predators. It is considered a bioindicator of the quality of coastal marine waters. It is important to monitor them and maintain these ecological communities as clean as possible. In this paper, we present an oceanographic buoy for Posidonia meadows monitoring. It is based on a set of low cost sensors which are able to collect data from water such as salinity, temperature, and turbidity and from the weather as temperature, relative humidity, and rainfall, among others. The system is mounted in a buoy which keeps it isolated to possible oxidation problems. Data gathered are processed using a microcontroller. Finally the buoy is connected with a base station placed on the mainland through a wireless connection using a FlyPort module. The network performance is checked in order to ensure that no delays will be generated on the data transmission. This proposal could be used to monitor other areas with special ecological interest and for monitoring and supervising aquaculture activities.

  11. Surface heat budget over the Weddell Sea: Buoy results and model comparisons

    Science.gov (United States)

    Vihma, Timo; Uotila, Juha; Cheng, Bin; Launiainen, Jouko

    2002-02-01

    The surface heat budget over the Weddell Sea ice cover in 1996 was studied on the basis of data from Argos buoys equipped with meteorological sensors. In addition, a thermodynamic sea ice model, satellite-based data on the sea ice concentration, sonar results on ice thickness distribution, and output from large-scale meteorological models were all utilized. Applying the buoy data, the sensible heat flux over sea ice was calculated by Monin-Obukhov theory using the gradient method, and the latent heat flux was obtained by the bulk method. A second estimate for the surface fluxes was obtained from the thermodynamic sea ice model, which was forced by the buoy observations. The results showed a reasonable agreement. The dominating component in the heat budget over ice was the net longwave radiation, which had a mean annual cooling effect of -28 W m-2. This was balanced by the net shortwave radiation (annual mean 13 W m-2), the sensible (13 W m-2) and latent (-3 W m-2) heat fluxes, and the conductive heat flux through the ice (5 W m-2). The regional surface fluxes over the fractured ice cover were estimated using the buoy data and Special Sensor Microwave Imager (SSMI)-derived ice concentrations. In winter the regional surface sensible heat flux was sensitive to the ice concentration and thickness distribution. The estimate for the area-averaged formation rate of new ice in leads in winter varies from 0.05 to 0.21 m per month depending on the SSMI processing algorithm applied. Countergradient fluxes occurred 8-10% of the time. The buoy observations were compared with the operational analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the reanalyses of the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR). The 2 m air temperature and surface temperature were 3.5° and 4.4°C too high, respectively, in the ECMWF and 3.2° and 3.0°C too low in the NCEP/NCAR fields, but the models reproduced the

  12. Characterization of sea-ice kinematic in the Arctic outflow region using buoy data

    Directory of Open Access Journals (Sweden)

    Ruibo Lei

    2016-01-01

    Full Text Available Data from four ice-tethered buoys deployed in 2010 were used to investigate sea-ice motion and deformation from the Central Arctic to Fram Strait. Seasonal and long-term changes in ice kinematics of the Arctic outflow region were further quantified using 42 ice-tethered buoys deployed between 1979 and 2011. Our results confirmed that the dynamic setting of the transpolar drift stream (TDS and Fram Strait shaped the motion of the sea ice. Ice drift was closely aligned with surface winds, except during quiescent conditions, or during short-term reversal of the wind direction opposing the TDS. Meridional ice velocity south of 85°N showed a distinct seasonal cycle, peaking between late autumn and early spring in agreement with the seasonality of surface winds. Inertia-induced ice motion was strengthened as ice concentration decreased in summer. As ice drifted southward into the Fram Strait, the meridional ice speed increased dramatically, while associated zonal ice convergence dominated the ice-field deformation. The Arctic atmospheric Dipole Anomaly (DA influenced ice drift by accelerating the meridional ice velocity. Ice trajectories exhibited less meandering during the positive phase of DA and vice versa. From 2005 onwards, the buoy data exhibit high Arctic sea-ice outflow rates, closely related to persistent positive DA anomaly. However, the long-term data from 1979 to 2011 do not show any statistically significant trend for sea-ice outflow, but exhibit high year-to-year variability, associated with the change in the polarity of DA.

  13. Comparison of retrieving methods of ocean wave periods from satellite altimeter with buoy measurements

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    For validating the results of retrieved mean wave period, four empirical algorithms established previously are introduced. Based on the data of over five years derived from TOPEX satellite altimeter for the entire East China Sea, ocean wave periods were calculated and statistical comparison among them was performed. The retrieved mean wave period obtained with our new distribution parameters showed better agreement with the wave period TB measured by buoy than that calculated by other three algorithms. The difference between the mean values of and that of TB is 0.16 s and the RMSE (root mean square error) of is the lowest value (0.48).

  14. Steps towards commercialization of new power buoy with pivoting arm LOPF

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Steenstrup, Per Resen

    2013-01-01

    The fully instrumented Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg University. Some...... direct measurements from the model device are: voltage output, the torque on the generator, the arm bending moment produced by the mooring line and the absolute angle of the pivoting float. These allowed to follow the conversion of power in the power train from mechanic to electric power, the...

  15. Design of underwater video attached to buoy for observing shallow water substrate

    Science.gov (United States)

    Dingtian, Y.; Wenxi, C.; Delu, P.

    2007-01-01

    Knowledge of shallow water substrate is very important for protection and management of coastal ecosystem. Traditional methods for observing shallow water substrate was by sending diver to photography and recorded with eye, which was laborious and money taking. In order to obtain the easier way to study the shallow water substrate, an underwater video system was designed. Underwater video sensor, optical sensor, sonar sensor, tiltometer, GPS system, and ascending and descending system were all attached to the buoy system, and data was gathered and processed by the computer on the ship. The obtained data could be used for analyzing substrate type, activity of benthos and ground truth data for satellite remote sensing.

  16. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Francais Ocean Et Climat Dans L'Atlantique Equatorial (SEQUAL/FOCAL) project from 25 January 1980 to 18 December 1985 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  17. Tsunami records due to the 2010 Chile Earthquake observed by GPS buoys established along the Pacific coast of Japan

    Science.gov (United States)

    Kato, T.; Terada, Y.; Nagai, T.; Koshimura, S.

    2010-12-01

    The twelve GPS buoys that have been established along the Pacific coast of Japan succeeded to record the tsunami due to the 2010 Central Chile Earthquake (Mw8.8) that occurred on 06:34:14, 27th of February 2010 (UTC) according to USGS, which is on 15:34:14 of the same day by the Japanese Standard Time (JST). We have developed GPS buoy for detecting tsunami for over 12 years, considering that early detection of tsunami serves for mitigating tsunami disaster. The current GPS buoy is now operational at about 10km west of Cape Muroto, southwest Japan. The Ministry of Land, Infrastructure, Transport and Tourism has implemented the similar system with eleven GPS buoys along the Pacific coast of Japan as a part of the Nationwide Ocean Wave information network for Ports and HArbourS (NOWPHAS) system. All of these GPS buoys are located within 20km from the coast. The 2010 Central Chile earthquake generated significant tsunami. The tsunami travelled across the Pacific Ocean and reached the Japanese coasts in about one day. We present the records of tsunamis that have been registered at these GPS buoys. The presentation tries to compare the records with numerically simulated data. The record of experimental GPS buoy operated nearby Muroto is low-pass filtered with 120seconds of cut-off to segregate the long wave length tsunami from higher frequency wind waves. The effect of tide is also removed from the filtered record. The obtained record is visualized through internet facility (http://www.tsunamigps.com/gpsreal.php). The tsunami due to the Chile earthquake arrived at the GPS buoy at around 3:22PM of 28th February (JST), which is nearly one day after the earthquake. The first peak of tsunami is about 12 centimeter above the mean sea surface height. The second peak arrives about one hour and 46 minutes later with about 20cm height, which is the highest peak among the series of the tsunami waves. The later phases of recognizable tsunami waves continued about one day after the

  18. Design of the dual-buoy wave energy converter based on actual wave data of East Sea

    Directory of Open Access Journals (Sweden)

    Kim Jeongrok

    2015-07-01

    Full Text Available A new conceptual dual-buoy Wave Energy Converter (WEC for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea’s East Sea (position: 36.404 N° and 129.274 E° from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy. Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

  19. An Oceanographic Buoy for Multidisciplinary Education and Research in a Coastal Embayment Prone to Harmful Algal Blooms

    Science.gov (United States)

    Laine, E. P.; Roesler, C.; Teegarden, G.

    2005-12-01

    In the spring of 2006 a consortium of Bowdoin College, Bigelow Laboratory for Ocean Sciences, and Saint Joseph's College of Maine will begin the operation of an oceanographic buoy in Harpswell Sound, part of the Casco Bay region of coastal Maine. Funding for acquisition of the buoy has been provided by NSF's MRI program. The sensing buoy will measure physical climatic and oceanographic variables, as well as a suite of biogeochemical indicators (nutrients, chlorophyll, light absorption, etc.). The data collected will be publicly available in real time and will contribute to the overall Gulf of Maine Ocean Observing System (GoMOOS) monitoring program, a premier and ground-breaking effort in assessing the physical and biogeochemical characteristics of the Gulf of Maine. Harpswell Sound is known as an indicator region for harmful algal blooms (HABs) of toxic Alexandrium spp. microalgae, and is an ideal location to employ long-term, comprehensive, remote and real-time monitoring to characterize model systems that promote HABs, as well as system response to changing watershed use patterns and evolving cultural eutrophication. Data acquired with the buoy's sensors, both streaming in real-time and archived in larger sets, will be used in course work at Bowdoin College and Saint Joseph's College, and will be available for use by other post-secondary institutions. Immediate applications include use of data in course work to understand the influence of physical oceanographic processes on biological processes in three dimensions and through time from an Eulerian perspective. The influence of climatic events and the geological characteristics of the surrounding watershed will also be recorded and analyzed through earth science course work. Bowdoin College has a marine research station immediately adjacent on the shore of Harpswell Sound, facilitating complementary traditional monitoring opportunities, e.g. targeted and detailed sampling of interesting features indicated by the

  20. A Preliminary Study of a Buoy System for Acquisition, Transmission, and Management of Hydrological Data Obtained from In-situ Measurements

    Science.gov (United States)

    Elliott, J. M.

    1972-01-01

    The requirements for a system of remotely located, data collection buoys are considered first for a prototype system to be used in conjunction with the Earth Resources Technology Satellite (ERTS-A), and then for a more advanced system. The necessary sensor characteristics for compatibility with the ERTS-A data collection platforms are considered, as well as possible sites for location of the prototype buoys. The advanced system is considered from the standpoint of continuous data collection both through satellite data relay and ground telemetry systems. Management of the data from a buoy system is analyzed, especially with regard to the advanced system.

  1. Determining slack tide with a GPS receiver on an anchored buoy

    Science.gov (United States)

    Valk, M.; Savenije, H. H. G.; Tiberius, C. C. J. M.; Luxemburg, W. M. J.

    2014-07-01

    In this paper we present a novel method to determine the time of occurrence of tidal slack with a GPS receiver mounted on an anchored buoy commonly used to delineate shipping lanes in estuaries and tidal channels. Slack tide occurs when the tide changes direction from ebb to flood flow or from flood to ebb. The determination of this point in time is not only useful for shipping and salvaging, it is also important information for calibrating tidal models, for determining the maximum salt intrusion and for the further refinement of the theory on tidal propagation. The accuracy of the timing is well within 10 min and the method - able to operate in real time - is relatively cheap and easy to implement on a permanent basis or in short field campaigns.

  2. Theory and application of calibration techniques for an NDBC directional wave measurements buoy

    Science.gov (United States)

    Steele, K. E.; Lau, J. C.-K.; Hsu, Y.-H. L.

    1985-01-01

    The National Data Buoy Center (NDBC) of the National Oceanic and Atmospheric Administration (NOAA) deployed a 10-m-diameter discus-type hull in the Pacific Ocean some 185 km southwest of Los Angeles, CA, in April 1984. Aboard this hull was an electronic system capable of acquiring, processing, and transmitting to shore directional wave measurements. For this system to produce accurate data, a number of factors had to be taken into account. These factors included noise, amplitude and phase alterations due to mechanical and electrical components, and magnetic fields arising from the hull. Comprehensive calibration and verification techniques were developed and applied to ensure data quality. The system configuration is described with emphasis on the methods used in the data processing to correct for the various factors. Examples of the resulting corrected data are given.

  3. Results from the DAMOCLES ice-buoy campaigns in the transpolar drift stream 2007–2009

    Directory of Open Access Journals (Sweden)

    M. Haller

    2013-07-01

    Full Text Available During the EU research project DAMOCLES 18 ice buoys were deployed in the region of the Arctic transpolar drift (TPD. Sixteen of them formed a square with 400 km side-length. The measurements lasted from 2007 to 2009. The properties of the TPD and the impact of synoptic weather systems on the ice drift are analysed. Compared to Nansen's drift with the vessel Fram the measured speed of the TPD is here almost twice as fast. Within the TPD, the speed increases by a factor of almost three from the North Pole to the Fram Strait region. The hourly buoy position fixes show that the speed is underestimated by 10–20% if positions were taken at only 1–3 days intervals as it is usually done for satellite drift estimates. The geostrophic wind factor Ui/Ug, i.e. the ratio of ice speed Ui and geostrophic wind speed Ug, in the TPD amounts to 0.012 on average, but with regional and seasonal differences. The constant Ui/Ug relation breaks down for Ug −1. The impact of synoptic weather systems is studied applying a composite method. Cyclones (anticyclones cause cyclonic (anticyclonic vorticity and divergence (convergence of the ice drift. The amplitudes are twice as large for cyclones as for anticyclones. The divergence caused by cyclones corresponds to a 0.1–0.5%/6 h open water area increase based on the composite averages, but reached almost 4% within one day during a strong August 2007 storm. This storm also caused a~long-lasting (over several weeks rise of Ui and Ui/Ug and changed the ice conditions in a way allowing ocean tidal motion to directly affect ice motion. The consequences of an increasing Arctic storm activity for the ice cover are discussed.

  4. Temperature, salinity, and other data from buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993 (NODC Accession 9800040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and other data were collected using buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993. Data were collected by...

  5. Current meter and temperature profile data from current meter and buoy casts in the North Pacific Ocean from 01 October 1997 to 31 August 1998 (NODC Accession 9800144)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using current meter and buoy casts in the North Pacific Ocean from 01 October 1997 to 31 August 1998. Data...

  6. Temperature and salinity profile data collected by drifting buoy and XBT in the Worldwide Oceans from 18 October 1999 to 28 February 2000 (NODC Accession 0000115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using moored buoy, profiling floats, and XBT casts in a world wide distribution from 18 October 1999 to 28 February 2000....

  7. Temperature and salinity profile data collected by drifting buoy and XBT in the Worldwide Oceans from 09 October 1997 to 31 March 2000 (NODC Accession 0000116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using moored buoy, profiling floats, and XBT casts in a world wide distribution from 09 October 1997 to 31 March 2000. Data...

  8. Drifting buoy and other data as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 17 May 1976 to 23 December 1976 (NODC Accession 7800105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected by the Atlantic Oceanographic and Meteorological Laboratory (AOML) as part of the Outer Continental Shelf Environmental Assessment...

  9. Oceanographic profile temperature, salinity and pressure measurements collected using moored buoy in the Indian Ocean from 2001-2006 (NODC Accession 0002733)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity measurements in the Equatorial Indian from 2001 to 2006 from the TRITON (TRIANGLE TRANS-OCEAN BUOY NETWORK); JAPAN AGENCY FOR MARINE-EARTH...

  10. Temperature data from buoy casts in the North Atlantic Ocean from the COLUMBUS and HMAS SWAN from 01 August 1928 to 04 September 1932 (NODC Accession 0000242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data were collected using buoy casts from the COLUMBUS and HMAS SWAN from August 1, 1928 to September 4, 1932 in the North Atlantic Ocean. Data were...

  11. Fall Freeze-up of Sea Ice in the Beaufort-Chukchi Seas Using ERS-1 SAR and Buoy Data

    Science.gov (United States)

    Holt, B.; Winebrenner, B.; D., Nelson E.

    1993-01-01

    The lowering of air temperatures below freezing in the fall indicates the end of summer melt and the onset of steady sea ice growth. The thickness and condition of ice that remains at the end of summer has ramifications for the thickness that that ice will attain at the end of the following winter. This period also designates a shifting of key fluxes from upper ocean freshening from ice melt to increased salinity from brine extraction during ice growth. This transitional period has been examined in the Beaufort and Chukchi Seas using ERS-1 SAR imagery and air temperatures from drifting buoys during 1991 and 1992. The SAR imagery is used to examine the condition and types of ice present in this period. Much of the surface melt water has drained off at this time. Air temperatures from drifting buoys coincident in time and within 100 km radius of the SAR imagery have been obtained...

  12. SeaMon-HC Buoy. A specific real-time-lightweight-moored platform as a tool for fast hydrocarbon detection

    Science.gov (United States)

    Barrera, C.; Rueda, M. J.; Moran, R.; Llerandi, C.; Llinas, O.

    2009-04-01

    The present paper-work describes the design, last development stages and the derived results from a specific buoy platform for fast hydrocarbon detection in seawater. Under the name of SeaMon-HC, (Patent No. P200302219/8) the buoy represents a very chief tool for coastal monitoring, mainly surrounding areas with a high oil-spill risk level, like harbours, off-shore fish farming, beaches and so on. Nowadays, the Macaronesian area has nine units working in real-time, under the frame of the Red ACOMAR Network. The main innovative aspect from this buoy is the detection system. It's based in polymer technology, working as a resistance, who increase its value when the pollutant on water surface is detected. The response time from the sensor is a direct function of the hydrocarbon volatility level. For hydrocarbons with high volatility levels (like petrol), the sensor needs less time (around 3 minutes) than others with less volatility such as oils. SeaMon-HC is an autonomous, modular, reusable and a very low-cost development integrated by four subsystems (SS): SS-Flotation (different materials and shapes available); SS-Sensors (hydrocarbon detector and additional sensors -up to 15-, to solve specific sensor configuration requirements); SS-Power Supply (equipped in its basic configuration with a couple of solar modules and two 12V batteries) and the SS-Communication (based on a RF or GSM/GPRS modem technology, with a selectable communication frequency). All SeaMon-HC units, as well the rest of the ODAS buoys who joint together the Red ACOMAR Network, works in real-time, sending the collected information to the control centre that manages the communications, providing data, in a useful form (as a web site), to diverse socio-economic important sectors which make an exhaustive use of the littoral in the Macaronesian region. The access to the information by the users is done through a specific GIS software application.

