WorldWideScience

Sample records for buoyant density solution

  1. Experimental and numerical study on density stratification erosion phenomena with a vertical buoyant jet in a small vessel

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Satoshi, E-mail: abe.satoshi@jaea.go.jp; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2016-07-15

    Highlights: • This paper shows results of a small scale experiment and CFD analyses on a density stratification erosion with a vertical buoyant jet. • The particle image velocimetry (PIV) and quadrupole mass spectrometer (QMS) with a multiport rotating valve were applied. • Two typical well-used RANS models were applied. • The simulated stratification erosion was in agreement with the experimental result, which suggested that the turbulence mixing occurred only in the jet impinging region. - Abstract: The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project to investigate thermal hydraulic phenomena in a reactor containment vessel during a severe accident. The hydrogen distribution in the vessel is one of significant safety issues in discussing a potential of hydrogen combustion in the containment. Density stratification and its break-up are important phenomena affecting the hydrogen distribution. This paper focuses on a density stratification erosion and break-up mechanism with a vertical buoyant jet promoting the turbulent helium transport. Small scale experiment and computational fluid dynamics (CFD) analyses were carried out for investigating this phenomena. In the experiment, a rectangular vessel made with acrylic plates with a width of 1.5 m, a length of 1.5 m and a height of 1.8 m was used for visualizing flow field with particle image velocimetry (PIV) system. The quadrupole mass spectrometer (QMS) system with a multiport rotating valve was applied for measuring gaseous concentration at 20 elevation points. In CFD analysis with OpenFOAM, two typical well-used turbulence models were used: low-Reynolds number type k–ε model and SST k–ω model, with a turbulence model modification to consider the buoyant effect in the stratification. As a result, the stratification erosion in the CFD analyses with the modified turbulence model agreed well with the experimental data, indicating importance of the turbulence damping by the buoyant effect.

  2. Theoretical analysis and semianalytical solutions for a turbulent buoyant hydrogen-air jet

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a single universal function, called plume function. By combining the obtained analytical expressions of centerline variables with empirical Gaussian expressions of the mean variables, we obtain semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit, and mass fraction).

  3. Evidence that platelet buoyant density, but not size, correlates with platelet age in man

    Energy Technology Data Exchange (ETDEWEB)

    Mezzano, D.; Hwang, K.; Catalano, P.; Aster, R.H.

    1981-01-01

    Following infusion of 51Cr-labeled autologous platelets into normal subjects, high-density (HD) and low-density (LD) platelet cohorts were isolated by prolonged centrifugation in isosmotic arabino-galactan (Stractan). Specific radio-activity of LD platelets declined rapidly post-infusion (T1/2 . 1.5 days), but specific radioactivity of HD platelets remained constant or increased over a 3--4-day period and gradually declined for 6--7 days thereafter. These differences were exaggerated when platelet cohorts enriched in LD or HD cells by slow centrifugation in high-density albumin were labeled and transfused. Mean survival of a platelet cohort enriched with HD cells was significantly (P less than 0.02) shorter (7.73 days) than that of a cohort enriched with LD cells (9.33) days). In normal subjects treated with aspirin, capacity for thromboxane synthesis was regained more rapidly (P less than 0.05) in LD than in HD platelets. HD and LD platelets differed only slightly in mean volume (HD platelets . 7.57 mu3, LD platelets . 6.87 mu3, 0.05 less than P less than 0.01). We believe the most logical interpretation of these findings is that under normal conditions in man, newly formed platelets are less dense on the average than total platelets and become more dense as they age in the circulation. Thus, specific radioactivity of LD platelets declines rapidly as these platelets move into a more dense compartment and are replaced by newly formed, unlabelled cells; specific radioactivity of HD platelets remains constant or increases as labelled platelets enter this compartment in numbers equal to or greater than the number leaving it at the end of their life span. The similarity in mean volumes of LD and HD platelets suggests that platelet size is unrelated to platelet age under normal conditions.

  4. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

  5. Density of aqueous solutions of CO2

    OpenAIRE

    Garcia, Julio E.

    2001-01-01

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as mu...

  6. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  7. Density of aqueous solutions of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  8. Turbulent Buoyant Jets in Flowing Ambients

    DEFF Research Database (Denmark)

    Chen, Hai-Bo; Larsen, Torben; Petersen, Ole

    1991-01-01

    The mean behaviour of horizontal turbulent buoyant jets in co-flowing currents is investigated experimentally and numerically, in terms of jet trajectory, dilution and centerline density deficit and velocity decay. It is demonstrated in the paper that the laboratory data on the jet trajectory and...

  9. Buoyant guyed tower

    Energy Technology Data Exchange (ETDEWEB)

    McGillivray, T.L.; Coull, T.B.

    1986-07-08

    This patent describes an apparatus for supporting an offshore drilling and production platform comprising: a tower adapted to be mounted in an operative, generally upright position of the sea bottom and to extend upwardly to a location above the mean water level of the sea, the upper end of the tower adapted to be coupled to the platform in supporting relationship thereof; and a plurality of guy lines coupled to the tower near the upper end thereof and adapted to extend outwardly and downwardly therefrom in a number of different directions, the lower ends of the guy lines adapted to be anchored in the sea bottom; the tower having a plurality of legs, each of the legs being tubular and having a buoyant chamber for exerting a buoyant resorting force on the tower when the tower is in the operative position; there being a number of tubular piles extending into and through each leg, each pile being secured at its upper end to the corresponding leg near the upper end of the leg, each pile extending outwardly and downwardly from the lower end of the corresponding leg, whereby the lower ends of the piles can extend into the sea bottom when the tower is in the operative position; each pile adapted to receive a well extending downwardly from the platform when the platform is mounted on and supported by the upper end of the tower, each well adapted to extend into the sea bottom for production of resources from a location below the sea bottom.

  10. A turbulence model for buoyant flows based on vorticity generation.

    Energy Technology Data Exchange (ETDEWEB)

    Domino, Stefan Paul; Nicolette, Vernon F.; O' Hern, Timothy John; Tieszen, Sheldon R.; Black, Amalia Rebecca

    2005-10-01

    A turbulence model for buoyant flows has been developed in the context of a k-{var_epsilon} turbulence modeling approach. A production term is added to the turbulent kinetic energy equation based on dimensional reasoning using an appropriate time scale for buoyancy-induced turbulence taken from the vorticity conservation equation. The resulting turbulence model is calibrated against far field helium-air spread rate data, and validated with near source, strongly buoyant helium plume data sets. This model is more numerically stable and gives better predictions over a much broader range of mesh densities than the standard k-{var_epsilon} model for these strongly buoyant flows.

  11. Turbulence Statistics of a Buoyant Jet in a Stratified Environment

    Science.gov (United States)

    McCleney, Amy Brooke

    Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one

  12. Viscosity and density tables of sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fair, J.A.; Ozbek, H. (comps.)

    1977-04-01

    A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

  13. HDPE (High Density Polyethylene) pipeline and riser design in Guanabara Bay: challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bomfimsilva, Carlos; Jorge, Joao Paulo Carrijo; Schmid, Dominique; Gomes, Rodrigo Klim [INTECSEA, Sao Paulo, SP (Brazil); Lima, Alexander Piraja [GDK, Salvador, BA (Brazil)

    2009-12-19

    Worldwide shipments of plastic pipes are forecasted to increase 5.2% per year since 2008, being commonly used for water supply and sewage disposal. The HDPE (High Density Polyethylene) pipes have been applied recently to deliver potable water and fire fighting water for the main pier of the LNG system in Guanabara Bay, Rio de Janeiro. The system contains three sizes of pipe outside diameter, 110 mm and 160 mm for water supply, and 500 mm for the fire fighting system. The main design challenges of the pipeline system included providing on-bottom stability, a suitable installation procedure and a proper riser design. The on-bottom stability calculations, which are quite different from the conventional steel pipelines, were developed by designing concrete blocks to be assembled on the pipeline in a required spacing to assure long term stability, knowing that plastic pipes are buoyant even in flooded conditions. The installation procedure was developed considering the lay down methodology based on surface towing technique. The riser was designed to be installed together with additional steel support structure to allow the entire underwater system to have the same plastic pipe specification up to the surface. This paper presents the main challenges that were faced during the design of the HDPE pipelines for the LNG system in Guanabara Bay, addressing the solutions and recommendations adopted for the plastic underwater pipeline system.

  14. Laboratory Study of Dispersion of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1990-01-01

    A laboratory a study on surface dispersion of buoyant plumes in open channel turbulence in made, where the buoyancy is due to both salinity and heat. The measured parameters are the downstream derivative of a plume width and height, which are integral-characteristics of the distributions of density...

  15. Axisymmetric contour dynamics for buoyant vortex rings

    Science.gov (United States)

    Chang, Ching; Llewellyn Smith, Stefan

    2017-11-01

    Vortex rings are important in many fluid flows in engineering and environmental applications. A family of steady propagating vortex rings including thin-core rings and Hill's spherical vortex was obtained by Norbury (1973). However, the dynamics of vortex rings in the presence of buoyancy has not been investigated yet in detail. When the core of a ring is thin, we may formulate reduced equations using momentum balance for vortex filaments, but that is not the case for ``fat'' rings. In our study, we use contour dynamics to study the time evolution of axisymmetric vortex rings when the density of the fluid inside the ring differs from that of the ambient. Axisymmetry leads to an almost-conserved material variable when the Boussinesq approximation is made. A set of integro-differential equations is solved numerically for these buoyant vortex rings. The same physical settings are also used to run a DNS code and compare to the results from contour dynamics.

  16. Simultaneous solution of the geoid and the surface density anomalies

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.; Karimi, R.; AllahTavakoli, Y.

    2012-04-01

    The main application of the land gravity data in geodesy is "local geoid" or "local gravity field" modeling, whereas the same data could play a vital role for the anomalous mass-density modeling in geophysical explorations. In the realm of local geoid computations based on Geodetic Boundary Value Problems (GBVP), it is needed that the effect of the topographic (or residual terrain) masses be removed via application of the Newton integral in order to perform the downward continuation in a harmonic space. However, harmonization of the downward continuation domain may not be perfectly possible unless accurate information about the mass-density of the topographic masses be available. On the other hand, from the exploration point of view the unwanted topographical masses within the aforementioned procedure could be regarded as the signal. In order to overcome the effect of the remaining masses within the remove step of the GBVP, which cause uncertainties in mathematical modeling of the problem, here we are proposing a methodology for simultaneous solution of the geoid and residual surface density modeling In other words, a new mathematical model will be offered which both provides the needed harmonic space for downward continuation and at the same time accounts for the non-harmonic terms of gravitational field and makes use of it for residual mass density modeling within the topographic region. The presented new model enjoys from uniqueness of the solution, opposite to the inverse application of the Newton integral for mass density modeling which is non-unique, and only needs regularization to remove its instability problem. In this way, the solution of the model provides both the incremental harmonic gravitational potential on surface of the reference ellipsoid as the gravity field model and the lateral surface mass-density variations via the second derivatives of the non harmonic terms of gravitational field. As the case study and accuracy verification, the proposed

  17. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-04-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  18. Neutrally buoyant tracers in hydrogeophysics: Field demonstration in fractured rock

    Science.gov (United States)

    Shakas, Alexis; Linde, Niklas; Baron, Ludovic; Selker, John; Gerard, Marie-Françoise; Lavenant, Nicolas; Bour, Olivier; Le Borgne, Tanguy

    2017-04-01

    Electrical and electromagnetic methods are extensively used to map electrically conductive tracers within hydrogeologic systems. Often, the tracers used consist of dissolved salt in water, leading to a denser mixture than the ambient formation water. Density effects are often ignored and rarely modeled but can dramatically affect transport behavior and introduce dynamics that are unrepresentative of the response obtained with classical tracers (e.g., uranine). We introduce a neutrally buoyant tracer consisting of a mixture of salt, water, and ethanol and monitor its movement during push-pull experiments in a fractured rock aquifer using ground-penetrating radar. Our results indicate a largely reversible transport process and agree with uranine-based push-pull experiments at the site, which is in contrast to results obtained using dense saline tracers. We argue that a shift toward neutrally buoyant tracers in both porous and fractured media would advance hydrogeophysical research and enhance its utility in hydrogeology.

  19. Dilution of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben; Petersen, Ole

    The purpose of present work is to establish a quantitative description of a surface plume which is valid for the range of density differences occurring in relation to sewage outfalls.......The purpose of present work is to establish a quantitative description of a surface plume which is valid for the range of density differences occurring in relation to sewage outfalls....

  20. Topology optimization for submerged buoyant structures

    NARCIS (Netherlands)

    Picelli, R.; van Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; van Keulen, A.

    2017-01-01

    This paper presents an evolutionary structural topology optimization method for the design of completely submerged buoyant modules with design-dependent fluid pressure loading. This type of structure is used to support offshore rig installation and pipeline transportation at all water depths. The

  1. Infrared Sensing of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1988-01-01

    This paper is concerned with laboratory experiments on buoyant surface plumes where heat is the source of buoyancy. Temperature distributions were measured at the water surface using infra-red sensing, and inside the waterbody a computer based measurement system was applied. The plume is described...

  2. Near field characteristics of buoyant helium plumes

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Sadhana; Volume 40; Issue 3. Near field characteristics of buoyant helium plumes. Kuchimanchi K Bharadwaj Debopam Das Pavan K Sharma. Section I – Fluid Mechanics and Fluid Power (FMFP) Volume 40 Issue 3 May 2015 pp 757- ...

  3. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    Abstract. We analyse the origin of the multiple long time scales associated with the long time decay observed in non-polar solvation dynamics by linear stability analysis of solvent density modes where the effects of compressibility and solvent structure are sys- tematically incorporated. The coupling of the solute–solvent ...

  4. Evaluation of effect of solution-density formula on criticality parameters

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori; Hirose, Hideyuki; Ami, Norio; Sakurai, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1993-03-01

    Calculations of the criticality parameters have been performed for solution fuels such as uranyl nitrate, plutonium nitrate and their mixture by use of a newly proposed formula (SST formula) of the solution density. By comparison of the calculated infinitive multiplication factor and critical buckling using SST formula with those by the present formula based on Maimoni`s and Burger`s, the effect of the density formula for nitrate solution on the criticality calculation were studied. (author).

  5. Evaluation of effect of solution-density formula on criticality parameters

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori; Hirose, Hideyuki; Ami, Norio; Sakurai, Satoshi (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1993-03-01

    Calculations of the criticality parameters have been performed for solution fuels such as uranyl nitrate, plutonium nitrate and their mixture by use of a newly proposed formula (SST formula) of the solution density. By comparison of the calculated infinitive multiplication factor and critical buckling using SST formula with those by the present formula based on Maimoni's and Burger's, the effect of the density formula for nitrate solution on the criticality calculation were studied. (author).

  6. Size effects of pore density and solute size on water osmosis through nanoporous membrane.

    Science.gov (United States)

    Zhao, Kuiwen; Wu, Huiying

    2012-11-15

    Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.

  7. An experimental study of the spread of buoyant water into a rotating environment

    OpenAIRE

    Crawford, Thomas Joseph

    2017-01-01

    This thesis examines previously unresolved issues regarding the fluid dynamics of the spread of buoyant water into a rotating environment. We focus in particular on the role that finite potential vorticity and background turbulence play in determining the flow properties. When water of an anomalous density enters into an oceanic basin, gravity-driven surface flows can be established as a result of the density difference. These flows are often of a sufficiently large scale that the dynamic...

  8. Contribution of the ''simple solutions'' concept to estimate density of actinides concentrated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sorel, C.; Moisy, Ph.; Dinh, B.; Blanc, P. [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification, DRRV, 30 - Marcoule (France)

    2000-07-01

    In order to calculate criticality parameters of nuclear fuel solution systems, number density of nuclides are needed and they are generally estimated from density equations. Most of the relations allowing the calculation of the density of aqueous solutions containing the electrolytes HNO{sub 3}-UO{sub 2}(NO{sub 3}){sub 2}-Pu(NO{sub 3}){sub 4}, usually called 'nitrate dilution laws' are strictly empirical. They are obtained from a fit of assumed polynomial expressions on experimental density data. Out of their interpolation range, such mathematical expressions show discrepancies between calculated and experimental data appearing in the high concentrations range. In this study, a physico-chemical approach based on the isopiestic mixtures rule is suggested. The behaviour followed by these mixtures was first observed in 1936 by Zdanovskii and expressed as: 'Binary solutions (i.e. one electrolyte in water) having a same water activity are mixed without variation of this water activity value'. With regards to this behaviour, a set of basic thermodynamic expressions has been pointed out by Ryazanov and Vdovenko in 1965 concerning enthalpy, entropy, volume of mixtures, activity and osmotic coefficient of the components. In particular, a very simple relation for the density is obtained from the volume mixture expression depending on only two physico-chemical variables: i) concentration of each component in the mixture and in their respectively binary solutions having the same water activity as the mixture and ii), density of each component respectively in the binary solution having the same water activity as the mixture. Therefore, the calculation needs the knowledge of binary data (water activity, density and concentration) of each component at the same temperature as the mixture. Such experimental data are largely published in the literature and are available for nitric acid and uranyl nitrate. Nevertheless, nitric acid binary data show large

  9. Probing Ionic Liquid Aqueous Solutions Using Temperature of Maximum Density Isotope Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Tariq

    2013-03-01

    Full Text Available This work is a new development of an extensive research program that is investigating for the first time shifts in the temperature of maximum density (TMD of aqueous solutions caused by ionic liquid solutes. In the present case we have compared the shifts caused by three ionic liquid solutes with a common cation—1-ethyl-3-methylimidazolium coupled with acetate, ethylsulfate and tetracyanoborate anions—in normal and deuterated water solutions. The observed differences are discussed in terms of the nature of the corresponding anion-water interactions.

  10. A modeling of buoyant gas plume migration

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Patzek, T.; Benson, S.M.

    2008-12-01

    This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic time, eventually dissolves in the formation brine and remains trapped by mineralization. However, one of the potential problems associated with the geologic method of sequestration is that naturally present or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even in a supercritical state, the carbon dioxide viscosity and density are lower than those of the formation brine. Buoyancy tends to drive the leaked CO{sub 2} plume upward. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution and migration, are critical for developing technology, monitoring policy, and regulations for safe carbon dioxide geologic sequestration. In this study, we obtain simple estimates of vertical plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. We describe buoyancy-driven countercurrent flow of two immiscible phases by a Buckley-Leverett type model. The model predicts that a plume of supercritical carbon dioxide in a homogeneous water-saturated porous medium does not migrate upward like a bubble in bulk water. Rather, it spreads upward until it reaches a seal or until it becomes immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration (Silin et al., 2007). In a layered reservoir, the simplified solution predicts a slower plume front propagation relative to a homogeneous formation with the same harmonic mean permeability. In contrast, the model yields much higher

  11. Density of low-energy vibrational states in a protein solution

    Science.gov (United States)

    Brill, A. S.; Fiamingo, F. G.; Hampton, D. A.; Levin, P. D.; Thorkildsen, R.

    1985-04-01

    Electron paramagnetic resonance measurements on the aquo complex of sperm whale skeletal myoglobin in solution at T<4 K show that, at phonon energies around 20 cm-1, the density of vibrational states is that of a three-dimensional system.

  12. Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W.; Hogendoorn, K. J.; Versteeg, G. F.

    2005-01-01

    The physical solubility of N2O in and the density and viscosity of aqueous piperazine solutions have been measured over a temperature range of (293.15 to 323.15) K for piperazine concentrations ranging from about (0.6 to 1.8) kmol·mr-3. Furthermore, the present study contains experimental surface

  13. Densities, viscosities, and liquid diffusivities in aqueous piperazine and aqueous (piperazine + N-methyldiethanolamine) solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Hamborg, E. S.; Hogendoorn, J. A.; Niederer, J. P. M.; Versteeg, G. F.

    2008-01-01

    Densities and viscosities of aqueous solutions containing both piperazine (PZ) and N-methyldiethanolamine (MDEA) have been determined at a temperature range from (293.15 to 323.15) K. The concentrations of MDEA have been kept constant at (1, 2, 3, and 4) mol · dm-3 with the concentration of PZ

  14. Wake-driven dynamics of finite-sized buoyant spheres in turbulence

    CERN Document Server

    Mathai, Varghese; Brons, Jon; Sun, Chao; Lohse, Detlef

    2015-01-01

    Particles suspended in turbulent flows are affected by the turbulence, and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation on finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multi-physics based models that account for particle wake effects for a faithful representation of buoyant sphere dynamics in turbulence.

  15. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2.

    Science.gov (United States)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-12-28

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  16. Shifts in the temperature of maximum density (TMD) of ionic liquid aqueous solutions.

    Science.gov (United States)

    Tariq, M; Esperança, J M S S; Soromenho, M R C; Rebelo, L P N; Lopes, J N Canongia

    2013-07-14

    This work investigates for the first time shifts in the temperature of maximum density (TMD) of water caused by ionic liquid solutes. A vast amount of high-precision volumetric data--more than 6000 equilibrated (static) high-precision density determination corresponding to ∼90 distinct ionic liquid aqueous solutions of 28 different types of ionic liquid--allowed us to analyze the TMD shifts for different homologous series or similar sets of ionic solutes and explain the overall effects in terms of hydrophobic, electrostatic and hydrogen-bonding contributions. The differences between the observed TMD shifts in the -2 liquids and are consistent with previous results that established hydrophobic and hydrophilic scales for ionic liquid ions based on their specific interactions with water and other probe molecules.

  17. An Experimental Investigation on Inclined Negatively Buoyant Jets

    Directory of Open Access Journals (Sweden)

    Raed Bashitialshaaer

    2012-09-01

    Full Text Available An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow rate. Five geometric quantities describing the jet trajectory that are useful in the design of brine discharge systems were determined. Dimensional analysis demonstrated that the geometric jet quantities studied, if normalized with the jet exit diameter, could be related to the densimetric Froude number. Analysis of the collected data showed that this was the case for a Froude number less than 100, whereas for larger values of the Froude number the scatter in the data increased significantly. As has been observed in some previous investigations, the slope of the best-fit straight line through the data points was a function of the initial jet angle (θ, where the slope increased with θ for the maximum levels (Ym studied, but had a more complex behavior for horizontal distances.

  18. Density and morphology of corneal endothelial cell after phacoemulsification using Ringer lactate versus balanced salt solution as irrigating solutions

    Directory of Open Access Journals (Sweden)

    Farahdina Rahmawati

    2018-02-01

    Full Text Available AIM: To compare the difference in corneal endothelial cell density and morphology after phacoemulsification using Ringer lactate(RLand balanced salt solution(BSSirrigating solutions.METHODS: The prospective randomized controlled trial study was conducted between February 2017 and April 2017 in Dr. YAP Eye Hospital, Yogyakarta, Indonesia. There were a total of 52 subjects(52 eyeswho were senile cataract patients further grouped into two, 26 patients undergoing the phacoemulsification procedure using RL irrigating solution and the other 26 patients with BSS irrigating solution, both conducted by one operator. On the 1, 7, and 28d post operative, an evaluation was done to measure the density and corneal endothelial cell morphology, as well as the variable of inflammation in the two groups.RESULTS: Fifty-two eyes had undergone phacoemulsification with posterior intraocular lens implantation. Both groups were evaluated for the endothelial cell reduction and corneal endothelial cell morphology change, along with post-operative inflammation. On the 28d post-operative, endothelial cell reduction in the BSS group(173.96 cell/mm2, 8.12%was lower than the RL group(253.20 cell/mm2, 10.25%, percentage of corneal endothelial cell variation coefficient increase in the BSS group(2.92%, 8.36%was lower compared to the RL group(3.42%, 9.96%, decrease of hexagonal cells of corneal endothelium cells presentation percentage in the BSS group(4.30%, 8.17%was lower compared to the RL group(4.84%, 8.97%, and the percentage increase of central corneal thickness in the BSS group(4.69 μm, 0.89%was almost equal to the RL group(4.53 μm, 0.90%. All of the results regarding difference in density and corneal cell endothelium morphology between the two groups did not reveal any statistically significant difference(P>0.05. Inflammatory variable in the two groups were even.CONCLUSION: BSS and RL were equal in their capability of maintaining endothelial cell loss and endothelial

  19. Rheological behaviour, freezing curve, and density of coffee solutions at temperatures close to freezing

    OpenAIRE

    Hernández Yáñez, Eduard; Moreno, Fabian Leonardo; Raventós Santamaria, Mercè; Santamaría, N.; Acosta, J.; Pirachican, Oscar; Torres, L.; Ruiz Pardo, Yolanda

    2015-01-01

    The physical properties of coffee solutions were determined for temperatures close to the freezing point. Rheological behaviour, freezing curve, density, and their relationship between coffee mass fraction and Brix degrees were determined for coffee mass fractions between 5 and 50% (wet basis) in the -6 to 20 degrees C temperature interval. Values of viscosity varied from 1.99 to 1037 mPa center dot s and values of density from 1000 to 1236 kg center dot m(-3). The freezing curve was generate...

  20. Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions

    Science.gov (United States)

    Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan

    2018-01-01

    In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.

  1. Fractional SPDEs driven by spatially correlated noise: existence of the solution and smoothness of its density

    OpenAIRE

    Boulanba, Lahcen; Eddahbi, M'hamed; Mellouk, Mohamed

    2010-01-01

    In this paper we study a class of stochastic partial differential equations in the whole space $\\mathbb{R}^{d}$, with arbitrary dimension $d\\geq 1$, driven by a Gaussian noise white in time and correlated in space. The differential operator is a fractional derivative operator. We show the existence, uniqueness and H\\"{o}lder's regularity of the solution. Then by means of Malliavin calculus, we prove that the law of the solution has a smooth density with respect to the Lebesgue measure.

  2. Phase behavior and in-situ density determination in concentrated salt solutions under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.

    1994-10-01

    An optical cell was constructed to observe phase behavior in aqueous electrolyte solutions at temperatures up to 450{degrees}C and pressures up to 1200 bar. The goal was to map out the single-phase region for a certain concentrated, multicomponent waste solution, to aid in the design of a treatment facility. The imaging system could also measure the refractive index of the fluid, allowing the density to be determined by means of the Lorentz-Lorenz relationship. The validity of the technique was verified for pure water and for NaCl-water systems. Data for a multicomponent system is present as a family plot of density vs. pressure, for several different temperatures, with the lowest pressure on each plot corresponding to a phase boundary. Data is also presented for the binary system NaNO{sub 3}-water.

  3. On Comparing Precision Orbit Solutions of Geodetic Satellites Given Several Atmospheric Density Models

    Science.gov (United States)

    2014-08-01

    Astrodynamics, drag, atmospheric density, geodesy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 12 19a...due to estimation error of these parameters rather than to physical forces. Ultimately, the orbit 8 solution that is treated as truth largely does not...Translation of ’Le satellite de geodesie ’Starlette’,’ Groupe de Recherches de Geodesie Spatiale, Centre National d’Etudes Spatiales, Bretigny-sur-Orge

  4. Buoyant subduction on Venus: Implications for subduction around coronae

    Science.gov (United States)

    Burt, J. D.; Head, J. W.

    1993-01-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  5. CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR

    Science.gov (United States)

    Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...

  6. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    Science.gov (United States)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data.

  7. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall.

    Science.gov (United States)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data.

  8. Factors affecting the density of Brassica napus seeds

    NARCIS (Netherlands)

    Young, L.; Jalink, H.; Denkert, R.; Reaney, M.

    2006-01-01

    Brassica napus seed is composed of low density oil (0.92 g.cm(-3)) and higher density solids (1.3-1.45 g.cm(-3)). Seed buoyant density may potentially be used to determine seed oil content and to separate seeds with different oil contents, however, we have found that seeds with the lowest buoyant

  9. Numerical modelling of the buoyant marine microplastics in the South-Eastern Baltic Sea

    Science.gov (United States)

    Bagaev, Andrei; Mizyuk, Artem; Chubarenko, Irina; Khatmullilna, Liliya

    2017-04-01

    Microplastics is a burning issue in the marine pollution science. Its sources, ways of propagation and final destiny pose a lot of questions to the modern oceanographers. Hence, a numerical model is an optimal tool for reconstruction of microplastics pathways and fate. Within the MARBLE project (lamp.ocean.ru), a model of Lagrangian particles transport was developed. It was tested coupled with oceanographic transport fields from the operational oceanography product of Copernicus Marine Monitoring Environment Service. Our model deals with two major types of microplastics such as microfibres and buoyant spheroidal particles. We are currently working to increase the grid resolution by means of the NEMO regional configuration for the south-eastern Baltic Sea. Several expeditions were organised to the three regions of the Baltic Sea (the Gotland, the Bornholm, and the Gdansk basins). Water samples from the surface and different water layers were collected, processed, and analysed by our team. A set of laboratory experiments was specifically designed to establish the settling velocity of particles of various shapes and densities. The analysis in question provided us with the understanding necessary for the model to reproduce the large-scale dynamics of microfibres. In the simulation, particles were spreading from the shore to the deep sea, slowly sinking to the bottom, while decreasing in quantity due to conditional sedimentation. Our model is expected to map out the microplastics life cycle and to account for its distribution patterns under the impact of wind and currents. For this purpose, we have already included the parameterization for the wind drag force applied to a particle. Initial results of numerical experiments seem to indicate the importance of proper implicit parameterization of the particle dynamics at the vertical solid boundary. Our suggested solutions to that problem will be presented at the EGU-2017. The MARBLE project is supported by Russian Science

  10. An adaptation of the low Mach number approximation for supercritical fluid buoyant flows

    Science.gov (United States)

    Accary, Gilbert; Raspo, Isabelle; Bontoux, Patrick; Zappoli, Bernard

    2005-05-01

    This Note describes an acoustic filtering of the equations governing the supercritical fluid buoyant flow driven by a weak heating. The resulting low Mach number approximation takes into account the compressibility of the fluid with respect to the hydrostatic pressure. Using the direct numerical simulation of a supercritical fluid flow in the Rayleigh-Bénard configuration, we show that the density stratification may be taken into account without further numerical effort and is fundamental for the prediction of the convective instability threshold induced by a weak heating. To cite this article: G. Accary et al., C. R. Mecanique 333 (2005).

  11. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  12. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.

    2004-01-01

    is 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect...... at higher salt concentrations in NaCl and Na2SO4, and in (NH4)(2)SO4 the solubility is almost constant. The densities of the solutions have been determined experimentally, and the volume expansions by dissolving salt and dipeptide in water have been calculated. (C) 2003 Elsevier B.V. All rights reserved....

  13. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

    KAUST Repository

    El-Amin, Mohamed

    2012-02-01

    The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non-Boussinesq buoyant jet in which a low-density gas jet is injected/leak into a high-density ambient. The density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type and the rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment consists of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The top-hat profile assumption is used to obtain the mean centerline velocity, width, density and concentration of the H 2-air horizontal jet in addition to kinematic relations which govern the jet trajectories. A set of ordinary differential equations is obtained and solved numerically using Runge-Kutta method. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained based on Gaussian model. Finally, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained by solving the governing partial differential equations. Additionally, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  14. Solution of the Density Classification Problem with Two Cellular Automata Rules

    CERN Document Server

    Fuks, H

    1997-01-01

    Recently, Land and Belew [Phys. Rev. Lett. 74, 5148 (1995)] have shown that no one-dimensional two-state cellular automaton which classifies binary strings according to their densities of 1's and 0's can be constructed. We show that a pair of elementary rules, namely the ``traffic rule'' 184 and the ``majority rule'' 232, performs the task perfectly. This solution employs the second order phase transition between the freely moving phase and the jammed phase occurring in rule 184. We present exact calculations of the order parameter in this transition using the method of preimage counting.

  15. The dynamics of buoyant jets in a linearly stratified ambient cross-flow: Implications for the interaction between volcanic plumes and wind

    Science.gov (United States)

    Carazzo, Guillaume; Girault, Frédéric; Aubry, Thomas; Bouquerel, Hélène; Kaminski, Édouard

    2014-05-01

    Volcanic plumes produced by explosive eruptions commonly interact with atmospheric wind causing plume bending and a reduction of its maximum rise height. It is well known that the maximum height reached by a buoyant plume rising in a cross-flow with uniform velocity is controlled by the plume buoyancy flux at the source, the strength of the initial environmental density stratification, the wind velocity and the efficiency of turbulent entrainment. Although numerous studies have been carried out to understand the effects of variations of environmental and source conditions on the plume maximum height, turbulent entrainment has not been taken into account with the same level of detailed analysis. Here, we present new laboratory experiments aimed at better understanding the contribution of the turbulent entrainment to determining the plume maximum height. The experiments consist in injecting downward fresh water in a tank containing an aqueous NaCl solution with linear density stratification. The jet source is towed at a constant speed through the stationary fluid in order to produce a cross-flow. According to the range of source and environmental conditions, the buoyant jet is distorted or bent-over and its maximum rise height is reduced up to a factor of 2 when wind speed is high. We quantify the efficiency of turbulent entrainment due to wind in our experiments and we show that the dynamical regime strongly depends on the ratio of the horizontal wind speed and the vertical plume velocity, and on the Richardson number defined at the source. Our results provide a robust framework to characterize the entrainment coefficient due to wind in a 1D model of turbulent jet rising in a linearly stratified ambient cross-flow, and hence can be used for the assessment of the impact of atmospheric winds on the dynamics of explosive volcanic plumes.

  16. Aqueous ammonium thiocyanate solutions as refractive index-matching fluids with low density and viscosity

    Science.gov (United States)

    Morrison, Benjamin C.; Borrero-Echeverry, Daniel

    2015-11-01

    Index-matching fluids play an important role in many fluid dynamics experiments, particularly those involving particle tracking, as they can be used to minimize errors due to distortion from the refraction of light across interfaces of the apparatus. Common index-matching fluids, such as sodium iodide solutions or mineral oils, often have densities or viscosities very different from those of water. This can make them undesirable for use as a working fluid when using commercially available tracer particles or at high Reynolds numbers. A solution of ammonium thiocyanate (NH4SCN) can be used for index-matching common materials such as borosilicate glass and acrylic, and has material properties similar to those of water (ν ~ 1 . 6 cSt and ρ ~ 1 . 1 g/cc). We present an empirical model for predicting the refractive index of aqueous NH4SCN solutions as a function of temperature and NH4SCN concentration that allows experimenters to develop refractive index matching solutions for various common materials. This work was supported by the National Science Foundation (CBET-0853691) and by the James Borders Physics Student Fellowship at Reed College.

  17. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama

    2009-02-10

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  18. An efficient algorithm for classical density functional theory in three dimensions: ionic solutions.

