WorldWideScience

Sample records for buoyant density solution

  1. Buoyant plumes from solute gradients generated by non-motile Escherichia coli

    International Nuclear Information System (INIS)

    Benoit, M R; Brown, R B; Todd, P; Klaus, D M; Nelson, E S

    2008-01-01

    The effect of hydrodynamic mixing in bacterial populations due to bacterial chemotaxis is a well-described phenomenon known as bioconvection. Here we report the observation of buoyant plumes that result in hydrodynamic mixing, but in contrast to bioconvection the plumes form in the absence of bacterial motility. We propose that the buoyant flow originates from solute gradients created by bacterial metabolism, similar to solute-induced buoyant flow around growing protein crystals. In our experiments, metabolically-active non-motile Escherichia coli were layered along the bottom of flat-bottomed containers. The E. coli consumed glucose in the medium creating a lighter fluid beneath a heavier fluid. The situation is an example of Rayleigh–Taylor instability, in which a lighter fluid pushes on a heavier one. We developed a numerical model to study the effect of E. coli nutrient consumption and by-product excretion on extracellular solute gradients. The model solutions showed reduced-density fluid along the bottom of the fluid domain leading to buoyant plumes, which were qualitatively similar to the experimental plumes. We also used scaling analyses to study the dependence of plume formation on container size and cell size, and to investigate the effect of reduced gravity, such as the microgravity conditions encountered during spaceflight

  2. Low buoyant density proteoglycans from saline and dissociative extracts of embryonic chicken retinas

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.E.; Ting, Y.P.; Birkholz-Lambrecht, A.

    1984-03-01

    Retinas were labeled in culture with (/sup 3/H)glucosamine or (/sup 3/H)leucine and (/sup 35/S)sulfate and extracted sequentially with physiologically balanced saline and 4 M guanidine HCl. They were dialyzed into associative conditions (0.5 M NaCl) and chromatographed on agarose columns. Under these conditions, some of the proteoglycans were associated in massive complexes that showed low buoyant densities when centrifuged in CsCl density gradients under dissociative conditions (4 M guanidine HCl). Much of the label in these complexes was in molecules other than proteoglycans. Most of the proteoglycans, however, were included on the agarose columns, where they appeared to be constitutionally of low buoyant density. They resisted attempts to separate potential low buoyant density contaminants from the major proteoglycans by direct CsCl density gradient centrifugation or by the fractionation of saline or 8 M urea extracts on diethylaminoethyl-Sephacel. The diethylaminoethyl-Sephacel fractions were either subjected to CsCl density gradient centrifugation or were chromatographed on Sephacryl S-300, in both cases before and after alkaline cleavage, to confirm the presence of typical O-linked glycosaminoglycans. The medium and balanced salt extracts were enriched in chondroitin sulfate and other sulfated macromolecules, possibly highly sulfated oligosaccharides, that resisted digestion by chondroitinase ABC but were electrophoretically less mobile than heparan sulfate. Guanidine HCl or urea extracts of the residues were mixtures of high and low density proteoglycans that were enriched in heparan sulfate.

  3. Turbulence Statistics of a Buoyant Jet in a Stratified Environment

    Science.gov (United States)

    McCleney, Amy Brooke

    Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one

  4. Ultrasound Characterization of Microbead and Cell Suspensions by Speed of Sound Measurements of Neutrally Buoyant Samples

    DEFF Research Database (Denmark)

    Cushing, Kevin W.; Garofalo, Fabio; Magnusson, Cecilia

    2017-01-01

    . The density of the microparticles is determined by using a neutrally buoyant selection process that involves centrifuging of microparticles suspended in different density solutions, CsCl for microbeads and Percoll for cells. The speed of sound at 3 MHz in the neutrally buoyant suspensions is measured...... and fixed cells, such as red blood cells, white blood cells, DU-145 prostate cancer cells, MCF-7 breast cancer cells, and LU-HNSCC-25 head and-neck squamous carcinoma cells in phosphate buffered saline. The results show agreement with published data obtained by other methods....

  5. Experimental and numerical study on density stratification erosion phenomena with a vertical buoyant jet in a small vessel

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Satoshi, E-mail: abe.satoshi@jaea.go.jp; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2016-07-15

    Highlights: • This paper shows results of a small scale experiment and CFD analyses on a density stratification erosion with a vertical buoyant jet. • The particle image velocimetry (PIV) and quadrupole mass spectrometer (QMS) with a multiport rotating valve were applied. • Two typical well-used RANS models were applied. • The simulated stratification erosion was in agreement with the experimental result, which suggested that the turbulence mixing occurred only in the jet impinging region. - Abstract: The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project to investigate thermal hydraulic phenomena in a reactor containment vessel during a severe accident. The hydrogen distribution in the vessel is one of significant safety issues in discussing a potential of hydrogen combustion in the containment. Density stratification and its break-up are important phenomena affecting the hydrogen distribution. This paper focuses on a density stratification erosion and break-up mechanism with a vertical buoyant jet promoting the turbulent helium transport. Small scale experiment and computational fluid dynamics (CFD) analyses were carried out for investigating this phenomena. In the experiment, a rectangular vessel made with acrylic plates with a width of 1.5 m, a length of 1.5 m and a height of 1.8 m was used for visualizing flow field with particle image velocimetry (PIV) system. The quadrupole mass spectrometer (QMS) system with a multiport rotating valve was applied for measuring gaseous concentration at 20 elevation points. In CFD analysis with OpenFOAM, two typical well-used turbulence models were used: low-Reynolds number type k–ε model and SST k–ω model, with a turbulence model modification to consider the buoyant effect in the stratification. As a result, the stratification erosion in the CFD analyses with the modified turbulence model agreed well with the experimental data, indicating importance of the turbulence damping by the buoyant effect.

  6. Experimental and numerical study on density stratification erosion phenomena with a vertical buoyant jet in a small vessel

    International Nuclear Information System (INIS)

    Abe, Satoshi; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2016-01-01

    Highlights: • This paper shows results of a small scale experiment and CFD analyses on a density stratification erosion with a vertical buoyant jet. • The particle image velocimetry (PIV) and quadrupole mass spectrometer (QMS) with a multiport rotating valve were applied. • Two typical well-used RANS models were applied. • The simulated stratification erosion was in agreement with the experimental result, which suggested that the turbulence mixing occurred only in the jet impinging region. - Abstract: The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project to investigate thermal hydraulic phenomena in a reactor containment vessel during a severe accident. The hydrogen distribution in the vessel is one of significant safety issues in discussing a potential of hydrogen combustion in the containment. Density stratification and its break-up are important phenomena affecting the hydrogen distribution. This paper focuses on a density stratification erosion and break-up mechanism with a vertical buoyant jet promoting the turbulent helium transport. Small scale experiment and computational fluid dynamics (CFD) analyses were carried out for investigating this phenomena. In the experiment, a rectangular vessel made with acrylic plates with a width of 1.5 m, a length of 1.5 m and a height of 1.8 m was used for visualizing flow field with particle image velocimetry (PIV) system. The quadrupole mass spectrometer (QMS) system with a multiport rotating valve was applied for measuring gaseous concentration at 20 elevation points. In CFD analysis with OpenFOAM, two typical well-used turbulence models were used: low-Reynolds number type k–ε model and SST k–ω model, with a turbulence model modification to consider the buoyant effect in the stratification. As a result, the stratification erosion in the CFD analyses with the modified turbulence model agreed well with the experimental data, indicating importance of the turbulence damping by the buoyant effect.

  7. Further studies on the relationship between platelet buoyant density and platelet age

    International Nuclear Information System (INIS)

    Boneu, B.; Vigoni, F.; Boneu, A.; Caranobe, C.; Sie, P.

    1982-01-01

    The relationship between platelet buoyant density and platelet age was investigated in eight human subjects submitted to an autologous chromium labeled platelet survival study. Platelets were isolated after isopycnic centrifugation using eight discontinuous isoosmotic stractan gradients (five subjects), or various continuous and linear isoosmolar gradients (three subjects). A paradoxical radioactivity enrichment of the dense platelets and a premature loss of radioactivity in the light platelets were observed. These results are explained by a shift of the radioactivity distribution curve toward higher densities during the 3-4 days after platelet injection, while the standard deviation of the distribution was conserved throughout the platelet life span. These results suggest that young platelets are heterogeneous and slightly less dense than the total platelet population

  8. CHANGES OF BUOYANT DENSITY DURING THE S-PHASE OF THE CELL-CYCLE - DIRECT EVIDENCE DEMONSTRATED IN ACUTE MYELOID-LEUKEMIA BY FLOW-CYTOMETRIC

    NARCIS (Netherlands)

    DAENEN, S; HUIGES, W; MODDERMAN, E; HALIE, MR

    Studies with synchronized or exponentially growing bacteria and mammalian cell lines are not able to demonstrate small changes in buoyant density during the cell cycle. Flowcytometric analysis of density separated acute myeloid leukemia cells, a system not dependent on time-related variables, shows

  9. Mixing by turbulent buoyant jets in slender containers

    International Nuclear Information System (INIS)

    Voropayev, S.I.; Nath, C.; Fernando, H.J.S.

    2012-01-01

    A turbulent buoyant jet injected vertically into a slender cylinder containing a stratified fluid is investigated experimentally. The working fluid is water, and salt is used to change its density to obtain either a positively or negatively buoyant jet. The interest is the vertical density distribution in container and its dependence on time and other parameters. For each case (lighter or heavier jet) the experimental data could be collapsed into a ‘universal’ time dependent behavior, when properly non-dimensionalized. A theoretical model is advanced to explain the results. Possible applications include refilling of crude oil into U.S. strategic petroleum reserves caverns. -- Highlights: ► We addresses a critical issue on refill of Strategic Petroleum Reserves. ► We conduct experiments on negatively/positively buoyant turbulent jets in long cavern. ► Basing on results of experiments we developed theoretical model for refill operations.

  10. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    International Nuclear Information System (INIS)

    Ishigaki, Masahiro; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-01-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  11. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-04-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  12. Turbulent Buoyant Jets in Flowing Ambients

    DEFF Research Database (Denmark)

    Chen, Hai-Bo; Larsen, Torben; Petersen, Ole

    1991-01-01

    The mean behaviour of horizontal turbulent buoyant jets in co-flowing currents is investigated experimentally and numerically, in terms of jet trajectory, dilution and centerline density deficit and velocity decay. It is demonstrated in the paper that the laboratory data on the jet trajectory and...

  13. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  14. Resistor capacitor, primitive variable solution of buoyant fluid flow within an enclosure with highly temperature dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.P. [Texas Univ., Austin, TX (United States); Gianoulakis, S.E. [Sandia National Labs., Albuquerque, NM (United States)

    1995-07-01

    A numerical solution for buoyant natural convection within a square enclosure containing a fluid with highly temperature dependent viscosity is presented. Although the fluid properties employed do not represent any real fluid, the large variation in the fluid viscosity with temperature is characteristic of turbulent flow modeling with eddy-viscosity concepts. Results are obtained using a primitive variable formulation and the resistor method. The results presented include velocity, temperature and pressure distributions within the enclosure as well as shear stress and heat flux distributions along the enclosure walls. Three mesh refinements were employed and uncertainty values are suggested for the final mesh refinement. These solutions are part of a contributed benchmark solution set for the subject problem.

  15. Density Driven Removal of Sediment from a Buoyant Muddy Plume

    Science.gov (United States)

    Rouhnia, M.; Strom, K.

    2014-12-01

    Experiments were conducted to study the effect of settling driven instabilities on sediment removal from hypopycnal plumes. Traditional approaches scale removal rates with particle settling velocity however, it has been suggested that the removal from buoyant suspensions happens at higher rates. The enhancement of removal is likely due to gravitational instabilities, such as fingering, at two-fluid interface. Previous studies have all sought to suppress flocculation, and no simple model exists to predict the removal rates under the effect of such instabilities. This study examines whether or not flocculation hampers instability formation and presents a simple removal rate model accounting for gravitational instabilities. A buoyant suspension of flocculated Kaolinite overlying a base of clear saltwater was investigated in a laboratory tank. Concentration was continuously measured in both layers with a pair of OBS sensors, and interface was monitored with digital cameras. Snapshots from the video were used to measure finger velocity. Samples of flocculated particles at the interface were extracted to retrieve floc size data using a floc camera. Flocculation did not stop creation of settling-driven fingers. A simple cylinder-based force balance model was capable of predicting finger velocity. Analogy of fingering process of fine grained suspensions to thermal plume formation and the concept of Grashof number enabled us to model finger spacing as a function of initial concentration. Finally, from geometry, the effective cross-sectional area was correlated to finger spacing. Reformulating the outward flux expression was done by substitution of finger velocity, rather than particle settling velocity, and finger area instead of total area. A box model along with the proposed outward flux was used to predict the SSC in buoyant layer. The model quantifies removal flux based on the initial SSC and is in good agreement with the experimental data.

  16. Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Zuo-Yu Sun

    2014-07-01

    Full Text Available Buoyant unstable behavior in initially spherical lean hydrogen-air premixed flames within a center-ignited combustion vessel have been studied experimentally under a wide range of pressures (including reduced, normal, and elevated pressures. The experimental observations show that the flame front of lean hydrogen-air premixed flames will not give rise to the phenomenon of cellular instability when the equivalence ratio has been reduced to a certain value, which is totally different from the traditional understanding of the instability characteristics of lean hydrogen premixed flames. Accompanied by the smoothened flame front, the propagation mode of lean hydrogen premixed flames transitions from initially spherical outwardly towards upwardly when the flames expand to certain sizes. To quantitatively investigate such buoyant instability behaviors, two parameters, “float rate (ψ” and “critical flame radius (Rcr”, have been proposed in the present article. The quantitative results demonstrate that the influences of initial pressure (Pint on buoyant unstable behaviors are different. Based on the effects of variation of density difference and stretch rate on the flame front, the mechanism of such buoyant unstable behaviors has been explained by the competition between the stretch force and the results of gravity and buoyancy, and lean hydrogen premixed flames will display buoyant unstable behavior when the stretch effects on the flame front are weaker than the effects of gravity and buoyancy.

  17. Eddy diffusivity of quasi-neutrally-buoyant inertial particles

    Science.gov (United States)

    Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea

    2018-04-01

    We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.

  18. Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence

    Science.gov (United States)

    Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef

    2015-09-01

    Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.

  19. Bifurcation in a buoyant horizontal laminar jet

    Science.gov (United States)

    Arakeri, Jaywant H.; Das, Debopam; Srinivasan, J.

    2000-06-01

    The trajectory of a laminar buoyant jet discharged horizontally has been studied. The experimental observations were based on the injection of pure water into a brine solution. Under certain conditions the jet has been found to undergo bifurcation. The bifurcation of the jet occurs in a limited domain of Grashof number and Reynolds number. The regions in which the bifurcation occurs has been mapped in the Reynolds number Grashof number plane. There are three regions where bifurcation does not occur. The various mechanisms that prevent bifurcation have been proposed.

  20. Wind influence on a coastal buoyant outflow

    Science.gov (United States)

    Whitney, Michael M.; Garvine, Richard W.

    2005-03-01

    This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

  1. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

    KAUST Repository

    El-Amin, Mohamed

    2012-02-01

    The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non-Boussinesq buoyant jet in which a low-density gas jet is injected/leak into a high-density ambient. The density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type and the rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment consists of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The top-hat profile assumption is used to obtain the mean centerline velocity, width, density and concentration of the H 2-air horizontal jet in addition to kinematic relations which govern the jet trajectories. A set of ordinary differential equations is obtained and solved numerically using Runge-Kutta method. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained based on Gaussian model. Finally, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained by solving the governing partial differential equations. Additionally, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  2. Buoyant convection during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1995-02-01

    This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.

  3. Factors affecting the density of Brassica napus seeds

    NARCIS (Netherlands)

    Young, L.; Jalink, H.; Denkert, R.; Reaney, M.

    2006-01-01

    Brassica napus seed is composed of low density oil (0.92 g.cm(-3)) and higher density solids (1.3-1.45 g.cm(-3)). Seed buoyant density may potentially be used to determine seed oil content and to separate seeds with different oil contents, however, we have found that seeds with the lowest buoyant

  4. Theoretical analysis and semianalytical solutions for a turbulent buoyant hydrogen-air jet

    KAUST Repository

    El-Amin, Mohamed; Sun, S.; Salama, Amgad

    2012-01-01

    Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a single universal function, called plume function. By combining the obtained analytical expressions of centerline variables with empirical Gaussian expressions of the mean variables, we obtain semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit, and mass fraction).

  5. RANS analyses on erosion behavior of density stratification consisted of helium–air mixture gas by a low momentum vertical buoyant jet in the PANDA test facility, the third international benchmark exercise (IBE-3)

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Satoshi, E-mail: abe.satoshi@jaea.go.jp; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2015-08-15

    Highlights: . • The third international benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in the reactor containment vessel. • Two types turbulence model modification were applied in order to accurately simulate the turbulence helium transportation in the density stratification. • The analysis result in case with turbulence model modification is good agreement with the experimental data. • There is a major difference of turbulence helium–mass transportation between in case with and without the turbulence model modification. - Abstract: Density stratification in the reactor containment vessel is an important phenomenon on an issue of hydrogen safety. The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project on containment thermal hydraulics. As a part of the activity, we participated in the third international CFD benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in containment vessel. This paper shows our approach for the IBE-3, focusing on the turbulence transport phenomena in eroding the density stratification and introducing modified turbulence models for improvement of the CFD analyses. For this analysis, we modified the CFD code OpenFOAM by using two turbulence models; the Kato and Launder modification to estimate turbulent kinetic energy production around a stagnation point, and the Katsuki model to consider turbulence damping in density stratification. As a result, the modified code predicted well the experimental data. The importance of turbulence transport modeling is also discussed using the calculation results.

  6. RANS analyses on erosion behavior of density stratification consisted of helium–air mixture gas by a low momentum vertical buoyant jet in the PANDA test facility, the third international benchmark exercise (IBE-3)

    International Nuclear Information System (INIS)

    Abe, Satoshi; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2015-01-01

    Highlights: . • The third international benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in the reactor containment vessel. • Two types turbulence model modification were applied in order to accurately simulate the turbulence helium transportation in the density stratification. • The analysis result in case with turbulence model modification is good agreement with the experimental data. • There is a major difference of turbulence helium–mass transportation between in case with and without the turbulence model modification. - Abstract: Density stratification in the reactor containment vessel is an important phenomenon on an issue of hydrogen safety. The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project on containment thermal hydraulics. As a part of the activity, we participated in the third international CFD benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in containment vessel. This paper shows our approach for the IBE-3, focusing on the turbulence transport phenomena in eroding the density stratification and introducing modified turbulence models for improvement of the CFD analyses. For this analysis, we modified the CFD code OpenFOAM by using two turbulence models; the Kato and Launder modification to estimate turbulent kinetic energy production around a stagnation point, and the Katsuki model to consider turbulence damping in density stratification. As a result, the modified code predicted well the experimental data. The importance of turbulence transport modeling is also discussed using the calculation results

  7. A note on high Schmidt number laminar buoyant jets discharged horizontally

    International Nuclear Information System (INIS)

    Dewan, A.; Arakeri, J.H.; Srinivasan, J.

    1992-01-01

    This paper reports on a new model, developed for the integral analysis of high Schmidt number (or equivalently high Prandtl number) laminar buoyant jets discharged horizontally. This model assumes top-hat density profile across the inner core of jet and Gaussian velocity profile. Entrainment coefficient corresponding to pure laminar jet has been taken in the analysis. The prediction of the jet trajectory agree well with experimental data in the regions where the jet remains laminar

  8. 46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced as...

  9. Influence of roughness bottom on the dynamics of a buoyant cloud : application to a powder avalanche

    Science.gov (United States)

    Brossard, D.; Naaim-Bouvet, F.; Naaim, M.; Caccamo, P.

    2009-04-01

    A powder avalanche is referred to as a turbulent flow of snow particles in air. In the past such avalanches have been modelled by buoyant cloud in a watertank: buoyant clouds flow along an inclined plane from a small immersed tank with a release gate (injection is of short duration). The powder avalanches are simulated by a heavy fluid (salt water + colorant or kaolin) which is dispersing in a lighter one. Such experiments allow studies for the influence of roughness bottoms on the dynamics of a buoyant clouds. The authors studied the flows of buoyant clouds on an uniform slope of 20° with different roughness: smooth PVC, abrasive paper, bottom covered with glued particles of PMMA or with glued glass beads of different sizes arranged in a compact way. The released volume varies between 2 to 4 liters and the density of salted water is 1.2. Two cameras are used to obtain the height together with the front velocity. Inside the study area the front velocity is approximately constant and the height of the clouds varies linearly with the distance from the released gate as usually observed in previous experiments. So for each roughness a front velocity and height growth can be defined. It was shown from the experiments that: As the bottom increases in roughness, the front speed increases and the height growth decreases. Nevertheless the height of glued elements does not seem to be the most appropriate parameter to characterize the roughness.

  10. Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model

    KAUST Repository

    El-Amin, Mohamed

    2010-06-13

    Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical simulations of 2D axisymmetric vertical hot water confined jet into a cylindrical tank have been done. Solutions are obtained for unsteady flow while velocity, pressure, temperature and turbulence distributions inside the water tank are analyzed. For seeking verification, an experiment was conducted for measuring of the temperature of the same system, and comparison between the measured and simulated temperature shows a good agreement. Using the simulated results, some models are developed to describe axial velocity, centerline velocity, radial velocity, dynamic pressure, mass flux, momentum flux and buoyancy flux for both unheated (non-buoyant) and heated (buoyant) jet. Finally, the dynamics of the heated jet in terms of the plume function which is a universal quantity and the source parameter are studied and therefore the maximum velocity can be predicted theoretically. © 2010 Springer-Verlag.

  11. Topology optimization for submerged buoyant structures

    NARCIS (Netherlands)

    Picelli, R.; van Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; van Keulen, A.

    2017-01-01

    This paper presents an evolutionary structural topology optimization method for the design of completely submerged buoyant modules with design-dependent fluid pressure loading. This type of structure is used to support offshore rig installation and pipeline transportation at all water depths. The

  12. Contribution of the ''simple solutions'' concept to estimate density of actinides concentrated solutions

    International Nuclear Information System (INIS)

    Sorel, C.; Moisy, Ph.; Dinh, B.; Blanc, P.

    2000-01-01

    In order to calculate criticality parameters of nuclear fuel solution systems, number density of nuclides are needed and they are generally estimated from density equations. Most of the relations allowing the calculation of the density of aqueous solutions containing the electrolytes HNO 3 -UO 2 (NO 3 ) 2 -Pu(NO 3 ) 4 , usually called 'nitrate dilution laws' are strictly empirical. They are obtained from a fit of assumed polynomial expressions on experimental density data. Out of their interpolation range, such mathematical expressions show discrepancies between calculated and experimental data appearing in the high concentrations range. In this study, a physico-chemical approach based on the isopiestic mixtures rule is suggested. The behaviour followed by these mixtures was first observed in 1936 by Zdanovskii and expressed as: 'Binary solutions (i.e. one electrolyte in water) having a same water activity are mixed without variation of this water activity value'. With regards to this behaviour, a set of basic thermodynamic expressions has been pointed out by Ryazanov and Vdovenko in 1965 concerning enthalpy, entropy, volume of mixtures, activity and osmotic coefficient of the components. In particular, a very simple relation for the density is obtained from the volume mixture expression depending on only two physico-chemical variables: i) concentration of each component in the mixture and in their respectively binary solutions having the same water activity as the mixture and ii), density of each component respectively in the binary solution having the same water activity as the mixture. Therefore, the calculation needs the knowledge of binary data (water activity, density and concentration) of each component at the same temperature as the mixture. Such experimental data are largely published in the literature and are available for nitric acid and uranyl nitrate. Nevertheless, nitric acid binary data show large discrepancies between the authors and need to be

  13. A novel method to create high density stratification with matching refractive index for optical flow investigations

    Science.gov (United States)

    Krohn, Benedikt; Manera, Annalisa; Petrov, Victor

    2018-04-01

    Turbulent mixing in stratified environments represents a challenging task in experimental turbulence research, especially when large density gradients are desired. When optical measurement techniques like particle image velocimetry (PIV) are applied to stratified liquids, it is common practice to combine two aqueous solutions with different density but equal refractive index, to suppress particle image deflections. While refractive image matching (RIM) has been developed in the late 1970s, the achieved limit of 4% density ratio was not rivalled up to day. In the present work, we report a methodology, based on the behavior of excess properties and their change in a multicomponent system while mixing, that allows RIM for solutions with higher density differences. The methodology is then successfully demonstrated using a ternary combination of water, isopropanol and glycerol, for which RIM in presence of a density ratio of 8.6% has been achieved. Qualitative PIV results of a turbulent buoyant jet with 8.6% density ratio are shown.

  14. Spinning solutions in general relativity with infinite central density

    Science.gov (United States)

    Flammer, P. D.

    2018-05-01

    This paper presents general relativistic numerical simulations of uniformly rotating polytropes. Equations are developed using MSQI coordinates, but taking a logarithm of the radial coordinate. The result is relatively simple elliptical differential equations. Due to the logarithmic scale, we can resolve solutions with near-singular mass distributions near their center, while the solution domain extends many orders of magnitude larger than the radius of the distribution (to connect with flat space-time). Rotating solutions are found with very high central energy densities for a range of adiabatic exponents. Analytically, assuming the pressure is proportional to the energy density (which is true for polytropes in the limit of large energy density), we determine the small radius behavior of the metric potentials and energy density. This small radius behavior agrees well with the small radius behavior of large central density numerical results, lending confidence to our numerical approach. We compare results with rotating solutions available in the literature, which show good agreement. We study the stability of spherical solutions: instability sets in at the first maximum in mass versus central energy density; this is also consistent with results in the literature, and further lends confidence to the numerical approach.

  15. Density of nitric acid solutions of plutonium; Densite des solutions nitriques de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Guibergia, J P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The report is intended to furnish an expression making it possible to determine the density of a nitric acid solution of plutonium. Under certain defined experimental conditions, the equation found makes it possible to deduce, for a solution whose concentration, free acidity and temperature are known, the corresponding value of the density of that solution. (author) [French] L'expose a pour but de donner une formule permettant la determination de la densite d'une solution nitrique de plutonium. Suivant certaines conditions experimentales precisees, l'equation trouvee permet, pour une solution dont la concentration, l'acidite libre nitrique et la temperature sont donnees, de deduire la valeur correspondant de la densite de cette solution. (auteur)

  16. Mixing of high density solution in vertical upward flow

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Hosogi, Nobuyoshi; Komada, Toshiaki; Fujiwara, Yoshiki

    1999-01-01

    Experimental and analytical studies have been performed in order to provide fundamental data and a numerical calculation model on the mixing of boric acid solution, injected from the standby liquid control system (SLCS), under a low natural circulation flow during an ATWS in a BWR. First, fundamental experiments on the mixing of high-density solution in vertically-upward water flow have been performed by using a small apparatus. Mixing patterns observed in the experiments have been classified to two groups, i.e. complete mixing (entrainment) and incomplete mixing (entrainment). In the complete mixing, the injected high-density solution is mixed (entrained) completely into the vertically-upward water flow. From the experiments, the minimum water flow rates in which the complete mixing (entrainment) is achieved have been obtained for various solution densities and solution injection rates. Secondly, two-dimensional numerical calculations have been performed. A continuity equation for total fluid, momentum equations in two directions and a continuity equation for solute are solved by using the finite difference method for discretization method and by following the MAC method for solution procedure. The calculations have predicted nearly the minimum water flow rate in which the complete mixing is achieved, while the calculations have been performed only for one combination of the solution density and solution injection rate until now. (author)

  17. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    Science.gov (United States)

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-10-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  18. HDPE (High Density Polyethylene) pipeline and riser design in Guanabara Bay: challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bomfimsilva, Carlos; Jorge, Joao Paulo Carrijo; Schmid, Dominique; Gomes, Rodrigo Klim [INTECSEA, Sao Paulo, SP (Brazil); Lima, Alexander Piraja [GDK, Salvador, BA (Brazil)

    2009-12-19

    Worldwide shipments of plastic pipes are forecasted to increase 5.2% per year since 2008, being commonly used for water supply and sewage disposal. The HDPE (High Density Polyethylene) pipes have been applied recently to deliver potable water and fire fighting water for the main pier of the LNG system in Guanabara Bay, Rio de Janeiro. The system contains three sizes of pipe outside diameter, 110 mm and 160 mm for water supply, and 500 mm for the fire fighting system. The main design challenges of the pipeline system included providing on-bottom stability, a suitable installation procedure and a proper riser design. The on-bottom stability calculations, which are quite different from the conventional steel pipelines, were developed by designing concrete blocks to be assembled on the pipeline in a required spacing to assure long term stability, knowing that plastic pipes are buoyant even in flooded conditions. The installation procedure was developed considering the lay down methodology based on surface towing technique. The riser was designed to be installed together with additional steel support structure to allow the entire underwater system to have the same plastic pipe specification up to the surface. This paper presents the main challenges that were faced during the design of the HDPE pipelines for the LNG system in Guanabara Bay, addressing the solutions and recommendations adopted for the plastic underwater pipeline system.

  19. Buoyant Helical Twin-Axial Wire Antenna

    Science.gov (United States)

    2016-11-15

    February 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...300169 1 of 9 BUOYANT HELICAL TWIN-AXIAL WIRE ANTENNA CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0001] This application is a divisional...application and claims the benefit of the filing date of United States Patent Application No. 14/280,889; filed on May 19, 2014; and entitled “Twin-Axial

  20. Viscosity and density tables of sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fair, J.A.; Ozbek, H. (comps.)

    1977-04-01

    A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

  1. Filtered Rayleigh Scattering Measurements in a Buoyant Flowfield

    Science.gov (United States)

    2007-03-01

    horizontal and vertical buoyant jet seen everyday is from automobile emissions and smokestacks, respectively. Figure 6. A horizontal...pressure between 150-200 psig in an externally stored 6000 gallon tank. The air is dried by a series of two 21 HRM series heatless driers which

  2. Laboratory Study of Dispersion of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1990-01-01

    -differences. Other methods as infra-red sensing are used for visualizing purpose. The results are used to calibrate an integral model of the dispersion. Conclusions are that the dispersion of a buoyant surface plume can be treated the superposition of a buoyancy induced stretching and turbulent diffusion, reduced...

  3. Options for refractive index and viscosity matching to study variable density flows

    Science.gov (United States)

    Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.

    2018-02-01

    Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a

  4. Automated structure solution, density modification and model building.

    Science.gov (United States)

    Terwilliger, Thomas C

    2002-11-01

    The approaches that form the basis of automated structure solution in SOLVE and RESOLVE are described. The use of a scoring scheme to convert decision making in macromolecular structure solution to an optimization problem has proven very useful and in many cases a single clear heavy-atom solution can be obtained and used for phasing. Statistical density modification is well suited to an automated approach to structure solution because the method is relatively insensitive to choices of numbers of cycles and solvent content. The detection of non-crystallographic symmetry (NCS) in heavy-atom sites and checking of potential NCS operations against the electron-density map has proven to be a reliable method for identification of NCS in most cases. Automated model building beginning with an FFT-based search for helices and sheets has been successful in automated model building for maps with resolutions as low as 3 A. The entire process can be carried out in a fully automatic fashion in many cases.

  5. 46 CFR 160.010-6 - Capacity of buoyant apparatus.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Capacity of buoyant apparatus. 160.010-6 Section 160.010-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND... apparatus is not considered in determining the capacity. (b) [Reserved] ...

  6. Numerical simulation of water exit of an initially fully submerged buoyant spheroid in an axisymmetric flow

    Energy Technology Data Exchange (ETDEWEB)

    Ni, B Y; Wu, G X, E-mail: g.wu@ucl.ac.uk [College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-08-15

    The free water exit of an initially fully submerged buoyant spheroid in an axisymmetric flow, which is driven by the difference between the vertical fluid force and gravity, is investigated. The fluid is assumed to be incompressible and inviscid, and the flow to be irrotational. The velocity potential theory is adopted together with fully nonlinear boundary conditions on the free surface. The surface tension is neglected and the pressure is taken as constant on the free surface. The acceleration of the body at each time step is obtained as part of the solution. Its nonlinear mutual dependence on the fluid force is decoupled through the auxiliary function method. The free-surface breakup by body penetration and water detachment from the body are treated through numerical conditions. The slender body theory based on the zero potential assumption on the undisturbed flat free surface is adopted, through which a condition for full water exit of a spheroid is obtained. Comparison is made between the results from the slender body theory and from the fully nonlinear theory through the boundary-element method, and good agreement is found when the spheroid is slender. Extensive case studies are undertaken to investigate the effects of body density, dimensions and the initial submergence. (paper)

  7. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications

    Science.gov (United States)

    Fan, Jianke; Zhao, Dapeng; Dong, Dongdong

    2016-02-01

    We determined P-wave tomographic images by inverting a large number of arrival-time data from 2749 local earthquakes and 1462 teleseismic events, which are used to depict the three-dimensional morphology of the subducted Eurasian Plate along the northern segment of the Manila Trench. Dramatic changes in the dip angle of the subducted Eurasian Plate are revealed from the north to the south, being consistent with the partial subduction of a buoyant plateau beneath the Luzon Arc. Slab tears may exist along the edges of the buoyant plateau within the subducted plate induced by the plateau subduction, and the subducted lithosphere may be absent at depths greater than 250 km at ˜19°N and ˜21°N. The subducted buoyant plateau is possibly oriented toward NW-SE, and the subducted plate at ˜21°N is slightly steeper than that at ˜19°N. These results may explain why the western and eastern volcanic chains in the Luzon Arc are separated by ˜50 km at ˜18°N, whereas they converge into a single volcanic chain northward, which may be related to the oblique subduction along the Manila Trench caused by the northwestern movement of the Philippine Sea Plate. A low-velocity zone is revealed at depths of 20-200 km beneath the Manila Accretionary Prism at ˜22°N, suggesting that the subduction along the Manila Trench may stop there and the collision develops northward. The Taiwan Orogeny may originate directly from the subduction of the buoyant plateau, because the initial time of the Taiwan Orogeny is coincident with that of the buoyant plateau subduction.

  8. 46 CFR 160.010-4 - General requirements for buoyant apparatus.

    Science.gov (United States)

    2010-10-01

    ... light twine. (h) Each peripheral body type buoyant apparatus without a net or platform on the inside... pigmented in a dark color. A typical method of securing lifelines and pendants to straps of webbing is shown...

  9. Density of simulated americium/curium melter feed solution

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1997-01-01

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70 degrees C. The measured density decreased linearly at a rate of 0.0007 g/cm3/degree C from an average value of 1.2326 g/cm 3 at 20 degrees C to an average value of 1.1973g/cm 3 at 70 degrees C

  10. Density of simulated americium/curium melter feed solution

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.

    1997-09-22

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70{degrees} C. The measured density decreased linearly at a rate of 0.0007 g/cm3/{degree} C from an average value of 1.2326 g/cm{sup 3} at 20{degrees} C to an average value of 1.1973g/cm{sup 3} at 70{degrees} C.

  11. Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.

    2017-11-01

    The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.

  12. Measurement of acidity and density of plutonium solutions

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Bowers, D.L.; Kemmerlin, R.P.

    1978-01-01

    The solutions were analyzed for acidity and total Pu concentration at ambient temperature while the density was determined at 25, 35, 45, and 60 0 C. From least squares fitting, it was found that the density could be computed to within 1% of the experimental value using the equation D = 1 + 0.0477[H + ] - 4.25 x 10 -3 [H + ] 2 + 1.477 x 10 -3 [Pu] - (T - 25)/1000

  13. A simple technique for measuring buoyant weight increment of entire, transplanted coral colonies in the field.

    Science.gov (United States)

    Herler, Jürgen; Dirnwöber, Markus

    2011-10-31

    Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements.

  14. Numerical studies of pulsating buoyant plume in isothermal and non isothermal situations

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Mohanty, Ananya; Das, D.

    2014-01-01

    A computational study has been carried out for predicting the behaviour of buoyant plume in isothermal and non isothermal configuration. General simulation objectives of any buoyant flow simulation are macroscopic in nature and deals with the grass data in respect of buoyancy induced scalar transport. However, the accuracy of predicting such macroscopic parameters is a strong function of several other microscopic parameters which govern the overall macroscopic behaviour. Some of the microscopic parameters for analysis could be buoyancy induced stable/unstable flows, relative plume behaviour, baroclinic velocity distribution etc. Only the CFD based flow modelling approach is capable of calculating several of these aspects. LES based modelling scores over the conventional RANS based computational modelling. The primary objective of the present study was to model buoyant plume simulation of different types in order to explore the details regarding plume and flow structure, instabilities and puffing behaviour. One of the influencing parameters on the overall plume behaviour is the buoyancy resolution index i.e. fineness of chosen grid in relation to the buoyancy intensity and other hydrodynamic parameters. The grid sensitivity studies have been carried out to find out the optimum value grid size by way of buoyant pool fire simulations. Comparative simulation has also been made for a square and round pool fire and it was found that for engineering simulations equivalent area square pool modeling is sufficient. Using the optimum value of grid size and square pool shape simulations have been carried out for different value of fire intensity. The flame puffing frequency as calculated by the reported correlation was compared against the computationally observed puffing frequency and the agreement was generally found to be excellent. Besides these results the comparisons of predicted peak flames temperatures data for various case studies with the available experimental data

  15. Measuring the density and viscosity of H2S-loaded aqueous methyldiethanolamine solution

    International Nuclear Information System (INIS)

    Shokouhi, Mohammad; Ahmadi, Reza

    2016-01-01

    Highlights: • Measurement solubility of H 2 S in 46.78 mass% MDEA aqueous solutions. • Measurement density of H 2 S loaded of MDEA aqueous solution. • Measurement viscosity of H 2 S loaded of MDEA aqueous solution. • Correlation of the density and viscosity of H 2 S loaded of MDEA aqueous solution using modified setchenow equation. - Abstract: The density and viscosity of H 2 S-loaded aqueous 46.78 mass% methyldiethanolamine solution were experimentally measured accompanied with the solubility of H 2 S at temperatures (313.15, 328.15 and 343.15) K, pressures from vapor pressure of fresh solution up to 1.0 MPa and loadings up to 1.00 mol of H 2 S per 1 mol of amine. All experimental trials have been carried out using the new setup developed in our laboratory. It was observed that both density and viscosity of mixtures decrease by increasing temperature and density increase by increasing acid gas solubility (loading) by about 4.7%, whereas viscosity has a complicated behavior with H 2 S solubility. Viscosity decreases by increasing acid gas solubility (loading) at 313.15 K by about 20.6% and at 328.15 K by about 15.0%, but it is comparable at 343.15 K in terms of H 2 S solubility. Finally, the experimental density and viscosity data correlated using Modified Setchenow equation.

  16. Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current

    DEFF Research Database (Denmark)

    Chen, H. B.; Larsen, Torben

    1995-01-01

    This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically and...

  17. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    Science.gov (United States)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The

  18. OptiPrep? Density Gradient Solutions for Macromolecules and Macromolecular Complexes

    Directory of Open Access Journals (Sweden)

    John Graham

    2002-01-01

    Full Text Available Any density gradient for the isolation of mammalian cells should ideally only expose the sedimenting particles to an increasing concentration of the gradient solute. Thus they will experience only an increasing density and viscosity, other parameters such as osmolality, pH, ionic strength and the concentration of important additives (such as EDTA or divalent cations should remain as close to constant as possible. This Protocol Article describes the strategies for the dilution of OptiPrep™ in order to prepare such solutions for mammalian cells.

  19. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu

    2012-01-01

    The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non

  20. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

  1. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; Kanayama, Hiroshi

    2010-01-01

    In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

  2. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    Science.gov (United States)

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  3. Densities concentrations of aqueous of uranyl nitrate solutions

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Rodriguez Hernandez, B.; Fernandez Rodriguez, L.

    1966-01-01

    The ratio density-concentration of aqueous uranyl nitrate solutions expressed as U 3 O 8 grams/liter, U grams/liter and hexahydrate uranyl nitrate weight percent at different temperatures, are established. Experimental values are graphically correlated and compared whit some published data. (Author) 2 refs

  4. Stationary solution of a time dependent density matrix formalism

    International Nuclear Information System (INIS)

    Tohyama, Mitsuru

    1994-01-01

    A stationary solution of a time-dependent density-matrix formalism, which is an extension of the time-dependent Hartree-Fock theory to include the effects of two-body correlations, is obtained for the Lipkin model hamiltonian, using an adiabatic treatment of the two-body interaction. It is found that the obtained result is a reasonable approximation for the exact solution of the model. (author)

  5. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    OpenAIRE

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and veloc...

  6. The Effect of an Externally Attached Neutrally Buoyant Transmitter on Mortal Injury during Simulated Hydroturbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Pflugrath, Brett D.; Carlson, Thomas J.; Deng, Zhiqun

    2012-02-03

    On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing through hydroturbines experience a rapid decrease in pressure as they pass by the turbine blade and the severity of this decompression can be highly variable. This rapid decrease in pressure can result in injuries such as swim bladder rupture, exophthalmia, and emboli and hemorrhaging in the fins and tissues. However, recent research indicates that the presence of a telemetry tag (acoustic, radio, inductive) implanted inside the coelom of a juvenile salmon increases the likelihood that the fish will be injured or die during turbine passage. Thus, previous research conducted using telemetry tags implanted into the coelom of fish may have been inaccurate. Thus, a new technique is needed to provide unbiased estimates of survival through turbines. This research provides an evaluation of the effectiveness of a neutrally buoyant externally attached acoustic transmitter. Both nontagged fish and fish tagged with a neutrally buoyant external transmitter were exposed to a range of rapid decompressions simulating turbine passage. Juvenile Chinook salmon tagged with a neutrally buoyant externally attached acoustic transmitter did not receive a higher degree of barotrauma than their nontagged counterparts. We suggest that future research include field-based comparisons of survival and behavior among fish tagged with a neutrally buoyant external transmitter and those internally implanted with transmitters.

  7. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed

    Science.gov (United States)

    Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.

    2015-04-01

    A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.

  8. Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations

    Science.gov (United States)

    Park, Chan-Hee; Aral, Mustafa M.

    2007-06-01

    In this paper the Elder problem is studied with the purpose of evaluating the inherent instabilities associated with the numerical solution of this problem. Our focus is first on the question of the existence of a unique numerical solution for this problem, and second on the grid density and fluid density requirements necessary for a unique numerical solution. In particular we have investigated the instability issues associated with the numerical solution of the Elder problem from the following perspectives: (i) physical instability issues associated with density differences; (ii) sensitivity of the numerical solution to idealization irregularities; and, (iii) the importance of a precise velocity field calculation and the association of this process with the grid density levels that is necessary to solve the Elder problem accurately. In the study discussed here we have used a finite element Galerkin model we have developed for solving density-dependent flow and transport problems, which will be identified as TechFlow. In our study, the numerical results of Frolkovič and de Schepper [Frolkovič, P. and H. de Schepper, 2001. Numerical modeling of convection dominated transport coupled with density-driven flow in porous media, Adv. Water Resour., 24, 63-72.] were replicated using the grid density employed in their work. We were also successful in duplicating the same result with a less dense grid but with more computational effort based on a global velocity estimation process we have adopted. Our results indicate that the global velocity estimation approach recommended by Yeh [Yeh, G.-T., 1981. On the computation of Darcian velocity and mass balance in finite element modelling of groundwater flow, Water Resour. Res., 17(5), 1529-1534.] allows the use of less dense grids while obtaining the same accuracy that can be achieved with denser grids. We have also observed that the regularity of the elements in the discretization of the solution domain does make a difference

  9. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2013-01-01

    Full Text Available The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa.