  13. Development of a Regional Coral Observation Method by a Fluorescence Imaging LIDAR Installed in a Towable Buoy

    OpenAIRE

    Masahiko Sasano; Motonobu Imasato; Hiroya Yamano; Hiroyuki Oguma

    2016-01-01

    Coral bleaching and mortality is predicted to increase under global climate change. A new observation technique is required to monitor regional coral conditions. To this end, we developed a light detection and ranging (LIDAR) system installed in a towable buoy for boat observations, which acquires continuous fluorescent images of the seabed during day-time. Most corals have innate fluorescent proteins in their tissue, and they emit fluorescence by ultraviolet excitation. This fluorescence dis...

  14. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    Science.gov (United States)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and

  15. Accuracy in GPS/Acoustic positioning on a moored buoy moving around far from the optimal position

    Science.gov (United States)

    Imano, M.; Kido, M.; Ohta, Y.; Takahashi, N.; Fukuda, T.; Ochi, H.; Hino, R.

    2015-12-01

    For detecting the seafloor crustal deformation and Tsunami associated with large earthquakes in real-time, it is necessary to monitor them just above the possible source region. For this purpose, we have been dedicated in developing a real-time continuous observation system using a multi-purpose moored buoy. Sea-trials of the system have been carried out near the Nanakai trough in 2013 and 2014 (Takahashi et al., 2014). We especially focused on the GPS/Acoustic measurement (GPS/A) in the system for horizontal crustal movement. The GPS/A on a moored buoy has a critical drawback compared to the traditional ones, in which the data can be stacked over ranging points fixed at an optimal position. Accuracy in positioning with a single ranging from an arbitrary point is the subject to be improved in this study. Here, we report the positioning results in the buoy system using data in the 2014 sea-trial and demonstrate the improvement of the result. We also address the potential resolving power in the positioning using synthetic tests. The target GPS/A site consists of six seafloor transponders (PXPs) forming a small inner- and a large outer-triangles. The bottom of the moored cable is anchored nearly the center of the triangles. In the sea-trial, 11 times successive ranging was scheduled once a week, and we plotted positioning results from different buoy position. We confirmed that scatter in positioning using six PXPs simultaneously is ten times smaller than that using individual triangle separately. Next, we modified the definition of the PXP array geometry using data obtained in a campaign observation. Definition of an array geometry is insensitive as far as ranging is made in the same position, however, severely affects the positioning when ranging is made from various positions like the moored buoy. The modified PXP array is slightly smaller and 2m deeper than the original one. We found that the scatter of positioning results in the sea-trial is reduced from 4m to 1

  16. Blending sequential scanning multichannel microwave radiometer and buoy data into a sea ice model

    Science.gov (United States)

    Thomas, D. R.; Rothrock, D. A.

    1989-08-01

    A method is presented for determining the concentrations of open water and of several ice types using multichannel satellite passive microwave data. The method uses the Kalman filter and provides the "best fit" to a time series of data. A crucial element of the procedure is a physical model of how the concentrations of ice types change with time in response to freezing, melting, aging of one ice type to another, and creation of open water by divergence of the ice cover. A measurement model relates the state of the ice cover to the multivariate microwave data. The procedure offers three distinct advantages over algorithms that interpret separately data from each instant in time: it provides a framework for incorporating additional data into the diagnosis of ice concentrations, it takes into account the known uncertainty in the microwave observations and the pure type signatures, and it allows the resolution of ice types with ambiguous signatures. Two examples are presented which make use of scanning multichannel microwave radiometer data and surface temperature and ice velocity data from drifting buoys to estimate the concentrations of open water, first-year, second-year, and older multiyear ice for a Lagrangian region of ice. Two other examples include melt ponds in place of second-year ice. Some of the parameters in the physical model (melt rates) and in the measurement model (signature of second-year ice or of frozen melt ponds) are unknown. Reasonable, but arbitrary, values of the unknown parameters are used in the examples.

  17. Rancang Bangun Maximum Power Point Tracking pada Panel Photovoltaic Berbasis Logika Fuzzy di Buoy Weather Station

    Directory of Open Access Journals (Sweden)

    Bayu Prima Juliansyah Putra

    2013-09-01

    Full Text Available Salah satu aplikasi yang sering digunakan dalam bidang energi terbarukan adalah panel photovoltaic. Panel ini memiliki prinsip kerja berdasarkan efek photovoltaic dimana lempengan logam akan menghasilkan energi listrik apabila diberi intensitas cahaya. Untuk menghasilkan daya keluaran panel yang maksimal, maka diperlukan suatu algoritma yang biasa disebut Maximum Power Point Tracking (MPPT.MPPT yang diterapkan pada sistem photovoltaic berfungsi untuk mengatur nilai tegangan keluaran panel sehingga titik ker-janya beroperasi pada kondisi maksimal. Algoritma MPPT pada panel ini telah dilakukan dengan menggunakan logika fuzzy melalui mikrokontroler Arduino Uno sebagai pem-bangkit sinyal Pulse Width Modulation (PWM yang akan dikirimkan menuju DC-DC Buck Boost Converter. Keluaran dari buck boost converterakan dihubungkan secara langsung dengan buoy weather station untuk menyuplai energi listrik tiap komponen yang berada di dalamnya. Untuk menguji performansi dari algoritma MPPT yang telah dirancang, maka sistem akan diuji menggunakan variasi beban antara metode direct-coupled dengan MPPT menggunakan logika fuzzy. Hasil pengujian menunjukkan bahwa MPPT dengan logika fuzzy dapat menghasilkan daya maksimum daripada direct-coupled. Pada sistem panel photovoltaic ini memiliki range efisiensi 33.07589 % hingga 74.25743 %. Daya mak-simal dapat dicapai oleh sistem untuk tiap variasi beban dan efisiensi maksimal dapat dicapai pada beban 20 Ohm dari hasil pengujian sistem MPPT.

  18. Temperature profile and other data collected using moored buoy in the Pacific Ocean (30-N to 30-S) as part of the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project from 06 November 1977 to 24 March 1978 (NODC Accession 8200053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Air pressure, current, wind and temperature time series data were collected from moored buoys from TOGA Area in Pacific (30 N to 30 S). Buoy data from the...

  19. Simulation and Design of Buoy Communication%浮标通信的仿真与设计

    Institute of Scientific and Technical Information of China (English)

    张建忠; 秦建存

    2012-01-01

    The electric wave transmitting reliability of large capacity buoy communication is usually not ideal due to buoyage shake and sea surface multipath.And neglecting the choice of operation frequency and antenna work form causes low reliability of large capacity sea-surface microwave mobile communication.To facilitate electric wave propagation for buoy communication,simulations and test for different working frequencies were performed to study the theoretical characteristics of synthesize field density of communication distance in sea surface multi-path fading conditions.And it is proposed that 1~2GHz wave band,omni-directional antenna with vertical polarization,and directional antenna in the sea coast are suitable for buoy communication.%大容量浮标通信由于浮标体摇摆和多径的影响,其电波传播的可靠度通常不理想,而忽略工作频率的选择和天线工作形式的研究是浮标通信这种海面微波移动通信传输设计可靠度不高的一个重要原因。针对采用何种工作频段和天线工作方式有利于浮标通信电波传输,通过对几组不同工作频率在海面多径条件下相关通信距离的归一化合成场强理论特性进行仿真和测试,提出了采用1~2 GHz波段和垂直极化的浮标端全向天线和岸端定向天线工作方式更有利于浮标通信。

  20. Selection of the optimum combination of responses for Wave Buoy Analogy - An approach based on local sensitivity analysis

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2016-01-01

    One method to estimate the wave spectrum onboard ships is to use measured ship responses. In this method, known also as Wave Buoy Analogy, amongst various responses that are available from sensor measurements, a couple of responses (at least three) are usually utilized. Selec-tion of the best...... combination of ship responses is important. Optimally, this selection should not be implemented manually in onboard applications. Therefore, availability of an automatic response selection procedure would be a great advantage for decision support. In this paper, a local sensitivity analysis is applied to...

  1. Selection of the optimum combination of responses for Wave Buoy Analogy - An approach based on local sensitivity analysis

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2016-01-01

    One method to estimate the wave spectrum onboard ships is to use measured ship responses. In this method, known also as Wave Buoy Analogy, amongst various responses that are available from sensor measurements, a couple of responses (at least three) are usually utilized. Selec-tion of the best...... combination of ship responses is important. Optimally, this selection should not be implemented manually in onboard applications. Therefore, availability of an automatic response selection procedure would be a great advantage for decision support. In this paper, a local sensitivity analysis is applied...

  2. Virtual radar ice buoys – a method for measuring fine-scale dynamic properties of sea ice

    Directory of Open Access Journals (Sweden)

    J. Karvonen

    2015-09-01

    Full Text Available Here we present an algorithm for continuous ice dynamics estimation based on coastal and ship radar data. The ice dynamics are estimated based on automatically selected ice targets in the images. These targets are here called virtual buoys (VB's and are tracked based on an optical flow method. To maintain continuous ice drift tracking new VB's are added after a~given number of VB's have been lost i.e. they can not be tracked reliably any more. Some tracking results and some computed derived quantities for a~few test cases are presented.

  3. Distortion of Near-Surface Seawater Temperature Structure by a Moored-Buoy Hull and Its Effect on Skin Temperature and Heat Flux Estimates

    Directory of Open Access Journals (Sweden)

    Kentaro Ando

    2009-07-01

    Full Text Available Previous studies have suggested that the accuracy of temperature measurements by surface-moored buoys may be affected by distortions of the near-surface temperature structure by the buoy hull on calm, sunny days. We obtained the first definite observational evidence that the temperature near the hull was not horizontally homogeneous at the same nominal depth. We observed large temperature differences of 1.0 K or more between thermometers at 0.2 m depth. The distortion of the surface temperature field yielded an error in estimates of daytime net surface heat flux up to more than 30 Wm–2.

  4. A pilot study to determine the movements of buoy line used in the crab pot fishery to assess bottlenose dolphin entanglement

    OpenAIRE

    McFee, W. E.; Burdett, L. G.; Beddia , L. A.

    2006-01-01

    A pilot study on the characteristics of crab pot buoy line movements to assess bottlenose dolphin entanglement was conducted from 19 September to 30 September 2005 in the Charleston Harbor, Charleston, South Carolina. The objectives of this study were to determine: 1) the movements of the buoy line in the water at various tidal stages, current strengths, lengths of line, and water depth, 2) if lead-core rope was a better alternative to nylon rope, 3) and if the manner of deployment of the gea...

  5. Comparison and analysis of Envisat ASAR ocean wave spectra with buoy data in the northern Pacific Ocean

    Institute of Scientific and Technical Information of China (English)

    REN Qifeng; ZHANG Jie; MENG Junmin; SONG Pingjian

    2011-01-01

    The validation and assessment of Envisat advanced synthetic aperture radar (ASAR) ocean wave spectra products are important to their application in ocean wave numerical predictions. Six-year ASAR wave spectra data are compared with one-dimensional (1D) wave spectra of 55 co-located moored buoy observations in the northern Pacific Ocean. The ASAR wave spectra data are firstly quality control filtered and spatio-temporal matched with buoy data. The comparisons are then performed in terms of 1D wave spectra, significant wave height (SWH) and mean wave period (MWP) in different spatio-temporal offsets respectively. SWH comparison results show the evident dependence of SWH biases on wind speed and the ASAR SWH saturation effect. The ASAR wave spectra tend to underestimate SWH at high wind speeds and overestimate SWH at low wind speeds. MWP comparison results show that MWP has a systematic bias and therefore it should be bias-modified before used. The comparisons of 1D wave spectra show that both wave spectra agree better at low frequencies than at high frequencies, which indicates the ASAR data cannot resolve the high frequency waves.

  6. SeaBuoySoft – an On-line Automated Windows based Ocean Wave height Data Acquisition and Analysis System for Coastal Field’s Data Collection

    Directory of Open Access Journals (Sweden)

    P.H.Tarudkar

    2014-12-01

    Full Text Available Measurement of various hydraulic parameters such as wave heights for the research and the practical purpose in the coastal fields is one of the critical and challenging but equally important criteria in the field of ocean engineering for the design and the development of hydraulic structures such as construction of sea walls, break waters, oil jetties, fisheries harbors, all other structures, and the ships maneuvering, embankments, berthing on jetties. This paper elucidates the development of “SeaBuoySoft online software system for coastal field‟s wave height data collection” for the coastal application work. The system could be installed along with the associated hardware such as a Digital Waverider Receiver unit and a Waverider Buoy at the shore. The ocean wave height data, transmitted by wave rider buoy installed in the shallow/offshore waters of sea is received by the digital waverider receiver unit and it is interfaced to the SeaBuoySoft software. The design and development of the software system has been worked out in-house at Central Water and Power Research Station, Pune, India. The software has been developed as a Windows based standalone version and is unique of its kind for the reception of real time ocean wave height data, it takes care of its local storage of wave height data for its further analysis work as and when required. The system acquires real time ocean wave height data round the clock requiring no operator intervention during data acquisition process on site.

  7. 溢油跟踪浮标水动力特性研究%Improving effectiveness of oil-spill tracking buoys

    Institute of Scientific and Technical Information of China (English)

    王天霖; 刘寅东

    2009-01-01

    This paper aims to optimize the design of oil-spill tracking buoys in order to improve their precision. The hydrodynamic principles governing a buoy tracking an oil film were studied and tracking errors analyzed. The balance equation for a buoy tracking an oil spill floating on the sea was estanblished, and a relational expression was obtained for wind drift, as well as those for surface current, temperature, sea conditions, and buoy geometry, such as its height above the sea surface, and so on. Given sea conditions and the properties of the oil film, the best design of buoy and tracking effect was then calculated. Effective tracking range for a given tracking accuracy, and tracking accuracy given different sea conditions were calculated for a MetOcean product, the Argosphere. The relationship between the buoy's tracking precision and the sea conditions it experiences was also discussed. This should provide guidance for the design of oil-spill tracking buoys.%为提高溢油浮标跟踪海上溢油油膜的精度,优化溢油浮标设计方案,针对溢油浮标跟踪油膜的水动力学机理问题进行研究,并在此基础上对跟踪误差进行了分析.建立了溢油跟踪浮标的水动力平衡方程并求解,得到的结果包含油膜风系数、表面海水漂流风生流系数以及海洋环境温度、风速、浮标几何形状、出水高度等影响溢油浮标跟踪效果的关键因素.根据溢油事故发生地的海况及溢油油膜本身的性质,有针对性地选择最优的浮标设计方案,以达到最佳的跟踪效果.以METOCEAN公司的Argosphere型溢油浮标为例进行了分析和计算,并讨论了浮标跟踪精度与工作海况之间的关系,对溢油跟踪浮标的设计具有指导意义.

  8. Moball-Buoy Network: A Near-Real-Time Ground-Truth Distributed Monitoring System to Map Ice, Weather, Chemical Species, and Radiations, in the Arctic

    Science.gov (United States)

    Davoodi, F.; Shahabi, C.; Burdick, J.; Rais-Zadeh, M.; Menemenlis, D.

    2014-12-01

    The work had been funded by NASA HQ's office of Cryospheric Sciences Program. Recent observations of the Arctic have shown that sea ice has diminished drastically, consequently impacting the environment in the Arctic and beyond. Certain factors such as atmospheric anomalies, wind forces, temperature increase, and change in the distribution of cold and warm waters contribute to the sea ice reduction. However current measurement capabilities lack the accuracy, temporal sampling, and spatial coverage required to effectively quantify each contributing factor and to identify other missing factors. Addressing the need for new measurement capabilities for the new Arctic regime, we propose a game-changing in-situ Arctic-wide Distributed Mobile Monitoring system called Moball-buoy Network. Moball-buoy Network consists of a number of wind-propelled self-powered inflatable spheres referred to as Moball-buoys. The Moball-buoys are self-powered. They use their novel mechanical control and energy harvesting system to use the abundance of wind in the Arctic for their controlled mobility and energy harvesting. They are equipped with an array of low-power low-mass sensors and micro devices able to measure a wide range of environmental factors such as the ice conditions, chemical species wind vector patterns, cloud coverage, air temperature and pressure, electromagnetic fields, surface and subsurface water conditions, short- and long-wave radiations, bathymetry, and anthropogenic factors such as pollutions. The stop-and-go motion capability, using their novel mechanics, and the heads up cooperation control strategy at the core of the proposed distributed system enable the sensor network to be reconfigured dynamically according to the priority of the parameters to be monitored. The large number of Moball-buoys with their ground-based, sea-based, satellite and peer-to-peer communication capabilities would constitute a wireless mesh network that provides an interface for a global

  9. Wave Buoy Server-Side Software Design%波浪浮标服务器端软件设计

    Institute of Scientific and Technical Information of China (English)

    吴子岳; 黄耀耀

    2012-01-01

    传统采用VHF通信的波浪浮标系统需要架设岸站接收机,采用GPRS无线通信解决方案的波浪浮标系统可以省去岸站接收机的费用,并且性能更加稳定可靠。本文主要介绍了服务器端通信模块的设计、数据处理处理模块的设计。软件的编辑使用VisualC++6.0软件,通信模块的设计采用MFC封装的CSocket类,CSocket类派生于完全封装了WindowsSocketsAPI函数的CAsyncSocket类,采用CSocket类可以更加方便地编写网络应用程序。数据处理模块采用了MATLAB与VisualC++混合编程,利用MATLAB留有的动态链接库DLL外部接口可以很方便地将MATLAB功能嵌入到VisualC++的MFC工程中,利用MATLAB与VisualC++混合编程可以方便地进行海浪频谱分析。%Wave buoy system with traditional VHF communication needs to set up offshore station to receive data,the expense can be saved after using GPRS wireless communication solution,moreover the performance of wave buoy system is more stable and reliable.This paper describes the software design on the server-side of wave buoy including communication module,data processing module.All the source codes are programmed based on tool software Visual C++ 6.0.Communication module is designed with class CSocket which is encapsulated by MFC.Class CSocket derives from class CAsyncSocket which completely encapsulates the Windows Sockets API functions.Class CSocket enhances the Convenience of network programming.Data processing module is designed with MATLAB and Visual C++ mixed programming.With the use of dynamic link library(DLL) the external interface left by MATLAB,the MATLAB function can be easily embedded into Visual C++ MFC project.Wave spectrum analysis can be easily handled by using MATLAB and Visual C++ mixed programming.