    Science.gov (United States)

    Knepley, Matthew G; Karpeev, Dmitry A; Davidovits, Seth; Eisenberg, Robert S; Gillespie, Dirk

    2010-03-28

    Classical density functional theory (DFT) of fluids is a valuable tool to analyze inhomogeneous fluids. However, few numerical solution algorithms for three-dimensional systems exist. Here we present an efficient numerical scheme for fluids of charged, hard spheres that uses O(N log N) operations and O(N) memory, where N is the number of grid points. This system-size scaling is significant because of the very large N required for three-dimensional systems. The algorithm uses fast Fourier transforms (FFTs) to evaluate the convolutions of the DFT Euler-Lagrange equations and Picard (iterative substitution) iteration with line search to solve the equations. The pros and cons of this FFT/Picard technique are compared to those of alternative solution methods that use real-space integration of the convolutions instead of FFTs and Newton iteration instead of Picard. For the hard-sphere DFT, we use fundamental measure theory. For the electrostatic DFT, we present two algorithms. One is for the "bulk-fluid" functional of Rosenfeld [Y. Rosenfeld, J. Chem. Phys. 98, 8126 (1993)] that uses O(N log N) operations. The other is for the "reference fluid density" (RFD) functional [D. Gillespie et al., J. Phys.: Condens. Matter 14, 12129 (2002)]. This functional is significantly more accurate than the bulk-fluid functional, but the RFD algorithm requires O(N(2)) operations.

  19. Near field characteristics of buoyant helium plumes

    Indian Academy of Sciences (India)

    affects the combustion. Puffing is also observed in low density gas plumes when the ratio of inlet ... generated using helium and helium–air mixtures, hot gases were used to understand the flow dynamics associated .... The glass lens acts as a filter to block any UV light and prevents fluorescence signal contamination. Since.

  20. Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current

    DEFF Research Database (Denmark)

    Chen, H. B.; Larsen, Torben

    1995-01-01

    This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically and...

  1. Calculation of the density of solutions (sunflower oil + n-hexane) over a wide range of temperatures and pressure

    Science.gov (United States)

    Safarov, M. M.; Abdukhamidova, Z.

    1995-09-01

    We present the results from an experimental investigation of the density of the sunflower oil system as a function of the mass concentration of n-hexane in the ranges of temperatures T=290 520 K and pressures P=0.101 98.1 MPa. A method of hydrostatic weighing was used to measure the density of the solutions under study.

  2. Continuous-time random walk: exact solutions for the probability density function and first two moments

    Energy Technology Data Exchange (ETDEWEB)

    Kwok Sau Fa [Departamento de Fisica, Universidade Estadual de Maringa, Av. Colombo 5790, 87020-900 Maringa-PR (Brazil); Joni Fat, E-mail: kwok@dfi.uem.br [Jurusan Teknik Elektro-Fakultas Teknik, Universitas Tarumanagara, Jl. Let. Jend. S. Parman 1, Blok L, Lantai 3 Grogol, Jakarta 11440 (Indonesia)

    2011-10-15

    We consider the decoupled continuous-time random walk model with a finite characteristic waiting time and approximate jump length variance. We take the waiting time probability density function (PDF) given by a combination of the exponential and the Mittag-Leffler function. Using this waiting time PDF, we investigate the diffusion behavior for all times. We obtain exact solutions for the first two moments and the PDF for the force-free and linear force cases. Due to the finite characteristic waiting time and jump length variance, the model presents, for the force-free case, normal diffusive behavior in the long-time limit. Further, the model can describe anomalous behavior at intermediate times.

  3. Collinear and TMD quark and gluon densities from parton branching solution of QCD evolution equations

    Science.gov (United States)

    Hautmann, F.; Jung, H.; Lelek, A.; Radescu, V.; Žlebčík, R.

    2018-01-01

    We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1% over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.

  4. Modelling density-dependent flow and solute transport at the Lake Tutchewop saline disposal complex, Victoria

    Science.gov (United States)

    Simmons, Craig T.; Narayan, Kumar A.

    1998-05-01

    Intercepted saline groundwaters and drainage effluent from irrigation are commonly stored in both natural and artificial saline disposal basins throughout the Murray-Darling Basin of Australia. Their continued use as wastewater evaporation sites requires an understanding of existing groundwater dynamics. The useful of individual basins, their sustainability and possible environmental impacts remain largely unknown. In this work, the movement of salt to the underlying groundwater system from Lake Tutchewop, a saline disposal complex in north-central Victoria, was modelled in cross-section. Due to the salinity contrast between the hypersaline basin waters and the regional groundwater, it was necessary to simulate density-dependent flow behaviour. Under certain conditions, these density-stratified systems may become unstable leading to the onset of convective behaviour, which greatly increases the movement of salt from the basin to the groundwater system. Modelled concentration profiles in the aquifer system and calculated seepage rates from the basin show that Lake Tutchewop is stable under its present operating regime. The downward movement of salt is mainly controlled by diffusion and dispersion. The calibrated model was used to assess the impact of several management scenarios using time-dependent boundary conditions for lake salinity and water levels. The influence of heterogeneous basin linings on ensuing salt flux rates is examined, and results show that increased solute transport will occur under such conditions. A sensitivity analysis performed on governing variables showed that salt fluxes were most sensitive to lake salinity levels. A solute Rayleigh number defined in terms of basin salinity and hydrogeologic parameters is seen to be an effective tool for predicting the long term behaviour of such saline disposal basins. The models and concepts developed in this work may find application in the design and management of saline disposal complexes.

  5. Sound Speed and Density Studies of Interactions Between Cationic Surfactants and Aqueous Gelatin Solution

    Science.gov (United States)

    Chauhan, S.; Chauhan, M. S.; Chauhan, G. S.; Sonika; Jyoti, J.

    2012-02-01

    Studies on the interactions of surfactants with proteins can contribute to an understanding of the action of surfactants as denaturants and as solubilizing agents for membranes of proteins and lipids. Quantitative aspects of such studies may include direct measurements of properties, such as viscosity, density, sound speed, conductance, and elucidation of the often highly complex phase diagrams. In this study, sound speed and density studies of surfactants, viz., cetyltrimethyl ammonium bromide, cetyltrimethyl ammonium chloride, and di(dodecydimethyl ammonium bromide) (12-2-12) have been carried out in a 0.02 % w/v aqueous solution of gelatin at temperatures of 20 °C, 25 °C, 30 °C, and 35 °C. From the measured data, the parameters apparent molar volumes ({(φv)}), adiabatic compressibility ( β), and apparent molar compressibility {(φk)} have been calculated to interpret the protein-surfactant interactions. The variations in these parameters with the concentration of the surfactant suggests the manifestation of hydrophobic interactions in the system.

  6. Iodixanol Density Gradient Preparation in University of Wisconsin Solution for Porcine Islet Purification

    Directory of Open Access Journals (Sweden)

    Michael P.M. Van der Burg

    2003-01-01

    Full Text Available Previously published as Graham, J.M. (2002 Purification of Islets of Langerhans from porcine pancreas. TheScientificWorldJOURNAL 2, 1657–1661. ISSN 1537-744X; DOI 10.1100/tsw.2002.847.Generally, prior to the purification of isolated pancreatic islets, the collagenase-digested tissue is incubated in the University of Wisconsin solution (UWS; ~320 mOsm for osmotic stabilization to preserve or improve the density differences between islets and acinar fragments. The adverse effects arising from the subsequent pelleting and resuspension of the islets in a second, different (often highly hyperosmotic purification solution are avoided in the protocol described here; preparation of the purification medium is simply achieved by mixing the UWS preincubated islets with a second UWS containing the inert impermeant iodixanol. Flotation of the islets isolated from juvenile porcine pancreases through this mildly hypertonic (~380 mOsm gradient of iodixanol-UWS achieves a much higher recovery of islets of an improved viability than the customary method using a Ficoll gradient. The method has been extended to human islet purification.

  7. Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model

    KAUST Repository

    El-Amin, Mohamed

    2010-06-13

    Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical simulations of 2D axisymmetric vertical hot water confined jet into a cylindrical tank have been done. Solutions are obtained for unsteady flow while velocity, pressure, temperature and turbulence distributions inside the water tank are analyzed. For seeking verification, an experiment was conducted for measuring of the temperature of the same system, and comparison between the measured and simulated temperature shows a good agreement. Using the simulated results, some models are developed to describe axial velocity, centerline velocity, radial velocity, dynamic pressure, mass flux, momentum flux and buoyancy flux for both unheated (non-buoyant) and heated (buoyant) jet. Finally, the dynamics of the heated jet in terms of the plume function which is a universal quantity and the source parameter are studied and therefore the maximum velocity can be predicted theoretically. © 2010 Springer-Verlag.

  8. The Tolman-Oppenheimer Equations and the Spacetime Properties of the Schwarzschild-De Sitter Constant Density Interior Solution

    Science.gov (United States)

    Zou, Li; Li, Fang-Yu; Li, Tao

    2014-11-01

    In this paper, we first deduce the Tolman-Oppenheimer-Volkoff (TOV) equations and Schwarzschild-de Sitter (SdS) constant-density interior solutions of perfect fluid spheres in hydrostatic equilibrium by the Einstein equations with a nonzero cosmological constant. The TOV equations and the spacetime properties of exact solutions inside uniform perfect fluid spheres with different spatial curvature and cosmological constants will be respectively analyzed in detail. Moreover, a brief comparison between the internal static solutions of the SdS type and the dynamical Einstein-Strauss-de Sitter (ESdS) vacuole spacetime is obtained.

  9. Effect of Side Wind on the Directional Stability and Aerodynamics of a Hybrid Buoyant Aircraft

    Directory of Open Access Journals (Sweden)

    Haque Anwar U

    2016-01-01

    Full Text Available Directional stability characteristics explain the capabilities of a hybrid buoyant aircraft’s performance against the side wind, which induces flow separation that is chaotic in nature and may lead to oscillations of the aerodynamic surfaces. A numerical study is carried out to estimate the effect of side wind. The boundary conditions for the computational domain are set to velocity inlet and pressure outlet. Due to the incompressible flow at the cruise velocity, the density is taken to be constant. For these steady state simulations, the time is discretized in first order implicit and the SIMPLE scheme is employed for pressure velocity coupling alongwith k-ω SST model. Based on the results obtained so far, it is concluded that voluminous hybrid lifting fuselage is the major cause of directional.

  10. Densities concentrations of aqueous of uranyl nitrate solutions; densidades concentraciones de soluciones acuosas de nitrato de uranilo

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo Otero, A.; Rodriguez Hernandez, B.; Fernandez Rodriguez, L.

    1966-07-01

    The ratio density-concentration of aqueous uranyl nitrate solutions expressed as U{sub 3}O{sub 8} grams/liter, U grams/liter and hexahydrate uranyl nitrate weight percent at different temperatures, are established. Experimental values are graphically correlated and compared whit some published data. (Author) 2 refs.

  11. Solution densities and estimated total protein contents associated with inappropriate flotation of separator gel in different blood collection tubes.

    Science.gov (United States)

    Faught, Ronald C; Marshall, James; Bornhorst, Joshua

    2011-09-01

    Clinical samples that have densities greater than that of separator gel in specimen tubes may exhibit gel flotation to the top of the specimen upon centrifugation. Inappropriate separator gel flotation can occur in specimens with high protein content. In automated analytical systems, gel flotation can lead to mechanical disruption and potential inaccurate result reporting upon aspiration into instrument sampling probes. To determine the relative specimen densities and estimated total protein contents at which specimen gel flotation would occur upon centrifugation in commonly used commercial specimen tubes, a comparative study of separator gel density was initiated using prepared dextran solutions. Specific gravity of several dextran solutions was determined by direct hydrometry. The dextran solutions were introduced to serum and plasma lithium heparin BD Vacutainer specimen tubes manufactured by Becton, Dickinson and Company and into Vacuette specimen tubes manufactured by Greiner Bio-One containing separator gel. Following centrifugation the specimen tubes were examined for gel flotation. Flotation was observed at a lower dextran solution density for Greiner than for BD tubes in both serum and plasma separator gel specimen tubes. Additionally, some differences between specimen tube lots were observed for both BD and Greiner tubes. The total protein content in clinical samples that would result in gel flotation can be estimated for different specimen container types. Differences were observed for the gel separator specific gravity in different blood collection containers. Laboratories wishing to avoid problems with inappropriate gel flotation in high protein samples should consider these observations.

  12. Effect of aggregation behavior of gelatin in aqueous solution on the grafting density of gelatin modified with glycidol.

    Science.gov (United States)

    Xu, Jing; Li, Tian-Duo; Tang, Xiao-Long; Qiao, Cong-De; Jiang, Qing-Wei

    2012-06-15

    The effect of aggregation behavior of gelatin in aqueous solution on the grafting density of glycidol grafted gelatin polymers (GGG polymers) was investigated. The grafting density was measured using the Van Slyke method by calculating the conversion rate of free - NH(2) groups of gelatin. The conversion rate reached peak values at 6% and 14% of the gelatin aqueous solution. SEM micrographs displayed a series of structural transitions (i.e., spherical, spindle, butterfly, irregular and dendritic aggregates) at varying concentrations from 2% to 16% (w/w) at an interval of 2% (w/w). The spindle aggregates reappeared at the concentrations of 6% and 14%. Viscosity measurements indicated that the physicochemical properties of the gelatin solution had changed with increasing concentration. UV and CD analysis indicated that hydrophobic interactions competed with hydrogen bonding, and the random coils partly transformed to β-sheet structure by changing the concentration. Zeta potential and pH data confirmed the increasing electrostatic repulsion associated with increasing the hydrophobic region. XPS analysis revealed that the elemental composition of the gelatin particle surface changed with variation in the aggregate structure, determining the monotonic variation of the grafting density with increasing concentration. Results demonstrate that aggregation behavior of gelatin in aqueous solution plays a crucial role in deciding the grafting density of gelatin modified products. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  13. Buoyant triacylglycerol-filled green algae and methods therefor

    Science.gov (United States)

    Goodenough, Ursula; Goodson, Carrie

    2015-04-14

    Cultures of Chlamydomonas are disclosed comprising greater than 340 mg/l triacylglycerols (TAG). The cultures can include buoyant Chlamydomonas. Methods of forming the cultures are also disclosed. In some embodiments, these methods comprise providing Chlamydomonas growing in log phase in a first culture medium comprising a nitrogen source and acetate, replacing the first culture medium with a second medium comprising acetate but no nitrogen source, and subsequently supplementing the second medium with additional acetate. In some embodiments, a culture can comprise at least 1,300 mg/l triacyglycerols. In some embodiments, cultures can be used to produce a biofuel such as biodiesel.

  14. Dynamics of finite size neutrally buoyant particles in isotropic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Elhimer, M; Jean, A; Praud, O; Bazile, R; Marchal, M; Couteau, G, E-mail: elhimer@imft.fr [Universite de Toulouse, INPT, UPS, IMFT - Institut de Mecanique des Fluides de Toulouse, Allee Camille Soula, F-31400 Toulouse (France); CNRS, IMFT, F-31400 Toulouse (France)

    2011-12-22

    The dynamics of neutrally buoyant particles suspended in a turbulent flow is investigated experimentally, with particles having diameters larger than the Kolmogorov length scale. To that purpose, a turbulence generator have been constructed and the resulting flow characterized. The fluid was then seeded with polystyrene particles of diameter about 1 mm and their velocity measured separately and simultaneously with the surrounding fluid. Comparison of the velocities statistics between the two phases shows no appreciable discrepancy. However, simultaneous velocity measurement shows that particles may move in different direction from the underlying flow.

  15. Ion-water wires in imidazolium-based ionic liquid/water solutions induce unique trends in density.

    Science.gov (United States)

    Ghoshdastidar, Debostuti; Senapati, Sanjib

    2016-03-28

    Ionic liquid/water binary mixtures are rapidly gaining popularity as solvents for dissolution of cellulose, nucleobases, and other poorly water-soluble biomolecules. Hence, several studies have focused on measuring the thermophysical properties of these versatile mixtures. Among these, 1-ethyl-3-methylimidazolium ([emim]) cation-based ILs containing different anions exhibit unique density behaviours upon addition of water. While [emim][acetate]/water binary mixtures display an unusual rise in density with the addition of low-to-moderate amounts of water, those containing the [trifluoroacetate] ([Tfa]) anion display a sluggish decrease in density. The density of [emim][tetrafluoroborate] ([emim][BF4])/water mixtures, on the other hand, declines rapidly in close accordance with the experimental reports. Here, we unravel the structural basis underlying this unique density behavior of [emim]-based IL/water mixtures using all-atom molecular dynamics (MD) simulations. The results revealed that the distinct nature of anion-water hydrogen bonded networks in the three systems was a key in modulating the observed unique density behaviour. Vast expanses of uninterrupted anion-water-anion H-bonded stretches, denoted here as anion-water wires, induced significant structuring in [emim][Ac]/water mixtures that resulted in the density rise. Conversely, the presence of intermittent large water clusters disintegrated the anion-water wires in [emim][Tfa]/water and [emim][BF4]/water mixtures to cause a monotonic density decrease. The differential nanostructuring affected the dynamics of the solutions proportionately, with the H-bond making and breaking dynamics found to be greatly retarded in [emim][Ac]/water mixtures, while it exhibited a faster relaxation in the other two binary solutions.

  16. The negatively buoyant wall-jet: LES results

    Energy Technology Data Exchange (ETDEWEB)

    Addad, Y. [UMIST, Manchester (United Kingdom). Thermofluids Division, MAME Department; Benhamadouche, S.; Laurence, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, MAME Department; Electricite de France R and D, MFTT, Chatou (France)

    2004-10-01

    The results of a Large-Eddy Simulations (LES) of a downward hot wall-jet injected against a cold upward channel flow are presented. Based on the experiment of He et al. (2002) [Int. J. Heat Fluid Flow 23 (2002) 487], this flow was suggested as an 'application challenge' by the power generation industrial sector to the Qnet-CFD EU network. Indeed, numerical predictions vary significantly with the type of RANS model used, with only the most advanced models yielding reasonable agreement with the experiment as presented in a companion paper by Craft et al. [Int. J. Heat Fluid Flow 25 (2004), this issue]. The present LES was attempted to hopefully confirm and complete the experimental data, which in some areas can be sparse. As resources limited the LES to 1/2 million nodes, an optimal LES mesh was defined from RANS derived scales. Then to reduce uncertainties, two independent codes are used to perform the simulations: the commercial code Star-CD and an industrial one, Code-Saturne. The statistical quantities compared with the experimental data show that both codes are able to return fairly satisfactory results for the isothermal and moderately buoyant cases. For the third and strongly buoyant case comparison was only qualitative. (author)

  17. Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum

    Science.gov (United States)

    Li, Lin; Liu, Qiao; Zhong, Xin

    2017-11-01

    We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible nematic liquid crystal flows on the whole space {R}2 with vacuum as far field density. It is proved that the 2D nonhomogeneous incompressible nematic liquid crystal flows admits a unique global strong solution provided the initial data density and the gradient of orientation decay not too slow at infinity, and the basic energy \\Vert \\sqrt{ρ_0}{u}_0\\Vert L^2^2+\\Vert \

  18. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    Science.gov (United States)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  19. Density, Viscosity, Solubility, and Diffusivity of N2O in Aqueous Amino Acid Salt Solutions

    NARCIS (Netherlands)

    Kumar, P. Senthil; Hogendoorn, J.A.; Feron, P.H.M.; Versteeg, G.F.

    2001-01-01

    Solubility and diffusivity of N2O in aqueous solutions of potassium taurate are reported over a wide range of concentration and temperature. Also, the solubility of N2O in aqueous potassium glycinate solution is reported at 295 K. The ion specific constants are reported for taurate and glycinate

  20. Fingering patterns in Hele-Shaw flows are density shock wave solutions of dispersionless KdV hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Teodorescu, Razvan [Los Alamos National Laboratory; Lee, S - Y [MONTREAL, CANADA; Wiegmann, P [UNIV OF CHICAGO

    2008-01-01

    We investigate the hydrodynamics of a Hele-Shaw flow as the free boundary evolves from smooth initial conditions into a generic cusp singularity (of local geometry type x{sup 3} {approx} y{sup 2}), and then into a density shock wave. This novel solution preserves the integrability of the dynamics and, unlike all the weak solutions proposed previously, is not underdetermined. The evolution of the shock is such that the net vorticity remains zero, as before the critical time, and the shock can be interpreted as a singular line distribution of fluid deficit.

  1. Effect of lugol solution on thyroid gland blood flow and microvessel density in the patients with Graves' disease.

    Science.gov (United States)

    Erbil, Yeşim; Ozluk, Yasemin; Giriş, Murat; Salmaslioglu, Artur; Issever, Halim; Barbaros, Umut; Kapran, Yersu; Ozarmağan, Selçuk; Tezelman, Serdar

    2007-06-01

    Although some endocrine surgeons administer Lugol solution to decrease thyroid gland vascularity, there is still not an agreement on its effectiveness. The aims of this clinical trial are to evaluate thyroid blood flow and microvessel density in patients with Graves' disease who received Lugol solution treatment preoperatively. This was a prospective clinical trial. This clinical trial took place at a tertiary referral center. Thirty-six patients were randomly assigned to receive either preoperative treatment with Lugol solution (group 1, n = 17) or no preoperative treatment with Lugol solution (group 2, n = 19). Blood flow through the thyroid arteries of patients with Graves' disease was measured by color flow Doppler ultrasonography. The microvessel density (MVD) was assessed by immunohistochemical and Western blot analysis of the level of expression of CD-34 in thyroid tissue. The weight and blood loss of the thyroid gland were measured in all patients. The mean blood flow, MVD, CD-34 expression, and blood loss in group 1 patients were significantly lower than those in group 2 patients. There was a negative correlation between Lugol solution treatment and blood flow (r(s) = -0.629; P = 0.0001), blood loss (r(s) = -0.621; P = 0.0001), MVD (r(s) = -0.865; P = 0.0001), and CD-34 expression (r(s) = -0.865; P = 0.0001). According to logistic regression analysis, Lugol solution treatment resulted in a 9.33-fold decreased rate of intraoperative blood loss. Preoperative Lugol solution treatment decreased the rate of blood flow, thyroid vascularity, and intraoperative blood loss during thyroidectomy.

  2. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    OpenAIRE

    Warshavsky, Vadim; Marucho, Marcelo

    2016-01-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at exp...

  3. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  4. Heat capacity and density of solutions of calcium and cadmium nitrates in N-methylpyrrolidone at 298.15 K

    Science.gov (United States)

    Novikov, A. N.; Rassokhina, L. Yu.

    2013-08-01

    The heat capacity and density of solutions of calcium and cadmium nitrates in N-methylpyrrolidone (MP) at 298.15 K are studied by calorimetry and densimetry. The obtained data are discussed in relation to certain features of solvation and complex formation in solutions of these salts. The standard partial molar heat capacities and volumes (overline {C_{p^2 }^0 } and overline {V_2^0 }) of the electrolytes in MP are calculated. The standard heat capacities overline {C_{p^i }^0 } and volumes overline {V_i^0 } of Ca2+ and Cd2+ ions in MP at 298.15 K were determined, along with the contribution from specific interactions to the values of overline {C_{p^i }^0 } and overline {V_i^0 } of Cd2+ ions in MP solution.

  5. Sampling and analysis of particles from buoyant hydrothermal plumes

    Science.gov (United States)

    Mottl, Michael J.

    The objective of our studies has been to identify the chemical processes that occur in the buoyant part of hydrothermal plumes and to evaluate their role in determining the ultimate fate of the hydrothermal input to the oceans. Our first such effort is described by Mottl and McConachy [1990]. Because the buoyant plume is a small feature that contains very large physical and chemical gradients, we have sampled it from manned submersibles. We have used two different samplers, both manufactured by General Oceanics in Miami: the Go-Flo bottle and the Chopstick sampler. Four Go-Flo bottles of 1.7 L capacity can readily be mounted on most submersibles, vertically and in a forward position in sight of the pilot's viewport and video cameras, without interfering with other operations on a dive. On Alvin they have typically been mounted on the outside starboard edge of the basket. On Turtle they were mounted on the outside edge of the port manipulator. We chose Go-Flo rather than Niskin bottles because the latter are prone to spillage when the rods attached to the end caps are bumped against an object such as the seafloor, as often happens on a submersible dive. Go-Flo bottles are also more easily rigged for pressure filtration than are Niskins. The main disadvantage of Go-Flo bottles vs. Niskins for this application is the internal silicone rubber ring that holds the ball valves in place on each end of the Go-Flo. This ring tends to trap large particles that are then difficult to dislodge and collect. The rings are also difficult to clean between dives.

  6. Probability density function of non-reactive solute concentration in heterogeneous porous formations

    Science.gov (United States)

    Alberto Bellin; Daniele Tonina

    2007-01-01

    Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for...

  7. Sourceless formation evaluation. An LWD solution providing density and neutron measurements without the use of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, R.; Reichel, N. [Schlumberger, Sungai Buloh (Malaysia)

    2013-08-01

    For many years the industry has been searching for a way to eliminate the logistical difficulties and risk associated with deployment of radioisotopes for formation evaluation. The traditional gamma-gamma density (GGD) measurement uses the scattering of 662-keV gamma rays from a 137Cs radioisotopic source, with a 30.17-year half-life, to determine formation density. The traditional neutron measurement uses an Am-Be source emitting neutrons with an energy around 4 MeV, with a half-life of 432 years. Both these radioisotopic sources pose health, security, and environmental risks. Pulsed-neutron generators have been used in the industry for several decades in wireline tools and more recently in logging-while-drilling tools. These generators produce 14-MeV neutrons, many of which interact with the nuclei in the formation. Elastic collisions allow a neutron porosity measurement to be derived, which has been available to the industry since 2005. Inelastic interactions are typically followed by the emission of a variety of high-energy gamma rays. Similar to the case of the GGD measurement, the transport and attenuation of these gamma rays is a strong function of the formation density. However, the gamma-ray source is now distributed over a volume within the formation, where gamma rays have been induced by neutron interactions and the source can no longer be considered to be a point as in the case of a radioisotopic source. In addition, the extent of the induced source region depends on the transport of the fast neutrons from the source to the point of gamma-ray production. Even though the physics is more complex, it is possible to measure the formation density if the fast neutron transport is taken into account when deriving the density answer. This paper briefly reviews the physics underlying the sourceless neutron porosity and recently introduced neutron-gamma density (SNGD) measurement, demonstrates how they can be used in traditional workflows and illustrates their

  8. Reducing the Density and Number of Tobacco Retailers: Policy Solutions and Legal Issues.

    Science.gov (United States)

    Ackerman, Amy; Etow, Alexis; Bartel, Sara; Ribisl, Kurt M

    2017-02-01

    Because higher density of tobacco retailers is associated with greater tobacco use, U.S. communities seek ways to reduce the density and number of tobacco retailers. This approach can reduce the concentration of tobacco retailers in poorer communities, limit youth exposure to tobacco advertising, and prevent misleading associations between tobacco and health messaging. Communities can reduce the density and number of tobacco retailers by imposing minimum distance requirements between existing retailers, capping the number of retailers in a given geographic area, establishing a maximum number of retailers proportional to population size, and prohibiting sales at certain types of establishments, such as pharmacies, or within a certain distance of locations serving youth. Local governments use direct regulation, licensing, or zoning laws to enact these changes. We analyze each approach under U.S. constitutional law to assist communities in selecting and implementing one or more of these methods. There are few published legal opinions that address these strategies in the context of tobacco control. But potential constitutional challenges include violations of the Takings Clause of the Fifth Amendment, which protects property owners from onerous government regulations, and under the Fourteenth Amendment's Equal Protection and Due Process Clauses, which protect business owners from arbitrary or unreasonable regulations that do not further a legitimate government interest. Because there is an evidentiary basis linking the density of tobacco retailers to smoking rates in a community, courts are likely to reject constitutional challenges to carefully crafted laws that reduce the number of tobacco retailers. Our review of the relevant constitutional issues confirms that local governments have the authority to utilize laws and policies to reduce the density and number of tobacco retailers in their communities, given existing public health data. The analysis guides policy

  9. Heat capacity and density of solutions of lithium and sodium nitrates in N-methylpyrrolidone at 298.15 K

    Science.gov (United States)

    Novikov, A. N.

    2013-09-01

    The heat capacity and density of solutions of lithium and sodium nitrates in N-methylpyrrolidone (MP) at 298.15 K are studied by calorimetry and densimetry. The standard partial molar heat capacities and volumes ( C¯ p,2° and V¯ 2°) of LiNO3 and NaNO3 in MP are calculated. The standard heat capacities C¯ p,i ° and volumes V¯ i ° of Li+ and Na+ ions in MP at 298.15 K are determined on the basis of a proposed scale of ionic contributions of C¯ p,2° and V¯ 2° values. The obtained data are discussed in relation to certain features of solvation in solutions of the investigated salts.

  10. SEAWAT: A Computer Program for Simulation of Variable-Density Groundwater Flow and Multi-Species Solute and Heat Transport

    Science.gov (United States)

    Langevin, Christian D.

    2009-01-01

    SEAWAT is a MODFLOW-based computer program designed to simulate variable-density groundwater flow coupled with multi-species solute and heat transport. The program has been used for a wide variety of groundwater studies including saltwater intrusion in coastal aquifers, aquifer storage and recovery in brackish limestone aquifers, and brine migration within continental aquifers. SEAWAT is relatively easy to apply because it uses the familiar MODFLOW structure. Thus, most commonly used pre- and post-processors can be used to create datasets and visualize results. SEAWAT is a public domain computer program distributed free of charge by the U.S. Geological Survey.

  11. Improving Density Functional Tight Binding Predictions of Free Energy Surfaces for Slow Chemical Reactions in Solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    2017-06-01

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for reactions that are fast relative to DFT simulation times (reactions and the free energy surface are not well-known. We present a force matching approach to improve the chemical accuracy of DFTB. Accelerated sampling techniques are combined with path collective variables to generate the reference DFT data set and validate fitted DFTB potentials. Accuracy of force-matched DFTB free energy surfaces is assessed for slow peptide-forming reactions by direct comparison to DFT for particular paths. Extensions to model prebiotic chemistry under shock conditions are discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Treating London-Dispersion Effects with the Latest Minnesota Density Functionals: Problems and Possible Solutions.

    Science.gov (United States)

    Goerigk, Lars

    2015-10-01

    It is shown that the latest Minnesota density functionals (SOGGA11, M11-L, N12, MN12-L, SOGGA11-X, M11, N12-SX, and MN12-SX) do not properly describe London-dispersion interactions. Grimme's DFT-D3 correction can solve this problem partially; however, double-counting of medium-range electron correlation can occur. For the related M06-L functional, the alternative VV10 van der Waals kernel is tested, but it experiences similar double-counting. Most functionals give unphysical dissociation curves for the argon dimer, an indication for method-inherent problems, and further investigation is recommended. These results are further evidence that the London-dispersion problem in density functional theory approximations is unlikely to be solved by mere empirical optimization of functional parameters, unless the functionals contain components that ensure the correct asymptotic long-range behavior. London dispersion is ubiquitous, which is why the reported findings are not only important for theoreticians but also a reminder to the general chemist to carefully consider their choice of method before undertaking computational studies.

  13. Observations and numerical modelling of a non-buoyant front in the Tay Estuary, Scotland

    Science.gov (United States)

    Neill, S. P.; Copeland, G. J. M.; Ferrier, G.; Folkard, A. M.

    2004-01-01

    Acoustic Doppler current profiler (ADCP) and density data have been collected for a section of front which consistently occurs on the flood tide along a break in bathymetry in the Tay Estuary. Lateral velocity shear in a vertical profile through the front was measured to be 0.52 s -1. An estuarine cross-sectional numerical model was developed with buoyancy-driven flow. Results from the numerical model showed that shears of such magnitude cannot be produced by buoyancy alone. Instead, a hypothesis was devised for the generation of the bathymetry-aligned front, and tested using the numerical model. The flooding current flows over sandbanks at the southern bank of the estuary and is then directed over (rather than along) the bathymetry break due to a sudden topographic restriction at the Tayport Narrows. Due to tidal phase effects, this overbank flow has a lower density than the ambient main channel water, hence behaving as a buoyant plume. The plume entrains higher density bottom water and a recirculation cell is set up in the lee of the bathymetry break. A surface convergent front occurs because a corresponding towards-bank flow (confirmed by field data) occurs in the centre of the channel. The numerical model was applied to this configuration using suitable initial and boundary conditions based on field observations. Lateral velocity profiles and the strength of shear show good agreement with the field data. It is suggested that the presence of a density gradient is required to generate the front but is not the main driving force.

  14. Experimental investigations in turbulent buoyant jets of sodium; Experimentelle Untersuchungen in turbulenten Auftriebsstrahlen in Natrium

    Energy Technology Data Exchange (ETDEWEB)

    Knebel, J.U.

    1993-03-01

    Axisymmetric, turbulent buoyant jets are investigated in the sodium test section TEFLU. The character of the flow is divided into three regimes depending on the densimetric Froude number: the pure jet, the buoyant jet in the transition regime and the pure plume. By means of a temperature compensated Miniature Permanentmagnet Flowmeter Probe the mean velocity, mean temperature and intensity of temperature fluctuations are measured simultaneously at axial distances between 3 and 40 initial jet diameters from the orifice. The functional principle of the Miniature Permanentmagnet Flowmeter Probe which allows velocity measurements to be made in the presence of a temperature gradient is described in detail. For all three regimes both the decay laws of the quantities measured along the axis of the containment pipe and the radial profiles are indicated and discussed. With the help of the radial profiles of the mean quantities the axial development of the half-width radii and the axial development of the momentum, buoyancy and volume fluxes are calculated. In addition, the time history of the temperature fluctuations is recorded at several radial positions. The data are analysed according to characteristic values of statistical signal analysis such as minimum value, maximum value, skewness, flatness and according to characteristic functions such as probability density function, autopower spectrum density and autocorrelation function. The experimental results for the axisymmetric, turbulent buoyant jets of sodium are compared with experimental results from the literature and with fluids of molecular Prandtl numbers greater than or equal to 0.7. The basic differences betwen the experimental results obtained for water and for sodium are outlined. Statements are formulated which allow thermo- and fluiddynamic diffusion processes to be transferred from water to sodium. (orig.) [Deutsch] In der Natrium-Teststrecke TEFLU werden achsensymmetrische, turbulente Auftriebsstrahlen

  15. On soot and radiation modeling in buoyant turbulent diffusion flames

    Science.gov (United States)

    Snegirev, Alexander; Markus, Ekaterina; Kuznetsov, Egor; Harris, John; Wu, Ted

    2017-10-01

    FLUENT simulations of methane- and heptane-fueled buoyant turbulent diffusion flames are presented. Within the large eddy simulation framework three soot formation models (the one-step model by Khan and Greeves, the two-step model by Tesner et al., and the Moss-Brookes model) combined with three soot oxidation models (Fenimore-Jones, Lee et al. and Magnussen-Hjertager models) are compared. The Moss-Brookes soot formation model is then extended to a sooty fuel by introducing a unified piecewise-linear correlation between the soot precursor concentration and the mixture fraction. The correlation is calibrated for heptane, and predictions of soot yield in the overfire region and the radiative fluxes are compared to the measurement data. It is shown for the heptane flame that soot dominates in radiation emission although gas contribution is still considerable being about one third. In the heptane flame, predictions of flame radiative emission and soot yield obtained with the eddy dissipation combustion model (utilizing the single-step global reaction) are compared to those made with the steady flamelet model using the reduced reaction mechanism with 29 species and 52 reactions. A simplified approach to allow for the subgrid turbulence-radiation-reaction interaction (TRRI) in the flame is proposed.