  10. Flow-field characteristics of high-temperature annular buoyant jets and their development laws influenced by ventilation system.

    Science.gov (United States)

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.

  11. Numerical simulation of fuel mixing with air in laminar buoyant vortex rings

    International Nuclear Information System (INIS)

    Prasad, M. Jogendra; Sundararajan, T.

    2016-01-01

    Highlights: • At large Reynolds number, small vortex ring is formed due to thin boundary layer. • At higher stroke to diameter ratio, larger vortex is formed which travels farther. • After formation, trailing stem transfers circulation and fuel to the ring by buoyancy. • Formation number of buoyant vortex ring is higher than that of non-buoyant ring. • Buoyant fuel puffs entrain more air than non-buoyant air-premixed fuel puffs. - Abstract: The formation and evolution of vortex rings consisting of methane-air mixtures have been numerically simulated for different stroke to diameter (L/D) ratios (1.5, 3.5 and 6), Reynolds numbers (1000 and 2000) and initial mixture compositions (fuel with 0%, 15% and 30% of stoichiometric air). The numerical simulations are first validated by comparing with the results of earlier computational studies and also with in-house data from smoke visualization studies. In pure methane case, buoyancy significantly aids the upward rise of the vortex ring. The increase of vortex core height with time is faster for larger L/D ratio, contributed mainly by the larger initial puff volume. The radial size of the vortex also increases rapidly with time during the formation stage; this is followed by a slight shrinkage when piston comes to a stop. Later, a slow radial growth of the ring occurs due to the entrainment of ambient air, except during vortex pinch-off. The boundary layer thickness δ_e at orifice exit decreases as Re"−"0"."5 at a fixed L/D ratio; this in turn, results in a vortex of smaller size and circulation level, at a relatively higher Reynolds number. For L/D values greater than the critical value, a trailing stem is formed behind the ring vortex which feeds circulation and fuel into the vortex ring in the later stages of vortex evolution. Mass fraction contours indicate that fuel-air mixing is more effective within the vortex than in the stem. Ambient air entrainment is larger at higher L/D ratio and lower Re, for the

  12. Energy density of marine pelagic fish eggs

    DEFF Research Database (Denmark)

    Riis-Vestergaard, J.

    2002-01-01

    Analysis of the literature on pelagic fish eggs enabled generalizations to be made of their energy densities, because the property of being buoyant in sea water appears to constrain the proximate composition of the eggs and thus to minimize interspecific variation. An energy density of 1.34 J mul......(-1) of total egg volume is derived for most species spawning eggs without visible oil globules. The energy density of eggs with oil globules is predicted by (σ) over cap = 1.34 + 40.61 x (J mul(-1)) where x is the fractional volume of the oil globule. (C) 2002 The Fisheries Society of the British...

  13. Dispersal of volcaniclastic material by buoyant water plumes in deep-ocean explosive basaltic eruptions

    Science.gov (United States)

    Barreyre, T.; Soule, S.; Reves-Sohn, R. A.

    2009-12-01

    The ability of mid-ocean ridge (MOR) volcanic systems to generate explosive eruptions is inhibited by the large hydrostatic pressures associated with their deep-sea location, which suppress volatile exsolution from the magma, and which preclude the generation of steam from lava-water interaction. Nevertheless, volcaniclastic material indicative of explosive activity has been found along many parts of the global MOR, raising important questions regarding the volatile systematics within mid-ocean ridge magmatic systems, and the processes by which volcaniclastic material may be dispersed during deep-sea eruptions. In this study we measured the settling velocities of volcaniclastic grains recovered from the Gakkel Ridge, Loihi Seamount, and Axial Volcano, and developed empirical settling velocity models as a function of particle size for three different particle shapes (angular, sheet, and rod). We then used the Morton, Turner, Taylor turbulent plume model to investigate how a plume of buoyant water may distribute this volcaniclastic material during a deep-sea eruption so that the physical characteristics of the deposits may be used to constrain the location and size (i.e., energy) of the eruptions that produced them. We ran the turbulent plume model for conditions ranging from a typical black smoker (~150 MW) to a megaplume (~30000 MW), and for water column density stratifications and currents corresponding to nominal conditions for the Arctic and Pacific Oceans. We found that maximum dispersal distances for the dominant size of volcaniclastic material within buoyant water plumes range from Pele). These distances are insufficient to explain the areal extent of the volcaniclastic deposits observed along the 85°E segment of the Gakkel Ridge and various portions of the Juan de Fuca Ridge, indicating that additional energy in the form of momentum from expanding gases is required to produce the observed deposits.

  14. Simultaneous solution of the geoid and the surface density anomalies

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.; Karimi, R.; AllahTavakoli, Y.

    2012-04-01

    The main application of the land gravity data in geodesy is "local geoid" or "local gravity field" modeling, whereas the same data could play a vital role for the anomalous mass-density modeling in geophysical explorations. In the realm of local geoid computations based on Geodetic Boundary Value Problems (GBVP), it is needed that the effect of the topographic (or residual terrain) masses be removed via application of the Newton integral in order to perform the downward continuation in a harmonic space. However, harmonization of the downward continuation domain may not be perfectly possible unless accurate information about the mass-density of the topographic masses be available. On the other hand, from the exploration point of view the unwanted topographical masses within the aforementioned procedure could be regarded as the signal. In order to overcome the effect of the remaining masses within the remove step of the GBVP, which cause uncertainties in mathematical modeling of the problem, here we are proposing a methodology for simultaneous solution of the geoid and residual surface density modeling In other words, a new mathematical model will be offered which both provides the needed harmonic space for downward continuation and at the same time accounts for the non-harmonic terms of gravitational field and makes use of it for residual mass density modeling within the topographic region. The presented new model enjoys from uniqueness of the solution, opposite to the inverse application of the Newton integral for mass density modeling which is non-unique, and only needs regularization to remove its instability problem. In this way, the solution of the model provides both the incremental harmonic gravitational potential on surface of the reference ellipsoid as the gravity field model and the lateral surface mass-density variations via the second derivatives of the non harmonic terms of gravitational field. As the case study and accuracy verification, the proposed

  15. Characterization of buoyant fluorescent particles for field observations of water flows.

    Science.gov (United States)

    Tauro, Flavia; Aureli, Matteo; Porfiri, Maurizio; Grimaldi, Salvatore

    2010-01-01

    In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres' fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall.

  16. Characterization of Buoyant Fluorescent Particles for Field Observations of Water Flows

    Directory of Open Access Journals (Sweden)

    Flavia Tauro

    2010-12-01

    Full Text Available In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres’ fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall.

  17. Analytical solution for the mode conversion equations with steep exponential density profiles

    International Nuclear Information System (INIS)

    Alava, M.J.; Heikkinen, J.A.

    1992-01-01

    A general analytical solution for the converted power from the fast magnetosonic wave to an ion Bernstein wave in a magnetized plasma with an exponential steeply increasing density profile is given in the closed form. The solution covers both the conversion at the lower-hybrid resonance and the conversion through the density gradient for small parallel wave numbers. As an application, the conversion coefficients at the scrape-off layer plasma are estimated in the context of ion cyclotron heating of a tokamak plasma

  18. Numerical modelling of the buoyant marine microplastics in the South-Eastern Baltic Sea

    Science.gov (United States)

    Bagaev, Andrei; Mizyuk, Artem; Chubarenko, Irina; Khatmullilna, Liliya

    2017-04-01

    Microplastics is a burning issue in the marine pollution science. Its sources, ways of propagation and final destiny pose a lot of questions to the modern oceanographers. Hence, a numerical model is an optimal tool for reconstruction of microplastics pathways and fate. Within the MARBLE project (lamp.ocean.ru), a model of Lagrangian particles transport was developed. It was tested coupled with oceanographic transport fields from the operational oceanography product of Copernicus Marine Monitoring Environment Service. Our model deals with two major types of microplastics such as microfibres and buoyant spheroidal particles. We are currently working to increase the grid resolution by means of the NEMO regional configuration for the south-eastern Baltic Sea. Several expeditions were organised to the three regions of the Baltic Sea (the Gotland, the Bornholm, and the Gdansk basins). Water samples from the surface and different water layers were collected, processed, and analysed by our team. A set of laboratory experiments was specifically designed to establish the settling velocity of particles of various shapes and densities. The analysis in question provided us with the understanding necessary for the model to reproduce the large-scale dynamics of microfibres. In the simulation, particles were spreading from the shore to the deep sea, slowly sinking to the bottom, while decreasing in quantity due to conditional sedimentation. Our model is expected to map out the microplastics life cycle and to account for its distribution patterns under the impact of wind and currents. For this purpose, we have already included the parameterization for the wind drag force applied to a particle. Initial results of numerical experiments seem to indicate the importance of proper implicit parameterization of the particle dynamics at the vertical solid boundary. Our suggested solutions to that problem will be presented at the EGU-2017. The MARBLE project is supported by Russian Science

  19. Buoyant triacylglycerol-filled green algae and methods therefor

    Science.gov (United States)

    Goodenough, Ursula; Goodson, Carrie

    2015-04-14

    Cultures of Chlamydomonas are disclosed comprising greater than 340 mg/l triacylglycerols (TAG). The cultures can include buoyant Chlamydomonas. Methods of forming the cultures are also disclosed. In some embodiments, these methods comprise providing Chlamydomonas growing in log phase in a first culture medium comprising a nitrogen source and acetate, replacing the first culture medium with a second medium comprising acetate but no nitrogen source, and subsequently supplementing the second medium with additional acetate. In some embodiments, a culture can comprise at least 1,300 mg/l triacyglycerols. In some embodiments, cultures can be used to produce a biofuel such as biodiesel.

  20. Qualitative Observations Concerning Packing Densities for Liquids, Solutions, and Random Assemblies of Spheres

    Science.gov (United States)

    Duer, W. C.; And Others

    1977-01-01

    Discusses comparisons of packing densities derived from known molar volume data of liquids and solutions. Suggests further studies for using assemblies of spheres as models for simple liquids and solutions. (MLH)

  1. Buoyant plume calculations

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures

  2. Characterization of messenger ribonucleoprotein particles in dormant sporangiospores of the fungus Mucor racemosus

    International Nuclear Information System (INIS)

    Chapman, C.P.

    1986-01-01

    Extracts of sporangiospores of Mucor racemosus contained RNA that readily hybridized with [ 3 H]polyuridylic acid. Prior to germination, this RNA was in a form sedimenting at 31 P-orthophosphate or L-[ 32 S]methionine, absorbance at 280 nm, or hybridization of [ 3 H]polyuridylic acid. mRNP's from the first two fractions were analyzed. A bimodal population of particles was detected in sedimentation velocity and sedimentation equilibrium centrifugation. Particles eluted at low ionic strength demonstrated a sedimentation coefficient distribution of 20S-to-80S. Particles eluted in formamide demonstrated a sedimentation coefficient distribution of 20S-to-60S. Particles eluted at low ionic strength displayed two peaks in CsCl centrifugation, with buoyant densities of 1.37 gm/cc and 1.59 gm/cc. Particles eluted in formamide displayed a single peak with a buoyant density of 1.61 gm/cc. Particles eluted at low ionic strength and centrifuged in metrizamide solution formed two bands having buoyant densities of 1.15 gm/cc and 1.30 gm/cc; formamide-eluted particles banded only at the higher density. Mucor 40S ribosomal subunits banded at 1.56 gm/cc and 1.28 gm/cc in CsCl and metrizamide solution respectively

  3. Joint density-functional theory and its application to systems in solution

    Science.gov (United States)

    Petrosyan, Sahak A.

    The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density

  4. Settling velocity of quasi-neutrally-buoyant inertial particles

    Science.gov (United States)

    Martins Afonso, Marco; Gama, Sílvio M. A.

    2018-02-01

    We investigate the sedimentation properties of quasi-neutrally buoyant inertial particles carried by incompressible zero-mean fluid flows. We obtain generic formulae for the terminal velocity in generic space-and-time periodic (or steady) flows, along with further information for flows endowed with some degree of spatial symmetry such as odd parity in the vertical direction. These expressions consist in space-time integrals of auxiliary quantities that satisfy partial differential equations of the advection-diffusion-reaction type, which can be solved at least numerically, since our scheme implies a huge reduction of the problem dimensionality from the full phase space to the classical physical space. xml:lang="fr"

  5. A thermodynamic model for aqueous solutions of liquid-like density

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, K.S.

    1987-06-01

    The paper describes a model for the prediction of the thermodynamic properties of multicomponent aqueous solutions and discusses its applications. The model was initially developed for solutions near room temperature, but has been found to be applicable to aqueous systems up to 300/sup 0/C or slightly higher. A liquid-like density and relatively small compressibility are assumed. A typical application is the prediction of the equilibrium between an aqueous phase (brine) and one or more solid phases (minerals). (ACR)

  6. Genetic search for an optimal power flow solution from a high density cluster

    Energy Technology Data Exchange (ETDEWEB)

    Amarnath, R.V. [Hi-Tech College of Engineering and Technology, Hyderabad (India); Ramana, N.V. [JNTU College of Engineering, Jagityala (India)

    2008-07-01

    This paper proposed a novel method to solve optimal power flow (OPF) problems. The method is based on a genetic algorithm (GA) search from a High Density Cluster (GAHDC). The algorithm of the proposed method includes 3 stages, notably (1) a suboptimal solution is obtained via a conventional analytical method, (2) a high density cluster, which consists of other suboptimal data points from the first stage, is formed using a density-based cluster algorithm, and (3) a genetic algorithm based search is carried out for the exact optimal solution from a low population sized, high density cluster. The final optimal solution thoroughly satisfies the well defined fitness function. A standard IEEE 30-bus test system was considered for the simulation study. Numerical results were presented and compared with the results of other approaches. It was concluded that although there is not much difference in numerical values, the proposed method has the advantage of minimal computational effort and reduced CPU time. As such, the method would be suitable for online applications such as the present Optimal Power Flow problem. 24 refs., 2 tabs., 4 figs.

  7. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  8. Probing Ionic Liquid Aqueous Solutions Using Temperature of Maximum Density Isotope Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Tariq

    2013-03-01

    Full Text Available This work is a new development of an extensive research program that is investigating for the first time shifts in the temperature of maximum density (TMD of aqueous solutions caused by ionic liquid solutes. In the present case we have compared the shifts caused by three ionic liquid solutes with a common cation—1-ethyl-3-methylimidazolium coupled with acetate, ethylsulfate and tetracyanoborate anions—in normal and deuterated water solutions. The observed differences are discussed in terms of the nature of the corresponding anion-water interactions.

  9. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    Science.gov (United States)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  10. New self-similar radiation-hydrodynamics solutions in the high-energy density, equilibrium diffusion limit

    International Nuclear Information System (INIS)

    Lane, Taylor K; McClarren, Ryan G

    2013-01-01

    This work presents semi-analytic solutions to a radiation-hydrodynamics problem of a radiation source driving an initially cold medium. Our solutions are in the equilibrium diffusion limit, include material motion and allow for radiation-dominated situations where the radiation energy is comparable to (or greater than) the material internal energy density. As such, this work is a generalization of the classical Marshak wave problem that assumes no material motion and that the radiation energy is negligible. Including radiation energy density in the model serves to slow down the wave propagation. The solutions provide insight into the impact of radiation energy and material motion, as well as present a novel verification test for radiation transport packages. As a verification test, the solution exercises the radiation–matter coupling terms and their v/c treatment without needing a hydrodynamics solve. An example comparison between the self-similar solution and a numerical code is given. Tables of the self-similar solutions are also provided. (paper)

  11. Is the 'Fast Halo' around Hawaii as imaged in the PLUME experiment direct evidence for buoyant plume-fed asthenosphere?

    Science.gov (United States)

    Morgan, J. P.; Shi, C.; Hasenclever, J.

    2010-12-01

    through faster mantle and reduces the distance though the slower asthenosphere. With this interpretation, the inference of a radially symmetric ~40-70 km high-~250 km-radius ‘bump’ of uplift of the base of buoyant plume-fed asthenosphere (PFA) can be directly estimated from PLUME results and the measured ~6-10% reduction in shear velocity between the PFA and underlying mantle. The inferred dynamic relief at the base of the PFA due to buoyancy within the underlying plume conduit is strikingly similar to the relief we find in recent axisymmetric 2D and Cartesian 3-D numerical experiments that explore the dynamics of mantle convection with a PFA. The width and height of the bump scale directly with the total buoyancy anomaly in the upper ~500km of the plume conduit, we discuss numerical experiments that quantify this relationship, show that it is, to first order, independent of the viscosity of material in the plume conduit or asthenosphere, and which also quantify the ~400km-radius geoid anomaly produced by these subasthenospheric mantle density anomalies. This effect can only happen if the asthenosphere is more buoyant than underlying mantle — and is therefore direct evidence that a buoyant plume-fed asthenosphere exists around Hawaii.

  12. High density liquid structure enhancement in glass forming aqueous solution of LiCl

    Science.gov (United States)

    Camisasca, G.; De Marzio, M.; Rovere, M.; Gallo, P.

    2018-06-01

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H2O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H2O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  13. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    International Nuclear Information System (INIS)

    Reimund, Kevin K.

    2015-01-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π(1+√w -1 ), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at "maximum power density operating pressure" requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  14. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    Energy Technology Data Exchange (ETDEWEB)

    Reimund, Kevin K. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; McCutcheon, Jeffrey R. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; Wilson, Aaron D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  15. A two-layer model for buoyant inertial displacement flows in inclined pipes

    Science.gov (United States)

    Etrati, Ali; Frigaard, Ian A.

    2018-02-01

    We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.

  16. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    NARCIS (Netherlands)

    Kooi, Merel; Reisser, J.; Slat, B.; Ferrari, F.; Schmid, M.; Cunsolo, S.; Brambini, R.; Noble, K.; Sirks, L.A.; Linders, T.E.W.; Schoeneich-Argent, R.I.; Koelmans, A.A.

    2016-01-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of

  17. (p,V{sub m},T,x) measurements for aqueous LiNO{sub 3} solutions[Density; Concentration; Electrolyte solutions; Equation of state; Lithium nitrate; Saturated density; Saturated pressure; Temperature; Water

    Energy Technology Data Exchange (ETDEWEB)

    Abdulagatov, I.M. E-mail: ilmutdin@boulder.nist.govmangur@datacom.ru; Azizov, N.D. E-mail: Nazim_Azizov@yahoo.com

    2004-01-01

    (p,V{sub m},T,x) properties of four aqueous LiNO{sub 3} solutions (0.181, 0.526, 0.963, and 1.728) mol {center_dot} kg{sup -1} H{sub 2}O were measured in the liquid phase with a constant-volume piezometer immersed in a precision liquid thermostat. Measurements were made for 10 isotherms between (298 and 573) K. The range of pressure was from (2 to 40) MPa. The total uncertainty of density, pressure, temperature, and concentration measurements were estimated to be less than 0.06 %, 0.05 %, 10 mK, and 0.014 %, respectively. The values of saturated density were determined by extrapolating experimental (p,{rho}) data to the vapor-pressure at fixed temperature and composition using an interpolating equation. A polynomial type of equation of state for specific volume was obtained as a function of temperature, pressure, and composition by a least-squares method from the experimental data. The average absolute deviation (AAD) between measured and calculated values from this polynomial equation for density was 0.02 %. Measured values of solution density were compared with values calculated from Pitzer's ion-interaction equation. The agreement is within (0.2 to 0.4) % depending of concentration range.

  18. Laboratory experiments on the interaction between inclined negatively buoyant jets and regular waves

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2015-01-01

    Full Text Available In this paper we present the results from a series of laboratory experiments on inclined negatively buoyant jets released in a receiving environment with waves. This simulates the case, typical of many practical applications, of the sea discharge of fluids denser than the receiving environment, as in the case of the brine from a desalination plant. The experiments were performed employing a Light Induced Fluorescence (LIF technique, in order to measure the concentration fields. Both the jet and the wave motion features were varied, in order to simulate a typical discharge into the Mediterranean Sea. Reference discharges in a stagnant environment were performed as well. The jet behaviour was analyzed from a statistical point of view, both considering the global phenomenon and its single phases. The influence of the wave motion on the inclined negatively buoyant jet geometry and dilution turns out to be a combined action of a split into two branches of the jet and a rotation. Their combined action decreases the jet maximum height and the impact distance, and is the main cause for the higher dilution reached in a wavy environment.

  19. Size-dependent error of the density functional theory ionization potential in vacuum and solution.

    Science.gov (United States)

    Sosa Vazquez, Xochitl A; Isborn, Christine M

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  20. Do buoyant plumes enhance cross-shelf transport in the Black Sea?

    Science.gov (United States)

    Sedakov, Roman; Zavialov, Peter; Izhitsky, Alexander

    2017-04-01

    either constant and different within each layer or a linear function of depth. In each case we obtain an analytical solution and derive a relation between seaward/shoreward transport and eddy viscosity. Both 2D and 3D models indicate that the stratified conditions damping vertical mixing lead to an increase of transport in the surface layer. This result corresponds well with the in situ observations, showing that buoyant plumes may indeed enhance advection of plume waters across shelf areas.

  1. Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities

    Science.gov (United States)

    Li, Yinghua; Huang, Mingxia

    2018-06-01

    In this paper, we investigate a coupled Navier-Stokes/Allen-Cahn system describing a diffuse interface model for two-phase flow of viscous incompressible fluids with different densities in a bounded domain Ω \\subset R^N(N=2,3). We prove the existence and uniqueness of local strong solutions to the initial boundary value problem when the initial density function ρ _0 has a positive lower bound.

  2. Changes in buoyant density relationships of two cell types of Coxiella burneti phase I

    International Nuclear Information System (INIS)

    Wachter, R.F.; Briggs, G.P.; Gangemi, J.D.; Pedersen, C.E. Jr.

    1975-01-01

    Coxiella burneti phase I, purified from a formalin-inactivated yolk-sac vaccine, was separated into two bands of morphologically distinct cell types when subjected to sucrose gradient centrifugation. Recycling of the less dense, rod-shaped cells in unbuffered sucrose gradients (pH 5.5 to 6.0) resulted in the formation of bands having the location and appearance of the original two bands. Recycling of the denser band of larger ovoid-shaped cells yielded a single band, suggesting that the larger cell type arose from the smaller cell. In contrast to vaccine-derived rickettsiae, live, cell culture-propagated phase I organisms formed a single band in unbuffered sucrose gradients, at the same density as the upper band of the vaccine preparation. Centrifugation of cell culture-derived rickettsiae for 26 to 48 h in sucrose gradients of pH 5.5 resulted in the formation of a second band, at the same density as the lower band of the vaccine preparation. This did not occur in gradients of pH 7.0. Treatment of cell culture-propagated rickettsiae with formalin or germicidal ultraviolet radiation induced a total shift of the less dense cell population to a zone of higher density when centrifuged isopycnically in CsCl gradients. This density change did not occur in sucrose gradients, suggesting a difference in the effect of these treatments on the permeability of the cell membrane to sucrose and CsCl

  3. High-resolution time-resolved Experiments on mixing and entrainment of buoyant jets in stratified environments

    Energy Technology Data Exchange (ETDEWEB)

    Manera, Annalisa; Bardet, Philippe; Petrov, Victor

    2018-03-29

    Fluid jets interacting with a stratified layer play an important role in the safety of several reactor designs. In the containment of nuclear power plants, fluid jets dominate the transport and mixing of gaseous species and consequent hydrogen distribution in case of a severe accident. The mixing phenomena in the containment are driven by buoyant high-momentum injections (jets) and low momentum injection plumes. Mixing near the postulated break is initially dominated by high flow velocities. Plumes with moderate flow velocities are instead relevant in the break compartment during the long-term pressurization phase, or in any of the apertures between two connected compartments if the mass flows are sufficiently high and the density differences between efflux and ambient are sufficiently low. Phenomena of interest include free plumes (as produced by the efflux from the break compartment in a larger room or directly from a break flow), wall plumes (such those produced by low mass flows through inter-compartment apertures), and propagating stratification fronts in the ambient (for any stably stratified conditions). These phenomena have been highly ranked about nuclear reactor design, especially regarding of safety protocols. During a Pressurized Thermal Shock (PTS) scenario, the interaction between the cold ECCS injection plume and the stratified fluid present in the cold (or hot) leg is important in order to determine the temperature at the time-dependent temperature at the inlet of the reactor pressure vessel (RPV) and the potential to cause a thermal shock on the RPV wall. In sodium-cooled fast reactors (SFRs), core channels are typically hydro-dynamically isolated so that there exists a considerable temperature variation at the exit of adjacent fuel assemblies. All the above phenomena are characterized by the interaction of buoyant jets with the stratified flow. In stratified layers baroclinic forces create significant redistribution of turbulent kinetic energy and

  4. The thermal interaction of a buoyant plume from a calandria tube with an oblique jet

    Energy Technology Data Exchange (ETDEWEB)

    Rossouw, D.J.; Atkins, M.D.; Beharie, K. [Nuclear Science Division, School of Mechanical & Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Kim, T., E-mail: tong.kim@wits.ac.za [Nuclear Science Division, School of Mechanical & Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Rhee, B.W.; Kim, H.T. [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejun (Korea, Republic of)

    2016-12-15

    Highlights: • A crucial role of relative orientation between mixed convection modes is observed. • The extent of thermal interaction strongly depends on the relative orientation. • Coolant flow is substantially diffused by a buoyant plume if counter-acting. • Slightly oblique coolant flow to the gravitational axis provides the best cooling. - Abstract: Severe reactor core damage may occur from fuel channel failure as a consequence of excessive heat emitted from calandria tubes (CTs) in a pressurised heavy water (D{sub 2}O) reactor (CANDU). The heating of the CTs is caused by creep deformation of the pressure tubes (PTs), which may be ballooning or sagging depending on the internal pressure of the PTs. The deformation of the pressure tube is due to overheating as a result of a loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) failure. To prevent the exacerbation of the LOCA, circulating D{sub 2}O in the moderator tank may be utilized by forming a secondary jet that externally cools the individual CTs. The buoyant plume develops around the CTs and interacts with the secondary jet at a certain oblique angle with respect to the gravitational axis, depending on the spatial location of the hot calandria tubes (or the hot reactor core region). This study reports on how the local and overall heat transfer characteristics on a calandria tube where the buoyant plume develops, are altered by the obliqueness of the external secondary jet (from a co-current jet to a counter-current jet) in a simplified configuration at the jet Reynolds number of Re{sub j} = 1500 for the Archimedes number of Ar{sub D} = 0.11 and Rayleigh number of Ra{sub D} = 1.6 × 10{sup 6} (modified Rayleigh number of 3.0 × 10{sup 7}).

  5. Numerical simulations of negatively buoyant jets in an immiscible fluid using the Particle Finite Element Method

    Science.gov (United States)

    Mier-Torrecilla, Monica; Geyer, Adelina; Phillips, Jeremy C.; Idelsohn, Sergio R.; Oñate, Eugenio

    2010-05-01

    In this work we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method (PFEM), a newly developed tool that combines the flexibility of particle-based methods with the accuracy of the finite element discretization. In order to test the applicability of PFEM to the study of negatively buoyant jets, we have compared the two-dimensional numerical results with experiments investigating the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter were varied to cover a wide range of Reynolds Re and Froude numbers Fr, such that 0.1 < Fr < 30, reproducing both weak and strong fountains in a laminar regime (8 < Re < 1350). Numerical results, together with the experimental observations, allow us to describe three different fountain behaviors that have not been previously reported. Based on the Re and Fr values for the numerical and experimental simulations, we have built a regime map to define how these values may control the occurrence of each of the observed flow types. Whereas the Fr number itself provides a prediction of the maximum penetration height of the jet, its combination with the Re number provides a prediction of the flow behavior for a specific nozzle diameter and injection velocity. Conclusive remarks concerning the dynamics of negatively buoyant jets may be applied later on to several geological situations, e.g. the flow structure of a fully submerged subaqueous eruptive vent discharging magma or the replenishment of magma chambers in the Earth's crust.

  6. Semi-exact solution of non-uniform thickness and density rotating disks. Part II: Elastic strain hardening solution

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Jafari, S.

    2009-01-01

    Analytical solutions for the elastic-plastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption. The solution employs a technique called the homotopy perturbation method. A numerical solution of the governing differential equation is also presented based on the Runge-Kutta's method for both elastic and plastic regimes. The analysis is based on Tresca's yield criterion, its associated flow rule and linear strain hardening. The results of the two methods are compared and generally show good agreement. It is shown that, depending on the boundary conditions used, the plastic core may contain one, two or three different plastic regions governed by different mathematical forms of the yield criterion. Four different stages of elastic-plastic deformation occur. The expansion of these plastic regions with increasing angular velocity is obtained together with the distributions of stress and displacement

  7. Stochastic transport models for mixing in variable-density turbulence

    Science.gov (United States)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  8. Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density, and temperature

    International Nuclear Information System (INIS)

    Spencer, B.B.

    1991-01-01

    Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90 degrees C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs

  9. Numerical Simulation of Density Current Evolution in a Diverging Channel

    Directory of Open Access Journals (Sweden)

    Mitra Javan

    2012-01-01

    Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.

  10. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2

    International Nuclear Information System (INIS)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-01-01

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  11. Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions

    Science.gov (United States)

    Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan

    2018-01-01

    In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.

  12. Drifting solutions with elliptic symmetry for the compressible Navier-Stokes equations with density-dependent viscosity

    International Nuclear Information System (INIS)

    An, Hongli; Yuen, Manwai

    2014-01-01

    In this paper, we investigate the analytical solutions of the compressible Navier-Stokes equations with dependent-density viscosity. By using the characteristic method, we successfully obtain a class of drifting solutions with elliptic symmetry for the Navier-Stokes model wherein the velocity components are governed by a generalized Emden dynamical system. In particular, when the viscosity variables are taken the same as Yuen [M. W. Yuen, “Analytical solutions to the Navier-Stokes equations,” J. Math. Phys. 49, 113102 (2008)], our solutions constitute a generalization of that obtained by Yuen. Interestingly, numerical simulations show that the analytical solutions can be used to explain the drifting phenomena of the propagation wave like Tsunamis in oceans

  13. Apparent molal volumes of HMT and TATD in aqueous solutions around the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Clavijo Penagos, J.A.; Blanco, L.H.

    2012-01-01

    Highlights: ►V φ for HMT and TATD in aqueous solutions around the temperature of maximum density of water are reported. ► V φ is linear in m form m = 0.025 for all the aqueous solutions investigated. ► Variation of V ¯ 2 ∞ with T obeys a second grade polynomial trend. ► The solutes are classified as structure breakers according to Hepler’s criterion. - Abstract: Apparent molal volumes V φ have been determined from density measurements for several aqueous solutions of 1,3,5,7-tetraazatricyclo[3.3.1.1(3,7)]decane (HMT) and 1,3,6,8-tetraazatricyclo[4.4.1.1(3,8)]dodecane (TATD) at T = (275.15, 275.65, 276.15, 276.65, 277.15, 277.65 and 278.15) K as function of composition. The infinite dilution partial molar volumes of solutes in aqueous solution are evaluated through extrapolation. Interactions of the solutes with water are discussed in terms of the effect of the temperature on the volumetric properties and the structure of the solutes. The results are interpreted in terms of water structure-breaking or structure forming character of the solutes.

  14. STEREOCHEMICAL ASPECTS OF HYDRATION OF CARBOHYDRATES IN AQUEOUS-SOLUTIONS .3. DENSITY AND ULTRASOUND MEASUREMENTS

    NARCIS (Netherlands)

    GALEMA, SA; HOILAND, H

    1991-01-01

    Density and ultrasound measurements have been performed in aqueous solutions of pentoses, hexoses, methylpyranosides, and disaccharides as a function of molality of carbohydrate (0-0.3 mol kg-1). Partial molar volumes, partial molar isentropic compressibilities, and hydration numbers have been

  15. Evidence that platelet buoyant density, but not size, correlates with platelet age in man

    International Nuclear Information System (INIS)

    Mezzano, D.; Hwang, K.; Catalano, P.; Aster, R.H.

    1981-01-01

    Following infusion of 51Cr-labeled autologous platelets into normal subjects, high-density (HD) and low-density (LD) platelet cohorts were isolated by prolonged centrifugation in isosmotic arabino-galactan (Stractan). Specific radio-activity of LD platelets declined rapidly post-infusion (T1/2 . 1.5 days), but specific radioactivity of HD platelets remained constant or increased over a 3--4-day period and gradually declined for 6--7 days thereafter. These differences were exaggerated when platelet cohorts enriched in LD or HD cells by slow centrifugation in high-density albumin were labeled and transfused. Mean survival of a platelet cohort enriched with HD cells was significantly (P less than 0.02) shorter (7.73 days) than that of a cohort enriched with LD cells (9.33) days). In normal subjects treated with aspirin, capacity for thromboxane synthesis was regained more rapidly (P less than 0.05) in LD than in HD platelets. HD and LD platelets differed only slightly in mean volume (HD platelets . 7.57 mu3, LD platelets . 6.87 mu3, 0.05 less than P less than 0.01). We believe the most logical interpretation of these findings is that under normal conditions in man, newly formed platelets are less dense on the average than total platelets and become more dense as they age in the circulation. Thus, specific radioactivity of LD platelets declines rapidly as these platelets move into a more dense compartment and are replaced by newly formed, unlabelled cells; specific radioactivity of HD platelets remains constant or increases as labelled platelets enter this compartment in numbers equal to or greater than the number leaving it at the end of their life span. The similarity in mean volumes of LD and HD platelets suggests that platelet size is unrelated to platelet age under normal conditions

  16. Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F

    Science.gov (United States)

    Kelley, M. C.; Haerendel, G.; Kappler, H.; Valenzuela, A.; Balsley, B. B.; Carter, D. A.; Ecklund, W. L.; Carlson, C. W.; Haeusler, B.; Torbert, R.

    1976-01-01

    Recent rocket probe, barium cloud and radar measurements conducted during equatorial spread F conditions are interpreted in terms of a Rayleigh-Taylor gravitational instability operating on the bottomside of the F peak. The persistent theoretical problems associated with strong radar echoes typically observed in patch-like structures at high altitudes are explained in terms of regions of depleted plasma density which buoyantly rise against the gravitational field.

  17. Particulate size growth in a buoyant aerosol cloud

    International Nuclear Information System (INIS)

    Bathula, Sreekanth; Anand, S.; Sapra, B.K.; Chaturvedi, Shashank; Chaudhury, Probal; Pradeepkumar, K.S.

    2018-01-01

    Intentional/accidental release of Chemical, Biological, Radiological or Nuclear (CBRN) contaminant into environment create air and ground contamination. Preparedness and response towards such incidents require reliable models to predict the contamination levels. If the released contaminant is a gas, then it will undergo dilution by mixing with the atmospheric air hence air concentration will reduce to a greater extent and ground contamination may not be possible unless by means of wet deposition. But if the released contaminant is in the form of an aerosol cloud, significant ground deposition is possible due to dry deposition as well as wet deposition along with the air concentration. Particle size distribution inside the cloud is essential information required in computing the air concentration as well as ground concentration. The particle size distribution inside the cloud also undergoes temporal variation due to microscopic processes like particle-particle interactions (coagulation) and macroscopic like buoyancy, air entrainment and volume expansion etc. In this paper, the numerical computation of particle size and particle number concentration in an instantaneous, uniformly mixed, buoyant spherical puff released from a pressurised container is presented

  18. Separation of copper flotation concentrates into density fractions by means of polytungstate aqueous solution

    Directory of Open Access Journals (Sweden)

    Luszczkiewicz Andrzej

    2016-01-01

    Full Text Available Industrial and laboratory flotation copper concentrates were subjected to separation into density fractions by means of heavy liquids in the form of sodium polytungstate aqueous solutions. For two samples, three densities factions were created, however in different density ranges. The density fractions were analyzed to establish the content of copper, lead, silver and organic carbon. The size of particles in both samples was similar (90-95% −0.071 mm. It was found that the lightest density fractions −2.45 and −2.0 g/cm3 still contained sulfide minerals scattered in the organic carbon bearing particles. Removal of the lightest density fraction (−2.0 g/cm3 from the industrial concentrate samples led to considerable reduction of organic carbon (92% and increasing its quality from 13 to 28% Cu. The mineralogical analysis of the heavy liquid separation products showed that most sulfide minerals were evenly dissemination in the heaviest density fractions with the recovery of 95-98%. The lightest density fraction of −2.0 g/cm3, being the richest in organic carbon, contained approximately 3% of unliberated sulfide minerals.

  19. The Entrainment Rate for Buoyant Plumes in a Crossflow

    Science.gov (United States)

    Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.

    2010-03-01

    We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.

  20. AEROSTATIC AND AERODYNAMIC MODULES OF A HYBRID BUOYANT AIRCRAFT: AN ANALYTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Anwar Ul Haque

    2015-05-01

    Full Text Available An analytical approach is essential for the estimation of the requirements of aerodynamic and aerostatic lift for a hybrid buoyant aircraft. Such aircrafts have two different modules to balance the weight of aircraft; aerostatic module and aerodynamic module. Both these modules are to be treated separately for estimation of the mass budget of propulsion systems and required power. In the present work, existing relationships of aircraft and airship are reviewed for its further application for these modules. Limitations of such relationships are also disussed and it is precieved that it will provide a strating point for better understanding of design anatomy of such aircraft.

  1. Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable density

    Science.gov (United States)

    Hu, Xianpeng; Liu, Qiao

    2018-04-01

    In this paper, we investigate the global existence and uniqueness of solution to the 3D inhomogeneous incompressible nematic liquid crystal flows with variable density in the framework of Besov spaces. It is proved that there exists a global and unique solution to the nematic liquid crystal flows if the initial data (ρ0 - 1 ,u0 ,n0 -e3) ∈ M (B˙p,1 3/p - 1 (R3)) × B˙p,1 3/p - 1 (R3) × B˙p,1 3/p (R3) with 1 ≤ p < 6, and satisfies

  2. Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill

    Directory of Open Access Journals (Sweden)

    M. Drivdal

    2014-12-01

    Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.

  3. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  4. A numerical model for buoyant oil jets and smoke plumes

    International Nuclear Information System (INIS)

    Zheng, L.; Yapa, P. D.

    1997-01-01

    Development of a 3-D numerical model to simulate the behaviour of buoyant oil jets from underwater accidents and smoke plumes from oil burning was described. These jets/plumes can be oil-in-water, oil/gas mixture in water, gas in water, or gas in air. The ambient can have a 3-D flow structure, and spatially/temporally varying flow conditions. The model is based on the Lagrangian integral technique. The model formulation of oil jet includes the diffusion and dissolution of oil from the jet to the ambient environment. It is suitable to simulate well blowout accidents that can occur in deep waters, including that of the North Sea. The model has been thoroughly tested against a variety of data, including data from both laboratory and field experiments. In all cases the simulation data compared very well with experimental data. 26 refs., 10 figs

  5. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    Science.gov (United States)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  6. Approximate solution of the Saha equation - temperature as an explicit function of particle densities

    International Nuclear Information System (INIS)

    Sato, M.

    1991-01-01

    The Saha equation for a plasma in thermodynamic equilibrium (TE) is approximately solved to give the temperature as an explicit function of population densities. It is shown that the derived expressions for the Saha temperature are valid approximations to the exact solution. An application of the approximate temperature to the calculation of TE plasma parameters is also described. (orig.)

  7. Generation of Internal Waves by Buoyant Bubbles in Galaxy Clusters and Heating of Intracluster Medium

    Science.gov (United States)

    Zhang, Congyao; Churazov, Eugene; Schekochihin, Alexander A.

    2018-05-01

    Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees that a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the cluster's core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number Fr ≲ 1. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. Clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is ˜100 - 200 km s-1 near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.

  8. Magmatic densities control erupted volumes in Icelandic volcanic systems

    Science.gov (United States)

    Hartley, Margaret; Maclennan, John

    2018-04-01

    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  9. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley

    2018-04-01

    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  10. Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting.

    Science.gov (United States)

    Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro

    2005-01-01

    The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.

  11. An analytical solution for stationary distribution of photon density in traveling-wave and reflective SOAs

    International Nuclear Information System (INIS)

    Totović, A R; Crnjanski, J V; Krstić, M M; Gvozdić, D M

    2014-01-01

    In this paper, we analyze two semiconductor optical amplifier (SOA) structures, traveling-wave and reflective, with the active region made of the bulk material. The model is based on the stationary traveling-wave equations for forward and backward propagating photon densities of the signal and the amplified spontaneous emission, along with the stationary carrier rate equation. We start by introducing linear approximation of the carrier density spatial distribution, which enables us to find solutions for the photon densities in a closed analytical form. An analytical approach ensures a low computational resource occupation and an easy analysis of the parameters influencing the SOA’s response. The comparison of the analytical and numerical results shows high agreement for a wide range of the input optical powers and bias currents. (paper)

  12. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.

    2004-01-01

    Solubilities of glycylglycine and glycyl-L-alanine in aqueous electrolyte solutions containing 0-6 molal NaCl, 0-1 molal Na2SO4, and 0-1 molal (NH4)(2)SO4, have been determined experimentally at 298.15 K and atmospheric pressure. The solubility of glycylglycine and glycyl-L-alanine in pure water...... is 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect...... at higher salt concentrations in NaCl and Na2SO4, and in (NH4)(2)SO4 the solubility is almost constant. The densities of the solutions have been determined experimentally, and the volume expansions by dissolving salt and dipeptide in water have been calculated. (C) 2003 Elsevier B.V. All rights reserved....

  13. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Directory of Open Access Journals (Sweden)

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  14. Ultrasonic speed, densities and viscosities of xylitol in water and in aqueous tyrosine and phenylalanine solutions at different temperatures

    Science.gov (United States)

    Ali, A.; Bidhuri, P.; Uzair, S.

    2014-07-01

    Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.

  15. 1/12-Scale mixing interface visualization and buoyant particle release tests in support of Tank 241-SY-101 hydrogen mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Eschbach, E.J.; Enderlin, C.W.

    1993-10-01

    In support of tank waste safety programs, visualization tests were performed in the 1/12-scale tank facility, using a low-viscosity simulant. The primary objective of the tests was to obtain video records of the transient jet-sludge interaction. The intent is that these videos will provide useful qualitative data for comparison with model predictions. Two tests were initially planned: mixing interface visualization (MIV) and buoyant particle release (BPR). Completion of the buoyant particle release test was set aside in order to complete additional MIV tests. Rheological measurements were made on simulant samples before testing, and the simulant was found to exhibit thixotropic behavior. Shear vane measurements were also made on an in-situ analog of the 1/12-scale tank simulant. Simulant shear strength has been observed to be time dependent. The primary objective of obtaining video records of jet-sludge interaction was satisfied, and the records yielded jet location information which may be of use in completing model comparisons. The modeling effort is not part of this task, but this report also discusses test specific instrumentation, visualization techniques, and shear vane instrumentation which would enable improved characterization of jet-sludge interaction and simulant characteristics.

  16. 1/12-Scale mixing interface visualization and buoyant particle release tests in support of Tank 241-SY-101 hydrogen mitigation

    International Nuclear Information System (INIS)

    Eschbach, E.J.; Enderlin, C.W.