  10. Uncertainty quantification and inference of Manning's friction coefficients using DART buoy data during the Tōhoku tsunami

    KAUST Repository

    Sraj, Ihab

    2014-11-01

    Tsunami computational models are employed to explore multiple flooding scenarios and to predict water elevations. However, accurate estimation of water elevations requires accurate estimation of many model parameters including the Manning\\'s n friction parameterization. Our objective is to develop an efficient approach for the uncertainty quantification and inference of the Manning\\'s n coefficient which we characterize here by three different parameters set to be constant in the on-shore, near-shore and deep-water regions as defined using iso-baths. We use Polynomial Chaos (PC) to build an inexpensive surrogate for the G. eoC. law model and employ Bayesian inference to estimate and quantify uncertainties related to relevant parameters using the DART buoy data collected during the Tōhoku tsunami. The surrogate model significantly reduces the computational burden of the Markov Chain Monte-Carlo (MCMC) sampling of the Bayesian inference. The PC surrogate is also used to perform a sensitivity analysis.

  11. Circulation and hydrological characteristics of the North Aegean Sea: a contribution from real-time buoy measurements

    Directory of Open Access Journals (Sweden)

    K. NITTIS

    2012-12-01

    Full Text Available In the framework of the POSEIDON Project, a network of open sea oceanographic buoys equipped with meteorological and oceanographic sensors has been operational in the Aegean Sea since 1998. The analysis of upper-ocean physical data (currents at 3m, temperature and salinity at 3-40m depths collected during the last 2 years from the stations of the North Aegean basin indicates a strong temporal variability of flow field and hydrological characteristics in both synoptic and seasonal time scales. The northern part of the basin is mainly influenced by the Black Sea Water outflow and the mesoscale variability of the corresponding thermohaline fronts, while the southern stations are influenced by the general circulation of the Aegean Sea with strong modulations caused by the seasonally varying atmospheric forcing.

  12. Development of a Regional Coral Observation Method by a Fluorescence Imaging LIDAR Installed in a Towable Buoy

    Directory of Open Access Journals (Sweden)

    Masahiko Sasano

    2016-01-01

    Full Text Available Coral bleaching and mortality is predicted to increase under global climate change. A new observation technique is required to monitor regional coral conditions. To this end, we developed a light detection and ranging (LIDAR system installed in a towable buoy for boat observations, which acquires continuous fluorescent images of the seabed during day-time. Most corals have innate fluorescent proteins in their tissue, and they emit fluorescence by ultraviolet excitation. This fluorescence distinguishes living coral from dead coral skeleton, crustose coralline algae, and sea algae. This paper provides a proof of concept for using the LIDAR system and fluorescence to map coral distribution within 1 km scale and coral cover within 100 m scale for a single reef in Japan.

  13. Research on detection model of passive directional buoys%被动定向浮标探潜模型研究

    Institute of Scientific and Technical Information of China (English)

    战和; 杨日杰; 金中原

    2016-01-01

    In Anti-Submarine Warfare, passive directional sonar buoy is a main method to detect submarine. When two directional buoys have detected the same underwater target at the same time, its position could be fixed. A model about how to lay the supplementary passive directional buoys is researched to fix the position of underwater target in the condition that one and only one directional buoy in the original array has affirmed the existence of underwater target, but could not fix its position. According to the motion features of both underwater target and antisubmarine aircraft, sup-plementary dropping model of passive directional buoy is established in consideration that all possible situations may occur in practice. By simulation, the detection efficiency of the model is analyzed and the applicability is proved. All of these provide a theoretical foundation for tactical uses of passive directional buoys.%反潜战中,被动定向声呐浮标是一种主要的探潜手段,两枚被动定向浮标同时发现目标即可对其进行定位。研究了初始浮标阵中仅有一枚浮标能够发现目标但不能实现定位的情况下,如何通过补投被动定向浮标对目标进行定位的模型问题。根据水下目标和反潜机的运动特点,将实际中所有可能出现的情况进行了分类讨论,建立了被动定向浮标的补投模型。通过仿真分析了模型的探测效能,验证了模型的正确性和可用性,为被动定向浮标的战术使用提供了一定的理论基础。

  14. Physical profile data collected in the Equatorial Pacific during cruises to service the TAO/TRITON array, a network of deep ocean moored buoys, February 23 - December 16, 2005 (NODC Accession 0002644)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 2005, CTD data were collected in the equatorial Pacific Ocean during cruises to service the TAO/TRITON array, a network of deep ocean moored buoys to support...

  15. Drifting buoy and other data from the Bering Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 13 September 1975 to 25 September 1975 (NODC Accession 7600632)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Bering Sea by the Atlantic Oceanographic and Meteorological Laboratory (AOML) as part of the Outer Continental Shelf...

  16. Drifting buoy and other data from the Bering Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 27 May 1977 to 07 January 1978 (NODC Accession 7800692)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Bering Sea by the Atlantic Oceanographic and Meteorological Laboratory (AOML) as part of the Outer Continental Shelf...

  17. Drifting buoy and other data from the Arctic Ocean and Beaufort Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 November 1975 to 01 October 1976 (NODC Accession 7700114)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Arctic Ocean and Beaufort Sea by the University of Washington (UW) as part of the Outer Continental Shelf Environmental...

  18. Drifting buoy and other data from the Gulf of Alaska as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 26 October 1980 to 27 March 1981 (NODC Accession 8200115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Gulf of Alaska by the Science Application INC (SAI) as part of the Outer Continental Shelf Environmental Assessment...

  19. Drifting buoy and other data from the Arctic Ocean in support of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 June 1976 to 27 November 1976 (NODC Accession 7700205)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data were collected from the Arctic Ocean by the University of Washington in support of the Outer Continental Shelf Environmental Assessment Program...

  20. Physical and fluorescence data collected using moored buoy casts as part of the IDOE/POLYMODE (International Decade of Ocean Exploration / combination of USSR POLYGON project and US MODE) from 07 December 1975 to 03 January 1977 (NODC Accession 7700569)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and fluorescence data were collected using moored buoy from May 4, 1975 to December 18, 1975. Data were submitted by Massachusetts Institute of Technology;...

  1. CRED Sea Surface Temperature (SST) Buoy; AMSM, TAU; Long: -169.50890, Lat: -14.24409 (WGS84); Sensor Depth: 0.33m; Data Range: 20060304-20080229.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  2. CRED Sea Surface Temperature (SST) Buoy; CNMI, GUA; Long: 144.79778, Lat: 13.51902 (WGS84); Sensor Depth: 0.33m; Data Range: 20030924-20040531.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  3. CRED Sea Surface Temperature (SST) Buoy; AMSM, TUT; Long: -170.83355, Lat: -14.32838 (WGS84); Sensor Depth: 0.33m; Data Range: 20060221-20080221.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  4. CRED Sea Surface Temperature (SST) Buoy; AMSM, TUT; Long: -170.72200, Lat: -14.28428 (WGS84); Sensor Depth: 0.33m; Data Range: 20020306-20020523.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  5. Temperature, current meter, and other data from moored buoy as part of the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) project, 30 July 1974 - 14 August 1974 (NODC Accession 7601675)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, current meter, and other data were collected using moored buoy from the CAPRICORNE from July 30, 1974 to August 14, 1974. Data were collected as part...

  6. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, MAR; Long: -170.63378, Lat: 25.44642 (WGS84); Sensor Depth: 1.00m; Data Range: 20060915-20080918.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  7. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); PRIA, PAL; Long: -162.10280, Lat: 05.88468 (WGS84); Sensor Depth: 0.00m; Data Range: 20060325-20080401.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  8. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MAR; Long: -170.63382, Lat: 25.44652 (WGS84); Sensor Depth: 1.00m; Data Range: 20021001-20030321.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  9. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); AMSM, ROS; Long: -168.16025, Lat: -14.55134 (WGS84); Sensor Depth: 1.00m; Data Range: 20060307-20070902.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  10. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, PHR; Long: -175.81595, Lat: 27.85396 (WGS84); Sensor Depth: 0.91m; Data Range: 20060915-20080828.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  11. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); PRIA, PAL; Long: -162.10283, Lat: 05.88468 (WGS84); Sensor Depth: 0.00m; Data Range: 20020315-20021024.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  12. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); AMSM, ROS; Long: -168.16025, Lat: -14.55134 (WGS84); Sensor Depth: 0.00m; Data Range: 20060307-20080312.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  13. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20040622-20040809.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  14. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); PRIA, PAL; Long: -162.10282, Lat: 05.88467 (WGS84); Sensor Depth: 1.00m; Data Range: 20040330-20060325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  15. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, MAR; Long: -170.63382, Lat: 25.44652 (WGS84); Sensor Depth: 1.00m; Data Range: 20020424-20020802.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  16. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); CNMI, SAI; Long: 145.72285, Lat: 15.23750 (WGS84); Sensor Depth: 0.00m; Data Range: 20030819-20050921.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  17. CRED Sea Surface Temperature (SST) Buoy; AMSM, TUT; Long: -170.56228, Lat: -14.28372 (WGS84); Sensor Depth: 0.33m; Data Range: 20020729-20040217.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  18. CRED Sea Surface Temperature (SST) Buoy; NWHI, LIS; Long: -173.91610, Lat: 25.96767 (WGS84); Sensor Depth: 0.33m; Data Range: 20030724-20041009.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  19. CRED Sea Surface Temperature (SST) Buoy; NWHI, NEC; Long: -164.69775, Lat: 23.57152 (WGS84); Sensor Depth: 0.33m; Data Range: 20030714-20030825.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  20. Drifting buoy and other data from the Chukchi Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 27 June 1977 to 07 November 1977 (NODC Accession 7800005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Chukchi Sea by the University of Washington (UW) as part of the Outer Continental Shelf Environmental Assessment Program...

  1. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); PRIA, PAL; Long: -162.10289, Lat: 05.88463 (WGS84); Sensor Depth: 1.00m; Data Range: 20080401-20090515.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  2. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20050411-20060904.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  3. CRED Sea Surface Temperature (SST) Buoy; PRIA, KIN; Long: -162.34213, Lat: 06.39241 (WGS84); Sensor Depth: 0.33m; Data Range: 20040402-20060329.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  4. Physical profile and meteorological data from CTD casts during cruises to service the TAO/TRITON buoys in the equatorial Pacific from 02 March 2002 to 22 November 2002 (NODC Accession 0000945)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical profile data and meteorological data were collected from CTD casts in the equatorial Pacific Ocean during cruises to to service the TAO/TRITON buoy array....

  5. CRED Sea Surface Temperature (SST) Buoy; NWHI, LAY; Long: -171.74250, Lat: 25.77240 (WGS84); Sensor Depth: 0.33m; Data Range: 20040924-20060910.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  6. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MID; Long: -177.34402, Lat: 28.21788 (WGS84); Sensor Depth: 1.00m; Data Range: 20011022-20020325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  7. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MID; Long: -177.34402, Lat: 28.21788 (WGS84); Sensor Depth: 1.00m; Data Range: 20020724-20020920.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  8. CRED Sea Surface Temperature (SST) Buoy; NWHI, MID; Long: -177.34402, Lat: 28.21788 (WGS84); Sensor Depth: 0.33m; Data Range: 20030729-20041001.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  9. CRED Sea Surface Temperature (SST) Buoy; NWHI, KUR; Long: -178.34327, Lat: 28.41817 (WGS84); Sensor Depth: 0.19m; Data Range: 20080929-20090916.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  10. CRED Sea Surface Temperature (SST) Buoy; NWHI, KUR; Long: -178.34319, Lat: 28.41816 (WGS84); Sensor Depth: 0.33m; Data Range: 20040706-20060917.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  11. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, KUR; Long: -178.34455, Lat: 28.41863 (WGS84); Sensor Depth: 1.00m; Data Range: 20020922-20030316.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  12. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, KUR; Long: -178.34457, Lat: 28.41858 (WGS84); Sensor Depth: 1.00m; Data Range: 20041006-20060916.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  13. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, KUR; Long: -178.34455, Lat: 28.41863 (WGS84); Sensor Depth: 1.00m; Data Range: 20040629-20041005.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  14. CRED Sea Surface Temperature (SST) Buoy; NWHI, KUR; Long: -178.34322, Lat: 28.41813 (WGS84); Sensor Depth: 0.19m; Data Range: 20090916-20100918.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  15. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, KUR; Long: -178.34453, Lat: 28.41852 (WGS84); Sensor Depth: 1.00m; Data Range: 20060918-20080929.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  16. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, KUR; Long: -178.34453, Lat: 28.41852 (WGS84); Sensor Depth: 1.00m; Data Range: 20060917-20080929.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  17. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, KUR; Long: -178.34455, Lat: 28.41863 (WGS84); Sensor Depth: 1.00m; Data Range: 20030807-20040415.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  18. Drifting buoy and other data from the Beaufort Sea and other locations as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 April 1977 to 03 July 1977 (NODC Accession 7700780)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Beaufort Sea by the University of Washington (UW) as part of the Outer Continental Shelf Environmental Assessment Program...

  19. Drifting buoy and other data from the Arctic Ocean and other locations as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 02 November 1975 to 03 June 1976 (NODC Accession 7601626)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected by the University of Washington - Seattle (UW) as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP)....

  20. Drifting buoy and other data from the Beaufort Sea and other locations as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 03 March 1977 to 05 April 1977 (NODC Accession 7700543)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Beaufort Sea and other locations by the University of Washington (UW) as part of the Outer Continental Shelf Environmental...

  1. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, KUR; Long: -178.34453, Lat: 28.41852 (WGS84); Sensor Depth: 0.00m; Data Range: 20060917-20080929.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  2. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, MAR; Long: -170.63382, Lat: 25.44652 (WGS84); Sensor Depth: 0.00m; Data Range: 20030824-20040922.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  3. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, PHR; Long: -175.81612, Lat: 27.85325 (WGS84); Sensor Depth: 0.00m; Data Range: 20020918-20030811.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  4. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, KUR; Long: -178.34455, Lat: 28.41863 (WGS84); Sensor Depth: 0.00m; Data Range: 20030806-20041005.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  5. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20040919-20050411.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  6. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, PHR; Long: -175.81590, Lat: 27.85408 (WGS84); Sensor Depth: 0.00m; Data Range: 20011026-20020917.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  7. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, MAR; Long: -170.63382, Lat: 25.44643 (WGS84); Sensor Depth: 0.00m; Data Range: 20051016-20060907.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  8. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20030718-20030826.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  9. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, KUR; Long: -178.34455, Lat: 28.41863 (WGS84); Sensor Depth: 0.00m; Data Range: 20020922-20030806.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  10. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, LIS; Long: -173.91608, Lat: 25.96767 (WGS84); Sensor Depth: 0.00m; Data Range: 20010920-20020612.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  11. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, MAR; Long: -170.63382, Lat: 25.44643 (WGS84); Sensor Depth: 0.00m; Data Range: 20040924-20051015.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  12. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, PHR; Long: -175.81612, Lat: 27.85325 (WGS84); Sensor Depth: 0.00m; Data Range: 20030812-20040926.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  13. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20030826-20040809.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  14. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, PHR; Long: -175.81593, Lat: 27.85397 (WGS84); Sensor Depth: 0.00m; Data Range: 20040927-20060912.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  15. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20050411-20060904.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  16. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, KUR; Long: -178.34457, Lat: 28.41858 (WGS84); Sensor Depth: 0.00m; Data Range: 20041005-20060917.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  17. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); NWHI, MAR; Long: -170.63378, Lat: 25.44642 (WGS84); Sensor Depth: 0.00m; Data Range: 20060907-20080918.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  18. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10289, Lat: 05.88463 (WGS84); Sensor Depth: 1.00m; Data Range: 20080401-20100410.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  19. Upper ocean currents and sea surface temperatures (SST) from Satellite-tracked drifting buoys (drifters) as part of the Global Drifter Program for Hawaii region 1980/02/01 - 2009/03/31 (NODC Accession 0063296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global...

  20. Bacteriology, wind wave spectra, and benthic organism data from moored buoy casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 01 February 1978 - 03 May 1979 (NODC Accession 7900247)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bacteriology, wind wave spectra, and benthic organism data were collected using moored buoy casts and other instruments in the Gulf of Mexico from February 1, 1978...

  1. Drifting buoy and other data from the Beaufort Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 05 November 1975 to 01 October 1976 (NODC Accession 7700019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy and other data was collected from the Beaufort Sea by the University of Washington (UW) as part of the Outer Continental Shelf Environmental...

  2. Drifting buoy and other data from the Gulf of Alaska as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 21 October 1976 to 11 November 1976 (NODC Accession 7700740)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Gulf of Alaska by the Atlantic Oceanographic and Meteorological Laboratory (AOML) as part of the Outer Continental Shelf...

  3. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); AMSM, ROS; Long: -168.16018, Lat: -14.55140 (WGS84); Sensor Depth: 0.00m; Data Range: 20020224-20040208.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  4. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Environmental Data Logger (EDL); AMSM, ROS; Long: -168.16018, Lat: -14.55140 (WGS84); Sensor Depth: 0.00m; Data Range: 20040208-20060307.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  5. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); PRIA, PAL; Long: -162.10282, Lat: 05.88467 (WGS84); Sensor Depth: 0.00m; Data Range: 20040330-20060325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  6. CTD, current meter, meteorological buoy, and bottle data from the Gulf of Mexico from the ALPHA HELIX and other platforms in support of LATEX A from 18 March 1993 to 23 September 1993 (NODC Accession 9400149)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, current meter, meteorological buoy, and bottle data were collected from the Gulf of Mexico from the ALPHA HELIX and other platforms. Data were collected by...