  16. Role of buoyant flame dynamics in wildfire spread.

    Science.gov (United States)

    Finney, Mark A; Cohen, Jack D; Forthofer, Jason M; McAllister, Sara S; Gollner, Michael J; Gorham, Daniel J; Saito, Kozo; Akafuah, Nelson K; Adam, Brittany A; English, Justin D

    2015-08-11

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling.

  17. Pockmark morphology and turbulent buoyant plumes at a submarine spring

    Science.gov (United States)

    Buongiorno Nardelli, B.; Budillon, F.; Watteaux, R.; Ciccone, F.; Conforti, A.; De Falco, G.; Di Martino, G.; Innangi, S.; Tonielli, R.; Iudicone, D.

    2017-09-01

    The input flow of groundwater from the seabed to the coastal ocean, known as Submarine Groundwater Discharge (SGD), has been only recently recognized as an important component of continental margin systems. It potentially impacts physical, chemical and biological marine dynamics. Independently of its specific nature (seepage, submarine springs, etc.) or fluid chemical composition, a SGD is generally characterized by low flow rates, hence making its detection and quantification very difficult, and explaining why it has been somewhat neglected by the scientific community for a long time. Along with the growing interest for SGDs emerged the need for in-situ observations in order to characterize in details how these SGDs behave. In this work, we describe the morphology of a pockmark field, detected in the Southern Tyrrhenian Sea (Mediterranean Sea), and provide observational evidences of the presence of active submarine springs over the coastal shelf area. We describe the effect of the fluid seeps on the water column stratification close to the main plumes and in the neighbouring areas, providing quantitative estimates of the intensity of the turbulent mixing and discussing their potential impact on the seabed morphology and pockmark formation in the context of turbulent buoyant plumes analytical modelling.

  18. The vertical distribution of buoyant plastics at sea

    Science.gov (United States)

    Reisser, J.; Slat, B.; Noble, K.; du Plessis, K.; Epp, M.; Proietti, M.; de Sonneville, J.; Becker, T.; Pattiaratchi, C.

    2014-11-01

    Millimeter-sized plastics are numerically abundant and widespread across the world's ocean surface. These buoyant macroscopic particles can be mixed within the upper water column due to turbulent transport. Models indicate that the largest decrease in their concentration occurs within the first few meters of water, where subsurface observations are very scarce. By using a new type of multi-level trawl at 12 sites within the North Atlantic accumulation zone, we measured concentrations and physical properties of plastics from the air-seawater interface to a depth of 5 m, at 0.5 m intervals. Our results show that plastic concentrations drop exponentially with water depth, but decay rates decrease with increasing Beaufort scale. Furthermore, smaller pieces presented lower rise velocities and were more susceptible to vertical transport. This resulted in higher depth decays of plastic mass concentration (mg m-3) than numerical concentration (pieces m-3). Further multi-level sampling of plastics will improve our ability to predict at-sea plastic load, size distribution, drifting pattern, and impact on marine species and habitats.

  19. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins.

    Science.gov (United States)

    Chandrasekaran, Suryanarayanan; Aghtar, Mortaza; Valleau, Stéphanie; Aspuru-Guzik, Alán; Kleinekathöfer, Ulrich

    2015-08-06

    Studies on light-harvesting (LH) systems have attracted much attention after the finding of long-lived quantum coherences in the exciton dynamics of the Fenna-Matthews-Olson (FMO) complex. In this complex, excitation energy transfer occurs between the bacteriochlorophyll a (BChl a) pigments. Two quantum mechanics/molecular mechanics (QM/MM) studies, each with a different force-field and quantum chemistry approach, reported different excitation energy distributions for the FMO complex. To understand the reasons for these differences in the predicted excitation energies, we have carried out a comparative study between the simulations using the CHARMM and AMBER force field and the Zerner intermediate neglect of differential orbital (ZINDO)/S and time-dependent density functional theory (TDDFT) quantum chemistry methods. The calculations using the CHARMM force field together with ZINDO/S or TDDFT always show a wider spread in the energy distribution compared to those using the AMBER force field. High- or low-energy tails in these energy distributions result in larger values for the spectral density at low frequencies. A detailed study on individual BChl a molecules in solution shows that without the environment, the density of states is the same for both force field sets. Including the environmental point charges, however, the excitation energy distribution gets broader and, depending on the applied methods, also asymmetric. The excitation energy distribution predicted using TDDFT together with the AMBER force field shows a symmetric, Gaussian-like distribution.

  20. The Melt Segregation During Ascent of Buoyant Diapirs in Subduction Zones

    Science.gov (United States)

    Zhang, N.; Behn, M. D.; Parmentier, E. M.; Kincaid, C. R.

    2014-12-01

    Cold, low-density diapirs arising from hydrated mantle and/or subducted sediments on the top of subducting slabs may transport key chemical signatures from the slab to the shallow source region for arc magmas. These chemical signatures are strongly influenced by melting of this buoyant material during its ascent. However, to date there have been relatively few quantitative models to constrain melting and melt segregation in an ascending diapir, as well as the induced geochemical signature. Here, we use a two-phase Darcy-Stokes-energy model to investigate thermal evolution, melting, and melt segregation in buoyant diapirs as they ascend through the mantle wedge. Using a simplified 2-D axi-symmetric circular geometry we investigate diapir evolution in three scenarios with increasing complexity. First, we consider a case without melting in which the thermal evolution of the diapir is controlled solely by thermal diffusion during ascent. Our results show that for most cases (e.g., diapir radius ≤ 3.7 km and diapir generation depths of ~ 75 km) thermal diffusion times are smaller than the ascent time—implying that the diapir will thermal equilibrate with the mantle wedge. Secondly, we parameterize melting within the diapir, but without melt segregation, and add the effect of latent heat to the thermal evolution of the diapir. Latent heat significantly buffers heating of the diapir. For the diapir with radius ~3.7 km, the heating from the outside is slowed down ~30%. Finally, we include melt segregation within the diapir in the model. Melting initiates at the boundaries of the diapir as the cold interior warms in response to thermal equilibration with the hot mantle wedge. This forms a high porosity, high permeability rim around the margin of the diapir. As the diapir continues to warm and ascend, new melts migrate into this rim and are focused upward, accumulating at the top of the diapir. The rim thus acts like an annulus melt channel isolating the central part of

  1. Formulation and evaluation of domperidone loaded mineral oil entrapped emulsion gel (MOEG) buoyant beads.

    Science.gov (United States)

    Singh, Inderbir; Kumar, Pradeep; Singh, Harinderjit; Goyal, Malvika; Rana, Vikas

    2011-01-01

    Alginate based mineral oil entrapped emulsion gel (MOEG) buoyant beads of domperidone were prepared by emulsion gelation technique. The prepared beads were evaluated for particle size, surface morphology, buoyancy, actual drug content and entrapment efficiency. Effect of different oils (castor oil, olive oil and linseed oil) and oil concentrations (10%, 15% and 20%, w/w) on uniformity, homogeneity and integrity of the beads was also studied. Density of the formulated beads was found to be ranging between 0.101 and 0.182 g/cm3. The results of the in vitro drug release indicated that linseed oil showed to be good release retardant compared to castor oil and olive oil. Moreover, the beads formulated using 15%, w/w linseed oil were more uniform in shape, exhibited maximum buoyancy and minimal oil leakage. Diffusion exponent (n) value varied from 0.4855 to 0.7710 indicating anomalous drug release behavior involving swelling, diffusion and/or erosion of the polymer matrix.

  2. Temperature of maximum density and excess properties of short-chain alcohol aqueous solutions: A simplified model simulation study

    Science.gov (United States)

    Furlan, A. P.; Lomba, E.; Barbosa, M. C.

    2017-04-01

    We perform an extensive computational study of binary mixtures of water and short-chain alcohols resorting to two-scale potential models to account for the singularities of hydrogen bonded liquids. Water molecules are represented by a well studied core softened potential which is known to qualitatively account for a large number of water's characteristic anomalies. Along the same lines, alcohol molecules are idealized by dimers in which the hydroxyl groups interact with each other and with water with a core softened potential as well. Interactions involving non-polar groups are all deemed purely repulsive. We find that the qualitative behavior of excess properties (excess volume, enthalpy, and constant pressure heat capacity) agrees with that found experimentally for alcohols such as t-butanol in water. Moreover, we observe that our simple solute under certain conditions acts as a "structure-maker," in the sense that the temperature of maximum density of the bulk water model increases as the solute is added, i.e., the anomalous behavior of the solvent is enhanced by the solute.

  3. Energy density of marine pelagic fish eggs

    DEFF Research Database (Denmark)

    Riis-Vestergaard, J.

    2002-01-01

    Analysis of the literature on pelagic fish eggs enabled generalizations to be made of their energy densities, because the property of being buoyant in sea water appears to constrain the proximate composition of the eggs and thus to minimize interspecific variation. An energy density of 1.34 J mul...

  4. Do buoyant plumes enhance cross-shelf transport in the Black Sea?

    Science.gov (United States)

    Sedakov, Roman; Zavialov, Peter; Izhitsky, Alexander

    2017-04-01

    either constant and different within each layer or a linear function of depth. In each case we obtain an analytical solution and derive a relation between seaward/shoreward transport and eddy viscosity. Both 2D and 3D models indicate that the stratified conditions damping vertical mixing lead to an increase of transport in the surface layer. This result corresponds well with the in situ observations, showing that buoyant plumes may indeed enhance advection of plume waters across shelf areas.

  5. Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill

    Directory of Open Access Journals (Sweden)

    M. Drivdal

    2014-12-01

    Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.

  6. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    Science.gov (United States)

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-10-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  7. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    Science.gov (United States)

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-01-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies. PMID:27721460

  8. The effect of particle properties on the depth profile of buoyant plastics in the ocean.

    Science.gov (United States)

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F; Schmid, Moritz S; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E W; Schoeneich-Argent, Rosanna I; Koelmans, Albert A

    2016-10-10

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types ('fragments' and 'lines'), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  9. Existence, uniqueness and regularity of a time-periodic probability density distribution arising in a sedimentation-diffusion problem

    Science.gov (United States)

    Nitsche, Ludwig C.; Nitsche, Johannes M.; Brenner, Howard

    1988-01-01

    The sedimentation and diffusion of a nonneutrally buoyant Brownian particle in vertical fluid-filled cylinder of finite length which is instantaneously inverted at regular intervals are investigated analytically. A one-dimensional convective-diffusive equation is derived to describe the temporal and spatial evolution of the probability density; a periodicity condition is formulated; the applicability of Fredholm theory is established; and the parameter-space regions are determined within which the existence and uniqueness of solutions are guaranteed. Numerical results for sample problems are presented graphically and briefly characterized.

  10. Density - Velocity Relationships in Explosive Volcanic Plumes

    Science.gov (United States)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2015-12-01

    Positively buoyant volcanic plumes rise until the bulk density of the plume is equal to the density of the ambient atmosphere. As ambient air mixes with the plume, it lowers the plume bulk density; thus, the plume is diluted enough to reach neutral density in a naturally stratified atmospheric environment. We produced scaled plumes in analogue laboratory experiments by injecting a saline solution with a tracer dye into distilled water, using a high-pressure injection system. We recorded each eruption with a CASIO HD digital camera and used ImageJ's FeatureJ Edge toolbox to identify individual eddies. We used an optical flow software based off the ImageJ toolbox FlowJ to determine the velocities along the edge of each eddy. Eddy densities were calculated by mapping the dye concentration to the RGB digital color value. We overlaid the eddy velocities over the densities in order to track the behavioral relationship between the two variables with regard to plume motion. As an eddy's bulk density decreases, the vertical velocity decreases; this is a result of decreased mass, and therefore momentum, in the eddy. Furthermore as the density rate of change increases, the eddy deceleration increases. Eddies are most dense at their top and least dense at their bottom. The less dense sections of the eddies have lower vertical velocities than the sections of the eddies with the higher densities, relating to the expanding radial size of an eddy as it rises and the preferential ingestion of ambient air at the base of eddies. Thus the mixing rate in volcanic plumes fluctuates not only as a function of height as described by the classic 1D entrainment hypothesis, but also as a function of position in an eddy itself.

  11. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  12. Direct simulation of the motion of neutrally buoyant balls in a three-dimensional Poiseuille flow

    Science.gov (United States)

    Pan, Tsorng-Whay; Glowinski, Roland

    2005-12-01

    In a previous article the authors introduced a Lagrange multiplier based fictitious domain method. Their goal in the present article is to apply a generalization of the above method to: (i) the numerical simulation of the motion of neutrally buoyant particles in a three-dimensional Poiseuille flow; (ii) study - via direct numerical simulations - the migration of neutrally buoyant balls in the tube Poiseuille flow of an incompressible Newtonian viscous fluid. Simulations made with one and several particles show that, as expected, the Segré-Silberberg effect takes place. To cite this article: T.-W. Pan, R. Glowinski, C. R. Mecanique 333 (2005).

  13. Reference interaction site model with hydrophobicity induced density inhomogeneity: An analytical theory to compute solvation properties of large hydrophobic solutes in the mixture of polyatomic solvent molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Siqin [The HKUST Shenzhen Research Institute, Shenzhen (China); Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sheong, Fu Kit [Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Huang, Xuhui, E-mail: xuhuihuang@ust.hk [The HKUST Shenzhen Research Institute, Shenzhen (China); Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Division of Biomedical Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-08-07

    Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achieve this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute.

  14. Fractionation of plant protoplast types by iso-osmotic density gradient centrifugation.

    Science.gov (United States)

    Harms, C T; Potrykus, I

    1978-09-01

    A simple effective technique for the fractionation of protoplast populations is described. Protoplasts are separated by low-speed centrifugation in an iso-osmotic, discontinuous density gradient system on the basis of differences in their buoyant densities. At a constant osmolality of 660±20 mOs/kg H2O, the gradients provide a density range from 1.017 to 1.069 g/cm(3) at 20 °C which corresponds to the buoyant densities of most protoplast types studied. Characteristics of the KMC/S-density gradient system and factors affecting the fractionation were investigated. Protoplasts were isolated from various tissues and cultivars of tobacco, barley, wheat, rye, oat and maize. Their density-dependent distribution profiles in KMC/S-gradients and their average buoyant densities were determined under standardized conditions. Great differences in the buoyant densities were found between protoplasts of different tissues. Mixed populations of two types of protoplasts, differing in buoyant density by about 15-20 mg/cm(3), were separated to give highly purified fractions. Factors affecting the buoyant densities of protoplasts have been investigated. Ploidy level and species differences did not significantly affect the fractionation profiles. However, an age-dependent variation in the average buoyant density of tobacco mesophyll protoplasts was observed. Fractionation of tobacco mesophyll protoplasts and their subsequent regeneration to plants demonstrates the practicability and physiological compatibility of the KMC/S-density gradient system under sterile conditions. The morphogenetic potential of protoplasts was not affected by the separation procedure or the gradient components.

  15. Density distributions of OH, Na, water vapor, and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution

    Science.gov (United States)

    Sasaki, Koichi; Ishigame, Hiroaki; Nishiyama, Shusuke

    2015-07-01

    This paper reports the density distributions of OH, Na, water vapor and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution. The densities of OH, Na and H2O had different spatial distributions, while the Na density had a similar distribution to mist, suggesting that mist is the source of Na in the gas phase. When the flow rate of helium toward the electrolyte surface was increased, the distributions of all the species densities concentrated in the neighboring region to the electrolyte surface more significantly. The densities of all the species were sensitive to the electric polarity of the power supply. In particular, we never detected Na and mist when the electrolyte worked as the anode of the dc discharge. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  16. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic

  17. Dendritic immune cell densities in the central cornea associated with soft contact lens types and lens care solution types: a pilot study

    Directory of Open Access Journals (Sweden)

    Sindt CW

    2012-03-01

    Full Text Available Christine W Sindt1, Trudy K Grout1, D Brice Critser1, Jami R Kern2, David L Meadows21University of Iowa Hospitals and Clinics, Iowa City, IA; 2Alcon Research Ltd, Fort Worth, TX, USABackground: The purpose of this study was to assess whether differences in central corneal dendritic immune cell densities associated with combinations of soft contact lenses and lens care solutions could be detected by in vivo confocal microscopy.Methods: Participants were adults naïve to contact lens wear (n = 10 or who wore soft contact lenses habitually on a daily-wear schedule (n = 38 or on a study-assigned schedule for 30 days with daily disposable silicone hydrogel lenses (n = 15. Central corneas were scanned using an in vivo confocal microscope. Cell densities were compared among groups by demographic parameters, lens materials, and lens care solutions (polyhexamethylene biguanide [PHMB], polyquaternium-1 and myristamidopropyl dimethylamine [PQ/MAPD], peroxide, or blister pack solution [for daily disposable lenses].Results: Among lens wearers, no associations were observed between immune cell densities and age, gender, or years of lens-wearing experience. Mean cell density was significantly lower (P < 0.01 in nonwearers (29 ± 23 cells/mm2, n = 10 than in lens wearers (64 ± 71 cells/mm2, n = 53. Mean cell density was lower (P = 0.21 with traditional polymer lenses (47 ± 44 cells/mm2, n = 12 than with silicone hydrogel lenses (69 ± 77 cells/mm2, n = 41. Lowest to highest mean density of immune cells among lens wearers was as follows: PQ/MAPD solution (49 ± 28 cells/mm2, blister pack solution (63 ± 81 cells/mm2, PHMB solution (66 ± 44 cells/mm2, and peroxide solution (85 ± 112 cells/mm2.Conclusion: In this pilot study, in vivo confocal microscopy was useful for detecting an elevated immune response associated with soft contact lenses, and for identifying lens-related and solution-related immune responses that merit further research.Keywords: Clear Care

  18. The Effect of an Externally Attached Neutrally Buoyant Transmitter on Mortal Injury during Simulated Hydroturbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Pflugrath, Brett D.; Carlson, Thomas J.; Deng, Zhiqun

    2012-02-03

    On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing through hydroturbines experience a rapid decrease in pressure as they pass by the turbine blade and the severity of this decompression can be highly variable. This rapid decrease in pressure can result in injuries such as swim bladder rupture, exophthalmia, and emboli and hemorrhaging in the fins and tissues. However, recent research indicates that the presence of a telemetry tag (acoustic, radio, inductive) implanted inside the coelom of a juvenile salmon increases the likelihood that the fish will be injured or die during turbine passage. Thus, previous research conducted using telemetry tags implanted into the coelom of fish may have been inaccurate. Thus, a new technique is needed to provide unbiased estimates of survival through turbines. This research provides an evaluation of the effectiveness of a neutrally buoyant externally attached acoustic transmitter. Both nontagged fish and fish tagged with a neutrally buoyant external transmitter were exposed to a range of rapid decompressions simulating turbine passage. Juvenile Chinook salmon tagged with a neutrally buoyant externally attached acoustic transmitter did not receive a higher degree of barotrauma than their nontagged counterparts. We suggest that future research include field-based comparisons of survival and behavior among fish tagged with a neutrally buoyant external transmitter and those internally implanted with transmitters.

  19. Aggregation with clay causes sedimentation of the buoyant cyanobacteria Microcystis spp

    NARCIS (Netherlands)

    Verspagen, J.M.H.; Visser, P.M.; Huisman, J.

    2006-01-01

    We investigated whether the attachment of clay particles can result in sedimentation of the buoyant cyanobacteria Microcystis spp. For this purpose, we measured aggregation of clay to Microcystis spp. in field samples as well as in laboratory cultures of isolated strains. We focused on how the

  20. Aggregation with clay causes sedimentation of the buoyant cyanobacteria Microcystis spp.

    NARCIS (Netherlands)

    Verspagen, J.M.H.; Visser, P.M.; Huisman, J.

    2006-01-01

    ABSTRACT: We investigated whether the attachment of clay particles can result in sedimentation of the buoyant cyanobacteria Microcystis spp. For this purpose, we measured aggregation of clay to Microcystis spp. in field samples as well as in laboratory cultures of isolated strains. We focused on how

  1. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    NARCIS (Netherlands)

    Kooi, Merel; Reisser, J.; Slat, B.; Ferrari, F.; Schmid, M.; Cunsolo, S.; Brambini, R.; Noble, K.; Sirks, L.A.; Linders, T.E.W.; Schoeneich-Argent, R.I.; Koelmans, A.A.

    2016-01-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of

  2. Applying a Predict-Observe-Explain Sequence in Teaching of Buoyant Force

    Science.gov (United States)

    Radovanovic, Jelena; Slisko, Josip

    2013-01-01

    An active learning sequence based on the predict-observe-explain teaching strategy is applied to a lesson on buoyant force. The results obtained clearly justify the use of this teaching method and suggest devising a series of activities to enable more effective removal of students' commonly held alternative conceptions regarding floating and…

  3. Dynamics of Single Rising Bubbles in Neutrally Buoyant Liquid-Solid Suspensions

    NARCIS (Netherlands)

    Hoosyar, N.; Van Ommen, J.R.; Hamersma, P.J.; Sundaresan, S.; Mudde, R.F.

    2013-01-01

    We experimentally investigate the effect of particles on the dynamics of a gas bubble rising in a liquid-solid suspension while the particles are equally sized and neutrally buoyant. Using the Stokes number as a universal scale, we show that when a bubble rises through a suspension characterized by

  4. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications

    Science.gov (United States)

    Fan, Jianke; Zhao, Dapeng; Dong, Dongdong

    2016-02-01

    We determined P-wave tomographic images by inverting a large number of arrival-time data from 2749 local earthquakes and 1462 teleseismic events, which are used to depict the three-dimensional morphology of the subducted Eurasian Plate along the northern segment of the Manila Trench. Dramatic changes in the dip angle of the subducted Eurasian Plate are revealed from the north to the south, being consistent with the partial subduction of a buoyant plateau beneath the Luzon Arc. Slab tears may exist along the edges of the buoyant plateau within the subducted plate induced by the plateau subduction, and the subducted lithosphere may be absent at depths greater than 250 km at ˜19°N and ˜21°N. The subducted buoyant plateau is possibly oriented toward NW-SE, and the subducted plate at ˜21°N is slightly steeper than that at ˜19°N. These results may explain why the western and eastern volcanic chains in the Luzon Arc are separated by ˜50 km at ˜18°N, whereas they converge into a single volcanic chain northward, which may be related to the oblique subduction along the Manila Trench caused by the northwestern movement of the Philippine Sea Plate. A low-velocity zone is revealed at depths of 20-200 km beneath the Manila Accretionary Prism at ˜22°N, suggesting that the subduction along the Manila Trench may stop there and the collision develops northward. The Taiwan Orogeny may originate directly from the subduction of the buoyant plateau, because the initial time of the Taiwan Orogeny is coincident with that of the buoyant plateau subduction.

  5. Migration of buoyant non-wetting fluids in heterogeneous porous media

    Science.gov (United States)

    Huber, C.; Parmigiani, A.; Faroughi, S. A.; Bachmann, O.; Karani, H.

    2015-12-01

    The buoyant migration of a non-wetting fluid in porous media occurs in several natural contexts, such as during CO2 sequestration, methane in cold seeps, DNAPLs infiltration in groundwater, oil recovery and magma chambers. In this study, we use numerical modeling and laboratory experiments to investigate the migration of buoyant non-wetting fluids in time-dependent (reactive) or spatially heterogeneous porous media. We find that the stress balance at the pore scale greatly influences the migration dynamics and regime of viscous energy dissipation of the flow (low Re) and therefore impacts the transport of non-wetting fluid even at the field scale. We consider two complementary pore-scale studies. In the first case, the migration of the non-wetting fluid is impacted by the concurrent dissolution of the porous medium because of the reactivity of the buoyant invading fluid. In the second scenario a chemically inert buoyant non-wetting fluid migrates across an heterogeneous medium, from a low porosity (and permeability) layer into a high porosity (high permeability) layer. We find that these two cases lead to a similar and counter-intuitive outcome: the migration of the buoyant non-wetting fluid is reduced at high porosity/permeability. These counter-intuitive results stem from the effect of confinement of the non-wetting fluid (volume available for invasion) and viscosity ratio between the immiscible fluids on the fluid migration at the pore scale. An important solid confinement (low porosity) stabilizes fingering pathways and promotes efficient transport, while high porosity promotes the formation of an emulsion with discrete bubbles or slugs of non-wetting fluids.

  6. Studies of Polyelectrolyte Solutions V. Effects of Counterion Binding by Polyions of Varying Charge Density and Constant Degree of Polymerization

    National Research Council Canada - National Science Library

    Nordmeier, Eckhard

    1994-01-01

    The effect of the charge density on the behaviour of polyelectrolytes in contact with counterions was studied by activity measurements, Donnan dialysis, dye-spectrophotometry, and potentiometric titration...

  7. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  8. Excited-state free energy surfaces in solution: time-dependent density functional theory∕reference interaction site model self-consistent field method.

    Science.gov (United States)

    Minezawa, Noriyuki

    2013-06-28

    Constructing free energy surfaces for electronically excited states is a first step toward the understanding of photochemical processes in solution. For that purpose, the analytic free energy gradient is derived and implemented for the linear-response time-dependent density functional theory combined with the reference interaction site model self-consistent field method. The proposed method is applied to study (1) the fluorescence spectra of aqueous acetone and (2) the excited-state intramolecular proton transfer reaction of ortho-hydroxybenzaldehyde in an acetonitrile solution.

  9. The heads and tails of buoyant autocatalytic balls

    Science.gov (United States)

    Rogers, Michael C.; Morris, Stephen W.

    2012-09-01

    Buoyancy produced by autocatalytic reaction fronts can produce fluid flows that advect the front position, giving rise to interesting feedback between chemical and hydrodynamic effects. In this paper, we numerically investigate the evolution of autocatalytic iodate-arsenous acid reaction fronts initialized in spherical configurations. Deformation of these "autocatalytic balls" is driven by buoyancy produced by the reaction. In our simulations, we have found that depending on the initial ball radius, the reaction front will develop in one of three different ways. In an intermediate range of ball size, the flow can evolve much like an autocatalytic plume: the ball develops a reacting head and tail that is akin to the head and conduit of an autocatalytic plume. In the limit of large autocatalytic balls, however, growth of a reacting tail is suppressed and the resemblance to plumes disappears. Conversely, very small balls of product solution fail to initiate sustained fronts and eventually disappear.

  10. The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model with a Discontinuous Flow-Density Relationship

    National Research Council Canada - National Science Library

    Lu, Yadong; Wong, S. C; Zhang, Mengping; Shu, Chi-Wang

    2007-01-01

    ...) traffic flow model with a flow-density relationship which is piecewise quadratic, concave, but not continuous at the junction points where two quadratic polynomials meet, and with piecewise linear...

  11. Asymptotic and Numerical Methods for Rapidly Rotating Buoyant Flow

    Science.gov (United States)

    Grooms, Ian G.

    This thesis documents three investigations carried out in pursuance of a doctoral degree in applied mathematics at the University of Colorado (Boulder). The first investigation concerns the properties of rotating Rayleigh-Benard convection -- thermal convection in a rotating infinite plane layer between two constant-temperature boundaries. It is noted that in certain parameter regimes convective Taylor columns appear which dominate the dynamics, and a semi-analytical model of these is presented. Investigation of the columns and of various other properties of the flow is ongoing. The second investigation concerns the interactions between planetary-scale and mesoscale dynamics in the oceans. Using multiple-scale asymptotics the possible connections between planetary geostrophic and quasigeostrophic dynamics are investigated, and three different systems of coupled equations are derived. Possible use of these equations in conjunction with the method of superparameterization, and extension of the asymptotic methods to the interactions between mesoscale and submesoscale dynamics is ongoing. The third investigation concerns the linear stability properties of semi-implicit methods for the numerical integration of ordinary differential equations, focusing in particular on the linear stability of IMEX (Implicit-Explicit) methods and exponential integrators applied to systems of ordinary differential equations arising in the numerical solution of spatially discretized nonlinear partial differential equations containing both dispersive and dissipative linear terms. While these investigations may seem unrelated at first glance, some reflection shows that they are in fact closely linked. The investigation of rotating convection makes use of single-space, multiple-time-scale asymptotics to deal with dynamics strongly constrained by rotation. Although the context of thermal convection in an infinite layer seems somewhat removed from large-scale ocean dynamics, the asymptotic

  12. Influence of viscosity contrast on buoyantly unstable miscible fluids in porous media

    CERN Document Server

    Pramanik, Satyajit; Mishra, Manoranjan

    2015-01-01

    The influence of viscosity contrast on buoyantly unstable miscible fluids in a porous medium is investigated through a linear stability analysis (LSA) as well as direct numerical simulations (DNS). The linear stability method implemented in this paper is based on an initial value approach, which helps to capture the onset of instability more accurately than the quasi-steady state analysis. In the absence of displacement, we show that viscosity contrast delays the onset of instability in buoyantly unstable miscible fluids. Further, it is observed that suitably choosing the viscosity contrast and injection velocity a gravitationally unstable miscible interface can be stabilized completely. Through LSA we draw a phase diagram, which shows three distinct stability regions in a parameter space spanned by the displacement velocity and the viscosity contrast. DNS are performed corresponding to parameters from each regime and the results obtained are in accordance with the linear stability results. Moreover, the conv...

  13. A micro-liter viscosity and density sensor for the rheological characterization of DNA solutions in the kilo-hertz range.

    Science.gov (United States)

    Rust, Philipp; Cereghetti, Damiano; Dual, Jurg

    2013-12-21

    When measuring the properties of fluids from biological sources, sample volumes in the micro-liter range are often desired as higher volumes may not be available or are very expensive. Miniaturized viscosity and density sensors based on a vibrating cantilever fulfill this requirement. In this paper, the possibility of measuring viscosity and density of DNA solutions at the same time using such a sensor is shown. The sensor requires a sample volume of 10 μl. By doing a titration of a solution containing 110 bp long strands of DNA in the diluted, Newtonian regime, the intrinsic viscosity can be determined to be 0.047 ml mg(-1) using the cantilever sensor. The cantilever is also tested with solutions of 10 kbp long strands with concentrations in the semi-dilute, non-Newtonian regime. The comparably small change in resonance frequency and damping observed using these solutions at 12.5 kHz is attributed to shear thinning, which is expected when extrapolating results from other groups.

  14. The heat capacity and density of solutions of barium and tetrabutylammonium iodides in N-methylpyrrolidone at 298.15 K

    Science.gov (United States)

    Novikov, A. N.; Lenina, O. F.; Vasilev, V. A.

    2009-03-01

    The heat capacity and density of solutions of barium and tetrabutylammonium iodides in N-methylpyrrolidone (MP) were studied at 298.15 K by calorimetry and densimetry. The standard partial molar heat capacities and volumes ( overline {C_{p^2 }^ circ } and overline {V_2^ circ } ) of the electrolytes in MP were calculated. The standard heat capacities overline {C_{pi}^ circ } and volumes overline {V_i^ circ } of the Ba2+ and (C4H9)4N+ ions in solution in MP at 298.15 K were determined. With the tetrabutylammonium ion, these values were in agreement with those calculated on the basis of the tetraphenylarsonium-tetraphenyl borate and tetraphenylphosphonium-tetraphenyl borate assumptions. The results are discussed in relation to the special features of solvation in solutions of the salts studied.

  15. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Directory of Open Access Journals (Sweden)

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  16. Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection

    Science.gov (United States)

    Chaudhuri, A.; Rajaram, H.; Viswanathan, H.

    2013-09-01

    The early stage of hypogene karstification is investigated using a coupled thermohydrochemical model of a mountain hydrologic system, in which water enters along a water table and descends to significant depth (˜1 km) before ascending through a central high-permeability fracture. The model incorporates reactive alteration driven by dissolution/precipitation of limestone in a carbonic acid system, due to both temperature- and pressure-dependent solubility, and kinetics. Simulations were carried out for homogeneous and heterogeneous initial fracture aperture fields, using the FEHM (Finite Element Heat and Mass Transfer) code. Initially, retrograde solubility is the dominant mechanism of fracture aperture growth. As the fracture transmissivity increases, a critical Rayleigh number value is exceeded at some stage. Buoyant convection is then initiated and controls the evolution of the system thereafter. For an initially homogeneous fracture aperture field, deep well-organized buoyant convection rolls form. For initially heterogeneous aperture fields, preferential flow suppresses large buoyant convection rolls, although a large number of smaller rolls form. Even after the onset of buoyant convection, dissolution in the fracture is sustained along upward flow paths by retrograde solubility and by additional "mixing corrosion" effects closer to the surface. Aperture growth patterns in the fracture are very different from those observed in simulations of epigenic karst systems, and retain imprints of both buoyant convection and preferential flow. Both retrograde solubility and buoyant convection contribute to these differences. The paper demonstrates the potential value of coupled models as tools for understanding the evolution and behavior of hypogene karst systems.

  17. Injection-modulated polarity conversion by charge carrier density control via a self-assembled monolayer for all-solution-processed organic field-effect transistors.

    Science.gov (United States)

    Roh, Jeongkyun; Lee, Taesoo; Kang, Chan-Mo; Kwak, Jeonghun; Lang, Philippe; Horowitz, Gilles; Kim, Hyeok; Lee, Changhee

    2017-04-12

    We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of SAMs with different dipole direction, thiophenol (TP) and pentafluorobenzene thiol (PFBT) were employed, modifying the work function of the inkjet-printed Ag (4.9 eV) to 4.66 eV and 5.24 eV with TP and PFBT treatments, respectively. The charge carrier densities were controlled by the SAM treatment in both dominant and non-dominant carrier-channel regimes. This work demonstrates that control of the charge carrier densities can be efficiently achieved by modifying the injection property with SAM treatment; thus, this approach can achieve polarity conversion of the OFETs.

  18. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.

    2012-09-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  19. Growth Method-Dependent and Defect Density-Oriented Structural, Optical, Conductive, and Physical Properties of Solution-Grown ZnO Nanostructures

    Science.gov (United States)

    Rana, Abu ul Hassan Sarwar; Lee, Ji Young; Shahid, Areej; Kim, Hyun-Seok

    2017-01-01

    It is time for industry to pay a serious heed to the application and quality-dependent research on the most important solution growth methods for ZnO, namely, aqueous chemical growth (ACG) and microwave-assisted growth (MAG) methods. This study proffers a critical analysis on how the defect density and formation behavior of ZnO nanostructures (ZNSs) are growth method-dependent. Both antithetical and facile methods are exploited to control the ZnO defect density and the growth mechanism. In this context, the growth of ZnO nanorods (ZNRs), nanoflowers, and nanotubes (ZNTs) are considered. The aforementioned growth methods directly stimulate the nanostructure crystal growth and, depending upon the defect density, ZNSs show different trends in structural, optical, etching, and conductive properties. The defect density of MAG ZNRs is the least because of an ample amount of thermal energy catered by high-power microwaves to the atoms to grow on appropriate crystallographic planes, which is not the case in faulty convective ACG ZNSs. Defect-centric etching of ZNRs into ZNTs is also probed and methodological constraints are proposed. ZNS optical properties are different in the visible region, which are quite peculiar, but outstanding for ZNRs. Hall effect measurements illustrate incongruent conductive trends in both samples. PMID:28891969

  20. Prediction of the concentration dependence of the surface tension and density of salt solutions: atomistic simulations using Drude oscillator polarizable and nonpolarizable models.