    1993-10-01

    In support of tank waste safety programs, visualization tests were performed in the 1/12-scale tank facility, using a low-viscosity simulant. The primary objective of the tests was to obtain video records of the transient jet-sludge interaction. The intent is that these videos will provide useful qualitative data for comparison with model predictions. Two tests were initially planned: mixing interface visualization (MIV) and buoyant particle release (BPR). Completion of the buoyant particle release test was set aside in order to complete additional MIV tests. Rheological measurements were made on simulant samples before testing, and the simulant was found to exhibit thixotropic behavior. Shear vane measurements were also made on an in-situ analog of the 1/12-scale tank simulant. Simulant shear strength has been observed to be time dependent. The primary objective of obtaining video records of jet-sludge interaction was satisfied, and the records yielded jet location information which may be of use in completing model comparisons. The modeling effort is not part of this task, but this report also discusses test specific instrumentation, visualization techniques, and shear vane instrumentation which would enable improved characterization of jet-sludge interaction and simulant characteristics

  17. Density and viscosity study of nicotinic acid and nicotinamide in dilute aqueous solutions at and around the temperature of the maximum density of water

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Dahasahasra, Prachi N.; Paliwal, Lalitmohan J.; Deshmukh, Dinesh W.

    2014-01-01

    Highlights: • Volumetric and transport behaviour of aqueous solutions of important vitamins are reported. • Various interactions of nicotinic acid and nicotinamide with water have been reported. • The temperature dependence of interactions between solute and solvent is discussed. • The study indicates that nicotinamide is more hydrated as compared to nicotinic acid. - Abstract: In the present study, we report experimental densities (ρ) and viscosities (η) of aqueous solutions of nicotinic acid and nicotinamide within the concentration range (0 to 0.1) mol · kg −1 at T = (275.15, 277.15 and 279.15) K. These parameters are then used to obtain thermodynamic and transport functions such as apparent molar volume of solute (V ϕ ), limiting apparent molar volume of solute (V ϕ 0 ), limiting apparent molar expansivity of solute (E ϕ 0 ), coefficient of thermal expansion (α ∗ ), Jones–Dole equation viscosity A, B and D coefficients, temperature derivative of B coefficient i.e. (dB/dT) and hydration number (n H ), etc. The activation parameters of viscous flow for the binary mixtures have been determined and discussed in terms of Eyring’s transition state theory. These significant parameters are helpful to study the structure promoting or destroying tendency of solute and various interactions present in (nicotinic acid + water) and (nicotinamide + water) binary mixtures

  18. Electrical conductivity of the nutrient solution and plant density in aeroponic production of seed potato under tropical conditions (winter/spring

    Directory of Open Access Journals (Sweden)

    Alex Humberto Calori

    Full Text Available ABSTRACT The recent introduction in Brazil of production of quality seed potatoes in hydroponic systems, such as aeroponics, demands studies on the nutritional and crop management. Thus, this study evaluated the influence of electrical conductivity of the nutrient solution and plant density on the seed potato minitubers production in aeroponics system. The Agata and Asterix cultivars were produced in a greenhouse under tropical conditions (winter/spring. The experimental design was a randomized block in a split-split plot design. The plot consisted of 4 electrical conductivities of the nutrient solution (1.0; 2.0; 3.0; and 4.0 dS∙m−1; the subplot, of 4 plant densities (25; 44; 66; and 100 plants∙m−2; and the subsubplot, of the 2 potato cultivars (Ágata and Asterix, totaling 4 blocks. The 2.2 and 2.1 dS∙m−1 electrical conductivities yielded the highest productivity of seed potato minitubers, for Ágata and Asterix cultivars, respectively, regardless of plant density. For both cultivars, the highest yield was observed for the 100 plants∙m−2 density.

  19. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    Science.gov (United States)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  20. The effect of random matter density perturbations on the large mixing angle solution to the solar neutrino problem

    Science.gov (United States)

    Guzzo, M. M.; Holanda, P. C.; Reggiani, N.

    2003-08-01

    The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.

  1. A corrected vortex blob method for 3D thermal buoyant flows

    Energy Technology Data Exchange (ETDEWEB)

    Golia, Carmine; Buonomo, Bernardo; Viviani, Antonio [Seconda Universita di Napoli (SUN), Dipartimento di Ingegneria Aerospaziale e Meccanica (DIAM), via Roma 29, 81031 Aversa (Italy)

    2008-11-15

    This work explores novel ideas to improve the accuracy of integral approximation to differential operators (divergence, gradient and Laplacian) in the simulation of 3D thermal buoyant flows with meshless Lagrangian Blobs methods. Basically, we investigate and develop an integral discretization of the differential operators of the field equations, by using convolutions of truncated 3D-Taylor series expansions with a kernel function defined on a compact support around the blob centre of a given particle. This allows to overtake: circle the irregular distribution of cells in the compact support around the given blob, circle the deficiency of cells in the compact support due to the presence of a boundary cutting the compact support of nearby blobs. The accuracy and the order of approximation of such discretizations are determined in regular and randomly distorted grids of various sizes, and compared with the widely used particle strength exchange formulations. The analysis of the effects of using the new formulations to solve problems at realistic values of the Grashof number demonstrates the validity and the benefits of the novel findings. (author)

  2. Density Sorting During the Evolution of Continental Crust

    Science.gov (United States)

    Kelemen, P. B.; Behn, M. D.; Hacker, B. R.

    2015-12-01

    We consider two settings - in addition to "delamination" of arc lower crust - in which dense, mafic eclogites founder into the convecting mantle while buoyant, felsic lithologies accumulate at the base of evolving continental crust. Arc processes play a central role in generating continental crust, but it remains uncertain how basaltic arc crust is transformed to andesitic continental crust. Dense, SiO2-poor products of fractionation may founder from the base of arc crust by "delamination", but lower arc crust after delamination has significantly different trace elements compared to lower continental crust (LCC). In an alternative model, buoyant magmatic rocks generated at arcs are first subducted, mainly via subduction erosion. Upon heating, these buoyant lithologies ascend through the mantle wedge or along a subduction channel, and are "relaminated" at
the base of overlying crust (e.g., Hacker et al EPSL 11, AREPS 15). Average buoyant lavas and plutons
for the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs fall within the range of estimated LCC major and trace elements. Relamination is more efficient in generating continental crust than delamination. Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle. There is a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across the region where Tibetan crust overlies Indian crust, into thickened Tibetan crust. About half the subducted Indian crust is present, whereas the other half is missing. Data (Vp/Vs; Miocene lavas formed by interaction of continental crust with mantle; xenolith thermometry) indicate 1000°C or more from ca 50 km depth to the Moho since the Miocene. We build on earlier studies (LePichon et al Tectonics 92, T'phys 97; Schulte-Pelkum et al Nature 05; Monsalve et al JGR 08) to advance the hypothesis that rapid growth of garnet occurs at 70-80 km and 1000°C within subducting Indian crust. Dense eclogites founder

  3. Semi-exact solution of elastic non-uniform thickness and density rotating disks by homotopy perturbation and Adomian's decomposition methods. Part I: Elastic solution

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Jafari, S.

    2008-01-01

    In this work, two powerful analytical methods, namely homotopy perturbation method (HPM) and Adomian's decomposition method (ADM), are introduced to obtain distributions of stresses and displacements in rotating annular elastic disks with uniform and variable thicknesses and densities. The results obtained by these methods are then compared with the verified variational iteration method (VIM) solution. He's homotopy perturbation method which does not require a 'small parameter' has been used and a homotopy with an imbedding parameter p element of [0,1] is constructed. The method takes the full advantage of the traditional perturbation methods and the homotopy techniques and yields a very rapid convergence of the solution. Adomian's decomposition method is an iterative method which provides analytical approximate solutions in the form of an infinite power series for nonlinear equations without linearization, perturbation or discretization. Variational iteration method, on the other hand, is based on the incorporation of a general Lagrange multiplier in the construction of correction functional for the equation. This study demonstrates the ability of the methods for the solution of those complicated rotating disk cases with either no or difficult to find fairly exact solutions without the need to use commercial finite element analysis software. The comparison among these methods shows that although the numerical results are almost the same, HPM is much easier, more convenient and efficient than ADM and VIM

  4. Meanders and eddy formation by a buoyant coastal current flowing over a sloping topography

    Directory of Open Access Journals (Sweden)

    L. Cimoli

    2017-11-01

    Full Text Available This study investigates the linear and non-linear instability of a buoyant coastal current flowing along a sloping topography. In fact, the bathymetry strongly impacts the formation of meanders or eddies and leads to different dynamical regimes that can both enhance or prevent the cross-shore transport. We use the Regional Ocean Modeling System (ROMS to run simulations in an idealized channel configuration, using a fixed coastal current structure and testing its unstable evolution for various depths and topographic slopes. The experiments are integrated beyond the linear stage of the instability, since our focus is on the non-linear end state, namely the formation of coastal eddies or meanders, to classify the dynamical regimes. We find three non-linear end states, whose properties cannot be deduced solely from the linear instability analysis. They correspond to a quasi-stable coastal current, the propagation of coastal meanders, and the formation of coherent eddies. We show that the topographic parameter Tp, defined as the ratio of the topographic Rossby wave speed over the current speed, plays a key role in controlling the amplitude of the unstable cross-shore perturbations. This result emphasizes the limitations of linear stability analysis to predict the formation of coastal eddies, because it does not account for the non-linear saturation of the cross-shore perturbations, which is predominant for large negative Tp values. We show that a second dimensionless parameter, the vertical aspect ratio γ, controls the transition from meanders to coherent eddies. We suggest the use of the parameter space (Tp, γ to describe the emergence of coastal eddies or meanders from an unstable buoyant current. By knowing the values of Tp and γ for an observed flow, which can be calculated from hydrological sections, we can identify which non-linear end state characterizes that flow – namely if it is quasi-stable, meanders, or forms eddies.

  5. Solvent density inhomogeneities and solvation free energies in supercritical diatomic fluids: a density functional approach.

    Science.gov (United States)

    Husowitz, B; Talanquer, V

    2007-02-07

    Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.

  6. Holographic magnetisation density waves

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)

    2016-10-10

    We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.

  7. Computationally simple, analytic, closed form solution of the Coulomb self-interaction problem in Kohn Sham density functional theory

    International Nuclear Information System (INIS)

    Gonis, Antonios; Daene, Markus W.; Nicholson, Don M.; Stocks, George Malcolm

    2012-01-01

    We have developed and tested in terms of atomic calculations an exact, analytic and computationally simple procedure for determining the functional derivative of the exchange energy with respect to the density in the implementation of the Kohn Sham formulation of density functional theory (KS-DFT), providing an analytic, closed-form solution of the self-interaction problem in KS-DFT. We demonstrate the efficacy of our method through ground-state calculations of the exchange potential and energy for atomic He and Be atoms, and comparisons with experiment and the results obtained within the optimized effective potential (OEP) method.

  8. Crowding and Density

    Science.gov (United States)

    Design and Environment, 1972

    1972-01-01

    Three-part report pinpointing problems and uncovering solutions for the dual concepts of density (ratio of people to space) and crowding (psychological response to density). Section one, A Primer on Crowding,'' reviews new psychological and social findings; section two, Density in the Suburbs,'' shows conflict between status quo and increased…

  9. Application of Recurrence Analysis to the period doubling cascade of a confined buoyant flow

    International Nuclear Information System (INIS)

    Angeli, D; Corticelli, M A; Fichera, A; Pagano, A

    2017-01-01

    Recurrence Analysis (RA) is a promising and flexible tool to identify the behaviour of nonlinear dynamical systems. The potentialities of such a technique are explored in the present work, for the study of transitions to chaos of buoyant flow in enclosures. The case of a hot cylindrical source centred in a square enclosure, is considered here, for which an extensive database of results has been collected in recent years. For a specific value of the system aspect ratio, a sequence of period doublings has been identified, leading to the onset of chaos. RA is applied here to analyse the different flow regimes along the route to chaos. The qualitative visual identification of patterns and the statistics given by the quantitative analysis suggest that this kind of tool is well suited to the study of transitional flows in thermo-fluid dynamics. (paper)

  10. Soft-solution route to ZnO nanowall array with low threshold power density

    Science.gov (United States)

    Jang, Eue-Soon; Chen, Xiaoyuan; Won, Jung-Hee; Chung, Jae-Hun; Jang, Du-Jeon; Kim, Young-Woon; Choy, Jin-Ho

    2010-07-01

    ZnO nanowall array (ZNWA) has been directionally grown on the buffer layer of ZnO nanoparticles dip-coated on Si-wafer under a soft solution process. Nanowalls on substrate are in most suitable shape and orientation not only as an optical trap but also as an optical waveguide due to their unique growth habit, V[011¯0]≫V[0001]≈V[0001¯]. Consequently, the stimulated emission at 384 nm through nanowalls is generated by the threshold power density of only 25 kW/cm2. Such UV lasing properties are superior to those of previously reported ZnO nanorod arrays. Moreover, there is no green (defect) emission due to the mild procedure to synthesize ZNWA.

  11. In vitro production of beta-very low density lipoproteins and small, dense low density lipoproteins in mildly hypertriglyceridemic plasma: role of activities of lecithin:cholester acyltransferase, cholesterylester transfer proteins and lipoprotein lipase.

    Science.gov (United States)

    Chung, B H; Segrest, J P; Franklin, F

    1998-12-01

    As a model for the formation of beta-very low density lipoproteins (VLDL) and small, dense LDL by the intraplasma metabolic activities in vivo, lipoproteins in fresh plasma were interacted in vitro with endogenous lecithin:cholesterol acyltransferase (LCAT) and cholesterylester transfer proteins (CETP) and subsequently with purified lipoprotein lipase (LpL). The LCAT and CETP reactions in a mildly hypertriglyceridemic (HTG) plasma at 37 degrees C for 18 h resulted in (1) esterification of about 45% plasma unesterified cholesterol (UC), (2) a marked increase in cholesterylester (CE) (+129%) and a decrease in triglyceride (TG) (-45%) in VLDL, and (3) a marked increase of TG (+ 341%) with a small net decrease of CE (-3.6%) in LDL, causing a significant alteration in the TG/CE of VLDL (from 8.0 to 1.9) and of LDL (from 0.20 to 0.93). The LDL in LCAT and CETP-reacted plasma is larger and more buoyant than that in control plasma. In vitro lipolysis of control and LCAT and CETP-reacted plasma by LpL, which hydrolyzed >90% of VLDL-TG and about 50-60% of LDL-TG, converted most of VLDL in control plasma (>85%) but less than half (40%) of VLDL in LCAT and CETP-reacted plasma into the IDL-LDL density fraction and transformed the large, buoyant LDL in the LCAT and CETP-reacted plasma into particles smaller and denser than those in the control plasma. The remnants that accumulated in the VLDL density region of the postlipolysis LCAT and CETP-reacted plasma contained apo B-100 and E but little or no detectable apo Cs and consisted of particles having pre-beta and beta-electrophoretic mobilities. The inhibition of LCAT during incubation of plasma, which lessened the extent of alteration in VLDL and LDL core lipids, increased the extent of lipolytic removal of VLDL from the VLDL density region but lowered the extent of alteration in the size and density of LDL. The LCAT, CETP and/or LpL-mediated alterations in the density of LDL in normolipidemic fasting plasma were less pronounced

  12. Metamorphic core complex formation by density inversion and lower-crust extrusion.

    Science.gov (United States)

    Martinez, F; Goodliffe, A M; Taylor, B

    2001-06-21

    Metamorphic core complexes are domal uplifts of metamorphic and plutonic rocks bounded by shear zones that separate them from unmetamorphosed cover rocks. Interpretations of how these features form are varied and controversial, and include models involving extension on low-angle normal faults, plutonic intrusions and flexural rotation of initially high-angle normal faults. The D'Entrecasteaux islands of Papua New Guinea are actively forming metamorphic core complexes located within a continental rift that laterally evolves to sea-floor spreading. The continental rifting is recent (since approximately 6 Myr ago), seismogenic and occurring at a rapid rate ( approximately 25 mm yr-1). Here we present evidence-based on isostatic modelling, geological data and heat-flow measurements-that the D'Entrecasteaux core complexes accommodate extension through the vertical extrusion of ductile lower-crust material, driven by a crustal density inversion. Although buoyant extrusion is accentuated in this region by the geological structure present-which consists of dense ophiolite overlaying less-dense continental crust-this mechanism may be generally applicable to regions where thermal expansion lowers crustal density with depth.

  13. Improvements in the critical current densities of Nb3Sn by solid solution additions of Sn in Nb

    International Nuclear Information System (INIS)

    Luhman, T.; Suenaga, M.

    1975-01-01

    The effectiveness of solid solution additions of Sn to Nb in improving the superconducting properties of diffusion processed Nb 3 Sn conductors was examined. It was found that an increase in the superconducting critical current density, Jc, as function of layer thickness (d) may be obtained for thick Nb 3 Sn layers by solid solution additions of Sn in Nb. A large increase in J/sub c/ (d) is also achieved by increasing the Sn content in the bronze matrix material. In addition to uses of this material in magnet fabrications a potential application of these improved J/sub c/(d) values may lie in the use of Nb 3 Sn in power transmission lines. Here, a high superconducting critical current density is necessary throughout the material to carry the increased current during fault conditions. The magnetic field dependence of J/sub c/ is a function of alloy content but the alloying changes studied here do not increase the high field critical current capability of Nb 3 Sn. (auth)

  14. Studies on the interactions of diglycine and triglycine with polyethylene glycol 400 in aqueous solutions by density and ultrasound speed measurements

    International Nuclear Information System (INIS)

    Sahin, Melike; Ayranci, Erol

    2013-01-01

    Highlights: ► Di- and tri-glycine in aqueous PEG400 solutions were investigated thermodynamically. ► Density and ultrasound speed of glycine oligomer-PEG400-water systems were measured. ► Apparent molar volumes and isentropic compressions were calculated. ► Apparent molar isobaric expansions were derived. ► Results were interpreted in terms of water–glycine oligomer-PEG400 interactions. -- Abstract: Density and ultrasound speed were measured accurately for diglycine + water, triglycine + water, diglycine + water-polyethylene glycol 400 (PEG400) and triglycine + water-PEG400 solutions at T = (293.15, 298.15, 303.15 and 308.15) K. The results were used in evaluating thermodynamic properties as apparent molar volumes (V Ø ) and apparent molar isentropic compressions (K SΦ ) of diglycine and triglycine in water and in PEG400 solutions. Infinite dilution values of these parameters, V o Ø , and K o SΦ , were obtained from their plots as a function of molality by extrapolation and have been utilized in obtaining transfer volumes and transfer compressions at infinite dilution. All transfer volumes and transfer compressions were found to increase with increasing molality of PEG400. Apparent molar isobaric expansions were derived from the temperature dependence of V Ø values at infinite dilution and at finite concentrations. All the results were interpreted in terms of solute (diglycine or triglycine) and co-solute (PEG400) and solvent (H 2 O) interactions

  15. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Aronu, Ugochukwu E.; Hartono, Ardi; Svendsen, Hallvard F.

    2012-01-01

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N 2 O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N 2 O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N 2 O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N 2 O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  16. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes.

    Science.gov (United States)

    Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J

    2016-10-01

    This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.

  17. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  18. Numerical simulation and analysis of confined turbulent buoyant jet with variable source

    KAUST Repository

    El-Amin, Mohamed

    2016-01-23

    In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.

  19. Numerical simulation and analysis of confined turbulent buoyant jet with variable source

    KAUST Repository

    El-Amin, Mohamed; Al-Ghamdi, Abdulmajeed; Salama, Amgad; Sun, Shuyu

    2016-01-01

    In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.

  20. Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride–glycerol or –ethylene glycol deep eutectic solvents and their aqueous solutions

    International Nuclear Information System (INIS)

    Siongco, Kathrina R.; Leron, Rhoda B.; Li, Meng-Hui

    2013-01-01

    Highlights: • The densities, refractive indices, and viscosities of aqueous DES solutions were measured. • DES are made from N,N-diethylethanol ammonium chloride + glycerol or ethylene glycol. • The temperature studied was (298.15 to 343.15) K. • The measured data were reported as functions of temperature and composition. • The measured data were represented satisfactorily by the applied correlations. -- Abstract: In this work, we report new experimental data on density, ρ, refractive index, n D, and viscosity, η, of two deep eutectic solvents, N,N-diethylethanol ammonium chloride–glycerol (DEACG) and N,N-diethylethanol ammonium chloride–ethylene glycol (DEACEG), and their aqueous solutions, over the complete composition range, at temperatures from (298.15 to 343.15) K. Densities and viscosities were measured using the vibrating tube and the falling ball techniques, respectively, while the refractive index at the sodium D line was measured using an automatic refractometer. We aimed to represent the measured properties as a function of temperature and composition, and correlated them using the Redlich–Kister-type equation, for density, a polynomial function, for refractive index, and the Vogel–Fulcher–Tammann (VFT) equation, for viscosity

  1. A straightforward method for measuring the range of apparent density of microplastics.

    Science.gov (United States)

    Li, Lingyun; Li, Mengmeng; Deng, Hua; Cai, Li; Cai, Huiwen; Yan, Beizhan; Hu, Jun; Shi, Huahong

    2018-10-15

    Density of microplastics has been regarded as the primary property that affect the distribution and bioavailability of microplastics in the water column. For measuring the density of microplastis, we developed a simple and rapid method based on density gradient solutions. In this study, we tested four solvents to make the density gradient solutions, i.e., ethanol (0.8 g/cm 3 ), ultrapure water (1.0 g/cm 3 ), saturated NaI (1.8 g/cm 3 ) and ZnCl 2 (1.8 g/cm 3 ). Density of microplastics was measured via observing the float or sink status in the density gradient solutions. We found that density gradient solutions made from ZnCl 2 had a larger uncertainty in measuring density than that from NaI, most likely due to a higher surface tension of ZnCl 2 solution. Solutions made from ethanol, ultrapure water, and NaI showed consistent density results with listed densities of commercial products, indicating that these density gradient solutions were suitable for measuring microplastics with a density range of 0.8-1.8 g/cm 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    International Nuclear Information System (INIS)

    Ray, Rupashree Shyama

    2009-01-01

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO_2"2"+, [UO_2OH]"+, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  3. Solute transport in a well under slow-purge and no-purge conditions

    Science.gov (United States)

    Plummer, M. A.; Britt, S. L.; Martin-Hayden, J. M.

    2010-12-01

    Non-purge sampling techniques, such as diffusion bags and in-situ sealed samplers, offer reliable and cost-effective groundwater monitoring methods that are a step closer to the goal of real-time monitoring without pumping or sample collection. Non-purge methods are, however, not yet completely accepted because questions remain about how solute concentrations in an unpurged well relate to concentrations in the adjacent formation. To answer questions about how undisturbed well water samples compare to formation concentrations, and to provide the information necessary to interpret results from non-purge monitoring systems, we have conducted a variety of physical experiments and numerical simulations of flow and transport in and through monitoring wells under low-flow and ambient flow conditions. Previous studies of flow and transport in wells used a Darcy’s law - based continuity equation for flow, which is often justified under the strong, forced-convection flow caused by pumping or large vertical hydraulic potential gradients. In our study, we focus on systems with weakly forced convection, where density-driven free convection may be of similar strength. We therefore solved Darcy’s law for porous media domains and the Navier Stokes equations for flow in the well, and coupled solution of the flow equations to that of solute transport. To illustrate expected in-well transport behavior under low-flow conditions, we present results of three particular studies: (1) time-dependent effluent concentrations from a well purged at low-flow pumping rates, (2) solute-driven density effects in a well under ambient horizontal flow and (3) temperature-driven mixing in a shallow well subject to seasonal temperature variations. Results of the first study illustrate that assumptions about the nature of in-well flow have a significant impact on effluent concentration curves even during pumping, with Poiseuille-type flow producing more rapid removal of concentration differences

  4. Solution behavior of metoclopramide in aqueous-alcoholic solutions at 30°C

    Science.gov (United States)

    Deosarkar, S. D.; Sawale, R. T.; Tawde, P. D.; Kalyankar, T. M.

    2016-07-01

    Densities (ρ) and refractive indices ( n D) of solutions of antiemetic drug metoclopramide (4-amino-5-chloro- N-(2-(diethylamino)ethyl)-2-methoxybenzamide hydrochloride hydrate) in methanolwater and ethanol-water mixtures of different compositions were measured at 30°C. Apparent molar volume (φv) of the drug was calculated from density data and partial molar volumes (φ v 0 ) were determined from Massons relation. Concentration dependence of nD has been studied to determine refractive indices of solution at infinite dilution ( n D 0 ). Results have been interpreted in terms of solute-solvent interactions.

  5. HGSYSTEM/UF6 model enhancements for plume rise and dispersion around buildings, lift-off of buoyant plumes, and robustness of numerical solver

    International Nuclear Information System (INIS)

    Hanna, S.R.; Chang, J.C.

    1997-01-01

    The HGSYSTEM/UF 6 model was developed for use in preparing Safety Analysis Reports (SARs) by estimating the consequences of possible accidental releases of UF 6 to the atmosphere at the gaseous diffusion plants (GDPs) located in Portsmouth, Ohio, and Paducah, Kentucky. Although the latter report carries a 1996 date, the work that is described was completed in late 1994. When that report was written, the primary release scenarios of interest were thought to be gas pipeline and liquid tank ruptures over open terrain away from the influence of buildings. However, upon further analysis of possible release scenarios, the developers of the SARs decided it was necessary to also consider accidental releases within buildings. Consequently, during the fall and winter of 1995-96, modules were added to HGSYSTEM/UF 6 to account for flow and dispersion around buildings. The original HGSYSTEM/UF 6 model also contained a preliminary method for accounting for the possible lift-off of ground-based buoyant plumes. An improved model and a new set of wind tunnel data for buoyant plumes trapped in building recirculation cavities have become available that appear to be useful for revising the lift-off algorithm and modifying it for use in recirculation cavities. This improved lift-off model has been incorporated in the updated modules for dispersion around buildings

  6. Increase in specific density of levobupivacaine and fentanyl solution ensures lower incidence of inadequate block.

    Science.gov (United States)

    Djeno, Ivana Tudorić; Duzel, Viktor; Ajduk, Marko; Oremus, Zrinka Safarić; Zupcić, Miroslav; Dusper, Silva; Jukić, Dubravko; Husedzinović, Ino

    2012-06-01

    The clinical presentation of a subarachnoid block (SAB) is dependent upon the intrathecal spread of local anesthetic (LA). Intrathecal distribution depends on the chemical and physical characteristics of LA, puncture site, technique used, patient anatomical characteristics and hydrodynamic properties of cerebrospinal fluid. We tried to determine whether a combined glucose/LA solution can render a clinically significant difference in sensory block distribution and motor block intensity.This was a controlled, randomized and double blinded study. The surgical procedures were stripping of the great or small saphenous vein and extirpation of remaining varicose veins. The study included 110 patients distributed into two groups: Hyperbaric (7.5 mg levobupivacaine (1.5 ml 0.5% Chirocaine) + 50 microg Fentanyl (0.5 ml Fentanil) and 1 ml 10% glucose (Pliva)) vs. Hypobaric (7.5 mg levobupivacaine (1.5 ml 0.5% Chirocaine) + 50 microg Fentanyl (0.5 ml Fentanil) and 1 ml 0.9% NaCl (Pliva, Zagreb)) adding to a total volume of 3.5 ml per solution. Spinal puncture was at L3-L4 level. Spinal block distribution was assessed in five minute intervals and intensity of motor block was assessed according to the modified Bromage scale. Pain was assessed with the Visual Analogue Scale. A statistically significant difference in sensory block distribution, motor block intensity and recovery time was established between hyperbaric and hypobaric solutions. By increasing the specific density of anesthetic solution, a higher sensory block, with lesser variability, a diminished influence of Body Mass Index, decreased motor block intensity and faster recovery time may be achieved.

  7. Numerical simulation of turbulent buoyant flows in horizontal channels

    International Nuclear Information System (INIS)

    Seiter, C.

    1995-09-01

    A numerical method is presented, to calculate the three-dimensional, time-dependent large scale structure of turbulent buoyant flows. The subject of the study is the Rayleigh-Benard-convection with air (Pr=0.71, Ra=2.5 10 6 , 10 7 ) and sodium (Pr=0.006, Ra=8.4 10 4 , 2.5 10 5 , 10 6 , 10 7 ) and a fluid layer with water and an internal heat source (Pr=7.0, Ra I =1.5 10 10 ) at moderate and high Rayleigh-numbers. The goal of the work is both, the analysis of structures of instantaneous as well as the statistical analysis of spatially and/or time averaged data, to give a contribution to the investigation of the characteristics of turbulent natural convection mainly in fluids with small Prandtl-numbers. The large eddy simulation of natural convection requires the development of appropriate momentum and heat subgrid scale models and the formulation of new boundary conditions. The used energy-length-models in the computer code TURBIT are extended methodically by modification of the characteristic length scales of the sub scale turbulence. The reduction or the increase of the sub scale turbulence correlations, caused by the influence of solid boundaries or the stratification, is considered. In the same way the new boundary conditions for the diffusive terms of the conservation equations are seen to be necessary, when the thermal or in the case of liquid metals the more critical hydrodynamic boundary layer is resolved insufficiently or not at all. The extended and new methods, models and boundary conditions, which enabled the realization of the planned simulations, are presented. (orig.)

  8. Scattering of lower-hybrid waves by drift-wave density fluctuations: solutions of the radiative transfer equation

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1983-01-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field

  9. Determination of semi-empirical relationship between the manganese and hydrogen atoms ratio, physical density and concentration in an aqueous solution of manganese sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Bittencourt, Guilherme, E-mail: bittencourt@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Souza Patrao, Karla Cristina de, E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Passos Leite, Sandro, E-mail: sandro@ird.gov.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Wagner Pereira, Walsan, E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Simoes da Fonseca, Evaldo, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    The Manganese sulphate solution has been used for neutron metrology through the method of Manganese Bath. This method uses physical parameters of manganese sulphate solution to obtain its corrections. This work established a functional relationship, using the gravimetric method, between those physical parameters: density, concentration and hydrogen to manganese ratio. Comparisons were done between manganese sulphate solution concentration from the Manganese Bath system of Laboratory of Metrology of Ionising Radiation and estimated values from the functional relationship obtained, showing percentage difference of less than 0.1%. This result demonstrates the usefulness in the correlation of the physical values of the solution to the MB.

  10. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites

    Science.gov (United States)

    Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.

    1990-01-01

    Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or siliconcarbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which considers process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.

  11. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    Science.gov (United States)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  12. Densities and apparent molar volumes for aqueous solutions of HNO3-UO2(NO3)2 at 298.15 K

    International Nuclear Information System (INIS)

    Yang-Xin Yu; Tie-Zhu Bao; Guang-Hua Gao; Yi-Gui Li

    1999-01-01

    In order to obtain the exact information of atomic number density in the ternary system of HNO 3 -UO 2 (NO 3 ) 2 -H 2 O, the densities were measured with an Anton-Paar DMA60/602 digital density meter thermostated at 298.15±0.01 K. The apparent molal volumes for the systems were calculated from the experimental data. The present measured apparent molar volumes have been fitted to the Pitzer ion-interaction model, which provides an adequate representation of the experimental data for mixed aqueous electrolyte solutions up to 6.2 mol/kg ionic strength. This fit yields θ V , and Ψ V , which are the first derivatives with respect to pressure of the mixing interaction parameters for the excess free energy. With the mixing parameters θ V , and ψ V , the densities and apparent molar volumes of the ternary system studied in this work can be calculated with good accuracy, as shown by the standard deviations. (author)

  13. Buoyant density of Mycobacterium tuberculosis: implications for sputum processing

    NARCIS (Netherlands)

    den Hertog, A. L.; Klatser, P. R.; Anthony, R. M.

    2009-01-01

    A tuberculosis (TB) research laboratory in the Netherlands. The concentration of Mycobacterium tuberculosis cells from sputum is almost universally performed by centrifugation after chemical liquefaction. These methods are thus dependent on the effective sedimentation of mycobacterial cells, and the

  14. Some factors affecting the use of lighter than air systems. [economic and performance estimates for dirigibles and semi-buoyant hybrid vehicles

    Science.gov (United States)

    Havill, C. D.

    1974-01-01

    The uses of lighter-than-air vehicles are examined in the present day transportation environment. Conventional dirigibles were found to indicate an undesirable economic risk due to their low speeds and to uncertainties concerning their operational use. Semi-buoyant hybrid vehicles are suggested as an alternative which does not have many of the inferior characteristics of conventional dirigibles. Economic and performance estimates for hybrid vehicles indicate that they are competitive with other transportation systems in many applications, and unique in their ability to perform some highly desirable emergency missions.

  15. Fitness function and nonunique solutions in x-ray reflectivity curve fitting: crosserror between surface roughness and mass density

    International Nuclear Information System (INIS)

    Tiilikainen, J; Bosund, V; Mattila, M; Hakkarainen, T; Sormunen, J; Lipsanen, H

    2007-01-01

    Nonunique solutions of the x-ray reflectivity (XRR) curve fitting problem were studied by modelling layer structures with neural networks and designing a fitness function to handle the nonidealities of measurements. Modelled atomic-layer-deposited aluminium oxide film structures were used in the simulations to calculate XRR curves based on Parratt's formalism. This approach reduced the dimensionality of the parameter space and allowed the use of fitness landscapes in the study of nonunique solutions. Fitness landscapes, where the height in a map represents the fitness value as a function of the process parameters, revealed tracks where the local fitness optima lie. The tracks were projected on the physical parameter space thus allowing the construction of the crosserror equation between weakly determined parameters, i.e. between the mass density and the surface roughness of a layer. The equation gives the minimum error for the other parameters which is a consequence of the nonuniqueness of the solution if noise is present. Furthermore, the existence of a possible unique solution in a certain parameter range was found to be dependent on the layer thickness and the signal-to-noise ratio

  16. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama

    2009-02-10

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  17. Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier–Stokes equations with vacuum

    Science.gov (United States)

    Lü, Boqiang; Shi, Xiaoding; Zhong, Xin

    2018-06-01

    We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.

  18. Reference interaction site model with hydrophobicity induced density inhomogeneity: An analytical theory to compute solvation properties of large hydrophobic solutes in the mixture of polyatomic solvent molecules

    International Nuclear Information System (INIS)

    Cao, Siqin; Sheong, Fu Kit; Huang, Xuhui

    2015-01-01

    Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achieve this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute

  19. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  20. An inkjet-printed buoyant 3-D lagrangian sensor for real-time flood monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-06-01

    A 3-D (cube-shaped) Lagrangian sensor, inkjet printed on a paper substrate, is presented for the first time. The sensor comprises a transmitter chip with a microcontroller completely embedded in the cube, along with a $1.5 \\\\lambda 0 dipole that is uniquely implemented on all the faces of the cube to achieve a near isotropic radiation pattern. The sensor has been designed to operate both in the air as well as water (half immersed) for real-time flood monitoring. The sensor weighs 1.8 gm and measures 13 mm$\\\\,\\\\times\\\\,$ 13 mm$\\\\,\\\\times\\\\,$ 13 mm, and each side of the cube corresponds to only $0.1 \\\\lambda 0 (at 2.4 GHz). The printed circuit board is also inkjet-printed on paper substrate to make the sensor light weight and buoyant. Issues related to the bending of inkjet-printed tracks and integration of the transmitter chip in the cube are discussed. The Lagrangian sensor is designed to operate in a wireless sensor network and field tests have confirmed that it can communicate up to a distance of 100 m while in the air and up to 50 m while half immersed in water. © 1963-2012 IEEE.

  1. One-Photon Absorption Properties from a Hybrid Polarizable Density Embedding/Complex Polarization Propagator Approach for Polarizable Solutions

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Nørby, Morten Steen; Coriani, Sonia

    2018-01-01

    We present a formulation of the polarizable density embedding (PDE) method in combination with the complex polarization propagator (CPP) method for the calculation of absorption spectra of molecules in solutions. The method is particularly useful for the calculation of near-edge X-ray absorption...... fine structure (NEXAFS) spectra. We compare the performance of PDE-CPP with the previously formulated polarizable embedding (PE)-CPP model for the calculation of the NEXAFS spectra of adenine, formamide, glycine, and adenosine triphosphate (ATP) in water at the carbon and nitrogen K-edges, as well...

  2. Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients

    International Nuclear Information System (INIS)

    Munro, D.H.

    1988-01-01

    The growth rate of perturbations on the shell of a laser fusion target can be estimated as √gk , where g is the shell acceleration and k is the transverse wave number of the perturbation. This formula overestimates the growth rate, and should be modified for the effects of density gradients and/or ablation of the unstable interface. The density-gradient effect is explored here analytically. With the use of variational calculus to explore all possible density profiles, the growth rate is shown to exceed √gk/(1+kL) , where L is a typical density-gradient scale length. Density profiles actually exhibiting this minimum growth rate are found

  3. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    Science.gov (United States)

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  4. Density-conserving affine continuous cellular automata solving the relaxed density classification problem

    International Nuclear Information System (INIS)

    Wolnik, Barbara; Dembowski, Marcin; Bołt, Witold; Baetens, Jan M; De Baets, Bernard

    2017-01-01

    The focus of this paper is on the density classification problem in the context of affine continuous cellular automata. Although such cellular automata cannot solve this problem in the classical sense, most density-conserving affine continuous cellular automata with a unit neighborhood radius are valid solutions of a slightly relaxed version of this problem. This result follows from a detailed study of the dynamics of the density-conserving affine continuous cellular automata that we introduce. (paper)

  5. Densities and apparent molar volumes of aqueous LiI solutions at temperatures from (296 to 600) K and at pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Azizov, N.D.

    2004-01-01

    Densities of five aqueous LiI solutions (0.0906, 0.2832, 0.6621, 1.6046, and 3.0886) mol . kg -1 H 2 O were measured in the liquid phase with a constant-volume piezometer immersed in a precision liquid thermostat. Measurements were made along various isotherms between (296.95 and 600.25) K. The range of pressure was (0.1 to 30) MPa. The total uncertainty of density, pressure, temperature, and concentration measurements was estimated to be less than 0.06%, 0.05%, 15 mK, and 0.014%, respectively. To check and confirm the accuracy of the measurements, (p,V m ,T,x) data were taken for pure water at selected temperatures and pressures. Experimental and calculated (IAPWS formulation) densities for pure water show excellent agreement within their experimental uncertainties (average absolute deviation is 0.02%). Values of saturated densities were determined by extrapolating experimental p - ρ data to the vapour pressure at fixed temperature and composition using a linear interpolating equation. Apparent molar volumes were derived using measured values of density for solutions and pure water. The apparent molar volumes were extrapolated to zero concentration (m → 0) to yield partial molar volumes of electrolyte (LiI) at infinite dilution. The temperature, pressure, and concentration dependence of apparent and partial molar volumes was studied. The measured values of density, apparent and partial molar volume were compared with data reported in the literature by other authors. A polynomial type of equation of state for specific volume was obtained as a function of temperature, pressure, and composition by a least-squares method using the experimental data. The average absolute deviation (AAD) between measured and calculated values from this polynomial equation for density was 0.065%

  6. Mixing of two solutions combined by gravity drainage.

    Science.gov (United States)

    Leuptow, R M; Smith, K; Mockros, L F

    1995-01-01

    A variety of medical therapies require the mixing of solutions from two separate bags before use. One scenario for the mixing is to drain the solution from one bag into the other by gravity through a short connecting tube. The degree of mixing in the lower bag depends on the relative densities of the two solutions, the geometry of the two bags and the connecting tube, and the placement of the connecting tube. Solutions with densities differing by as much as 12% were mixed by draining the solution from an upper bag into a lower bag for a particular geometric configuration. The two solutions had different electrical conductivities, and the conductivity of the combined solution as it exited from the lower bag was used as a measure of the effectiveness of mixing. When the more dense solution was drained from the upper bag into the less dense solution in a lower bag, mixing was very effective. The incoming jet of high density solution entrained the low density solution. Flow visualization indicated that the incoming jet penetrated to the bottom of the lower bag, and resulting large vortical structures enhanced mixing. When the less dense solution was drained from the upper bag into the more dense solution in the lower bag mixing was less effective. The buoyancy force reduced the momentum of the incoming jet such that it did not penetrate to the bottom of the lower bag, resulting in stratification of the solutions.

  7. A numerical study of variable density flow and mixing in porous media

    Science.gov (United States)

    Fan, Yin; Kahawita, René

    1994-10-01

    A numerical study of a negatively buoyant plume intruding into a neutrally stratified porous medium has been undertaken using finite different methods. Of particular interest has been to ascertain whether the experimentally observed gravitational instabilities that form along the lower edge of the plume are reproduced in the numerical model. The model has been found to faithfully reproduce the mean flow as well as the gravitational instabilities in the intruding plume. A linear stability analysis has confirmed the fact that the negatively buoyant plume is in fact gravitationally unstable and that the stability depends on two parameters: a concentration Rayleigh number and a characteristic length scale which is dependent on the transverse dispersivity.

  8. Nonsimilar Solution for Shock Waves in a Rotational Axisymmetric Perfect Gas with a Magnetic Field and Exponentially Varying Density

    Science.gov (United States)

    Nath, G.; Sinha, A. K.

    2017-01-01

    The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.

  9. Contact resistance problems applying ERT on low bulk density forested stony soils. Is there a solution?

    Science.gov (United States)

    Deraedt, Deborah; Touzé, Camille; Robert, Tanguy; Colinet, Gilles; Degré, Aurore; Garré, Sarah

    2015-04-01

    Electrical resistivity tomography (ERT) has often been put forward as a promising tool to quantify soil water and solute fluxes in a non-invasive way. In our experiment, we wanted to determine preferential flow processes along a forested hillslope using a saline tracer with ERT. The experiment was conducted in the Houille watershed, subcatchment of the Meuse located in the North of Belgian Ardennes (50° 1'52.6'N, 4° 53'22.5'E). The climate is continental but the soil under spruce (Picea abies (L.) Karst.) and Douglas fire stand (Pseudotsuga menziesii (Mirb.) Franco) remains quite dry (19% WVC in average) during the whole year. The soil is Cambisol and the parent rock is Devonian schist covered with variable thickness of silty loam soil. The soil density ranges from 1.13 to 1.87 g/cm3 on average. The stone content varies from 20 to 89% and the soil depth fluctuates between 70 and 130 cm. The ERT tests took place on June 1st 2012, April 1st, 2nd and 3rd 2014 and May 12th 2014. We used the Terrameter LS 12 channels (ABEM, Sweden) in 2012 test and the DAS-1 (Multi-Phase Technologies, United States) in 2014. Different electrode configurations and arrays were adopted for different dates (transect and grid arrays and Wenner - Schlumberger, Wenner alpha and dipole-dipole configurations). During all tests, we systematically faced technical problems, mainly related to bad electrode contact. The recorded data show values of contact resistance above 14873 Ω (our target value would be below 3000 Ω). Subsequently, we tried to improve the contact by predrilling the soil and pouring water in the electrode holes. The contact resistance improved to 14040 Ω as minimum. The same procedure with liquid mud was then tested to prevent quick percolation of the water from the electrode location. As a result, the lower contact resistance dropped to 11745 Ω. Finally, we applied about 25 litre of saline solution (CaCl2, 0.75g/L) homogeneously on the electrode grid. The minimum value of

  10. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  11. Spectrum of hydrodynamic volumes and sizes of macromolecules of linear polyelectrolytes versus their charge density in salt-free aqueous solutions.

    Science.gov (United States)

    Pavlov, Georges M; Dommes, Olga A; Okatova, Olga V; Gavrilova, Irina I; Panarin, Evgenii F

    2018-04-18

    Molecular characteristics of statistical copolymers based on hydrophilic poly(N-methyl-N-vinylacetamide) have been monitored throughout the entire possible range of charge density from 1.5 to 39 mol%. Different trends in the dependence of intrinsic viscosity on the average charge density of polymer chains at minimal ionic strength were revealed. A new parameter, lqq/Abare, describing this behavior was proposed (lqq is the average distance between the neighboring charges along the chain, and Abare is the statistical segment length of a non-charged homologue). For polyelectrolyte chains, this parameter allows the regions of charge density values where electrostatic long-range or short-range interactions dominate to be indicated. Two homologous series of copolymers were characterized by methods of molecular hydrodynamics under conditions of suppressed charge effects. Intrinsic viscosity in salt-free solutions characterizing an individual macromolecule was estimated by a method proposed earlier [Pavlov et al., Russ. J. Appl. Chem., 2006, 79, 1407-1412].