  7. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Environmental Data Logger (EDL); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 0.00m; Data Range: 20020911-20030718.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to sea surface measure water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  8. CRED Sea Surface Temperature (SST) Buoy; AMSM, TUT; Long: -170.76310, Lat: -14.36667 (WGS84); Sensor Depth: 0.19m; Data Range: 20070616-20080115.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  9. CRED Sea Surface Temperature (SST) Buoy; NWHI, LIS; Long: -173.91583, Lat: 25.96762 (WGS84); Sensor Depth: 0.19m; Data Range: 20081004-20090910.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  10. CRED Sea Surface Temperature (SST) Buoy; PRIA, WAK; Long: 166.62210, Lat: 19.30740 (WGS84); Sensor Depth: 0.19m; Data Range: 20070501-20090118.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  11. CRED Sea Surface Temperature (SST) Buoy; PRIA, PAL; Long: -162.06183, Lat: 05.88278 (WGS84); Sensor Depth: 0.19m; Data Range: 20060324-20070514.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  12. CRED Sea Surface Temperature (SST) Buoy; Maug, Commonwealth of the Northern Mariana Islands; Long: 145.23196, Lat: 20.02909 (WGS84); Sensor Depth: 0.19m; Data Date Range: 20090428-20110418.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  13. CRED Sea Surface Temperature (SST) Buoy; AMSM, TUT; Long: -170.76332, Lat: -14.36675 (WGS84); Sensor Depth: 0.19m; Data Range: 20060226-20070406.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  14. CRED Sea Surface Temperature (SST) Buoy; NWHI, PHR; Long: -175.81592, Lat: 27.85393 (WGS84); Sensor Depth: 0.19m; Data Range: 20080922-20090923.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  15. CRED Sea Surface Temperature (SST) Buoy; CNMI, GUA; Long: 144.80048, Lat: 13.52900 (WGS84); Sensor Depth: 0.19m; Data Range: 20070513-20090405.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  16. CRED Sea Surface Temperature (SST) Buoy; NWHI, LAY; Long: -171.74242, Lat: 25.77248 (WGS84); Sensor Depth: 0.19m; Data Range: 20060910-20071203.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  17. CRED Sea Surface Temperature (SST) Buoy; NWHI, LIS; Long: -173.91588, Lat: 25.96764 (WGS84); Sensor Depth: 0.19m; Data Range: 20090910-20100922.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  18. CRED Sea Surface Temperature (SST) Buoy; AMSM, TUT; Long: -170.83339, Lat: -14.32838 (WGS84); Sensor Depth: 0.19m; Data Range: 20050806-20060221.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  19. CRED Sea Surface Temperature (SST) Buoy; PRIA, PAL; Long: -162.04044, Lat: 05.87450 (WGS84); Sensor Depth: 0.19m; Data Range: 20080402-20091124.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  20. CRED Sea Surface Temperature (SST) Buoy; CNMI, PAG; Long: 145.75743, Lat: 18.12728 (WGS84); Sensor Depth: 0.33m; Data Range: 20050906-20070604.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  1. CRED Sea Surface Temperature (SST) Buoy; NWHI, MID; Long: -177.34402, Lat: 28.21788 (WGS84); Sensor Depth: 0.33m; Data Range: 20020920-20030727.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  2. CRED Sea Surface Temperature (SST) Buoy; AMSM, TAU; Long: -169.41890, Lat: -14.23567 (WGS84); Sensor Depth: 0.33m; Data Range: 20020214-20020317.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Sea Surface Temperature (SST) Buoys provide a time series of...

  3. Bacteriology data from moored buoy casts and other instruments in the Delaware Bay and North Atlantic Ocean during the Ocean Continental Shelf (OCS-Mid Atlantic Ocean) project, 05 November 1976 - 16 August 1977 (NODC Accession 7800207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bacteriology data were collected using moored buoy casts and other instruments in the Delaware Bay and North Atlantic Ocean from November 5, 1976 to August 16,...

  4. Drifting buoy and other data from drifting platforms in the Bering Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 17 January 1981 to 20 June 1981 (NODC Accession 8200120)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from drifting platforms in the Bering Sea by the Flow Research Company as part of the Outer Continental Shelf Environmental...

  5. Physical and meteorological data from buoys from the NW Pacific (limit-180) by the Japan Meteorological Agency and other institutions from 01 January 1978 to 31 December 1991 (NODC Accession 9400143)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Buoy data was collected in the NW Pacific (limit-180) from 01 January 1978 to 31 December 1991. Data were collected by the Japan Meteorological Agency and other...

  6. Wind wave spectra and other data from moored buoy in the East/West Coast of United States, South Pacific Ocean, Gulf of Mexico, and Great Lakes from 01 December 2000 to 30 December 2000 (NODC Accession 0000128)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind wave spectra and other data were collected using moored buoy in the East/West Coast of United States, South Pacific Ocean, Gulf of Mexico, and Great Lakes....

  7. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20020423-20020910.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  8. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); AMSM, ROS; Long: -168.16018, Lat: -14.55140 (WGS84); Sensor Depth: 1.00m; Data Range: 20020224-20020420.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  9. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10283, Lat: 05.88468 (WGS84); Sensor Depth: 1.00m; Data Range: 20020315-20021023.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  10. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MAR; Long: -170.63378, Lat: 25.44642 (WGS84); Sensor Depth: 1.00m; Data Range: 20060915-20080918.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  11. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, LIS; Long: -173.91608, Lat: 25.96767 (WGS84); Sensor Depth: 1.00m; Data Range: 20011020-20011225.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  12. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, FFS; Long: -166.27183, Lat: 23.85678 (WGS84); Sensor Depth: 1.00m; Data Range: 20011017-20020120.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  13. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); CNMI, SAI; Long: 145.72285, Lat: 15.23750 (WGS84); Sensor Depth: 1.00m; Data Range: 20040622-20050227.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  14. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); AMSM, ROS; Long: -168.16025, Lat: -14.55134 (WGS84); Sensor Depth: 1.00m; Data Range: 20060307-20080312.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  15. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, PHR; Long: -175.81590, Lat: 27.85408 (WGS84); Sensor Depth: 1.00m; Data Range: 20020505-20020810.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  16. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, PHR; Long: -175.81612, Lat: 27.85325 (WGS84); Sensor Depth: 1.00m; Data Range: 20020918-20030314.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  17. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); CNMI, SAI; Long: 145.72288, Lat: 15.23746 (WGS84); Sensor Depth: 1.00m; Data Range: 20050921-20060525.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  18. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); AMSM, ROS; Long: -168.16018, Lat: -14.55140 (WGS84); Sensor Depth: 1.00m; Data Range: 20040209-20041002.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  19. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Supplemental Sea Surface Temperature Recorder (SBE39); NWHI, MAR; Long: -170.63382, Lat: 25.44652 (WGS84); Sensor Depth: 1.00m; Data Range: 20030721-20030823.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  20. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10282, Lat: 05.88467 (WGS84); Sensor Depth: 1.00m; Data Range: 20040330-20060325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  1. CRED Coral Reef Early Warning System (CREWS) Enhanced Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); PRIA, PAL; Long: -162.10280, Lat: 05.88468 (WGS84); Sensor Depth: 1.00m; Data Range: 20060326-20080401.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Enhanced (CREWS-ENH) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  2. CRED Coral Reef Early Warning System (CREWS) Standard Buoy, Sea Surface Temperature and Conductivity Recorder (SBE37); NWHI, MAR; Long: -170.63382, Lat: 25.44643 (WGS84); Sensor Depth: 1.00m; Data Range: 20040924-20051014.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CREWS Standard (CREWS-STD) buoys are equipped to measure sea surface water temperature and conductivity (Sea-Bird Model SBE37-SM, Sea-Bird Electronics, Inc.,...

  3. Physical and chemical data collected using CTD and buoy casts from NOAA Ship RESEARCHER and another platform from 1974-06-27 to 1974-07-18 (NCEI Accession 7601653)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and chemical data were collected using CTD and buoy casts from NOAA Ship RESEARCHER and NOAA Ship OCEANOGRAPHER from 27 June 1974 to 18 July 1974. Data...

  4. Significant Wave Heights, Periods, and Directions, and Air and Sea Temperature Data from a Directional Waverider Buoy off Diamond Head, Oahu during March-April 2000 (NODC Accession 0000475)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A directional waverider buoy located about one nautical mile south of Diamond Head, Oahu, provided an approximately 10-day time series of wave characteristics and...

  5. 海上溢油跟踪定位浮标参数分析及技术优化研究%The Research of Parameter Analysis and Optimization of Coastal Surface drifting Oil-spill Tracking Buoy

    Institute of Scientific and Technical Information of China (English)

    杨瑞; 刘寅东; 顾群; 王云强

    2014-01-01

    To improve the accuracy of oil-spill tracking buoy by optimizing the design of buoy , the oil-spill buoy parameters including size , weight and location are studied based on the hydrodynamic principles governing buoy tracking oil -film.The results show that it is possible that the best design of buoy and tracking effect is calculated to reach the accuracy of oil -spill buoy tracking oil-film according to geographic position and the properties of the oil-film.%为提高溢油浮标跟踪海上溢油油膜的精度,基于溢油浮标跟踪油膜的水动力学机理,对溢油浮标的尺寸、重量、海域位置等参数进行分析及优化,研究表明,可以根据浮标应用地理位置、海况及溢油油膜本身的性质,有针对性地选择最优的浮标设计参数,以提高溢油跟踪预测的准确性。

  6. An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

    Science.gov (United States)

    Hong, Sinpyo; Lee, Inwon; Park, Seong Hyeon; Lee, Cheolmin; Chun, Ho-Hwan; Lim, Hee Chang

    2015-09-01

    An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG), mooring line spring constant, and fair-lead location on the turbine's motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT), the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

  7. Assessing movements of three buoy line types using DSTmilli Loggers: Implications for entanglements of bottlenose dolphins in the crab pot fishery

    OpenAIRE

    McFee, W. E.; Pennington, P.L.; Burdett, L. G.; Powell, J. W. B.; Schwacke, J. H.; Dockery, F. E.

    2007-01-01

    A study was conducted in October 2006 in the Charleston, South Carolina area to test the movements of three different buoy line types to determine which produced a preferred profile that could reduce the risk of dolphin entanglement. Tests on diamond-braided nylon commonly used in the crab pot fishery were compared with stiffened line of Esterpro and calf types in both shallow and deep water environments using DSTmilli data loggers. Loggers were placed at intervals along the lines to record d...

  8. Proof-of-Concept Trajectory Designs for a Multi-Spacecraft, Low-Thrust Heliocentric Solar Weather Buoy Mission

    Science.gov (United States)

    Muller, Ronald; Franz, Heather; Roberts, Craig; Folta, Dave

    2005-01-01

    A new solar weather mission has been proposed, involving a dozen or more small spacecraft spaced at regular, constant intervals in a mutual heliocentric circular orbit between the orbits of Earth and Venus. These solar weather buoys (SWBs) would carry instrumentation to detect and measure the material in solar flares, solar energetic particle events, and coronal mass ejections as they flowed past the buoys, serving both as science probes and as a radiation early warning system for the Earth and interplanetary travelers to Mars. The baseline concept involves placing a mothercraft carrying the SWBs into a staging orbit at the Sun-Earth L1 libration point. The mothercraft departs the L1 orbit at the proper time to execute a trailing-edge lunar flyby near New Moon, injecting it into a heliocentric orbit with its perihelion interior to Earth s orbit. An alternative approach would involve the use of a Double Lunar Swingby (DLS) orbit, rather than the L1 orbit, for staging prior to this flyby. After injection into heliocentric orbit, the mothercraft releases the SWBs-all equipped with low-thrust pulsed plasma thrusters (PPTs)-whereupon each SWB executes a multi-day low-thrust finite bum around perihelion, lowering aphelion such that each achieves an elliptical phasing orbit of different orbital period from its companions. The resulting differences in angular rates of motion cause the spacecraft to separate. While the lead SWB achieves the mission orbit following an insertion burn at its second perihelion passage, the remaining SWBs must complete several revolutions in their respective phasing orbits to establish them in the mission orbit with the desired longitudinal spacing. The complete configuration for a 14 SWB scenario using a single mothercraft is achieved in about 8 years, and the spacing remains stable for at least a further 6 years. Flight operations can be simplified, and mission risk reduced, by employing two mothercraft instead of one. In this scenario: the

  9. Observations of vertical tidal motions of a floating iceberg in front of Shirase Glacier, East Antarctica, using a geodetic-mode GPS buoy

    Science.gov (United States)

    Aoyama, Yuichi; Kim, Tae-Hee; Doi, Koichiro; Hayakawa, Hideaki; Higashi, Toshihiro; Ohsono, Shingo; Shibuya, Kazuo

    2016-06-01

    A dual-frequency GPS receiver was deployed on a floating iceberg downstream of the calving front of Shirase Glacier, East Antarctica, on 28 December 2011 for utilizing as floating buoy. The three-dimensional position of the buoy was obtained by GPS every 30 s with a 4-5-cm precision for ca. 25 days. The height uncertainty of the 1-h averaged vertical position was ∼0.5 cm, even considering the uncertainties of un-modeled ocean loading effects. The daily evolution of north-south (NS), east-west (EW), and up-down (UD) motions shows periodic UD variations sometimes attaining an amplitude of 1 m. Observed amplitudes of tidal harmonics of major constituents were 88%-93% (O1) and 85%-88% (M2) of values observed in the global ocean tide models FES2004 and TPXO-8 Atlas. The basal melting rate of the iceberg is estimated to be ∼0.6 m/day, based on a firn densification model and using a quasi-linear sinking rate of the iceberg surface. The 30-s sampling frequency geodetic-mode GPS buoy helps to reveal ice-ocean dynamics around the calving front of Antarctic glaciers.

  10. Optimal station arrangement of multi-buoy positioning system%多浮标定位系统最优布站分析

    Institute of Scientific and Technical Information of China (English)

    孙国振; 董真杰; 连丽婷

    2013-01-01

    In multi-station and multi-buoy positioning systems, the system positioning error is influenced by different station arrangement methods and the number of buoy stations. The optimal objective function of the positioning sys-tem was deduced from the error function. The improvement method for sonar positioning accuracy in limited condi-tions was proposed. By analyzing the basic station arrangement and the relationship between precision and station ar-rangement, three kinds of station arrangement methods were compared according to the proposed method. Experi-mental results showed consistent performance as the actual situation. The relationships between the precision and the number of buoy stations, the radius of buoy station and station location were discussed from simulation, indicating that the proposed method could achieve the best arrangement of buoy stations and the best radius of the stations.%针对多基地、多浮标定位系统,不同的布站方式、布站数量对系统定位误差均有一定影响。从定位误差方程推导出定位误差最优目标函数,探讨了在有限的条件下如何提高系统定位精度,给出了精度与布站数、布站距离、布站位置之间的关系。通过分析基本布站方式,以及布站方式与精度之间的关系,根据得到的分析方法,对三种布站方式进行了精度分析,得到了与实际情况相符的结果。通过Matlab仿真,给出了3~8个浮标与定位精度的效果图示,分析了布站数与定位范围、布站半径与布站面积之间的关系,并得到最佳布站方式及布站半径,在实际应用中具有较好的参考价值和指导意义。

  11. Wave Energy Estimation by Using A Statistical Analysis and Wave Buoy Data near the Southern Caspian Sea

    Institute of Scientific and Technical Information of China (English)

    A.R.Zamani; M.A.Badri

    2015-01-01

    Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through directional spectrum wave analysis. Recorded wind direction and wind speed were obtained through the related time series as well. For 12-month measurements (May 25 2007-2008), statistical calculations were done to specify the value of nonlinear auto-correlation of wave and wind using the probability distribution function of wave characteristics and statistical analysis in various time periods. The paper also presents and analyzes the amount of wave energy for the area mentioned on the basis of available database. Analyses showed a suitable comparison between the amounts of wave energy in different seasons. As a result, the best period for the largest amount of wave energy was known. Results showed that in the research period, the mean wave and wind auto correlation were about three hours. Among the probability distribution functions, i.e Weibull, Normal, Lognormal and Rayleigh, “Weibull” had the best consistency with experimental distribution function shown in different diagrams for each season. Results also showed that the mean wave energy in the research period was about 49.88 kW/m and the maximum density of wave energy was found in February and March, 2010.

  12. Indian Ocean surface winds from NCMRWF analysis as compared to QuikSCAT and moored buoy winds

    Indian Academy of Sciences (India)

    B N Goswami; E N Rajagopal

    2003-03-01

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) during 1999, 2000 and 2001. The NCMRWF surface winds su ered from easterly bias of 1.0-1.5 ms-1 in the equatorial Indian Ocean (IO) and northerly bias of 2.0-3.0 ms-1 in the south equatorial IO during 1999 and 2000 compared to QSCT winds. The amplitude of daily variability was also underestimated compared to that in QSCT. In particular, the amplitude of daily variability of NCMRWF winds in the eastern equatorial IO was only about 60% of that of QSCT during 1999 and 2000. The NCMRWF surface winds during 2001 have significantly improved with the bias of the mean analyzed winds considerably reduced everywhere bringing it to within 0.5 ms-1 of QSCT winds in the equatorial IO. The amplitude and phase of daily and intraseasonal variability are very close to that in QSCT almost everywhere during 2001. It is shown that the weakness in the surface wind analysis during 1999 and 2000 and its improvement in 2001 are related to the weakness in simulation of precipitation by the forecast model in the equatorial IO and its improvement in 2001.

  13. The seasonal variation of undercurrent and temperature in the equatorial Pacific jointly derived from buoy measurement and assimilation analysis

    Institute of Scientific and Technical Information of China (English)

    SUN Jilin; CHU Peter; LIU Qinyu

    2004-01-01

    Based on the TOGA-TAO buoy chain observed data in the equatorial Pacific and the assimilation analysis results from SODA(simple ocean data assimilation analysis), the role of the meridional cells in the subsurface of the tropical Pacific was discussed. It was found that, the seasonal varying direction of EUC(the quatorial Undercurrent)in the Peacific is westwards beginning from the eastern equatorial Pacific in the boreal spring. The meridional cell south of the equator plays important role on this seasonal change of EUC.On the other hand, although the varying direction is westwards,the seasonal variation of temperature in the same region gets its minimum values in the boreal anttmm beginning from the eastern equatorial Pacific.The meridional cell north of the equator is most responsible for the seasonal temperature variation in the eastern equatorial Pacific while the meridional cell south of the equator mainly controls the seasonal temperature change in the central Pacific. It is probably true that the asymmetry by the equator is an important factor influencing the seasonal cycle of EUC and temperature in the tropical Pacific.

  14. Modeling and simulation the probability of searching submarine based on passive buoy array%被动浮标阵对潜搜索概率建模与仿真

    Institute of Scientific and Technical Information of China (English)

    罗光成; 杨日杰; 张丹

    2011-01-01

    浮标搜潜是1种主要的航空探潜方式,投放浮标的数量及阵形决定着搜潜效能.由于机载浮标数量有限,正确地计算当前阵型的搜索概率尤为重要.以应召搜潜为背景,结合被动浮标作战使用,对水下潜艇分布规律进行分析,建立了被动浮标阵的对潜探测概率模型,并仿真分析潜艇分布规律对模型探测概率的影响,为部队训练被动浮标的使用提供了参考.%Sonobuoy anti-submarine is a major method for the air anti-submarine,and the number of buoys in launching determine the efficiency of searching submarine. Due to the limited number of airborne buoy.it is important to calculate correctly the formation of the search probability. As a background of summoned searching submarine, this paper has combined with the passive buoy using to analysis the distribution of submarine underwater, and established a passive buoy arrays for submarine detection probability model,and analyzed the efficiency of submarine distribution and model probability of detecting. It provided a reference of passive buoy for troop training.