    Science.gov (United States)

    Neyt, Jean-Claude; Wender, Aurélie; Lachet, Véronique; Ghoufi, Aziz; Malfreyt, Patrice

    2013-07-28

    Molecular simulations using Drude oscillator polarizable and nonpolarizable models for water and ions are carried out to predict the dependence of the surface tension on salt concentration. The polarizable water and ion models are based only on the classical Drude oscillators. The temperature dependence of the surface tension of water is examined for different water models. The dependence of salt densities on salt concentration is investigated through the nonpolarizable and Drude oscillator polarizable models. Finally, the reproduction of the surface tension of salt solution over a large range of concentrations is analyzed through a number of combinations between ions and water force fields. The structure of the interface is then discussed as a function of polarization effects. We establish here the inability of the Drude oscillator polarizable force fields to reproduce the salt concentration dependence of surface tension of NaCl aqueous solutions.

  1. Color-tuning mechanism in firefly luminescence: theoretical studies on fluorescence of oxyluciferin in aqueous solution using time dependent density functional theory.

    Science.gov (United States)

    Li, Zhong-wei; Ren, Ai-min; Guo, Jing-fu; Yang, Tianxiao; Goddard, John D; Feng, Ji-kang

    2008-10-09

    The first singlet excited state geometries of various isomers and tautomers of firefly oxyluciferin (OxyLH2), as well as their fluorescence spectra in aqueous solution, were studied using time dependent density functional theory (TDDFT). With changing pH in aqueous solution, three fluorescence peaks, blue (450 nm), yellow-green(560 nm), and red (620 nm) correspond to neutral keto and enolic forms, the monoanionic enolic form,and the monocationic keto form respectively. A counterion, Na+, was predicted to cause a blue shift in the fluorescence of anionic OxyLH2. The contributions of a charge transfer (CT) state upon electronic excitation of the planar and twisted structures were predicted. CT was large for the twisted structures but small for the planar ones. The differences between pK and pK* of various oxyluciferin species were predicted using a Forster cycle. A new possible light emitter, namely, the monocation keto form (keto+1), was considered.

  2. The thermal interaction of a buoyant plume from a calandria tube with an oblique jet

    Energy Technology Data Exchange (ETDEWEB)

    Rossouw, D.J.; Atkins, M.D.; Beharie, K. [Nuclear Science Division, School of Mechanical & Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Kim, T., E-mail: tong.kim@wits.ac.za [Nuclear Science Division, School of Mechanical & Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Rhee, B.W.; Kim, H.T. [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejun (Korea, Republic of)

    2016-12-15

    Highlights: • A crucial role of relative orientation between mixed convection modes is observed. • The extent of thermal interaction strongly depends on the relative orientation. • Coolant flow is substantially diffused by a buoyant plume if counter-acting. • Slightly oblique coolant flow to the gravitational axis provides the best cooling. - Abstract: Severe reactor core damage may occur from fuel channel failure as a consequence of excessive heat emitted from calandria tubes (CTs) in a pressurised heavy water (D{sub 2}O) reactor (CANDU). The heating of the CTs is caused by creep deformation of the pressure tubes (PTs), which may be ballooning or sagging depending on the internal pressure of the PTs. The deformation of the pressure tube is due to overheating as a result of a loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) failure. To prevent the exacerbation of the LOCA, circulating D{sub 2}O in the moderator tank may be utilized by forming a secondary jet that externally cools the individual CTs. The buoyant plume develops around the CTs and interacts with the secondary jet at a certain oblique angle with respect to the gravitational axis, depending on the spatial location of the hot calandria tubes (or the hot reactor core region). This study reports on how the local and overall heat transfer characteristics on a calandria tube where the buoyant plume develops, are altered by the obliqueness of the external secondary jet (from a co-current jet to a counter-current jet) in a simplified configuration at the jet Reynolds number of Re{sub j} = 1500 for the Archimedes number of Ar{sub D} = 0.11 and Rayleigh number of Ra{sub D} = 1.6 × 10{sup 6} (modified Rayleigh number of 3.0 × 10{sup 7}).

  3. AEROSTATIC AND AERODYNAMIC MODULES OF A HYBRID BUOYANT AIRCRAFT: AN ANALYTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Anwar Ul Haque

    2015-05-01

    Full Text Available An analytical approach is essential for the estimation of the requirements of aerodynamic and aerostatic lift for a hybrid buoyant aircraft. Such aircrafts have two different modules to balance the weight of aircraft; aerostatic module and aerodynamic module. Both these modules are to be treated separately for estimation of the mass budget of propulsion systems and required power. In the present work, existing relationships of aircraft and airship are reviewed for its further application for these modules. Limitations of such relationships are also disussed and it is precieved that it will provide a strating point for better understanding of design anatomy of such aircraft.

  4. Apparent First-Order Liquid-Liquid Transition with Pre-transition Density Anomaly, in Water-Rich Ideal Solutions.

    Science.gov (United States)

    Zhao, Zuofeng; Angell, C Austen

    2016-02-12

    The striking increases in response functions observed during supercooling of pure water have been the source of much interest and controversy. Imminent divergences of compressibility etc. unfortunately cannot be confirmed due to pre-emption by ice crystallization. Crystallization can be repressed by addition of second components, but these usually destroy the anomalies of interest. Here we study systems in which protic ionic liquid second components dissolve ideally in water, and ice formation is avoided without destroying the anomalies. We observe a major heat capacity spike during cooling, which is reversed during heating, and is apparently of first order. It occurs just before the glassy state is reached and is preceded by water-like density anomalies. We propose that it is the much-discussed liquid-liquid transition previously hidden by crystallization. Fast cooling should allow the important fluctuations/structures to be preserved in the glassy state for leisurely investigation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Study on heat transfer of an osmotic heat pipe with a two-phase solution loop. 1st Report. Fundamental study; Niso yoeki junkan shinto heat pipe no netsu yuso ni kansuru kenkyu. 1. Kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ipposhi, S.; Imura, H. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering; Ogata, A. [Kumamoto University, Kumamoto (Japan)

    1999-12-25

    In the prior paper, a loop-type osmotic beat pipe was investigated on the heat transport rate from the upper position to the lower. The beat transport rate of this osmotic heat pipe, however, was very small because of small driving force for the solution circulation. Therefore, the osmotic heat pipe with the higher driving force is devised. The larger driving force is produced by a two-phase flow taking place in the solution riser. For the sake of that, a vopor-liquid separator is installed at the top of the apparatus and a heated section is attached as some distance below the separator, so that buoyant force caused by density difference between the fluids in the solution riser and downcomer increases. This osmotic heat pipe with the two-phase solution circulation loop indicates the higher heat transport rate than that of the osmotic heat pipe shown in the prior paper. (author)

  6. Numerical solutions of sheath structures around a moderate negative biased electron-emitting cylindrical probe in low-density isotropic plasma

    Science.gov (United States)

    Din, Alif

    2017-09-01

    The potential structures around a moderate negative biased electron-emitting cylindrical probe in low-density isotropic plasma are calculated in the collisionless sheath region. The formalisms, equations, and solutions for the entire electron emitting range (i.e., subcritical, critical, and supercritical) from the cylindrical emitter and collector surface are discussed. The plasma-electron and emitted-electron are assumed to have half Maxwellian velocity distributions at their respective sheath entering boundaries with cold plasma ions. Poisson's equation is solved numerically in the sheath region for the subcritical, critical, and supercritical emissions. The I-V characteristics for these three cases are presented in tabular form. The results show that we need very high emitted-electron current to solve Poisson's equation for the critical and spercritical emissions. Thus, the floating potential is far away in these scenarios. Also, the number density of emitted-and plasma-electron are comparable at the sheath edge so we cannot neglect the density of former in comparison with latter at the sheath edge.

  7. New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

    Science.gov (United States)

    Venturi, D.; Karniadakis, G. E.

    2012-08-01

    By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.

  8. Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach.

    Science.gov (United States)

    Improta, Roberto; Scalmani, Giovanni; Frisch, Michael J; Barone, Vincenzo

    2007-08-21

    A state specific (SS) model for the inclusion of solvent effects in time dependent density functional theory (TD-DFT) computations of emission energies has been developed and coded in the framework of the so called polarizable continuum model (PCM). The new model allows for a rigorous and effective treatment of dynamical solvent effects in the computation of fluorescence and phosphorescence spectra in solution, and it can be used for studying different relaxation time regimes. SS and conventional linear response (LR) models have been compared by computing the emission energies for different benchmark systems (formaldehyde in water and three coumarin derivatives in ethanol). Special attention is given to the influence of dynamical solvation effects on LR geometry optimizations in solution. The results on formaldehyde point out the complementarity of LR and SS approaches and the advantages of the latter model especially for polar solvents and/or weak transitions. The computed emission energies for coumarin derivatives are very close to their experimental counterparts, pointing out the importance of a proper treatment of nonequilibrium solvent effects on both the excited and the ground state energies. The availability of SS-PCM/TD-DFT models for the study of absorption and emission processes allows for a consistent treatment of a number of different spectroscopic properties in solution.

  9. Optimizing minimum free-energy crossing points in solution: Linear-response free energy/spin-flip density functional theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Minezawa, Noriyuki, E-mail: minezawa@fukui.kyoto-u.ac.jp [Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103 (Japan)

    2014-10-28

    Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.

  10. Behavior of a wave-driven buoyant surface jet on a coral reef

    Science.gov (United States)

    Herdman, Liv; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.

    2017-01-01

    A wave-driven surface buoyant jet exiting a coral reef was studied in order to quantify the amount of water re-entrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and along-shore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of along-shore velocity to jet-velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest, creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean-water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.

  11. Particle-size distributions and their effect on entrainment in turbulent buoyant plumes

    Science.gov (United States)

    Jessop, D.; Jellinek, M.

    2014-12-01

    Explosive volcanic eruptions produce turbulent, buoyant jets that contain entrained particles. In these flows, turbulent entrainment of ambient air controls the ultimate rise height and spread of the jet. Volcanic jets are a natural example of these dilute particle-gas systems and the particles they contain can strongly control the dynamics of the bulk flow through the coupling between themselves and the surrounding fluid. The metric for the type of particle-fluid coupling is the Stokes number, St, which measures the timescale for the particles inertia against the timescale for the flow field, typically the overturn time of an eddy. We show that particles that are critically coupled to the flow (St=O(1)) change the turbulent structure of the flow by eddy stretching leading to energy cascades which are anisotropic in the horizontal and vertical directions. Crucially, flows laden with such particles carry considerably more energy in the stream-wise direction than particle-free flows which leads to a decrease in entrainment. This behaviour suggests that turbulent entrainment can effectively be shut down under critical St, giving rise to collapsing fountains whereas particle-free flows under the same source conditions would produce buoyant plumes. Changes in entrainment rates in volcanic jets are also manifested in readily observable features such as the rise height. We may therefore infer entrainment rates and their evolution over the course of an eruption from the maximum height and neutral buoyancy level.

  12. The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic Gyre

    Science.gov (United States)

    Reisser, J.; Slat, B.; Noble, K.; du Plessis, K.; Epp, M.; Proietti, M.; de Sonneville, J.; Becker, T.; Pattiaratchi, C.

    2015-02-01

    Millimetre-sized plastics are numerically abundant and widespread across the world's ocean surface. These buoyant macroscopic particles can be mixed within the upper water column by turbulent transport. Models indicate that the largest decrease in their concentration occurs within the first few metres of water, where in situ observations are very scarce. In order to investigate the depth profile and physical properties of buoyant plastic debris, we used a new type of multi-level trawl at 12 sites within the North Atlantic subtropical gyre to sample from the air-seawater interface to a depth of 5 m, at 0.5 m intervals. Our results show that plastic concentrations drop exponentially with water depth, and decay rates decrease with increasing Beaufort number. Furthermore, smaller pieces presented lower rise velocities and were more susceptible to vertical transport. This resulted in higher depth decays of plastic mass concentration (milligrams m-3) than numerical concentration (pieces m-3). Further multi-level sampling of plastics will improve our ability to predict at-sea plastic load, size distribution, drifting pattern, and impact on marine species and habitats.

  13. Laboratory experiments on the interaction between inclined negatively buoyant jets and regular waves

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2015-01-01

    Full Text Available In this paper we present the results from a series of laboratory experiments on inclined negatively buoyant jets released in a receiving environment with waves. This simulates the case, typical of many practical applications, of the sea discharge of fluids denser than the receiving environment, as in the case of the brine from a desalination plant. The experiments were performed employing a Light Induced Fluorescence (LIF technique, in order to measure the concentration fields. Both the jet and the wave motion features were varied, in order to simulate a typical discharge into the Mediterranean Sea. Reference discharges in a stagnant environment were performed as well. The jet behaviour was analyzed from a statistical point of view, both considering the global phenomenon and its single phases. The influence of the wave motion on the inclined negatively buoyant jet geometry and dilution turns out to be a combined action of a split into two branches of the jet and a rotation. Their combined action decreases the jet maximum height and the impact distance, and is the main cause for the higher dilution reached in a wavy environment.

  14. Turbulent dispersion of slightly buoyant oil droplets and turbulent breakup of crude oil droplets mixed with dispersants

    Science.gov (United States)

    Gopalan, Balaji

    In part I, high speed in-line digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets (specific gravity of 0.85) and 50 mum diameter neutral density particles. Experiments are performed in a 50x50x70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by 2-D PIV. An automated tracking program has been used for measuring velocity time history of more than 17000 droplets and 15000 particles. The PDF's of droplet velocity fluctuations are close to Gaussian for all turbulent intensities ( u'i ). The mean rise velocity of droplets is enhanced or suppressed, compared to quiescent rise velocity (Uq), depending on Stokes number at lower turbulence levels, but becomes unconditionally enhanced at higher turbulence levels. The horizontal droplet velocity rms exceeds the fluid velocity rms for most of the data, while the vertical ones are higher than the fluid only at the highest turbulence level. The scaled droplet horizontal diffusion coefficient is higher than the vertical one, for 1 crossing trajectories effect. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale is a monotonically increasing function of u'i /Uq. Part II of this work explains the formation of micron sized droplets in turbulent flows from crude oil droplets pre-mixed with dispersants. Experimental visualization shows that this breakup starts with the formation of very long and quite stable, single or multiple micro threads that trail behind millimeter sized droplets. These threads form in regions with localized increase in concentration of surfactant, which in turn depends on the flow around the droplet. The resulting reduction of local surface tension, aided by high oil viscosity and stretching by the flow, suppresses capillary breakup and explains the stability of these threads. Due to increasing surface area and diffusion of

  15. The effects of lateral density gradients, slopes and buoyancy on channel flow: 1D analytical solutions and applications to the SE Canadian Cordillera

    Science.gov (United States)

    Gervais, Félix; Ranalli, Giorgio

    2017-08-01

    We present 1D analytical solutions for channel flow in orogens driven by various types of pressure gradients. Our calculations demonstrate that lateral density gradients in the upper crust, such as would occur across a suture zone separating arc rocks from pericratonic sediments provide a driving force for Poiseuille flow as large as topographic gradients observed in modern mountain belts. For cases for which the gradients are external (topographic and lateral density gradients) and internal (e.g. partial melting of channel material) to the channel, inclination decreases and increases the Poiseuille component of the average flow-velocity within the channel by the cosine and sine of the slope, respectively. The magnitude of the pressure gradient consequent upon the buoyancy generated by partial melting of metapelites in a channel with a 30° slope, such as would occur above an underthrusting basement ramp, is similar to that of topographic or lateral density gradients. Channel flow up a ramp could thus constitute an important exhumation mechanism in large hot orogens. Our calculations indicate that mid-crustal channel flow was a highly likely process in the Late Cretaceous-Paleocene setting of the southeastern Canadian Cordillera. The flow was first driven by the lateral density contrast between pericratonic sediments and the arc-related Intermontane terrane, then by combined effect of topographic gradient and melt-induced buoyancy of the Lower Selkirk Allochthon (part of the Shuswap Complex). Flow up the underthrusting basement ramp resulted in exhumation from mid- to upper-crustal levels. Channel flow then migrated downward to involve basement and overlying cover sequence rocks. Our results indicate that syn-convergent channel flow was a viable and very likely process in the southeastern Canadian Cordillera.

  16. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    Science.gov (United States)

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in

  17. Solution-Based High-Density Arrays of Dielectric Microsphere Structures for Improved Crystal Quality of III-Nitride Layers on Si Substrates

    Directory of Open Access Journals (Sweden)

    Ho-Jun Lee

    2015-01-01

    Full Text Available The recent development of dielectric microsphere lithography has been able to open up new means of performing simple and easy patterning on the semiconductor surfaces. Here, we report uniform and high-density arrays of microspheres using a solution-based spin-coating method. The arrays of microspheres were used for etching mask to form the arrays of III-nitride microrods. By regrowing GaN layer on the microrod structures, high-quality GaN layer was achieved in terms of surface morphology as well as XRD characterization. To apply the advantages such as improved crystal quality and light extraction enhancement, light-emitting diodes (LEDs were grown and then fabricated. The regrown LEDs with microspheres showed much improved optical output power and forward voltage characteristics in the same current injection. Therefore, we believe that this approach is quite useful for the development of high efficiency LEDs for future lighting.

  18. Comment on "On the unphysical solutions of the Kadanoff-Baym equations in linear response: Correlation-induced homogeneous density-distribution and attractors"

    Science.gov (United States)

    Schlünzen, N.; Joost, J.-P.; Bonitz, M.

    2017-09-01

    In a recent Rapid Communication [A. Stan, Phys. Rev. B 93, 041103(R) (2016), 10.1103/PhysRevB.93.041103], the reliability of the Keldysh-Kadanoff-Baym equations (KBE) using correlated self-energy approximations applied to linear and nonlinear response has been questioned. In particular, the existence of a universal attractor has been predicted that would drive the dynamics of any correlated system towards an unphysical homogeneous density distribution regardless of the system type, the interaction, and the many-body approximation. Moreover, it was conjectured that even the mean-field dynamics would be damped. Here, by performing accurate solutions of the KBE for situations studied in that paper, we prove these claims wrong, being caused by numerical inaccuracies.

  19. 46 CFR 160.052-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials-Dee ring and snap hook assemblies and other... Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a) Specifications. Dee ring and snap hook assemblies and other instruments of closure for buoyant vests may have...

  20. 46 CFR 160.060-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials-Dee ring and snap hook assemblies and other....060-3a Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a) Specifications. Dee ring and snap hook assemblies and other instruments of closure for buoyant...

  1. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials-Dee ring and snap hook assemblies and other... Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a) Specifications. Dee ring and snap lock assemblies and other instruments of closure for buoyant vests may have...

  2. On the Theory of Solitons of Fluid Pressure and Solute Density in Geologic Porous Media, with Applications to Shale, Clay and Sandstone

    Science.gov (United States)

    Caserta, A.; Kanivetsky, R.; Salusti, E.

    2017-11-01

    We here analyze a new model of transients of pore pressure p and solute density ρ in geologic porous media. This model is rooted in the nonlinear wave theory, its focus is on advection and effect of large pressure jumps on strain. It takes into account nonlinear and also time-dependent versions of the Hooke law about stress, rate and strain. The model solutions strictly relate p and ρ evolving under the effect of a strong external stress. As a result, the presence of quick and sharp transients in low permeability rocks is unveiled, i.e., the nonlinear "Burgers solitons". We, therefore, show that the actual transport process in porous rocks for large signals is not only the linear diffusion, but also a solitons presence could control the process. A test of a presence of solitons is applied to Pierre shale, Bearpaw shale, Boom clay and Oznam-Mugu silt and clay. An application about the presence of solitons for nuclear waste disposal and salt water intrusions is also discussed. Finally, in a kind of "theoretical experiment" we show that solitons could also be present in higher permeability rocks (Jordan and St. Peter sandstones), thus supporting the idea of a possible occurrence of osmosis also in sandstones.

  3. Computation of the free energy due to electron density fluctuation of a solute in solution: a QM/MM method with perturbation approach combined with a theory of solutions.

    Science.gov (United States)

    Suzuoka, Daiki; Takahashi, Hideaki; Morita, Akihiro

    2014-04-07

    We developed a perturbation approach to compute solvation free energy Δμ within the framework of QM (quantum mechanical)/MM (molecular mechanical) method combined with a theory of energy representation (QM/MM-ER). The energy shift η of the whole system due to the electronic polarization of the solute is evaluated using the second-order perturbation theory (PT2), where the electric field formed by surrounding solvent molecules is treated as the perturbation to the electronic Hamiltonian of the isolated solute. The point of our approach is that the energy shift η, thus obtained, is to be adopted for a novel energy coordinate of the distribution functions which serve as fundamental variables in the free energy functional developed in our previous work. The most time-consuming part in the QM/MM-ER simulation can be, thus, avoided without serious loss of accuracy. For our benchmark set of molecules, it is demonstrated that the PT2 approach coupled with QM/MM-ER gives hydration free energies in excellent agreements with those given by the conventional method utilizing the Kohn-Sham SCF procedure except for a few molecules in the benchmark set. A variant of the approach is also proposed to deal with such difficulties associated with the problematic systems. The present approach is also advantageous to parallel implementations. We examined the parallel efficiency of our PT2 code on multi-core processors and found that the speedup increases almost linearly with respect to the number of cores. Thus, it was demonstrated that QM/MM-ER coupled with PT2 deserves practical applications to systems of interest.

  4. Structures, electron density and characterization of novel photocatalysts, (BaTaO2N)1-x(SrWO2N)x solid solutions.

    Science.gov (United States)

    Hibino, Keisuke; Yashima, Masatomo; Oshima, Takayoshi; Fujii, Kotaro; Maeda, Kazuhiko

    2017-10-18

    Tungsten-modified barium tantalum oxynitride is a new visible-light photocatalyst for water oxidation. In the present work, novel barium tantalum strontium tungsten oxynitride solid solutions, (BaTaO2N)1-x(SrWO2N)x, with a cubic Pm3[combining macron]m perovskite-type structure (x = 0.01 and 0.02) have been prepared by heating oxide precursors under an ammonia flow. These (BaTaO2N)1-x(SrWO2N)x catalysts exhibited photocatalytic water oxidation activity under visible light irradiation. The crystal structure, electron-density distribution, and optical properties of (BaTaO2N)1-x(SrWO2N)x (x = 0, 0.01, and 0.02) have been studied using synchrotron X-ray powder diffraction, Rietveld analysis, the maximum-entropy method (MEM), and UV-Vis reflectance measurements. The lattice parameters of (BaTaO2N)1-x(SrWO2N)x decreased linearly with increasing SrWO2N content x. The minimum electron density (MED) at the (Ta,W)-(O,N) bond, determined by the MEM analysis of (BaTaO2N)1-x(SrWO2N)x, increased with x, as supported by DFT-based calculations. These results indicate the formation of (BaTaO2N)1-x(SrWO2N)x solid solutions and enhanced covalent bonding due to the stronger W-N bond. The MED of the (Ta,W)-(O,N) bond was higher than that of (Ba,Sr)-(O,N), indicating that the (Ta,W)-(O,N) bond is more covalent. The presence of nitrogen in (BaTaO2N)1-x(SrWO2N)x was confirmed by the occupancy factor refined using neutron diffraction data and by the weight gain observed by thermogravimetric analysis in air. UV-Vis reflectance spectra and DFT calculations indicated that (BaTaO2N)1-x(SrWO2N)x contains W(5+) cations with a [Xe] 4f(14) 5d(1) electron configuration and exhibits a more n-type semiconducting character compared with BaTaO2N, which could improve the photocatalytic water oxidation activity under visible-light irradiation.

  5. Growth and Accumulation of Secondary Metabolites in Perilla as Affected by Photosynthetic Photon Flux Density and Electrical Conductivity of the Nutrient Solution

    Directory of Open Access Journals (Sweden)

    Na Lu

    2017-05-01

    Full Text Available The global demand for medicinal plants is increasing. The quality of plants grown outdoors, however, is difficult to control. Myriad environmental factors influence plant growth and directly impact biosynthetic pathways, thus affecting the secondary metabolism of bioactive compounds. Plant factories use artificial lighting to increase the quality of medicinal plants and stabilize production. Photosynthetic photon flux density (PPFD and electrical conductivity (EC of nutrient solutions are two important factors that substantially influence perilla (Perilla frutescens, Labiatae plant growth and quality. To identify suitable levels of PPFD and EC for perilla plants grown in a plant factory, the growth, photosynthesis, and accumulation of secondary metabolites in red and green perilla plants were measured at PPFD values of 100, 200, and 300 μmol m-2 s-1 in nutrient solutions with EC values of 1.0, 2.0, and 3.0 dS m-1. The results showed significant interactive effects between PPFD and EC for both the fresh and dry weights of green perilla, but not for red perilla. The fresh and dry weights of shoots and leafy areas were affected more by EC than by PPFD in green perilla, whereas they were affected more by PPFD than by EC in red perilla. Leaf net photosynthetic rates were increased as PPFD increased in both perilla varieties, regardless of EC. The perillaldehyde concentration (mg g-1 in red perilla was unaffected by the treatments, but accumulation in plants (mg per plant was significantly enhanced as the weight of dry leaves increased. Perillaldehyde concentrations in green perilla showed significant differences between combinations of the highest PPFD with the highest EC and the lowest PPFD with the lowest EC. Rosmarinic acid concentration (mg g-1 was increased in a combination of low EC and high PPFD conditions. Optimal cultivation conditions of red and green perilla in plant factory will be discussed in terms of plant growth and contents of

  6. On the theory of solitons of fluid pressure and solute density in geologic porous media, with applications to shale, clay and sandstone

    CERN Document Server

    Caserta, A; Salusti, E

    2016-01-01

    In this paper we propose the application of a new model of transients of pore pressure p and solute density \\r{ho} in geologic porous media. This model is rooted in the non-linear waves theory, the focus of which is advection and effect of large pressure jumps on strain (due to large p in a non-linear version of the Hooke law). It strictly relates p and \\r{ho} evolving under the effect of a strong external stress. As a result, the presence of quick and sharp transients in low permeability rocks is unveiled, i.e. the non-linear Burgers solitons. We therefore propose that the actual transport process in porous rocks for large signals is not the linear diffusion, but could be governed by solitons. A test of an eventual presence of solitons in a rock is here proposed, and then applied to Pierre Shale, Bearpaw Shale, Boom Clay and Oznam-Mugu silt and clay. A quick analysis showing the presence of solitons for nuclear waste disposal and salty water intrusions is also analyzed. Finally, in a kind of "theoretical exp...

  7. Evolution of localized blobs of swirling or buoyant fluid with and without an ambient magnetic field.

    Science.gov (United States)

    Davidson, P A; Sreenivasan, Binod; Aspden, A J

    2007-02-01

    We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant

  8. Numerical simulation and analysis of confined turbulent buoyant jet with variable source

    KAUST Repository

    El-Amin, Mohamed

    2016-01-23

    In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.

  9. Experimental Studies for the characterization of the mixing processes in negative buoyant jets

    Directory of Open Access Journals (Sweden)

    Querzoli G.

    2013-04-01

    Full Text Available A negatively buoyant jet (NBJ corresponds to the physical phenomenon that develops when a fluid is discharged upwards into a lighter environment or downwards into a heavier receptor fluid. In a NBJ the flow is initially driven mostly by the momentum, so it basically behaves as a simple jet released withthe same angle, while far from the outlet the buoyancy prevails, bending the jet axis down and making it similar to a plume. The coexistence in the same phenomenon of both the characteristics of simple jets and plumes makes the NBJs a phenomenon still not entirely explained but, considering also the numerous practical applications, very interesting to study. Here some of the experimental results are presented. The laboratory experiment were obtained on a model simulating a typical sea discharge of brine from desalination plants: a pipe laid down on the sea bottom, with orifices on its lateral wall, releasing brine (heavier than the sea water with a certain angle to the horizontal, in order to increase the jet path before sinking to the seafloor. A non-intrusive image analysis technique, namely Feature Tracking Velocimetry, is applied to measure velocity fields, with the aim at understanding the influence of some non-dimensional parameters driving the phenomenon (e.g. Reynolds number, release angle on the structure of the NBJ and of the turbulence.

  10. Effect of rotation on the stability of side-heated buoyant convection between infinite horizontal walls

    Science.gov (United States)

    Medelfef, A.; Henry, D.; Bouabdallah, A.; Kaddeche, S.; Boussaa, R.

    2017-09-01

    This paper deals with buoyant convection generated by a horizontal gradient of temperature in an infinite fluid layer, which is known as Hadley circulation, and studies the effects induced by applying a rotation around the vertical axis. First, the basic flow profile with rotation is derived and the influence of the rotation is depicted: The original longitudinal velocity profile is decreased in intensity when rotation is applied and its structure is progressively changed, whereas a transverse velocity component is created, which increases with the rotation intensity, overcomes the longitudinal velocity, and eventually decreases. Different asymptotic behaviors for these profiles have also been highlighted. The stability of these flows is then studied. The effects of the Prandtl number, the Taylor number, and the thermal boundary conditions are highlighted for the three types of instability occurring in such a situation (shear, oscillatory, and Rayleigh instabilities). It is observed that they are all stabilized by the rotation and that the increase of the critical thresholds is accompanied by a spinning of the wave vector corresponding to a progressive change of the orientation of the marginal perturbation rolls. Energy budgets are finally used to analyze the instability mechanisms.

  11. An inkjet-printed buoyant 3-D lagrangian sensor for real-time flood monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-06-01

    A 3-D (cube-shaped) Lagrangian sensor, inkjet printed on a paper substrate, is presented for the first time. The sensor comprises a transmitter chip with a microcontroller completely embedded in the cube, along with a $1.5 \\\\lambda 0 dipole that is uniquely implemented on all the faces of the cube to achieve a near isotropic radiation pattern. The sensor has been designed to operate both in the air as well as water (half immersed) for real-time flood monitoring. The sensor weighs 1.8 gm and measures 13 mm$\\\\,\\\\times\\\\,$ 13 mm$\\\\,\\\\times\\\\,$ 13 mm, and each side of the cube corresponds to only $0.1 \\\\lambda 0 (at 2.4 GHz). The printed circuit board is also inkjet-printed on paper substrate to make the sensor light weight and buoyant. Issues related to the bending of inkjet-printed tracks and integration of the transmitter chip in the cube are discussed. The Lagrangian sensor is designed to operate in a wireless sensor network and field tests have confirmed that it can communicate up to a distance of 100 m while in the air and up to 50 m while half immersed in water. © 1963-2012 IEEE.

  12. Isolation of rare tumor cells from blood cells with buoyant immuno-microbubbles.

    Directory of Open Access Journals (Sweden)

    Guixin Shi

    Full Text Available Circulating tumor cells (CTCs are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs. MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM antibody. EpCAM-targeted MBs efficiently (85% and rapidly (within 15 minutes bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88% isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77% isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells.

  13. Assessment of engine׳s power budget for hydrogen powered hybrid buoyant aircraft

    Directory of Open Access Journals (Sweden)

    Anwar U. Haque

    2016-03-01

    Full Text Available It is well known that hydrogen has less undesirable exhaust emissions as compared with other types of liquid fuels. It can be used as an alternative fuel for a hybrid buoyant aircraft in which half of the gross takeoff weight is balanced by the aerostatic lift. In the present study, weight advantage of liquid hydrogen as an ideal fuel has been explored for its further utilization in such aircraft. Existing relationships for the estimation of zero lift drag of airship is discussed with special focus on the utilization of such analytical relationships for the aircraft whose fuselage resembles with the hull of an airship. Taking the analytical relationship of aircraft and airship design as a reference, existing relationships for estimation of power budget are systematically re-derived for defined constraints of rate of climb, maximum velocity and takeoff ground roll. It is perceived that when the propulsion sizing for liquid hydrogen is required, then the presented framework for estimation of its power budget will provide a starting point for the analysis. An example for estimation of the power requirement is also presented as a test case.

  14. Isolation of Low Abundance Proteins and Cells Using Buoyant Glass Microbubble Chromatography

    Directory of Open Access Journals (Sweden)

    Steingrimur Stefansson

    2013-01-01

    Full Text Available Conventional protein affinity chromatography relies on highly porous resins that have large surface areas. These properties are ideal for fast flow separation of proteins from biological samples with maximum yields, but these properties can also lead to increased nonspecific protein binding. In certain applications where the purity of an isolated protein is more important than the yield, using a glass solid phase could be advantageous as glass is nonporous and hydrophilic and has a low surface area and low nonspecific protein binding. As a proof of principle, we used protein A-conjugated hollow glass microbubbles to isolate fluorescently labeled neurofilament heavy chain spiked into serum and compared them to protein A Sepharose and protein A magnetic beads (Dynabeads using an anti-neurofilament protein antibody. As expected, a greater volume of glass bubbles was required to match the binding capacity of the magnetic beads and Sepharose resins. On the other hand, nonspecific protein binding to glass bubbles was greatly reduced compared to the other resins. Additionally, since the glass bubbles are buoyant and transparent, they are well suited for isolating cells from biological samples and staining them in situ.

  15. Mass and Density Measurements of Live and Dead Gram-Negative and Gram-Positive Bacterial Populations

    Science.gov (United States)

    Craig, Caelli C.; Senecal, Andre G.

    2014-01-01

    Monitoring cell growth and measuring physical features of food-borne pathogenic bacteria are important for better understanding the conditions under which these organisms survive and proliferate. To address this challenge, buoyant masses of live and dead Escherichia coli O157:H7 and Listeria innocua were measured using Archimedes, a commercially available suspended microchannel resonator (SMR). Cell growth was monitored with Archimedes by observing increased cell concentration and buoyant mass values of live growing bacteria. These growth data were compared to optical density measurements obtained with a Bioscreen system. We observed buoyant mass measurements with Archimedes at cell concentrations between 105 and 108 cells/ml, while growth was not observed with optical density measurements until the concentration was 107 cells/ml. Buoyant mass measurements of live and dead cells with and without exposure to hydrogen peroxide stress were also compared; live cells generally had a larger buoyant mass than dead cells. Additionally, buoyant mass measurements were used to determine cell density and total mass for both live and dead cells. Dead E. coli cells were found to have a larger density and smaller total mass than live E. coli cells. In contrast, density was the same for both live and dead L. innocua cells, while the total mass was greater for live than for dead cells. These results contribute to the ongoing challenge to further develop existing technologies used to observe cell populations at low concentrations and to measure unique physical features of cells that may be useful for developing future diagnostics. PMID:24705320

  16. Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris

    Science.gov (United States)

    Brunner, K.; Kukulka, T.; Proskurowski, G.; Law, K. L.

    2015-11-01

    This paper is the second of a two-part series that investigates passive buoyant tracers in the ocean surface boundary layer (OSBL). The first part examines the influence of equilibrium wind-waves on vertical tracer distributions, based on large eddy simulations (LESs) of the wave-averaged Navier-Stokes equation. Motivated by observations of buoyant microplastic marine debris (MPMD), this study applies the LES model and the parametric one-dimensional column model from part one to examine the vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture shear-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BWs). Model results are only consistent with observations of MPMD profiles and the relationship between surface concentrations and wind speed if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to 11 years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of 3-13.