  12. The potential for buoyant displacement gas release events in Tank 241-SY-102 after waste transfer from Tank 241-SY-101

    International Nuclear Information System (INIS)

    Wells, BE; Meyer, P.E.; Chen, G.

    2000-01-01

    Tank 241-SY-101 (SY-101) is a double-shell, radioactive waste storage tank with waste that, before the recent transfer and water back-dilution operations, was capable of retaining gas and producing buoyant displacement (BD) gas release events (GREs). Some BD GREs caused gas concentrations in the tank headspace to exceed the lower flammability limit (LFL). A BD GRE occurs when a portion of the nonconvective layer retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of its stored gas. The installation of a mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has since prevented BD GREs. However, operation of the mixer pump over the years caused gas retention in the floating crust layer and a corresponding accelerated waste level growth. The accelerating crust growth trend observed in 1997--98 led to initiation of sequences of waste removal and water back-dilutions in December 1999. Waste is removed from the mixed slurry layer in Tank SY-101 and transferred into Tank 241-Sy-102 (SY-102). Water is then added back to dissolve soluble solids that retain gas. The initial transfer of 89,500 gallons of SY-101 waste, diluted in-line at 0.94:1 by volume with water, to SY-102 was conducted in December 1999. The second transfer of 230,000 gallons of original SY-101 waste, diluted approximately 0.9:1, was completed in January 2000, and the third transfer of 205,500 gallons of original SY-101 waste diluted at 0.9:1 was completed in March 2000

  13. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    Directory of Open Access Journals (Sweden)

    Richard S Brown

    Full Text Available Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to

  14. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    Science.gov (United States)

    Brown, Richard S; Deng, Z Daniel; Cook, Katrina V; Pflugrath, Brett D; Li, Xinya; Fu, Tao; Martinez, Jayson J; Li, Huidong; Trumbo, Bradly A; Ahmann, Martin L; Seaburg, Adam G

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this.

  15. Density-density functionals and effective potentials in many-body electronic structure calculations

    International Nuclear Information System (INIS)

    Reboredo, Fernando A.; Kent, Paul R.

    2008-01-01

    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.

  16. Dispersal of volcaniclasts during deep-sea eruptions: Settling velocities and entrainment in buoyant seawater plumes

    Science.gov (United States)

    Barreyre, Thibaut; Soule, S. Adam; Sohn, Robert A.

    2011-08-01

    We use tank experiments to measure settling rates of deep-sea volcaniclastic material recovered from the Arctic (85°E Gakkel Ridge) and Pacific (Juan de Fuca Ridge, Loihi seamount) Oceans. We find that clast size and shape exert a strong influence on settling velocity, with velocities of ~ 30 cm/s for large (~ 8 mm), blocky clasts, compared to velocities of ~ 2.5 cm/s for small (Pele) entrained in a megaplume could be advected as far as a few kilometers from a source region. These results indicate that entrainment in buoyant seawater plumes during an eruption may play an important role in clast dispersal, but it is not clear if this mechanism can explain the distribution of volcaniclastic material at the sites on the Gakkel and Juan de Fuca Ridges where our samples were acquired. In order to understand the dispersal of volcaniclastic material in the deep-sea it will be necessary to rigorously characterize existing deposits, and develop models capable of incorporating explosive gas phases into the eruption plume.

  17. A totally automatic density meter for radioactive solutions

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1987-02-01

    A totally automatic density meter for measuring the density of radioactive liquid (plutonium nitrate) samples was developed and built for use at the Savannah River Plant. The measurement cell (vibrating U-tube) and other wetted parts are glovebox-contained and are remoted from the electronics and control instrumentation. The only operator actions required are insertion of a sample vial into the system, starting the analysis, and removing the vial about 90 seconds later. The sample measurement takes about 3 to 4 minutes and uses 10 mL of sample; another 5 to 6 minutes is required for a water/air measurement-control check, which leaves the system ready for the next sample. No water bath is needed because a computer algorithm is applied to the measurement to correct it to a standard reference temperature. The system is normally operated under computer control, but a programmable logic controller is available for backup. The system may also be operated manually by means of a switchpanel. 5 refs., 3 figs

  18. Simulation of plume rise: Study the effect of stably stratified turbulence layer on the rise of a buoyant plume from a continuous source by observing the plume centroid

    Science.gov (United States)

    Bhimireddy, Sudheer Reddy; Bhaganagar, Kiran

    2016-11-01

    Buoyant plumes are common in atmosphere when there exists a difference in temperature or density between the source and its ambience. In a stratified environment, plume rise happens until the buoyancy variation exists between the plume and ambience. In a calm no wind ambience, this plume rise is purely vertical and the entrainment happens because of the relative motion of the plume with ambience and also ambient turbulence. In this study, a plume centroid is defined as the plume mass center and is calculated from the kinematic equation which relates the rate of change of centroids position to the plume rise velocity. Parameters needed to describe the plume are considered as the plume radius, plumes vertical velocity and local buoyancy of the plume. The plume rise velocity is calculated by the mass, momentum and heat conservation equations in their differential form. Our study focuses on the entrainment velocity, as it depicts the extent of plume growth. This entrainment velocity is made up as sum of fractions of plume's relative velocity and ambient turbulence. From the results, we studied the effect of turbulence on the plume growth by observing the variation in the plume radius at different heights and the centroid height reached before loosing its buoyancy.

  19. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    Science.gov (United States)

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  20. Comparative studies on mitochondria isolated from neuron-enriched and glia-enriched fractions of rabbit and beef brain.

    Science.gov (United States)

    Hamberger, A; Blomstrand, C; Lehninger, A L

    1970-05-01

    Fractions enriched in neuronal and glial cells were obtained from dispersions of whole beef brain and rabbit cerebral cortex by large-scale density gradient centrifugation procedures. The fractions were characterized by appropriate microscopic observation. Mitochondria were then isolated from these fractions by differential centrifugation of their homogenates. The two different types of mitochondria were characterized with respect to certain enzyme activities, respiratory rate, rate of protein synthesis, and their buoyant density in sucrose gradients. The mitochondria from the neuron-enriched fraction were distinguished by a higher rate of incorporation of amino acids into protein, higher cytochrome oxidase activity, and a higher buoyant density in sucrose density gradients. Mitochondria from the glia-enriched fraction showed relatively high monoamine oxidase and Na(+)- and K(+)-stimulated ATPase activities. The rates of oxidation of various substrates and the acceptor control ratios did not differ appreciably between the two types of mitochondria. The difference in the buoyant density of mitochondria isolated from the neuron-enriched and glia-enriched cell fractions was utilized in attempts to separate neuronal and glial mitochondria from the mixed mitochondria obtained from whole brain homogenates in shallow sucrose gradients. The appearance of two peaks of cytochrome oxidase, monoamine oxidase, and protein concentration in such gradients shows the potential feasibility of such an approach.

  1. A mean-density model of ionic surfactants for the dispersion of carbon nanotubes in aqueous solutions

    Science.gov (United States)

    Joung, Young Soo

    2018-05-01

    We propose a new analytical model of ionic surfactants used for the dispersion of carbon nanotubes (CNTs) in aqueous solutions. Although ionic surfactants are commonly used to facilitate the dispersion of CNTs in aqueous solutions, understanding the dispersion process is challenging and time-consuming owing to its complexity and nonlinearity. In this work, we develop a mean-density model of ionic surfactants to simplify the calculation of interaction forces between CNTs stabilized by ionic surfactants. Using this model, we can evaluate various interaction forces between the CNTs and ionic surfactants under different conditions. The dispersion mechanism is investigated by estimating the potential of mean force (PMF) as a function of van der Waals forces, electrostatic forces, interfacial tension, and osmotic pressure. To verify the proposed model, we compare the PMFs derived using our method with those derived from molecular dynamics simulations using comparable CNTs and ionic surfactants. Notably, for stable dispersions, the osmotic pressure and interfacial energy are important for long-range and short-range interactions, respectively, in comparison with the effect of electrostatic forces. Our model effectively prescribes specific surfactants and their concentrations to achieve stable aqueous suspensions of CNTs.

  2. Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface.

    Science.gov (United States)

    Song, Jinsuk; Kim, Mahn Won

    2010-03-11

    Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.

  3. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF BUOYANT BUBBLES IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    O'Neill, S. M.; De Young, D. S.; Jones, T. W.

    2009-01-01

    We report results of three-dimensional magnetohydrodynamic simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three-dimensional extensions of two-dimensional calculations reported by Jones and De Young. Initially, spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into 'smoke rings', if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with β = P gas /P mag ∼ 3 can influence the dynamics of the bubbles, provided the fields are not tangled on scales comparable to or smaller than the size of the bubbles. Quasi-uniform, horizontal fields with initial β ∼ 10 2 bifurcated our bubbles before they rose more than about a scale height of the ICM, and substantially weaker fields produced clear distortions. These behaviors resulted from stretching and amplification of ICM fields trapped in irregularities along the top surface of the young bubbles. On the other hand, tangled magnetic fields with similar, modest strengths are generally less easily amplified by the bubble motions and are thus less influential in bubble evolution. Inclusion of a comparably strong, tangled magnetic field inside the initial bubbles had little effect on our bubble evolution, since those fields were quickly diminished through expansion of the bubble and reconnection of the initial field.

  4. On the Application of the Fourier Series Solution to the Hydromagnetic Buoyant Two-Dimensional Laminar Vertical Jet

    Directory of Open Access Journals (Sweden)

    Marco Rosales-Vera

    2012-01-01

    Full Text Available The problem of a hydromagnetic hot two-dimensional laminar jet issuing vertically into an otherwise quiescent fluid of a lower temperature is studied. We propose solutions to the boundary layer equations using the classical Fourier series. The method is essentiall to transform the boundary layer equations to a coupled set of nonlinear first-order ordinary differential equations through the Fourier series. The accuracy of the results has been tested by the comparison of the velocity distributions obtained by the Fourier series with those calculated by finite difference method. The results show that the present method, based on the Fourier series, is an efficient method, suitable to solve boundary layer equations applied to plane jet flows with high accuracy.

  5. A rapid method for measuring maximum density temperatures in water and aqueous solutions for the study of quantum zero point energy effects in these liquids

    International Nuclear Information System (INIS)

    Deeney, F A; O'Leary, J P

    2008-01-01

    The connection between quantum zero point fluctuations and a density maximum in water and in liquid He 4 has recently been established. Here we present a description of a simple and rapid method of determining the temperatures at which maximum densities in water and aqueous solutions occur. The technique is such as to allow experiments to be carried out in one session of an undergraduate laboratory thereby introducing students to the concept of quantum zero point energy

  6. Demonstration of de novo synthesis of enzymes by density labelling with stable isotopes

    International Nuclear Information System (INIS)

    Huebner, G.; Hirschberg, K.

    1977-01-01

    The technique of in vivo density labelling of proteins with H 2 18 O and 2 H 2 O has been used to investigate hormonal regulation and developmental expression of enzymes in plant cells. Buoyant density data obtained from isopycnic equilibrium centrifugation demonstrated that the cytokinine-induced nitrate reductase activity and the gibberellic acid-induced phosphatase activity in isolated embryos of Agrostemma githago are activities of enzymes synthesized de novo. The increase in alanine-specific aminopeptidase in germinating A. githago seeds is not due to de novo synthesis but to the release of preformed enzyme. On the basis of this result it is possible to apply the enzyme aminopeptidase as an internal density standard in equilibrium centrifugation. Density labelling experiments on proteins in pea cotyledons have been used to study the change in the activity of acid phosphatase, alanine-specific aminopeptidase, and peroxidase during germination. The activities of these enzymes increase in cotyledons of Pisum sativum. Density labelling by 18 O and 2 H demonstrates de novo synthesis of these three enzymes. The differential time course of enzyme induction shows the advantage of using H 2 18 O as labelling substance in cases when the enzyme was synthesized immediately at the beginning of germination. At this stage of development the amino-acid pool available for synthesis is formed principally by means of hydrolysis of storage proteins. The incorporation of 2 H into the new proteins takes place in a measurable amount at a stage of growth in which the amino acids are also synthesized de novo. The enzyme acid phosphatase of pea cotyledons was chosen to demonstrate the possibility of using the density labelling technique to detect protein turnover. (author)

  7. Towards the description of the phase behavior of electrolyte solutions in slit-like pores. Density functional approach for the restricted primitive model

    Directory of Open Access Journals (Sweden)

    O.Pizio

    2004-01-01

    Full Text Available We develop a density functional approach for the phase behavior of the restricted primitive model for electrolyte solutions confined to slit-like pores. The theory permits to evaluate the effects of confinement on the ionic vapor - ionic liquid coexistence envelope. We have shown that due to confinement in pores with uncharged walls the critical temperature of the model decreases compared to the bulk. Also the coexistence envelope of the transition is narrower in comparison to the bulk model. The transition between dense and dilute phase represents capillary evaporation. We have analyzed changes of the density profiles of ions during transition. Possible extensions of this study are discussed.

  8. General Exact Solution to the Problem of the Probability Density for Sums of Random Variables

    Science.gov (United States)

    Tribelsky, Michael I.

    2002-07-01

    The exact explicit expression for the probability density pN(x) for a sum of N random, arbitrary correlated summands is obtained. The expression is valid for any number N and any distribution of the random summands. Most attention is paid to application of the developed approach to the case of independent and identically distributed summands. The obtained results reproduce all known exact solutions valid for the, so called, stable distributions of the summands. It is also shown that if the distribution is not stable, the profile of pN(x) may be divided into three parts, namely a core (small x), a tail (large x), and a crossover from the core to the tail (moderate x). The quantitative description of all three parts as well as that for the entire profile is obtained. A number of particular examples are considered in detail.

  9. Charged Analogues of Henning Knutsen Type Solutions in General Relativity

    Science.gov (United States)

    Gupta, Y. K.; Kumar, Sachin; Pratibha

    2011-11-01

    In the present article, we have found charged analogues of Henning Knutsen's interior solutions which join smoothly to the Reissner-Nordstrom metric at the pressure free interface. The solutions are singularity free and analyzed numerically with respect to pressure, energy-density and charge-density in details. The solutions so obtained also present the generalization of A.L. Mehra's solutions.

  10. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic

  11. The role of adequate reference materials in density measurements in hemodialysis

    Science.gov (United States)

    Furtado, A.; Moutinho, J.; Moura, S.; Oliveira, F.; Filipe, E.

    2015-02-01

    In hemodialysis, oscillation-type density meters are used to measure the density of the acid component of the dialysate solutions used in the treatment of kidney patients. An incorrect density determination of this solution used in hemodialysis treatments can cause several and adverse events to patients. Therefore, despite the Fresenius Medical Care (FME) tight control of the density meters calibration results, this study shows the benefits of mimic the matrix usually measured to produce suitable reference materials for the density meter calibrations.

  12. The role of adequate reference materials in density measurements in hemodialysis

    International Nuclear Information System (INIS)

    Furtado, A; Moura, S; Filipe, E; Moutinho, J; Oliveira, F

    2015-01-01

    In hemodialysis, oscillation-type density meters are used to measure the density of the acid component of the dialysate solutions used in the treatment of kidney patients. An incorrect density determination of this solution used in hemodialysis treatments can cause several and adverse events to patients. Therefore, despite the Fresenius Medical Care (FME) tight control of the density meters calibration results, this study shows the benefits of mimic the matrix usually measured to produce suitable reference materials for the density meter calibrations

  13. Experimental Studies for the characterization of the mixing processes in negative buoyant jets

    Directory of Open Access Journals (Sweden)

    Querzoli G.

    2013-04-01

    Full Text Available A negatively buoyant jet (NBJ corresponds to the physical phenomenon that develops when a fluid is discharged upwards into a lighter environment or downwards into a heavier receptor fluid. In a NBJ the flow is initially driven mostly by the momentum, so it basically behaves as a simple jet released withthe same angle, while far from the outlet the buoyancy prevails, bending the jet axis down and making it similar to a plume. The coexistence in the same phenomenon of both the characteristics of simple jets and plumes makes the NBJs a phenomenon still not entirely explained but, considering also the numerous practical applications, very interesting to study. Here some of the experimental results are presented. The laboratory experiment were obtained on a model simulating a typical sea discharge of brine from desalination plants: a pipe laid down on the sea bottom, with orifices on its lateral wall, releasing brine (heavier than the sea water with a certain angle to the horizontal, in order to increase the jet path before sinking to the seafloor. A non-intrusive image analysis technique, namely Feature Tracking Velocimetry, is applied to measure velocity fields, with the aim at understanding the influence of some non-dimensional parameters driving the phenomenon (e.g. Reynolds number, release angle on the structure of the NBJ and of the turbulence.

  14. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    and excited states of the solute with the compressibility and solvent structure is found to have .... The organization of the rest of the paper is as follows. ...... For the ground state term, as C2 is nearly flat at qσ = q0 = 2π, we can safely ignore.

  15. Problem-Based Test: Replication of Mitochondrial DNA during the Cell Cycle

    Science.gov (United States)

    Setalo, Gyorgy, Jr.

    2013-01-01

    Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids,…

  16. Collinear and TMD quark and gluon densities from parton branching solution of QCD evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, F. [Rutherford Appleton Laboratory, Chilton (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica; Jung, H.; Lelek, A.; Zlebcik, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Radescu, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-08-15

    We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.

  17. Mystery Well: Chemical-Engineering Solution to the Internal Rain Problem.

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek

    2017-01-01

    Roč. 174, DEC 31 (2017), s. 396-402 ISSN 0009-2509 Institutional support: RVO:67985858 Keywords : precipitation * humidity-driven convection * buoyant instability Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.895, year: 2016

  18. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying

    2012-10-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  19. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth

    2015-01-01

    We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...

  20. New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

    Science.gov (United States)

    Venturi, D.; Karniadakis, G. E.

    2012-08-01

    By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.

  1. On radiative density limits in stellarators

    International Nuclear Information System (INIS)

    Wobig, H.

    2001-01-01

    Density limits in stellarators are caused mainly by enhanced impurity radiation leading to a collapse of the temperature. A simple model can be established, which computes the temperature in the plasma with a fixed heating profile and a temperature-dependent radiation profile. If the temperature-dependent radiation function has one or several extrema, multiple solutions of the transport equation exist and radiative collapse occurs when the high temperature branch merges with the unstable temperature branch. At this bifurcation point the temperature decreases to a stable low temperature solution. The bifurcation point is a function of the heating power and the plasma density. Thus a density limit can be defined as the point where bifurcation occurs. It is shown that bifurcation and sudden temperature collapse does not occur below a power threshold. Anomalous thermal conductivity and the details of the impurity radiation, which in the present model is assumed to be in corona equilibrium, determine the scaling of the density limit. A model of the anomalous transport is developed, which leads to Gyro-Bohm scaling of the confinement time. The density limit based on this transport model is close to experimental findings in Wendelstein 7-AS. (author)

  2. Rayleigh-Taylor stability for a shock wave-density discontinuity interaction

    International Nuclear Information System (INIS)

    Fraley, G.S.

    1981-01-01

    Shells in inertial fusion targets are typically accelerated and decelerated by two or three shocks followed by continuous acceleration. The analytic solution for perturbation growth of a shock wave striking a density discontinuity in an inviscid fluid is investigated. The Laplace transform of the solution results in a functional equation, which has a simple solution for weak shock waves. The solution for strong shock waves may be given by a power series. It is assumed that the equation of state is given by a gamma law. The four independent parameters of the solution are the gamma values on each side of the material interface, the density ratio at the interface, and the shock strength. The asymptotic behavior (for large distances and times) of the perturbation velocity is given. For strong shocks the decay of the perturbation away from the interface is much weaker than the exponential decay of an incompressible fluid. The asymptotic value is given by a constant term and a number of slowly decaying discreet frequencies. The number of frequencies is roughly proportional to the logarithm of the density discontinuity divided by that of the shock strength. The asymptotic velocity at the interface is tabulated for representative values of the independent parameters. For weak shocks the solution is compared with results for an incompressible fluid. The range of density ratios with possible zero asymptotic velocities is given

  3. Attenuation Measurements in Solutions of Some Carbohydrates

    International Nuclear Information System (INIS)

    Gagandeep; Singh, Kulwant; Lark, B.S.; Sahota, H.S.

    2000-01-01

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 .H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1173, and 1332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form

  4. Influence of aliphatic amides on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Torres, Andrés Felipe; Romero, Carmen M.

    2017-01-01

    Highlights: • The addition of amides decreases the temperature of maximum density of water suggesting a disruptive effect on water structure. • The amides in aqueous solution do not follow the Despretz equation in the concentration range considered. • The temperature shift Δθ as a function of molality is represented by a second order equation. • The Despretz constants were determined considering the dilute concentration region for each amide solution. • Solute disrupting effect of amides becomes smaller as its hydrophobic character increases. - Abstract: The influence of dissolved substances on the temperature of the maximum density of water has been studied in relation to their effect on water structure as they can change the equilibrium between structured and unstructured species of water. However, most work has been performed using salts and the studies with small organic solutes such as amides are scarce. In this work, the effect of acetamide, propionamide and butyramide on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65–278.65) K at intervals of 0.50 K in the concentration range between (0.10000 and 0.80000) mol·kg −1 . The temperature of maximum density was determined from the experimental results. The effect of the three amides is to decrease the temperature of maximum density of water and the change does not follow the Despretz equation. The results are discussed in terms of solute-water interactions and the disrupting effect of amides on water structure.

  5. Exact solutions for helical magnetohydrodynamic equilibria. II. Nonstatic and nonbarotropic solutions

    International Nuclear Information System (INIS)

    Villata, M.; Ferrari, A.

    1994-01-01

    In the framework of the analytical study of magnetohydrodynamic (MHD) equilibria with flow and nonuniform density, a general family of well-behaved exact solutions of the generalized Grad--Shafranov equation and of the whole set of time-independent MHD equations completed by the nonbarotropic ideal gas equation of state is obtained, both in helical and axial symmetry. The helical equilibrium solutions are suggested to be relevant to describe the helical morphology of some astrophysical jets

  6. Projected evolution superoperators and the density operator

    International Nuclear Information System (INIS)

    Turner, R.E.; Dahler, J.S.; Snider, R.F.

    1982-01-01

    The projection operator method of Zwanzig and Feshbach is used to construct the time dependent density operator associated with a binary scattering event. The formula developed to describe this time dependence involves time-ordered cosine and sine projected evolution (memory) superoperators. Both Schroedinger and interaction picture results are presented. The former is used to demonstrate the equivalence of the time dependent solution of the von Neumann equation and the more familiar frequency dependent Laplace transform solution. For two particular classes of projection superoperators projected density operators are shown to be equivalent to projected wave functions. Except for these two special cases, no projected wave function analogs of projected density operators exist. Along with the decoupled-motions approximation, projected interaction picture density operators are applied to inelastic scattering events. Simple illustrations are provided of how this formalism is related to previously established results for two-state processes, namely, the theory of resonant transfer events, the first order Magnus approximation, and the Landau-Zener theory

  7. (Nbx, Zr1-x)4AlC3 MAX Phase Solid Solutions: Processing, Mechanical Properties, and Density Functional Theory Calculations.

    Science.gov (United States)

    Lapauw, Thomas; Tytko, Darius; Vanmeensel, Kim; Huang, Shuigen; Choi, Pyuck-Pa; Raabe, Dierk; Caspi, El'ad N; Ozeri, Offir; To Baben, Moritz; Schneider, Jochen M; Lambrinou, Konstantina; Vleugels, Jozef

    2016-06-06

    The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.

  8. Electrocnecical behaviour of zirconium during its anodic polarization in nitrate solutions

    International Nuclear Information System (INIS)

    Stabrovskij, A.I.; Karasev, A.F.

    1983-01-01

    Electrochemical behaviour of zirconium during its anodic polarization in nitrate solutions is investigated in detail to find the method of its complete dissolution. A study has been made of the influence of varioUs factors: current density electric potential, composition and temperature of the solution, anodic polarization duration on the Zr anodic polarization in nitric acid, on the maximum permissible current density and on the zirconium yield to the solution. The zirconium polarization decreases with an acid concentration and temperature increase and increases with the current density. Iron nitrate additions to nitric acid decrease, while ammonium fluoride additions increase zirconium yield into the solution

  9. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    Science.gov (United States)

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  10. Preliminary Development of Conductivity based Test Method for Industrial Radiography Film Developer Solution

    International Nuclear Information System (INIS)

    Zainuddin, N.S.; Manah, N.S.A.; Khairul Anuar Mohd Salleh; Noorhazleena Azaman

    2015-01-01

    The strength of industrial radiography film developer solution is one of the most important aspects in radiography film processing. The developer solution reacts with the exposed film to visualize the latent image through chemical-film reaction. As the developer is repeatedly used, the strength decreases until a point where it cannot yield the required film optical density value. This work attempts to investigate the developer solution strength through its conductivity. Obtained data are cross correlated to the required industrial radiography optical density range. Through the experiment, the conductivity of the developer solution decreased as the number of the film processed increase. Thus, the desired optical density of the film cannot be achieved. The conductivity of developer is measured and recorded at interval of six films developed. The optical density of every film is recorded to analyze the change in optical density as the conductivity decreases. Through the procedure, it is suggested that as the conductivity decreases, the optical density of film decreased. Ultimately, the strength level of the developer solution can be determined. (author)

  11. Attenuation measurements in solutions of some carbohydrates

    International Nuclear Information System (INIS)

    Gagandeep; Singh, K.; Lark, B.S.; Sahota, H.S.

    2000-01-01

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 ·H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1,173, and 1,332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form

  12. Modeling Highly Buoyant Flows in the Castel Giorgio: Torre Alfina Deep Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Giorgio Volpi

    2018-01-01

    Full Text Available The Castel Giorgio-Torre Alfina (CG-TA, central Italy is a geothermal reservoir whose fluids are hosted in a carbonate formation at temperatures ranging between 120°C and 210°C. Data from deep wells suggest the existence of convective flow. We present the 3D numerical model of the CG-TA to simulate the undisturbed natural geothermal field and investigate the impacts of the exploitation process. The open source finite-element code OpenGeoSys is applied to solve the coupled systems of partial differential equations. The commercial software FEFLOW® is also used as additional numerical constraint. Calculated pressure and temperature have been calibrated against data from geothermal wells. The flow field displays multicellular convective patterns that cover the entire geothermal reservoir. The resulting thermal plumes protrude vertically over 3 km at Darcy velocity of about 7⁎10-8 m/s. The analysis of the exploitation process demonstrated the sustainability of a geothermal doublet for the development of a 5 MW pilot plant. The buoyant circulation within the geothermal system allows the reservoir to sustain a 50-year production at a flow rate of 1050 t/h. The distance of 2 km, between the production and reinjection wells, is sufficient to prevent any thermal breakthrough within the estimated operational lifetime. OGS and FELFOW results are qualitatively very similar with differences in peak velocities and temperatures. The case study provides valuable guidelines for future exploitation of the CG-TA deep geothermal reservoir.

  13. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.

    Science.gov (United States)

    Kobayashi, Hirokazu; Kusada, Kohei; Kitagawa, Hiroshi

    2015-06-16

    Currently 118 known elements are represented in the periodic table. Of these 118 elements, only about 80 elements are stable, nonradioactive, and widely available for our society. From the viewpoint of the "elements strategy", we need to make full use of the 80 elements to bring out their latent ability and create innovative materials. Furthermore, there is a strong demand that the use of rare or toxic elements be reduced or replaced while their important properties are retained. Advanced science and technology could create higher-performance materials even while replacing or reducing minor or harmful elements through the combination of more abundant elements. The properties of elements are correlated directly with their electronic states. In a solid, the magnitude of the density of states (DOS) at the Fermi level affects the physical and chemical properties. In the present age, more attention has been paid to improving the properties of materials by means of alloying elements. In particular, the solid-solution-type alloy is advantageous because the properties can be continuously controlled by tuning the compositions and/or combinations of the constituent elements. However, the majority of bulk alloys are of the phase-separated type under ambient conditions, where constituent elements are immiscible with each other. To overcome the challenge of the bulk-phase metallurgical aspects, we have focused on the nanosize effect and developed methods involving "nonequilibrium synthesis" or "a process of hydrogen absorption/desorption". We propose a new concept of "density-of-states engineering" for the design of materials having the most desirable and suitable properties by means of "interelement fusion". In this Account, we describe novel solid-solution alloys of Pd-Pt, Ag-Rh, and Pd-Ru systems in which the constituent elements are immiscible in the bulk state. The homogeneous solid-solution alloys of Pd and Pt were created from Pd core/Pt shell nanoparticles using a

  14. Piezoelectric Energy Harvesting Solutions

    Science.gov (United States)

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  15. Density Changes in the Optimized CSSX Solvent System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.

    2002-11-25

    Density increases in caustic-side solvent extraction (CSSX) solvent have been observed in separate experimental programs performed by different groups of researchers. Such changes indicate a change in chemical composition. Increased density adversely affects separation of solvent from denser aqueous solutions present in the CSSX process. Identification and control of factors affecting solvent density are essential for design and operation of the centrifugal contactors. The goals of this research were to identify the factors affecting solvent density (composition) and to develop correlations between easily measured solvent properties (density and viscosity) and the chemical composition of the solvent, which will permit real-time determination and adjustment of the solvent composition. In evaporation experiments, virgin solvent was subjected to evaporation under quiescent conditions at 25, 35, and 45 C with continuously flowing dry air passing over the surface of the solvent. Density and viscosity were measured periodically, and chemical analysis was performed on the solvent samples. Chemical interaction tests were completed to determine if any chemical reaction takes place over extended contact time that changes the composition and/or physical properties. Solvent and simulant, solvent and strip solution, and solvent and wash solution were contacted continuously in agitated flasks. They were periodically sampled and the density measured (viscosity was also measured on some samples) and then submitted to the Chemical Sciences Division of Oak Ridge National Laboratory for analysis by nuclear magnetic resonance (NMR) spectrometry and high-performance liquid chromatography (HPLC) using the virgin solvent as the baseline. Chemical interaction tests showed that solvent densities and viscosities did not change appreciably during contact with simulant, strip, or wash solution. No effects on density and viscosity and no chemical changes in the solvent were noted within

  16. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  17. BPS Lorentz-violating vortex solutions

    International Nuclear Information System (INIS)

    Casana, Rodolfo; Ferreira Junior, Manoel M.; Hora, E. da

    2011-01-01

    In this work, we deal with the construction of static Bogomol'nyi-Prasad-Sommerfield (BPS) rotationally symmetric configurations on the dimensional CPT-even Lorentz-breaking photonic sector of the Standard Model Extension (SME). The main objective of this presentation is to show the possibility of obtaining such BPS solutions, even in the presence of a Lorentz-violating background. A secondary objective is to analyze the effects of this background on such topologically non-trivial BPS configurations. In order to obtain these results, we deal with some specific components of Lorentz-violating field, handling with the static Euler-Lagrange equation of motion to gauge field, from which we fix temporal gauge (absence of electric field) as a proper gauge choice. Also, considering this equation, we consistently determine an interesting configuration (discarding non-interesting ones) to the Lorentz-breaking sector. Using this configuration and the standard rotationally symmetric vortex Ansatz (which describes the behaviors of Higgs and gauge fields via two profile functions, g(r) and a(r), respectively), we construct a rotationally symmetric expression to the energy density of the system. To obtain BPS solutions, we rewrite this expression in order to have static vortex solutions satisfying a set of first order differential equations (BPS ones). The existence of such solutions is strongly constrained by a relation between some parameters of the model, including the Lorentz-breaking one. Naturally, we show that the total energy of these BPS solutions is proportional to their magnetic flux, which is quantized according to their winding number. Using suitable boundary conditions (near the origin and asymptotically), we numerically integrate the BPS equations (by means of the shooting method). By this way, we obtain solutions for some physical quantities (Higgs field, magnetic field and energy density) for several values of the Lorentz-violating parameters. From these

  18. Synthesizing chaotic maps with prescribed invariant densities

    International Nuclear Information System (INIS)

    Rogers, Alan; Shorten, Robert; Heffernan, Daniel M.

    2004-01-01

    The Inverse Frobenius-Perron Problem (IFPP) concerns the creation of discrete chaotic mappings with arbitrary invariant densities. In this Letter, we present a new and elegant solution to the IFPP, based on positive matrix theory. Our method allows chaotic maps with arbitrary piecewise-constant invariant densities, and with arbitrary mixing properties, to be synthesized

  19. Fluid Density and Impact Cavity Formation

    Directory of Open Access Journals (Sweden)

    Ga-Chun Lin

    2018-01-01

    Full Text Available Characteristics of the impact cavity formed when a steel ball is dropped into aqueous solutions of densities ranging from 0.98 g·cm-3 to 1.63 g·cm-3 were investigated. A high-speed camera was used to record the formation and collapse of the cavity. The results showed cavity diameter, volume, and pinch-off time are independent of fluid density, on average. There was an unexplained reduction in cavity formation for densities of 1.34 g·cm-3 and 1.45 g·cm-3.

  20. Post-irradiation thymocyte regeneration after bone marrow transplantation

    International Nuclear Information System (INIS)

    Boersma, W.J.A.

    1981-01-01

    Bone marrow cells were separated according to buoyant density, velocity sedimentation and cell surface charge. Fractionated (C3H x AKR)F 1 bone marrow cells were transplanted into lethally-irradiated C3H recipients. In all fractions, the CFUs content and the capacity to restore the thymus cell population were determined. For all the physical parameters tested, thymocyte progenitor cells show the same distribution as CFUs. The relationship between number of thymocyte progenitor cells and number of CFUs is dependent on density. Bone marrow progenitors of PHA responsive cells are of low buoyant density and show a distribution which resembles the distribution of the progenitors of Thy 1 positive cells. After transplantation of large numbers of bone marrow cells into irradiated mice, no significant change in the CFUs content of the thymus was observed. (author)

  1. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  2. Density, thermal expansion coefficient and viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions at high temperatures

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Measurements have been performed of the density, of the volumetric thermal expansion coefficient and of the viscosity of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. The viscosity measurements have been performed for the solution of sodium tetraborate with UO 2 and CeO 2 , and with CeO 2 only as well. These data are required for the design of core-catchers based on sodium borates. The density measurements have been performed with the buoyancy method in the temperature range from 825 0 C to 1300 0 C, the viscosity measurements in the temperature range 700-1250 0 C with a modified Haake viscosity balance. The balance was previously calibrated at ambient temperature with a standard calibration liquid and at high temperatures, with data for pure borax available from the literature. (orig.)

  3. Combining Step Gradients and Linear Gradients in Density.

    Science.gov (United States)

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  4. Measured density and calculated baricity of custom-compounded drugs for chronic intrathecal infusion.

    Science.gov (United States)

    Hejtmanek, Michael R; Harvey, Tracy D; Bernards, Christopher M

    2011-01-01

    To minimize the frequency that intrathecal pumps require refilling, drugs are custom compounded at very high concentrations. Unfortunately, the baricity of these custom solutions is unknown, which is problematic, given baricity's importance in determining the spread of intrathecally administered drugs. Consequently, we measured the density and calculated the baricity of clinically relevant concentrations of multiple drugs used for intrathecal infusion. Morphine, clonidine, bupivacaine, and baclofen were weighed to within 0.0001 g and diluted in volumetric flasks to produce solutions of known concentrations (morphine 1, 10, 25, and 50 mg/mL; clonidine 0.05, 0.5, 1, and 3 mg/mL; bupivacaine 2.5, 5, 10, and 20 mg/mL; baclofen 1, 1.5, 2, and 4 mg/mL). The densities of the solutions were measured at 37°C using the mechanical oscillation method. A "best-fit" curve was calculated for plots of concentration versus density for each drug. All prepared solutions of clonidine and baclofen were hypobaric. Higher concentrations of morphine and bupivacaine were hyperbaric, whereas lower concentrations were hypobaric. The relationship between concentration and density is linear for morphine (r > 0.99) and bupivacaine (r > 0.99) and logarithmic for baclofen (r = 0.96) and clonidine (r = 0.98). This is the first study to examine the relationship between concentration and density for custom drug concentrations commonly used in implanted intrathecal pumps. We calculated an equation that defines the relationship between concentration and density for each drug. Using these equations, clinicians can calculate the density of any solution made from the drugs studied here.

  5. Rydberg energies using excited state density functional theory

    International Nuclear Information System (INIS)

    Cheng, C.-L.; Wu Qin; Van Voorhis, Troy

    2008-01-01

    We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.

  6. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  7. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    International Nuclear Information System (INIS)

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-01

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N f ,” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N f was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N f , the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N f using recorded

  8. High-Order Ca(II)-Chloro Complexes in Mixed CaCl2-LiCl Aqueous Solution: Insights from Density Functional Theory and Molecular Dynamics Simulations.

    Science.gov (United States)

    Wang, Yu-Lin; Wang, Ying; Yi, Hai-Bo

    2016-07-21

    In this study, the structural characteristics of high-coordinated Ca-Cl complexes present in mixed CaCl2-LiCl aqueous solution were investigated using density functional theory (DFT) and molecular dynamics (MD) simulations. The DFT results show that [CaClx](2-x) (x = 4-6) clusters are quite unstable in the gas phase, but these clusters become metastable when hydration is considered. The MD simulations show that high-coordinated Ca-chloro complexes are possible transient species that exist for up to nanoseconds in concentrated (11.10 mol·kg(-1)) Cl(-) solution at 273 and 298 K. As the temperature increases to 423 K, these high-coordinated structures tend to disassociate and convert into smaller clusters and single free ions. The presence of high-order Ca-Cl species in concentrated LiCl solution can be attributed to their enhanced hydration shell and the inadequate hydration of ions. The probability of the [CaClx](2-x)aq (x = 4-6) species being present in concentrated LiCl solution decreases greatly with increasing temperature, which also indicates that the formation of the high-coordinated Ca-Cl structure is related to its hydration characteristics.

  9. Nonrelativistic grey Sn-transport radiative-shock solutions

    International Nuclear Information System (INIS)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-01-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  10. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control.

    Science.gov (United States)

    Li, Jianhai; Xu, Leimeng; Wang, Tao; Song, Jizhong; Chen, Jiawei; Xue, Jie; Dong, Yuhui; Cai, Bo; Shan, Qingsong; Han, Boning; Zeng, Haibo

    2017-02-01

    Solution-processed CsPbBr 3 quantum-dot light-emitting diodes with a 50-fold external quantum efficiency improvement (up to 6.27%) are achieved through balancing surface passivation and carrier injection via ligand density control (treating with hexane/ethyl acetate mixed solvent), which induces the coexistence of high levels of ink stability, photoluminescence quantum yields, thin-film uniformity, and carrier-injection efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Truncation scheme of time-dependent density-matrix approach II

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin University School of Medicine, Mitaka, Tokyo (Japan); Schuck, Peter [Institut de Physique Nucleaire, IN2P3-CNRS, Universite Paris-Sud, Orsay (France); Laboratoire de Physique et de Modelisation des Milieux Condenses, CNRS et Universite Joseph Fourier, Grenoble (France)

    2017-09-15

    A truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for reduced density matrices, where a three-body density matrix is approximated by two-body density matrices, is improved to take into account a normalization effect. The truncation scheme is tested for the Lipkin model. It is shown that the obtained results are in good agreement with the exact solutions. (orig.)

  12. Density gradient instabilities in a neutron inhomogeneous guiding-centre plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The guiding-centre equations for a plasma of cold ions and thermal electrons admit neutral and non-neutral inhomogeneous equilibrium solutions, and the linear stability of these solutions has been recently investigated numerically by Shoucri and Knorr (1975). With arbitrary density profiles, numerical techniques appear to be the only practical way to study the linear stability of the inhomogeneous equilibrium solutions for the guiding centre plasma. However, analytical methods can be applied to some simple types of density profiles. The purpose of the present note is to present some analytical results on the linear instabilities of an inhomogeneous neutral guiding centre plasma. (U.K.)

  13. Densities of Pb-Sn alloys during solidification

    Science.gov (United States)

    Poirier, D. R.

    1988-01-01

    Data for the densities and expansion coefficients of solid and liquid alloys of the Pb-Sn system are consolidated in this paper. More importantly, the data are analyzed with the purpose of expressing either the density of the solid or of the liquid as a function of its composition and temperature. In particular, the densities of the solid and of the liquid during dendritic solidification are derived. Finally, the solutal and thermal coefficients of volume expansion for the liquid are given as functions of temperature and composition.

  14. Concentration dependences of the density, viscosity, and refraction index of Cu(NO3)2 · 3H2O solutions in DMSO at 298 K

    Science.gov (United States)

    Mamyrbekova, A. K.

    2013-03-01

    Physicochemical properties (density, dynamic viscosity, refraction index) of the DMSO-Cu(NO3)2 · 3H2O system are studied in the concentration range of 0.01-2 M at 298 K. The refraction index of a solution of copper(II) nitrate in dimethylsulfoxide (DMSO) is measured at 288-318 K. The excess and partial molar volumes of the solvent and dissolved substance are calculated analytically.

  15. Isopiestic density law of actinide nitrates applied to criticality calculations

    International Nuclear Information System (INIS)

    Leclaire, Nicolas; Anno, Jacques; Courtois, Gerard; Poullot, Gilles; Rouyer, Veronique

    2003-01-01

    Up to now, criticality safety experts used density laws fitted on experimental data and applied them in and outside the measurement range. Depending on the case, such an approach could be wrong for nitrate solutions. Seven components are concerned: UO 2 (NO 3 ) 2 , U(NO 3 ) 4 , Pu(NO 3 ) 4 , Pu(NO 3 ) 3 , Th(NO 3 ) 4 , Am(NO 3 ) 3 and HNO 3 . To get rid of this problem, a new methodology based on the thermodynamic concept of binary electrolytes solutions mixtures at constant water activity, so called 'isopiestic' solutions, has been developed by IRSN to calculate the nitrate solutions density. This article shortly presents the theoretical aspects of the method, its qualification using benchmarks and its implementation in IRSN graphical user interface. (author)

  16. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood.

    Science.gov (United States)

    Emad, Ahmed; Drouin, Régen

    2014-09-01

    Physical separation by density gradient centrifugation (DGC) is usually used as an initial step of multistep enrichment protocols for purification of fetal cells (FCs) from maternal blood. Many protocols were designed but no single approach was efficient enough to provide noninvasive prenatal diagnosis. Procedures and methods were difficult to compare because of the nonuniformity of protocols among different groups. Recovery of FCs is jeopardized by their loss during the process of enrichment. Any loss of FCs must be minimized because of the multiplicative effect of each step of the enrichment process. The main objective of this study was to evaluate FC loss caused by DGC. Fetal cells were quantified in peripheral blood samples obtained from both euploid and aneuploid pregnancies before and after enrichment by buoyant DGC using Histopaque 1.119 g/mL. Density gradient centrifugation results in major loss of 60% to 80% of rare FCs, which may further complicate subsequent enrichment procedures. Eliminating aggressive manipulations can significantly minimize FC loss. Data obtained raise questions about the appropriateness of the DGC step for the enrichment of rare FCs and argues for the use of the alternative nonaggressive version of the procedure presented here or prioritizing other methods of enrichments. © 2014 John Wiley & Sons, Ltd.

  17. Prediction of thermodynamic properties of solute elements in Si solutions using first-principles calculations

    International Nuclear Information System (INIS)

    Iwata, K.; Matsumiya, T.; Sawada, H.; Kawakami, K.