  15. A system for ocean ambient noise measurement based on subsurface buoy%基于潜标的海洋环境噪声测量系统

    Institute of Scientific and Technical Information of China (English)

    吕云飞; 张殿伦; 邹吉武; 兰华林; 孙大军

    2009-01-01

    This paper aims to design the system of ocean ambient noise measurement, the system is deployed with subsurface buoy, low frequency ambient noise of shallow water is measured by vector hydrophone. Vector hydrophone measures pressure and all three orthogonal components of particle velocity at a single point in space,the measured signal is preprocessed and sampled, the sampled data can be self-stored in subsurface buoy or transmitted to shore station by buoy. The method of noise measurement is discussed, the results of the sea trials show that the system is feasible and reliable.%对海洋环境噪声测量系统技术进行了研究,设计和实现了一种基于潜标的海洋环境噪声测量系统,并进行了海上试验.该系统采用潜标的布放方式,利用矢量水听器测量浅海海洋环境噪声场的低频噪声.矢量水听器同步测量声场空间一点处的声压和质点振速三个正交分量, 测量信号经预处理后,对信号进行数模变换,得到的噪声数据可以在潜标中自记录或通过水面浮标传输到岸站存储.对噪声测量方法进行的分析和海上试验的结果表明,该系统稳定可靠,能正确地拾取海洋环境噪声.

  16. Design of Solar LED Anchor Light System on Marine Measurement Buoys%海洋测量浮标太阳能LED锚灯系统的设计

    Institute of Scientific and Technical Information of China (English)

    唐原广; 朱明垒

    2012-01-01

    The anchor lights on the buoy are always incandescent light source,which are power consumption and short life span. In order to improve the quality of anchor light and reduce the workload of manual maintenance and labor intensity .design a low power consumption and cost-effective solar LED anchor light used on marine measurement buoys. By the use of solar panels for charging,the system realizes the main function of solar battery power control,battery control,light-sensitive circuit control and LED anchor light control through the central controller. The circuit is simple and practical. LED anchor light is of good quality .glowing far and flashing effect is good .providing a reliable security guarantee for the buoy.%一直以来浮标上用的锚灯都以白炽灯为光源,但是白炽灯功耗大、寿命短.为进一步提高航标灯的质量,减轻工人维护劳动强度和工作量,设计了一种低功耗且性价比高的可用于海洋测量浮标的太阳能LED锚灯.该锚灯通过中央控制器实现太阳能电池电源控制、蓄电池充电控制、感光电路控制以及LED锚灯控制等主要功能,并利用太阳能电池板进行充电,电路简洁、实用.LED锚灯灯管质量好、发光射程远、闪烁效果良好、性能稳定,可以更好地为浮标提供可靠的安全保证.

  17. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data.

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.; Hithin, N.K.

    larger number of collocation points, an improvement that would make the comparison statistically stable. The Gaussian weight function is applied for averaging the along-track altimeter data to the exact buoy location. The collocated value of the SWH... location, and xn, yn, and tn are the respective spatial grid points in x, y and time of the satellite data. Additionally, X = 100 km, Y=100 km, and T=30 min. The statistical parameters used for comparison of the altimeter data with the measured data...

  18. A Simple, Buoy Deployable Instrument for Accurate Dissolved Carbon Dioxide and Dissolved Inorganic Carbon Measurements in Freshwater and Marine Ecosystems

    Science.gov (United States)

    Browne, B. A.; Wyss, J. R.; Bowling, J. M.; Schueller, D. J.; Sherman, J. F.

    2007-05-01

    The need for better knowledge of (1) the oceanic sink for anthropogenic CO2, (2) the impact of anthropogenic CO2 on the oceanic CaCO3 system and (3) lake and stream metabolism in freshwater ecosystems is driving growing interest in real-time technologies to measure pCO2 and dissolved inorganic carbon (DIC). To be useful, these technologies must meet stringent data quality requirements of marine and freshwater biogeochemical research initiatives such as the Joint Global Ocean Flux Study, the Coral Reef Environmental Observatory Network, the National Ecological Observatory Network, and the Global Lake Ecological Observatory Network. In this presentation, we introduce new methodology and a device for unaccompanied measurement of pCO2 and DIC on research buoys or ocean/freshwater vessels. This small-scale, essentially "plug and play" device (shoe box size) has limited power requirements (≤1.8 amps) for continuous or discontinuous (e.g., one reading per hour) measurements and does not bio-foul. DIC and pCO2 can be measured in sequence using one infrared detector or in parallel using two. The accuracy and precision (Training requirements are minimal, providing flexibility for deployments on multiple vessel types. The device works by induction of ebullition. A hydrostatic pressure drop upstream of a pump causes a temporary condition of gas oversaturation. The collection cell downstream of the pump then acts like an overpressurized soda bottle. As pressure is released within the collection cell, the dissolved gas streams passively and reliably into the infrared detector(s), at a nominal rate of 7 mL per minute, carrying CO2 into the cell essentially at its in-situ partial pressure. To measure DIC, a valve allows for the addition of acid to the sampling line upstream of the pump converting all DIC to CO2 prior to reaching the collection cell. With the acid valve on, DIC is measured. With the acid valve off, pCO2 is measured. We will present data illustrating the accuracy

  19. Proactive managers buoy satisfaction.

    Science.gov (United States)

    2010-10-01

    The ED leaders at St. Clair Hospital in Pittsburgh, PA, say that"managing by walking around"was one of the keys to their earning a ranking from Press Ganey as the no. 1 ED in patient satisfaction for EDs with more than 50,000 annual visits. The director selects and talks with random patients, following up on their care and making sure they're satisfied. Staff members are asked specific questions based on the Press Ganey priority indices. If there are patient complaints about a staff member, confidential meetings are held to discuss ways to improve.

  20. Evaluation of HY-2A Scatterometer Wind Vectors Using Data from Buoys, ERA-Interim and ASCAT during 2012–2014

    Directory of Open Access Journals (Sweden)

    Jianyong Xing

    2016-05-01

    Full Text Available The first Chinese operational Ku-band scatterometer on board Haiyang-2A (HY-2A, launched in August 2011, is designed for monitoring the global ocean surface wind. This study estimates the quality of the near-real-time (NRT retrieval wind speed and wind direction from the HY-2A scatterometer for 36 months from 2012 to 2014. We employed three types of sea-surface wind data from oceanic moored buoys operated by the National Data Buoy Center (NDBC and the Tropical Atmospheric Ocean project (TAO, the European Centre for Medium Range Weather Forecasting (ECMWF reanalysis data (ERA-Interim, and the advanced scatterometer (ASCAT to calculate the error statistics including mean bias, root mean square error (RMSE, and standard deviation. In addition, the rain effects on the retrieval winds were investigated using collocated Climate Prediction Center morphing method (CMORPH precipitation data. All data were collocated with the HY-2A scatterometer wind data for comparison. The quality performances of the HY-2A NRT wind vectors data (especially the wind speeds were satisfactory throughout the service period. The RMSEs of the HY-2A wind speeds relative to the NDBC, TAO, ERA-Interim, and ASCAT data were 1.94, 1.73, 2.25, and 1.62 m·s−1, respectively. The corresponding RMSEs of the wind direction were 46.63°, 43.11°, 39.93°, and 47.47°, respectively. The HY-2A scatterometer overestimated low wind speeds, especially under rainy conditions. Rain exerted a diminishing effect on the wind speed retrievals with increasing wind speed, but its effect on wind direction was robust at low and moderate wind speeds. Relative to the TAO buoy data, the RMSEs without rain effect were reduced to 1.2 m·s−1 and 39.68° for the wind speed direction, respectively, regardless of wind speed. By investigating the objective laws between rain and the retrieval winds from HY-2A, we could improve the quality of wind retrievals through future studies.

  1. Place-based Learning Collaboration: Promoting climate, ocean and data literacy by hosting a CO2 buoy from NOAA's Pacific Marine Environmental Lab at the Exploratorium

    Science.gov (United States)

    Miller, M. K.; Sabine, C. L.; Maenner, S.; Sutton, A.; Raleigh, C.

    2015-12-01

    The Exploratorium's new museum site on the San Francisco waterfront is a unique location for place-based learning about climate impacts on the ocean. With access to the Bay and surrounding environment, and strong partnerships with a national network of NOAA scientists and local researchers, the museum can serve as an educational node for a variety of atmosphere and ocean observing networks. The most visible and iconic instrument at the museum's Pier 15 location is a CO2 buoy from NOAA's Pacific Marine Environmental Lab in Seattle. Part of an international network of real-time ocean acidification sensors, the NOAA buoy streams temperature, salinity, atmospheric and surface water CO2 data from the Exploratorium location to NOAA. Near real-time and archived ocean and atmosphere carbon data is displayed in the museum's Bay Observatory along with other water quality, weather, and air quality conditions. Displaying both the instruments and the data they provide gives the public a better understanding of where climate data comes from, how scientists make meaning from time series data, and the value of long-term observation in understanding climate change and the ways that humans impact the environment. However, creating interactive exhibits from environmental data presents many challenges, including interpreting complex earth systems and biological and human interactions. What is the impact of the adjacent urban center and the estuary on the Bay's carbon content? How do we tease out long-term trends from the local variability? How do we connect the place-based learning to global processes and impacts? We'll address some of these challenges in the presentation and include the importance of collaborative partnerships between informal education institutions and researchers in place-based education about climate and environmental change.

  2. Temperature profile and current meter data collected using moored buoy and profiling floats in the North Atlantic Ocean as part of the International Decade of Ocean Exploration / Mid-Ocean Dynamics Experiment (IDOE/MODE) project from 03 October 1972 to 13 July 1973 (NODC Accession 7500548)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, pressure, east-west current component, north-south current component, fluorescence, and other data were collected using moored buoy and profiling...

  3. Dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients collected from profile, discrete sampling, and time series observations using CTD, Niskin bottle, and other instruments from R/V Gulf Challenger near a buoy off the coast of New Hampshire, U.S. in the Gulf of Maine from 2011-01-11 to 2015-11-18 (NCEI Accession 0142327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — UNH, in conjunction with NOAA's Pacific Marine Environmental Laboratory, has been operating a buoy off the coast of New Hampshire since 2006. These data include...

  4. Temperature and pressure data collected using drifting buoy and profiling floats from the North Atlantic Ocean in part of the IDOE/POLYMODE (International Decade of Ocean Exploration / combination of USSR POLYGON project and US MODE) from 10 January 1975 to 31 May 1981 (NODC Accession 8700121)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and pressure data were collected using drifting buoy and profiling floats from CHAIN, GILLISS, OCEANUS, and ENDEAVOR from the North Atlantic Ocean from...

  5. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from time series and profile observations using CTD, Niskin bottle,and other instruments near CenGOOS buoy off the coast of Mississippi in the Gulf of Mexico from 2012-10-15 to 2014-04-22 (NCEI Accession 0131199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains time series profile (discrete bottle) data that were collected at the GenGOOS buoy off the coast of Mississippi. The CenGOOS 3-m...

  6. Physical, current, and other data from CTD casts, current meters, and drifting buoys from the NOAA ship Mt Mitchell in the Persian Gulf as part of the Straits of Hormuz project from 26 February 1992 to 22 June 1992 (NODC Accession 9600082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, and other data were collected from CTD casts, current meters, and drifting buoys from the NOAA ship Mt Mitchell in the Persian Gulf and other...

  7. Temperature and upwelling / downwelling irradiance data from drifting buoy in the Southern Oceans as part of the Joint Global Ocean Flux Study/Southern Ocean (JGOFS/Southern Ocean) project, from 1994-12-25 to 1998-06-28 (NODC Accession 9900183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and upwelling / downwelling irradiance data were collected using drifting buoy in the Southern Oceans from December 25, 1994 to June 28, 1998. Data were...

  8. Physical and chemical data from CTD, current meter, and buoy casts from the XIANG YANG HONG 14 and NOAA Ship OCEANOGRAPHER in the TOGA area of Pacific Ocean (30 N to 30 S) from 25 January 1987 to 24 October 1987 (NODC Accession 8700356)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and chemical data were collected using current meter, CTD, and buoy casts in the TOGA area of the Pacific Ocean from NOAA Ship OCEANOGRAPHER and R/V...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the Drifting Buoy in the Indian Ocean, South Atlantic Ocean and others from 2001-11-20 to 2007-05-08 (NODC Accession 0117495)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117495 includes Surface underway, biological, chemical, meteorological and physical data collected from Drifting Buoy in the Indian Ocean, South...

  10. ASBAT 近岸风场产品与近岸浮标观测风场对比%Evaluation of ASBAT Boastal Wind Product Using Nearshore Buoy Data

    Institute of Scientific and Technical Information of China (English)

    谢小萍; 魏建苏; 黄亮

    2014-01-01

    The new scatterometer advanced scatterometer (ASCAT)on board MetOp-A satellite provides surface wind speed and direction over global ocean.Providing accurate nearshore wind data from satellites is chal-lenging because satellite data are unavailable very close to shore due to the contaminating effect of the land.Besides,land-sea breezes and shore topography produce small space scale and time-scale wind varia-tions that can be smoothed by the satellite’s space averaging and aliased by the satellite’s twice-a-day sam-pling.The complexity of nearshore winds is one of the prime causes that the regions are so important.For example,over one-third of the total marine fish catch occurs within nearshore zone. The accuracy of ASCAT coastal wind product is determined through various comparisons with buoys. The nearshore buoys used in the comparisons locate in US West Coast and China Coast.As the time inter-val of US West Coast buoy wind is 10-minute interval and the spatial resolution of ASCAT wind product is 12.5 km,a scatterometer wind and a buoy wind measurement are considered to be collocated if the distance between the wind vector cell center and the buoy location is less than 12.5 km and if the acquisition time difference is less than 5 minutes in US West Coast.As the time interval of China Coast buoy wind is 1 hour,the acquisition time difference is less than 30 minutes in China Coast.The buoy winds at a given an-emometer height are converted to 10 m neutral winds in order to enable a good comparison with the 10 m scatteromter winds.The time ranges of wind data used for comparison from US West Coast buoys and China Coast buoys are the whole year of 2012 and the first half year of 2012 individually. It shows that the accuracy of the wind speed of ASCAT product is high and the accuracy of the wind direction of ASCAT product is influenced by several factors,such as the distance from coast,wind speed and wind direction.The overall wind speed correlation coefficient

  11. Measuring bioavailable metals using diffusive gradients in thin films (DGT) and transplanted seaweed (Fucus vesiculosus), blue mussels (Mytilus edulis) and sea snails (Littorina saxatilis) suspended from monitoring buoys near a former lead-zinc mine in West Greenland.

    Science.gov (United States)

    Søndergaard, Jens; Bach, Lis; Gustavson, Kim

    2014-01-15

    Measuring loads of bioavailable metals is important for environmental assessment near mines and other industrial sources. In this study, a setup of monitoring buoys was tested to assess loads of bioavailable metals near a former Pb-Zn mine in West Greenland using transplanted seaweed, mussels and sea snails. In addition, passive DGT samplers were installed. After a 9-day deployment period, concentrations of especially Pb, Zn and Fe in the species were all markedly elevated at the monitoring sites closest to the mine. Lead concentrations in all three species and the DGT-Pb results showed a significant linear correlation. Zinc and Fe concentrations were less correlated indicating that the mechanisms for Zn and Fe accumulation in the three species are more complex. The results show that there is still a significant load of metals from the mine and that such buoys can be an adequate method to assess present loads of bioavailable metals.

  12. MEMS 矢量水听器用于潜标系统的可行性%Feasibility of MEMS vector hydrophone application in submerged buoy system

    Institute of Scientific and Technical Information of China (English)

    韩建军; 张国军; 张文栋; 郭静; 刘源

    2016-01-01

    In this paper,MEMS vector hydrophone is proposed to apply in submerged buoy system,and a large number of experiments are done to verify its feasibility.The MEMS vector hydrophone,a kind of under-water acoustic sensor,has lots of advantages,such as small size,low cost,better consistency and high sensitiv-ity.When applied in submerged buoy system,it can sharply reduce the array aperture and can effectively detect the vector information of the marine sound field.Mainly,it can obtain good spatial gain and solve the problem of bulky volume of sonar equipment when applied in the field of low and very low frequency.The prototype of the submerged buoy system has undergone a number of indoor debugging and outdoor tests.After the prelimi-nary treatment of the trial data,the results show that this system can effectively detect the acoustic field vector signal in range of 20-1000 Hz under ocean.The MEMS vector hydrophone sensitivity can reach -176 dB and has a good “8”-shaped directivity pattern.%提出将 MEMS 矢量水听器应用于潜标系统,并进行了大量实验验证其可行性。MEMS 矢量水听器是一种新型水下声学传感器,它具有体积小、成本低、一致性高和高灵敏度等优点。将水听器应用于潜标系统,可以大幅降低阵列孔径,进而有效地监测海洋声场的矢量信息。矢量水听器矢量通道的指向性与频率无关,在低频和甚低频同样可以获得良好的空间增益,应用在低频和甚低频领域中,可以有效地解决声纳设备体积庞大的问题。经过对系统样机进行多次室内驻波桶调试和外场湖试与海试,结果表明,该系统能有效检测海底20~1000 Hz 范围内的声场矢量信号,水听器此时的灵敏度可达-176 dB,且具有良好的“8”字型指向性。实验结果证明了 MEMS 矢量水听器应用在潜标系统中进行海洋声场矢量信息探测的可行性,为 MEMS矢量水听器在水下目标探测领域的

  13. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

    Science.gov (United States)

    Lee, Kyoung-Rok; Koo, Weoncheol; Kim, Moo-Hyun

    2013-12-01

    A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

  14. Comparison of AVHRR and ECMWF ERA-Interim data with buoy observational data for sea surface temperature over the Southern Coast of the Caspian Sea

    Science.gov (United States)

    Ghafarian, Parvin; Pegahfar, Nafiseh

    2016-07-01

    Sea surface temperature plays an important role in formation or intensification of many atmospheric phenomena such as tropical storms, lake-effect snow and sea breeze. Also, this variable is one of the input data in atmospheric, climate and oceanic models and also used climate change interpretation. According to the sparse location of observational stations over the ocean basins and seas, so satellite products can play an important role over such areas. The southern coast of the Caspian Sea (CS) is a prone area to experience some extreme challenging events forming due to sea surface temperature (SST) variation. In this research, SST data obtained by the AVHRR (Advanced Very High Resolution Radiometer) and those modeled by ECMWF data have been compared with observational data from buoy instrument. The horizontal resolution of AVHRR data is 0.125 degree, while that is 0.75 degree for ECMWF. The comparison process has been done in various seasons especially for some stormy days in winter and spring led to the lake-effect snow and waterspout. Analysis has been done applying nearest-neighbor interpolation and statistical methods. Our findings indicated that SST measured by AVHRR, comparing with ECMWF data, is more close to the observational data.