  17. Rise of Buoyant Emissions from Low-Level Sources in the Presence of Upstream and Downstream Obstacles

    Science.gov (United States)

    Pournazeri, Sam; Princevac, Marko; Venkatram, Akula

    2012-08-01

    Field and laboratory studies have been conducted to investigate the effect of surrounding buildings on the plume rise from low-level buoyant sources, such as distributed power generators. The field experiments were conducted in Palm Springs, California, USA in November 2010 and plume rise from a 9.3 m stack was measured. In addition to the field study, a laboratory study was conducted in a water channel to investigate the effects of surrounding buildings on plume rise under relatively high wind-speed conditions. Different building geometries and source conditions were tested. The experiments revealed that plume rise from low-level buoyant sources is highly affected by the complex flows induced by buildings stationed upstream and downstream of the source. The laboratory results were compared with predictions from a newly developed numerical plume-rise model. Using the flow measurements associated with each building configuration, the numerical model accurately predicted plume rise from low-level buoyant sources that are influenced by buildings. This numerical plume rise model can be used as a part of a computational fluid dynamics model.

  18. Simulation of plume rise: Study the effect of stably stratified turbulence layer on the rise of a buoyant plume from a continuous source by observing the plume centroid

    Science.gov (United States)

    Bhimireddy, Sudheer Reddy; Bhaganagar, Kiran

    2016-11-01

    Buoyant plumes are common in atmosphere when there exists a difference in temperature or density between the source and its ambience. In a stratified environment, plume rise happens until the buoyancy variation exists between the plume and ambience. In a calm no wind ambience, this plume rise is purely vertical and the entrainment happens because of the relative motion of the plume with ambience and also ambient turbulence. In this study, a plume centroid is defined as the plume mass center and is calculated from the kinematic equation which relates the rate of change of centroids position to the plume rise velocity. Parameters needed to describe the plume are considered as the plume radius, plumes vertical velocity and local buoyancy of the plume. The plume rise velocity is calculated by the mass, momentum and heat conservation equations in their differential form. Our study focuses on the entrainment velocity, as it depicts the extent of plume growth. This entrainment velocity is made up as sum of fractions of plume's relative velocity and ambient turbulence. From the results, we studied the effect of turbulence on the plume growth by observing the variation in the plume radius at different heights and the centroid height reached before loosing its buoyancy.

  19. Modeling Highly Buoyant Flows in the Castel Giorgio: Torre Alfina Deep Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Giorgio Volpi

    2018-01-01

    Full Text Available The Castel Giorgio-Torre Alfina (CG-TA, central Italy is a geothermal reservoir whose fluids are hosted in a carbonate formation at temperatures ranging between 120°C and 210°C. Data from deep wells suggest the existence of convective flow. We present the 3D numerical model of the CG-TA to simulate the undisturbed natural geothermal field and investigate the impacts of the exploitation process. The open source finite-element code OpenGeoSys is applied to solve the coupled systems of partial differential equations. The commercial software FEFLOW® is also used as additional numerical constraint. Calculated pressure and temperature have been calibrated against data from geothermal wells. The flow field displays multicellular convective patterns that cover the entire geothermal reservoir. The resulting thermal plumes protrude vertically over 3 km at Darcy velocity of about 7⁎10-8 m/s. The analysis of the exploitation process demonstrated the sustainability of a geothermal doublet for the development of a 5 MW pilot plant. The buoyant circulation within the geothermal system allows the reservoir to sustain a 50-year production at a flow rate of 1050 t/h. The distance of 2 km, between the production and reinjection wells, is sufficient to prevent any thermal breakthrough within the estimated operational lifetime. OGS and FELFOW results are qualitatively very similar with differences in peak velocities and temperatures. The case study provides valuable guidelines for future exploitation of the CG-TA deep geothermal reservoir.

  20. Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow

    Science.gov (United States)

    Oldroyd, Holly J.; Pardyjak, Eric R.; Higgins, Chad W.; Parlange, Marc B.

    2016-12-01

    We develop several critical concepts that should be considered when interpreting, modelling and designing future experiments for flows over sloping terrain. Vertical buoyancy fluxes in katabatic flows can be positive and a source of turbulent kinetic energy (TKE) despite the statically stable, thermal stratification that drives these flows. This phenomenon occurs when the ratio of along-slope to slope-normal kinematic heat fluxes is greater than the cotangent of the slope angle, suggesting a critical value of slope-angle steepness found in earlier studies. We provide field-data-based evidence that the along-slope heat flux may dominate the variables in this inequality, and therefore in generating buoyant TKE production or suppression over a steep slope. These data show the along-slope heat flux can be more variable and significantly larger in magnitude than the slope-normal component. The gradient Richardson number does not include the effects of the along-slope buoyancy; furthermore, none of the canonical stability parameters can properly reflect the TKE redistribution from turbulent transport divergence and the sink of TKE in cases of counter-gradient momentum fluxes, which we frequently observe near the peak of the katabatic jet. In such cases, canonical stability parameters inadequately represent the physical mechanisms associated with stability. These results have broad implications related to accurately modelling turbulence and surface exchanges over sloping terrain and illustrate the need to more thoroughly investigate the along-slope heat flux and its drivers, the meaning and definitions of stability, and the effects of non-local turbulent transport.

  1. Trace Metal and Sulfur Dynamics in the First Meter of Buoyant Hydrothermal Vent Plumes

    Science.gov (United States)

    Findlay, A.; Gartman, A.; Shaw, T. J.; Luther, G. W., III

    2014-12-01

    The speciation and reactivity of metals and metal sulfides within the buoyant plume is critical to determining the ultimate fate of metals emitted from hydrothermal vents. The concentration, size fractionation, and partitioning of trace metals (Fe, Mn, Cu, Co, Zn, Cd, Pb) were determined within the first meter of the rising plume at three vent fields (TAG, Snakepit, and Rainbow) along the Mid-Atlantic Ridge. At Rainbow, total Fe concentrations exceed total sulfide concentrations by an order of magnitude, whereas at the other two sites, total Fe and total sulfide concentrations are nearly equal. At all three sites, Mn and Fe are primarily in the filtered (copper is correlated with unfiltered cobalt, and unfiltered zinc is correlated with unfiltered cadmium and lead. At Rainbow, unfiltered zinc, cadmium and lead are correlated, but unfiltered copper and cobalt are not, indicating precipitation dynamics at Rainbow are different than those at TAG and Snakepit due to bulk geochemical differences, including a higher iron to sulfide ratio. A sequential HCl/HNO3 leaching method was used to distinguish metals present in pyrite and chalcopyrite in both unfiltered and filtered samples. Significant portions of unfiltered Cu and Co were extracted in HNO3, whereas unfiltered Zn, Cd, and Pb were extracted in HCl. Up to 95 % of filtered Cu, Co, and Zn, up to 80% Cd, and up to 60 % Pb are only extractable in HNO3, indicating that a significant portion of metals < 0.2 μm are incorporated into a recalcitrant fraction such as nanoparticulate pyrite or chalcopyrite.

  2. The effect of operating lights on laminar flow: an experimental study using neutrally buoyant helium bubbles.

    Science.gov (United States)

    Refaie, R; Rushton, P; McGovern, P; Thompson, D; Serrano-Pedraza, I; Rankin, K S; Reed, M

    2017-08-01

    The interaction between surgical lighting and laminar airflow is poorly understood. We undertook an experiment to identify any effect contemporary surgical lights have on laminar flow and recommend practical strategies to limit any negative effects. Neutrally buoyant bubbles were introduced into the surgical field of a simulated setup for a routine total knee arthroplasty in a laminar flow theatre. Patterns of airflow were observed and the number of bubbles remaining above the surgical field over time identified. Five different lighting configurations were assessed. Data were analysed using simple linear regression after logarithmic transformation. In the absence of surgical lights, laminar airflow was observed, bubbles were cleared rapidly and did not accumulate. If lights were placed above the surgical field laminar airflow was abolished and bubbles rose from the surgical field to the lights then circulated back to the surgical field. The value of the decay parameter (slope) of the two setups differed significantly; no light (b = -1.589) versus one light (b = -0.1273, p < 0.001). Two lights touching (b = -0.1191) above the surgical field had a similar effect to that of a single light (p = 0. 2719). Two lights positioned by arms outstretched had a similar effect (b = -0.1204) to two lights touching (p = 0.998) and one light (p = 0.444). When lights were separated widely (160 cm), laminar airflow was observed but the rate of clearance of the bubbles remained slower (b = -1.1165) than with no lights present (p = 0.004). Surgical lights have a significantly negative effect on laminar airflow. Lights should be positioned as far away as practicable from the surgical field to limit this effect. Cite this article: Bone Joint J 2017;99-B:1061-6. ©2017 The British Editorial Society of Bone & Joint Surgery.

  3. Adsorption of Small Cationic Nanoparticles onto Large Anionic Particles from Aqueous Solution: A Model System for Understanding Pigment Dispersion and the Problem of Effective Particle Density.

    Science.gov (United States)

    North, S M; Jones, E R; Smith, G N; Mykhaylyk, O O; Annable, T; Armes, S P

    2017-02-07

    The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(benzyl methacrylate) (PBzMA). The mean degrees of polymerization for the PDMA and PBzMA blocks were 71 and 100, respectively. Transmission electron microscopy (TEM) studies confirmed a near-monodisperse spherical morphology, while dynamic light scattering (DLS) studies indicated an intensity-average diameter of 30 nm. Small-angle X-ray scattering (SAXS) reported a volume-average diameter of 29 ± 0.5 nm and a mean aggregation number of 154. Aqueous electrophoresis measurements confirmed that these PDMA71-PBzMA100 nanoparticles acquired cationic character when transferred from ethanol to water as a result of protonation of the weakly basic PDMA chains. Electrostatic adsorption of these nanoparticles from aqueous solution onto 470 nm silica particles led to either flocculation at submonolayer coverage or steric stabilization at or above monolayer coverage, as judged by DLS. This technique indicated that saturation coverage was achieved on addition of approximately 465 copolymer nanoparticles per silica particle, which corresponds to a fractional surface coverage of around 0.42. These adsorption data were corroborated using thermogravimetry, UV spectroscopy and X-ray photoelectron spectroscopy. TEM studies indicated that the cationic nanoparticles remained intact on the silica surface after electrostatic adsorption, while aqueous electrophoresis confirmed that surface charge reversal occurred below pH 7. The relatively thick layer of adsorbed nanoparticles led to a significant reduction in the effective particle density of the silica particles from 1.99 g cm-3 to approximately 1

  4. Crowding and Density

    Science.gov (United States)

    Design and Environment, 1972

    1972-01-01

    Three-part report pinpointing problems and uncovering solutions for the dual concepts of density (ratio of people to space) and crowding (psychological response to density). Section one, A Primer on Crowding,'' reviews new psychological and social findings; section two, Density in the Suburbs,'' shows conflict between status quo and increased…

  5. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    Science.gov (United States)

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water-heat-solute

  6. A simple device for measuring the minimum current velocity to maintain semi-buoyant fish eggs in suspension

    Science.gov (United States)

    Mueller, Julia S.; Cheek, Brandon D.; Chen, Qingman; Groeschel, Jillian R.; Brewer, Shannon K.; Grabowski, Timothy B.

    2013-01-01

    Pelagic broadcast spawning cyprinids are common to Great Plains rivers and streams. This reproductive guild produces non-adhesive semi-buoyant eggs that require sufficient current velocity to remain in suspension during development. Although studies have shown that there may be a minimum velocity needed to keep the eggs in suspension, this velocity has not been estimated directly nor has the influence of physicochemical factors on egg buoyancy been determined. We developed a simple, inexpensive flow chamber that allowed for evaluation of minimum current velocity needed to keep semi-buoyant eggs in suspension at any time frame during egg development. The device described here has the capability of testing the minimum current velocity needed to keep semi-buoyant eggs in suspension at a wide range of physicochemical conditions. We used gellan beads soaked in freshwater for 0, 24, and 48 hrs as egg surrogates and evaluated minimum current velocities necessary to keep them in suspension at different combinations of temperature (20.0 ± 1.0° C, 25.0 ± 1.0° C, and 28.0 ± 1.0° C) and total dissolved solids (TDS; 1,000 mg L-1, 3,000 mg L-1, and 6,000 mg L-1). We found that our methodology generated consistent, repeatable results within treatment groups. Current velocities ranging from 0.001–0.026 needed to keep the gellan beads in suspension were negatively correlated to soak times and TDS and positively correlated with temperature. The flow chamber is a viable approach for evaluating minimum current velocities needed to keep the eggs of pelagic broadcast spawning cyprinids in suspension during development.

  7. Ion association in N-methylpyrrolidone and the N-methylpyrrolidone-water mixed solvent from data on heat capacity and density of solutions

    Science.gov (United States)

    Solov'ev, S. N.; Novikov, A. N.

    2012-06-01

    Association constants for solutions of electrolytes in N-methylpyrrolidone (MP) and the MP-water mixed solvent at 298.15 K are calculated. It is shown that, over a wide range of concentrations, concentration dependences of apparent molar heat capacities and apparent molar volumes of the electrolytes in MP and MP-water mixtures are described adequately in terms of equilibria between ions and ion pairs of a single type in the solution.

  8. Synthesis of buoyant metal-coated fly ash cenosphere and its excellent catalytic performance in dye degradation.

    Science.gov (United States)

    Wang, Wei; Zhai, Jianping; Li, Qin

    2015-04-15

    In this work, Ag(+) and Ag(0) were absorbed onto the surface of 3-mercaptopropyltriethoxysilane modified fly ash cenospheres (FACs) in two Ag activation processes. The activation methods, avoiding traditional surface sensitization by SnCl2, successfully initiated electroless copper particles deposition for the preparation of buoyant Cu-FAC and CuAg-FAC composites. The CuAg-FAC had a much more uniform morphology than the Cu-FAC. The catalytic performance of the Cu-FAC and CuAg-FAC was examined by the reduction of Orange IV azo dye with the presence of NaBH4. 98.4% of Orange IV was rapidly reduced within 25 min by the CuAg-FAC, whereas 76.4% of Orange IV was removed by the Cu-FAC. The results reveal that the degradation processes matched well with the pseudo-first-order kinetics model, and rate constants of 0.057 and 0.186 min(-1) were obtained for the Cu-FAC and CuAg-FAC, respectively. Moreover, two other dyes of Orange II and Reactive Black 5 were also efficiently reduced by the CuAg-FAC which could be easily recycled and stably reused at least four times. These buoyant metal-coated FAC composites would be very useful in various catalytic reductions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium.

    Science.gov (United States)

    Uma, B; Radhakrishnan, R; Eckmann, D M; Ayyaswamy, P S

    2013-01-01

    A hybrid scheme based on Markovian fluctuating hydrodynamics of the fluid and a non-Markovian Langevin dynamics with the Ornstein-Uhlenbeck noise perturbing the translational and rotational equations of motion of a nanoparticle is employed to study the thermal motion of a nearly neutrally buoyant nanoparticle in an incompressible Newtonian fluid medium. A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite element method is employed in simulating the thermal motion of the particle suspended in the fluid contained in a cylindrical vessel. The instantaneous flow around the particle and the particle motion are fully resolved. The numerical results show that (a) the calculated temperature of the nearly neutrally buoyant Brownian particle in a quiescent fluid satisfies the equipartition theorem; (b) the translational and rotational decay of the velocity autocorrelation functions result in algebraic tails, over long time; (c) the translational and rotational mean square displacements of the particle obeys Stokes-Einstein and Stokes-Einstein-Debye relations, respectively; and (d) the parallel and perpendicular diffusivities of the particle closer to the wall are consistent with the analytical results, where available. The study has important implications for designing nanocarriers for targeted drug delivery.

  10. Numerical simulations of highly buoyant flows in the Castel Giorgio - Torre Alfina deep geothermal reservoir

    Science.gov (United States)

    Volpi, Giorgio; Crosta, Giovanni B.; Colucci, Francesca; Fischer, Thomas; Magri, Fabien

    2017-04-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. However, nowadays its utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. This is mainly due to the uncertainties associated with it, as for example the lack of appropriate computational tools, necessary to perform effective analyses. The aim of the present study is to build an accurate 3D numerical model, to simulate the exploitation process of the deep geothermal reservoir of Castel Giorgio - Torre Alfina (central Italy), and to compare results and performances of parallel simulations performed with TOUGH2 (Pruess et al. 1999), FEFLOW (Diersch 2014) and the open source software OpenGeoSys (Kolditz et al. 2012). Detailed geological, structural and hydrogeological data, available for the selected area since early 70s, show that Castel Giorgio - Torre Alfina is a potential geothermal reservoir with high thermal characteristics (120 ° C - 150 ° C) and fluids such as pressurized water and gas, mainly CO2, hosted in a carbonate formation. Our two steps simulations firstly recreate the undisturbed natural state of the considered system and then perform the predictive analysis of the industrial exploitation process. The three adopted software showed a strong numerical simulations accuracy, which has been verified by comparing the simulated and measured temperature and pressure values of the geothermal wells in the area. The results of our simulations have demonstrated the sustainability of the investigated geothermal field for the development of a 5 MW pilot plant with total fluids reinjection in the same original formation. From the thermal point of view, a very efficient buoyant circulation inside the geothermal system has been observed, thus allowing the reservoir to support the hypothesis of a 50 years production time with a flow rate of 1050 t

  11. The effect of shearing on the buoyant migration of melt in compacting-dissolution channels

    Science.gov (United States)

    Baltzell, C.; Parmentier, E.; Liang, Y.; Tirupathi, S.

    2013-12-01

    Melt migration in the mantle by porous flow through compacting, high porosity dissolution channels may occur in a variety of settings including both the upwelling mantle beneath spreading centers and the flowing mantle wedge at convergent plate boundaries. Such channels may form by a positive feedback between dissolution and melt percolation. Previous studies [1, 2] have considered the compacting-dissolution channels in the presence of a uniform upwelling mantle flow. In this study the analysis of mantle flow beneath the plate boundaries was extended by introducing a horizontal shearing component. A numerical experiment was formulated using the finite element software deal.II [3] applying a high order Discontinuous Galerkin (DG) method to examine melt flow in a deforming, porous matrix. The conditions are similar to those in [2] except the addition of a prescribed horizontal shear component in the solid matrix. Melt migration occurs within a rectangular domain subject to horizontal periodic boundary conditions. Initially a Gaussian perturbation in the porosity at the base extends vertically through the domain defining a melt channel. By varying the shear and upwelling rates, the porosity and matrix dissolution were examined to determine the behavior of the channel and melt flow. Models of buoyant melt transport through dissolution channels in upwelling mantle sheared on horizontal planes show that shearing deformation introduces several effects that could have important consequences for melt migration. Shearing tends to rotate dissolution channels away from the vertical thus reducing the component of buoyancy acting along the channels and decreasing the stability of the channel. The channels remain more vertical than would be expected if they followed the matrix flow, as determined by the dissolution. Channels thus migrate horizontally relative to the mantle matrix and melt flows horizontally through dissolution channels. Evolution of the channels depends on the

  12. Self Induced Buoyant Blow Off in Upward Flame Spread on Thin Solid Fuels

    Science.gov (United States)

    Johnston, Michael C.; T'ien, James S.; Muff, Derek E.; Olson, Sandra L.; Ferkul, Paul V.

    2013-01-01

    ) is as follows: The observed one-sided extinction is a blow- off induced by buoyant entrainment. It is known that the flammable diffusion flame regime is bounded by quenching and blow ]off limits when varying incoming air velocity. The narrowest samples tested (between 2 and 5 cm) begin within the flammable range, but as the flame grows, the buoyancy driven air velocity increases at the neighborhood of the flame base. The initially stable flame crosses the extinguishment boundary resulting in a flame blow-off. When one-side of the flame extinguishes, the remaining side shrinks due to the reduced heat transfer to the solid. This reduces the induced velocity and the flame becomes stable. It is proposed that this may have implications to upward flame growth beyond this experiment.

  13. Holographic magnetisation density waves

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)

    2016-10-10

    We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.

  14. A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically- reactive single-species solute transport

    Science.gov (United States)

    Voss, C.I.

    1984-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program which can be used to simulate the movement of fluid and the transport of either energy or dissolved substances in a subsurface environment. The model employs a two-dimensional hybrid finite-element and integrated-finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated by SUTRA: (1) fluid density-dependent saturated or unsaturated groundwater flow, and either (2a) transport of a solute in the groundwater, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay, or, (2b) transport of thermal energy in the groundwater and solid matrix of the aquifer. SUTRA provides, as the primary calculated results, fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA may also be used to simulate simpler subsets of the above process. SUTRA may be employed for areal and cross-sectional models of saturated groundwater flow systems, and for cross-sectional models of unsaturated zone flow. Solute transport simulation using SUTRA may be used to simulate natural or man-induced chemical transport, solute sorption, production and decay. SUTRA may be used for simulation of variable density leachate movement, and for cross-sectional simulation of salt-water intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between fresh water and salt water. SUTRA energy transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. (USGS)

  15. Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study

    DEFF Research Database (Denmark)

    Frimand, Kenneth; Bohr, Henrik; Jalkanen, Karl J.

    2000-01-01

    A detailed comparative study of structures, vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra has been carried out for the zwitterionic structure of the amino acid L-alanine. Theoretically determined structures necessary for deriving VA and VCD spectra were calculated...... at the density functional theory level using the B3LYP functional with the 6-31G* basis set. The Hessians and atomic polar tensors and atomic axial tensors were all calculated at the B3LYP/6-31G* level of theory. An important result is the method of treating solvent effects by both adding explicit water...

  16. Solution of a torsional Schrödinger equation with a periodic potential of general form. The probability amplitude and probability density

    Science.gov (United States)

    Turovtsev, V. V.; Orlov, M. Yu.; Orlov, Yu. D.

    2017-08-01

    Analytic expressions for the probability density of states of a molecule with internal rotation and the probability of finding the state in the potential well are derived for the first time. Two methods are proposed for assigning conformers to potential wells. A quantitative measure of localization and delocalization of a state in the potential well is introduced. The rotational symmetry number is generalized to the case of asymmetric rotation. On the basis of the localization criterion, a model is developed for calculating the internal rotation contribution to thermodynamic properties of individual conformers with low rotational barriers and/or at a high temperature.

  17. Ultrasound Characterization of Microbead and Cell Suspensions by Speed of Sound Measurements of Neutrally Buoyant Samples

    DEFF Research Database (Denmark)

    Cushing, Kevin W.; Garofalo, Fabio; Magnusson, Cecilia

    2017-01-01

    We present an experimental method including error analysis for the measurement of the density and compressibility of cells and microbeads; these being the two central material properties in ultrasound-based acoustophoretic applications such as particle separation, trapping, and up concentration. ...

  18. Spreading Coefficient of Buoyant Jet flow in the Shallow and Deep Ambient Current

    Directory of Open Access Journals (Sweden)

    reza sajadifar

    2017-01-01

    Full Text Available Introduction: In this research the spreading coefficient of dense flow under the jet hydraulic in the surrounding fluids of clean water and at the accepting environment with the low depth and high depth has been analyzed. The analyzed parameters are included of discharge injection, density of contaminating fluid, diameter and angle of the contraction of jet nozzle and shallow and deep water ambient fluid. Materials and methods: These tests are being conducted in the flume laboratory. The results obtained from the tests show that the circulation coefficient is a function of contaminating density and the depth of the accepting environment, such that with increase in the density, the accepting environment depth coefficient will an increase and circulation and coefficient dispersal with the densities of 15, 30, 50, 200 g/lit, are 0/121, 0/135, 0/153, and 0/196 respectively. On the one hand, in the accepting environment depth it has been shown that increase in the Froude density number up to 30 causes decreases in the circulation and coefficient dispersal and then this coefficient will be used in the constant amount of 0/1. Results and Discussion: Results showed that the profiles taken by the GOSEN distribution function and also coordinate the direction taken compliance with about 8/9% errors. Therefore the amount of dispersion of drained stream with accepted error and the use of accepted axial- radial coordinate have been extracted. The most speed has been taken place in the central line and getting further from the center reduces the speed. On the one hand, along the moving path the limits of Jet reduce which is surrounding conditions. On the other hand, considering the continuity coordination in different places from the jet, and reduction of speed, the dispersion width increases. And also according to the analysis conducted it is clear that speed profiles measured is consistent with Gussein distribution. Generally the flow of the sank jets, which

  19. A Field Evaluation of an External and Neutrally Buoyant Acoustic Transmitter for Juvenile Salmon: Implications for Estimating Hydroturbine Passage Survival

    Science.gov (United States)

    Brown, Richard S.; Deng, Z. Daniel; Cook, Katrina V.; Pflugrath, Brett D.; Li, Xinya; Fu, Tao; Martinez, Jayson J.; Li, Huidong; Trumbo, Bradly A.; Ahmann, Martin L.; Seaburg, Adam G.

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this. PMID

  20. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    Directory of Open Access Journals (Sweden)

    Richard S Brown

    Full Text Available Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to

  1. Formulation and In Vitro evaluation of pH sensitive oil entrapped polymeric blended gellan gum buoyant beads of clarithromycin.

    Science.gov (United States)

    Tripathi, G; Singh, S

    2010-01-01

    A gastroretentive pH sensitive system has been a frontier approach to release the drug in controlled manner in stomach and duodenum. The aim of this study was to develop buoyant beads of gellan based, wherein, the oil was entrapped, blended with hydroxypropyl methyl cellulose or carbopol 934 in order to evaluate its potential for targeted sustained delivery of clarithromycin in the gastric region. Buoyant beads of gellan was developed by inotropic gelation technique using calcium carbonate as gas forming agent and the drug polymer dispersion was emulsified with mineral oil. The oil was entrapped and blended with hydroxypropyl methyl cellulose or carbopol 934. The developed beads were evaluated in terms of diameter,% floating, encapsulation efficiency, In vitro drug release, In vivo gastric residence efficacy and clarithromycine concentration in the mucosa of the experimental animal model. The scanning electron microscope photograph indicated that the prepared beads were spherical in shape and buoyancy, encapsulation efficiency and drug content obtained from all batches were satisfactory. Particle size and percentage buoyancy of the gel beads increased by raising the concentration of calcium carbonate. The formulation exhibited sustained release profile and was best fitted in the Peppas model with n<0.45. Subsequent coating of microbeads exhibited zero-order sustained pattern of the drug release up to 8 hrs. Batch B(4) showed comparatively better residence and the drug concentration in the gastric mucosa of the treated animals. The result provides evidence that the prepared optimized formulation may be used effectively for pH sensitive gastric targeted antibiotic such as clarithromycin.

  2. Formulation and In Vitro evaluation of pH sensitive oil entrapped polymeric blended gellan gum buoyant beads of clarithromycin

    Directory of Open Access Journals (Sweden)

    G Tripathi

    2010-12-01

    Full Text Available "n  "nBackground and the purpose of the study: A gastroretentive pH sensitive system has been a frontier approach to release the drug in controlled manner in stomach and duodenum. The aim of this study was to develop buoyant beads of gellan based, wherein, the oil was entrapped, blended with hydroxypropyl methyl cellulose or carbopol 934 in order to evaluate its potential for targeted sustained delivery of clarithromycin in the gastric region. "nMethods: Buoyant beads of gellan was developed by inotropic gelation technique using calcium carbonate as gas forming agent and the drug polymer dispersion was emulsified with mineral oil. The oil was entrapped and blended with hydroxypropyl methyl cellulose or carbopol 934. The developed beads were evaluated in terms of diameter, % floating, encapsulation efficiency, In vitro drug release, In vivo gastric residence efficacy and clarithromycine concentration in the mucosa of the experimental animal model. "nResults: The scanning electron microscope photograph indicated that the prepared beads were spherical in shape and buoyancy, encapsulation efficiency and drug content obtained from all batches were satisfactory. Particle size and percentage buoyancy of the gel beads increased by raising the concentration of calcium carbonate. The formulation exhibited sustained release profile and was best fitted in the Peppas model with n < 0.45. Subsequent coating of microbeads exhibited zero-order sustained pattern of the drug release up to 8 hrs. Batch B4 showed comparatively better residence and the drug concentration in the gastric mucosa of the treated animals. Conclusion:The result provides evidence that the prepared optimized formulation may be used effectively for pH sensitive gastric targeted antibiotic such as clarithromycin.

  3. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    Science.gov (United States)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  4. Oscillating motions of neutrally buoyant particle and red blood cell in Poiseuille flow in a narrow channel

    Science.gov (United States)

    Shi, Lingling; Yu, Yao; Pan, Tsorng-Whay; Glowinski, Roland

    2014-04-01

    Two motions of oscillation and vacillating breathing (swing) of red blood cell with a stiffened membrane have been observed in bounded Poiseuille flows [L. Shi, T.-W. Pan, and R. Glowinski, "Deformation of a single blood cell in bounded Poiseuille flows," Phys. Rev. E 85, 16307 (2012)]. To understand such motions, we have compared them with the oscillating motion of a neutrally buoyant particle of the same shape in Poiseuille flow in a narrow channel since a suspended cell is actually a neutrally buoyant entity. In a narrow channel, the particle can be held in the central region for a while with its mass center moving up and down if it is placed at the centerline initially. Its inclination angle oscillates at the beginning; but its range of oscillation keeps increasing and at the end the particle tumbles when the particle migrates away from the centerline due to the inertia effect. When the particle mass center is restricted to move only on the channel centerline, the inclination angle has been locked to a fixed angle without oscillation. Since the mass center of a deformable cell always migrates toward the channel central region in Poiseuille flow, its inclination angle behaves similar to the aforementioned oscillating motion of the particle as long as the cell keeps the long body shape and moves up and down. But when the up-and-down oscillation of the cell mass center damps out, the oscillating motion of the inclination angle also damps out and the cell inclination angle also approaches to a fixed angle.

  5. Measurement of the nonlinear optical response of low-density lipoprotein solutions from patients with periodontitis before and after periodontal treatment: evaluation of cardiovascular risk markers

    Science.gov (United States)

    Monteiro, Andréa M.; Jardini, Maria A. N.; Giampaoli, Viviana; Alves, Sarah; Figueiredo Neto, Antônio M.; Gidlund, Magnus

    2012-11-01

    The Z-Scan (ZS) technique in the thermal regime has been used to measure the nonlinear optical response of low-density lipoprotein (LDL). The ZS technique is carried out in LDL from 40 patients with chronic periodontitis before and after three, six, and 12 months of periodontal treatment. Clinical parameters such as probing depths, bleeding on probing, total and differential white blood cells counts, lipid profiles, cytokine levels, and antibodies against oxidized LDL are also determined and compared over time. Before the treatment, the ZS experimental results reveal that the LDL particles of these patients are heavily modified. Only after 12 months of the periodontal treatment, the ZS results obtained reveal behavioral characteristics of healthy particles. This conclusion is also supported by complementary laboratorial analysis showing that the periodontal treatment induces systemic changes in several inflammatory markers.

  6. Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand

    Energy Technology Data Exchange (ETDEWEB)

    Schrijver, A. de; Nachtergale, L.; Staelens, J.; Luyssaert, S.; Keersmaeker, L. de

    2004-09-01

    In Flanders, critical loads for acidification and eutrophication are exceeded in the majority of the forest stands, and many previously nitrogen limited forest ecosystems have become nitrogen saturated. The present study investigates whether a naturally regenerated stand of silver birch (Betula pendula Roth) contributes less to the acidification and eutrophication of the forest soil than a high-density plantation of Corsican pine (Pinus nigra ssp. laricio Maire). Throughfall deposition of inorganic nitrogen was about 3.5 times higher in the Corsican pine stand than in the birch stand. Potassium throughfall deposition was significantly higher under birch due to higher canopy leaching. Magnesium throughfall deposition was significantly higher under the pine canopy due to higher dry deposition. The lower nitrogen throughfall deposition in the birch stand was reflected in a 60% lower nitrate percolation at 1 m depth compared with pine. Nitrate soil percolation is linked to losses of aluminium and base cations.

  7. Effect of Solution Conditions on the Nanoscale Intermolecular Interactions Between Human Serum Albumin and Low Grafting Density Surfaces of Poly(ethylene oxide)

    Science.gov (United States)

    Rixman, Monica; Macias, Celia; Dean, Delphine; Ortiz, Christine

    2003-03-01

    The first step in the biological rejection response to an implanted blood-contacting biomaterial is the non-covalent adsorption of proteins onto the surface, which triggers a cascade reaction ultimately resulting in thrombus formation. Using the technique of high resolution force spectroscopy, we have quantified the nonspecific intermolecular forces between fatty acid-complexed human serum albumin (HSA) covalently attached to a cantilever probe tip and individual end-grafted poly(ethylene oxide) mushrooms. In order to help elucidate the molecular origins of the constituent forces (e.g. steric, electrostatic, van der Waals), experiments were performed varying both the solution environmental conditions (e.g. ionic strength, removal of the bound fatty acids, and the addition of the antihydrophobic agent isopropanol), and the probe deflection rate.

  8. The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and RbI, CsI, and DTAB aqueous solutions at 303.15 K.

    Science.gov (United States)

    Singh, Man; Chand, Hema; Gupta, K C

    2005-06-01

    Density (rho), apparent molar volume (V(phi)), and viscosity (eta) of 0.0010 to 0.0018% (w/v) of bovine serum albumin (BSA), egg albumin, and lysozyme in 0.0002, 0.0004, and 0.0008 M aqueous RbI and CsI, and (dodecyl)(trimethyl)ammonium bromide (DTAB) solutions were obtained. The experimental data were regressed against composition, and constants are used to elucidate the conformational changes in protein molecules. With salt concentration, the density of proteins is found to decrease, and the order of the effect of additives on density is observed as CsI > RbI > DTAB. The trend of apparent molar volume of proteins is found as BSA > egg-albumin > lysozyme for three additives. In general, eta values of BSA remain higher for all compositions of RbI than that of egg-albumin for CsI and DTAB. These orders of the data indicate the strength of intermolecular forces between proteins and salts, and are helpful for understanding the denaturation of proteins.

  9. Sink fast and swim harder! Round-trip cost-of-transport for buoyant divers.

    Science.gov (United States)

    Miller, Patrick J O; Biuw, Martin; Watanabe, Yuuki Y; Thompson, Dave; Fedak, Mike A

    2012-10-15

    Efficient locomotion between prey resources at depth and oxygen at the surface is crucial for breath-hold divers to maximize time spent in the foraging layer, and thereby net energy intake rates. The body density of divers, which changes with body condition, determines the apparent weight (buoyancy) of divers, which may affect round-trip cost-of-transport (COT) between the surface and depth. We evaluated alternative predictions from external-work and actuator-disc theory of how non-neutral buoyancy affects round-trip COT to depth, and the minimum COT speed for steady-state vertical transit. Not surprisingly, the models predict that one-way COT decreases (increases) when buoyancy aids (hinders) one-way transit. At extreme deviations from neutral buoyancy, gliding at terminal velocity is the minimum COT strategy in the direction aided by buoyancy. In the transit direction hindered by buoyancy, the external-work model predicted that minimum COT speeds would not change at greater deviations from neutral buoyancy, but minimum COT speeds were predicted to increase under the actuator disc model. As previously documented for grey seals, we found that vertical transit rates of 36 elephant seals increased in both directions as body density deviated from neutral buoyancy, indicating that actuator disc theory may more closely predict the power requirements of divers affected by gravity than an external work model. For both models, minor deviations from neutral buoyancy did not affect minimum COT speed or round-trip COT itself. However, at body-density extremes, both models predict that savings in the aided direction do not fully offset the increased COT imposed by the greater thrusting required in the hindered direction.