    2003-01-01

    The method is presented to predict the activity coefficients and the interaction parameters of the solute elements in infinite dilute Si solutions by the use of first-principles calculations based on density functional theory. In this method, the regular solution model is assumed. The calculated activity coefficients in solid Si are converted to those in molten Si by the use of the solid-liquid partition coefficients. Furthermore, the interaction parameters in solid Si solutions are calculated and compared with reported experimental values of those in liquid Si solutions. The results show that the calculated activity coefficients and interaction parameters of Al, Fe, Ti and Pb in Si solutions are in good agreement with the tendency of the experiments. However, the calculations have some quantitative discrepancy from the experiments. It is expected that consideration of the excess entropy would reduce this discrepancy

  18. The triangular density to approximate the normal density: decision rules-of-thumb

    International Nuclear Information System (INIS)

    Scherer, William T.; Pomroy, Thomas A.; Fuller, Douglas N.

    2003-01-01

    In this paper we explore the approximation of the normal density function with the triangular density function, a density function that has extensive use in risk analysis. Such an approximation generates a simple piecewise-linear density function and a piecewise-quadratic distribution function that can be easily manipulated mathematically and that produces surprisingly accurate performance under many instances. This mathematical tractability proves useful when it enables closed-form solutions not otherwise possible, as with problems involving the embedded use of the normal density. For benchmarking purposes we compare the basic triangular approximation with two flared triangular distributions and with two simple uniform approximations; however, throughout the paper our focus is on using the triangular density to approximate the normal for reasons of parsimony. We also investigate the logical extensions of using a non-symmetric triangular density to approximate a lognormal density. Several issues associated with using a triangular density as a substitute for the normal and lognormal densities are discussed, and we explore the resulting numerical approximation errors for the normal case. Finally, we present several examples that highlight simple decision rules-of-thumb that the use of the approximation generates. Such rules-of-thumb, which are useful in risk and reliability analysis and general business analysis, can be difficult or impossible to extract without the use of approximations. These examples include uses of the approximation in generating random deviates, uses in mixture models for risk analysis, and an illustrative decision analysis problem. It is our belief that this exploratory look at the triangular approximation to the normal will provoke other practitioners to explore its possible use in various domains and applications

  19. Volumetric properties of itaconic acid aqueous solutions

    International Nuclear Information System (INIS)

    Nisenbaum, Alexander; Apelblat, Alexander; Manzurola, Emanuel

    2012-01-01

    Highlights: ► Densities of itaconic acid aqueous solutions in a wide range of concentrations and temperatures. ► The apparent molar volumes and the cubic expansion coefficients. ► The derivatives of isobaric heat capacities with respect to pressure. ► Changes in the structure of water when itaconic acid is dissolved. - Abstract: Densities of itaconic acid aqueous solutions were measured at 5 K intervals from T = (278.15 to 343.15) K. From the determined densities, the apparent molar volumes, the cubic expansion coefficients and the second derivatives of volume with respect to temperature which are interrelated with the derivatives of isobaric heat capacities with respect to pressure were evaluated. These derivatives were qualitatively correlated with the changes in the structure of water when itaconic acid is dissolved in it.

  20. Evaluation of macromolecular electron-density map quality using the correlation of local r.m.s. density

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    The correlation of local r.m.s. density is shown to be a good measure of the presence of distinct solvent and macromolecule regions in macromolecular electron-density maps. It has recently been shown that the standard deviation of local r.m.s. electron density is a good indicator of the presence of distinct regions of solvent and protein in macromolecular electron-density maps [Terwilliger & Berendzen (1999 ▶). Acta Cryst. D55, 501–505]. Here, it is demonstrated that a complementary measure, the correlation of local r.m.s. density in adjacent regions on the unit cell, is also a good measure of the presence of distinct solvent and protein regions. The correlation of local r.m.s. density is essentially a measure of how contiguous the solvent (and protein) regions are in the electron-density map. This statistic can be calculated in real space or in reciprocal space and has potential uses in evaluation of heavy-atom solutions in the MIR and MAD methods as well as for evaluation of trial phase sets in ab initio phasing procedures

  1. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C.

    Science.gov (United States)

    Clegg, S L; Wexler, A S

    2011-04-21

    Calculations of the size and density of atmospheric aerosols are complicated by the fact that they can exist at concentrations highly supersaturated with respect to dissolved salts and supercooled with respect to ice. Densities and apparent molar volumes of solutes in aqueous solutions containing the solutes H(2)SO(4), HNO(3), HCl, Na(2)SO(4), NaNO(3), NaCl, (NH(4))(2)SO(4), NH(4)NO(3), and NH(4)Cl have been critically evaluated and represented using fitted equations from 0 to 50 °C or greater and from infinite dilution to concentrations saturated or supersaturated with respect to the dissolved salts. Using extrapolated densities of high-temperature solutions and melts, the relationship between density and concentration is extended to the hypothetical pure liquid solutes. Above a given reference concentration of a few mol kg(-1), it is observed that density increases almost linearly with decreasing temperature, and comparisons with available data below 0 °C suggest that the fitted equations for density can be extrapolated to very low temperatures. As concentration is decreased below the reference concentration, the variation of density with temperature tends to that of water (which decreases as temperature is reduced below 3.98 °C). In this region below the reference concentration, and below 0 °C, densities are calculated using extrapolated apparent molar volumes which are constrained to agree at the reference concentrations with an equation for the directly fitted density. Calculated volume properties agree well with available data at low temperatures, for both concentrated and dilute solutions. Comparisons are made with literature data for temperatures of maximum density. Apparent molar volumes at infinite dilution are consistent, on a single ion basis, to better than ±0.1 cm(3) mol(-1) from 0 to 50 °C. Volume properties of aqueous NaHSO(4), NaOH, and NH(3) have also been evaluated, at 25 °C only. In part 2 of this work (ref 1 ) an ion interaction (Pitzer

  2. Density determination of nail polishes and paint chips using magnetic levitation

    Science.gov (United States)

    Huang, Peggy P.

    Trace evidence is often small, easily overlooked, and difficult to analyze. This study describes a nondestructive method to separate and accurately determine the density of trace evidence samples, specifically nail polish and paint chip using magnetic levitation (MagLev). By determining the levitation height of each sample in the MagLev device, the density of the sample is back extrapolated using a standard density bead linear regression line. The results show that MagLev distinguishes among eight clear nail polishes, including samples from the same manufacturer; separates select colored nail polishes from the same manufacturer; can determine the density range of household paint chips; and shows limited levitation for unknown paint chips. MagLev provides a simple, affordable, and nondestructive means of determining density. The addition of co-solutes to the paramagnetic solution to expand the density range may result in greater discriminatory power and separation and lead to further applications of this technique.

  3. Bouncing cosmological solutions from f(R,T) gravity

    Science.gov (United States)

    Shabani, Hamid; Ziaie, Amir Hadi

    2018-05-01

    In this work we study classical bouncing solutions in the context of f(R,T)=R+h(T) gravity in a flat FLRW background using a perfect fluid as the only matter content. Our investigation is based on introducing an effective fluid through defining effective energy density and pressure; we call this reformulation as the " effective picture". These definitions have been already introduced to study the energy conditions in f(R,T) gravity. We examine various models to which different effective equations of state, corresponding to different h(T) functions, can be attributed. It is also discussed that one can link between an assumed f(R,T) model in the effective picture and the theories with generalized equation of state ( EoS). We obtain cosmological scenarios exhibiting a nonsingular bounce before and after which the Universe lives within a de-Sitter phase. We then proceed to find general solutions for matter bounce and investigate their properties. We show that the properties of bouncing solution in the effective picture of f(R,T) gravity are as follows: for a specific form of the f(R,T) function, these solutions are without any future singularities. Moreover, stability analysis of the nonsingular solutions through matter density perturbations revealed that except two of the models, the parameters of scalar-type perturbations for the other ones have a slight transient fluctuation around the bounce point and damp to zero or a finite value at late times. Hence these bouncing solutions are stable against scalar-type perturbations. It is possible that all energy conditions be respected by the real perfect fluid, however, the null and the strong energy conditions can be violated by the effective fluid near the bounce event. These solutions always correspond to a maximum in the real matter energy density and a vanishing minimum in the effective density. The effective pressure varies between negative values and may show either a minimum or a maximum.

  4. Density dependent effective interactions

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1994-01-01

    An effective nucleon-nucleon interaction is defined by an optimal fit to select on-and half-off-of-the-energy shell t-and g-matrices determined by solutions of the Lippmann-Schwinger and Brueckner-Bethe-Goldstone equations with the Paris nucleon-nucleon interaction as input. As such, it is seen to better reproduce the interaction on which it is based than other commonly used density dependent effective interactions. The new (medium modified) effective interaction when folded with appropriate density matrices, has been used to define proton- 12 C and proton- 16 O optical potentials. With them elastic scattering data are well fit and the medium effects identifiable. 23 refs., 8 figs

  5. A spherical collapse solution with neutrino outflow

    International Nuclear Information System (INIS)

    Glass, E.N.

    1990-01-01

    A three-parameter family of solutions of Einstein's field equations is given that represents a collapsing perfect fluid with outgoing neutrino flux. Solutions with ''naked'' singularities are exhibited. They can be forbidden by requiring pressure less than or equal to the density as a condition of cosmic censorship

  6. Liquid direct correlation function, singlet densities and the theory of freezing

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1981-04-01

    We have examined the solutions for the singlet density rho(r) in the hierarchical equation connecting rho(r) with the liquid direct correlation function c(r). In addition to the homogeneous solution rho(r)=rhosub(liquid), we exhibit a periodic solution which can co-exist with the liquid solution. If the defining equation for this is linearized, we recover the bifurcation condition of Lovett and Buff. We stress the difference between the two treatments as that between first and second-order transitions. It turns out that the treatment presented here leads to the same periodic density as that derived, using the hypernetted chain approximation, by Ramakrishnan and Yussouff in their theory of freezing. Invoking that approximation is shown thereby to be inessential. (author)

  7. Controlling of density uniformity of polyacrylate foams

    International Nuclear Information System (INIS)

    Shan Wenwen; Yuan Baohe; Wang Yanhong; Xu Jiayun; Zhang Lin

    2010-01-01

    The density non-uniformity existing in most low-density foams will affect performance of the foams. The trimethylolpropane trimethacrylate (TMPTA) foam targets were prepared and controlling methods of the foams, density uniformity were explored together with its forming mechanism. It has been found that the UV-light with high intensity can improve the distribution uniformity of the free radicals induced by UV photons in the solvents, thus improve the density uniformity of the foams. In addition, container wall would influence the concentration distribution of the solution, which affects the density uniformity of the foams. Thus, the UV-light with high intensity was chosen together with polytetrafluoroethylene molds instead of glass molds to prepare the foams with the density non-uniformity less than 10%. β-ray detection technology was used to measure the density uniformity of the TMPTA foams with the density in the range of 10 to 100 mg · cm -3 , and the results show that the lower the foam density is, the worse the density uniformity is. (authors)

  8. Models for Experimental High Density Housing

    Science.gov (United States)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  9. Assessment of the densities of local anesthetics and their combination with adjuvants: an experimental study.

    Science.gov (United States)

    Imbelloni, Luiz Eduardo; Moreira, Adriano Dias; Gaspar, Flávia Cunha; Gouveia, Marildo A; Cordeiro, José Antônio

    2009-01-01

    The relative density of a local anesthetic in relation to that of the cerebrospinal fluid (CSF) at 37 degrees C is one of the most important physical properties that affect the level of analgesia obtained after the subarachnoid administration of the drug. The objective of this study was to determine the density of local anesthetic solutions, with and without glucose, and the combination of the local anesthetic with adjuvants at 20 degrees C, 25 degrees C, and 37 degrees C. The density (g.mL(-1)) was determined by using a DMA 450 densimeter with a sensitivity of +/- 0.00001 g.mL(-1). The densities, and variations, according to the temperature were obtained for all local anesthetics and their combination with opioids at 20 degrees C, 25 degrees C, and 37 degrees C. The solution is hyperbaric if its density exceeds 1.00099, hypobaric when its density is lower than 1.00019, and isobaric when its density is greater than 1.00019 and lower than 1.00099. The densities of both local anesthetics and adjuvants decrease with the increase in temperature. At 37 degrees C, all glucose-containing solutions are hyperbaric. In the absence of glucose, all solutions are hypobaric. At 37 degrees C, morphine, fentanyl, sufentanil, and clonidine are hypobaric. The densities of local anesthetics and adjuvants decrease with the increase in temperature and increase when glucose is added. The knowledge of the relative density helps select the most adequate local anesthetic to be administered in the subarachnoid space.

  10. The MSW conversion of solar neutrinos and random matter density perturbations

    International Nuclear Information System (INIS)

    Nunokawa, H.; Rossi, A.; Valle, J.W.F.

    1997-01-01

    A generalization of the resonant neutrino conversion in matter, including a random component in the matter density profile is presented. The study is focused on the effect of such matter perturbations upon both large and small mixing angle MSW solutions to the solar neutrino problem. This is carried out both for the active-active ν e → ν μ , τ as well as active-sterile ν e → conversion channels. The small mixing MSW solution is much more stable than the large mixing solution has been found. Future solar neutrino experiments, such as Borexino, could probe solar matter density noise at the few percent level

  11. Physicochemistry of the plasma-electrolyte solution interface

    International Nuclear Information System (INIS)

    Chen Qiang; Saito, Kenji; Takemura, Yu-ichiro; Shirai, Hajime

    2008-01-01

    The atmospheric rf plasma discharge was successfully investigated using NaOH or HCl electrolyte solutions as a counter electrode at different pH values. The emission intensities of solution components, self bias, and electron density strongly depend on the pH value of electrolyte. An addition of ethanol to the electrolyte solutions enhanced the dehydration, which markedly promoted the emissions of solution components as well as electrons from the solution. An acidification of the solution was always observed after the plasma exposure and two coexisting mechanisms were proposed to give a reasonable interpretation. The plasma-electrolyte interface was discussed based on a model of hydrogen cycle

  12. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K., E-mail: millermk@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6139 (United States); Reinhard, D., E-mail: David.Reinhard@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States); Larson, D.J., E-mail: David.Larson@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States)

    2015-07-15

    Highlights: • Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency. • Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP. • High densities, 1.8 × 10{sup 24} m{sup −3}, of solute clusters were detected in as-milled flakes of 14YWT. • Lower densities, 1.2 × 10{sup 24} m{sup −3}, were detected in the stir zone of a FSW. • Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. - Abstract: A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 10{sup 24} m{sup −3} and 1.2 × 10{sup 24} m{sup −3}, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  13. Viscosity, surface tension, density and contact angle of selected PbI2, PbCl2 and methylammonium lead halide perovskite solutions used in perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Ahmadian-Yazdi

    2018-02-01

    Full Text Available Perovskite solar cells (PSCs are currently under vigorous research and development, owing to their compelling power conversion efficiencies. PSCs are solution-processed and, therefore, are fabricated using casting and printing methods, such as spin, spray and blade coating. The coating characteristics significantly depend on the physical and rheological properties of the solutions. Thus, due to the scarcity of such properties, in this work, we report the surface tension, viscosity, density, and contact angle of selected methylammonium lead halide perovskite solutions, in order to gain insight into the behavior of the perovskite solutions and the range of such physical properties. The contact angles were measured on PEDOT:PSS and compact TiO2 (c-TiO2 substrates, commonly used as the underneath layers of the perovskite film. In total, 12 solutions of CH3NH3PbI3 and CH3NH3PbI3-xClx dissolved in common solvents, as well as solutions of PbI2, PbCl2, and CH3NH3I were tested. Among the results, it is shown that the tested perovskite solutions are Newtonian, the apparent contact angles on the mesoporous TiO2 (m-TiO2 are close to zero, on the PEDOT:PSS are around 10°, and on the c-TiO2 are around 30°. Also, contact angle hysteresis is observed in the case of the c-TiO2 substrates. Representative impact dynamics and spreading of perovskite solution droplets are also studied, to demonstrate the importance of the solution properties and process parameters on the coating process.

  14. Viscosity, surface tension, density and contact angle of selected PbI2, PbCl2 and methylammonium lead halide perovskite solutions used in perovskite solar cells

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Rahimzadeh, Amin; Chouqi, Zineb; Miao, Yihe; Eslamian, Morteza

    2018-02-01

    Perovskite solar cells (PSCs) are currently under vigorous research and development, owing to their compelling power conversion efficiencies. PSCs are solution-processed and, therefore, are fabricated using casting and printing methods, such as spin, spray and blade coating. The coating characteristics significantly depend on the physical and rheological properties of the solutions. Thus, due to the scarcity of such properties, in this work, we report the surface tension, viscosity, density, and contact angle of selected methylammonium lead halide perovskite solutions, in order to gain insight into the behavior of the perovskite solutions and the range of such physical properties. The contact angles were measured on PEDOT:PSS and compact TiO2 (c-TiO2) substrates, commonly used as the underneath layers of the perovskite film. In total, 12 solutions of CH3NH3PbI3 and CH3NH3PbI3-xClx dissolved in common solvents, as well as solutions of PbI2, PbCl2, and CH3NH3I were tested. Among the results, it is shown that the tested perovskite solutions are Newtonian, the apparent contact angles on the mesoporous TiO2 (m-TiO2) are close to zero, on the PEDOT:PSS are around 10°, and on the c-TiO2 are around 30°. Also, contact angle hysteresis is observed in the case of the c-TiO2 substrates. Representative impact dynamics and spreading of perovskite solution droplets are also studied, to demonstrate the importance of the solution properties and process parameters on the coating process.

  15. Enhanced safeguards via solution monitoring

    International Nuclear Information System (INIS)

    Burr, T.; Wangen, L.

    1996-09-01

    Solution monitoring is defined as the essentially continuous monitoring of solution level, density, and temperature in all tanks in the process that contain, or could contain, safeguards-significant quantities of nuclear material. This report describes some of the enhancements that solution monitoring could make to international safeguards. The focus is on the quantifiable benefits of solution monitoring, but qualitatively, solution monitoring can be viewed as a form of surveillance. Quantitatively, solution monitoring can in some cases improve diversion detection probability. For example, the authors show that under certain assumptions, solution monitoring can be used to reduce the standard deviation of the annual material balance, σ MB , from approximately 17 kg to approximately 4 kg. Such reduction in σ MB will not always be possible, as they discuss. However, in all cases, solution monitoring would provide assurance that the measurement error models are adequate so that one has confidence in his estimate of σ MB . Some of the results in this report were generated using data that were simulated with prototype solution monitoring software that they are developing. An accompanying document describes that software

  16. Calcite precipitation from aqueous solution: transformation from vaterite and role of solution stoichiometry

    NARCIS (Netherlands)

    Nehrke, G.

    2007-01-01

    The morphology of vaterite precipitated by bubbling CO2 through a CaCl2 solution is framboidal aggregates. It is not possible, even when using the identical experimental setup and conditions, to reproduce aggregates having identical morphology. The density of the aggregates and crystallite size can

  17. Regularized Regression and Density Estimation based on Optimal Transport

    KAUST Repository

    Burger, M.

    2012-03-11

    The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).

  18. Magnetic Half-Monopole Solutions

    International Nuclear Information System (INIS)

    Teh, Rosy; Lim, Kok-Geng; Koh, Pin-Wai

    2009-01-01

    We present exact SU(2) Yang-Mills-Higgs monopole solutions of one half topological charge. These non-Abelian solutions possess gauge potentials which are singular along either the positive or the negative z-axis and common magnetic fields that are singular only at the origin where the half-monopole is located. These half-monopoles are actually a half Wu-Yang monopole and they can possess a finite point electric charge and become half-dyons. They do not necessarily satisfy the first order Bogomol'nyi equations and they possess infinite energy density at r = 0.

  19. Electron densities in planetary nebulae

    International Nuclear Information System (INIS)

    Stanghellini, L.; Kaler, J.B.

    1989-01-01

    Electron densities for 146 planetary nebulae have been obtained for analyzing a large sample of forbidden lines by interpolating theoretical curves obtained from solutions of the five-level atoms using up-to-date collision strengths and transition probabilities. Electron temperatures were derived from forbidden N II and/or forbidden O III lines or were estimated from the He II 4686 A line strengths. The forbidden O II densities are generally lower than those from forbidden Cl III by an average factor of 0.65. For data sets in which forbidden O II and forbidden S II were observed in common, the forbidden O II values drop to 0.84 that of the forbidden S II, implying that the outermost parts of the nebulae might have elevated densities. The forbidden Cl II and forbidden Ar IV densities show the best correlation, especially where they have been obtained from common data sets. The data give results within 30 percent of one another, assuming homogeneous nebulae. 106 refs

  20. New family of simple solutions of relativistic perfect fluid hydrodynamics

    International Nuclear Information System (INIS)

    Csoergo, T.; Nagy, M.I.; Csanad, M.

    2008-01-01

    A new class of accelerating, exact and explicit solutions of relativistic hydrodynamics is found-more than 50 years after the previous similar result, the Landau-Khalatnikov solution. Surprisingly, the new solutions have a simple form, that generalizes the renowned, but accelerationless, Hwa-Bjorken solution. These new solutions take into account the work done by the fluid elements on each other, and work not only in one temporal and one spatial dimensions, but also in arbitrary number of spatial dimensions. They are applied here for an advanced estimation of initial energy density and life-time of the reaction in ultra-relativistic heavy ion collisions. New formulas are also conjectured, that yield further important increase of the initial energy density estimate and the measured life-time of the reaction if the value of the speed of sound is in the realistic range

  1. Exact analytical solutions of continuity equation for electron beams precipitating in Coulomb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dobranskis, R. R.; Zharkova, V. V., E-mail: valentina.zharkova@northumbria.ac.uk [Department of Mathematics and Information Sciences, University of Northumbria, Newcastle upon Tyne NE1 2XP (United Kingdom)

    2014-06-10

    The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained by using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.

  2. Thermodynamic study of aqueous solutions of polyelectrolytes of low and medium charge density without added salt by direct measurement of osmotic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Miklos, E-mail: miklosnagy@chem.elte.h [Institute of Chemistry, Department of Physical Chemistry, Laboratory for Colloid and Supermolecular Structures, L. Eoetvoes University, P.O. Box 32 H-1518 Budapest 112 (Hungary)

    2010-03-15

    A special block osmometer has been constructed and applied to a systematic study of poly (vinyl alcohol and vinyl sulphate ester) (PVS) sodium salts in dilute and moderately concentrated salt free aqueous solutions. In order to avoid surely ionic contamination all parts of the equipment that can contact with the polyelectrolyte solutions were made of different kinds of plastics and glass. The pressure range spans from (50 to 1.3 . 10{sup 5}) Pa. The measuring system was found to be appropriate for determination of the molar mass of water soluble polymers, too. Above a certain analytical density of dissociable groups (ADDG) an ion size dependent transition was observed on the reduced osmotic pressure vs. concentration curves. The analysis of the osmotic pressure data has clearly revealed that the dependence of the degree of dissociation on ADDG calculated at zero polyelectrolyte concentration contradicts to 'ion condensation' theory. With increasing polyelectrolyte concentration the degree of dissociation decreased rather steeply but at very low concentrations sharp maximums appeared due either to the change in conformation of these charged macromolecules, or formation of dynamic clusters induced by salting out of neutral parts of the macromolecules by the ionized groups. The applicability of the scaling concept as well as the many possible ways of characterization of non-ideality of polyelectrolyte solutions will be discussed in detail.

  3. Is sdLDL a valuable screening tool for cardiovascular disease in ...

    African Journals Online (AJOL)

    Radwa Momtaz Abdelsamie Zaki Khalil

    Lipoprotein Cholesterol; LDL I, large buoyant LDL; LDL II, intermediate density LDL; LDL III, smaller dense LDL; .... triglycerides >_150 mg, high density lipoprotein (HDL) <40 mg/dl in men ... sion of phenotype B.4,12 For a given triglyceride level, women were .... that sdLDL /LDL ratio is a very strong predictor of CHD in men;.

  4. Exact series solution to the two flavor neutrino oscillation problem in matter

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy

    2004-01-01

    In this paper, we present a real nonlinear differential equation for the two flavor neutrino oscillation problem in matter with an arbitrary density profile. We also present an exact series solution to this nonlinear differential equation. In addition, we investigate numerically the convergence of this solution for different matter density profiles such as constant and linear profiles as well as the Preliminary Reference Earth Model describing the Earth's matter density profile. Finally, we discuss other methods used for solving the neutrino flavor evolution problem

  5. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  6. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  7. Surface tension and density of Si-Ge melts

    Science.gov (United States)

    Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz

    2014-06-01

    In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

  8. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles

    International Nuclear Information System (INIS)

    Spruijt, E; Biesheuvel, P M

    2014-01-01

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation–diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL

  9. Minimum critical values of uranyl and plutonium nitrate solutions calculated by various routes of the french criticality codes system CRISTAL using the new isopiestic nitrate density law

    International Nuclear Information System (INIS)

    Anno, Jacques; Rouyer, Veronique; Leclaire, Nicolas

    2003-01-01

    This paper provides for various cases of 235 U enrichment or Pu isotopic vectors, and different reflectors, new minimum critical values of uranyl nitrate and plutonium nitrate solutions (H + =0) obtained by the standard IRSN calculation route and the new isopiestic density laws. Comparisons are also made with other more accurate routes showing that the standard one's results are most often conservative and usable for criticality safety assessments. (author)

  10. Polymer solution phase separation: Microgravity simulation

    Science.gov (United States)

    Cerny, Lawrence C.; Sutter, James K.

    1989-01-01

    In many multicomponent systems, a transition from a single phase of uniform composition to a multiphase state with separated regions of different composition can be induced by changes in temperature and shear. The density difference between the phase and thermal and/or shear gradients within the system results in buoyancy driven convection. These differences affect kinetics of the phase separation if the system has a sufficiently low viscosity. This investigation presents more preliminary developments of a theoretical model in order to describe effects of the buoyancy driven convection in phase separation kinetics. Polymer solutions were employed as model systems because of the ease with which density differences can be systematically varied and because of the importance of phase separation in the processing and properties of polymeric materials. The results indicate that the kinetics of the phase separation can be performed viscometrically using laser light scattering as a principle means of following the process quantitatively. Isopycnic polymer solutions were used to determine the viscosity and density difference limits for polymer phase separation.

  11. Density dependent hadron field theory

    International Nuclear Information System (INIS)

    Fuchs, C.; Lenske, H.; Wolter, H.H.

    1995-01-01

    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state

  12. A radiochemical study of gold electrodeposition kinetics in alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Poshkus, D.; Agafonovas, G.; Zhebrauskas, A.

    1995-01-01

    Kinetics of gold electrodeposition from alkaline cyanide solutions was investigated by the use of labelled gold 195 atoms. The absorption of cyanide containing species from alkaline cyanide and dicyanoaurate solutions on a gold electrode by the use of labelled carbon atoms was investigated. Polarization curves of anodic dissolution and cathodic deposition of gold in alkaline cyanide solutions were obtained. The values of standard potential, exchange current density, transfer coefficient and standard polarization rate were determined from polarization curves. The errors in current density caused by the nuclear disintegration statistics were evaluated. 28 refs., 1 tab., 4 figs

  13. Testing of a new dense gas approach in the Lagrangian Dispersion Model SPRAY.

    Science.gov (United States)

    Mortarini, Luca; Alessandrini, Stefano; Ferrero, Enrico; Anfossi, Domenico; Manfrin, Massimiliano

    2013-04-01

    A new original method for the dispersion of a positively and negatively buoyant plume is proposed. The buoyant pollutant movement is treated introducing a fictitious scalar inside the Lagrangian Stochastic Particle Model SPRAY. The method is based on the same idea of Alessandrini and Ferrero (Phys. A 388:1375-1387, 2009) for the treatment of a background substance entrainment into the plume. In this application, the fictitious scalar is the density and momentum difference between the plume portions and the environment air that naturally takes into account the interaction between the plume and the environment. As a consequence, no more particles than those inside the plume have to be released to simulate the entrainment of the background air temperature. In this way the entrainment is properly simulated and the plume sink is calculated from the local property of the flow. This new approach is wholly Lagrangian in the sense that the Eulerian grid is only used to compute the propriety of a portion of the plume from the particles contained in every cell. No equation of the bulk plume is solved on a fixed grid. To thoroughly test the turbulent velocity field calculated by the model, the latter is compared with a water tank experiment carried out in the TURLAB laboratory in Turin (Italy). A vertical density driven current was created releasing a saline solution (salt and water) in a water tank with no mean flow. The experiment reproduces in physical similarity, based on the density Froud number, the release of a dense gas in the planetary boundary layer and the Particle Image Velocimetry technique has been used to analyze the buoyancy generated velocity field. The high temporal and spatial resolution of the measurements gives a deep insight to the problems of the bouncing of the dense gas and of the creation of the outflow velocity at the ground.

  14. LONGITUDINAL OSCILLATIONS IN DENSITY STRATIFIED AND EXPANDING SOLAR WAVEGUIDES

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Cardozo, M. [Instituto de Astronomia y Fisica del Espacio, CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires (Argentina); Verth, G. [School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Erdelyi, R., E-mail: mluna@iafe.uba.ar, E-mail: robertus@sheffield.ac.uk, E-mail: gary.verth@northumbria.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2012-04-01

    Waves and oscillations can provide vital information about the internal structure of waveguides in which they propagate. Here, we analytically investigate the effects of density and magnetic stratification on linear longitudinal magnetohydrodynamic (MHD) waves. The focus of this paper is to study the eigenmodes of these oscillations. It is our specific aim to understand what happens to these MHD waves generated in flux tubes with non-constant (e.g., expanding or magnetic bottle) cross-sectional area and density variations. The governing equation of the longitudinal mode is derived and solved analytically and numerically. In particular, the limit of the thin flux tube approximation is examined. The general solution describing the slow longitudinal MHD waves in an expanding magnetic flux tube with constant density is found. Longitudinal MHD waves in density stratified loops with constant magnetic field are also analyzed. From analytical solutions, the frequency ratio of the first overtone and fundamental mode is investigated in stratified waveguides. For small expansion, a linear dependence between the frequency ratio and the expansion factor is found. From numerical calculations it was found that the frequency ratio strongly depends on the density profile chosen and, in general, the numerical results are in agreement with the analytical results. The relevance of these results for solar magneto-seismology is discussed.

  15. Electrical resistivities and solvation enthalpies for solutions of salts in liquid alkali metals

    International Nuclear Information System (INIS)

    Hubberstey, P.; Dadd, A.T.

    1982-01-01

    An empirical correlation is shown to exist between the resistivity coefficients drho/dc for solutes in liquid alkali metals and the corresponding solvation enthalpies Usub(solvn) of the neutral gaseous solute species. Qualitative arguments based on an electrostatic solvation model in which the negative solute atom is surrounded by a solvation sphere of positive solvent ion cores are used to show that both parameters are dependent on the charge density of the solute atom and hence on the extent of charge transfer from solvent to solute. Thus as the charge density of the solute increases, the solvation enthalpy increases regularly and the resistivity coefficients pass through a maximum to give the observed approximately parabolic drho/dc versus Usub(solvn) relationship. (Auth.)

  16. Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations

    Science.gov (United States)

    Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian

    2017-11-01

    We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.

  17. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

    International Nuclear Information System (INIS)

    Amooey, Ali Akbar; Ghasemi, Shahram; Mirsoleimani-azizi, Seyed Mohammad; Gholaminezhad, Zohreh; Chaichi, Mohammad Javad

    2014-01-01

    Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency

  18. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amooey, Ali Akbar; Ghasemi, Shahram; Mirsoleimani-azizi, Seyed Mohammad; Gholaminezhad, Zohreh; Chaichi, Mohammad Javad [University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2014-06-15

    Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency.

  19. Isolation and characterization of Tn917lac-generated competence mutants of Bacillus subtilis

    International Nuclear Information System (INIS)

    Hahn, J.; Albano, M.; Dubnau, D.

    1987-01-01

    The authors isolated 28 mutants of Bacillus subtilis deficient in the development of competence by using the transposon Tn917lacZ as a mutagen. The mutant strains were poorly transformable with plasmid and chromosomal DNAs but were normally transducible and exhibited wild-type resistance to DNA-damaging agents. The mutations were genetically mapped, and the mutants were characterized with respect to their abilities to bind and take up radiolabeled DNA. All were defective in uptake, and some failed to bind significantly amounts of DNA. The abilities of the mutant strains to resolve into two buoyant density classes on Renografin gradients were studied. Most resolved normally, but several banded in Renografin only at the buoyant density of noncompetent cells. The genetic mapping studies and the other analyses suggested that the mutations define a minimum of seven distinct com genes

  20. Quantification of Campylobacter spp. in chicken rinse samples by using flotation prior to real-time PCR

    DEFF Research Database (Denmark)

    Wolffs, Petra; Norling, Börje; Hoorfar, Jeffrey

    2005-01-01

    Real-time PCR is fast, sensitive, specific, and can deliver quantitative data; however, two disadvantages are that this technology is sensitive to inhibition by food and that it does not distinguish between DNA originating from viable, viable nonculturable (VNC), and dead cells. For this reason......, real-time PCR has been combined with a novel discontinuous buoyant density gradient method, called flotation, in order to allow detection of only viable and VNC cells of thermotolerant campylobacters in chicken rinse samples. Studying the buoyant densities of different Campylobacter spp. showed...... enrichment and amounts as low as 2.6 X 10(3) CFU/ml could be quantified. Furthermore, subjecting viable cells and dead cells to flotation showed that viable cells were recovered after flotation treatment but that dead cells and/or their DNA was not detected. Also, when samples containing VNC cells mixed...

  1. Specific binding of 125I-rErythropoietin to Friend polycythemia virus-transformed erythroleukemia cells purified by centrifugal elutriation

    International Nuclear Information System (INIS)

    Correa, P.N.; Bard, V.; Axelrad, A.A.

    1990-01-01

    We have used countercurrent centrifugal elutriation (CCE) to determine the distribution of cells with respect to cell volume and buoyant density for an erythroleukemia cell line (JG6) transformed by the polycythemia strain of Friend virus (FV-P), and to determine the effect of inducing the cells to differentiate with dimethylsulfoxide (DMSO) on this distribution. CCE made it possible to obtain suspensions of modal JG6 populations virtually free of dead cells and uniform with respect to volume and buoyant density. These modal populations were assayed for specific binding of erythropoietin (Epo). Between 500 and 550 Epo receptors per cell were detected. These belonged to a single class having a dissociation constant of 0.36 nM. DMSO induction of differentiation of the JG6 cells had no effect on the number of Epo receptors expressed

  2. Benchmarking variable-density flow in saturated and unsaturated porous media

    Science.gov (United States)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  3. Comparative density functional study of the complexes [UO2(CO3)3]4- and [(UO2)3(CO3)6]6- in aqueous solution.

    Science.gov (United States)

    Schlosser, Florian; Moskaleva, Lyudmila V; Kremleva, Alena; Krüger, Sven; Rösch, Notker

    2010-06-28

    With a relativistic all-electron density functional method, we studied two anionic uranium(VI) carbonate complexes that are important for uranium speciation and transport in aqueous medium, the mononuclear tris(carbonato) complex [UO(2)(CO(3))(3)](4-) and the trinuclear hexa(carbonato) complex [(UO(2))(3)(CO(3))(6)](6-). Focusing on the structures in solution, we applied for the first time a full solvation treatment to these complexes. We approximated short-range effects by explicit aqua ligands and described long-range electrostatic interactions via a polarizable continuum model. Structures and vibrational frequencies of "gas-phase" models with explicit aqua ligands agree best with experiment. This is accidental because the continuum model of the solvent to some extent overestimates the electrostatic interactions of these highly anionic systems with the bulk solvent. The calculated free energy change when three mono-nuclear complexes associate to the trinuclear complex, agrees well with experiment and supports the formation of the latter species upon acidification of a uranyl carbonate solution.

  4. Molecular Interactions in 1,4-Dioxane, Tetrahydrofuran, and Ethyl Acetate Solutions of 1,1'-Bis(4-isopropyloxyacetylphenoxy)cyclohexane on Reological, Density, and Acoustic Behavior

    Science.gov (United States)

    Dhaduk, B. B.; Patel, Ch. B.; Parsania, P. H.

    2017-12-01

    Various thermo-acoustical parameters of 1,4-dioxane, tetrahydofuran and ethylacetae solutions of 1,1'-bis(4-isopropyloxyacetylphenoxy)cyclohexane were determined at different temperatures using density, viscosity and ultrasonic speed and correlated with concentration. Linear increase of ultrasonic speed, specific acoustical impedance, Rao's molar sound function, Van der Waals constant and free volume with concentration C and decreased with temperature. Linear decrease of adiabatic compressibility, internal pressure, intermolecular free path length, classical absorption coefficient, and viscous relaxation time with concentration and increased with temperature indicated existence of strong molecular interactions in solutions and further supported by positive values of solvation number. Gibbs free energy of activation decreased with C in all three systems. It is decreased with T in 1,4-dioxane, while increased in tetrahydrofuran and ethyl acetate. Both enthalpy of activation and entropy of activation are increased gradually with C in 1,4-dioxane, while they are negative and remained practically independent of concentration in 1,4-dioxane and tetrahydofuran systems.

  5. Similarity solutions for phase-change problems

    Science.gov (United States)

    Canright, D.; Davis, S. H.

    1989-01-01

    A modification of Ivantsov's (1947) similarity solutions is proposed which can describe phase-change processes which are limited by diffusion. The method has application to systems that have n-components and possess cross-diffusion and Soret and Dufour effects, along with convection driven by density discontinuities at the two-phase interface. Local thermal equilibrium is assumed at the interface. It is shown that analytic solutions are possible when the material properties are constant.

  6. Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    Science.gov (United States)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-11-01

    Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.

  7. A three-dimensional field solutions of Halbach

    International Nuclear Information System (INIS)

    Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan

    2008-01-01

    A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)

  8. Negative baryon density and the folding structure of the B = 3 skyrmion

    International Nuclear Information System (INIS)

    Foster, D; Krusch, S

    2013-01-01

    The Skyrme model is a nonlinear field theory whose solitonic solutions, once quantized, describe atomic nuclei. The classical static soliton solutions, so-called skyrmions, have interesting symmetries and can only be calculated numerically. Mathematically, these skyrmions can be viewed as maps between two three-manifolds and, as such, their stable singularities can only be folds, cusps and swallowtails. Physically, the occurrence of singularities is related to negative baryon density. In this paper, we calculate the charge three skyrmion to a high resolution in order to examine its singularity structure in detail. Thereby, we explore regions of negative baryon density. We also discuss how the negative baryon density depends on the pion mass. (paper)

  9. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.

    Directory of Open Access Journals (Sweden)

    Francisco Feijó Delgado

    Full Text Available We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein, we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.

  10. STUDY OF EFFECTIVE TIME OF UNDILUTED FIXINGSOLUTIONS INLIGHTENING OF THE HIGH DENSITY PERIAPICAL RADIOGRAPHS

    Directory of Open Access Journals (Sweden)

    A ZAMANI NASER

    2003-12-01

    Full Text Available Introduction: Dental radiographs are occationally too dark because of different reasons such as over exposure, high concen-tration of developing solution and over development. Different chemicals are used to lighten these radiographs. In this research the undiluted fixed solution for the first time are tested and efficiency time of this solution in reducing the density of dark radiographs were evaluated. Method: Use of a dry mandible containing some teeth and 98 E speed periapical radiographs were prepared as foolow: A film wasexposed with 0.4 S... as positive control (ideal. 97 films were exposed with 1.8 S (dark and unreadable. Out of 97, one radiograph kept as positive control and remaining films prepared for study. All of radiographs developed and fixed with automatic processor in the same conditio. Out of 96 dark radiograph, 3 was used for pilot study and inserted in the undiluted fixing solution in different time. (2.5, 3 and 3.5 hrs. The result of pilot study showed that aii3 radiographs showed reductionin density and radiographs with her reduction time was closest to positive control for density and diognostic quality and radiograph with 2.5 hrs reduction time and 3.5 hre became darker and lighter as compared to positive control. The remaining 93 high density radiographs were divided into 3 groups, 31 in each group (group 1,2 and 3 first group 2.5 hrs, second 3 hrs and the third group 3.5 hrs were kept in undiluted fixed solution. for this, disposable glasses were used and in each glass a radiograph were inserted. The research time was spring and the temperature was about 2609 (without coolant. Evaluation of radiographs: For evaluation of radiographs 2 methods were used: First method used was: Densitometry: By this method the density of total lightened radiographs, positive control and negative control were determined. Another method was determined diagnostic quality of radiographs visually by radiologists, throng this way: Special

  11. Certain Solutions Of Shock-Waves In Non-Ideal Gases

    Directory of Open Access Journals (Sweden)

    Kanti Pandey

    2016-05-01

    Full Text Available In present paper non similar solutions for plane, cylindrical and spherical unsteady flows of non-ideal gas behind shock wave of arbitrary strength initiated by the instantaneous release of finite energy and propagating in a non-ideal gas is investigated. Asymptotic analysis is applied to obtain a solution up to second order. Solution for numerical calculation Runga-Kutta method of fourth order is applied and is concluded that for non-ideal case there is a decrease in velocity, pressure and density for 0th and IInd order in comparison to ideal gas but a increasing tendency in velocity, pressure and density for Ist order in comparison to ideal gas. The energy of explosion J0 for ideal gas is greater in comparison to non-ideal gas for plane, cylindrical and spherical waves.

  12. Trench Advance By the Subduction of Buoyant Features - Application to the Izu-Bonin-Marianas Arc

    Science.gov (United States)

    Goes, S. D. B.; Fourel, L.; Morra, G.

    2014-12-01

    Most subduction trenches retreat, not only today but throughout the Cenozoic. However, a few trenches clearly advance during part of the evolution, including Izu-Bonin Marianas (IBM) and Kermadec. Trench retreat is well understood as a basic consequence of slab pull, but it is debated what causes trench advance. The IBM trench underwent a complex evolution: right after its initiation, it rotated clockwise, leading to very fast retreat in the north and slow retreat in the south. But since 10-15 Ma, IBM trench motions have switched to advance at the southern end, and since 5 Ma also the northern end is advancing. Based on 2-D subduction models, it has been proposed proposed that the change in age of the subducting plate at the IBM trench (from 40-70 m.y. at the initiation of the trench 45 m.y. ago to 100-140 m.y. lithosphere subducting at the trench today) and its effect on plate strength could explain the transition from trench retreat to trench advance, and that the age gradient (younger in the north and older in the south) could explain the rotation of the trench. However, with new 3-D coupled fluid-solid subduction model where we can include such lateral age gradients, we find that this does not yield the observed behaviour. Instead, we propose an alternative mechanism, involving the subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench and show that it can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  13. Coronavirus-like particles in laboratory rabbits with different syndromes in The Netherlands (Coronavirus-like particles in rabbits).

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); J.S. Teppema; G. van Steenis (Bert)

    1982-01-01

    textabstractVirus-like particles were identified from the plasma of rabbits which developed pleural effusion disease after inoculation with different strains of Treponema pallidum. These particles were considered coronavirus-like on the basis of their size, morphology, and buoyant density. Clinical

  14. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Haiqing Yu

    2016-01-01

    Full Text Available Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.

  15. Simulating Osmotic Equilibria: A New Tool for Calculating Activity Coefficients in Concentrated Aqueous Salt Solutions.

    Science.gov (United States)

    Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François

    2017-10-19

    Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.

  16. High-throughput ab-initio dilute solute diffusion database.

    Science.gov (United States)

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-19

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  17. Precision Orbit Derived Atmospheric Density: Development and Performance

    Science.gov (United States)

    McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.