  15. Research on Performance of Sonar Buoy Equipment Affected by Bit Error Rates of Communication%通信误码率对浮标声纳系统DOA估计性能的影响

    Institute of Scientific and Technical Information of China (English)

    张宇; 杨益新; 田丰

    2014-01-01

    浮标声纳受到功耗、体积和硬件复杂度等因素的限制,通常将接收数据通过无线信道发送到终端设备进行处理。由于多径传播、衰落特性以及多普勒效应等众多因素的干扰,信号在无线通信传递中会产生误码并影响最终系统性能。针对复杂传输信道环境下的浮标声纳系统,研究了误码率对系统的多目标方位估计性能的影响,并通过计算机仿真给出了误码率允许的门限。%Due to the limitations of volume,hardware complexity and power consumption,sonar buoy equipment transmits receives signals through wireless channel to the processing terminal on airplane or ship. The multipath effects,fading characteristics,and Doppler spread of communication channel will cause bit error and finally influence the performance of sonar signal processing. In this paper,is focused the DOA estimation performance of sonar buoy under various bit error rates of communication system. The BER threshold of DOA estimation is obtained via Monte Carlo simulation to guide the design of whole sonar buoy systems.

  16. 水上溢油应急装备跟踪定位浮标关键技术研究%Research on the key technology of tracking location buoy of the marine oil spill emergency equipment

    Institute of Scientific and Technical Information of China (English)

    杨瑞; 顾群; 王玉林; 夏启兵

    2014-01-01

    This paper introduces the oil spill damage and current situation of emergency response technology home and abroad, provides solutions on oil spill tracking location buoy technology aiming at solve the difficulty of marine oil spill tracking and locating. This paper suggests utilizing the platform of“Beidou”satellite to fulfill the all time tracking and monitoring function on oil spill. It is tested by sea trial that oil spill tracking and locating buoy is an effective tool for oil spill emergency response.%文中介绍了近年来国内外溢油事故危害及应急技术现状,针对当前海上溢油难以跟踪定位的难题,提出了溢油跟踪定位浮标技术解决方案,采用北斗卫星定位通信为平台,实现海上溢油的全过程、全天候的实时跟踪、监测功能,通过海上试验验证,溢油跟踪定位浮标为海上溢油事故应急快速反应提供了一种有力工具。

  17. 水性阻尼材料在潜标湍流仪中减振效果研究%Damping effect of water damping material used in turbulence instruments in submersible buoys

    Institute of Scientific and Technical Information of China (English)

    王书新; 栾新; 宋大雷; 王永芳; 苏兆龙; 闫启志

    2014-01-01

    简述湍流仪国内外发展现状及剪切探头测量原理,据潜标湍流仪观测数据分析影响湍流仪测量结果的振动因素,探讨减少噪声污染方法。针对由系缆传递振动造成的噪声提出应用低温水性阻尼材料减震方法,减振实验数据分析结果表明,增加阻尼材料可有效降低振动对测量精度影响。%The submersible buoy with turbulence instrument is an effective and a long-term observation platform of the turbulence in deep sea and plays an important role in marine scientific research.The current development of turbulence instruments at home and abroad and shear probe measurement principle were briefly introduced.According to the measurement data by turbulence instruments in submersible buoys,the factors affecting the measurement results of turbulence instruments were analyzed.The methods to reduce noise pollution were discussed.Aiming at the reduction of noise caused by the vibration of cable transmission,the application of low temperature water damping material was proposed.The experimental data indicate that adding damping material can effectively reduce the influence of vibration on the measurement accuracy.

  18. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  19. Special Purpose Buoys - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  20. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lamb, Bradford [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Prudell, Joseph [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Hammagren, Erik [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc., Charlottesville, VA (United States)

    2016-08-22

    This Project aims to satisfy objectives of the DOE’s Water Power Program by completing a system detailed design (SDD) and other important activities in the first phase of a utility-scale grid-connected ocean wave energy demonstration. In early 2012, Columbia Power (CPwr) had determined that further cost and performance optimization was necessary in order to commercialize its StingRAY wave energy converter (WEC). CPwr’s progress toward commercialization, and the requisite technology development path, were focused on transitioning toward a commercial-scale demonstration. This path required significant investment to be successful, and the justification for this investment required improved annual energy production (AEP) and lower capital costs. Engineering solutions were developed to address these technical and cost challenges, incorporated into a proposal to the US Department of Energy (DOE), and then adapted to form the technical content and statement of project objectives of the resulting Project (DE-EE0005930). Through Project cost-sharing and technical collaboration between DOE and CPwr, and technical collaboration with Oregon State University (OSU), National Renewable Energy Lab (NREL) and other Project partners, we have demonstrated experimentally that these conceptual improvements have merit and made significant progress towards a certified WEC system design at a selected and contracted deployment site at the Wave Energy Test Site (WETS) at the Marine Corps Base in Oahu, HI (MCBH).

  1. The Catalog of Event Data of the Operational Deep-ocean Assessment and Reporting of Tsunamis (DART) Stations at the National Data Buoy Center

    Science.gov (United States)

    Bouchard, R.; Locke, L.; Hansen, W.; Collins, S.; McArthur, S.

    2007-12-01

    DART systems are a critical component of the tsunami warning system as they provide the only real-time, in situ, tsunami detection before landfall. DART systems consist of a surface buoy that serves as a position locater and communications transceiver and a Bottom Pressure Recorder (BPR) on the seafloor. The BPR records temperature and pressure at 15-second intervals to a memory card for later retrieval for analysis and use by tsunami researchers, but the BPRs are normally recovered only once every two years. The DART systems also transmit subsets of the data, converted to an estimation of the sea surface height, in near real-time for use by the tsunami warning community. These data are available on NDBC's webpages, http://www.ndbc.noaa.gov/dart.shtml. Although not of the resolution of the data recorded to the BPR memory card, the near real-time data have proven to be of value in research applications [1]. Of particular interest are the DART data associated with geophysical events. The DART BPR continuously compares the measured sea height with a predicted sea-height and when the difference exceeds a threshold value, the BPR goes into Event Mode. Event Mode provides an extended, more frequent near real-time reporting of the sea surface heights for tsunami detection. The BPR can go into Event Mode because of geophysical triggers, such as tsunamis or seismic activity, which may or may not be tsunamigenic. The BPR can also go into Event Mode during recovery of the BPR as it leaves the seafloor, or when manually triggered by the Tsunami Warning Centers in advance of an expected tsunami. On occasion, the BPR will go into Event Mode without any associated tsunami or seismic activity or human intervention and these are considered "False'' Events. Approximately one- third of all Events can be classified as "False". NDBC is responsible for the operations, maintenance, and data management of the DART stations. Each DART station has a webpage with a drop-down list of all

  2. 基于多功能航标的三峡坝区河段海事监管模式研究%Maritime Supervision Model in Three Gorges Dam Area Based on Multi-functional Buoys

    Institute of Scientific and Technical Information of China (English)

    卢俊

    2012-01-01

    随着长江航运的快速发展,三峡坝区河段水上交通安全监管压力不断增大.在分析三峡坝区现有海事监管模式的特点及其不足的基础上,对多功能航标的功能以及信息的采集和传输方式进行了设计,并基于多功能航标提出了1种新的三峡坝区海事监管模式,即将航道信息实时地传输给过往船舶、海事监管部门及航道部门,以保证航道安全和海事监管效率,并推进坝区航道监管信息化、智能化的发展.%Along with rapid development of Yangtze River shipping, the pressure of safety supervision in Three Gorges dam area is constantly increasing. Based on the analysis of the existing maritime supervision model in the Three Gorges dam area, the function as well as the information collection and transmission mode of the multi-functional buoy has been designed. Then, a new supervision model for the Three Gorges dam area with this new kind of buoy has been proposed, which will transmit navigation information to the passed ships, maritime safety authorities and waterway bureaus in real time so that the navigation safety and maritime supervision efficiency would be ensured and the informationization and intelligentization in the dam area would also be promoted.

  3. MODELLING SOFTWARE OF PRE-COLLECTOR OF LARGE-SCALE MARINE DATA BUOYS%大型海洋资料浮标前置采集器软件建模

    Institute of Scientific and Technical Information of China (English)

    李崇; 黎明; 綦声波; 王鑫宁

    2012-01-01

    通过UML(Unified Modeling Language,统一建模语言)对大型海洋资料浮标的前置采集器软件部分进行软件建模.在嵌入式软件复杂度较低时,设计与分析多采用流程图,自定义框图和自然语言来描述.对于软件逻辑复杂,工作环境苛刻并对系统可靠性要求较高的大型浮标系统,普通的软件分析方法难以胜任并且难以沟通维护.而UML语言作为业界标准对复杂软件建模分析有着良好的效果.使用用例分析对前置采集器的软件需求进行分析,明确系统设计的目的和要点.使用状态图对前置采集器软件的关键行为进行描述,使系统结构明确并易于分析和实现.%In this paper, UML (unified modelling language) is utilised to model the software part of pre-collector of laige-scaie marine data buoys. Flow charts, natural language wd user defined block diagrams are often used to describe the structure of the software in design and analyses when the embedded software is in low complexity. For large-scale buoy systems with complex software logic, harsh work environment and high system reliability requirements, common software analysis methods are difficult to maintain competent and hard to communicate. The UML language as the industry standard ie suitable to modelling and analysing the complex software with good results. Use case analysis is employed in the paper to analyse the software demand of the pre-eollector to make clear the purpose and the key points of the system design. The key behaviours of the pre-collector software are described with state diagrams, it makes the structure of the system clear and easy to analyse and implement.

  4. 3D location of node in underwater sensor networks based on buoy%基于浮标的3D水声传感器网络节点定位

    Institute of Scientific and Technical Information of China (English)

    吕长艳; 刘广钟

    2013-01-01

    The location of the node is the basis of the application of UWSN . In order to improve the node location accuracy and prolong the network life cycle , this paper proposes a localization scheme for underwater 3D acoustic sensor network , which uses surface buoy nodes as the reference nodes . The result shows that the scheme increases localization accuracy and reduces energy consumption .%节点位置的确定是水下无线传感器网络的应用基础。为了提高节点定位精度并延长网络生命周期,提出一种使用海面浮标节点作为参考节点的水下传感器网络节点定位算法。仿真结果表明该方法提高了节点定位的精度,并在一定程度上减少了能耗。

  5. Design for opreating interface of sonar buoy system simulator based on VC++ and OpenGL%基于VC++和OpenGL声纳浮标系统模拟器操作界面设计

    Institute of Scientific and Technical Information of China (English)

    王承祥; 鞠建波; 陶晨辰

    2012-01-01

    从声纳浮标模拟器的操作界面需求入手,设计了一种可移植的操作界面的软件框架,对声纳操作界面进行了仿真.重点介绍了操作界面所需要的各个模块,以及为每个模块设计的基于C++语言的软件开发类库,可以利用模块类库实现声纳浮标搜潜模拟器的界面需求,使模拟器界面和实际装备完全一致,使模拟器起到教学和训练的作用.%Proceeding from the need of operating interface of sonar buoy system simulator, a kind of software frame of the transplantable operating interface was designed to simulate the sonar operating interface. The every module that is needed for operating interface and the VC+H+-based software development class libraries designed for every module are emphatically introduced. The requirement for operating interface can be satisfied by utilizing this class libraries, which make the operating interface of simulator consistent with the real equipment, so the simulator can play a role of teaching and training.

  6. 基于模糊整数规划的水质浮标光伏/蓄电池动力源配置优化%Collaborative optimization of photovoltaic/battery power source for water quality buoy based on fuzzy integer programming

    Institute of Scientific and Technical Information of China (English)

    张慧妍; 李爽; 于家斌; 王小艺; 许继平

    2015-01-01

    孤岛型可再生能源供电,是解决水质监测用浮标动力来源的有效途径之一。根据水质浮标系统的特点,综合系统的经济性与环境条件,协同浮标本体成本及浮力、容积、天气因素等约束条件,构建了水质浮标动力源用光伏/蓄电池优化模型。针对制造过程中约束条件与预期值可能出现偏差这一实际问题,提出采用模糊整数规划算法进行求解,实现优化配置光伏/蓄电池动力源的目的。最后,提出对最大连续阴雨天数进行灵敏度分析,考察天气因素对所设计系统稳定性的影响。算例结果表明所提优化配置方法的有效性与可靠性,该方法不仅能够给出综合最优的动力源配置方案,还有利于结合安置地的环境条件,尽量避免主观设定关键参数,辅助水质监测用设备的高效研究与应用。%Renewable stand-alone energy power generation system is one of the effective ways which solve the problem of electric power supply for water quality monitoring buoy. Due to its unique application background and operating characteristics, there are still some problems to be considered and solved in the current design. In our work, the first step was to build a construction cost optimization model for PV-battery energy power with the constraints of the cost and dimension parameters and operating environments. That was, the model comprehensively and synergistically constructed an economical and reliable independent power supply model for water monitoring buoy under 5 conditions of buoy ontology cost, buoyancy, volume and weather etc. Furthermore, it was also vital to find the solutions of this model for getting the optimal design parameters of the renewable stand-alone energy power source for the water monitoring buoy. Firstly, the maximum continuous rainy days in the operating location was set by an RBF (radial basis function)neural network method. The 3 inputs were light intensity

  7. Collaborative optimization of photovoltaic/battery power source for water quality buoy based on fuzzy integer programming%基于模糊整数规划的水质浮标光伏/蓄电池动力源配置优化

    Institute of Scientific and Technical Information of China (English)

    张慧妍; 李爽; 于家斌; 王小艺; 许继平

    2015-01-01

    孤岛型可再生能源供电,是解决水质监测用浮标动力来源的有效途径之一。根据水质浮标系统的特点,综合系统的经济性与环境条件,协同浮标本体成本及浮力、容积、天气因素等约束条件,构建了水质浮标动力源用光伏/蓄电池优化模型。针对制造过程中约束条件与预期值可能出现偏差这一实际问题,提出采用模糊整数规划算法进行求解,实现优化配置光伏/蓄电池动力源的目的。最后,提出对最大连续阴雨天数进行灵敏度分析,考察天气因素对所设计系统稳定性的影响。算例结果表明所提优化配置方法的有效性与可靠性,该方法不仅能够给出综合最优的动力源配置方案,还有利于结合安置地的环境条件,尽量避免主观设定关键参数,辅助水质监测用设备的高效研究与应用。%Renewable stand-alone energy power generation system is one of the effective ways which solve the problem of electric power supply for water quality monitoring buoy. Due to its unique application background and operating characteristics, there are still some problems to be considered and solved in the current design. In our work, the first step was to build a construction cost optimization model for PV-battery energy power with the constraints of the cost and dimension parameters and operating environments. That was, the model comprehensively and synergistically constructed an economical and reliable independent power supply model for water monitoring buoy under 5 conditions of buoy ontology cost, buoyancy, volume and weather etc. Furthermore, it was also vital to find the solutions of this model for getting the optimal design parameters of the renewable stand-alone energy power source for the water monitoring buoy. Firstly, the maximum continuous rainy days in the operating location was set by an RBF (radial basis function)neural network method. The 3 inputs were light intensity

  8. The characteristic analysis of ambient sea noise spectrum based on submersible buoy%基于潜标测量的海洋环境噪声谱特性分析

    Institute of Scientific and Technical Information of China (English)

    笪良龙; 王超; 卢晓亭; 韩梅; 邓小花

    2014-01-01

    利用海洋环境噪声测量潜标系统对南海典型海域开展了为期3个月的海洋环境噪声测量,16通道海洋环境噪声测量系统每小时测量两分钟噪声信号。数据处理结果表明,800~5000 Hz范围内,噪声谱与风速相关性最好,且风速越大相关性越好,噪声谱与风速的相关性好于与浪高的相关性。风关噪声谱级在海水中部基本不随接收深度发生变化,但由于测量水听器阵长度未能覆盖整个水深,因此未给出海面和海底处谱级变化规律。在400 Hz以上的高频段整个风速范围内噪声谱级都随风速发生变化,且噪声谱级与对数风速具有很好的线性关系。%Ambient sea-noise data were collected for three month period ,using submersible buoy system in the South China Sea .Broad-band ambient-noise signals from the sixteen hydrophones were amplified and recorded for 2min every 1h .The results of data processing show a strong wind dependence in the upper frequency bands from ap-proximately 800 Hz to 5 kHz ,and the greater the wind speed ,the better the correlation .The noise is correlated more with wind speed than with wave height . The wind-generated spectrum level producing virtually constant noise intensity in the midwater ,however ,due to the length of the hydrophone failed to cover the entire depth ,the distribution of the noise at the near-surface and near-bottom unable to given .In the frequencies above 400 Hz am-bient-noise spectrum level ranged with the entire wind speeds .In addition it was found that the ambient-noise spec-trum shown to be linearly dependent upon the logarithm of wind speed .

  9. Member states buoy up beleagured EMBL

    CERN Document Server

    Balter, M

    1999-01-01

    EMBL's governing council, made up of delegates from the lab's 16 member countries, agreed in principle to meet the costs of a multimillion-dollar pay claim, the result of a recent ruling by the ILO in Geneva (1 page).

  10. The Words That Buoy the European Impulse.

    Science.gov (United States)

    Hogenraad, Robert; Tousignant, Nathalie; Castano, Emanuele; Bestgen, Yves; Dumoulin, Michel

    With a view on analyzing the deeper trends in the European discourse that will shape the European Union's (EU's) future, a study examined 121 speeches made by EU political leaders over the period 1985-1997 and concorded and statisticized which words were used, how often, where, and when with the help of a computer-aided content analysis engine.…

  11. Chinese Investment BuoysAfrica's Economy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to Xinhua News Agency,athough Africa is a diverse continent,containing a variety of countries and cultures,the representatives of African countries do have one thing in common:their desire to attract Chinese investment.“We look forward to Chinese enterprises'investments.Chinese investment helps us to fund the construction of transportation and medical infrastructure,” Bernadette Artivor,executive director of the Namibia Investment Center,said on September 8.Artivor made the remark at the High-Level Symposium for China-Africa Investment and Cooperation,an event held as part of the 15th China International Fair for Investment and Trade (CIFIT) which opened in southeast Chinas coastal city of Xiamen.