  10. Density Functional Theory Calculation of pKa's of Thiols in Aqueous Solution Using Explicit Water Molecules and the Polarizable Continuum Model.

    Science.gov (United States)

    Thapa, Bishnu; Schlegel, H Bernhard

    2016-07-21

    The pKa's of substituted thiols are important for understanding their properties and reactivities in applications in chemistry, biochemistry, and material chemistry. For a collection of 175 different density functionals and the SMD implicit solvation model, the average errors in the calculated pKa's of methanethiol and ethanethiol are almost 10 pKa units higher than for imidazole. A test set of 45 substituted thiols with pKa's ranging from 4 to 12 has been used to assess the performance of 8 functionals with 3 different basis sets. As expected, the basis set needs to include polarization functions on the hydrogens and diffuse functions on the heavy atoms. Solvent cavity scaling was ineffective in correcting the errors in the calculated pKa's. Inclusion of an explicit water molecule that is hydrogen bonded with the H of the thiol group (in neutral) or S(-) (in thiolates) lowers error by an average of 3.5 pKa units. With one explicit water and the SMD solvation model, pKa's calculated with the M06-2X, PBEPBE, BP86, and LC-BLYP functionals are found to deviate from the experimental values by about 1.5-2.0 pKa units whereas pKa's with the B3LYP, ωB97XD and PBEVWN5 functionals are still in error by more than 3 pKa units. The inclusion of three explicit water molecules lowers the calculated pKa further by about 4.5 pKa units. With the B3LYP and ωB97XD functionals, the calculated pKa's are within one unit of the experimental values whereas most other functionals used in this study underestimate the pKa's. This study shows that the ωB97XD functional with the 6-31+G(d,p) and 6-311++G(d,p) basis sets, and the SMD solvation model with three explicit water molecules hydrogen bonded to the sulfur produces the best result for the test set (average error -0.11 ± 0.50 and +0.15 ± 0.58, respectively). The B3LYP functional also performs well (average error -1.11 ± 0.82 and -0.78 ± 0.79, respectively).

  11. An experimental study on the formation of negatively-buoyant vortex rings

    Science.gov (United States)

    Wu, Jeff X.; Hunt, Gary R.

    2015-11-01

    Experiments to examine the formation of dense saline vortex rings projected vertically upwards into a quiescent freshwater environment were conducted. The setup was designed to dispense a cylindrical column of source fluid with aspect ratio L / D (the length L of dispensed saline column to the nozzle diameter D) over a pre-set time interval. In an effort to execute an impulsive start and finish, a controlled flow circulation driven by a gear pump was developed to approximate a top-hat profile of source exit velocity versus time. Our measurements focus on describing the evolving morphology of the vortex rings with time and with source conditions (L / D and source Froude number). Our results reveal distinct formation regimes and our estimates of time required for formation as a function of density difference confirm predictions from previously published numerical simulations. The volume-based approach we adopt provides potentially a new angle for investigating the physics of these flows.

  12. Increased methane emissions from deep osmotic and buoyant convection beneath submarine seeps as climate warms

    CERN Document Server

    Cardoso, Silvana S S

    2016-01-01

    High speeds have been measured at seep and mud-volcano sites expelling methane-rich fluids from the seabed. Thermal or solute-driven convection alone cannot explain such high velocities in low-permeability sediments. Here, we demonstrate that in addition to buoyancy, osmotic effects generated by the adsorption of methane onto the sediments can create large overpressures, capable of recirculating seawater from the seafloor to depth in the sediment layer, then expelling it upwards at rates of up to a few hundreds of metres per year. In the presence of global warming, such deep recirculation of seawater can accelerate the melting of methane hydrates at depth from timescales of millennia to just decades, and can drastically increase the rate of release of methane into the hydrosphere and perhaps the atmosphere.

  13. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  14. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory.

    Science.gov (United States)

    Ehsani, A; Mahjani, M G; Hosseini, M; Safari, R; Moshrefi, R; Mohammad Shiri, H

    2017-03-15

    Inhibition performance of Thymus vulgaris plant leaves extract (thyme) as environmentally friendly (green) inhibitor for the corrosion protection of stainless steel (SS) type 304 in 1.0molL -1 HCl solution was studied by potentiodynamic polarization, electrochemical impedance (EIS) and electrochemical noise measurements (EN) techniques. The EN data were analyzed with FFT technique to make the spectral power density plots. The calculations were performed by MATLAB 2014a software. Geometry optimization and calculation of the structural and electronic properties of the molecular system of inhibitor have been carried out using UB3LYP/6-311++G ∗∗ level. Moreover, the results obtained from electrochemical noise analysis were compared with potentiodynamic polarization and electrochemical impedance spectroscopy. All of the used techniques showed positive effect of green inhibitor with increasing inhibitor concentration. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells.

    Science.gov (United States)

    Jarrige, N; Bou Malham, I; Martin, J; Rakotomalala, N; Salin, D; Talon, L

    2010-06-01

    We present a numerical analysis of solutal buoyancy effects on the shape and the velocity of autocatalytic reaction fronts, propagating in thin tilted rectangular channels. We use two-dimensional (2D) lattice Bathnagar-Gross-Krook (BGK) numerical simulations of gap-averaged equations for the flow and the concentration, namely a Stokes-Darcy equation coupled with an advection-diffusion-reaction equation. We do observe stationary-shaped fronts, spanning the width of the cell and propagating along the cell axis. We show that the model accounts rather well for experiments we performed using an Iodate Arsenous Acid reaction propagating in tilted Hele-Shaw cells, hence validating our 2D modelization of a three-dimensional problem. This modelization is also able to account for results found for another chemical reaction (chlorite tetrathionate) in a horizontal cell. In particular, we show that the shape and the traveling velocity of such fronts are linked with an eikonal equation. Moreover, we show that the front velocity varies nonmonotonically with the tilt of the cell, and nonlinearly with the width of the cell.

  16. A novel technique to neutralize the Yawing moment due to asymmetric thrust in a hybrid buoyant aircraft

    Directory of Open Access Journals (Sweden)

    Haque Anwar U

    2016-01-01

    Full Text Available Dorsal fin is used in swimming animals like shark for the generation of thrust as well as to meet the requirement of the lateral stability. In the case of aircraft, rudders are normally used for the said requirement. In the present work, this nature inspired idea is explored for its application to neutralize the unavoidable asymmetric thrust produced by the twin engines of a hybrid buoyant aircraft. First, the estimation of asymmetric thrust is obtained with the help of analytical techniques for maximum thrust condition at 4 degree angle of attack. The moment generated by it is utilized for the sizing of a dorsal fin which looks similar to a tapered wing and is placed aft of the center of gravity. Wind tunnel testing at subsonic speed is carried out to explore the design features of this rotatable dorsal fin. It is found that a small rotation of 5 degree can generate the required moment. However, such rotation requires a complete pneumatic/electro-mechanical system and an alternative of it is to use a cambered airfoil for the dorsal fin installed at fixed location. Such a flow controlling device can also be used as an antenna mast, which is commonly installed out the fuselage of the aircraft for communication purposes. Moreover, by incorporating this technique, a pilot doesn’t have to put an extra effort to make the aircraft stable in the presence of side wind.

  17. Buoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 2. finite enclosures

    CERN Document Server

    Authie, G; Tagawa, T

    2003-01-01

    Numerical computations and experiments were carried out for a buoyant flow of liquid metal (mercury in the experiments) in a long vertical enclosure of square cross-section, in the presence of a uniform horizontal magnetic field. A strong emphasis is put on the case of a magnetic field perpendicular to the applied temperature gradient for two reasons: (1) the MHD damping is smaller than with any other orientation, and (2) the quasi-two-dimensionality of the flow in this case yields a quite efficient velocity measurement technique. The enclosure is heated by a thermally controlled flow of water from one of the vertical walls and cooled by a similar technique from the facing wall. Those two walls are good thermal conductors (thick copper plates in the experiments), whereas the four other walls are thermally insulating. All walls are electrically insulated from the fluid. In this paper, as well as in the companion paper by Tagawa et al. (Eur. J. Mech. B Fluids 21 (4) (2002) 383-398), we model analytically the Ha...

  18. Algal Parasite Herpodiscus durvillaeae (Phaeophyceae: Sphacelariales) Inferred to have Traversed the Pacific Ocean with its Buoyant Host.

    Science.gov (United States)

    Fraser, Ceridwen I; Waters, Jonathan M

    2013-02-01

    The parasitic phaeophycean endophyte Herpodiscus durvillaeae (Lindauer) G. R. South has previously only been recorded from New Zealand, in association with a single host species, Durvillaea antarctica (Chamisso) Hariot (southern bull-kelp). Here we use DNA sequence data from plastid and nuclear markers (chloroplast rbcL, ribosomal LSU, and a nuclear pseudogene copy of COI) to test for the presence of H. durvillaeae beyond the New Zealand region, and on host species other than D. antarctica. Analyses of samples from the Falkland Islands confirm the first record of H. durvillaeae from the Atlantic Ocean. We report that Falkland Islands H. durvillaeae are genetically indistinguishable from samples of this species from New Zealand's sub-Antarctic Campbell Island, suggesting recent dispersal of the parasite across the Pacific Ocean, presumably by rafting with its buoyant macroalgal host. We also here record H. durvillaeae from New Zealand endemics Durvillaea poha Fraser et al. and D. willana Lindauer. © 2012 Phycological Society of America.

  19. Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling.

    Science.gov (United States)

    Jones, K E; Pierce, S E

    2016-03-01

    Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  20. ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Outirite, Moha; Lagrenee, Michel; Lebrini, Mounim [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, Michel; Jama, Charafeddine [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad, E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-02-01

    The corrosion inhibition properties of a new class of oxadiazole derivatives, namely 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles (n-DPOX) for C38 carbon steel corrosion in 1 M HCl medium were analysed by electrochemical impedance spectroscopy (EIS). An adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The experimental results showed that these compounds are excellent inhibitors for the C38 steel corrosion in acid solution and that the protection efficiency increased with increasing the inhibitors concentration. Electrochemical impedance data demonstrate that the addition of the n-DPOX derivatives in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Adsorption of these inhibitors on the steel surface obeys to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal hydrochloric solution by n-DPOX is due to the formation of a chemisorbed film on the steel surface. Quantum chemical calculations using the Density Functional Theory (DFT) and the Quantitative Structure Activity Relationship (QSAR) approach were performed on n-DPOX derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that their inhibition effect is closely related to E{sub HOMO}, E{sub LUMO}, and dipole moment (mu).

  1. Road density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  2. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites

    Science.gov (United States)

    Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.

    1990-01-01

    Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or silicon-carbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which consideres process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.

  3. Linear stability of buoyant thermocapillary convection for a high-Prandtl number fluid in a laterally heated liquid bridge

    Science.gov (United States)

    Motegi, K.; Kudo, M.; Ueno, I.

    2017-04-01

    The buoyancy effect on the stability of axisymmetric buoyant-thermocapillary flow is investigated in a laterally heated high-Prandtl-number liquid bridge using linear stability analysis. Target geometry is the so-called full-zone (FZ) model in which the liquid is sustained between the coaxial cylindrical disks of the same diameter. The disks are maintained at the same temperature, and the mid part of the liquid bridge is heated, resulting in a non-uniform temperature distribution over the free surface. In that model, axisymmetric basic flow exhibits reflection symmetry around the midplane, and two identical toroidal vortices are formed in the upper and lower halves in zero-gravity conditions. However, the buoyancy breaks this symmetry in gravity conditions. There are two different types of perturbation in the FZ model, the symmetric and antisymmetric modes around the mid plane of the liquid bridge. When increasing the Rayleigh number Ra, the buoyancy strongly stabilizes the basic flow for the antisymmetric oscillatory mode and has a weak destabilizing effect on the symmetric oscillatory mode. Therefore, when Ra exceeds a certain threshold value, the most dangerous mode switches from the antisymmetric oscillatory mode, the most dangerous mode under zero-gravity conditions, to the symmetric oscillatory mode. The neutral stability curve of the symmetric oscillatory mode folds with increasing Ra, wherein the critical Reynolds number suddenly drops. We reveal that such an abrupt change in the neutral curve is caused by the transition of the instability source from the vortex in the upper half of the liquid bridge to the one in the lower half by increasing the buoyancy effect. With a further increase in the Ra, the most dangerous mode switches from the symmetric oscillatory mode to the antisymmetric steady mode.

  4. Hazardous or not - Are adult and juvenile individuals of Potamopyrgus antipodarum affected by non-buoyant microplastic particles?

    Science.gov (United States)

    Imhof, Hannes K; Laforsch, Christian

    2016-11-01

    Microplastic has been ubiquitously detected in freshwater ecosystems. A variety of freshwater organisms were shown to ingest microplastic particles, while a high potential for adverse effects are expected. However, studies addressing the effect of microplastic in freshwater species are still scarce compared to studies on marine organisms. In order to gain further insights into possible adverse effects of microplastic particles on freshwater invertebrates and to set the base for further experiments we exposed the mud snail (Potampoyrgus antipodarum) to a large range of common and environmentally relevant non-buoyant polymers (polyamide, polyethylene terephthalate, polycarbonate, polystyrene, polyvinylchloride). The impact of these polymers was tested by performing two exposure experiments with irregular shaped microplastic particles with a broad size distribution in a low (30%) and a high microplastic dose (70%) in the food. First, possible effects on adult P. antipodarum were assessed by morphological and life-history parameters. Second, the effect of the same mixture on the development of juvenile P. antipodarum until maturity was analyzed. Adult P. antipodarum showed no morphological changes after the exposure to the microplastic particles, even if supplied in a high dose. Moreover, although P. antipodarum is an established model organism and reacts especially sensitive to endocrine active substances no effects on embryogenesis were detected. Similarly, the juvenile development until maturity was not affected. Considering, that most studies showing effects on marine and freshwater invertebrates mostly exposed their experimental organisms to very small (≤20 μm) polystyrene microbeads, we anticipate that these effects may be highly dependent on the chemical composition of the polymer itself and the size and shape of the particles. Therefore, more studies are necessary to enable the identification of harmful synthetic polymers as some of them may be

  5. Turbulent clustering of initially well-mixed buoyant particles on a free-surface by Lagrangian coherent structures

    Science.gov (United States)

    Pratt, Kenneth R.; True, Aaron; Crimaldi, John P.

    2017-07-01

    Particles that float on the surface of a 3D incompressible turbulent flow are exposed to non-divergence-free properties that result in clustering and unmixing, a reversal of how turbulence normally acts to mix and dilute scalars. Particle clustering is dominated by Lagrangian processes that depend on the time history of the flow; this suggests that Lagrangian coherent structures (LCS) might serve as templates for cluster formation. In this study, non-divergence-free clustering is examined both experimentally and numerically to elucidate the role of LCS in the formation of particle clusters and voids. Experiments are performed on the free-surface of a water-filled tank with turbulence driven by the random pulsing of centrifugal pumps on the tank bottom. Clustering is quantified by imaging fluorescent, buoyant particles that are placed in an initially random distribution on the free-surface. Within clusters, concentrations are observed to increase by an order of magnitude, with the likelihood of observing enhanced concentrations increasing by two orders of magnitude. LCS, obtained from velocity fields utilizing particle image velocimetry, are shown to act as templates for cluster formation. In addition, LCS are shown to possess a dilatation component in non-divergence-free flows that is responsible for unmixing. Numerically, a non-divergence-free chaotic model consisting of interacting Taylor vortices is utilized to investigate processes responsible for cluster formation seen in the experiments. The model results support the experimental finding that LCS act as templates for particle clusters, with scalar unmixing driven by the dilatation component.

  6. Translation of Ligand-Centered Hydrogen Evolution Reaction Activity and Mechanism of a Rhenium-Thiolate from Solution to Modified Electrodes: A Combined Experimental and Density Functional Theory Study.

    Science.gov (United States)

    Zhang, Wuyu; Haddad, Andrew Z; Garabato, Brady D; Kozlowski, Pawel M; Buchanan, Robert M; Grapperhaus, Craig A

    2017-02-20

    The homogeneous, nonaqueous catalytic activity of the rhenium-thiolate complex ReL3 (L = diphenylphosphinobenzenethiolate) for the hydrogen evolution reaction (HER) has been transferred from nonaqueous homogeneous to aqueous heterogeneous conditions by immobilization on a glassy carbon electrode surface. A series of modified electrodes based on ReL3 and its oxidized precursor [ReL3][PF6] were fabricated by drop-cast methods, yielding catalytically active species with HER overpotentials for a current density of 10 mA/cm(2), ranging from 357 to 919 mV. The overpotential correlates with film resistance as measured by electrochemical impedance spectroscopy and film morphology as determined by scanning and transmission electron microscopy. The lowest overpotential was for films based on the ionic [ReL3][PF6] precursor with the inclusion of carbon black. Stability measurements indicate a 2 to 3 h conditioning period in which the overpotential increases, after which no change in activity is observed within 24 h or upon reimmersion in fresh aqueous, acidic solution. Electronic spectroscopy results are consistent with ReL3 as the active species on the electrode surface; however, the presence of an undetected quantity of catalytically active degradation species cannot be excluded. The HER mechanism was evaluated by Tafel slope analysis, which is consistent with a novel Volmer-Heyrovsky-Tafel-like mechanism that parallels the proposed homogeneous HER pathway. Proposed mechanisms involving traditional metal-hydride processes vs ligand-centered reactivity were examined by density functional theory, including identification and characterization of relevant transition states. The ligand-centered path is energetically favored with protonation of cis-sulfur sites culminating in homolytic S-H bond cleavage with H2 evolution via H atom coupling.

  7. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  8. An ab initio molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules.

    Science.gov (United States)

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-11-21

    We have presented a first principles simulation study of the structural and dynamical properties of a liquid-vapor interfacial system of a concentrated (5.3 M) aqueous NaCl solution. We have used ab initio molecular dynamics to examine the structural and dynamical properties of the bulk and interfacial regions. The structural aspects of the system that have been considered here include the inhomogeneous density profiles of ions and water molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions in the bulk and interfacial regions. It is found that the sodium ions are mostly located in the interior, while the chloride anions occupy a significant portion of the interface of the slab. The water dipoles at the interface prefer to orient parallel to the surface. The dynamical aspects of the interfaces are investigated in terms of diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion. The results of the interfacial dynamics are compared with those of the corresponding bulk region. It is observed that the interfacial molecules exhibit faster diffusion and orientational relaxation with respect to the bulk. However, the interfacial molecules are found to have longer hydrogen bond lifetimes than those of the bulk. We have also investigated the correlations of hydrogen bond relaxation with the vibrational frequency fluctuations of interfacial water molecules.

  9. Some factors affecting the use of lighter than air systems. [economic and performance estimates for dirigibles and semi-buoyant hybrid vehicles

    Science.gov (United States)

    Havill, C. D.

    1974-01-01

    The uses of lighter-than-air vehicles are examined in the present day transportation environment. Conventional dirigibles were found to indicate an undesirable economic risk due to their low speeds and to uncertainties concerning their operational use. Semi-buoyant hybrid vehicles are suggested as an alternative which does not have many of the inferior characteristics of conventional dirigibles. Economic and performance estimates for hybrid vehicles indicate that they are competitive with other transportation systems in many applications, and unique in their ability to perform some highly desirable emergency missions.

  10. Modeling 3-D density distribution in the upper mantle beneath the Yellowstone from inversion of geoid anomaly data

    Science.gov (United States)

    Moreno Chaves, C. M.; Ussami, N.

    2011-12-01

    We developed a simple three-dimensional scheme to invert geoid anomalies, aiming to map density variations in the lower crust and the upper mantle. Using a flat-Earth approximation, the model space is represented by a finite set of rectangular prisms. The linear inversion algorithm is based on Tikhonov regularization and the convergence of the solution is controlled by the Levenberg-Marquardt method. Our linear inversion algorithm does not require an initial density model, allowing it to be used where geological constraints on density are not available. To analyze the quality of the model density obtained by the inversion algorithm, we used the resolution and the covariance matrices. In order to study the thermal and the composition state beneath the Yellowstone and to test our algorithm inversion, geoid anomalies were inverted and modeled. Yellowstone exhibits a high geoid anomaly (~13 m), with a topographic swell of about 500 km wide. Residual geoid anomalies were obtained using the EGM2008 [Pavlis et al., 2008] geopotential model expanded up to degree 2160 after removing the long-wavelength component (degree 10). Lower crust and mantle-related geoid anomalies with -80 m amplitude were obtained after removing crustal effects (topographic masses, sediments and crustal thickness variations). The center of the negative geoid anomaly coincides geographically with the low velocity body (Yuan and Dueker [2005] and Waite et al. [2006]) in the upper mantle and with a depression of 12 km of the 410 km discontinuity detected by Fee and Dueker [2004]. Our results show that the lower crust and the upper mantle of the Yellowstone have a predominantly negative density contrast (-10 to -75 kg/m3) relative to the surrounding mantle. The mass deficiency mapped beneath the Yellowstone suggests the mantle to be hotter (-200 to -300 °C) and buoyant to isostatically sustain the high topography of this province (> 3000 m above sea level). The density model shows that the negative

  11. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth

    2015-01-01

    We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...

  12. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  13. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    1999-01-01

    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for

  14. Determination of the semi-empiric relationship among the physical density, the concentration and rate between hydrogen and manganese atoms, and a manganese sulfate solution; Determinacao da relacao semi-empirica entre a densidade fisica, concentracao e razao entre atomos de hidrogenio e manganes em uma solucao de sulfato de manganes

    Energy Technology Data Exchange (ETDEWEB)

    Bittencourt, Guilherme Rodrigues [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). PIBIC; Castro, Leonardo Curvello de; Pereira, Walsan W.; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Dantas, Maria Leticia [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI). Lab. de Neutrons

    2009-07-01

    The bath of a manganese sulfate (BMS) is a system for absolute standardization of the neutron sources. This work establishes a functional relationship based on semi-empirical methods for the theoretical prediction of physical density values, concentration and rate between the hydrogen and manganese atoms presents in the solution of the BMS

  15. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials.

    Science.gov (United States)

    Kang, Joohoon; Sangwan, Vinod K; Wood, Joshua D; Hersam, Mark C

    2017-04-18

    control in 2D nanomaterials by reviewing thickness-dependent physical properties. Then we present a succinct survey of solution-based exfoliation methods that yield 2D nanomaterial dispersions in organic solvents and aqueous media. The Account subsequently focuses on separation methods, including a critical analysis of their relative strengths and weaknesses for 2D nanomaterials with different buoyant densities, van der Waals interactions, and chemical reactivities. Specifically, we evaluate sedimentation-based density gradient ultracentrifugation (sDGU) and isopycnic DGU (iDGU) for post-exfoliation 2D nanomaterial dispersion separation. The comparative advantages of sedimentation and isopycnic methods are presented in both aqueous and nonaqueous media for 2D nanomaterials with varying degrees of chemical reactivity. Finally, we survey methods for forming homogeneous thin films from 2D nanomaterial dispersions and emerging technologies that are likely to benefit from these structures. Overall, this Account provides not only an overview of the present state-of-the-art but also a forward-looking vision for the field of solution-processed monodisperse 2D nanomaterials.

  16. Time-dependent density functional theory/discrete reaction field spectra of open shell systems : The visual spectrum of [Fe-III(PyPepS)(2)](-) in aqueous solution

    NARCIS (Netherlands)

    van Duijnen, Piet Th.; Greene, Shannon N.; Richards, Nigel G. J.

    2007-01-01

    We report the calculated visible spectrum of [Fe-III(PyPepS)(2)](-) in aqueous solution. From all-classical molecular dynamics simulations on the solute and 200 water molecules with a polarizable force field, 25 solute/solvent configurations were chosen at random from a 50 ps production run and

  17. Impacts of a buoyant strait outflow on the plankton production characteristics of an adjacent semi-enclosed basin: A case study of the Marmara Sea

    Science.gov (United States)

    Oguz, Temel

    2017-09-01

    As documented by observational studies, the buoyant outflows emanating from straits and rivers with large amounts of nutrients and biogenic materials cause marked changes in the biochemical characteristics of the adjacent receiving water bodies. Here, using a three-dimensional biophysical model of the Marmara Sea-Bosphorus Strait two-layer exchange flow system and configuring it for the winter phytoplankton blooming period with limited top-down control, we show that complex buoyancy-induced basin-scale circulation is driven by the buoyant jet emanating from a strait, which sustains enhanced production even in the absence of any nutrient flux from its upstream source region and lateral point sources around the sea. In the supercritical flow regime downstream of the strait exit, strong upward motion introduced by the hydraulically controlled outflow dynamics injects subsurface nutrients into the upper layer. Those accumulated within the adjacent anticyclonic bulge to the right of the outflow plume then support relatively high phytoplankton production, whereas strong currents limit phytoplankton production along the main jet axis. Furthermore, topographically controlled anticyclonic circulation within the lower layer around the deep northern basin induces upwelling due to the divergence of cross-isobath, uphill flow and causes the nutrient enrichment of the upper layer. This cumulative response, together with the additional contribution of nutrient recycling and the horizontal distribution of nutrients and biota by the mesoscale-dominated circulation system, maintain a highly productive system within the sea, which is consistent with previous observations.

  18. Piezoelectric Energy Harvesting Solutions

    Science.gov (United States)

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  19. Piezoelectric Energy Harvesting Solutions

    Directory of Open Access Journals (Sweden)

    Renato Caliò

    2014-03-01

    Full Text Available This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions.

  20. Piezoelectric energy harvesting solutions.

    Science.gov (United States)

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-03-10

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions.

  1. Viscosity Solution

    OpenAIRE

    Camilli, Fabio; Prados, Emmanuel

    2011-01-01

    International audience; Viscosity solution is a notion of weak solution for a class of partial differential equations of Hamilton-Jacobi type. The range of applications of the notions of viscosity solution and Hamilton-Jacobi equations is enormous, including common class of partial differential equations such as evolutive problems and problems with boundary conditions, equations arising in optimal control theory, differential games, second-order equations arising in stochastic optimal control...

  2. Structure and Charge Density Properties of (1 - x)(Na1- y K y NbO3)- xBaTiO3 Lead-Free Ceramic Solid Solution

    Science.gov (United States)

    Sasikumar, S.; Saravanan, R.

    2017-07-01

    (1 - x)(Na1- y K y )NbO3- xBaTiO3 (abbreviated as NKN-BT, x = 0.1, 0.2; y = 0.01, 0.05) ceramics were synthesized by the solid-state reaction method. Powder x-ray diffraction analysis in combination with the profile refinement method was employed for quantitative phase analysis and structural refinement. The x-ray diffraction study shows that phase transition occurs from tetragonal to distorted cubic with the compositions between x = 0.1 and x = 0.2. The spatial arrangements of the electron distribution and bonding nature of the samples have been analyzed through the maximum entropy method. The optical band gap energy of the prepared solid solutions has been determined using UV-visible spectrophotometry. The optical band gap energy of the solid solutions decreases with the increase in BaTiO3 content. The elemental composition of these ceramics has been studied using energy dispersive x-ray analysis and the microstructure has been examined by scanning electron microscopy. The piezoelectric coefficient ( d 33 ) measurement of the ceramics shows the enhancement of piezoelectric properties in the tetragonal phase. The maximum value of the piezoelectric coefficient ( d 33 ) obtained for the solid solution is 120 pC/N. With increasing BaTiO3 content in the solid solutions, the ferroelectric behavior weakens.

  3. Numerical Simulation of Density Current Evolution in a Diverging Channel

    Directory of Open Access Journals (Sweden)

    Mitra Javan

    2012-01-01

    Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.

  4. Solution preparation

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results.

  5. Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent Couette flow

    Science.gov (United States)

    Wang, Guiquan; Abbas, Micheline; Climent, Eric

    2017-08-01

    Particle-resolved numerical simulations based on the Force Coupling Method are carried out to study the effect of finite-size particles on turbulent plane Couette flow. The Reynolds number is close to the laminar-turbulent transition, such that large-scale rotational structures are well developed and self-sustained. The study particularly considers the effect of concentration, particle size, and particle-to-fluid density ratio on the mixture flow features. Time-averaged profiles, in the wall-normal direction, of the mean flow and Reynolds stress components reveal that there is no significant difference between single-phase and two-phase flows at equivalent effective Reynolds number, except that the wall shear stress is higher for the two-phase flow. However, temporal and modal analysis of flow fluctuations suggest that besides injecting small-scale perturbation due to their rigidity, particles have an effect on the regeneration cycle of turbulence. Indeed, the shape of the streaks and the intermittent character of the flow (amplitude and period of oscillation of the modal fluctuation energy) are all altered by the particle presence, and especially by the inertial ones.

  6. SUTRA (Saturated-Unsaturated Transport). A Finite-Element Simulation Model for Saturated-Unsaturated, Fluid-Density-Dependent Ground-Water Flow with Energy Transport or Chemically-Reactive Single-Species Solute Transport.

    Science.gov (United States)

    1984-12-30

    is evaluated. More information on finite- element integration and assembly may be found in numerical methods texts such as Wang and Anderson (1982...Water Resources, v. 5, no. 1, p. 47-55. Wang , H. F., and Anderson, M. P., 1982, Introduction to Groundwater Modeling, Freeman and Co., San Francisco... JIrE ~l;=UITER54u!TrER()*F (IL) 01 330 ... 120) CJNTI;NUE 01340 ... - Ql1350 .. . .. ET VALuES F)R DENSITY AN) VISCOSITY 01 360.. SRm-IT = FUNCTIJN

  7. Density of localized states in (Pb sub 0 sub . sub 7 sub 8 Sn sub 0 sub . sub 2 sub 2) sub 0 sub . sub 9 sub 5 In sub 0 sub . sub 0 sub 5 Te solid solution

    CERN Document Server

    Nemov, S A; Potapova, D A

    2001-01-01

    Hopping electric conductivity and thermoelectromotive force have been measured in Pb sub 0 sub . sub 7 sub 8 Sn sub 0 sub . sub 2 sub 2 Te with 5 at.% In and the supplementary doping with donor impurity Cl. Experimental data have been compared with results of the supplementary doping by the acceptor impurity Tl. At temperatures 150 K and higher, the positive thermoelectromotive force coefficient changes its sign becoming negative at a sufficient content of both donors and acceptors. An analysis of the dependence of thermoelectromotive force on the content of supplementary donors and acceptors gives the energy dependence of the density of localized states of indium. This function is essentially unmonotonous

  8. High diving metabolic rate indicated by high-speed transit to depth in negatively buoyant long-finned pilot whales.

    Science.gov (United States)

    Aoki, Kagari; Sato, Katsufumi; Isojunno, Saana; Narazaki, Tomoko; Miller, Patrick J O

    2017-10-15

    To maximize foraging duration at depth, diving mammals are expected to use the lowest cost optimal speed during descent and ascent transit and to minimize the cost of transport by achieving neutral buoyancy. Here, we outfitted 18 deep-diving long-finned pilot whales with multi-sensor data loggers and found indications that their diving strategy is associated with higher costs than those of other deep-diving toothed whales. Theoretical models predict that optimal speed is proportional to (basal metabolic rate/drag)1/3 and therefore to body mass0.05 The transit speed of tagged animals (2.7±0.3 m s-1) was substantially higher than the optimal speed predicted from body mass (1.4-1.7 m s-1). According to the theoretical models, this choice of high transit speed, given a similar drag coefficient (median, 0.0035) to that in other cetaceans, indicated greater basal metabolic costs during diving than for other cetaceans. This could explain the comparatively short duration (8.9±1.5 min) of their deep dives (maximum depth, 444±85 m). Hydrodynamic gliding models indicated negative buoyancy of tissue body density (1038.8±1.6 kg m-3, ±95% credible interval, CI) and similar diving gas volume (34.6±0.6 ml kg-1, ±95% CI) to those in other deep-diving toothed whales. High diving metabolic rate and costly negative buoyancy imply a 'spend more, gain more' strategy of long-finned pilot whales, differing from that in other deep-diving toothed whales, which limits the costs of locomotion during foraging. We also found that net buoyancy affected the optimal speed: high transit speeds gradually decreased during ascent as the whales approached neutral buoyancy owing to gas expansion. © 2017. Published by The Company of Biologists Ltd.

  9. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  10. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven...

  11. Structure of hydrated Zn 2+ at the rutile TiO 2 (110)-aqueous solution interface: Comparison of X-ray standing wave, X-ray absorption spectroscopy, and density functional theory results

    Science.gov (United States)

    Zhang, Zhan; Fenter, Paul; Kelly, Shelly D.; Catalano, Jeffery G.; Bandura, Andrei V.; Kubicki, James D.; Sofo, Jorge O.; Wesolowski, David J.; Machesky, Michael L.; Sturchio, Neil C.; Bedzyk, Michael J.

    2006-08-01

    Adsorption of Zn 2+ at the rutile TiO 2 (110)-aqueous interface was studied with Bragg-reflection X-ray standing waves (XSW), polarization-dependent surface extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations to understand the interrelated issues of adsorption site, its occupancy, ion-oxygen coordination and hydrolysis. At pH 8, Zn 2+ was found to adsorb as an inner-sphere complex at two different sites, i.e., monodentate above the bridging O site and bidentate between two neighboring terminal O sites. EXAFS results directly revealed a four or fivefold first shell coordination environment for adsorbed Zn 2+ instead of the sixfold coordination found for aqueous species at this pH. DFT calculations confirmed the energetic stability of a lower coordination environment for the adsorbed species and revealed that the change to this coordination environment is correlated with the hydrolysis of adsorbed Zn 2+. In addition, the derived adsorption locations and the occupancy factors of both sites from three methods agree well, with some quantitative discrepancies in the minor site location among the XSW, EXAFS, and DFT methods. Additional XSW measurements showed that the adsorption sites of Zn 2+ were unchanged at pH 6. However, the Zn 2+ partitioning between the two sites changed substantially, with an almost equal distribution between the two types of sites at pH 6 compared to predominantly monodentate occupation at pH 8.

  12. Podcast solutions

    CERN Document Server

    Geoghegan, Michael W

    2005-01-01

    Podcasting is the art of recording radio show style audio tracks, then distributing them to listeners on the Web via podcasting software such as iPodder. From downloading podcasts to producing a track for fun or profit, ""Podcast Solutions"" covers the entire world of podcasting with insight, humor, and the unmatched wisdom of experience.