    2012-09-01

    Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer

  18. SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information

    DEFF Research Database (Denmark)

    Hansen, Thomas Mejer; Cordua, Knud Skou; Caroline Looms, Majken

    2013-01-01

    on the solution. The combined states of information (i.e. the solution to the inverse problem) is a probability density function typically referred to as the a posteriori probability density function. We present a generic toolbox for Matlab and Gnu Octave called SIPPI that implements a number of methods...

  19. Observed relationships between wood density and solution uptake during pressure treatment

    Science.gov (United States)

    Steve Halverson; Stan Lebow

    2011-01-01

    A better understanding of the relationship between wood properties and solution uptake during pressure treatment could lead to improvements in treatment quality and more efficient use of preservatives. In this study several years of treatment data representing a range of wood species, charge conditions and preservative formulations were analyzed to evaluate the...

  20. Solute-vacancy binding in aluminum

    International Nuclear Information System (INIS)

    Wolverton, C.

    2007-01-01

    Previous efforts to understand solute-vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute-vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute-vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al-Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute-vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V

  1. MULTI-PARAMETRIC STUDY OF RISING 3D BUOYANT FLUX TUBES IN AN ADIABATIC STRATIFICATION USING AMR

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Sykora, Juan; Cheung, Mark C. M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Moreno-Insertis, Fernando [Instituto de Astrofísica de Canarias, E-38200 La Laguna (Tenerife) (Spain)

    2015-11-20

    We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.

  2. MULTI-PARAMETRIC STUDY OF RISING 3D BUOYANT FLUX TUBES IN AN ADIABATIC STRATIFICATION USING AMR

    International Nuclear Information System (INIS)

    Martínez-Sykora, Juan; Cheung, Mark C. M.; Moreno-Insertis, Fernando

    2015-01-01

    We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street

  3. On the use of the standard k-e turbulence model in GOTHIC to simulate buoyant flows with light gases

    International Nuclear Information System (INIS)

    Andreani, M.; Smith, B.

    2003-01-01

    Helium is used as a simulant of hydrogen in tests aiming at reproducing conditions in the containment of a nuclear reactor relevant for severe accident scenarios. In the frame of the TEMPEST Project of the 5 th European Framework Programme, the task to demonstrate that gas distribution results obtained using helium can be considered representative of the behaviour of hydrogen is addressed in a cylindrical vessel geometry using experiments in a mid-scale facility. Scoping test calculations using the GOTHIC code are used for the designing of the tests, which include low-injection velocity conditions. In order to provide trustworthy results, the GOTHIC code was first validated against results for similar conditions obtained in the Large Scale Gas Mixing Facility (LSGMF) in Canada. In particular, it was investigated whether the standard k-ε turbulence model implemented in the code was capable to produce sufficiently accurate results or the RNG variant implemented in an in-house version of the code is more appropriate. This investigation was therefore the occasion to obtain an evaluation of the capabilities of the two turbulence models within the structure of the GOTHIC code to predict the distribution of non-condensables under conditions of low velocity, highly buoyant injections. In general, the standard k-ε turbulence model provided more accurate results

  4. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures

    Science.gov (United States)

    Kanno, H.; Kajiwara, K.; Miyata, K.

    2010-05-01

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  5. Electrolyte solutions at curved electrodes. II. Microscopic approach.

    Science.gov (United States)

    Reindl, Andreas; Bier, Markus; Dietrich, S

    2017-04-21

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  6. Density and volume measurements of reprocessing plant feed

    International Nuclear Information System (INIS)

    Platzer, R.; Carrier, M.; Neuilly, M.; Dedaldechamp, P.

    1985-05-01

    A theoretical study of the phenomenon of gas bubbles formation within a liquid led to an adaptation of the differential pressure bubbling technique for the measurement of liquid levels and densities in tanks. Experiments, carried out on a 800 liters tank with water and uranyl nitrate solutions had the double aim to study the precision attainable on volume and density measurements and to design a method for corrections of influencing factors. In parallel, procedures for transfer of known volumes through the use of siphons and for tank calibration by liquid level measurement are also investigated. The paper presents the first results obtained so far and the conclusions to be drawn for the elaboration of calibration and exploitation procedures suitables for use in reprocessing plants. The demonstration to transfer mass of solution with an accuracy of 0.1% is made [fr

  7. Culture-independent quantification of Salmonella enterica in carcass gauze swabs by flotation prior to real-time PCR

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Schelin, Jenny; Norling, Börje

    2011-01-01

    To facilitate quantitative risk assessment in the meat production chain, there is a need for culture-independent quantification methods. The aim of this study was to evaluate the use of flotation, a non-destructive sample preparation method based on traditional buoyant density centrifugation...

  8. The influence of surface roughness and solution concentration on pool boiling process in Diethanolamine aqueous solution

    Science.gov (United States)

    Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza

    2018-04-01

    In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface

  9. The Support of Long Wavelength Loads on Venus

    Science.gov (United States)

    Benerdt, W. B.; Saunders, R. S.

    1985-01-01

    One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).

  10. Electrical Discharge Platinum Machining Optimization Using Stefan Problem Solutions

    Directory of Open Access Journals (Sweden)

    I. B. Stavitskiy

    2015-01-01

    Full Text Available The article presents the theoretical study results of platinum workability by electrical discharge machining (EDM, based on the solution of the thermal problem of moving the boundary of material change phase, i.e. Stefan problem. The problem solution enables defining the surface melt penetration of the material under the heat flow proceeding from the time of its action and the physical properties of the processed material. To determine the rational EDM operating conditions of platinum the article suggests relating its workability with machinability of materials, for which the rational EDM operating conditions are, currently, defined. It is shown that at low densities of the heat flow corresponding to the finishing EDM operating conditions, the processing conditions used for steel 45 are appropriate for platinum machining; with EDM at higher heat flow densities (e.g. 50 GW / m2 for this purpose copper processing conditions are used; at the high heat flow densities corresponding to heavy roughing EDM it is reasonable to use tungsten processing conditions. The article also represents how the minimum width of the current pulses, at which platinum starts melting and, accordingly, the EDM process becomes possible, depends on the heat flow density. It is shown that the processing of platinum is expedient at a pulse width corresponding to the values, called the effective pulse width. Exceeding these values does not lead to a substantial increase in removal of material per pulse, but considerably reduces the maximum repetition rate and therefore, the EDM capacity. The paper shows the effective pulse width versus the heat flow density. It also presents the dependences of the maximum platinum surface melt penetration and the corresponding pulse width on the heat flow density. Results obtained using solutions of the Stephen heat problem can be used to optimize EDM operating conditions of platinum machining.

  11. Limit cycle analysis of nuclear coupled density wave oscillations

    International Nuclear Information System (INIS)

    Ward, M.E.

    1985-01-01

    An investigation of limit cycle behavior for the nuclear-coupled density wave oscillation (NCDWO) in a boiling water reactor (BWR) was performed. A simplified nonlinear model of BWR core behavior was developed using a two-region flow channel representation, coupled with a form of the point-kinetics equation. This model has been used to investigate the behavior of large amplitude NCDWO's through conventional time-integration solutions and through application of a direct relaxation-oscillation limit cycle solution in phase space. The numerical solutions demonstrate the potential for severe global power and flow oscillations in a BWR core at off-normal conditions, such as might occur during Anticipated Transients without Scram. Because of the many simplifying assumptions used, it is felt that the results should not be interpreted as an absolute prediction of core behavior, but as an indication of the potential for large oscillations and a demonstration of the corresponding limit cycle mechanisms. The oscillations in channel density drive the core power variations, and are reinforced by heat flux variations due to the changing fuel temperature. A global temperature increase occurs as energy is accumulated in the fuel, and limits the magnitude of the oscillations because as the average channel density decreases, the amplitude and duration of positive void reactivity at a given oscillation amplitude is lessened

  12. Study of accurate volume measurement system for plutonium nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Hosoma, T. [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-12-01

    It is important for effective safeguarding of nuclear materials to establish a technique for accurate volume measurement of plutonium nitrate solution in accountancy tank. The volume of the solution can be estimated by two differential pressures between three dip-tubes, in which the air is purged by an compressor. One of the differential pressure corresponds to the density of the solution, and another corresponds to the surface level of the solution in the tank. The measurement of the differential pressure contains many uncertain errors, such as precision of pressure transducer, fluctuation of back-pressure, generation of bubbles at the front of the dip-tubes, non-uniformity of temperature and density of the solution, pressure drop in the dip-tube, and so on. The various excess pressures at the volume measurement are discussed and corrected by a reasonable method. High precision-differential pressure measurement system is developed with a quartz oscillation type transducer which converts a differential pressure to a digital signal. The developed system is used for inspection by the government and IAEA. (M. Suetake)

  13. An analytical calculation of the axial density profile for 1-d slab expansion

    International Nuclear Information System (INIS)

    Ho, D

    1999-01-01

    Obtaining an analytical expression for the axial density profile can provide us with a quick and convenient way to evaluate the density evolution for targets with different densities and dimensions. In this note, we show that such an analytical expression can be obtained based on the self-similar solutions and the method of characteristics for 1-D slab expansion

  14. Rational Density Functional Selection Using Game Theory.

    Science.gov (United States)

    McAnanama-Brereton, Suzanne; Waller, Mark P

    2018-01-22

    Theoretical chemistry has a paradox of choice due to the availability of a myriad of density functionals and basis sets. Traditionally, a particular density functional is chosen on the basis of the level of user expertise (i.e., subjective experiences). Herein we circumvent the user-centric selection procedure by describing a novel approach for objectively selecting a particular functional for a given application. We achieve this by employing game theory to identify optimal functional/basis set combinations. A three-player (accuracy, complexity, and similarity) game is devised, through which Nash equilibrium solutions can be obtained. This approach has the advantage that results can be systematically improved by enlarging the underlying knowledge base, and the deterministic selection procedure mathematically justifies the density functional and basis set selections.

  15. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    Science.gov (United States)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  16. Solutes and cells - aspects of advection-diffusion-reaction phenomena in biochips

    DEFF Research Database (Denmark)

    Vedel, Søren

    2012-01-01

    the dependencies on density. This shows that the varied single-cell behavior including the overall modulations imposed by density arise as a natural consequence of pseudopod-driven motility in a social context. The final subproject concerns the combined effects of advection, diffusion and reaction of several......Cell’), and the overall title of the project is Solutes and cells — aspects of advection-diffusion-reaction phenomena in biochips. The work has consisted of several projects focusing on theory, and to some extend analysis of experimental data, with advection-diffusion-reaction phenomena of solutes as the recurring theme...... quantitatively interpret the proximal concentration of specific solutes, and integrate this to achieve biological functions. In three specific examples, the author and co-workers have investigated different aspects of the influence of advection, diffusion and reaction on solute distributions, as well...

  17. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    Science.gov (United States)

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  18. Reducing the Density and Number of Tobacco Retailers: Policy Solutions and Legal Issues.

    Science.gov (United States)

    Ackerman, Amy; Etow, Alexis; Bartel, Sara; Ribisl, Kurt M

    2017-02-01

    Because higher density of tobacco retailers is associated with greater tobacco use, U.S. communities seek ways to reduce the density and number of tobacco retailers. This approach can reduce the concentration of tobacco retailers in poorer communities, limit youth exposure to tobacco advertising, and prevent misleading associations between tobacco and health messaging. Communities can reduce the density and number of tobacco retailers by imposing minimum distance requirements between existing retailers, capping the number of retailers in a given geographic area, establishing a maximum number of retailers proportional to population size, and prohibiting sales at certain types of establishments, such as pharmacies, or within a certain distance of locations serving youth. Local governments use direct regulation, licensing, or zoning laws to enact these changes. We analyze each approach under U.S. constitutional law to assist communities in selecting and implementing one or more of these methods. There are few published legal opinions that address these strategies in the context of tobacco control. But potential constitutional challenges include violations of the Takings Clause of the Fifth Amendment, which protects property owners from onerous government regulations, and under the Fourteenth Amendment's Equal Protection and Due Process Clauses, which protect business owners from arbitrary or unreasonable regulations that do not further a legitimate government interest. Because there is an evidentiary basis linking the density of tobacco retailers to smoking rates in a community, courts are likely to reject constitutional challenges to carefully crafted laws that reduce the number of tobacco retailers. Our review of the relevant constitutional issues confirms that local governments have the authority to utilize laws and policies to reduce the density and number of tobacco retailers in their communities, given existing public health data. The analysis guides policy

  19. Density functional representation of quantum chemistry. II. Local quantum field theories of molecular matter in terms of the charge density operator do not work

    International Nuclear Information System (INIS)

    Primas, H.; Schleicher, M.

    1975-01-01

    A comprehensive review of the attempts to rephrase molecular quantum mechanics in terms of the particle density operator and the current density or phase density operator is given. All pertinent investigations which have come to attention suffer from severe mathematical inconsistencies and are not adequate to the few-body problem of quantum chemistry. The origin of the failure of these attempts is investigated, and it is shown that a realization of a local quantum field theory of molecular matter in terms of observables would presuppose the solution of many highly nontrivial mathematical problems

  20. Spectrophotometric determination of zinc in impure solutions

    International Nuclear Information System (INIS)

    Rodriguez Hernandez, B.; Reyes Tamaral, A.

    1972-01-01

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs

  1. Effects of solution P H on the adsorption of aromatic compounds from aqueous solutions by activated carbon

    International Nuclear Information System (INIS)

    Nouri, S.; Haghseresht, F.; Lu, M.

    2002-01-01

    Absorption of p-Cresol, Benzoic acid and Nitro Benzene by activated carbon from dilute aqueous solutions was carried out under controlled ph conditions at 310 k. In acidic conditions, well below the pK a of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent of adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular forms of the aromatic solutes was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher P H values was found to be dependent on the concentration of anionic form of the solutes. All isotherms were fitted into Freundlich Isotherm Equations

  2. [Enhancement effect of double-beam laser processed aqueous solution on ICP emission spectrum].

    Science.gov (United States)

    Chen, Jin-zhong; Xu, Li-jing; Su, Hong-xin; Li, Xu; Wang, Shu-fang

    2015-01-01

    In order to change the physical properties of aqueous solution and improve the radiation intensity of the ICP emission spectrum, the effects of different laser power density and irradiation time on the surface tension and viscosity of aqueous solution were investigated by using near infrared laser at 976 nm and CO2 laser at 10. 6 µm to irradiate aqueous solution orthogonally, then the enhancement of ICP spectral intensity with processed solution was discussed. The results showed that the surface tension and viscosity of aqueous solution reduced by 42. 13% and 14. 03% compared with the untreated, and the atomization efficiency increased by 51.26% at the laser power density 0. 265 7 W . cm-2 of 976 nm and 0. 206 9 W . cm-2 of CO2 laser with 40 min irradiation time. With the optimized aqueous solution introduced into the ICP source, the spectral line intensity of sample elements As, Cd, Cr, Hg and Pb was enhanced by 46.29%, 94. 65%, 30. 76%, 33.07% and 94. 58% compared to the untreated aqueous solution, while the signal-to-background ratio increased by 43. 84%, 85. 35%, 28. 71%, 34. 37% and 90. 91%, respectively. Plasma temperature and electron density also increased by 5. 94% and 1. 18% respectively. It is obvious that the method of double-beam laser orthogonal irradiation on solution can reduce the surface tension and viscosity of aqueous solution significantly, and raise the radiationintensity of ICP source, and will provide a better condition for detecting the trace heavy metal elements in water samples.

  3. On the Theory of Solitons of Fluid Pressure and Solute Density in Geologic Porous Media, with Applications to Shale, Clay and Sandstone

    Science.gov (United States)

    Caserta, A.; Kanivetsky, R.; Salusti, E.

    2017-11-01

    We here analyze a new model of transients of pore pressure p and solute density ρ in geologic porous media. This model is rooted in the nonlinear wave theory, its focus is on advection and effect of large pressure jumps on strain. It takes into account nonlinear and also time-dependent versions of the Hooke law about stress, rate and strain. The model solutions strictly relate p and ρ evolving under the effect of a strong external stress. As a result, the presence of quick and sharp transients in low permeability rocks is unveiled, i.e., the nonlinear "Burgers solitons". We, therefore, show that the actual transport process in porous rocks for large signals is not only the linear diffusion, but also a solitons presence could control the process. A test of a presence of solitons is applied to Pierre shale, Bearpaw shale, Boom clay and Oznam-Mugu silt and clay. An application about the presence of solitons for nuclear waste disposal and salt water intrusions is also discussed. Finally, in a kind of "theoretical experiment" we show that solitons could also be present in higher permeability rocks (Jordan and St. Peter sandstones), thus supporting the idea of a possible occurrence of osmosis also in sandstones.

  4. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  5. Isospectral Flows for the Inhomogeneous String Density Problem

    Science.gov (United States)

    Górski, Andrzej Z.; Szmigielski, Jacek

    2018-02-01

    We derive isospectral flows of the mass density in the string boundary value problem corresponding to general boundary conditions. In particular, we show that certain class of rational flows produces in a suitable limit all flows generated by polynomials in negative powers of the spectral parameter. We illustrate the theory with concrete examples of isospectral flows of discrete mass densities which we prove to be Hamiltonian and for which we provide explicit solutions of equations of motion in terms of Stieltjes continued fractions and Hankel determinants.

  6. Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    Science.gov (United States)

    Hecht, Vivian C.; Son, Sungmin; Li, Yingzhong; Knudsen, Scott M.; Olcum, Selim; Higgins, John M.; Chen, Jianzhu; Grover, William H.; Manalis, Scott R.

    2013-01-01

    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell. PMID:23844039

  7. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 2. Effect of type of alkaline solution on permeability of compacted bentonite-sand mixture

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2011-01-01

    Permeability tests were carried out using compacted bentonite-sand mixture with initial dry density of 1.55 Mg/m 3 and alkaline solutions at 50degC for about two years to estimate the alteration behavior and the change in the permeability. Bentonite-sand mixtures which contain bentonites of 15wt% were made using Na-bentonite or Ca-exchanged bentonite. 0.3M-NaOH solution with pH 13.3 and 5mM-Ca(OH) 2 solution with pH 12.0 were used to the permeability tests of Na-bentonite-sand mixture and of Ca-exchanged bentonite-sand mixture, respectively. In the case of the permeability test conducted using NaOH solution, montmorillonite and other associated minerals were dissolved, and consequently, the dry density and effective montmorillonite density of Na-bentonite-sand mixture were decreased. Furthermore, the mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Na-bentonite-sand mixture was increased 5.6 times by the end of permeability test as a result of above alteration. In the case of the permeability test conducted using Ca(OH) 2 solution, montmorillonite and other associated minerals were dissolved, and calcium silicate hydrate (C-S-H) was precipitated. Consequently, the dry density of Ca-exchanged bentonite-sand mixture was increased, while the effective montmorillonite density was decreased. The mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Ca-exchange bentonite-sand mixture was decreased by more than two orders of magnitude due to fill the pore of Ca-exchange bentonite-sand mixture by the precipitation of C-S-H. From above results, the type of alkaline solution affects the mineralogical alteration behavior of the compacted bentonite-sand mixture, and consequently, affects the changing trend of permeability. In conclusion, it is important not only to consider the dissolution of montmorillonite, but

  8. Influence of solutes on heavy ion induced void-swelling in binary copper alloys

    International Nuclear Information System (INIS)

    Leister, K.H.

    1983-05-01

    As radiation induced swelling of metals depends on their constitution, swelling of copper and copper alloys with low solute concentration is studied. Diffusion coefficients and solubility of solute in copper were used as criteria of selection of the alloys. The samples were irradiated by 200keV copper ions. Swelling and void densities were measured by transmission electron microscopy. The measurements show low dependence of swelling upon the diffusibility of the solute in the solvent and a strong dependence on their concentration. Alloys of 0.1at% solute show more swelling than pure copper, and alloys of 1at% show less swelling under the irradiation conditions. The different swelling behavior in Cu-Ni alloys is due to the different void densities. (orig.) [de

  9. Approximate analytical solutions to the condensation-coagulation equation of aerosols

    DEFF Research Database (Denmark)

    Smith, Naftali R.; Shaviv, Nir J.; Svensmark, Henrik

    2016-01-01

    to the coagulation limit plus a condensation correction. Our solutions are then compared with numerical results. We show that the solutions can be used to estimate the sensitivity of the cloud condensation nuclei number density to the nucleation rate of small condensation nuclei and to changes in the formation rate...

  10. High-density housing that works for all

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Arif

    2010-03-15

    In an urbanising world, the way people fit into cities is vastly important - socially, economically, environmentally, even psychologically. So density, or the number of people living in a given area, is central to urban design and planning. Both governments and markets tend to get density wrong, leading to overcrowding, urban sprawl or often both. A case in point are the high-rise buildings springing up throughtout urban Asia - perceived as key features of that widely touted concept, the 'world-class city'. While some may offer a viable solution to land pressures and density requirements, many built to house evicted or resettled 'slum' dwellers are a social and economic nightmare - inconveniently sited, overcrowded and costly. New evidence from Karachi, Pakistan, reveals a real alternative. Poor people can create liveable high-density settlements as long as community control, the right technical assistance and flexible designs are in place. A city is surely 'world-class' only when it is cosmopolitan – built to serve all, including the poorest.

  11. ADN* Density log estimation Using Rockcell*

    International Nuclear Information System (INIS)

    Okuku, C.; Iloghalu, Emeka. M.; Omotayo, O.

    2003-01-01

    This work is intended to inform on the possibilities of estimating good density data in zones associated with sliding in a reservoir with ADN* tool with or without ADOS in string in cases where repeat sections were not done, possibly due to hole stability or directional concerns. This procedure has been equally used to obtain a better density data in corkscrew holes. Density data (ROBB) was recomputed using neural network in RockCell* to estimate the density over zones of interest. RockCell* is a Schlumberger software that has neural network functionally which can be used to estimate missing logs using the combination of the responses of other log curves and intervals that are not affected by sliding. In this work, an interval was selected and within this interval twelve litho zones were defined using the unsupervised neural network. From this a training set was selected based on intervals of very good log responses outside the sliding zones. This training set was used to train and run the neural network for a specific lithostratigraphic interval. The results matched the known good density curve. Then after this, an estimation of the density curve was done using the supervised neural network. The output from this estimation matched very closely in the good portions of the log, thus providing some density measurements in the sliding zone. This methodology provides a scientific solution to missing data during the process of Formation evaluation

  12. Experimental characterization of the spreading and break-up of liquid flat-fan sheets discharging in a low-density atmosphere and application to BrLi solutions

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, E. [Universidad Politecnica de Madrid (Spain). Departamento de Mecanica Industrial; Nogueira, J.; Rodriguez, P.A.; Lecuona, A. [Universidad Carlos III de Madrid (Spain). Departamento de Ingenieria Termica y de Fluidos

    2009-02-15

    This work presents and characterizes the existence of two different regimes in the spreading and break-up of liquid flat-fan sheets when discharging in low-density atmospheres. The motivation of the study is the improvement on the absorption phenomena of lithium bromide aqueous solution when discharging in a 600-1,500 Pa water vapor environment. This corresponds to the absorber conditions in current absorption closed-cycle cooling machines. Despite this, the dimensionless characterization obtained has universal validity. The conditions that define the change in the break-up regime, the dimensionless sheet break-up length and the break-up time are given as a function of the parameters involved. Digital particle tracking velocimetry (PTV) has been applied to measure the velocity field and additional visualization techniques have been used to further characterize the break-up process. The experiments verify the existence of critical gas-to-liquid density and viscosity ratios below which gas to liquid interaction becomes negligible. The article also offers expressions that define their values as a function of the other dimensionless parameters. (orig.)

  13. Volumetric and viscometric studies of glucose in binary aqueous solutions of urea at different temperatures

    International Nuclear Information System (INIS)

    Samanta, T.; Saharay, S.K.

    2010-01-01

    Densities and viscosities of glucose in (1.0, 2.5, and 5.0) mass% aqueous urea solutions have been measured at T = (298.15, 303.15, 308.15, and 313.15) K, respectively. Apparent molar volumes, limiting partial molar volume, and relative viscosity have been obtained from the density and viscosity results. Limiting partial molar expansibilities have also been calculated from the temperature dependence of limiting partial molar volumes. The viscosity data have been analyzed by using the modified Jones-Dole equation. The results are used to establish the nature of solute-solute and solute-solvent interactions. Transition state treatment of the relative viscosity was also used for the calculation of activation parameters of viscous flow. Pour findings show that the solute acts as a water structure former and provides strong solute-solvent interaction.

  14. Volumetric and viscometric studies of urea in binary aqueous solutions of glucose at different temperatures

    International Nuclear Information System (INIS)

    Samanta, T.; Ray, A.

    2010-01-01

    Densities and viscosities of urea in (1.0, 2.5, and 5.0) mass% of aqueous glucose solutions have been measured at T = (298.15, 303.15, 308.15, and 313.15) K, respectively. Apparent molar volumes, limiting partial molar volume, and relative viscosity have been obtained from the density and viscosity data. Limiting partial molar expansibilities have also been calculated from the temperature dependence of limiting partial molar volumes. The viscosity data has been analyzed using the Jones-Dole equation. The results are used to establish the nature of solute-solute and solute-solvent interactions. The activation parameters of viscous flow have also been calculated on the basis of transition state treatment of the relative viscosity. Result shows that the solute acts as water structure breaker and posses' weak solute-solvent interaction.

  15. Solution-Processed Organic and Halide Perovskite Transistors on Hydrophobic Surfaces.

    Science.gov (United States)

    Ward, Jeremy W; Smith, Hannah L; Zeidell, Andrew; Diemer, Peter J; Baker, Stephen R; Lee, Hyunsu; Payne, Marcia M; Anthony, John E; Guthold, Martin; Jurchescu, Oana D

    2017-05-31

    Solution-processable electronic devices are highly desirable due to their low cost and compatibility with flexible substrates. However, they are often challenging to fabricate due to the hydrophobic nature of the surfaces of the constituent layers. Here, we use a protein solution to modify the surface properties and to improve the wettability of the fluoropolymer dielectric Cytop. The engineered hydrophilic surface is successfully incorporated in bottom-gate solution-deposited organic field-effect transistors (OFETs) and hybrid organic-inorganic trihalide perovskite field-effect transistors (HTP-FETs) fabricated on flexible substrates. Our analysis of the density of trapping states at the semiconductor-dielectric interface suggests that the increase in the trap density as a result of the chemical treatment is minimal. As a result, the devices exhibit good charge carrier mobilities, near-zero threshold voltages, and low electrical hysteresis.

  16. Crossover to entangled dynamics in polymer solutions and melts

    International Nuclear Information System (INIS)

    Schweizer, K.S.; Szamel, G.

    1995-01-01

    A statistical dynamical theory of the crossover from unentangled Rouse dynamics to entangled behavior is constructed for chain polymer solutions and melts. Both time and spatial crossovers in long chain fluids, and the degree of polymerization crossover for short polymers, are treated. The analysis is based on a microscopic theory of the perturbative dynamical corrections to Rouse theory arising from chain connectivity and intermolecular excluded volume forces. The dependence of crossover properties such as the plateau shear modulus and entanglement time and length scale on solution density, solvent quality, and chain statistical segment length are derived by combining the dynamical theory with equilibrium liquid state integral equation methods. Scaling relations are obtained which appear to be in general accord with most experiments on both solutions and melts. The physical origin of the predicted scaling behaviors is the fractional power law temporal decay of the entanglement friction memory function on intermediate time scales, and power law reduced density dependence of the equilibrium force correlations. The theory is also applied to compute the dependence of the chain normal mode relaxation times on polymer density and chain length. Favorable qualitative comparisons with recent neutron spin echo experiments are made. copyright 1995 American Institute of Physics

  17. Thermodynamic mixing properties of the UO{sub 2}–HfO{sub 2} solid solution: Density functional theory and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ke, E-mail: keyuan@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Becker, Udo [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-03-15

    HfO{sub 2} is a neutron absorber and has been mechanically mixed with UO{sub 2} in nuclear fuel in order to control the core power distribution. During nuclear fission, the temperature at the center of the fuel pellet can reach above 1300 K, where hafnium may substitute uranium and form the binary solid solution of UO{sub 2}–HfO{sub 2}. UO{sub 2} adopts the cubic fluorite structure, but HfO{sub 2} can occur in monoclinic, tetragonal, and cubic structures. The distribution of Hf and U ions in the UO{sub 2}–HfO{sub 2} binary and its atomic structure influence the thermal conductivity and melting point of the fuel. However, experimental data on the UO{sub 2}–HfO{sub 2} binary are limited. Therefore, the enthalpies of mixing of the UO{sub 2}–HfO{sub 2} binary with three different structures were calculated in this study using density functional theory and subsequent Monte Carlo simulations. The free energy of mixing was obtained from thermodynamic integration of the enthalpy of mixing over temperature. From the ΔG of mixing, a phase diagram of the binary was obtained. The calculated UO{sub 2}–HfO{sub 2} binary forms extensive solid solution across the entire compositional range, but there are a variety of possible exsolution phenomena associated with the different HfO{sub 2} polymorphs. As the structure of the HfO{sub 2} end member adopts lower symmetry and becomes less similar to cubic UO{sub 2}, the miscibility gap of the phase diagram expands, accompanied by an increase in cell volume by 7–10% as the structure transforms from cubic to monoclinic. Close to the UO{sub 2} end member, which is relevant to the nuclear fuel, the isometric uranium-rich solid solutions exsolve as the fuel cools, and there is a tendency to form the monoclinic hafnium-rich phase in the matrix of the isometric, uranium-rich solid solution phase.

  18. Regularized Regression and Density Estimation based on Optimal Transport

    KAUST Repository

    Burger, M.; Franek, M.; Schonlieb, C.-B.

    2012-01-01

    for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations

  19. The electronic density of states of disordered compounds

    International Nuclear Information System (INIS)

    Geertsma, W.; Dijkstra, J.

    1984-11-01

    Recently, the electronic properties of liquid alkali (Li, Na, K, Rb, Cs)-group IV (Si, Ge, Sn, Pb) alloys have been discussed by the present authors using a tight-binding model. Only anion orbitals (= group IV) are taken into account. Disorder is described by a pseudo lattice, which takes into account local coordination in one of the sublattices (cation or anion) only. In the first part of this paper it is shown that this approximation is consistent with the usual valence rules used by structural chemists for crystalline structures. In the second part of the paper the solutions for the density of states of the tight-binding Hamiltonian are studied for a number of pseudolattices. The infinite set of Green function equations is solved by using the effective transfer method, which replaces the famous Block condition. It is shown that such a model can explain the formation of bandgaps in disordered systems. By choosing the proper smallest cluster(s) of transfer loops to model the real structure by a pseudolattice, a density of states is obtained which represents properly that of the corresponding crystalline structure. Structures reminiscent to those caused by van Hove singularities already appear in the electronic density of states when relatively small cluster(s) of transfer loops are used. The approach outlined in this paper is capable of describing the electronic density of states due to various degrees of local order in a sublattice. Some of the peculiarities occurring in the solution of the density of states of certain pseudolattices, such as poles outside the band, are discussed in an appendix. (author)

  20. Density meter algorithm and system for estimating sampling/mixing uncertainty

    International Nuclear Information System (INIS)

    Shine, E.P.

    1986-01-01

    The Laboratories Department at the Savannah River Plant (SRP) has installed a six-place density meter with an automatic sampling device. This paper describes the statistical software developed to analyze the density of uranyl nitrate solutions using this automated system. The purpose of this software is twofold: to estimate the sampling/mixing and measurement uncertainties in the process and to provide a measurement control program for the density meter. Non-uniformities in density are analyzed both analytically and graphically. The mean density and its limit of error are estimated. Quality control standards are analyzed concurrently with process samples and used to control the density meter measurement error. The analyses are corrected for concentration due to evaporation of samples waiting to be analyzed. The results of this program have been successful in identifying sampling/mixing problems and controlling the quality of analyses

  1. Density meter algorithm and system for estimating sampling/mixing uncertainty

    International Nuclear Information System (INIS)

    Shine, E.P.

    1986-01-01

    The Laboratories Department at the Savannah River Plant (SRP) has installed a six-place density meter with an automatic sampling device. This paper describes the statisical software developed to analyze the density of uranyl nitrate solutions using this automated system. The purpose of this software is twofold: to estimate the sampling/mixing and measurement uncertainties in the process and to provide a measurement control program for the density meter. Non-uniformities in density are analyzed both analytically and graphically. The mean density and its limit of error are estimated. Quality control standards are analyzed concurrently with process samples and used to control the density meter measurement error. The analyses are corrected for concentration due to evaporation of samples waiting to be analyzed. The results of this program have been successful in identifying sampling/mixing problems and controlling the quality of analyses

  2. Time-dependent density functional theory/discrete reaction field spectra of open shell systems: The visual spectrum of [FeIII(PyPepS)2]- in aqueous solution.

    Science.gov (United States)

    van Duijnen, Piet Th; Greene, Shannon N; Richards, Nigel G J

    2007-07-28

    We report the calculated visible spectrum of [FeIII(PyPepS)2]- in aqueous solution. From all-classical molecular dynamics simulations on the solute and 200 water molecules with a polarizable force field, 25 solute/solvent configurations were chosen at random from a 50 ps production run and subjected the systems to calculations using time-dependent density functional theory (TD-DFT) for the solute, combined with a solvation model in which the water molecules carry charges and polarizabilities. In each calculation the first 60 excited states were collected in order to span the experimental spectrum. Since the solute has a doublet ground state several excitations to states are of type "three electrons in three orbitals," each of which gives rise to a manifold of a quartet and two doublet states which cannot properly be represented by single Slater determinants. We applied a tentative scheme to analyze this type of spin contamination in terms of Delta and Delta transitions between the same orbital pairs. Assuming the associated states as pure single determinants obtained from restricted calculations, we construct conformation state functions (CFSs), i.e., eigenfunctions of the Hamiltonian Sz and S2, for the two doublets and the quartet for each Delta,Delta pair, the necessary parameters coming from regular and spin-flip calculations. It appears that the lower final states remain where they were originally calculated, while the higher states move up by some tenths of an eV. In this case filtering out these higher states gives a spectrum that compares very well with experiment, but nevertheless we suggest investigating a possible (re)formulation of TD-DFT in terms of CFSs rather than determinants.

  3. Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.

    2007-08-01

    Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.

  4. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.

    Science.gov (United States)

    Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S

    2016-05-04

    The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

  5. Solutions to the relativistic precession model

    NARCIS (Netherlands)

    Ingram, A.; Motta, S.

    2014-01-01

    The relativistic precession model (RPM) can be used to obtain a precise measurement of the mass and spin of a black hole when the appropriate set of quasi-periodic oscillations is detected in the power-density spectrum of an accreting black hole. However, in previous studies, the solution of the RPM

  6. A Novel Method for Fabricating Double Layers Porous Anodic Alumina in Phosphoric/Oxalic Acid Solution and Oxalic Acid Solution

    Directory of Open Access Journals (Sweden)

    Yanfang Xu

    2016-01-01

    Full Text Available A novel method for fabricating ordered double layers porous anodic alumina (DL-PAA with controllable nanopore size was presented. Highly ordered large pore layer with interpore distance of 480 nm was fabricated in phosphoric acid solution with oxalic acid addition at the potential of 195 V and the small pore layer was fabricated in oxalic acid solution at the potential from 60 to 100 V. Experimental results show that the thickness of large pore layer is linearly correlative with anodizing time, and pore diameter is linearly correlative with pore widening time. When the anodizing potential in oxalic acid solution was adjusted from 60 to 100 V, the small pore layers with continuously tunable interpore distance from 142 to 241 nm and pore density from 1.94×109 to 4.89×109 cm−2 were obtained. And the interpore distance and the pore density of small pore layers are closely correlative with the anodizing potential. The fabricated DL-PAA templates can be widely utilized for fabrication of ordered nanomaterials, such as superhydrophobic or gecko-inspired adhesive materials and metal or semiconductor nanowires.

  7. Investigation of ionizing radiation effect on albumin aqueous solutions

    International Nuclear Information System (INIS)

    Sizikov, A.M.; Adeeva, L.N.; Ogryzkova, I.F.

    1986-01-01

    Gamma radiation effect on 0.1-0.5%-albumin aqueous solutions has been investigated; variations of viscosity and optical density of solutions at pH medium different values and completeness of protein separation owing to radiation coagulation have been determined. It is shown that due to radiation coagulation it is possible to quantitatively separate albumin from irradiated aqueous solutions. The albumin coagulation is caused by OH radicals the action of which on albumin macromolecules results in destruction of intramolecular bonds and albumin conformation transformations

  8. High Density Digital Data Storage System

    Science.gov (United States)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  9. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.; Cha, Judy J.; Reed, Bryan W.; Wessells, Colin D.; Kong, Desheng; Cui, Yi

    2012-01-01

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  10. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  11. Measurement of the temperature of density maximum of water solutions using a convective flow technique

    OpenAIRE

    Cawley, M.F.; McGlynn, D.; Mooney, P.A.

    2006-01-01

    A technique is described which yields an accurate measurement of the temperature of density maximum of fluids which exhibit such anomalous behaviour. The method relies on the detection of changes in convective flow in a rectangular cavity containing the test fluid.The normal single-cell convection which occurs in the presence of a horizontal temperature gradient changes to a double cell configuration in the vicinity of the density maximum, and this transition manifests itself in changes in th...

  12. Aggrecan turnover in human intervertebral disc as determined by the racemization of aspartic acid

    NARCIS (Netherlands)

    Sivan, S.S.; Tsitron, E.; Wachtel, E.; Roughley, P.J.; Sakkee, N.; Ham, F. van der; Groot, J.de; Roberts, S.; Maroudas, A.

    2006-01-01

    We have used the racemization of aspartic acid as a marker for the "molecular age" of aggrecan components of the human intervertebral disc matrix (aggregating and non-aggregating proteoglycans as well as the different buoyant density fractions of aggrecan). By measuring the D/L Asp ratio of the

  13. Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach.

    Science.gov (United States)

    Sarkar, Abhijit; Sinha, Biswajit

    2016-11-15

    The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Torres, Andres Felipe

    2015-01-01

    Highlights: • Effect of α-amino acids on the temperature of maximum density of water is presented. • The addition of α-amino acids decreases the temperature of maximum density of water. • Despretz constants suggest that the amino acids behave as water structure breakers. • Despretz constants decrease as the number of CH 2 groups of the amino acid increase. • Solute disrupting effect becomes smaller as its hydrophobic character increases. - Abstract: The effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65 to 278.65) K at intervals of T = 0.50 K over the concentration range between (0.0300 and 0.1000) mol · kg −1 . A linear relationship between density and concentration was obtained for all the systems in the temperature range considered. The temperature of maximum density was determined from the experimental results. The effect of the three amino acids is to decrease the temperature of maximum density of water and the decrease is proportional to molality according to Despretz equation. The effect of the amino acids on the temperature of maximum density decreases as the number of methylene groups of the alkyl chain becomes larger. The results are discussed in terms of (solute + water) interactions and the effect of amino acids on water structure

  15. Discrimination of solvent from protein regions in native Fouriers as a means of evaluating heavy-atom solutions in the MIR and MAD methods

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    The presence of distinct regions of high and low density variation in electron-density maps is found to be a good indicator of the correctness of a heavy-atom solution in the MIR and MAD methods. An automated examination of the native Fourier is tested as a means of evaluation of a heavy-atom solution in MAD and MIR methods for macromolecular crystallography. It is found that the presence of distinct regions of high and low density variation in electron-density maps is a good indicator of the correctness of a heavy-atom solution in the MIR and MAD methods. The method can be used to evaluate heavy-atom solutions during MAD and MIR structure solutions and to determine the handedness of the structure if anomalous data have been measured

  16. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins

    DEFF Research Database (Denmark)

    Kingshott, P.; Thissen, H.; Griesser, H.J.

    2002-01-01

    The effects of pinning density, chain length, and 'cloud point' (CP) versus non-CP grafting conditions have been studied on the ability of polyethylene glycol (PEG) layers to minimize adsorption from a multicomponent (lysozyme, human serum albumin (HSA), IgG and lactoferrin) protein solution...... density) r.f.g.d. polymer layers. The PEG graft density was varied also by increasing the temperature and salt (K2SO4) content of the grafting solution; it reached a maximum at the CP of the PEGs. The CP reaction conditions were critical for producing PEG layers capable of minimizing protein adsorption. X...... density and chain length are interrelated, but the key factor is optimization of PEG chain density by use of the CP conditions, provided that a sufficient density of pinning sites exists. (C) 2002 Elsevier Science Ltd. Al l rights reserved....

  17. An Exact Solution of The Neutron Slowing Down Equation

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovic, D [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1970-07-01

    The slowing down equation for an infinite homogeneous monoatomic medium is solved exactly. The cross sections depend on neutron energy. The solution is given in analytical form within each of the lethargy intervals. This analytical form is the sum of probabilities which are given by the Green functions. The calculated collision density is compared with the one obtained by Bednarz and also with an approximate Wigner formula for the case of a resonance not wider than one collision interval. For the special case of hydrogen, the present solution reduces to Bethe's solution. (author)

  18. Automated MAD and MIR structure solution

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    A fully automated procedure for solving MIR and MAD structures has been developed using a scoring scheme to convert the structure-solution process into an optimization problem. Obtaining an electron-density map from X-ray diffraction data can be difficult and time-consuming even after the data have been collected, largely because MIR and MAD structure determinations currently require many subjective evaluations of the qualities of trial heavy-atom partial structures before a correct heavy-atom solution is obtained. A set of criteria for evaluating the quality of heavy-atom partial solutions in macromolecular crystallography have been developed. These have allowed the conversion of the crystal structure-solution process into an optimization problem and have allowed its automation. The SOLVE software has been used to solve MAD data sets with as many as 52 selenium sites in the asymmetric unit. The automated structure-solution process developed is a major step towards the fully automated structure-determination, model-building and refinement procedure which is needed for genomic scale structure determinations

  19. On the Solution of the Continuity Equation for Precipitating Electrons in Solar Flares

    Science.gov (United States)

    Emslie, A. Gordon; Holman, Gordon D.; Litvinenko, Yuri E.

    2014-01-01

    Electrons accelerated in solar flares are injected into the surrounding plasma, where they are subjected to the influence of collisional (Coulomb) energy losses. Their evolution is modeled by a partial differential equation describing continuity of electron number. In a recent paper, Dobranskis & Zharkova claim to have found an "updated exact analytical solution" to this continuity equation. Their solution contains an additional term that drives an exponential decrease in electron density with depth, leading them to assert that the well-known solution derived by Brown, Syrovatskii & Shmeleva, and many others is invalid. We show that the solution of Dobranskis & Zharkova results from a fundamental error in the application of the method of characteristics and is hence incorrect. Further, their comparison of the "new" analytical solution with numerical solutions of the Fokker-Planck equation fails to lend support to their result.We conclude that Dobranskis & Zharkova's solution of the universally accepted and well-established continuity equation is incorrect, and that their criticism of the correct solution is unfounded. We also demonstrate the formal equivalence of the approaches of Syrovatskii & Shmeleva and Brown, with particular reference to the evolution of the electron flux and number density (both differential in energy) in a collisional thick target. We strongly urge use of these long-established, correct solutions in future works.

  20. Density, speed of sound, viscosity and refractive index properties of aqueous solutions of vitamins B1.HCl and B6.HCl at temperatures (278.15, 288.15, and 298.15) K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Deshmukh, Dinesh W.; Paliwal, Lalitmohan J.