  12. Sea ice temperature and mass balance measurements from ice mass-balance buoy in the central Arctic Ocean%海水物质平衡浮标对北冰洋中心区海冰温度与物质平衡的观测

    Institute of Scientific and Technical Information of China (English)

    李娜; 刘骥平; 张占海; 崔琳; 雷瑞波

    2011-01-01

    利用中国第3次北极科学考察所布放海冰物质平衡浮标(Ice Mass-Balance buoy,IMB)的观测数据,分析了北冰洋中心区多年冰2008年8月-2009年7月温度与物质平衡的变化特征.结果表明,冰温廓线呈现明显的季节变化,秋季降温过程从海冰表面开始向冰体内部传播.海冰底部的生长/消融率受海水温度控制,随水温的降低,在2月初达到的最大值为1.7 cm/d;在2008年10月中旬至2009年6月下旬为海冰的生长期内,海冰底部平均生长率为0.6 cm/d,海冰底部厚度增长量为160.3 cm;海冰底部的消融较海冰表面约有1个月的滞后.分析海面风场对海冰漂移的影响显示,海冰漂移速率约为风速的2.13%.%As the integrator of both the surface heat budget and the ocean heat flux, the mass balance of sea ice is a key climate-change indicator.A set of IMB (Ice Mass-balance Buoy) was deployed in the central Arctic Ocean during the 3rd arctic research expedition of China.Analysis of 11 months'data from August 2008 to July 2009 shows that aseasonal cycle is obvious on the temperature of sea ice.With the air temperature decreases, a cold front propagates down through the ice in the fall.The growth/ablation rate of sea ice bottom is mainly controled by water temperature below, and reaches its maximum 1.7 cm/d in the early February.Growth season of sea ice bottom lasts from the middle October in 2008 to the end June in 2009,with an average bottom growth rate of 0.6 cm/d and total sea ice growth of 160.3 cm.Bottom melting begins in the early July, being one-month lag when comparing with surface melting.Correlation analysis between the daily ice drift and the 10m wind gives a correlation coefficient of 0.14(99% significance), ice moves at 2.13% of the wind speed.

  13. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, ADCP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Acoustic Doppler Current Profiler (ADCP) water currents data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian...

  14. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, ADCP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Acoustic Doppler Current Profiler (ADCP) water currents data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA...

  15. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Salinity data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean, http://www.pmel.noaa.gov/tao/rama/),...

  16. A Buoy for Continuous Monitoring of Suspended Sediment Dynamics

    OpenAIRE

    Andreas Güntner; Lucas Kaempf; Heiko Thoss; Philip Mueller

    2013-01-01

    Knowledge of Suspended Sediments Dynamics (SSD) across spatial scales is relevant for several fields of hydrology, such as eco-hydrological processes, the operation of hydrotechnical facilities and research on varved lake sediments as geoarchives. Understanding the connectivity of sediment flux between source areas in a catchment and sink areas in lakes or reservoirs is of primary importance to these fields. Lacustrine sediments may serve as a valuable expansion of instrumental hydrological r...

  17. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  18. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  19. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  20. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  1. Direct Drive Wave Energy Buoy – 33rd scale experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  2. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Relative Humidity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Relative Humidity data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  3. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Wind Stress

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Wind Stress data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  4. Acoustic oceanographic buoy data report Makai Ex 2005

    OpenAIRE

    Jesus, S.M.; Silva, A.; F. Zabel

    2005-01-01

    Rep 04/05 - SiPLAB 17/Nov/2005 University It is now well accepted in the underwater acoustic scientific community that below, say, 1 kHz acoustic propagation models are accurate enough to be able to predict the received acoustic field up to the point of allowing precise and reliable source tracking in range and depth with only limited environmental information. This results from a large number of studies both theoretical and with real data, carried out in the last 20 year...

  5. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Salinity data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean, http://www.pmel.noaa.gov/tao/rama/),...

  6. Stationary Tether Device for Buoy Apparatus and System for Using

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A rigid, neutrally buoyant hydrodynamicaly-faired tether and associated fastening hardware that loosely holds a bathymetric float at a predetermined distance from a...

  7. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  8. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, ADCP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Acoustic Doppler Current Profiler (ADCP) water currents data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA...

  9. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, ADCP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Acoustic Doppler Current Profiler (ADCP) water currents data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian...

  10. An overview of a moored ocean data buoy programme

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.

    will permit longer-range and more accurate forecasts of weather systems moving on to the coasb. Such a system will also permit more intelligent and accurate forecasting of tropical storm paths. A large number of environmental sensing and reporting stations... movement in troduces errors in observations, Substantial improvements are, hence, required to be made in the quantity and quality of input data to the weather reporting and forecasting system, With the available expertise in NIO for the design of a moored...

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Buoyancy Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Buoyancy Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  12. Gas vesicles in actinomycetes : old buoys in novel habitats?

    NARCIS (Netherlands)

    Keulen, Geertje van; Hopwood, David A.; Dijkhuizen, Lubbert; Sawers, R. Gary

    2005-01-01

    Gas vesicles are gas-filled prokaryotic organelles that function as flotation devices. This enables planktonic cyanobacteria and halophilic archaea to position themselves within the water column to make optimal use of light and nutrients. Few terrestrial microbes are known to contain gas vesicles. G

  13. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Position

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Position data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean, http://www.pmel.noaa.gov/tao/rama/),...

  14. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Evaporation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Evaporation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  15. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Wind Stress

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Wind Stress data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  16. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Currents

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Currents data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean, http://www.pmel.noaa.gov/tao/rama/),...

  17. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Air Temperature data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  18. NOAA marine environmental buoy data from the National Data Buoy Center for 2001-09 (NODC Accession 0000595)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind wave spectra and meteorological data were collected from the US East/West coasts, South Pacific, Gulf of Mexico, Great Lakes, and other locations. Data were...

  19. Assessment of wave modeling results with buoy and altimeter deep water waves for a summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Sudheesh, K.; Vethamony, P.; Babu, M.T.; Jayakumar, S.

    32G97G108G108G32G108G111G99G97G116G105G111G110G115G32G40G70G105G103G46G32G54G41G46 G67G111G109G112G97G114G105G115G111G110G32G111G102G32G83G87G72G115G32G102G114G111G109G32G109G111G100G101G108G32G97G110G100G32G84G79G80G69G88G32G102G111G114G32G116G104G... stream_size 63122 stream_content_type text/plain stream_name INCHOE_Proc_2004_1_184.pdf.txt stream_source_info INCHOE_Proc_2004_1_184.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 G49G56G52 G65G83...

  20. Study of the directional spectrum of ocean waves using array, buoy and radar measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.

    Phase/time/path difference (PTPD) methods of Esteva [1977] and Borgman [1974] with two modifications, viz., true phase and coherence proposed in this thesis, have for the first time been successfully used for computing wave direction as a function...

  1. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Sensible Heat Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Sensible Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  2. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Heat Flux Due To Rain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Heat Flux Due To Rain data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  3. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Barometric (Air) Pressure

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Barometric (Air) Pressure data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  4. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Barometric (Air) Pressure

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Barometric (Air) Pressure data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  5. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Barometric (Air) Pressure

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Barometric (Air) Pressure data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  6. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Barometric (Air) Pressure

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Barometric (Air) Pressure data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  7. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Downgoing Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Downgoing Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  8. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Downgoing Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Downgoing Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  9. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Downgoing Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Downgoing Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  10. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Downgoing Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Downgoing Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  11. Arctic Ocean Drift Tracks from Ships, Buoys and Manned Research Stations, 1872-1973

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Thirty-four drift tracks in the Arctic Ocean pack ice are collected in a unified tabular data format, one file per track. Data are from drifting ships, manned...

  12. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Sea Surface Temperature (SST) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  13. Comparison of wind data from QuikSCAT and buoys in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Satheesan, K.; Sarkar, A.; Parekh, A.; RameshKumar, M.R.; Kuroda, Y.

    with the observations of the forthcoming Indian Scatterometer mission (Sarkar, 2003). The Oceansat – 2 will carry a Ku band pencil beam scatterometer, and is scheduled for launch in 2007. 2 Data 2.1 Satellite data NASA launched QuikSCAT on 19 June 1999 into a sun...

  14. Tidal Power Generation System Appropriate for Boarding on a Floating Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, D.; Inagaki, A.; Oba, S [DMW Corporation, Mishima (Japan); Kanemoto, T. [Kyushu Institute of Technology, Kitakyushu (Japan)

    2007-07-01

    To cope with the warming global environment, the hydropower should occupy the attention of the electric power generation system as clean and cool energy sources. In such a situation, the tidal current has scarcely been utilized for the power generation. The authors have proposed and developed a new type of generator with counter-rotating rotors instead of the usual mechanism. This paper discusses the effects of the blade profiles on the hydraulic performances. As a result, the design materials for the solidity of the axial flow runners suitable for the given water circumstances are induced from above discussions.

  15. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  16. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  17. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Latent Heat Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Latent Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  18. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Latent Heat Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Latent Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  19. Sub-inertial variability in the Cretan Sea from the M3A buoy

    Directory of Open Access Journals (Sweden)

    V. Cardin

    Full Text Available One year of continuous records of temperature, salinity data at various depths, and currents obtained from by an upward looking acoustic Doppler current profiler (ADCP moored at a site in the Cretan Sea were analyzed. Temperature and salinity data revealed the influence of a multi-scale circulation pattern prevailing in this area. This pattern consists of mesoscale cyclonic and anticyclonic vortices moving together as a dipole, and inducing downwelling and upwelling in the water column. The dipole movements, which control the circulation in the area, have been evidenced from horizontal current variability in the upper 250 m. The basin-scale circulation also shows a prominent seasonal variability. The Empirical Orthogonal Function analysis applied to either zonal or meridional components of the currents, confirmed the prevalence of a depth-independent mode over the baroclinic-like one for the whole period of measurements and for both current components. Nevertheless, the depth-dependent structure indicated the out-of-phase behaviour of the upper 250 m layer with respect to the deeper one. The first mode of the temperature EOF analysis, which accounts for most of the variance, represents the seasonal heating of the water column being principally associated with the surface mixed layer at the level of the seasonal thermocline.

    Key words. Oceanography: physical (currents, eddies and mesoscale processes, general circulation

  20. NOAA Marine Environmental Buoy Data for September 2003 (NODC Accession 0001307)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and wave data were collected using accelerometer, meteorological sensors, and thermistor casts in the Coastal Waters of Western U.S. and other seas....

  1. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Latent Heat Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Latent Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  2. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  3. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Sea Surface Temperature (SST) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  4. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  5. Parametric estimation in the wave buoy analogy - an elaborated approach based on energy considerations

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam

    2014-01-01

    the ship’s wave-induced responses based on different statistical inferences including parametric and non-parametric approaches. This paper considers a concept to improve the estimate obtained by the parametric method for sea state estimation. The idea is illustrated by an analysis made on full-scale...

  6. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Sigma-Theta

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Sigma-Theta (Potential Density Anomaly) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  7. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Sigma-Theta

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Sigma-Theta (Potential Density Anomaly) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  8. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Sigma-Theta

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Sigma-Theta (Potential Density Anomaly) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  9. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Sigma-Theta

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Sigma-Theta (Potential Density Anomaly) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  10. Vertical Structure and Vertical Evolution of Halogen Activation Events Observed by Autonomous Buoys

    Science.gov (United States)

    Simpson, W. R.; Peterson, P.; Burd, J.

    2015-12-01

    Heterogeneous reactions on saline surfaces release reactive halogen species in the Arctic during late winter / spring (Feb--May). These reactive halogens drastically alter the photooxidative environment, removing ozone and oxidizing mercury and hydrocarbons. Both the snowpack and suspended particles / blowing snow possess surfaces that can sustain this chemistry, leading to variations in reactive halogen vertical profiles and temporal evolution of those profiles. This chemistry also occurs in a typically stable (inverted) atmospheric structure that hinders vertical mixing, limiting the vertical extent of snowpack influence. In this presentation, Multiple-AXis Differential Optical Absorption Spectroscopy (MAXDOAS) of bromine monoxide (BrO) along with optimal estimation inversions are used to measure the vertical structure of BrO. The effective mixing height of the BrO layer varies with atmospheric stability, and an event is shown where a shallow but highly concentrated layer of surface BrO encounters sea-ice-lead-induced convection that vertically mixes the BrO higher, initially diluting the surface concentration. Over time, the surface concentration recovers and the now thicker layer grows to a higher column density of BrO. Understanding of the relationship between BrO event intensity and meteorological situations can help to understand BrO chemistry and remote sensing and assist in prediction of how reactive halogens may respond to a changing Arctic climate.

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  12. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Potential Density Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Potential Density Anomaly (sigma-theta) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  13. NOAA Marine Environmental Buoy Data for November 2003 (NODC Accession 0001308)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and wave data were collected using accelerometer, meteorological sensors, and thermistor casts in the Coastal Waters of Western U.S. and other seas....

  14. Buoyed on All Sides: A Network of Support Guides Teacher Leaders in High-Needs Schools

    Science.gov (United States)

    Suescun, Marisa; Romer, Toby; MacDonald, Elisa

    2012-01-01

    The idea of teacher leadership holds an immense and intuitive appeal. Most educators agree that teacher leaders are essential to fostering a climate of authentic and robust leadership and learning across a school. Teacher leadership is peer leading at its most authentic, demanding, and empowering. While the value of teacher leadership may be…

  15. Rancang Bangun Maximum Power Point Tracking pada Panel Photovoltaic Berbasis Logika Fuzzy di Buoy Weather Station

    OpenAIRE

    Bayu Prima Juliansyah Putra; Aulia Siti Aisjah; Syamsul Arifin

    2013-01-01

    Salah satu aplikasi yang sering digunakan dalam bidang energi terbarukan adalah panel photovoltaic. Panel ini memiliki prinsip kerja berdasarkan efek photovoltaic dimana lempengan logam akan menghasilkan energi listrik apabila diberi intensitas cahaya. Untuk menghasilkan daya keluaran panel yang maksimal, maka diperlukan suatu algoritma yang biasa disebut Maximum Power Point Tracking (MPPT).MPPT yang diterapkan pada sistem photovoltaic berfungsi untuk mengatur nilai tegangan keluaran panel se...

  16. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Net Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Net Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  17. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 20C Isotherm Depth

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly 20C Isotherm Depth data (the depth at which the ocean temperature is 20C) from the TAO/TRITON (Pacific Ocean,...

  18. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Heat Flux Due To Rain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Heat Flux Due To Rain data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  19. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  20. Verification of model wave heights with long-term moored buoy data: Application to wave field over the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Polnikov, V.G.; Vethamony, P.; Rashmi, R.; Pogarskii, F.; Sudheesh, K.

    expressions for the treatment of discontinuities. Lavrenov et al., (2001, 2003) gave an efficient numerical algorithm for simulating nonlinear energy transfer using the Hasselmann kinetic equation for gravity waves in water surface. In this approach...C , gyC ) Dependence of frequency on the wave vector )(kσ is given by the expression, gk=σ known as the dispersion relation for the case of deep water. The LHS of eqn (1) is responsible for “mathematical” part of the model, which is not discussed here...

  1. Estimating the Underwater Diffuse Attenuation Coefficient with a Low-Cost Instrument: The KdUINO DIY Buoy

    OpenAIRE

    Raul Bardaji; Albert-Miquel Sánchez; Carine Simon; Wernand, Marcel R.; Jaume Piera

    2016-01-01

    A critical parameter to assess the environmental status of water bodies is the transparency of the water, as it is strongly affected by different water quality related components (such as the presence of phytoplankton, organic matter and sediment concentrations). One parameter to assess the water transparency is the diffuse attenuation coefficient. However, the number of subsurface irradiance measurements obtained with conventional instrumentation is relatively low, due to instrument costs an...

  2. CRED APEX Drifting Buoy Argos_ID 25321 Data in the Northwestern Hawaiian Islands, 200110-200404 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED APEX drifter Argos_ID 25321 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. APEX drifter data files...

  3. NODC Standard Format Ocean Wind Time Series from Buoys (F101) Data (1975-1985) (NCEI Accession 0014194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This file type contains time series measurements of wind and other surface meteorological parameters taken at fixed locations. The instrument arrays may be deployed...

  4. Estimating the Underwater Diffuse Attenuation Coefficient with a Low-Cost Instrument: The KdUINO DIY Buoy.

    Science.gov (United States)

    Bardaji, Raul; Sánchez, Albert-Miquel; Simon, Carine; Wernand, Marcel R; Piera, Jaume

    2016-01-01

    A critical parameter to assess the environmental status of water bodies is the transparency of the water, as it is strongly affected by different water quality related components (such as the presence of phytoplankton, organic matter and sediment concentrations). One parameter to assess the water transparency is the diffuse attenuation coefficient. However, the number of subsurface irradiance measurements obtained with conventional instrumentation is relatively low, due to instrument costs and the logistic requirements to provide regular and autonomous observations. In recent years, the citizen science concept has increased the number of environmental observations, both in time and space. The recent technological advances in embedded systems and sensors also enable volunteers (citizens) to create their own devices (known as Do-It-Yourself or DIY technologies). In this paper, a DIY instrument to measure irradiance at different depths and automatically calculate the diffuse attenuation Kd coefficient is presented. The instrument, named KdUINO, is based on an encapsulated low-cost photonic sensor and Arduino (an open-hardware platform for the data acquisition). The whole instrument has been successfully operated and the data validated comparing the KdUINO measurements with the commercial instruments. Workshops have been organized with high school students to validate its feasibility. PMID:26999132

  5. CRED SVP Drifting Buoy Argos_ID 24753 Data in American Samoa, 200307-200407 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24753 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  6. Data from a directional waverider buoy off Waimea Bay, North Shore, Oahu during December 2001 - July 2004 (NODC Accession 0001626)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  7. Directional wave and temperature data from six buoys at Diablo Canyon, CA, 1997-2002 (NODC Accession 0000761)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  8. Optimizing observational networks combining gliders, moored buoys and FerryBox in the Bay of Biscay and English Channel

    Science.gov (United States)

    Charria, Guillaume; Lamouroux, Julien; De Mey, Pierre

    2016-10-01

    Designing optimal observation networks in coastal oceans remains one of the major challenges towards the implementation of future efficient Integrated Ocean Observing Systems to monitor the coastal environment. In the Bay of Biscay and the English Channel, the diversity of involved processes (e.g. tidally-driven circulation, plume dynamics) requires to adapt observing systems to the specific targeted environments. Also important is the requirement for those systems to sustain coastal applications. Two observational network design experiments have been implemented for the spring season in two regions: the Loire River plume (northern part of the Bay of Biscay) and the Western English Channel. The method used to perform these experiments is based on the ArM (Array Modes) formalism using an ensemble-based approach without data assimilation. The first experiment in the Loire River plume aims to explore different possible glider endurance lines combined with a fixed mooring to monitor temperature and salinity. Main results show an expected improvement when combining glider and mooring observations. The experiment also highlights that the chosen transect (along-shore and North-South, cross-shore) does not significantly impact the efficiency of the network. Nevertheless, the classification from the method results in slightly better performances for along-shore and North-South sections. In the Western English Channel, a tidally-driven circulation system, added value of using a glider below FerryBox temperature and salinity measurements has been assessed. FerryBox systems are characterised by a high frequency sampling rate crossing the region 2 to 3 times a day. This efficient sampling, as well as the specific vertical hydrological structure (which is homogeneous in many sub-regions of the domain), explains the fact that the added value of an associated glider transect is not significant. These experiments combining existing and future observing systems, as well as numerical ensemble simulations, highlight the key issue of monitoring the whole water column in and close to river plumes (using gliders for example) and the efficiency of the surface high frequency sampling from FerryBoxes in macrotidal regions.