  13. Density Deconvolution With EPI Splines

    Science.gov (United States)

    2015-09-01

    MATLAB [31], a Gaussian kernel, and the default bandwidth calculation. 2.5 Procedures We describe procedures for obtaining density estimates. Given an...combination of written methods and software such as the MATLAB Symbolic Toolbox [31] we find the closed form solutions of each addend in Equation (A.2). The...Robinson, “Predictive decomposition of time series with application to seismic exploration,” Geophysics, vol. 32, no. 3, 1967, pp. 418–484. [3] E. A

  14. Structure of Hydrated Zn2+ at the Rutile TiO2 (110)-Aqueous Solution Interface: Comparison of X-ray Standing Wave, X-ray Absorption Spectroscopy, and Density Functional Theory Results

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan [Argonne National Laboratory (ANL); Fenter, Paul [Argonne National Laboratory (ANL); Kelly, Shelly D [Argonne National Laboratory (ANL); Catalano, Jeffery G. [Argonne National Laboratory (ANL); Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Kubicki, James D. [Pennsylvania State University; Sofo, Jorge O. [Pennsylvania State University; Wesolowski, David J [ORNL; Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Sturchio, N. C. [University of Illinois, Chicago; Bedzyk, Michael J. [Northwestern University, Evanston

    2006-01-01

    Adsorption of Zn{sup 2+} at the rutile TiO{sub 2} (110)-aqueous interface was studied with Bragg-reflection X-ray standing waves (XSW), polarization-dependent surface extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations to understand the interrelated issues of adsorption site, its occupancy, ion-oxygen coordination and hydrolysis. At pH 8, Zn{sup 2+} was found to adsorb as an inner-sphere complex at two different sites, i.e., monodentate above the bridging O site and bidentate between two neighboring terminal O sites. EXAFS results directly revealed a four or fivefold first shell coordination environment for adsorbed Zn{sup 2+} instead of the sixfold coordination found for aqueous species at this pH. DFT calculations confirmed the energetic stability of a lower coordination environment for the adsorbed species and revealed that the change to this coordination environment is correlated with the hydrolysis of adsorbed Zn{sup 2+}. In addition, the derived adsorption locations and the occupancy factors of both sites from three methods agree well, with some quantitative discrepancies in the minor site location among the XSW, EXAFS, and DFT methods. Additional XSW measurements showed that the adsorption sites of Zn{sup 2+} were unchanged at pH 6. However, the Zn{sup 2+} partitioning between the two sites changed substantially, with an almost equal distribution between the two types of sites at pH 6 compared to predominantly monodentate occupation at pH 8.

  15. Structure of Hydrated Zn2+ at the Rutile TiO2 (110)-Aqueous Solution Interface: Comparsion of X-ray Standing Wave, X-ray Absorption Spectroscopy, and Density Functional Theory Results

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,Z.; Fenter, P.; Kelly, S.; Catalano, J.; Bandura, A.; Kubicki, J.; Sofo, J.; Wesolowski, D.; Machesky, M.; et al.

    2006-01-01

    Adsorption of Zn{sup 2+} at the rutile TiO2 (110)-aqueous interface was studied with Bragg-reflection X-ray standing waves (XSW), polarization-dependent surface extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations to understand the interrelated issues of adsorption site, its occupancy, ion-oxygen coordination and hydrolysis. At pH 8, Zn{sup 2+} was found to adsorb as an inner-sphere complex at two different sites, i.e., monodentate above the bridging O site and bidentate between two neighboring terminal O sites. EXAFS results directly revealed a four or fivefold first shell coordination environment for adsorbed Zn{sup 2+} instead of the sixfold coordination found for aqueous species at this pH. DFT calculations confirmed the energetic stability of a lower coordination environment for the adsorbed species and revealed that the change to this coordination environment is correlated with the hydrolysis of adsorbed Zn{sup 2+}. In addition, the derived adsorption locations and the occupancy factors of both sites from three methods agree well, with some quantitative discrepancies in the minor site location among the XSW, EXAFS, and DFT methods. Additional XSW measurements showed that the adsorption sites of Zn{sup 2+} were unchanged at pH 6. However, the Zn{sup 2+} partitioning between the two sites changed substantially, with an almost equal distribution between the two types of sites at pH 6 compared to predominantly monodentate occupation at pH 8.

  16. BENCHMARK SOLUTIONS FOR STOKES EQUATIONS WITH VARIABLE VISCOSITY IN CYLINDRICAL AND SPHERICAL COORDINATES

    National Research Council Canada - National Science Library

    I. V. Makeev; I. Y. Popov; I. V. Blinova

    2016-01-01

    .... We suggest exact particular solutions of Stokes and continuity equations with variable viscosity and density in spherical coordinates for the case of spherically symmetric viscosity and density distributions...

  17. Calculation of electromagnetic fields in electric machines by means of the finite element. Algorithms for the solution of problems with known total densities. Pt. 2; Calculo de campos electromagneticos en maquinas electricas mediante elemento finito. Algoritmos para la solucion de problemas con densidades totales conocidas. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, Mauricio F. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    This article is based in the electromagnetic modeling presented in the first part. Here are only considered the magnetic systems or electric systems in closed regions with moving or axial symmetry, whose total current density or total electric load density is known. The algorithms that have been implanted in the software CLIIE-2D of the Instituto de Investigaciones Electricas (IIE) are developed in order to obtain numerical solutions for these problems. The basic systems of algebraic equations are obtained by means of the application of the Galerkin method in the discreteness of the finite element with first order triangular elements. [Espanol] Este articulo se basa en la modelacion electromagnetica presentada en la primera parte. Aqui solo se consideran sistemas magneticos o sistemas electricos en regiones cerradas con simetria translacional o axial, cuya densidad de corriente total o densidad de carga electrica total es conocida. Se desarrollan los algoritmos que se han implantado en el programa de computo CLIIE-2D, del Instituto de Investigaciones Electricas (IIE) con el fin de obtener soluciones numericas para estos problemas. Los sistemas basicos de ecuaciones algebraicas se obtienen mediante la aplicacion del metodo de Galerkin en la discretizacion de elemento finito con elementos triangulares de primer orden.

  18. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  19. Characterization of the Nova Scotia Coastally-Trapped Current and Monitoring of the Associated Density Front Using Underwater Gliders

    Science.gov (United States)

    Dever, M.; Hebert, D.; Greenan, B. J. W.; Sheng, J.

    2016-02-01

    Repeated glider transects across the Scotian Shelf, near Halifax, Nova Scotia, Canada, completed between 2011 and 2015 provide a dataset with high temporal and spatial resolutions. This new dataset is used to characterize the seasonal variability of the Nova Scotia Current (NSC): a southwestward, coastally-trapped, alongshore current flowing from the Gulf of St. Lawrence to the Gulf of Maine. Alongshore currents are estimated by scaling the geostrophic flow, derived from the density field, with the drift experienced by the glider during each dives. The results are compared to concurrent ADCP observations to assess the reliability of the technique and then used to characterize the alongshore circulation across the Halifax Line. It demonstrates that most of the alongshore transport is associated with the density front separating the low-density NSC from denser shelf water. An automated algorithm is then developed to monitor the major characteristics of the density front (e.g. width, frontal depth, density gradient). We find that the persistent summer stratification explains the lag observed between the seasonal pulse of buoyant water coming for the Gulf of St. Lawrence in the fall and the maximum alongshore current in the winter. This reveals that the density gradient is not the only major parameter explaining the seasonal and inter-annual variability of the NSC: the geometry of the density front also plays an important role. This makes wind forcing a potential major driving mechanism of the NSC, as alongshore winds can significantly affect the geometry of the density front via Ekman transport.

  20. Alloy solution hardening with solute pairs

    Science.gov (United States)

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  1. Analytical Solution for Stellar Density in Globular Clusters MA Sharaf ...

    Indian Academy of Sciences (India)

    Galactic globular clusters, which are ancient building blocks of our Galaxy, rep- resent a very interesting family of stellar systems in which some fundamental dynamical processes have taken place on time scale shorter than the age of the universe. For example, horizontal branch (HB) stars in globular clusters offer an.

  2. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Salt Lake City, Kolkata 700 098, India; Unit for Nanoscience and Technology, S.N. Bose National Centre for Basic Sciences, JD Block, Salt Lake City, Kolkata 700 098, India; Advanced Materials ...

  3. Aphid aerial density profiles are consistent with turbulent advection amplifying flight behaviours: abandoning the epithet 'passive'.

    Science.gov (United States)

    Reynolds, Andy M; Reynolds, Don R

    2009-01-07

    Seminal field studies led by C. G. Johnson in the 1940s and 1950s showed that aphid aerial density diminishes with height above the ground such that the linear regression coefficient, b, of log density on log height provides a single-parameter characterization of the vertical density profile. This coefficient decreases with increasing atmospheric stability, ranging from -0.27 for a fully convective boundary layer to -2.01 for a stable boundary layer. We combined a well-established Lagrangian stochastic model of atmospheric dispersal with simple models of aphid behaviour in order to account for the range of aerial density profiles. We show that these density distributions are consistent with the aphids producing just enough lift to become neutrally buoyant when they are in updraughts and ceasing to produce lift when they are in downdraughts. This active flight behaviour in a weak flier is thus distinctly different from the aerial dispersal of seeds and wingless arthropods, which is passive once these organisms have launched into the air. The novel findings from the model indicate that the epithet 'passive' often applied to the windborne migration of small winged insects is misleading and should be abandoned. The implications for the distances traversed by migrating aphids under various boundary-layer conditions are outlined.

  4. Future Road Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  5. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  6. The role of adequate reference materials in density measurements in hemodialysis

    Science.gov (United States)

    Furtado, A.; Moutinho, J.; Moura, S.; Oliveira, F.; Filipe, E.

    2015-02-01

    In hemodialysis, oscillation-type density meters are used to measure the density of the acid component of the dialysate solutions used in the treatment of kidney patients. An incorrect density determination of this solution used in hemodialysis treatments can cause several and adverse events to patients. Therefore, despite the Fresenius Medical Care (FME) tight control of the density meters calibration results, this study shows the benefits of mimic the matrix usually measured to produce suitable reference materials for the density meter calibrations.

  7. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  8. Wet and dry density of Bacillus anthracis and other Bacillus species.

    Science.gov (United States)

    Carrera, M; Zandomeni, R O; Sagripanti, J-L

    2008-07-01

    To determine the wet and dry density of spores of Bacillus anthracis and compare these values with the densities of other Bacillus species grown and sporulated under similar conditions. We prepared and studied spores from several Bacillus species, including four virulent and three attenuated strains of B. anthracis, two Bacillus species commonly used to simulate B. anthracis (Bacillus atrophaeus and Bacillus subtilis) and four close neighbours (Bacillus cereus, Bacillus megaterium, Bacillus thuringiensis and Bacillus stearothermophilus), using identical media, protocols and instruments. We determined the wet densities of all spores by measuring their buoyant density in gradients of Percoll and their dry density in gradients of two organic solvents, one of high and the other of low chemical density. The wet density of different strains of B. anthracis fell into two different groups. One group comprised strains of B. anthracis producing spores with densities between 1.162 and 1.165 g ml(-1) and the other group included strains whose spores showed higher density values between 1.174 and 1.186 g ml(-1). Both Bacillus atrophaeus and B. subtilis were denser than all the B. anthracis spores studied. Interestingly and in spite of the significant differences in wet density, the dry densities of all spore species and strains were similar. In addition, we correlated the spore density with spore volume derived from measurements made by electron microscopy analysis. There was a strong correlation (R(2) = 0.95) between density and volume for the spores of all strains and species studied. The data presented here indicate that the two commonly used simulants of B. anthracis, B. atrophaeus and B. subtilis were considerably denser and smaller than all B. anthracis spores studied and hence, these simulants could behave aerodynamically different than B. anthracis. Bacillus thuringiensis had spore density and volume within the range observed for the various strains of B. anthracis. The

  9. Exact analytical density profiles and surface tension

    Indian Academy of Sciences (India)

    to nonideality, which distinguish electrolyte from nonelectrolyte solutions. An example is provided by the excess surface tension for an air–water interface, which is determined by the excess particle density, and which was first calculated by Onsager and Samaras. Because of the discrepancy between the dielectric constants ...

  10. Probability densities and Lévy densities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler

    For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated.......For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated....

  11. Density functional study of the electric double layer formed by a high density electrolyte.

    Science.gov (United States)

    Henderson, Douglas; Lamperski, Stanisław; Jin, Zhehui; Wu, Jianzhong

    2011-11-10

    We use a classical density functional theory (DFT) to study the electric double layer formed by charged hard spheres near a planar charged surface. The DFT predictions are found to be in good agreement with recent computer simulation results. We study the capacitance of the charged hard-sphere system at a range of densities and surface charges and find that the capacitance exhibits a local minimum at low ionic densities and small electrode charge. Although this charging behavior is typical for an aqueous electrolyte solution, the local minimum gradually turns into a maximum as the density of the hard spheres increases. Charged hard spheres at high density provide a reasonable first approximation for ionic liquids. In agreement with experiment, the capacitance of this model ionic liquid double layer has a maximum at small electrode charge density.

  12. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying

    2012-10-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  13. Association of low-density lipoprotein pattern with mortality after myocardial infarction: Insights from the TRIUMPH study.

    Science.gov (United States)

    Pokharel, Yashashwi; Tang, Yuanyuan; Bhardwaj, Bhaskar; Patel, Krishna K; Qintar, Mohammed; O'Keefe, James H; Kulkarni, Krishnaji R; Jones, Peter H; Martin, Seth S; Virani, Salim S; Spertus, John A

    Studies of incident coronary heart disease risk within low-density lipoprotein (LDL) subclass (small, dense vs large, buoyant) have shown mixed results. No prospective cohort study has examined the association of small, dense, or large, buoyant LDL with mortality after myocardial infarction (MI). The objective of the study was to examine association of LDL pattern after MI and death. In 2476 patients hospitalized for MI, LDL pattern (A [large, buoyant], A/B [mixed], and B [small, dense]) was established by ultracentrifugation using Vertical Auto Profile. Using time-to-event analysis, we examined the association with 5-year mortality within LDL patterns, after adjusting for important patient and treatment characteristics. We additionally adjusted for LDL cholesterol (LDL-C) and triglyceride levels and used directly measured LDL-C and non-high-density lipoprotein cholesterol as exposures. Patterns A, A/B, and B were present in 39%, 28%, and 33% of patients, respectively, with incident rates (per 1000 patient-years) of 50, 34, and 24 for all-cause and 24, 19, and 10 for CV mortality. The hazard ratios (95% confidence interval) with LDL patterns A/B and B compared with pattern A were 0.77 (0.61, 0.99) and 0.67 (0.51, 0.88) for all-cause, 0.94 (0.67, 1.33) and 0.69 (0.46, 1.03) for cardiovascular, and 0.64 (0.45, 0.91) and 0.65 (0.45, 0.93) for noncardiovascular mortalities, respectively. Results were similar when further adjusted for LDL-C and triglycerides, or with LDL-C and non-high-density lipoprotein cholesterol as exposures. Compared with LDL pattern A, pattern B was significantly associated with reduced all-cause and non-CV mortalities with a trend for lower CV mortality after MI, independent of LDL-C and triglycerides. Copyright © 2017 National Lipid Association. All rights reserved.

  14. Dislocation Etching Solutions for Mercury Cadmium Selenide

    Science.gov (United States)

    2014-09-01

    mercury cadmium telluride (Hg1–xCdxTe) for infrared (IR) sensor applications, but etch pit density ( EPD ) measurements are required to measure...dislocations that affect device performance. No EPD solutions have been reported for Hg1–xCdxSe, and standard EPD solutions for Hg1–xCdxTe have proved...ineffective. Thus, a new etching solution is required for EPD measurements of Hg1–xCdxSe. Samples were etched in various solutions and the resulting pits

  15. Modeling thermospheric neutral density

    Science.gov (United States)

    Qian, Liying

    Satellite drag prediction requires determination of thermospheric neutral density. The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the global-mean Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) were used to quantify thermospheric neutral density and its variations, focusing on annual/semiannual variation, the effect of using measured solar irradiance on model calculations of solar-cycle variation, and global change in the thermosphere. Satellite drag data and the MSIS00 empirical model were utilized to compare to the TIEGCM simulations. The TIEGCM simulations indicated that eddy diffusion and its annual/semiannual variation is a mechanism for annual/semiannual density variation in the thermosphere. It was found that eddy diffusion near the turbopause can effectively influence thermospheric neutral density. Eddy diffusion, together with annual insolation variation and large-scale circulation, generated global annual/semiannual density variation observed by satellite drag. Using measured solar irradiance as solar input for the TIEGCM improved the solar-cycle dependency of the density calculation shown in F10.7 -based thermospheric empirical models. It has been found that the empirical models overestimate density at low solar activity. The TIEGCM simulations did not show such solar-cycle dependency. Using historic measurements of CO2 and F 10.7, simulations of the global-mean TIMEGCM showed that thermospheric neutral density at 400 km had an average long-term decrease of 1.7% per decade from 1970 to 2000. A forecast of density decrease for solar cycle 24 suggested that thermospheric density will decrease at 400 km from present to the end of solar cycle 24 at a rate of 2.7% per decade. Reduction in thermospheric density causes less atmospheric drag on earth-orbiting space objects. The implication of this long-term decrease of thermospheric neutral density is that it will increase the

  16. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  17. Avaliação da deposição da calda de pulverização em função da densidade populacional de Brachiaria plantaginea, do volume e do ângulo de aplicação: effects of density, volume and spraying angle Evaluation of spray solution retention by Brachiaria plantaginea

    Directory of Open Access Journals (Sweden)

    M.S. Tomazela

    2006-01-01

    densidades maiores de plantas. O ângulo de posicionamento da ponta de pulverização na barra de aplicação incrementou o depósito de calda nas plantas de B. plantaginea, quando comparado com o ângulo de 90º.This research aimed to evaluate the retention by leaves of Brachiaria plantaginea and by soil surface submitted to early post-emergence application of spray solution, after varying the volume per square meter and nozzle position on the application boom. Three trials were carried out under laboratory conditions. Variations in sprayed solution volume were obtained by changing the movement of a device composed by an electric power unit propelled platform. Nozzle XR Teejet 8001 EVS at 21.4 kPa was utilized. The experimental treatments were set up on a randomized design with five replications. In the trial, spray solution volumes of 1,147.57; 860.68; 573.78; 459.02; 344.27; 229.51; 114.75 and 57.37 L ha-1 were applied over 600 plants m-2. In the second one, 300; 600; 900 and 1.200 plants m-2 were sprayed with 229.51 L ha-1 of solution. In the third trial, the nozzle position angles on the spraying bar of 30º, -15º, 90º, +15º and +30ºwith spray solution volume of 198.76; 221.69; 229.51; 221.69 and 198.76 L ha-1, respectively, were studied. Negative sign indicates angles on the same dislocation direction. Spray solution retention on the plants and soil were evaluated by electric conductivity. It is concluded that the retention percentage on B. plantaginea was enhanced by reducing the volume of spray solution per hectare and increased by increasing plant density. Nozzle angles on the spraying bar increased the retention of solution in relation to 90º.

  18. Density dependent neurodynamics.

    Science.gov (United States)

    Halnes, Geir; Liljenström, Hans; Arhem, Peter

    2007-01-01

    The dynamics of a neural network depends on density parameters at (at least) two different levels: the subcellular density of ion channels in single neurons, and the density of cells and synapses at a network level. For the Frankenhaeuser-Huxley (FH) neural model, the density of sodium (Na) and potassium (K) channels determines the behaviour of a single neuron when exposed to an external stimulus. The features of the onset of single neuron oscillations vary qualitatively among different regions in the channel density plane. At a network level, the density of neurons is reflected in the global connectivity. We study the relation between the two density levels in a network of oscillatory FH neurons, by qualitatively distinguishing between three regions, where the mean network activity is (1) spiking, (2) oscillating with enveloped frequencies, and (3) bursting, respectively. We demonstrate that the global activity can be shifted between regions by changing either the density of ion channels at the subcellular level, or the connectivity at the network level, suggesting that different underlying mechanisms can explain similar global phenomena. Finally, we model a possible effect of anaesthesia by blocking specific inhibitory ion channels.

  19. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  20. Future Road Density

    Science.gov (United States)

    Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  1. Learning Grasp Affordance Densities

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Kroemer, Oliver

    2011-01-01

    these and records their outcomes. When a satisfactory number of grasp data is available, an importance-sampling algorithm turns these into a grasp density. We evaluate our method in a largely autonomous learning experiment run on three objects of distinct shapes. The experiment shows how learning increases success......We address the issue of learning and representing object grasp affordance models. We model grasp affordances with continuous probability density functions (grasp densities) which link object-relative grasp poses to their success probability. The underlying function representation is nonparametric...... and relies on kernel density estimation to provide a continuous model. Grasp densities are learned and refined from exploration, by letting a robot “play” with an object in a sequence of graspand-drop actions: The robot uses visual cues to generate a set of grasp hypotheses; it then executes...

  2. A Dual Egalitarian Solution

    NARCIS (Netherlands)

    Klijn, F.; Slikker, M.; Tijs, S.H.

    2000-01-01

    In this note we introduce an egalitarian solution, called the dual egalitarian solution, that is the natural counterpart of the egalitarian solution of Dutta and Ray (1989).We prove, among others, that for a convex game the egalitarian solution coincides with the dual egalitarian solution for its

  3. Oscillating instanton solutions in curved space

    Science.gov (United States)

    Lee, Bum-Hoon; Lee, Chul H.; Lee, Wonwoo; Oh, Changheon

    2012-01-01

    We investigate oscillating instanton solutions of a self-gravitating scalar field between degenerate vacua. We show that there exist O(4)-symmetric oscillating solutions in a de Sitter background. The geometry of this solution is finite and preserves the Z2 symmetry. The nontrivial solution corresponding to tunneling is possible only if the effect of gravity is taken into account. We present numerical solutions of this instanton, including the phase diagram of solutions in terms of the parameters of the present work and the variation of energy densities. Our solutions can be interpreted as solutions describing an instanton-induced domain wall or braneworld-like object rather than a kink-induced domain wall or braneworld. The oscillating instanton solutions have a thick wall and the solutions can be interpreted as a mechanism providing nucleation of the thick wall for topological inflation. We remark that Z2 invariant solutions also exist in a flat and anti-de Sitter background, though the physical significance is not clear.

  4. Density Waves in Layered Systems with Fermionic Polarmolecules

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; Bruun, Georg

    2011-01-01

    A layered system of two-dimensional planes containing fermionic polar molecules can potentially realize a number of exotic quantum many-body states. Among the predictions, are density-wave instabilities driven by the anisotropic part of the dipole-dipole interaction in a single layer. However......, in typical multilayer setups it is reasonable to expect that the onset and properties of a density-wave are modified by adjacent layers. Here we show that this is indeed the case. For multiple layers the critical strength for the density-wave instability decreases with the number of layers. The effect...... depends on density and is more pronounced in the low density regime. The lowest solution of the instability corresponds to the density waves in the different layers being in-phase, whereas higher solutions have one or several adjacent layers that are out of phase. The parameter regime needed to explore...

  5. Limiting current density and water dissociation in bipolar membranes

    NARCIS (Netherlands)

    Strathmann, H.; Krol, J.J.; Rapp, H.J.; Eigenberger, G.

    1997-01-01

    The behaviour of bipolar membranes in NaCl and Na2SO4 solutions is discussed. The membranes are characterized in terms of their limiting current densities. Below the limiting current density the electric current is carried by salt ions migrating from the transition region between the anion and the

  6. Gravitational Effects on Flow Instability and Transition in Low Density Jets

    Science.gov (United States)

    Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.

    2000-01-01

    Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the potential core. However, experiments have not succeeded in identifying the direct physical cause of the instability. For example, the theory predicts an oscillating mode for Score, the gravitational effects are important in the annular region surrounding the jet, where the

  7. Magnetization of High Density Hadronic Fluid

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; da Providencia, João

    2012-01-01

    In the present paper the magnetization of a high density relativistic fluid of elementary particles is studied. At very high densities, such as may be found in the interior of a neutron star, when the external magnetic field is gradually increased, the energy of the normal phase of the fluid...... of the magnetization is derived by first considering and solving the Dirac equation of a fermion in interaction with a magnetic field and with a chiral sigma-pion pair. The solution provides the energies of single-particle states. The energy of the system is found by summing up contributions from all particles...

  8. Density fingering of an exothermic autocatalytic reaction.

    Science.gov (United States)

    Bánsági, T; Horváth, D; Tóth, A; Yang, J; Kalliadasis, S; De Wit, A

    2003-11-01

    Density fingering of exothermic autocatalytic fronts in vertically oriented porous media and Hele-Shaw cells is studied theoretically for chemical reactions where the solutal and thermal contribution to density changes have opposite signs. The competition between these two effects leads to thermal plumes for ascending fronts. The descending fronts behave strikingly differently as they can feature, for some values of the parameters, fingers of constant amplitude and wavelength. The differences between up and down going fronts are discussed in terms of dispersion curves and nonlinear dynamics. The theoretically predicted dispersion curves are experimentally evidenced with the chlorite-tetrathionate reaction.

  9. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... need to undress. This scan is the best test to predict your risk of fractures, especially of ...

  10. Aphid aerial density profiles are consistent with turbulent advection amplifying flight behaviours: abandoning the epithet ‘passive’

    Science.gov (United States)

    Reynolds, Andy M; Reynolds, Don R

    2008-01-01

    Seminal field studies led by C. G. Johnson in the 1940s and 1950s showed that aphid aerial density diminishes with height above the ground such that the linear regression coefficient, b, of log density on log height provides a single-parameter characterization of the vertical density profile. This coefficient decreases with increasing atmospheric stability, ranging from −0.27 for a fully convective boundary layer to −2.01 for a stable boundary layer. We combined a well-established Lagrangian stochastic model of atmospheric dispersal with simple models of aphid behaviour in order to account for the range of aerial density profiles. We show that these density distributions are consistent with the aphids producing just enough lift to become neutrally buoyant when they are in updraughts and ceasing to produce lift when they are in downdraughts. This active flight behaviour in a weak flier is thus distinctly different from the aerial dispersal of seeds and wingless arthropods, which is passive once these organisms have launched into the air. The novel findings from the model indicate that the epithet ‘passive’ often applied to the windborne migration of small winged insects is misleading and should be abandoned. The implications for the distances traversed by migrating aphids under various boundary-layer conditions are outlined. PMID:18782743

  11. Negative Ion Density Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  12. Integral solutions of fractional evolution equations with nondense domain

    Directory of Open Access Journals (Sweden)

    Haibo Gu

    2017-06-01

    Full Text Available In this article, we study the existence of integral solutions for two classes of fractional order evolution equations with nondensely defined linear operators. First, we consider the nonhomogeneous fractional order evolution equation and obtain its integral solution by Laplace transform and probability density function. Subsequently, based on the form of integral solution for nonhomogeneous fractional order evolution equation, we investigate the existence of integral solution for nonlinear fractional order evolution equation by noncompact measure method.

  13. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions

    Science.gov (United States)

    Suzuki, Yoshiharu

    2017-08-01

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  14. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions.

    Science.gov (United States)

    Suzuki, Yoshiharu

    2017-08-14

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  15. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures.

    Science.gov (United States)

    Cochrane, T T; Cochrane, T A

    2016-01-01

    To demonstrate that the authors' new "aqueous solution vs pure water" equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of "free" water molecules per unit volume of solution, "Nf," and (c) the "t" factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate Nf was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors' equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. The provisional equations formulated to calculate Nf, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of Nf using recorded relative density data at 20 °C. They were

  16. Archival storage solutions for PACS

    Science.gov (United States)

    Chunn, Timothy

    1997-05-01

    While they are many, one of the inhibitors to the wide spread diffusion of PACS systems has been robust, cost effective digital archive storage solutions. Moreover, an automated Nearline solution is key to a central, sharable data repository, enabling many applications such as PACS, telemedicine and teleradiology, and information warehousing and data mining for research such as patient outcome analysis. Selecting the right solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, configuration architecture and flexibility, subsystem availability and reliability, security requirements, system cost, achievable benefits and cost savings, investment protection, strategic fit and more.This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on storage system throughput will be analyzed. The concept of automated migration of images from high performance, high cost storage devices to high capacity, low cost storage devices will be introduced as a viable way to minimize overall storage costs for an archive. The concept of access density will also be introduced and applied to the selection of the most cost effective archive solution.

  17. Solutions to the relativistic precession model

    NARCIS (Netherlands)

    Ingram, A.; Motta, S.

    2014-01-01

    The relativistic precession model (RPM) can be used to obtain a precise measurement of the mass and spin of a black hole when the appropriate set of quasi-periodic oscillations is detected in the power-density spectrum of an accreting black hole. However, in previous studies, the solution of the RPM

  18. Models for Experimental High Density Housing

    Science.gov (United States)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  19. Gap and density theorems

    CERN Document Server

    Levinson, N

    1940-01-01

    A typical gap theorem of the type discussed in the book deals with a set of exponential functions { \\{e^{{{i\\lambda}_n} x}\\} } on an interval of the real line and explores the conditions under which this set generates the entire L_2 space on this interval. A typical gap theorem deals with functions f on the real line such that many Fourier coefficients of f vanish. The main goal of this book is to investigate relations between density and gap theorems and to study various cases where these theorems hold. The author also shows that density- and gap-type theorems are related to various propertie

  20. Spatial Density Maps from a Debris Cloud

    Science.gov (United States)

    Healy, L.; Kindl, S.; Binz, C.

    2016-09-01

    A debris cloud from a fragmentation on orbit may be modeled by transformation of variables from the instantaneous velocity distribution at the fragmentation time to the spatial distribution at some elapsed time later. There are no Gaussian distributions assumed and the evolution map is quite nonlinear, being derived from the solution of the Lambert, two-point boundary value, problem and the state transition matrix for unperturbed propagation, so the traditional tools of analysis that assume these qualities fail dramatically. The transformation of variables technique does not suffer from any such assumptions, and unlike the Monte Carlo method, is not subject to sampling errors or approximations. Structures and features are evident in the density maps, and these structures show promise for simplified approximation of the density map. Most prominent of the structures is the well-known pinch point at the fragmentation location in inertial space. The anti-pinch line, or wedge, is also observed. Bands on the opposite side of the fragmentation are very noticeable, and their existence may be motivated from simple orbit dynamics. These bands make the anti-pinch line actually more of a set of anti-pinch line segments. By computing these density maps over time, the evolution may be studied. There is a density generator, a density band at roughly the same altitude as the pinch point, that cycles around the earth and appears a source of the bands, with newly created bands moving radially outward and diminishing in density. Although the initial velocity distribution affects the final spatial distribution, the Lambert solutions, which are the most time consuming to compute, need only be computed once. Therefore, different initial distributions may be changed and the results recomputed with relative speed. A comparison of the effects of initial distributions is shown in this paper.

  1. A New Approach of Designing Superalloys for Low Density

    Science.gov (United States)

    MacKay, Rebecca A.; Gabb, Timothy P.; Smialek, James L.; Nathal, Michael V.

    2010-01-01

    New low-density single-crystal (LDS) alloy, have bee. developed for turbine blade applications, which have the potential for significant improvements in the thrust-to-weight ratio over current production superalloys. An innovative alloying strategy was wed to achieve alloy density reductions, high-temperature creep resistance, microstructural stability, and cyclic oxidation resistance. The alloy design relies on molybdenum as a potent. lower-density solid-solution strengthener in the nickel-based superalloy. Low alloy density was also achieved with modest rhenium levels tmd the absence of tungsten. Microstructural, physical mechanical, and environmental testing demonstrated the feasibility of this new LDS superalloy design.

  2. A new approach of designing superalloys for low density

    Science.gov (United States)

    Mackay, R. A.; Gabb, T. P.; Smialek, J. L.; Nathal, M. V.

    2010-01-01

    New low-density single-crystal (IDS) alloys have been developed for turbine blade applications, which have the potential for significant improvements in the thrust-to-weight ratio over current production superalloys. An innovative alloying strategy was used to achieve alloy density reductions, high-temperature creep resistance, micro-structural stability, and cyclic oxidation resistance. The alloy design relies on molybdenum as a potent, lower-density solid-solution strengthener in the nickel-based superalloy. Low alloy density was also achieved with modest rhenium levels and the absence of tungsten. Microstructural, physical, mechanical, and environmental testing demonstrated the feasibility of this new IDS superalloy design.

  3. A Tryst With Density

    Indian Academy of Sciences (India)

    Walter Kohn transformed theoretical chemistry and solid statephysics with his development of density functional theory, forwhich he was awarded the Nobel Prize. This article tries toexplain, in simple terms, why this was an important advancein the field, and to describe precisely what it was that he (togetherwith his ...

  4. Density in Liquids.

    Science.gov (United States)

    Nesin, Gert; Barrow, Lloyd H.

    1984-01-01

    Describes a fourth-grade unit on density which introduces a concept useful in the study of chemistry and procedures appropriate to the chemistry laboratory. The hands-on activities, which use simple equipment and household substances, are at the level of thinking Piaget describes as concrete operational. (BC)

  5. Multiple density layered insulator

    Science.gov (United States)

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  6. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large...

  7. A Tryst With Density

    Indian Academy of Sciences (India)

    related to gender and science. Walter Kohn transformed theoretical chemistry and solid state physics with his development of density functional theory, for which he was awarded the Nobel Prize. This article tries to explain, in simple terms, why this was an important advance in the field, and to describe precisely what it was ...

  8. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Ivanova

    2017-01-01

    Full Text Available Low-density lipoprotein (LDL plays a key role in the development and progression of atherosclerosis and cardiovascular disease. LDL consists of several subclasses of particles with different sizes and densities, including large buoyant (lb and intermediate and small dense (sd LDLs. It has been well documented that sdLDL has a greater atherogenic potential than that of other LDL subfractions and that sdLDL cholesterol (sdLDL-C proportion is a better marker for prediction of cardiovascular disease than that of total LDL-C. Circulating sdLDL readily undergoes multiple atherogenic modifications in blood plasma, such as desialylation, glycation, and oxidation, that further increase its atherogenicity. Modified sdLDL is a potent inductor of inflammatory processes associated with cardiovascular disease. Several laboratory methods have been developed for separation of LDL subclasses, and the results obtained by different methods can not be directly compared in most cases. Recently, the development of homogeneous assays facilitated the LDL subfraction analysis making possible large clinical studies evaluating the significance of sdLDL in the development of cardiovascular disease. Further studies are needed to establish guidelines for sdLDL evaluation and correction in clinical practice.

  9. Three-dimensional structure of dilute pyroclastic density currents

    Science.gov (United States)

    Andrews, B. J.