    2013-01-01

    Highlights: ► Study of aqueous solutions of vitamins B 1 .HCl and B 6 .HCl at different temperatures has been presented. ► These are important vitamins. ► Different interactions among solute and solvents have been investigated. ► The results are interpreted in terms of water structure making and breaking effects due to cations. -- Abstract: The experimental values of density (ρ), speed of sound (u), absolute viscosity (η) and refractive index (n D ) properties are reported for aqueous solutions of thiamine hydrochloride (vitamin B 1 .HCl) and pyridoxine hydrochloride (vitamin B 6 .HCl) within the concentration range (0.01 to 0.55) mol ⋅ kg −1 at three different temperatures, viz. T/K = 278.15, 288.15, and 298.15. Using experimental data, different derived parameters such as the apparent molar volume of solute (ϕ V ), isentropic compressibility of solution (β S ), apparent molar isentropic compressibility of solute (ϕ KS ) and relative viscosity of solution (η r ) have been computed. The limiting values of apparent molar volume (ϕ V 0 ) and apparent molar isentropic compressibility (ϕ KS 0 ) have been obtained. The limiting apparent molar expansivity (ϕ E 0 ) of solute, coefficient of thermal expansion (α ∗ ) and hydration numbers (n h ) of above vitamins in the aqueous medium have also been estimated. The experimental values of relative viscosity are used to calculate the Jones–Dole equation viscosity A and B coefficients for the hydrochlorides. The temperature coefficients of B i.e. (dB/dT) for these solutes have been used to study water structure making and breaking effects due to cations. Further, a discussion is made on the basis of solute–solute and solute–solvent interactions

  1. Redox flow batteries based on supporting solutions containing chloride

    Science.gov (United States)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  2. Redox flow batteries based on supporting solutions containing chloride

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2017-11-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  3. Densities mixture unfolding for data obtained from detectors with finite resolution and limited acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Gagunashvili, N.D., E-mail: nikolai@unak.is

    2015-04-01

    A procedure based on a Mixture Density Model for correcting experimental data for distortions due to finite resolution and limited detector acceptance is presented. Addressing the case that the solution is known to be non-negative, in the approach presented here, the true distribution is estimated by a weighted sum of probability density functions with positive weights and with the width of the densities acting as a regularization parameter responsible for the smoothness of the result. To obtain better smoothing in less populated regions, the width parameter is chosen inversely proportional to the square root of the estimated density. Furthermore, the non-negative garrote method is used to find the most economic representation of the solution. Cross-validation is employed to determine the optimal values of the resolution and garrote parameters. The proposed approach is directly applicable to multidimensional problems. Numerical examples in one and two dimensions are presented to illustrate the procedure.

  4. Survival of density subpopulations of rabbit platelets: use of 51Cr-or 111In-labeled platelets to measure survival of least dense and most dense platelets concurrently

    International Nuclear Information System (INIS)

    Rand, M.L.; Packham, M.A.; Mustard, J.F.

    1983-01-01

    The origin of the density heterogeneity of platelets was studied by measuring the survival of density subpopulations of rabbit platelets separated by discontinuous Stractan density gradient centrifugation. When a total population of 51 Cr-labelled platelets was injected into recipient rabbits, the relative specific radioactivity of the most dense platelets decreased rapidly. In contrast, that of the least dense platelets had not changed 24 hr after injection, and then decreased slowly. To distinguish between the possibilities that most dense platelets are cleared from the circulation more quickly than least dense platelets or that platelets decrease in density as they age in the circulation, the concurrent survival of least dense and most dense platelets, labelled with either 51 Cr or 111 In-labelled total platelet populations, determined concurrently in the same rabbits, are identical, calculated from 1 hr values as 100%. However, the 1-hr recovery of 111 In-labelled platelets was slightly but significantly less than that of 51 Cr-labelled platelets. Therefore, researchers studied the survival of 51 Cr-labelled least dense and 111 In-labelled most dense platelets as well as that of 111 In-labelled least dense and 51 Cr-labelled most dense platelets. Mean 1-hr recovery of least dense platelets, labelled with either isotope (78% +/- 7%, SD) was similar to that of most dense platelets, labelled with either isotope (77% +/- 8%; SD). Mean survival of least dense platelets was 47.3 +/- 18.7 hr (SD), which was significantly less than that of most dense platelets (76.1 +/- 21.6 hr; SD) (p less than 0.0025). These results indicate that platelets decrease in buoyant density as they age in the circulation and that most dense platelets are enriched in young platelets, and least dense in old

  5. A quick method for maintaining the molarity of NaOH solution during continuous etching of CR-39

    International Nuclear Information System (INIS)

    Khan, E.U.; Husaini, S.N.; Malik, F.; Sajid, M.; Karim, S.; Qureshi, I.E.

    2002-01-01

    A series of experiments have been performed to investigate the physio-chemical changes that occurred in the 6 M NaOH solution after etching CR-39 (Pershore and Homalite) detectors, each for 3, 6, 9, 12 and 15 h. Various physical parameters like concentration, electrical conductivity (EC) and density of the solutions have been measured after each etching interval. Results have been discussed in the light of stoichiometrical equation for the interaction of CR-39 with NaOH. It is found that the concentration, EC and the density of the solution, in which CR-39 has been etched, increase linearly with respect to the etching time. The inter-relationship of EC-concentration and density-concentration suggest that the concentration of the etchant can be maintained at certain desired value by adjusting the corresponding value of EC or density, measured through non-destructive and quick methods

  6. Solutions for the Cell Cycle in Cell Lines Derived from Human Tumors

    Directory of Open Access Journals (Sweden)

    B. Zubik-Kowal

    2006-01-01

    Full Text Available The goal of the paper is to compute efficiently solutions for model equations that have the potential to describe the growth of human tumor cells and their responses to radiotherapy or chemotherapy. The mathematical model involves four unknown functions of two independent variables: the time variable t and dimensionless relative DNA content x. The unknown functions can be thought of as the number density of cells and are solutions of a system of four partial differential equations. We construct solutions of the system, which allow us to observe the number density of cells for different t and x values. We present results of our experiments which simulate population kinetics of human cancer cells in vitro. Our results show a correspondence between predicted and experimental data.

  7. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  8. Measurement and COrrelation on Viscosity and Apparent Molar Volume of Ternary System for L—ascorbic Acid in Aqueous D—Glucose and Sucrose Solutions

    Institute of Scientific and Technical Information of China (English)

    赵长伟; 马沛生

    2003-01-01

    Visosities and densities at ,several temperatures from 293.15 K to 313.15K are reported for L-ascorbic acid in aqueous glucose and sucrose solutions at different concentrations.The parameters of density,Viscosity coefficient B and partial molar volume are calculated by regression.The experimental results show that densities and viscositis decrease as temperature increases at the same solute and solvent (glucose and sucrose aueous solution)concentrations,and increase with concentration of glucose and sucrose at the same solute concentration and temperature,B increases with concentration of glucose and sucrose and temaperature,L-ascorbic acid is sturcture-breaker or structure-making for the glucose and sucrose aqueous solutions ,Furthermore,the solute-solvent interactions in ternary systems of water-glucose-electrolyte and water-sucrose-electrolyte are discussed.

  9. Application of time-dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers

    NARCIS (Netherlands)

    van Faassen, M; de Boeij, PL; van Leeuwen, R; Berger, JA; Snijders, JG

    2003-01-01

    We provide a successful approach towards the solution of the longstanding problem of the large overestimation of the static polarizability of conjugated oligomers obtained using the local density approximation within density-functional theory. The local approximation is unable to describe the highly

  10. Effect of grid resolution and subgrid assumptions on the model prediction of a reactive buoyant plume under convective conditions

    International Nuclear Information System (INIS)

    Chock, D.P.; Winkler, S.L.; Pu Sun

    2002-01-01

    We have introduced a new and elaborate approach to understand the impact of grid resolution and subgrid chemistry assumption on the grid-model prediction of species concentrations for a system with highly non-homogeneous chemistry - a reactive buoyant plume immediately downwind of the stack in a convective boundary layer. The Parcel-Grid approach plume was used to describe both the air parcel turbulent transport and chemistry. This approach allows an identical transport process for all simulations. It also allows a description of subgrid chemistry. The ambient and plume parcel transport follows the description of Luhar and Britter (Atmos. Environ, 23 (1989) 1911, 26A (1992) 1283). The chemistry follows that of the Carbon-Bond mechanism. Three different grid sizes were considered: fine, medium and coarse, together with three different subgrid chemistry assumptions: micro-scale or individual parcel, tagged-parcel (plume and ambient parcels treated separately), and untagged-parcel (plume and ambient parcels treated indiscriminately). Reducing the subgrid information is not necessarily similar to increasing the model grid size. In our example, increasing the grid size leads to a reduction in the suppression of ozone in the presence of a high-NO x stack plume, and a reduction in the effectiveness of the NO x -inhibition effect. On the other hand, reducing the subgrid information (by using the untagged-parcel assumption) leads to an increase in ozone reduction and an enhancement of the NO x -inhibition effect insofar as the ozone extremum is concerned. (author)

  11. Thermophysical property characterization of aqueous amino acid salt solution containing serine

    International Nuclear Information System (INIS)

    Navarro, Shanille S.; Leron, Rhoda B.; Soriano, Allan N.; Li, Meng-Hui

    2014-01-01

    Highlights: • Thermophysical properties of aqueous potassium and sodium salt solutions of serine were studied. • Density, viscosity, refractive index and electrolytic conductivity of the solution were measured. • The concentrations of amino acid salt ranges from x 1 = 0.009 to 0.07. • The temperature range studied was (298.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: Thermophysical property characterization of aqueous potassium and sodium salt solutions containing serine was conducted in this study; specifically the system’s density, refractive index, electrical conductivity, and viscosity. Measurements were obtained over a temperature range of (298.15 to 343.15) K and at normal atmospheric pressure. Composition range from x 1 = 0.009 to 0.07 for aqueous potassium and sodium salt solutions containing serine was used. The sensitivity of the system’s thermophysical properties on temperature and composition variation were discussed and correlated based on the equations proposed for room temperature ionic liquids. The density, viscosity, and refractive index measurements of the aqueous systems were found to decrease as the temperature increases at fixed concentration and the values increase as the salt concentration increases (water composition decreases) at fixed temperature. Whereas, a different trend was observed for the electrical conductivity data; at fixed concentration, the conductivity values increase as the temperature increases and at fixed temperature, its value generally increases as the salt concentration increases but only to a certain level (specific concentration) wherein the conductivity of the solution starts to decrease when the concentration of the salt is further increased. Calculation results show that the applied models were satisfactory in representing the measured properties in the aqueous amino acid salt solution containing serine

  12. Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction

    Science.gov (United States)

    Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel

    2017-05-01

    The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.

  13. Density control of dodecamanganese clusters anchored on silicon(100).

    Science.gov (United States)

    Condorelli, Guglielmo G; Motta, Alessandro; Favazza, Maria; Nativo, Paola; Fragalà, Ignazio L; Gatteschi, Dante

    2006-04-24

    A synthetic strategy to control the density of Mn12 clusters anchored on silicon(100) was investigated. Diluted monolayers suitable for Mn12 anchoring were prepared by Si-grafting mixtures of the methyl 10-undecylenoate precursor ligand with 1-decene spectator spacers. Different ratios of these mixtures were tested. The grafted surfaces were hydrolyzed to reveal the carboxylic groups available for the subsequent exchange with the [Mn12O12(OAc)16(H2O)4]4 H2O2 AcOH cluster. Modified surfaces were analyzed by attenuated total reflection (ATR)-FTIR spectroscopy, X-ray photoemission spectroscopy (XPS), and AFM imaging. Results of XPS and ATR-FTIR spectroscopy show that the surface mole ratio between grafted ester and decene is higher than in the source solution. The surface density of the Mn12 cluster is, in turn, strictly proportional to the ester mole fraction. Well-resolved and isolated clusters were observed by AFM, using a diluted ester/decene 1:1 solution.

  14. SECOND-ORDER SOLUTIONS OF COSMOLOGICAL PERTURBATION IN THE MATTER-DOMINATED ERA

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim; Gong, Jinn-Ouk

    2012-01-01

    We present the growing mode solutions of cosmological perturbations to the second order in the matter-dominated era. We also present several gauge-invariant combinations of perturbation variables to the second order in the most general fluid context. Based on these solutions, we study the Newtonian correspondence of relativistic perturbations to the second order. In addition to the previously known exact relativistic/Newtonian correspondence of density and velocity perturbations to the second order in the comoving gauge, here we show that in the sub-horizon limit we have the correspondences for density, velocity, and potential perturbations in the zero-shear gauge and in the uniform-expansion gauge to the second order. Density perturbation in the uniform-curvature gauge also shows the correspondence to the second order in the sub-horizon scale. We also identify the relativistic gravitational potential that shows exact correspondence to the Newtonian one to the second order.

  15. Sourceless formation evaluation. An LWD solution providing density and neutron measurements without the use of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, R.; Reichel, N. [Schlumberger, Sungai Buloh (Malaysia)

    2013-08-01

    For many years the industry has been searching for a way to eliminate the logistical difficulties and risk associated with deployment of radioisotopes for formation evaluation. The traditional gamma-gamma density (GGD) measurement uses the scattering of 662-keV gamma rays from a 137Cs radioisotopic source, with a 30.17-year half-life, to determine formation density. The traditional neutron measurement uses an Am-Be source emitting neutrons with an energy around 4 MeV, with a half-life of 432 years. Both these radioisotopic sources pose health, security, and environmental risks. Pulsed-neutron generators have been used in the industry for several decades in wireline tools and more recently in logging-while-drilling tools. These generators produce 14-MeV neutrons, many of which interact with the nuclei in the formation. Elastic collisions allow a neutron porosity measurement to be derived, which has been available to the industry since 2005. Inelastic interactions are typically followed by the emission of a variety of high-energy gamma rays. Similar to the case of the GGD measurement, the transport and attenuation of these gamma rays is a strong function of the formation density. However, the gamma-ray source is now distributed over a volume within the formation, where gamma rays have been induced by neutron interactions and the source can no longer be considered to be a point as in the case of a radioisotopic source. In addition, the extent of the induced source region depends on the transport of the fast neutrons from the source to the point of gamma-ray production. Even though the physics is more complex, it is possible to measure the formation density if the fast neutron transport is taken into account when deriving the density answer. This paper briefly reviews the physics underlying the sourceless neutron porosity and recently introduced neutron-gamma density (SNGD) measurement, demonstrates how they can be used in traditional workflows and illustrates their

  16. Solution of Point Reactor Neutron Kinetics Equations with Temperature Feedback by Singularly Perturbed Method

    Directory of Open Access Journals (Sweden)

    Wenzhen Chen

    2013-01-01

    Full Text Available The singularly perturbed method (SPM is proposed to obtain the analytical solution for the delayed supercritical process of nuclear reactor with temperature feedback and small step reactivity inserted. The relation between the reactivity and time is derived. Also, the neutron density (or power and the average density of delayed neutron precursors as the function of reactivity are presented. The variations of neutron density (or power and temperature with time are calculated and plotted and compared with those by accurate solution and other analytical methods. It is shown that the results by the SPM are valid and accurate in the large range and the SPM is simpler than those in the previous literature.

  17. The Mellin transform technique for the extraction of the gluon density

    International Nuclear Information System (INIS)

    Graudenz, D.

    1995-06-01

    A new method is presented to determine the gluon density in the proton from jet production in deeply inelastic scattering. By using the technique of Mellin transforms not only for the solution of the scale evolution equation of the parton densities but also for the evaluation of scattering cross sections, the gluon density can be extracted in next-to-leading order QCD. The method described in this paper is, however, more general, and can be used in situations where a repeated fast numerical evaluation of scattering cross sections for varying parton distribution functions is required. (orig.)

  18. CHAINS-PC, Decay Chain Atomic Densities

    International Nuclear Information System (INIS)

    1994-01-01

    1 - Description of program or function: CHAINS computes the atom density of members of a single radioactive decay chain. The linearity of the Bateman equations allows tracing of interconnecting chains by manually accumulating results from separate calculations of single chains. Re-entrant loops can be treated as extensions of a single chain. Losses from the chain are also tallied. 2 - Method of solution: The Bateman equations are solved analytically using double-precision arithmetic. Poles are avoided by small alterations of the loss terms. Multigroup fluxes, cross sections, and self-shielding factors entered as input are used to compute the effective specific reaction rates. The atom densities are computed at any specified times. 3 - Restrictions on the complexity of the problem: Maxima of 100 energy groups, 100 time values, 50 members in a chain

  19. Investigation of density inhomogeneities in liquids by positron annihilation

    International Nuclear Information System (INIS)

    Vass, Sz.

    1990-11-01

    The case of positronium diffusion and annihilation in micellar solutions as well as in liquid normal alkanes is discussed. The traps are assumed to be the structural sparse density regions in these liquids. The traps in micellar solutions are the micelles, in alkanes they are found around the terminal -CH 3 groups. The surface tension inside the micellar core (one of the basic parameters of micellization) is determined around the site of o-Ps solubilization. The o-Ps diffusivity parameters are determined in both systems. (K.A.) 48 refs.; 4 figs

  20. Volumetric properties of aqueous solutions of glutaric acid

    International Nuclear Information System (INIS)

    Ben-Hamo, Meyrav; Apelblat, Alexander; Manzurola, Emanuel

    2007-01-01

    Densities of aqueous solutions with molalities up to 6 mol . kg -1 were determined at 5 K temperature intervals, from T = 288.15 K to T = 333.15 K. Densities served to evaluate the apparent molar volumes, V 2,φ (m, T), the cubic expansion coefficients, α(m, T), and the changes of isobaric heat capacities with respect to pressure, (∂C P /∂P) T,m . They were qualitatively correlated with the changes in the structure of water when glutaric acid is dissolved in it

  1. Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution

    International Nuclear Information System (INIS)

    Kim, H. Y.; Kang, S. K.; Lee, H. Wk.; Lee, H. W.; Kim, G. C.; Lee, J. K.

    2012-01-01

    Low temperature atmospheric pressure plasmas have been known to be effective for living cell inactivation in a liquid solution but it is not clear yet which species are key factors for the cell treatment. Using a global model, we elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation. First, pH level in a liquid solution is changed by He + and He(2 1 S) radicals. Second, O 3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O 3 that causes chest pain and damages lung tissue when the density is very high. H 2 O 2 , HO 2 , and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  2. Mantle viscosity structure constrained by joint inversions of seismic velocities and density

    Science.gov (United States)

    Rudolph, M. L.; Moulik, P.; Lekic, V.

    2017-12-01

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.

  3. New method for initial density reconstruction

    Science.gov (United States)

    Shi, Yanlong; Cautun, Marius; Li, Baojiu

    2018-01-01

    A theoretically interesting and practically important question in cosmology is the reconstruction of the initial density distribution provided a late-time density field. This is a long-standing question with a revived interest recently, especially in the context of optimally extracting the baryonic acoustic oscillation (BAO) signals from observed galaxy distributions. We present a new efficient method to carry out this reconstruction, which is based on numerical solutions to the nonlinear partial differential equation that governs the mapping between the initial Lagrangian and final Eulerian coordinates of particles in evolved density fields. This is motivated by numerical simulations of the quartic Galileon gravity model, which has similar equations that can be solved effectively by multigrid Gauss-Seidel relaxation. The method is based on mass conservation, and does not assume any specific cosmological model. Our test shows that it has a performance comparable to that of state-of-the-art algorithms that were very recently put forward in the literature, with the reconstructed density field over ˜80 % (50%) correlated with the initial condition at k ≲0.6 h /Mpc (1.0 h /Mpc ). With an example, we demonstrate that this method can significantly improve the accuracy of BAO reconstruction.

  4. Chemical influence on the hydro-mechanical behaviour of high-density bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, E.; Romero, E.; Lioret, A. [Technical Univ. of Catalonia UPC, Barcelona (Spain); Musso, G. [Politecnico di Torino, Torino (Italy)

    2005-07-01

    In radioactive waste disposal schemes, during the operational period of clay barriers, solute transport an d thermal gradients may alter the solute concentration of pore water. These induced changes have important consequences on hydro-mechanical properties and microstructural alterations (mineral composition and pore size distribution changes) of the clay barrier. Chemically induced changes originated by different imbibition fluids and soil mineral compositions have been a subject with a long research tradition. These researches have been mainly focused on the behaviour of reconstituted soils starting from slurry and saturated wit h saline solutions at elevated concentrations, where hydro-mechanical changes (soil compressibility and water permeability changes) are clearly detected. In contrast, available information concerning the response of high-density clays subjected to chemically induced actions with a wide range of pore solution concentrations is very limited in spite of its practical relevance to environmental geotechnics. This situation has been caused, at least in part, by the difficulties in detecting important hydro-mechanical changes when clays with low water storage capacity have been used. Nevertheless, this paper will demonstrate that even in the case of high-density fabrics, considerable changes can be observed when high-activity clays (bentonites) are imbibed with different pore fluid compositions. (authors)

  5. Volumetric, ultrasonic and viscometric studies of solute–solute and solute–solvent interactions of l-threonine in aqueous-sucrose solutions at different temperatures

    International Nuclear Information System (INIS)

    Nain, Anil Kumar; Pal, Renu; Neetu

    2013-01-01

    Highlights: • The study reports density, ultrasonic speed and viscosity data of l-threonine in aqueous-sucrose solutions. • The study elucidates interactions of l-threonine with sucrose in aqueous media. • Provides data to estimate physicochemical properties of proteins in these media. • Correlates physicochemical properties of l-threonine with its behaviour in aqueous-sucrose solutions. -- Abstract: Densities, ρ of solutions of l-threonine in aqueous-sucrose solvents 5%, 10%, 15%, and 20% of sucrose, w/w in water at T = (293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K; and ultrasonic speeds, u and viscosities, η of these solutions at 298.15, 303.15, 308.15, 313.15, and 318.15 K were measured at atmospheric pressure. From these experimental results, the apparent molar volume, V ϕ , limiting apparent molar volume, V ϕ ∘ and the slope, S v , apparent molar compressibility, K s,ϕ , limiting apparent molar compressibility, K s,ϕ ∘ and the slope, S k , transfer volume, V ϕ,tr ∘ , transfer compressibility, K s,ϕ,tr ∘ , limiting apparent molar expansivity, E ϕ ∘ , Hepler’s constant, (∂ 2 V ϕ ∘ /dT 2 ), Falkenhagen coefficient, A, Jones–Dole coefficient, B and hydration number, n H have been calculated. The results have been interpreted in terms of solute–solvent and solute–solute interactions in these systems. The Gibbs energies of activation of viscous flow per mole of solvent, Δμ 1 ∘number sign and per mole of solute, Δμ 2 ∘number sign were also calculated and discussed in terms of transition state theory. It has been observed that there exist strong solute–solvent interactions in these systems and these interactions increase with increase in sucrose concentration in solution

  6. Forward modeling of gravity data using geostatistically generated subsurface density variations

    Science.gov (United States)

    Phelps, Geoffrey

    2016-01-01

    Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.

  7. How Does Boiling in the Earth's Crust Influence Metal Speciation and Transport?

    Science.gov (United States)

    Kam, K.; Lemke, K.

    2014-12-01

    The presence of large quantities of precious metals, such as gold and copper, near the Earth's surface (upper crust) is commonly attributed to transport in aqueous solution and precipitation upon variations in temperature and pressure. As a consequence, gold exploration is closely linked to solution chemistry, i.e. hydrothermal processes involving aqueous fluids with densities of around unity. However, as crustal fluids buoyantly ascend, boiling produces a coexisting low-density aqueous liquid with fundamentally different physical and chemical properties, and a, most importantly, a high affinity for coinage metals (Heinrich et al., Econ Geol., 1992, 87, 1566). From recent experimental studies of Au (Hurtig and Williams-Jones, 2014, Geochim. Cosmochim. Acta,, 127, 304), we know that metal speciation in this low-density phase differs fundamentally from that observed in bulk solution, clearly, with important implications for Au, and metal speciation in general, transport and ore concentrations processes (these processes would also be operable in industrial geothermal plants given the quite special solvent properties of steam). In brief, this study focuses on the speciation of select metal halides in bulk solution as well as in water vapor, and is driven by our need to understand the solvent properties of around 2.0x109 cubic kilometers of free water (or 2,500 times as much water as stored in all lakes and rivers) present in the Earth's crust. The scope of this study has particular applications in the geothermal and oil industries, as both deal with high temperature low-density aqueous fluids. Understanding how metal halide species behave upon boiling can also provide insight into how metals, such as copper and silver, coat turbine equipment and steam piping in geothermal plants, ultimately rendering these components inoperable. This study will also provide preliminary results from mass spectrometric experiments of transition metal halides, and will be augmented with

  8. Conformations of polyelectrolyte macromolecules with different charge density in solutions of different ionic strengths

    International Nuclear Information System (INIS)

    Dommes, O A; Okatova, O V; Pavlov, G M

    2016-01-01

    Studies of charged polymer chains are interesting in both fundamental and applied aspects. Especially, polyelectrolytes attract huge attention of researchers due to their ability to form interpolymer complexes with synthetic and biopolymers. The study was carried out on the fractions of hydrophilic copolymers of N-methyl-N-vinyl acetamide and N-methyl-N-vinyl amine hydrochloride of different degrees of polymerization and of different charge density using methods of molecular hydrodynamics. Hydrodynamic and conformational characteristics as well as molar masses of isolated molecules were estimated. In addition, the intrinsic viscosity of fractions was studied at the extreme ionic strengths - in distilled water (∼10 -6 M) and in 6M NaCl. Scaling relations for intrinsic viscosity, sedimentation and translational diffusion coefficients with molar mass were obtained. Conformational behavior of macromolecules with different linear charge density was compared. (paper)

  9. Ant-mediated effects on spruce litter decomposition, solution chemistry, and microbial activity

    DEFF Research Database (Denmark)

    Stadler, B.; Schramm, Andreas; Kalbitz, K.

    2006-01-01

    the effects of ants and aphid honeydew on litter solution of Norway spruce, microbial enzyme activities, and needle decomposition in a field and greenhouse experiment during summer 2003. In the field, low ant densities had relatively little effects on litter solution 30 cm away from a tree trunk...... and %N were not affected by ants or honeydew. Our results suggest that ants have a distinct and immediate effect on solution composition and microbial activity in the litter layer indicating accelerated litter decay whereas the effect of honeydew was insignificant. Keywords: Ants; Decomposition; Formica......Forest management practices often generate clear-cut patches, which may be colonized by ants not present in the same densities in mature forests. In addition to the associated changes in abiotic conditions ants can initiate processes, which do not occur in old-growth stands. Here, we analyse...

  10. Solution of the finite Milne problem in stochastic media with RVT Technique

    Science.gov (United States)

    Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.

    2017-12-01

    This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.

  11. General solution of Poisson equation in three dimensions for disk-like galaxies

    International Nuclear Information System (INIS)

    Tong, Y.; Zheng, X.; Peng, O.

    1982-01-01

    The general solution of the Poisson equation is solved by means of integral transformations for Vertical BarkVertical Barr>>1 provided that the perturbed density of disk-like galaxies distributes along the radial direction according to the Hankel function. This solution can more accurately represent the outer spiral arms of disk-like galaxies

  12. Spectroscopic Characterization of HAN-Based Liquid Gun Propellants and Nitrate Salt Solutions

    Science.gov (United States)

    1989-01-15

    spectra were recorded of bubbles of a concentrated aqueous nitrate solution, mineral oil, and an aqueous surfactant solution. Polymethacrylic acid ...FTIR spectra of droplets of a concentrated aqueous nitrate salt based solution (LGP1845), of solid particles cf polymethacrylic acid packing IO, 3... polymethacrylic acid low density packing foam cut to a 3x4 mnn rectangle was levitated with a low acoustic power. The sample was easily I positioned in the

  13. Volumetric properties of aqueous solutions of glutaric acid

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Hamo, Meyrav [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2007-07-15

    Densities of aqueous solutions with molalities up to 6 mol . kg{sup -1} were determined at 5 K temperature intervals, from T = 288.15 K to T = 333.15 K. Densities served to evaluate the apparent molar volumes, V {sub 2,{phi}}(m, T), the cubic expansion coefficients, {alpha}(m, T), and the changes of isobaric heat capacities with respect to pressure, ({partial_derivative}C {sub P}/{partial_derivative}P) {sub T,m}. They were qualitatively correlated with the changes in the structure of water when glutaric acid is dissolved in it.

  14. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes

    Science.gov (United States)

    Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.

    2018-01-01

    Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

  15. Analytical solution of point kinetic equations for sub-critical systems

    International Nuclear Information System (INIS)

    Henrice Junior, Edson; Goncalves, Alessandro C.

    2013-01-01

    This article presents an analytical solution for the set of point kinetic equations for sub-critical reactors. This solution stems from the ordinary, non-homogeneous differential equation that rules the neutron density and that presents the incomplete Gamma function in its functional form. The method used proved advantageous and allowed practical applications such as the linear insertion of reactivity, considering an external constant source or with both varying linearly. (author)

  16. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.

    2016-05-13

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  17. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.; Rowe, Arthur J.

    2016-01-01

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  18. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  19. (p,Vm,T,x) measurements for aqueous LiNO3 solutions

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Azizov, N.D.

    2004-01-01

    (p,V m ,T,x) properties of four aqueous LiNO 3 solutions (0.181, 0.526, 0.963, and 1.728) mol · kg -1 H 2 O were measured in the liquid phase with a constant-volume piezometer immersed in a precision liquid thermostat. Measurements were made for 10 isotherms between (298 and 573) K. The range of pressure was from (2 to 40) MPa. The total uncertainty of density, pressure, temperature, and concentration measurements were estimated to be less than 0.06 %, 0.05 %, 10 mK, and 0.014 %, respectively. The values of saturated density were determined by extrapolating experimental (p,ρ) data to the vapor-pressure at fixed temperature and composition using an interpolating equation. A polynomial type of equation of state for specific volume was obtained as a function of temperature, pressure, and composition by a least-squares method from the experimental data. The average absolute deviation (AAD) between measured and calculated values from this polynomial equation for density was 0.02 %. Measured values of solution density were compared with values calculated from Pitzer's ion-interaction equation. The agreement is within (0.2 to 0.4) % depending of concentration range

  20. The spectrum of density perturbations in an expanding universe

    Science.gov (United States)

    Silk, J.

    1974-01-01

    The basic dynamic equations that govern the evolution of perturbations in a Friedmann-Lemaitre universe are derived. General solutions describing the evolution of adiabatic perturbations in the density of matter are obtained, and the choice of the appropriate initial conditions is examined. The various perturbation modes are compared, and the effects of decoupling on the perturbation spectrum are studied. The scheme used to follow the evolution of density perturbations through decoupling is based on an extension of the Eddington approximation to the radiative transfer equation, and is strictly valid in both optically thick and thin limits.

  1. On a class of solutions for plane compressible flow with radiative transfer

    International Nuclear Information System (INIS)

    Bajac, Jean

    1973-10-01

    We study the self-similar solution that describes the motion of an infinite half space for initially uniform density and zero temperature and for a boundary temperature which is proportional to a power of the time t; we take account of the effect of the radiation field. All the computed solutions possess an isothermal shock. We did not get the continuous solutions mentioned by Marshak. An interesting feature of the problem is that two distinct solutions pertaining to a given gas may coincide throughout a whole interval of the precursor. (author) [fr

  2. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed

    KAUST Repository

    Wan, Chunfeng

    2015-04-01

    Pressure retarded osmosis (PRO) is a promising technology to produce clean and sustainable osmotic energy from salinity gradient. Fresh water is of scarcity in Singapore; however, alternative sources of feed solutions and draw solutions are well explored. For the first time, seawater brine from the TuaSpring desalination plant and wastewater retentate from the NEWater plant were used in a state-of-the-art TFC-PES hollow fiber membrane PRO process. The highest power densities obtained with 1 M NaCl solution and seawater brine were 27.0 W/m2 and 21.1 W/m2 at 20bar, respectively, when deionized (DI) water was used as the feed solution. However, the highest power density dropped to 4.6W/m2 when wastewater retentate was used as the feed solution. Fouling on the porous substrate induced by the wastewater retentate was identified as the main cause of the reduction in the power densities, while the negative effects of seawater brine on the PRO performances were negligible. Both ultrafiltration (UF) and nanofiltration (NF) pretreatment were employed to mitigate fouling from the wastewater retentate, and the power densities were boosted to 6.6W/m2 and 8.9W/m2, respectively, beyond the power density of 5W/m2 proposed by Statkraft for the PRO process to be economical.

  3. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed

    KAUST Repository

    Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    Pressure retarded osmosis (PRO) is a promising technology to produce clean and sustainable osmotic energy from salinity gradient. Fresh water is of scarcity in Singapore; however, alternative sources of feed solutions and draw solutions are well explored. For the first time, seawater brine from the TuaSpring desalination plant and wastewater retentate from the NEWater plant were used in a state-of-the-art TFC-PES hollow fiber membrane PRO process. The highest power densities obtained with 1 M NaCl solution and seawater brine were 27.0 W/m2 and 21.1 W/m2 at 20bar, respectively, when deionized (DI) water was used as the feed solution. However, the highest power density dropped to 4.6W/m2 when wastewater retentate was used as the feed solution. Fouling on the porous substrate induced by the wastewater retentate was identified as the main cause of the reduction in the power densities, while the negative effects of seawater brine on the PRO performances were negligible. Both ultrafiltration (UF) and nanofiltration (NF) pretreatment were employed to mitigate fouling from the wastewater retentate, and the power densities were boosted to 6.6W/m2 and 8.9W/m2, respectively, beyond the power density of 5W/m2 proposed by Statkraft for the PRO process to be economical.

  4. Gauge invariance and anomalous theories at finite fermionic density

    International Nuclear Information System (INIS)

    Roberge, A.

    1990-01-01

    We investigate the issue of stability of anomalous matter at finite fermionic density using a two-dimensional toy model. In particular, we pay careful attention to the issue of gauge invariance. We find that, contrary to some recent claims, the effective free energy (obtained by integrating out the fermions) cannot be obtained by the simple inclusion of a Chern-Simons term multiplying the fermionic chemical potential. We obtain some conditions for stability of anomalous charges when some finite density of conserved charge is present as well as for the neutral case. We also show that, under reasonable conditions, no sphaleron-type solution can exist in the toy model unless the anomalous charge density vanishes. We argue that this could be the case for more realistic models as well

  5. Exact solution of planar and nonplanar weak shock wave problem in gasdynamics

    International Nuclear Information System (INIS)

    Singh, L.P.; Ram, S.D.; Singh, D.B.

    2011-01-01

    Highlights: → An exact solution is derived for a problem of weak shock wave in adiabatic gas dynamics. → The density ahead of the shock is taken as a power of the position from the origin of the shock wave. → For a planar and non-planar motion, the total energy carried by the wave varies with respect to time. → The solution obtained for the planer, and cylindrically symmetric flow is new one. → The results obtained are also presented graphically for different Mach numbers. - Abstract: In the present paper, an analytical approach is used to determine a new exact solution of the problem of one dimensional unsteady adiabatic flow of planer and non-planer weak shock waves in an inviscid ideal fluid. Here it is assumed that the density ahead of the shock front varies according to the power law of the distance from the source of disturbance. The solution of the problem is presented in the form of a power in the distance and the time.

  6. Electrodeposition of white copper-tin alloys from alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Purwadaria, H.S.; Zainal Arifin Ahmad

    2007-01-01

    Electrodeposition of white copper-tin alloys (including with mir alloys) has been done onto planar mild steel substrates from alkaline cyanide solutions at 65 degree C. The chemical composition of the coating is influenced by plating bath composition and current density. White mir alloy can be produced from the test solution containing 10 g/l CuCN 2 ,45 g/l Na 2 SnO 3 , 25 g/l NaCN, and 12 g/l NaOH at current density about 5 mA/cm?2. The local compositions of the coating cross section were analyzed using EDX installed in a FESEM operated at an accelerating voltage of 20 kV. The phases formed during co-deposition process were identified using XRD at 25 mA current and 35 kV voltage. (Author)

  7. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation

    Science.gov (United States)

    Shao, Zhiqiang

    2018-04-01

    The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.

  8. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    Science.gov (United States)

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.

  9. Regularity of solutions to the liquid crystals systems in R2 and R3

    International Nuclear Information System (INIS)

    Dai, Mimi; Qing, Jie; Schonbek, Maria

    2012-01-01

    In this paper, we establish regularity and uniqueness for solutions to density dependent nematic liquid crystals systems. The results presented extend the regularity and uniqueness for constant density liquid crystals systems, obtained by Lin and Liu (1995 Commun. Pure Appl. Math. XLVIII 501–37)

  10. Modeling of the anode side of a direct methanol fuel cell with analytical solutions

    International Nuclear Information System (INIS)

    Mosquera, Martin A.; Lizcano-Valbuena, William H.

    2009-01-01

    In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density, by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus (φ 2 ) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit function of the position in the layer. In spite of this, the equations presented here for the anodic overpotential allow the derivation of new semi-empirical equations

  11. Arbitrary quadrature: its application in the solution of one-dimensional, planar neutron transport problems

    International Nuclear Information System (INIS)

    Sanchez, J.

    2010-10-01

    A standard numerical procedure for the solution of singular integral equations is applied to the one-dimensional transport equation for monoenergetic neutrons. As is usual in quadrature methods, the procedure yields an Eigen system whose solution provide, for the critical slab, both the eigenvalue which is proportional to the number of secondary neutrons per collision, and the density as a function of position. The results obtained with two versions of the procedure, differing only in the extent of the basic region to which they are applied, are compared with analytically derived results available for benchmarking. The procedures considered yield consistent results for the calculated neutron densities and eigenvalues. Since the one-dimensional transport kernel and its spatial moments are integrable and their integrals can be put in terms of exponential integral functions, the resulting approximations to the neutron density yield somewhat lengthy but closed, forms. These approximate expressions of the neutron density can be used to render, after they are operated on, closed-form formulas for build-up factors, extrapolation distances or angular densities or employed for other purposes that require an analytical expression of the neutron density. As an example of this latter capability, the results of the calculation of the angular density at the surface of the slab are provided. (Author)

  12. The simple solutions concept: a useful approach to estimate deviation from ideality in solvent extraction

    International Nuclear Information System (INIS)

    Sorel, C.; Pacary, V.

    2010-01-01

    The solvent extraction systems devoted to uranium purification from crude ore to spent fuel involve concentrated solutions in which deviation from ideality can not be neglected. The Simple Solution Concept based on the behaviour of isopiestic solutions has been applied to quantify the activity coefficients of metals and acids in the aqueous phase in equilibrium with the organic phase. This approach has been validated on various solvent extraction systems such as trialkylphosphates, malonamides or acidic extracting agents both on batch experiments and counter-current tests. Moreover, this concept has been successfully used to estimate the aqueous density which is useful to quantify the variation of volume and to assess critical parameters such as the number density of nuclides. (author)

  13. Solute-solvent interactions in chloroform solutions of halogenated symmetric double Schiff bases of 1,1'-bis(4-aminophenyl)cyclohexane at 308.15 K according to ultrasonic and viscosity data

    Science.gov (United States)

    Gangani, B. J.; Patel, J. P.; Parsania, P. H.

    2015-12-01

    The density, viscosity and ultrasonic speed (2 MHz) of chloroform solutions of halogenated symmetric double Schiff bases of 1,1'-bis(4-aminophenyl)cyclohexane were investigated at 308.15 K. Various acoustical parameters such as specific acoustical impedance ( Z), adiabatic compressibility ( Ka), Rao's molar sound function ( R m), van der Waals constant ( b), internal pressure (π), free volume ( V f), intermolecular free path length ( L f), classical absorption coefficient (α/ f 2)Cl) and viscous relaxation time (τ) were determine using ultrasonic speed ( U), viscosity (η) and density (ρ) data of Schiff bases solutions and correlated with concentration. Linear increase of Z, b, R, τ, and (α/ f 2)Cl except π (nonlinear) and linear decrease of Ka and L f except V f (nonlinear) with increasing concentration of Schiff bases suggested presence of strong molecular interactions in the solutions. The positive values of solvation number further supported strong molecular interactions in the solutions. The nature and position of halogen substituent also affected the strength of molecular interactions.

  14. The initial giant umbrella cloud of the May 18th, 1980, explosive eruption of Mount St. Helens

    Science.gov (United States)

    Sparks, R.S.J.; Moore, J.G.; Rice, C.J.

    1986-01-01

    The initial eruption column of May 18th, 1980 reached nearly 30 km altitude and released 1017 joules of thermal energy into the atmosphere in only a few minutes. Ascent of the cloud resulted in forced intrusion of a giant umbrella-shaped cloud between altitudes of 10 and 20 km at radial horizontal velocities initially in excess of 50 m/s. The mushroom cloud expanded 15 km upwind, forming a stagnation point where the radial expansion velocity and wind velocity were equal. The cloud was initiated when the pyroclastic blast flow became buoyant. The flow reduced its density as it moved away from the volcano by decompression, by sedimentation, and by mixing with and heating the surrounding air. Observations indicate that much of the flow, covering an area of 600 km2, became buoyant within 1.5 minutes and abruptly ascended to form the giant cloud. Calculations are presented for the amount of air that must have been entrained into the flow to make it buoyant. Assuming an initial temperature of 450??C and a magmatic origin for the explosion, these calculations indicate that the flow became buoyant when its temperature was approximately 150??C and the flow consisted of a mixture of 3.25 ?? 1011 kg of pyroclasts and 5.0 ?? 1011 kg of air. If sedimentation is considered, these figures reduce to 1.1 ?? 1011 kg of pyroclasts and 1.0 ?? 1011 kg of air. ?? 1986.

  15. Properties of filmogen solutions and films of hafnium compounds

    International Nuclear Information System (INIS)

    Sviridova, A.I.

    1986-01-01

    Study on hafnium hydrolizing compound solutions, used for hafnium oxide homogeneous layer formation, is conducted. In particular, electric conductivity, acidity and refractive index were investigated depending on the sal on ether concentration and the storage time. Oxyhafnium nitrate, hafnium chloride in ethanol, dichlorodiethoxyhafnium, hafnium oxychloride were used as initial compounds. Hydrolysis of hafnium compounds in solution occurs partially; further process occurs in the thin layer on the optical element surface; final decomposition is performed under heat treatment. It is ascertained, that alcoholic-aqueous solutions of inorganic salts can be filmogen only at definite acidity, density and viscosity (1.33-2.5 cp.). It is also ascertained that refractive index values and transmission spectral boundary of coatings, produced from alkoxy compound solutions and from chloride salt solutions, are practically the same. Transmittance boundary in ultraviolet region of spectrum of oxide films produced from nitrate and chloride solutions, varies with the heating temperature increase differently

  16. Solvent effects in ionic liquids: empirical linear energy-density relationships.

    Science.gov (United States)

    Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R

    2012-07-28

    Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.

  17. Three Dimensional Simulations of Multiphase Flows Using a Lattice Boltzmann Method Suitable for High Density Ratios - 12126

    Energy Technology Data Exchange (ETDEWEB)

    Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2012-07-01

    Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filled tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble simulation is

  18. Elastic stars in general relativity: III. Stiff ultrarigid exact solutions

    International Nuclear Information System (INIS)

    Karlovini, Max; Samuelsson, Lars

    2004-01-01

    We present an equation of state for elastic matter which allows for purely longitudinal elastic waves in all propagation directions, not just principal directions. The speed of these waves is equal to the speed of light whereas the transversal type speeds are also very high, comparable to but always strictly less than that of light. Clearly such an equation of state does not give a reasonable matter description for the crust of a neutron star, but it does provide a nice causal toy model for an extremely rigid phase in a neutron star core, should such a phase exist. Another reason for focusing on this particular equation of state is simply that it leads to a very simple recipe for finding stationary rigid motion exact solutions to the Einstein equations. In fact, we show that a very large class of stationary spacetimes with constant Ricci scalar can be interpreted as rigid motion solutions with this matter source. We use the recipe to derive a static spherically symmetric exact solution with constant energy density, regular centre and finite radius, having a nontrivial parameter that can be varied to yield a mass-radius curve from which stability can be read off. It turns out that the solution is stable down to a tenuity R/M slightly less than 3. The result of this static approach to stability is confirmed by a numerical determination of the fundamental radial oscillation mode frequency. We also present another solution with outwards decreasing energy density. Unfortunately, this solution only has a trivial scaling parameter and is found to be unstable

  19. Formulation and stability of an extemporaneous 0.02% chlorhexidine digluconate ophthalmic solution

    Directory of Open Access Journals (Sweden)

    Shu-Chiao Lin

    2015-12-01

    Conclusion: The acetate-buffered 0.02% chlorhexidine digluconate ophthalmic solution stored in light-resistant high-density polyethylene eyedroppers demonstrated excellent stability at 2–25°C for 6 months after being sealed and for 1 month after opening. This finding will enable us to prepare 0.02% chlorhexidine digluconate ophthalmic solutions based on a doctor's prescription.