  9. 77 FR 29254 - Safety Zones, Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Science.gov (United States)

    2012-05-17

    ..., 2008, issue of the Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public... when the safety zone is in place. The pilot onboard the large cruise ship will be authorized to allow... arrangements with the pilot onboard the large cruise ship may enter into this safety zone in accordance...

  10. GPS声呐浮标定位系统研究%Positioning System of GPS Sonar Buoy

    Institute of Scientific and Technical Information of China (English)

    黄盛霖; 刘喆; 丁勇鹏

    2010-01-01

    介绍GPS声呐浮标定位系统的组成及工作原理.相对于传统声呐浮标,GPS声呐浮标会使浮标电路功耗增大.但受浮标结构和体制所限,单枚浮标所携带的能量有限,为保证浮标的正常工作时间,系统中增加了一个电源管理模块电路来控制浮标工作的启动时间以减少不必要的电路功耗.

  11. 机载声呐浮标和吊放声呐%Airborne Radio Sonar Buoys and Dipping Sonar

    Institute of Scientific and Technical Information of China (English)

    蓉竹

    2006-01-01

    声呐(SONAR)是一种基于声学原理的探测设备,SONAR是。声波导航与测距”的英文缩略语的音译。我们知道,声波在空气中的传播速度为340米/秒,而在水中传播时速度要快得多(约为1500米/秒),能量损耗也小。声呐正是利用了声波在水中传播的这种优势。

  12. Estimating the Underwater Diffuse Attenuation Coefficient with a Low-Cost Instrument: The KdUINO DIY Buoy

    NARCIS (Netherlands)

    Bardaji, R.; Sánchez, A.-M.; Simon, C.; Wernand, M.R.; Piera, J.

    2016-01-01

    A critical parameter to assess the environmental status of water bodies is the transparency of the water, as it is strongly affected by different water quality related components (such as the presence of phytoplankton, organic matter and sediment concentrations). One parameter to assess the water tr

  13. Estimating the Underwater Diffuse Attenuation Coefficient with a Low-Cost Instrument: The KdUINO DIY Buoy

    Directory of Open Access Journals (Sweden)

    Raul Bardaji

    2016-03-01

    Full Text Available A critical parameter to assess the environmental status of water bodies is the transparency of the water, as it is strongly affected by different water quality related components (such as the presence of phytoplankton, organic matter and sediment concentrations. One parameter to assess the water transparency is the diffuse attenuation coefficient. However, the number of subsurface irradiance measurements obtained with conventional instrumentation is relatively low, due to instrument costs and the logistic requirements to provide regular and autonomous observations. In recent years, the citizen science concept has increased the number of environmental observations, both in time and space. The recent technological advances in embedded systems and sensors also enable volunteers (citizens to create their own devices (known as Do-It-Yourself or DIY technologies. In this paper, a DIY instrument to measure irradiance at different depths and automatically calculate the diffuse attenuation Kd coefficient is presented. The instrument, named KdUINO, is based on an encapsulated low-cost photonic sensor and Arduino (an open-hardware platform for the data acquisition. The whole instrument has been successfully operated and the data validated comparing the KdUINO measurements with the commercial instruments. Workshops have been organized with high school students to validate its feasibility.

  14. Modification of wind-wave model WAM and its verification against buoy data in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Polnikov, V.G.; Samiksha, V.; Rashmi, R.; Pogarskii, F.; Sudheesh, K.; Vethamony, P.

    0 . 5 . 1 6 0 5 / 7 6 3 8 9 - . / 9 : 6 3 - 3 5 / 0 4 ; 8 9 < 0 1 0 2 3 4 0 . 5 3 = 3 0 5 ; 4 > ? . @ / 3 4 3 0 5 4 A 9 0 5 / 0 3 5 . 2 9 3 5 B C D E F G C H I J K L M I N O P F G Q R O I J S I T O Q R P F I T U I B C V O W Q G F F I X Y I N Z [ R... \\ \\ Q R I ] ^ I J \\ _ R O P C E ` I B a R \\ [ \\ _ O F D Q C b _ R \\ Q C Z W c \\ b Z E c _ F C E Q O W \\ Q _ F D D O c _ F H \\ W \\ Q \\ O W c R Q Z d e \\ c _ Q I O E [ C E \\ C b _ R \\ P \\ _ R C [ Q _ C V O Z V \\ _ R \\ f \\ W b C W P O E c \\ C b E Z P \\ W F...

  15. CRED SVP Drifting Buoy Argos_ID 44765 Data, Manua in the American Samoa, 200402-200406 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 44765 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  16. Continuous bottom temperature measurements in strategic areas of the Florida Reef Tract at Looe Buoy, 1988 - 2004 (NODC Accession 0002616)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This ongoing project began in 1988. A total of 38 subsurface recording thermographs have been deployed in the Florida Keys National Marine Sanctuary (FKNMS)and at...

  17. CRED APEX Drifting Buoy Argos_ID 25330 Data Maro Reef, Northwestern Hawaiian Islands, 200109-200201 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED APEX drifter Argos_ID 25330 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. APEX drifter data files...

  18. CRED SVP Drifting Buoy Argos_ID 30147 Data Nihoa, Northwestern Hawaiian Islands, 200209-200501 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30147 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  19. CRED SVP Drifting Buoy Argos_ID 29099 Data, Rota in the Marianas Archipelago, 200309-200402 (NODC Accession 0067473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29099 was deployed in the region of Marianas Archipelago to assess ocean currents and sea surface temperature. SVP drifter data files...

  20. CRED SVP Drifting Buoy Argos_ID 52299 Data, Arakane in the Marianas Archipelago, 200509-200607 (NODC Accession 0067473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 52299 was deployed in the region of the Marianas Archipelago to assess ocean currents and sea surface temperature. drifter data files...

  1. CRED SVP Drifting Buoy Argos_ID 30225 Data in the Northwestern Hawaiian Islands, 200209-200401 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30225 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  2. CRED SVP Drifting Buoy Argos_ID 29938 Data in the Northwestern Hawaiian Islands, 200209-200312 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29938 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  3. Wave hindcast studies using SWAN nested in WAVEWATCH III - comparison with measured nearshore buoy data off Karwar, eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Amrutha, M.M.; SanilKumar, V.; Sandhya, K.G.; Nair, T.M.B.; Rathod, J.L.

    areas with few or no measurements (Appendini et al., 2014), similar to the north Indian Ocean. Many users depend on now-cast and ocean state forecast for marine related operations (Balakrishnan Nair et al., 2013) and hence, accurate estimation of wave... parameters is important. For the wave hindcast, now-cast and forecast, numerical models such as Wave Action Model (WAM) (WAMDI Group, 1988), WAVEWATCH III (WW3) (Tolman, 1989; 1991), MIKE21 Spectral Waves (DHI, 2011), Simulating WAves Nearshore (SWAN...

  4. Directional wave and temperature data from seven buoys at Harvest, CA, 1995-2002 (NODC Accession 0000766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  5. CRED SVP Drifting Buoy Argos_ID 24666 Data in the American Samoa, 200309-200503 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24666 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  6. CRED SVP Drifting Buoy Argos_ID 35646 Data in the American Samoa, 200202-200302 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 35646 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  7. CRED APEX Drifting Buoy Argos_ID 25333 Data in the NW Hawaiian Islands, 200110-200204 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED APEX drifter Argos_ID 25333 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. APEX drifter data files...

  8. CRED SVP Drifting Buoy Argos_ID 35644 Data Tau, American Samoa, 200202-200207 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 35644 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  9. Nutrients and other data from bottle, CTD, XBT, and buoy casts from 01 January 1999 to 31 December 1999 (NODC Accession 0000398)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nutrients, temperature profile, zooplankton biomass, and other data were collected from the CHOFU MARU, SHUMPU MARU, SEIFU MARU, and KEIFU MARU from January 1, 1999...

  10. Meteorological, biological, and hydrographic data collected from a nearshore moored buoy near Bon Secour, Alabama from 02/19/2010 - 12/31/2013 (NODC Accession 0117372)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Abstract: Dauphin Island Sea Lab and the Mobile Bay National Estuary Program have partnered with Weeks Bay National Estuarine Research Reserve, the Alabama...

  11. Meteorological, biological, and hydrographic data collected from a nearshore moored buoy near Dauphin Island, Alabama from 24 Feb 2003 to 31 Dec 2013 (NODC Accession 0114998)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Abstract: Dauphin Island Sea Lab and the Mobile Bay National Estuary Program have partnered with the the Alabama Department of Conservation, State Land Division,...

  12. CRED SVP Drifting Buoy Argos_ID 24961 Data, South of Necker, in the Northwestern Hawaiian Islands, 200109-200406 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24961 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  13. CRED SVP Drifting Buoy Argos_ID 24756 Data, 10mn East of Upolu, in the American Samoa, 200307-200310 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24756 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  14. CRED SVP Drifting Buoy Argos_ID 29109 Data on the south side of Swains Island, American Samoa , 200402-200606 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29109 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  15. Temperature and conductivity data collected by CTDs on moored buoys in the Sermilik Fjord, Greenland from 2008-07 to 2009-08 (NODC Accession 0123217)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data included in this dataset were collected in the Sermilik Fjord, located in East Greenland in the Ammassalik district close to the town of Tasiilaq. Data...

  16. Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data

    OpenAIRE

    Ricker, Robert; Hendricks, Stefan; Perovich, Donald K.; Helm, Veit; Gerdes, Rüdiger

    2015-01-01

    Radar altimetry measurements of the current satellite mission CryoSat-2 show an increase of Arctic sea ice thickness in autumn 2013, compared to previous years but also related to March 2013. Such an increase over the melting season seems unlikely and needs to be investigated. Recent studies show that the influence of the snow cover is not negligible and can highly affect the CryoSat-2 range retrievals if it is assumed that the main scattering horizon is given by the snow-ice interface. Our a...

  17. Directional wave and temperature data from five wave-rider buoys at locations along the California coast, January - December 2003 (NODC Accession 0001306)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  18. Hydrodynamic variability of the Cretan Sea derived from Argo float profiles and multi-parametric buoy measurements during 2010-2012

    Science.gov (United States)

    Kassis, Dimitris; Korres, Gerasimos; Petihakis, George; Perivoliotis, Leonidas

    2015-12-01

    In this work, we examine the complex hydrology of the Cretan Sea, an important area which affects the dynamics of the Eastern Mediterranean basin. We use T/S profile data derived from the first Argo float deployed in the area during June 2010 within the framework of the Greek Argo program. Temperature and salinity profiles were measured over a 2-year period, analyzed, and combined with time series data recorded from the POSEIDON E1-M3A multi-parametric instrumentation platform operating in the area since 2007. The acquired datasets have been enriched with available CTD profiles taken on the mooring site during cruise maintenance surveys. The combined research activities resulted in a large dataset of physical properties allowing extended geographical coverage and an in-depth analysis of the Cretan Sea dynamics during this 2-year period. Data analysis shows significant variability of water masses of different origin at subsurface and deep layers. This confirms previous findings describing the area as transitional with water masses of different origin meeting and interacting. Furthermore, additional features of the area are described combining information from satellite altimetry. In this study, new circulation systems are identified at intermediate and subsurface layers affecting both the dynamic behavior of the basin's upper thermocline and the intermediate/deep water mass tempo-spatial variability. We further investigate the physical properties of the water column and suggest an updated mesoscale circulation picture based on the dynamics of the variable hydrological regimes of the Cretan Sea basin.

  19. Directional wave and temperature data from ten buoys at Santa Monica Bay, Point Dume and San Pedro, CA, 1998 - 2002 (NODC Accession 0000767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  20. Directional wave and temperature data from three buoys at Santa Monica, CA, Harvest, CA, and Point Dume, CA, January 2002 - June 2003 (NODC Accession 0001060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  1. Directional wave and temperature data from thirteen buoys at San Nicolas Island, Dana Point and Oceanside, CA, 1997-2002 (NODC Accession 0000774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  2. Directional wave and temperature data from three buoys at San Nicolas Island, San Pedro and Dana Point, CA, January 2002 - June 2003 (NODC Accession 0001064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  3. Design and Implement of Sonar Buoy Testing System%声呐浮标测试系统设计与实现

    Institute of Scientific and Technical Information of China (English)

    郑琨; 王英民; 张争气

    2008-01-01

    声呐浮标测试系统能够模拟水下声信号,用以检测声呐浮标的工作状态和性能.该设备能够辅助浮标的设计者和维护者进行系统的测试和维护.声呐浮标测试系统是基于计算机平台设计,按照浮标的数传格式模拟水下声数据,通过PCI总线,FIFO,CPLD,单片机完成数据的格式化与传输.基于浮标测试系统的设计指标,给出了系统的方案设计和仿真结果.讨论了设计中的关键技术和工程化中的关键问题.通过系统调试,验证了设计的可靠性和可扩展性.

  4. TMA on Passive Sonar-Buoy and Simulated Calculation%被动声纳浮标目标运动分析及其仿真计算

    Institute of Scientific and Technical Information of China (English)

    陆光宇; 董志荣; 惠小霞

    2006-01-01

    针对直升机搜索潜艇的特点,研究了被动声纳浮标目标运动分析问题.对固定目标和匀速直线运动目标,分别应用确定性计算和线性最小二乘法进行数学建模及其仿真.仿真结果表明该模型可行,能对被动式声纳浮标搜潜的目标定位提供算法依据.

  5. Simulation of Sonar-buoy Array Positioning System Based on Time Delay%基于时延差的声纳浮标阵定位仿真

    Institute of Scientific and Technical Information of China (English)

    刘志浩; 施建礼; 赵祚德

    2014-01-01

    被动方式的声纳浮标是应用于航空反潜中的一种重要设备,因为其隐蔽性好,效率高的特点备受关注.但是通常被动声纳浮标只能探测到目标方向,无法获知距离信息.论文提出了一种基于时延差得被动定位阵定位模型,介绍了定位算法,分析了定位误差,并通过插值法提高时延估计精度,进而提高定位精度,给出了仿真结果且进行了分析.

  6. Directional wave and temperature data from sixteen buoys at Point Loma, Point La Jolla, Torrey Pines Inner and Torrey Pines Outer, CA, 1995 - 2002 (NODC Accession 0000775)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  7. Physical profile data and meteorological data collected from moored buoys in the Northwest Gulf of Mexico from 20040320 to 20050703 (NODC Accession 0055092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Minerals Management Service (MMS) awarded a contract to Science Applications International Corporation (SAIC) to conduct a study titled: Survey of Deepwater...

  8. Oceanographic profile temperature, salinity, and meteorology measurements collected using MRB from moored buoy in the Tropical Indian Ocean from 2003-2008 (NODC Accession 0046088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) array July 1993 - September 2008. RAMA is a new observational network...

  9. CRED SVP Drifting Buoy Argos_ID 24955 Data at Bank 8, in the NW Hawaiian Islands, 200110-200504 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24955 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  10. Directional wave and temperature data from three buoys at Grays Harbor, WA, Pt. Reyes, CA, and Diablo Canyon, CA, 2002 - 2003 (NODC Accession 0001058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  11. Directional wave and temperature data from four buoys at Grays Harbor, WA and Point Reyes, Harvest and Diablo Canyon, CA, January - December 2003 (NODC Accession 0001291)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves along the coastlines of the United States, with a strong emphasis on our...

  12. Comparison of TOPEX/POSEIDON altimeter derived wave period with ocean buoy data in the East China Sea and South China Sea

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Altimeter wave period data obtained from continental shelf seas are analyzed in this paper.Empirical models are introduced for zero up-crossing and peak wave period calculation with TOPEX/POSEIDON data. Their performances are assessed using independent validation dataset in four sites in the open ocean of China. To provide more accurate wave period estimation, new coefficients are applied to reliable in situ data. Comparison of our estimated the wave periods with new linear calibrations based on independent data of Seapac 2100 deployed in the East China Sea and South China Sea showed that the accuracy was improved over estimates determined from earlier empirical models. Regional analysis indicated that the wave period model works better under wind sea condition.

  13. Continuous bottom temperature measurements in strategic areas of the Florida Reef Tract at Ball Buoy Reef, 1990 - 1998 (NODC Accession 0002781)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This ongoing project began in 1988. A total of 38 subsurface recording thermographs have been deployed in the Florida Keys National Marine Sanctuary (FKNMS)and at...

  14. Continuous bottom temperature measurements in strategic areas of the Western Sambo Reef, Western Sambo Reef Buoy 16 and Jacquelyn L Grounding Site, 1990 - 2005 (NODC Accession 0014120)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This ongoing project began in 1988. A total of 38 subsurface recording thermographs have been deployed in the Florida Keys National Marine Sanctuary (FKNMS)and at...

  15. CRED SVP Drifting Buoy Argos_ID 29098 Data, Necker Island in the Northwestern Hawaiian Islands, 200307-200410 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29098 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  16. CRED SVP Drifting Buoy Argos_ID 24946 Data, north of Niihau, in the NW Hawaiian Islands, 200110-200209 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24946 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  17. CRED SVP Drifting Buoy Argos_ID 29102 Data, Lisianski Island in the Northwestern Hawaiian Islands, 200307-200310 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29102 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  18. CRED SVP Drifting Buoy Argos_ID 30288 Data near Necker in the NW Hawaiian Islands, 200209-200404 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30288 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  19. CRED SVP Drifting Buoy Argos_ID 29106 Data, Laysan Island in the Northwestern Hawaiian Islands, 200307-200411 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29106 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  20. CRED SVP Drifting Buoy Argos_ID 24754 Data, between Ofu and Tutuila, in the American Samoa, 200307-200308 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24754 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...