  20. Neutron scattering study of dilute supercritical solutions

    International Nuclear Information System (INIS)

    Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.

    1994-01-01

    Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope 36 Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast

  1. Densities, molar volumes, and isobaric expansivities of (d-xylose+hydrochloric acid+water) systems

    International Nuclear Information System (INIS)

    Zhang Qiufen; Yan Zhenning; Wang Jianji; Zhang Hucheng

    2006-01-01

    Densities of (d-xylose+HCl+water) have been measured at temperature in the range (278.15 to 318.15) K as a function of concentration of both d-xylose and hydrochloric acid. The densities have been used to estimate the molar volumes and isobaric expansivity of the ternary solutions. The molar volumes of the ternary solutions vary linearly with mole fraction of d-xylose. The standard partial molar volumes V 2,φ - bar for d-xylose in aqueous solutions of molality (0.2, 0.4, 0.7, 1.1, 1.6, and 2.1) mol.kg -1 HCl have been determined. In the investigated temperature range, the relation: V 2,φ - bar =c 1 +c 2 {(T/K)-273.15} 1/2 , can be used to describe the temperature dependence of the standard partial molar volumes. These results have, in conjunction with the results obtained in water, been used to deduce the standard volumes of transfer, Δ t V - bar , of d-xylose from water to aqueous HCl solutions. An increase in the transfer volume of d-xylose with increasing HCl concentrations has been explained by the stronger interactions of H + with the hydrophilic groups of d-xylose

  2. Acoustics advances study of sea floor hydrothermal flow

    Science.gov (United States)

    Rona, Peter A.; Jackson, Darrell R.; Bemis, Karen G.; Jones, Christopher D.; Mitsuzawa, Kyohiko; Palmer, David R.; Silver, Deborah

    Sub-sea floor hydrothermal convection systems discharge as plumes from point sources and as seepage from the ocean bottom. The plumes originate as clear, 150-400°C solutions that vent from mineralized chimneys; precipitate dissolved metals as particles to form black or white smokers as they turbulently mix with ambient seawater; and buoyantly rise hundreds of meters to a level of neutral density where they spread laterally. The seepage discharges from networks of fractures at the rock-water interface as clear, diffuse flow, with lower temperatures, metal contents, and buoyancy than the smokers. The diffuse flow may be entrained upward into plumes, or laterally by prevailing currents in discrete layers within tens of meters of the sea floor. The role of these flow regimes in dispersing heat, chemicals, and biological material into the ocean from sub-sea floor hydrothermal convection systems is being studied on a global scale.

  3. Density functional calculations for atoms, molecules and clusters

    International Nuclear Information System (INIS)

    Gunnarsson, O.; Jones, R.O.

    1980-01-01

    The density functional formalism provides a framework for including exchange and correlation effects in the calculation of ground state properties of many-electron systems. The reduction of the problem to the solution of single-particle equations leads to important numerical advantages over other ab initio methods of incorporating correlation effects. The essential features of the scheme are outlined and results obtained for atomic and molecular systems are surveyed. The local spin density (LSD) approximation gives generally good results for systems where the bonding involves s and p electrons, but results are less satisfactory for d-bonded systems. Non-local modifications to the LSD approximation have been tested on atomic systems yielding much improved total energies. (Auth.)

  4. Solute-solvent cavity and bridge functions. I. Varying size of the solute

    International Nuclear Information System (INIS)

    Vyalov, I.; Chuev, G.; Georgi, N.

    2014-01-01

    In this work we present the results of the extensive molecular simulations of solute-solvent cavity and bridge functions. The mixtures of Lennard-Jones solvent with Lennard-Jones solute at infinite dilution are considered for different solute-solvent size ratios—up to 4:1. The Percus-Yevick and hypernetted chain closures deviate substantially from simulation results in the investigated temperature and density ranges. We also find that the behavior of the indirect and cavity correlation functions is non-monotonous within the hard-core region, but the latter can be successfully approximated by mean-field theory if the solute-solvent interaction energy is divided into repulsive and attractive contribution, according to Weeks-Chandler-Andersen theory. Furthermore, in spite of the non-monotonous behavior of logarithm of the cavity function and the indirect correlation function, their difference, i.e., the bridge function remains constant within the hard-core region. Such behavior of the bridge and indirect correlation functions at small distances and for small values of indirect correlation function is well known from the Duh-Haymet plots, where the non-unique relationship results in loops of the bridge function vs. indirect correlation function graphs. We show that the same pathological behavior appears also when distance is small and indirect correlation function is large. We further show that the unique functional behavior of the bridge function can be established when bridge is represented as a function of the renormalized, repulsive indirect correlation function

  5. The car parking problem at high densities

    Science.gov (United States)

    Burgos, E.; Bonadeo, H.

    1989-04-01

    The radial distribution functions of random 1-D systems of sequential hard rods have been studied in the range of very high densities. It is found that as the number of samples rejected before completion increases, anomalies in the pairwise distribution functions arise. These are discussed using analytical solutions for systems of three rods and numerical simulations with twelve rods. The probabilities of different spatial orderings with respect to the sequential order are examined.

  6. The structure and diffusion behaviour of the neurotransmitter γ-aminobutyric acid (GABA) in neutral aqueous solutions

    International Nuclear Information System (INIS)

    Rodrigo, M.M.; Esteso, M.A.; Barros, M.F.; Verissimo, L.M.P.; Romero, C.M.; Suarez, A.F.; Ramos, M.L.; Valente, A.J.M.; Burrows, H.D.; Ribeiro, A.C.F.

    2017-01-01

    Highlights: • Diffusion coefficients and densities of binary aqueous solutions of γ-aminobutyric acid (GABA). • Dependence on both shape and size of GABA on its diffusion. • Interactions intramolecular and the solute-water interactions in these systems. - Abstract: GABA (γ-aminobutyric acid) is a non-protein amino acid with important physiological properties, and with considerable relevance to the food and pharmaceutical industries. Particular interest has focused on its role as an inhibitory neurotransmitter in the mammalian cerebral cortex. In this paper, we report density and mutual diffusion coefficients of GABA in non-buffered aqueous solutions (0.001–0.100) mol·dm −3 at 298.15 K. Under these conditions, 1 H and 13 C NMR spectroscopy and pH measurements show that it is present predominantly as a monomeric zwitterionic species. Diffusion coefficients have been computed assuming that this behaves as the binary system GABA/water. From density and intermolecular diffusion coefficients measurements, the molar volume, hydrodynamic radii, R h , diffusion coefficients at infinitesimal concentration, D 0 , activity coefficients and the thermodynamic factors, F T , have been estimated. Within experimental error, the hydrodynamic volume calculated from this is identical to the molar volume obtained from density measurements. From the NMR spectra and literature data, it is suggested that this amino acid diffuses in aqueous solution as a curved, coil-like hydrated zwitterionic entity.

  7. Finite Difference Solution of Elastic-Plastic Thin Rotating Annular Disk with Exponentially Variable Thickness and Exponentially Variable Density

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2013-01-01

    Full Text Available Elastic-plastic stresses, strains, and displacements have been obtained for a thin rotating annular disk with exponentially variable thickness and exponentially variable density with nonlinear strain hardening material by finite difference method using Von-Mises' yield criterion. Results have been computed numerically and depicted graphically. From the numerical results, it can be concluded that disk whose thickness decreases radially and density increases radially is on the safer side of design as compared to the disk with exponentially varying thickness and exponentially varying density as well as to flat disk.

  8. Global Solutions to the Coupled Chemotaxis-Fluid Equations

    KAUST Repository

    Duan, Renjun

    2010-08-10

    In this paper, we are concerned with a model arising from biology, which is a coupled system of the chemotaxis equations and the viscous incompressible fluid equations through transport and external forcing. The global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the Chemotaxis-Navier-Stokes system over three space dimensions, we obtain global existence and rates of convergence on classical solutions near constant states. When the fluid motion is described by the simpler Stokes equations, we prove global existence of weak solutions in two space dimensions for cell density with finite mass, first-order spatial moment and entropy provided that the external forcing is weak or the substrate concentration is small. © Taylor & Francis Group, LLC.

  9. Thermodynamic properties of ethanol solution of chiral camphors and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Takayoshi [Department of Chemistry, Kinki University, Kowakae, Higashi-Osaka 577-8502 (Japan)], E-mail: kimura@chem.kindai.ac.jp; Iwama, Sekai; Kido, Satoko; Khan, Mohammad Abdullah [Department of Chemistry, Kinki University, Kowakae, Higashi-Osaka 577-8502 (Japan)

    2009-10-15

    Enthalpies of mixing and the densities of ethanol solution of R- and S-enantiomers of camphor, 10-camphorsulfonamide, 10-camphorsulfonic acid, camphorquinone, and 10-camphorsulfonyl chloride have been measured for a wide range of mole fractions of heterochiral components at 298.15 K. Enthalpies of mixing were exothermic for all concentrations and heterochiral solutions were more stable than each of the homochiral solutions. Enthalpic stabilization of mixing of heterochiral solutions was increased with a decreasing concentration of all the camphor derivatives measured. The sequence of enthalpic stabilization on mixing was 10-camphorsulfonyl chloride, 10-camphorsulfonic acid, 10-camphorsulfonamide, camphor, and camphorquinone. Apparent molar volumes were determined and excess volumes of mixing of heterochiral solutions were small and negative. Enthalpic stabilizations were found to be dependent on dipole-dipole interaction between solutes and solvents.

  10. New class of accelerating black hole solutions

    International Nuclear Information System (INIS)

    Camps, Joan; Emparan, Roberto

    2010-01-01

    We construct several new families of vacuum solutions that describe black holes in uniformly accelerated motion. They generalize the C metric to the case where the energy density and tension of the strings that pull (or push) on the black holes are independent parameters. These strings create large curvatures near their axis and when they have infinite length they modify the asymptotic properties of the spacetime, but we discuss how these features can be dealt with physically, in particular, in terms of 'wiggly cosmic strings'. We comment on possible extensions and extract lessons for the problem of finding higher-dimensional accelerating black hole solutions.

  11. Higher dimensional strange quark matter solutions in self creation cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Şen, R., E-mail: ramazansen-1991@hotmail.com [Institute for Natural and Applied Sciences, Çanakkale Onsekiz Mart University, 17020, Çanakkale (Turkey); Aygün, S., E-mail: saygun@comu.edu.tr [Department of Physics, Art and Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey)

    2016-03-25

    In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.

  12. Archival storage solutions for PACS

    Science.gov (United States)

    Chunn, Timothy

    1997-05-01

    While they are many, one of the inhibitors to the wide spread diffusion of PACS systems has been robust, cost effective digital archive storage solutions. Moreover, an automated Nearline solution is key to a central, sharable data repository, enabling many applications such as PACS, telemedicine and teleradiology, and information warehousing and data mining for research such as patient outcome analysis. Selecting the right solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, configuration architecture and flexibility, subsystem availability and reliability, security requirements, system cost, achievable benefits and cost savings, investment protection, strategic fit and more.This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on storage system throughput will be analyzed. The concept of automated migration of images from high performance, high cost storage devices to high capacity, low cost storage devices will be introduced as a viable way to minimize overall storage costs for an archive. The concept of access density will also be introduced and applied to the selection of the most cost effective archive solution.

  13. Modifying Poisson equation for near-solute dielectric polarization and solvation free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pei-Kun, E-mail: peikun@isu.edu.tw

    2016-06-15

    Highlights: • We modify the Poisson equation. • The dielectric polarization was calculated from the modified Poisson equation. • The solvation free energies of the solutes were calculated from the dielectric polarization. • The calculated solvation free energies were similar to those obtained from MD simulations. - Abstract: The dielectric polarization P is important for calculating the stability of protein conformation and the binding affinity of protein–protein/ligand interactions and for exploring the nonthermal effect of an external electric field on biomolecules. P was decomposed into the product of the electric dipole moment per molecule p; bulk solvent density N{sub bulk}; and relative solvent molecular density g. For a molecular solute, 4πr{sup 2}p(r) oscillates with the distance r to the solute, and g(r) has a large peak in the near-solute region, as observed in molecular dynamics (MD) simulations. Herein, the Poisson equation was modified for computing p based on the modified Gauss’s law of Maxwell’s equations, and the potential of the mean force was used for computing g. For one or two charged atoms in a water cluster, the solvation free energies of the solutes obtained by these equations were similar to those obtained from MD simulations.

  14. Spatial charge motion on an uniform density matrix-general equations in opened and closed circuits

    International Nuclear Information System (INIS)

    Aguiar Monsanto, S. de.

    1983-01-01

    The motion of a space charge cloud embedded in a matrix of constant immobile charge density is studied in open as well as in closed circuit. In the first case, open circuit, the solution is almost trivial as compared as the other one in which, after some work, the problem is reduced to an ordinary differential equation. The method of solution is parallel to that employed in the study of monopolar free space charge motion. The voltage and the current produced by a system with no net charge but with unbalanced local charge density were calculated using the general equations derived in the first part of the work. (Author) [pt

  15. Solution of problem of determining spin properties of molecules in unitary formalism of quantum chemistry

    International Nuclear Information System (INIS)

    Klimko, G.T.; Luzanov, A.V.

    1988-01-01

    An analysis has been made of the problem of calculating one- and two-particle spin densities, which are needed in calculations of spin-orbit and spin-spin coupling. The proposed solution is oriented toward the application of computational algorithms using unitary group representations; the solution consists of explicit expressions for the matrix elements of spin density operators in terms of the means of products of spin-free generators. This has eliminated a serious problem encountered previously in determining spin characteristics of molecules within the framework of unitary formalism

  16. On the solution of the Hartree-Fock-Bogoliubov equations by the conjugate gradient method

    International Nuclear Information System (INIS)

    Egido, J.L.; Robledo, L.M.

    1995-01-01

    The conjugate gradient method is formulated in the Hilbert space for density and non-density dependent Hamiltonians. We apply it to the solution of the Hartree-Fock-Bogoliubov equations with constraints. As a numerical application we show calculations with the finite range density dependent Gogny force. The number of iterations required to reach convergence is reduced by a factor of three to four as compared with the standard gradient method. (orig.)

  17. Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Zodape, Sangesh P.; Parwate, Dilip V.

    2012-01-01

    Highlights: ► Study of aqueous solutions of biologically important compounds has been reported. ► MH is used for treating type II diabetes, RH is in treatment of peptic ulcer and TH is used to treat severe pain. ► All the compounds act as structure makers by volumetric studies. ► MH and RH act as weak structure breakers and TH acts as a weak structure maker by viscometric studies. - Abstract: Density and viscosity measurements are reported for aqueous solutions of the drugs like Metformin hydrochloride (MH), Ranitidine hydrochloride (RH) and Tramadol hydrochloride (TH) at different temperatures T = (288.15, 298.15, and 308.15) K within the concentration range (0 to 0.15) mol · kg −1 . The density and viscosity data are used to obtain apparent molar volume of solute (φ V ) and relative viscosity (η r ) of aqueous solutions at different temperatures. The limiting apparent molar volume of solute (φ V 0 ), limiting apparent molar expansivity (φ E 0 ), thermal expansion coefficient (α ∗ ), hydration number (n h ), Jones–Dole equation viscosity A and B coefficients, experimental slope (S V ) at different temperatures, and temperature coefficient of Bi.e.(dB/dT) at T = 298.15 K were also obtained. The results obtained have been interpreted in terms of solute–solvent and solute–solute interactions and structure making/breaking ability of solute in the aqueous solution.

  18. Theoretical study of the influence of chemical reactions and physical parameters on the convective dissolution of CO2 in aqueous solutions

    Science.gov (United States)

    Loodts, Vanessa; Rongy, Laurence; De Wit, Anne

    2014-05-01

    Subsurface carbon sequestration has emerged as a promising solution to the problem of increasing atmospheric carbon dioxide (CO2) levels. How does the efficiency of such a sequestration process depend on the physical and chemical characteristics of the storage site? This question is emblematic of the need to better understand the dynamics of CO2 in subsurface formations, and in particular, the properties of the convective dissolution of CO2 in the salt water of aquifers. This dissolution is known to improve the safety of the sequestration by reducing the risks of leaks of CO2 to the atmosphere. Buoyancy-driven convection makes this dissolution faster by transporting dissolved CO2 further away from the interface. Indeed, upon injection, the less dense CO2 phase rises above the aqueous layer where it starts to dissolve. The dissolved CO2 increases the density of the aqueous solution, thereby creating a layer of denser CO2-rich solution above less dense solution. This unstable density gradient in the gravity field is at the origin of convection. In this framework, we theoretically investigate the effect of CO2 pressure, salt concentration, temperature, and chemical reactions on the dissolution-driven convection of CO2 in aqueous solutions. On the basis of a linear stability analysis, we assess the stability of the time-dependent density profiles developing when CO2 dissolves in an aqueous layer below it. We predict that increasing CO2 pressure destabilizes the system with regard to buoyancy-driven convection, because it increases the density gradient at the origin of the instability. By contrast, increasing salt concentration or temperature stabilizes the system via effects on CO2 solubility, solutal expansion coefficient, diffusion coefficient and on the viscosity and density of the solution. We also show that a reaction of CO2 with chemical species dissolved in the aqueous solution can either enhance or decrease the amplitude of the convective dissolution compared

  19. Density separation as a strategy to reduce the enzyme load of preharvest sprouted wheat and enhance its bread making quality.

    Science.gov (United States)

    Olaerts, Heleen; De Bondt, Yamina; Courtin, Christophe M

    2018-02-15

    As preharvest sprouting of wheat impairs its use in food applications, postharvest solutions for this problem are required. Due to the high kernel to kernel variability in enzyme activity in a batch of sprouted wheat, the potential of eliminating severely sprouted kernels based on density differences in NaCl solutions was evaluated. Compared to higher density kernels, lower density kernels displayed higher α-amylase, endoxylanase, and peptidase activities as well as signs of (incipient) protein, β-glucan and arabinoxylan breakdown. By discarding lower density kernels of mildly and severely sprouted wheat batches (11% and 16%, respectively), density separation increased flour FN of the batch from 280 to 345s and from 135 to 170s and increased RVA viscosity. This in turn improved dough handling, bread crumb texture and crust color. These data indicate that density separation is a powerful technique to increase the quality of a batch of sprouted wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    International Nuclear Information System (INIS)

    Pal, Amalendu; Chauhan, Nalin

    2011-01-01

    Densities, ρ, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, V φ , partial molar volume at infinite dilution, V φ o , and experimental slope, S V were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the (∂V φ 0 /∂T) P values. The partial molar volume of transfer, ΔV φ 0 from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of V φ 0 with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH 3 + COO - , and CH 2 groups to V φ 0 .

  1. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    Microfluidic applications hold promise for many different end‐users both within and outside, and across many different research communities. Despite the benefits of microfluidic approaches, adoption and implementation thereof is often hindered by practical issues. Microfluidic components which......‐integrated interconnection and miniaturized peristaltic pump solutions were then combined into modular microfluidic systems. One system provides high interconnection numbers/density and allows many possible configurations. Additionally, and apart from many other accounts of modular microfluidic solutions, methods...... for control and actuation of microfluidic networks built from the modular components is described. Prototypes of the microfluidic system have begun to be distributed to external collaborators and researcher parties. These end‐users will assist in the validation of the approach and ultimately fulfil the key...

  2. A potential model for sodium chloride solutions based on the TIP4P/2005 water model

    Science.gov (United States)

    Benavides, A. L.; Portillo, M. A.; Chamorro, V. C.; Espinosa, J. R.; Abascal, J. L. F.; Vega, C.

    2017-09-01

    Despite considerable efforts over more than two decades, our knowledge of the interactions in electrolyte solutions is not yet satisfactory. Not even one of the most simple and important aqueous solutions, NaCl(aq), escapes this assertion. A requisite for the development of a force field for any water solution is the availability of a good model for water. Despite the fact that TIP4P/2005 seems to fulfill the requirement, little work has been devoted to build a force field based on TIP4P/2005. In this work, we try to fill this gap for NaCl(aq). After unsuccessful attempts to produce accurate predictions for a wide range of properties using unity ionic charges, we decided to follow recent suggestions indicating that the charges should be scaled in the ionic solution. In this way, we have been able to develop a satisfactory non-polarizable force field for NaCl(aq). We evaluate a number of thermodynamic properties of the solution (equation of state, maximum in density, enthalpies of solution, activity coefficients, radial distribution functions, solubility, surface tension, diffusion coefficients, and viscosity). Overall the results for the solution are very good. An important achievement of our model is that it also accounts for the dynamical properties of the solution, a test for which the force fields so far proposed failed. The same is true for the solubility and for the maximum in density where the model describes the experimental results almost quantitatively. The price to pay is that the model is not so good at describing NaCl in the solid phase, although the results for several properties (density and melting temperature) are still acceptable. We conclude that the scaling of the charges improves the overall description of NaCl aqueous solutions when the polarization is not included.

  3. Derivation of an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions

    International Nuclear Information System (INIS)

    Min, Duck Kee; Choi, Byung Il; Ro, Seung Gy; Eom, Tae Yoon; Kim, Zong Goo

    1986-01-01

    Densities of a large number of mixed uranyl nitrate-thorium nitrate solutions were measured with pycnometer. By the least squares analysis of the experimental result, an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions as functions of uranium concentration, thorium concentration and nitric acid normality is derived; W=1.0-0.3580 C u -0.4538 C Th -0.0307H + where W, C u , C Th , and H + stand for water content(g/cc), uranium concentration (g/cc), thorium concentration(g/cc), and nitric acid normality, respectively. Water contents of the mixed uranyl nitrate-thorium nitrate solutions are calculated by using the empirical formular, and compared with the values calculated by Bouly's equation in which an additional data, solution density, is required. The two results show good agreements within 2.7%. (Author)

  4. Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions

    KAUST Repository

    Shinagawa, Tatsuya

    2015-04-24

    To maintain local pH levels near the electrode during electrochemical reactions, the use of buffer solutions is effective. Nevertheless, the critical effects of the buffer concentration on electrocatalytic performances have not been discussed in detail. In this study, two fundamental electrochemical reactions, oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR), on a platinum rotating disk electrode are chosen as model gas-related aqueous electrochemical reactions at various phosphate concentrations. Our detailed investigations revealed that the kinetic and limiting diffusion current densities for both the ORR and HOR logarithmically decrease with increasing solute concentration (log|jORR|=-0.39c+0.92,log|jHOR|=-0.35c+0.73). To clarify the physical aspects of this phenomenon, the electrolyte characteristics are addressed: with increasing phosphate concentration, the gas solubility decrease, the kinematic viscosity of the solution increase and the diffusion coefficient of the dissolved gases decrease. The simulated limiting diffusion currents using the aforementioned parameters match the measured ones very well (log|jORR|=-0.43c+0.99,log|jHOR|=-0.40c+0.54), accurately describing the consequences of the electrolyte concentration. These alterations of the electrolyte properties associated with the solute concentration are universally applicable to other aqueous gas-related electrochemical reactions because the currents are purely determined by mass transfer of the dissolved gases. © 2015 The Authors.

  5. Solvation consequences of polymer PVP with biological buffers MES, MOPS, and MOPSO in aqueous solutions

    International Nuclear Information System (INIS)

    Gupta, Bhupender S.; Chen, Bo-Ren; Lee, Ming-Jer

    2015-01-01

    Highlights: • Densities and viscosities data for aqueous solutions with PVP and/or buffer. • The studied buffers include MES, MOPS, and MOPSO. • DFT was used to estimate the binding energies of the (PVP + buffer) complexes. • The viscosity data were correlated with the Jones–Dole equation. • The investigated buffers behave as Kosmotropies. - Abstract: Densities and viscosities were measured for the aqueous buffer (MES, MOPS, or MOPSO) solutions containing different concentrations of polyvinylpyrrolidone (PVP) (5, 10, 15, 20 and 30) mass% at temperatures from (298.15 to 318.15) K under atmospheric pressure. The DFT calculations were also performed and the binding energies of the possible (PVP + buffer) complexes were obtained. The experimental and computational results reveal the interactions of the PVP with the constituent compounds in the aqueous buffer solutions. Additionally we have explored the solvation behavior of the buffers by measuring the densities and the viscosities data of the aqueous buffer solutions from (0.0 to 1.0) mol · kg"−"1 at temperatures from (298.15 to 318.15) K. The viscosity results were correlated with the Jones–Dole equation. The correlated results confirmed that all the investigated buffers behave as Kosmotropes (structure makers).

  6. Probabilistic Representations of Solutions to the Heat Equation

    Indian Academy of Sciences (India)

    In this paper we provide a new (probabilistic) proof of a classical result in partial differential equations, viz. if is a tempered distribution, then the solution of the heat equation for the Laplacian, with initial condition , is given by the convolution of with the heat kernel (Gaussian density). Our results also extend the ...

  7. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  8. Vertical Transport of Sediment from Muddy Buoyant River Plumes in the Presence of Different Modes of Interfacial Instabilities

    Science.gov (United States)

    Strom, K.; Rouhnia, M.

    2016-12-01

    Previous studies have suggested that sedimentation from buoyant, muddy plumes lofting over clear saltwater can take place at rates higher than that expected from individual particle settling (i.e., CWs). Two potential drivers of enhanced sedimentation are flocculation and interfacial instabilities. We experimentally measured the sediment fluxes from each of these processes using two sets of laboratory experiments that investigate two different modes of instability, one driven by sediment settling and one driven by fluid shear. The settling-driven and shear-driven instability experiments were carried out in a stagnant stratification tank and a stratification flume respectively. In both sets, continuous interface monitoring and concentration measurements were made to observe developments of instabilities and their effects on the removal of sediment. Floc size was measured during the experiments using a floc camera and image analysis routines. This presentation will provide an overview of the stagnant tank experiments, but will focus on results from the stratified flume experiments and an analysis that attempts to synthesizes the results from the entirety of the study. The results from the stratified flume experiments show that under shear instabilities, the effective settling velocity is greater than the floc settling velocity, and that the rate increases with plume velocity and interface mixing. The difference between effective and floc settling velocity was denoted as the shear-induced settling velocity. This rate was found to be a strong function of the Richardson number, and was attributed to mixing processes at the interface. Conceptual and empirical analysis shows that the shear-induced settling velocity is proportional to URi-2. The resulting effective settling velocity models developed from these experiments are then used to examine the rates and potential locations of operations of these mechanism over the length of a river mouth plume.

  9. Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2017-01-05

    Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the non-existence of solutions.

  10. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  11. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  12. Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations

    Science.gov (United States)

    Huang, Xiangdi; Li, Jing

    2018-03-01

    For the three-dimensional full compressible Navier-Stokes system describing the motion of a viscous, compressible, heat-conductive, and Newtonian polytropic fluid, we establish the global existence and uniqueness of classical solutions with smooth initial data which are of small energy but possibly large oscillations where the initial density is allowed to vanish. Moreover, for the initial data, which may be discontinuous and contain vacuum states, we also obtain the global existence of weak solutions. These results generalize previous ones on classical and weak solutions for initial density being strictly away from a vacuum, and are the first for global classical and weak solutions which may have large oscillations and can contain vacuum states.

  13. Scattering of lower-hybrid waves by density fluctuations

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1981-07-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. Assuming the fluctuations to be of long wavelength compared to the incident wave the similarity of the wave equation to the Schroedinger equation for a particle in a random magnetic field is used to derive a two-way diffusion equation for the wave energy density. The diffusion constant found disagrees with earlier findings and the source of the discrepancy is pointed out. When the correct boundary conditions are imposed this equation can be solved by separation of variables. However most of the important features of the solution are apparent without detailed algebra

  14. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  15. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    International Nuclear Information System (INIS)

    Gao, Zhiwen; Zhou, Youhe

    2015-01-01

    Highlights: • We studied fracture problem in HTS based on real fundamental solutions. • When the thickness of HTS strip increases the SIF decrease. • A higher applied field leads to a larger stress intensity factor. • The greater the critical current density is, the smaller values of the SIF is. - Abstract: Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E–J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss–Lobatto–Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed

  16. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the

  17. Ultralow-density SiO2 aerogels prepared by a two-step sol-gel process

    International Nuclear Information System (INIS)

    Wang Jue; Li Qing; Shen Jun; Zhou Bin; Chen Lingyan; Jiang; Weiyang

    1996-01-01

    Low density SiO 2 gels are prepared by a two-step sol-gel process from TEOS. The influence of various solution ratios on the gelation process is investigated. The comparative characterization of gels using different solvent, such as ethanol, acetone and methyl cyanide, is also given. The ultralow-density SiO 2 aerogels with density less than 10 kg/m 3 are prepared by CO 2 supercritical drying technique. The structure difference between SiO 2 aerogels prepared by conventional single-step process and the two-step process is also presented

  18. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pröpper, Kevin [University of Göttingen, (Germany); Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Meindl, Kathrin; Sammito, Massimo [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Dittrich, Birger; Sheldrick, George M. [University of Göttingen, (Germany); Pohl, Ehmke, E-mail: ehmke.pohl@durham.ac.uk [Durham University, (United Kingdom); Usón, Isabel, E-mail: ehmke.pohl@durham.ac.uk [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), (Spain); University of Göttingen, (Germany)

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.

  19. Analytic solution of the BCS gap equation with a logarithmic singularity in the density of states

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Muthu, S.K.

    1999-01-01

    The Bardeen-Cooper-Schrieffer (BCS) gap equation is solved analytically for a density of states function with a logarithmic singularity. It is an extension of our earlier work where we had assumed a constant density of states. We continue to work in the weak-coupling limit and consider both phononic and non-phononic pairings. Expressions are obtained for T c , Δ 0 (the gap at T=0), and the jump in the electronic specific heat at T=T c . We also calculate the isotope exponent and show that it is possible to reproduce the broad features of the experimental results in this framework. (orig.)

  20. An elementary solution of the Maxwell equations for a time-dependent source

    International Nuclear Information System (INIS)

    Rivera, R; Villarroel, D

    2002-01-01

    We present an elementary solution of the Maxwell equations for a time-dependent source consisting of an infinite solenoid with a current density that increases linearly with time. The geometrical symmetries and the time dependence of the current density make possible a mathematical treatment that does not involve the usual technical difficulties, thus making this presentation suitable for students that are taking a first course in electromagnetism. We also show that the electric field generated by the solenoid can be used to construct an exact solution of the relativistic equation of motion of the electron that takes into account the effect of the radiation. In particular, we derive, in an almost trivial way, the formula for the radiation rate of an electron in circular motion

  1. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  2. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    Battery systems based on alkali metal anodes and solid solution cathodes,i.e., cathodes based on the insertion of the alkali cation in a "host lattice,"show considerable promise for high energy density storage batteries. Thispaper discusses the interaction between battery requirements...

  3. Short-time existence of solutions for mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2015-11-20

    We consider time-dependent mean-field games with congestion that are given by a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. These models are motivated by crowd dynamics in which agents have difficulty moving in high-density areas. The congestion effects make the Hamilton–Jacobi equation singular. The uniqueness of solutions for this problem is well understood; however, the existence of classical solutions was only known in very special cases, stationary problems with quadratic Hamiltonians and some time-dependent explicit examples. Here, we demonstrate the short-time existence of C∞ solutions for sub-quadratic Hamiltonians.

  4. Correlation function for density perturbations in an expanding universe. I. Linear theory

    International Nuclear Information System (INIS)

    McClelland, J.; Silk, J.

    1977-01-01

    We derive analytic solutions for the evolution of linearized adiabatic spherically symmetric density perturbations and the two-point correlation function in two regimes of the early universe: the radiation-dominated regime prior to decoupling, and the matter-dominated regime after decoupling. The solutions are for an Einstein--de Sitter universe, and include pressure effects. In the radiation era, we find that individual spherically symmetric adiabatic density perturbations smaller than the Jeans length flow outward like water waves instead of oscillating as infinite plane waves. It seems likely that the only primordial structures on scales smaller than the maximum Jeans length which could survive are very regular waves such as infinite plane waves. However, structure does build up in the correlation function over distances comparable with the maximum Jeans length in the radiation regime, and could lead to the eventual formation of galaxy superclusters. This scale (approx.10 17 Ω -2 M/sub sun)/therefore provides a natural dimension for large-scale structure arising out of the early universe. A general technique is described for constructing solutions for the evolution of the two-point correlation function, and applied to study white noise and power-law initial conditions for primordial inhomogeneities

  5. Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation

    DEFF Research Database (Denmark)

    Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi

    For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...... that the entanglement density M/Me of the solution coincided with that of PS 290k melt (M = 290k). After the elongation at the Rouse-based Weissenberg number Wi(R) ~ 3 up to the Hencky strain of 3, the short time stress relaxation of the solution was accelerated by a factor of ~4, which was less significant compared...... and the lack of monotonic thinning observed for the semidilute solutions. Results for less concentrated solutions will be also presented on site....

  6. Formation of the second organic phase during uranyl nitrate extraction from aqueous solution by 30% tributylphosphate solution in paraffin

    International Nuclear Information System (INIS)

    Yhrkin, V.G.

    1996-01-01

    For extraction systems aqueous solution of uranyl nitrate-30% solution of tributylphosphate in individual paraffins from C 13 to C 17 the influence of the second organic phase of uranyl nitrate concentration in aqueous and organic phases, the length of hydrocarbon chain of paraffin hydrocarbon and temperature from 25 to 50 deg C on formation conditions has been defected. A special method of achieving the conditions of organic phase stratification from three-phase region, involving definition of equilibrium phases composition by density and refractive index, has been elaborated for more precise definition of organic phase homogeneity region. It has been revealed that without addition of nitric acid to uranyl nitrate solution the organic phase homogeneity limits can be achieved solely on paraffins C 15 , C 16 and C 17 and only under conditions similar to equeous phase saturation in terms of uranyl nitrate. 16 refs., 2 figs

  7. Hydrocarbon-based solution for drilling and damping wells

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, G A; Davydova, A I; Dobroskok, B Ye; Kendis, M Sh; Salimov, M Kh; Zvagil' skiy, G Ye

    1982-01-01

    The proportions are, %: oil product 23-74.4; emulsifier 0.5-1.2; monoethanolamine 0.1-0.2 and the rest mineral water. The solution is prepared as follows: the oil product (a mixture of Romashkinskiy oilfield oil and bituminous distillate 1:1) is mixed with emulsifier (85%) and stabilizer (15%). Mineral water is gradually added to a density of 1.18 g/cm/sup 3/. Mixing stops upon reaching the desired value of breakdown voltage, characterizing a stable solution. This solution has a higher overall stability (electrostability 1.8-3.1 times higher) than the usual solution. Also it has higher structural mechanical properties at lesser viscosity. The solution remains rather stable even when clay powder is added at 700 g/1 added at temperatures up to 95/sup 0/. It breaks down at a clay powder content of 350 g/1 and a temperature of 70/sup 0/. The solution can be used for opening layers and damping wells, having 95/sup 0/ temperatures. It is useful for drilling horizons with unstable rock. The solution currently used is used for wells having 60/sup 0/ temperatures and for horizons that do not have unstable rock. Due to cheaper additives, the solution is 6.2 times cheaper per lm/sup 3/ than the one being used currently.

  8. Exact and Numerical Solutions of a Spatially-Distributed Mathematical Model for Fluid and Solute Transport in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2016-06-01

    Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.

  9. Density and electrical conductivity of NaCl-CoCl2 and NaCl-NiCl2 molten mixtures

    International Nuclear Information System (INIS)

    Red'kin, A.A.; Salyulev, A.B.; Smirnov, M.V.; Khokhlov, V.A.

    1995-01-01

    The density and electrical conductivity of cobalt and nickel dichlorides and their solutions in molten sodium chloride have been measured. The density was measured by a dilatometric method, and the electrical conductivity by an AC technique. The molar volume and equivalent conductance were calculated. (orig.)

  10. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    1999-01-01

    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for

  11. Critical enrichment and critical density of infinite systems for nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Koyama, Takashi; Komuro, Yuichi

    1986-03-01

    Critical enrichment and critical density of homogenous infinite systems, such as U-H 2 O, UO 2 -H 2 O, UO 2 F 2 aqueous solution, UO 2 (NO 3 ) 2 aqueous solution, Pu-H 2 O, PuO 2 -H 2 O, Pu(NO 3 ) 4 aqueous solution and PuO 2 ·UO 2 -H 2 O, were calculated with the criticality safety evaluation computer code system JACS for nuclear criticality safety evaluation on fuel facilities. The computed results were compared with the data described in European and American criticality handbooks and showed good agreement with each other. (author)

  12. Numerical investigations on contactless methods for measuring critical current density in HTS: application of modified constitutive-relation method

    International Nuclear Information System (INIS)

    Kamitani, A.; Takayama, T.; Itoh, T.; Ikuno, S.

    2011-01-01

    A fast method is proposed for calculating the shielding current density in an HTS. The J-E constitutive relation is modified so as not to change the solution. A numerical code is developed on the basis of the proposed method. The permanent magnet method is successfully simulated by means of the code. A fast method has been proposed for calculating the shielding current density in a high-temperature superconducting thin film. An initial-boundary-value problem of the shielding current density cannot be always solved by means of the Runge-Kutta method even when an adaptive step-size control algorithm is incorporated to the method. In order to suppress an overflow in the algorithm, the J-E constitutive relation is modified so that its solution may satisfy the original constitutive relation. A numerical code for analyzing the shielding current density has been developed on the basis of this method and, as an application of the code, the permanent magnet method for measuring the critical current density has been investigated numerically.

  13. Improving density functional tight binding predictions of free energy surfaces for peptide condensation reactions in solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for chemistry that is fast relative to DFT simulation times (Contract DE-AC52-07NA27344.

  14. Improving Density Functional Tight Binding Predictions of Free Energy Surfaces for Slow Chemical Reactions in Solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    2017-06-01

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for reactions that are fast relative to DFT simulation times (Contract DE-AC52-07NA27344.

  15. Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals

    Science.gov (United States)

    Wu, Guochun; Tan, Zhong

    2018-06-01

    In this paper, we consider the weak solution of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time behavior of a global weak solution is also established.

  16. Thermosyphon analysis of a repository: A simplified model for vapor flow and heat transfer

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Powell, M.W.

    1994-01-01

    A simplified model is developed for thermally-driven buoyant gas flow in an unsaturated repository such as that anticipated at Yucca Mountain. Based on a simplified thermosyphon model, the strength of buoyant gas flow is related to key thermal-hydraulic parameters (e.g., bulk permeability and maximum repository temperature). The effects of buoyant gas flow on vapor flow and heat transport near the repository horizon are assessed, namely: (i) the strength of buoyant flow through the repository, (ii) the effect of buoyant flow on vapor transfer, and (iii) the effect of buoyant flow on heat transfer

  17. Flexible riser global analysis for very shallow water

    OpenAIRE

    Karegar, Sadjad

    2013-01-01

    Master's thesis in Offshore technology Flexible risers are widely used for a range of water depths and can accommodate large floater motions when using a buoyant system. A wide range of buoyancy solutions have been developed for very shallow water (e.g. 30-50 m), shallow water (e.g. 90-110 m) and semi-deep water (e.g. 300-400 m) and in the ranges between these depths. Flexible risers can have different configurations. These different solutions have different characteristics which influe...

  18. On the performance of quantum chemical methods to predict solvatochromic effects. The case of acrolein in aqueous solution

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Møgelhøj, Andreas; Nilsson, Elna Johanna Kristina

    2008-01-01

    The performance of the Hartree–Fock method and the three density functionals B3LYP, PBE0, and CAM-B3LYP is compared to results based on the coupled cluster singles and doubles model in predictions of the solvatochromic effects on the vertical n¿* and ¿* electronic excitation energies of acrolein...... of acrolein in vapor phase and aqueous solution. The gas-to-aqueous solution shift of the n¿* excitation energy is well reproduced by using all density functional methods considered. However, the B3LYP and PBE0 functionals completely fail to describe the ¿* electronic transition in solution, whereas...... the recent CAM-B3LYP functional performs well also in this case. The ¿* excitation energy of acrolein in water solution is found to be very dependent on intermolecular induction and nonelectrostatic interactions. The computed excitation energies of acrolein in vacuum and solution compare well to experimental...

  19. Solubilities, densities and refractive indices for the ternary systems ethylene glycol + MCl + H2O (M = Na, K, Rb, Cs) at (15 and 35) deg. C

    International Nuclear Information System (INIS)

    Zhou Yanhong; Li Shuni; Zhai Quanguo; Jiang Yucheng; Hu Mancheng

    2010-01-01

    The solubilities, densities and refractive indices data for the four ternary systems ethylene glycol + MCl + H 2 O (M = Na, K, Rb, Cs) at different temperatures were measured, with mass fractions of ethylene glycol in the range of 0 to 1.0. In all cases, the presence of ethylene glycol significantly reduces the solubility of the salts in aqueous solution. The experimental data of density, refractive index and solubility of saturated solutions for these systems were correlated using polynomial equations as a function of the mass fraction of ethylene glycol. On the other hand, the refractive index and density of unsaturated solutions was also determined for the four ternary systems with varied unsaturated salt concentrations. Values for both the properties were correlated with the salt concentrations and proportions of ethylene glycol in the solutions.

  20. Hazardous or not - Are adult and juvenile individuals of Potamopyrgus antipodarum affected by non-buoyant microplastic particles?

    Science.gov (United States)

    Imhof, Hannes K; Laforsch, Christian

    2016-11-01

    Microplastic has been ubiquitously detected in freshwater ecosystems. A variety of freshwater organisms were shown to ingest microplastic particles, while a high potential for adverse effects are expected. However, studies addressing the effect of microplastic in freshwater species are still scarce compared to studies on marine organisms. In order to gain further insights into possible adverse effects of microplastic particles on freshwater invertebrates and to set the base for further experiments we exposed the mud snail (Potampoyrgus antipodarum) to a large range of common and environmentally relevant non-buoyant polymers (polyamide, polyethylene terephthalate, polycarbonate, polystyrene, polyvinylchloride). The impact of these polymers was tested by performing two exposure experiments with irregular shaped microplastic particles with a broad size distribution in a low (30%) and a high microplastic dose (70%) in the food. First, possible effects on adult P. antipodarum were assessed by morphological and life-history parameters. Second, the effect of the same mixture on the development of juvenile P. antipodarum until maturity was analyzed. Adult P. antipodarum showed no morphological changes after the exposure to the microplastic particles, even if supplied in a high dose. Moreover, although P. antipodarum is an established model organism and reacts especially sensitive to endocrine active substances no effects on embryogenesis were detected. Similarly, the juvenile development until maturity was not affected. Considering, that most studies showing effects on marine and freshwater invertebrates mostly exposed their experimental organisms to very small (≤20 μm) polystyrene microbeads, we anticipate that these effects may be highly dependent on the chemical composition of the polymer itself and the size and shape of the particles. Therefore, more studies are necessary to enable the identification of harmful synthetic polymers as some of them may be