    2013-12-01

    Unconfined experimental density currents dynamically similar to pyroclastic density currents (PDCs) suggest that cross-stream motions of the currents and air entrainment through currents' lateral margins strongly affects PDC behavior. Experiments are conducted within an air-filled tank 8.5 m long by 6.1 m wide by 2.6 m tall. Currents are generated by feeding heated powders down a chute into the tank at controlled rates to form dilute, particle-laden, turbulent gravity currents that are fed for 30 to 600 seconds. Powders include 5 μm aluminum oxide, 25 μm talc, 27 μm walnut, 76 μm glass beads and mixtures thereof. Experiments are scaled such that Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers, and thermal to kinetic energy densities are all in agreement with dilute PDCs; experiments have lower Reynolds numbers that natural currents, but the experiments are fully turbulent, thus the large scale structures should be similar. The experiments are illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps); this system provides synchronous observation of a vertical streamwise and cross-stream planes, and a horizontal plane. Ambient temperature currents tend to spread out radially from the source and have long run out distances, whereas warmer currents tend to focus along narrow sectors and have shorter run outs. In addition, when warm currents lift off to form buoyant plumes, lateral spreading ceases. The behavior of short duration currents are dominated by the current head; as eruption duration increases, current transport direction tends to oscillate back and forth (this is particularly true for ambient temperature currents). Turbulent structures in the horizontal plane show air entrainment and advection downstream. Eddies illuminated by the vertical cross-stream laser sheet often show vigorous mixing along the current margins

  10. A black hole solution to the cosmological monopole problem

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovic, Dejan [MCTP, Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120 (United States)]. E-mail: dejans@umich.edu; Freese, Katherine [MCTP, Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120 (United States)

    2005-01-27

    We propose a solution to the cosmological monopole problem: primordial black holes, produced in the early universe, can accrete magnetic monopoles before the relics dominate the energy density of the universe. These small black holes quickly evaporate and thereby convert most of the monopole energy density into radiation. We estimate the range of parameters for which this solution is possible: under very conservative assumptions we find that the black hole mass must be less than 10{sup 9} g.

  11. A black hole solution to the cosmological monopole problem

    Science.gov (United States)

    Stojkovic, Dejan; Freese, Katherine

    2005-01-01

    We propose a solution to the cosmological monopole problem: primordial black holes, produced in the early universe, can accrete magnetic monopoles before the relics dominate the energy density of the universe. These small black holes quickly evaporate and thereby convert most of the monopole energy density into radiation. We estimate the range of parameters for which this solution is possible: under very conservative assumptions we find that the black hole mass must be less than 109 g.

  12. Is Hartmann's the solution?

    National Research Council Canada - National Science Library

    White S.A; Goldhill D.R

    1997-01-01

    As Hartmann's solution is commonly used by anaesthetists, we surveyed a group of Part III FRCA candidates to establish their knowledge of its constituents and the purpose and metabolism of the lactate in solution...

  13. Reconsidering Schwarzschild's original solution

    OpenAIRE

    Antoci, S; Liebscher, D. -E.

    2001-01-01

    We analyse the Schwarzschild solution in the context of the historical development of its present use, and explain the invariant definition of a singular surface at the Schwarzschild's radius, that can be applied to the Kerr-Newman solution too.

  14. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    Science.gov (United States)

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package

  15. PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Aftanas, B.L.

    1996-04-30

    This Functional Design Criteria (FDC) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  16. Exact solutions for helical magnetohydrodynamic equilibria. II. Nonstatic and nonbarotropic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Villata, M. (Istituto di Fisica Generale dell' Universita, Via Pietro Giuria 1, I-10125 Torino (Italy)); Ferrari, A. (Osservatorio Astronomico di Torino, I-10025 Pino Torinese (Italy))

    1994-07-01

    In the framework of the analytical study of magnetohydrodynamic (MHD) equilibria with flow and nonuniform density, a general family of well-behaved exact solutions of the generalized Grad--Shafranov equation and of the whole set of time-independent MHD equations completed by the nonbarotropic ideal gas equation of state is obtained, both in helical and axial symmetry. The helical equilibrium solutions are suggested to be relevant to describe the helical morphology of some astrophysical jets.

  17. Multicapillary mixer of solutions.

    Science.gov (United States)

    Moskowitz, G W; Bowman, R L

    1966-07-22

    A mixer made from a bundle of glass tubules can mix two solutions within 30 microseconds, with a total-solution flow rate of 1.33 milliliters per second. One solution passes through the interstices of the bundle; the other moves through the lumens of the tubes.

  18. Quantal density functional theory

    CERN Document Server

    Sahni, Viraht

    2016-01-01

    This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...

  19. Airborne Crowd Density Estimation

    Science.gov (United States)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  20. Solutions to Organizational Paradox

    DEFF Research Database (Denmark)

    Li, Xin; Worm, Verner; Peihong, Xie

    Organizations face all kinds of paradoxical problems. There exist various solutions to organizational paradoxes. We develop a typology that lists nine possible logical approaches to understanding the relationship between paradoxical opposites, out of which we identify five types of solutions...... to organizational paradox. Four of the five solutions are explicitly associated with four prominent philosophies. We show the relevance of the five solutions to the real world by applying our scheme to understand different solutions to the generic strategy paradox. Finally, we address the question whether...

  1. Contingent kernel density estimation.

    Directory of Open Access Journals (Sweden)

    Scott Fortmann-Roe

    Full Text Available Kernel density estimation is a widely used method for estimating a distribution based on a sample of points drawn from that distribution. Generally, in practice some form of error contaminates the sample of observed points. Such error can be the result of imprecise measurements or observation bias. Often this error is negligible and may be disregarded in analysis. In cases where the error is non-negligible, estimation methods should be adjusted to reduce resulting bias. Several modifications of kernel density estimation have been developed to address specific forms of errors. One form of error that has not yet been addressed is the case where observations are nominally placed at the centers of areas from which the points are assumed to have been drawn, where these areas are of varying sizes. In this scenario, the bias arises because the size of the error can vary among points and some subset of points can be known to have smaller error than another subset or the form of the error may change among points. This paper proposes a "contingent kernel density estimation" technique to address this form of error. This new technique adjusts the standard kernel on a point-by-point basis in an adaptive response to changing structure and magnitude of error. In this paper, equations for our contingent kernel technique are derived, the technique is validated using numerical simulations, and an example using the geographic locations of social networking users is worked to demonstrate the utility of the method.

  2. Density measures and additive property

    OpenAIRE

    Kunisada, Ryoichi

    2015-01-01

    We deal with finitely additive measures defined on all subsets of natural numbers which extend the asymptotic density (density measures). We consider a class of density measures which are constructed from free ultrafilters on natural numbers and study a certain additivity property of such density measures.

  3. Toward a Redefinition of Density

    Science.gov (United States)

    Rapoport, Amos

    1975-01-01

    This paper suggests that in addition to the recent work indicating that crowding is a subjective phenomenon, an adequate definition of density must also include a subjective component since density is a complex phenomenon in itself. Included is a discussion of both physical density and perceived density. (Author/MA)

  4. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  5. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency...

  6. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  7. Density Distribution Sunflower Plots

    Directory of Open Access Journals (Sweden)

    William D. Dupont

    2003-01-01

    Full Text Available Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventional scatter plot. Each bin with from l to d observations contains a light sunflower. Other bins contain a dark sunflower. In a light sunflower each petal represents one observation. In a dark sunflower, each petal represents k observations. (A dark sunflower with p petals represents between /2-pk k and /2+pk k observations. The user can control the sizes and colors of the sunflowers. By selecting appropriate colors and sizes for the light and dark sunflowers, plots can be obtained that give both the overall sense of the data density distribution as well as the number of data points in any given region. The use of this graphic is illustrated with data from the Framingham Heart Study. A documented Stata program, called sunflower, is available to draw these graphs. It can be downloaded from the Statistical Software Components archive at http://ideas.repec.org/c/boc/bocode/s430201.html . (Journal of Statistical Software 2003; 8 (3: 1-5. Posted at http://www.jstatsoft.org/index.php?vol=8 .

  8. Density functional theory: Foundations reviewed

    Energy Technology Data Exchange (ETDEWEB)

    Kryachko, Eugene S., E-mail: eugene.kryachko@ulg.ac.be [Bogolyubov Institute for Theoretical Physics, Kiev, 03680 (Ukraine); Ludeña, Eduardo V., E-mail: popluabe@yahoo.es [Centro de Química, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Prometheus Program, Senescyt (Ecuador); Grupo Ecuatoriano para el Estudio Experimental y Teórico de Nanosistemas, GETNano, USFQ, N104-E, Quito (Ecuador); Escuela Politécnica Superior del Litoral, ESPOL, Guayaquil (Ecuador)

    2014-11-10

    Guided by the above motto (quotation), we review a broad range of issues lying at the foundations of Density Functional Theory, DFT, a theory which is currently omnipresent in our everyday computational study of atoms and molecules, solids and nano-materials, and which lies at the heart of modern many-body computational technologies. The key goal is to demonstrate that there are definitely the ways to improve DFT. We start by considering DFT in the larger context provided by reduced density matrix theory (RDMT) and natural orbital functional theory (NOFT), and examine the implications that N-representability conditions on the second-order reduced density matrix (2-RDM) have not only on RDMT and NOFT but, also, by extension, on the functionals of DFT. This examination is timely in view of the fact that necessary and sufficient N-representability conditions on the 2-RDM have recently been attained. In the second place, we review some problems appearing in the original formulation of the first Hohenberg–Kohn theorem which is still a subject of some controversy. In this vein we recall Lieb’s comment on this proof and the extension to this proof given by Pino et al. (2009), and in this context examine the conditions that must be met in order that the one-to-one correspondence between ground-state densities and external potentials remains valid for finite subspaces (namely, the subspaces where all Kohn–Sham solutions are obtained in practical applications). We also consider the issue of whether the Kohn–Sham equations can be derived from basic principles or whether they are postulated. We examine this problem in relation to ab initio DFT. The possibility of postulating arbitrary Kohn–Sham-type equations, where the effective potential is by definition some arbitrary mixture of local and non-local terms, is discussed. We also deal with the issue of whether there exists a universal functional, or whether one should advocate instead the construction of problem

  9. Towards a kinetic energy density functional for the water molecule

    Science.gov (United States)

    Akin-Ojo, Omololu; Shittu, Doyin

    Development of an accurate kinetic energy kinetic energy density functional (KEDF) is a holy grail. In this work, local KEDFS are parameterized for the water molecule in order to reproduce Kohn-Sham density functional theory (KS-DFT) results. Energies, forces and dipole moments from these KEDFs are presented. Problems with the convergence of the self-consistent-field (SCF) calculations are discussed together with possible solutions. and: Theoretical and Applied Physics Dept. African Univ. of Science and Technology (AUST) Abuja, Nigeria.

  10. Pairing effects in low density domain of nuclear matter

    OpenAIRE

    Isayev, A. A.; Bastrukov, S. I.; Yang, J.

    2004-01-01

    Using equations, governing np pairing correlations in S=1, T=0 pairing channel (PRC 63 (2001) 021304(R)), it is shown that at low densities equations for the energy gap in the spectrum of quasiparticles and chemical potentials of protons and neutrons allow solutions with negative chemical potential. This corresponds to appearance of Bose--Einstein condensate (BEC) of deuterons in low density region of nuclear matter.

  11. Calcite precipitation from aqueous solution: transformation from vaterite and role of solution stoichiometry

    NARCIS (Netherlands)

    Nehrke, G.

    2007-01-01

    The morphology of vaterite precipitated by bubbling CO2 through a CaCl2 solution is framboidal aggregates. It is not possible, even when using the identical experimental setup and conditions, to reproduce aggregates having identical morphology. The density of the aggregates and crystallite size can

  12. Gluon density in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  13. On holographic entanglement density

    Science.gov (United States)

    Gushterov, Nikola I.; O'Bannon, Andy; Rodgers, Ronnie

    2017-10-01

    We use holographic duality to study the entanglement entropy (EE) of Conformal Field Theories (CFTs) in various spacetime dimensions d, in the presence of various deformations: a relevant Lorentz scalar operator with constant source, a temperature T , a chemical potential μ, a marginal Lorentz scalar operator with source linear in a spatial coordinate, and a circle-compactified spatial direction. We consider EE between a strip or sphere sub-region and the rest of the system, and define the "entanglement density" (ED) as the change in EE due to the deformation, divided by the sub-region's volume. Using the deformed CFTs above, we show how the ED's dependence on the strip width or sphere radius, L, is useful for characterizing states of matter. For example, the ED's small- L behavior is determined either by the dimension of the perturbing operator or by the first law of EE. For Lorentz-invariant renormalization group (RG) flows between CFTs, the "area theorem" states that the coefficient of the EE's area law term must be larger in the UV than in the IR. In these cases the ED must therefore approach zero from below as L→∞. However, when Lorentz symmetry is broken and the IR fixed point has different scaling from the UV, we find that the ED often approaches the thermal entropy density from above, indicating area theorem violation.

  14. Solution phase combinatorial chemistry.

    Science.gov (United States)

    Merritt, A T

    1998-06-01

    Combinatorial chemistry and parallel array synthesis techniques are now used extensively in the drug discovery process. Although published literature has been dominated by solid phase chemistry approaches, the use of solution phase techniques has also been widely explored. This review considers the advantages and disadvantages of choosing solution phase approaches in the various stages of drug discovery and optimisation, and assesses the practical issues related to these approaches. The uses of standard solution chemistry, the related liquid phase approach, and of supported materials to enhance solution phase chemistry are all illustrated by a comprehensive review of the published literature over the past three years.

  15. Synthesis of solid solutions of perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.; Plaude, A.V.

    1986-03-01

    The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoretical value and showing zero apparent porosity and water absorption.

  16. Holographic quark-gluon plasmas at finite quark density

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, F. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Sesto Fiorentino (Firenze), Pisa (Italy); INFN, Sezione di Torino (Italy); Cotrone, A. [Dipartimento di Fisica, Universita di Torino (Italy); Mas, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela (Spain); Instituto Galego de Fisica de Altas Enerxias (IGFAE), Santiago de Compostela (Spain); Tarrio, J. [Institute for Theoretical Physics and Spinoza Institute, Universiteit Utrecht, 3584 CE, Utrecht (Netherlands); Mayerson, D. [Institute for Theoretical Physics, University of Amsterdam (Netherlands)

    2012-07-15

    Gravity solutions holographically dual to strongly coupled quark-gluon plasmas with non-zero quark density are reviewed. They are motivated by the urgency of finding novel tools to explore the phase diagram of QCD-like theories at finite chemical potential. After presenting the solutions and their regime of validity, some of their physical properties are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Hadronic density of states from string theory.

    Science.gov (United States)

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  18. Gauge invariant gluon spin operator for spinless nonlinear wave solutions

    Science.gov (United States)

    Lee, Bum-Hoon; Kim, Youngman; Pak, D. G.; Tsukioka, Takuya; Zhang, P. M.

    2017-04-01

    We consider nonlinear wave type solutions with intrinsic mass scale parameter and zero spin in a pure SU(2) quantum chromodynamics (QCD). A new stationary solution which can be treated as a system of static Wu-Yang monopole dressed in off-diagonal gluon field is proposed. A remarkable feature of such a solution is that it possesses a finite energy density everywhere. All considered nonlinear wave type solutions have common features: presence of the mass scale parameter, nonvanishing projection of the color fields along the propagation direction and zero spin. The last property requires revision of the gauge invariant definition of the spin density operator which is supposed to produce spin one states for the massless vector gluon field. We construct a gauge invariant definition of the classical gluon spin density operator which is unique and Lorentz frame independent.

  19. Can host density attenuate parasitism?

    National Research Council Canada - National Science Library

    Magalhães, L; Freitas, R; Dairain, A; De Montaudouin, X

    .... Considering that these parasites infect cockles through filtration activity, our first hypothesis was that high host density will have a dilution effect so that infection intensity decreases with host density...

  20. Solute-solute interactions in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debashis; Murray, Ryan; Collins, Gary S., E-mail: collins@wsu.edu [Washington State University, Department of Physics and Astronomy (United States); Zacate, Matthew O. [Northern Kentucky University, Department of Physics and Geology (United States)

    2017-11-15

    Experiments were carried out on highly ordered GdAl{sub 2} samples containing extremely dilute mole fractions of{sup 111}In/Cd probe-atom solutes (about 10{sup −11}), intrinsic antisite atoms Al{sub Gd} having mole fractions of order 0-10{sup −2}, and doped with Ag solutes at mole fractions of order 10{sup −2}. Three types of defect interactions were investigated. (1) Quadrupole interactions caused by Ag-solute atoms neighboring{sup 111}In/Cd solute probe atoms were detected using the method of perturbed angular correlation of gamma rays (PAC). Three complexes of pairs of In-probes and Ag-solutes occupying neighboring positions on Gd- and Al-sublattices were identified by comparing site fractions in Gd-poor and Gd-rich GdAl{sub 2}(Ag) samples and from the symmetry of the quadrupole interactions. Interaction enthalpies between solute-atom pairs were determined from temperature dependences of observed site fractions. Repulsive interactions were observed for close-neighbor complexes In{sub Gd}+Ag{sub Gd} and In{sub Gd}+Ag{sub Al} pairs, whereas a slightly attractive interaction was observed for In{sub Al}+Ag{sub Al}. Interaction enthalpies were all small, in the range ±0.15 eV. (2) Quadrupole interactions caused by intrinsic antisite atoms Al{sub Gd} neighboring In{sub Gd} probes were also detected and site fractions measured as a function of temperature, as in previous work on samples not doped with Ag-solutes [Temperature- and composition-driven changes in site occupation of solutes in Gd{sub 1+3x}Al{sub 2−3x}, Zacate and Collins (Phys. Rev. B69, 174202 (1))]. However, the effective binding enthalpy between In{sub Gd} probe and Al{sub Gd} antisite was found to change sign from -0.12 eV (attractive interaction) in undoped samples to + 0.24 eV (repulsive) in Ag-doped samples. This may be attributed to an attractive interaction between Al{sub Gd} antisite atoms and Ag-dopants that competes with the attractive interaction between In{sub Gd} and Al{sub Gd

  1. The procedural egalitarian solution

    NARCIS (Netherlands)

    Dietzenbacher, Bas; Borm, Peter; Hendrickx, Ruud

    2017-01-01

    In this paper we introduce and analyze the procedural egalitarian solution for transferable utility games. This new concept is based on the result of a coalitional bargaining procedure in which egalitarian considerations play a central role. The procedural egalitarian solution is the first

  2. The Procedural Egalitarian Solution

    NARCIS (Netherlands)

    Dietzenbacher, Bas; Borm, Peter; Hendrickx, Ruud

    2016-01-01

    In this paper we introduce and analyze the procedural egalitarian solution for transferable utility games. This new concept is based on the result of a coalitional bargaining procedure in which egalitarian considerations play a central role. The procedural egalitarian solution is the first

  3. On Solutions of

    Directory of Open Access Journals (Sweden)

    Schaefer Philip W

    2002-01-01

    Full Text Available Rotationally symmetric solutions are derived for some nonlinear equations of the form in the title in terms of elementary functions. Under suitable assumptions, the nonexistence of entire solutions is also proved for the inequality in the title as well as some radial upper bounds are obtained. These results are the consequence of an appropriate differential inequality.

  4. Cromolyn Sodium Nasal Solution

    Science.gov (United States)

    Cromolyn comes as a solution to use with a special nasal applicator. It usually is inhaled three to six times a day to prevent allergy ... first time, read the instructions provided with the solution. Ask your doctor, pharmacist, or respiratory therapist to ...

  5. Lattice model for water-solute mixtures.

    Science.gov (United States)

    Furlan, A P; Almarza, N G; Barbosa, M C

    2016-10-14

    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.

  6. Is Hartmann's the solution?

    Science.gov (United States)

    White, S A; Goldhill, D R

    1997-05-01

    As Hartmann's solution is commonly used by anaesthetists, we surveyed a group of Part III FRCA candidates to establish their knowledge of its constituents and the purpose and metabolism of the lactate in solution. Of the 82 candidates surveyed only three (4%) accurately recorded the electrolytes and their concentrations in Hartmann's solution. Lactate was stated to be a source of bicarbonate by 52 (63%) and a source of glucose by 17 (21%). The descriptions of lactate metabolism were largely imprecise, none was complete and 24 (29%) of candidates offered no explanation. The constituents of Hartmann's solution and their concentrations are designed to match those of plasma, reducing ion and fluid shifts postinfusion. The lactate in Hartmann's solution is metabolised by both oxidation and gluconeogenesis, predominantly in the liver, and bicarbonate is generated by both processes over 1-2 h.

  7. Density-orbital embedding theory

    NARCIS (Netherlands)

    Visscher, L.; Gritsenko, O.

    2010-01-01

    In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total

  8. Density of organic thin films in organic photovoltaics

    Science.gov (United States)

    Zhao, Cindy X.; Xiao, Steven; Xu, Gu

    2015-07-01

    A practical parameter, the volume density of organic thin films, found to affect the electronic properties and in turn the performance of organic photovoltaics (OPVs), is investigated in order to benefit the polymer synthesis and thin film preparation in OPVs. To establish the correlation between film density and device performance, the density of organic thin films with various treatments was obtained, by two-dimensional X-ray diffraction measurement using the density mapping with respect to the crystallinity of thin films. Our results suggest that the OPV of higher performance has a denser photoactive layer, which may hopefully provide a solution to the question of whether the film density matters in organic electronics, and help to benefit the OPV industry in terms of better polymer design, standardized production, and quality control with less expenditure.

  9. Buoyant Helical Twin-Axial Wire Antenna

    Science.gov (United States)

    2016-11-15

    Wire Antenna” by the inventor, David A. Tonn. STATEMENT OF GOVERNMENT INTEREST [0002] The invention described herein may be manufactured and used by...BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention is directed to a linear antenna for dual frequencies and a method for...curves and hinders the submarine’s operations when using the antenna. SUMMARY OF THE INVENTION [0006] It is a first object of the present

  10. Professional Hadoop solutions

    CERN Document Server

    Lublinsky, Boris; Yakubovich, Alexey

    2013-01-01

    The go-to guidebook for deploying Big Data solutions with Hadoop Today's enterprise architects need to understand how the Hadoop frameworks and APIs fit together, and how they can be integrated to deliver real-world solutions. This book is a practical, detailed guide to building and implementing those solutions, with code-level instruction in the popular Wrox tradition. It covers storing data with HDFS and Hbase, processing data with MapReduce, and automating data processing with Oozie. Hadoop security, running Hadoop with Amazon Web Services, best practices, and automating Hadoop processes i

  11. Density sensitive hashing.

    Science.gov (United States)

    Jin, Zhongming; Li, Cheng; Lin, Yue; Cai, Deng

    2014-08-01

    Nearest neighbor search is a fundamental problem in various research fields like machine learning, data mining and pattern recognition. Recently, hashing-based approaches, for example, locality sensitive hashing (LSH), are proved to be effective for scalable high dimensional nearest neighbor search. Many hashing algorithms found their theoretic root in random projection. Since these algorithms generate the hash tables (projections) randomly, a large number of hash tables (i.e., long codewords) are required in order to achieve both high precision and recall. To address this limitation, we propose a novel hashing algorithm called density sensitive hashing (DSH) in this paper. DSH can be regarded as an extension of LSH. By exploring the geometric structure of the data, DSH avoids the purely random projections selection and uses those projective functions which best agree with the distribution of the data. Extensive experimental results on real-world data sets have shown that the proposed method achieves better performance compared to the state-of-the-art hashing approaches.

  12. Patterned magnetic thin films for ultra high density recording

    NARCIS (Netherlands)

    Lodder, J.C.; Haast, M.A.M.; Abelmann, Leon; Hadjipanayis, G.C.

    2001-01-01

    The areal bit density of magnetic disk recording has increased since 1990 60% per year and even in the last years 100%. Extrapolation of these rates leads to recording parameters not likely to be achieved without changes in the present way of storing hard disk data. One of the possible solutions is

  13. Methods for preparing patterned media for high-density recording

    NARCIS (Netherlands)

    Lodder, J.C.

    2004-01-01

    The areal bit density of magnetic disk recording has made a colossal increase over the last decades. Extrapolation leads to recording parameters not likely to be achieved without changes in the present way of storing magnetic data. One of the potential solutions is the use of patterned media, which

  14. Density Perturbations in the Brans-Dicke Theory

    OpenAIRE

    Baptista, J. P.; Fabris, J. C.; Goncalves, S. V. B.

    1996-01-01

    We analyse the fate of density perturbation in the Brans-Dicke Theory, giving a general classification of the solutions of the perturbed equations when the scale factor of the background evolves as a power law. We study with details the cases of vacuum, inflation, radiation and incoherent matter. We find, for the a negative Brans-Dicke parameter, a significant amplification of perturbations.

  15. Static spherically symmetric solutions in f(G) gravity

    Science.gov (United States)

    Sharif, M.; Fatima, H. Ismat

    2016-05-01

    We investigate interior solutions for static spherically symmetric metric in the background of f(G) gravity. We use the technique of conformal Killing motions to solve the field equations with both isotropic and anisotropic matter distributions. These solutions are then used to obtain density, radial and tangential pressures for power-law f(G) model. For anisotropic case, we assume a linear equation-of-state and investigate solutions for the equation-of-state parameter ω = -1.5. We check physical validity of the solutions through energy conditions and also examine its stability. Finally, we study equilibrium configuration using Tolman-Oppenheimer-Volkoff equation.

  16. High density lipoproteins, 1978 -- an overview.

    Science.gov (United States)

    Levy, R I

    1978-12-01

    High density lipoproteins (HDL) have come of age. For years it has been fashionable to study HDL as an approach to understanding lipoprotein structure and lipid binding. Available in abundant amounts from normal human plasma, readily separable into its individual lipid and soluble apolipoprotein components, HDL has provided much information for lipoprotein model building. Suddenly it has been thrust center stage clinically by a host of convincing epidemiologic studies that clearly establishes an inverse relationship between HDL levels and coronary vascular events. Biochemists, clinicians, cardiologists and epidemiologists are simultaneously focusing attention on HDL. Familial High Density Lipoprotein Deficiency (Tangier Disease) has been well described but is poorly understood as a clinical syndrome complex. We have suddenly become aware of how little we understand about HDL's normal ultracentrifugal and apoprotein heterogeneity, about its functional role(s) or the determinant(s) of its concentration in plasma. The relative contributions of the two sites of HDL origin, the liver and intestine, are yet to be determined as are the site(s) of degradation. Awareness of a problem and its importance is the first step toward the solution(s) of the problem.

  17. Convergent Aeronautics Solutions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Convergent Aeronautics Solutions (CAS) Project uses short-duration activities to establish early-stage concept and technology feasibility for high-potential...

  18. ERP SOLUTIONS FOR SMEs

    Directory of Open Access Journals (Sweden)

    TUTUNEA MIHAELA FILOFTEIA

    2012-09-01

    Full Text Available The integration of activities, the business processes as well as their optimization, bring the perspective of profitable growth and create significant and competitive advantages in any company. The adoption of some ERP integrated software solutions, from SMEs’ perspective, must be considered as a very important management decision in medium and long term. ERP solutions, along with the transparent and optimized management of all internal processes, also offer an intra and inter companies collaborative platform, which allows a rapid expansion of activities towards e- business and mobile-business environments. This material introduces ERP solutions for SMEs from commercial offer and open source perspective; the results of comparative analysis of the solutions on the specific market, can be an useful aid to the management of the companies, in making the decision to integrate business processes, using ERP as a support.

  19. The Conductivity of Solutions.

    Science.gov (United States)

    Rayner-Canham, Geoff

    1993-01-01

    Presents historical background and modern explanations for the popular demonstration of showing conductivity of solutions through the insertion of a light-bulb conductivity tester into deionized water and water with salt in it. (PR)

  20. Regularized Regression and Density Estimation based on Optimal Transport

    KAUST Repository

    Burger, M.

    2012-03-11

    The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).

  1. Validation of the reconstituted high-density lipoprotein (rHDL) drug delivery platform using dilauryl fluorescein (DLF).

    Science.gov (United States)

    McConathy, Walter J; Paranjape, Sulabha; Mooberry, Linda; Buttreddy, Sabitha; Nair, Maya; Lacko, Andras G

    2011-04-01

    Dilauryl fluorescein (DLF) is a lipid soluble molecule that becomes fluorescent when lauric acid is removed by hydrolysis The purpose of these studies was to evaluate DLF as a potential probe for the function of reconstituted high-density lipoproteins (rHDL) as hydrophobic drug transport vehicles. The DLF containing rHDL nanoparticles were characterized regarding their physical/chemical properties, including molecular diameter, molecular weight, chemical composition, and buoyant density. We investigated the uptake of DLF from rHDL in cells that overexpress the scavenger receptor (SR-B1), known to facilitate the selective cellular uptake of cholesteryl esters from HDL. These studies show that DLF can be incorporated into rHDL and redistributed in the plasma compartment. In addition, these studies demonstrated an enhanced uptake and hydrolysis of DLF from rHDL by cells that overexpress the SR-B1 receptor, suggesting the involvement of a receptor mediated mechanism. The incorporation of DLF into the rHDL nanoparticles appear to protect against hydrolysis in the systemic circulation based on the lower rate of rHDL/DLF hydrolysis compared with the free DLF during incubation with human plasma. DLF may thus be used as a probe to track the movement and metabolism of HDL core constituents, including cancer chemotherapeutic agents.

  2. A molecular density functional theory to study solvation in water

    CERN Document Server

    Jeanmairet, Guillaume

    2014-01-01

    A classical density functional theory is applied to study solvation of solutes in water. An approx- imate form of the excess functional is proposed for water. This functional requires the knowledge of pure solvent direct correlation functions. Those functions can be computed by using molecular simulations such as molecular dynamic or Monte Carlo. It is also possible to use functions that have been determined experimentally. The functional minimization gives access to the solvation free energy and to the equilibrium solvent density. Some correction to the functional are also proposed to get the proper tetrahedral order of solvent molecules around a charged solute and to reproduce the correct long range hydrophobic behavior of big apolar solutes. To proceed the numerical minimization of the functional, the theory has been discretized on two tridimensional grids, one for the space coordinates, the other for the angular coordinates, in a functional minimization code written in modern Fortran, mdft. This program i...

  3. Passive House Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Strom, I.; Joosten, L.; Boonstra, C. [DHV Sustainability Consultants, Eindhoiven (Netherlands)

    2006-05-15

    PEP stands for 'Promotion of European Passive Houses' and is a consortium of European partners, supported by the European Commission, Directorate General for Energy and Transport. In this working paper an overview is given of Passive House solutions. An inventory has been made of Passive House solutions for new build residences applied in each country. Based on this, the most common basic solutions have been identified and described in further detail, including the extent to which solutions are applied in common and best practice and expected barriers for the implementation in each country. An inventory per country is included in the appendix. The analysis of Passive House solutions in partner countries shows high priority with regard to the performance of the thermal envelope, such as high insulation of walls, roofs, floors and windows/ doors, thermal bridge-free construction and air tightness. Due to the required air tightness, special attention must be paid to indoor air quality through proper ventilation. Finally, efficient ((semi-)solar) heating systems for combined space and DHW heating still require a significant amount of attention in most partner countries. Other basic Passive House solutions show a smaller discrepancy with common practice and fewer barriers have been encountered in partner countries. In the next section, the general barriers in partner countries have been inventoried. For each type of barrier a suggested approach has been given. Most frequently encountered barriers in partner countries are: limited know-how; limited contractor skills; and acceptation of Passive Houses in the market. Based on the suggested approaches to overcoming barriers, this means that a great deal of attention must be paid to providing practical information and solutions to building professionals, providing practical training to installers and contractors and communication about the Passive House concept to the market.

  4. Effects of shelterbelt on soil bulk density, particle density, total ...

    African Journals Online (AJOL)

    The effect of shelterbelt at measurement position (60,120 and 180) on bulk density, particle density, total porosity and moisture contents of semi-arid soils in the extreme part of northwestern, Nigeria was studied. The effect of shelterbelt on the three measurement positions was compared with the unsheltered area. Changes ...

  5. Analytical solutions for Tokamak equilibria with reversed toroidal current

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Caroline G. L.; Roberto, M.; Braga, F. L. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo 12228-900 (Brazil); Caldas, I. L. [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil)

    2011-08-15

    In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile.

  6. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles

    Science.gov (United States)

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.

  7. Mammography density estimation with automated volumetic breast density measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Su Yeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung [Dept. of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-06-15

    To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p 0.001 to 0.015). There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density.

  8. A Decentralized Control Strategy for High Density Material Flow Systems with Automated Guided Vehicles

    OpenAIRE

    Schwab, Melanie

    2015-01-01

    This work presents a universal decentralized control strategy for grid-based high-density material flow systems with automated guided vehicles and gives insights into the system behavior as well as the solution quality.

  9. SOME UNUSUAL SOLUTIONS FOR EUROPEAN NETWORKS

    Directory of Open Access Journals (Sweden)

    Vernescu V

    2012-03-01

    Full Text Available Authors present several non-conventional solutions unused in Europe which are, however, frequently adopted in some medium (M and low (L voltages (V networks from North-American and Australian countries, especially in low density areas of consumption in rural and urban distribution. The proposed solutions may assure diversified supply possibilities in our middle and South–Eastern regions, as regards modernizing and upgrading the distribution networks. The solutions try to propose to adapt our European practice to the North-American experience, aiming at developing more flexible, cheaper and safer supply of the consumers, both at MV and at LV networks. Several original solutions promoted in Romanian networks and their peculiarities are also described. The paper presents distribution schemes at medium voltage in connection with low voltage supply in different condition of neutral treatment at MV or LV. It also shows the measures to be adopted in order to diminish the investment expenses in low voltage at the supplied consumers. The technical condition of co-existence of OHEL at MV and LV on the same poles, without jeopardizing the LV equipment, is necessary. Among the solutions proposed, the authors also describe the unconventional one, consisting in the supply of isolated monophase consumer at MV by ground return and also the conditions necessary for sure and safe operation of this particularly connection. Finally, there are shown some conclusions about the necessity to assure imposed environmental conditions.

  10. Low-density lipoprotein particle size in hepatic steatosis and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Kim Dal-Sik

    2010-03-01

    Full Text Available Abstract Background Hepatic steatosis (HS, the most frequent liver disorder, was reported to be an independent predictor of cardiovascular disease. HS, if combined with the metabolic syndrome (MetS, might have a synergistic effect on low-density lipoprotein (LDL particle size. Methods Carotid intima-media thickness (IMT and plaque formation, and HS were diagnosed ultrasonographically, and the MetS was diagnosed using the ATP III criteria in 274 healthy workers (mean age ± SD, 43.5 ± 7.1 yrs. LDL particle size was measured with density gradient ultracentrifugation, and subfractions were classified as large, buoyant LDL I (27.2~28.5 nm and small, dense LDL III (24.2~25.5. All participants were grouped into three categories: control, subjects with HS alone and those with both HS and the MetS. Results The subjects with HS alone were 84 (30.7%, whereas those with HS and the MetS were 46 (16.8%. LDL peak particle sizes showed significant negative correlations with carotid mean IMTs. LDL peak particle size and LDL I (% decreased significantly in the HS, showing the lowest values in the subjects with both HS and the MetS, and their association was independent, even adjusted for potential confounders. LDL III also showed independent associations across the groups. Conclusion HS alone was more prevalent than HS combined with the MetS in general population. For the patients with HS alone, LDL particle size and carotid atherosclerosis were found to fall in the middle of the control and those with both HS and the MetS.

  11. Deconstructing graphite: graphenide solutions.

    Science.gov (United States)

    Pénicaud, Alain; Drummond, Carlos

    2013-01-15

    Growing interest in graphene over past few years has prompted researchers to find new routes for producing this material other than mechanical exfoliation or growth from silicon carbide. Chemical vapor deposition on metallic substrates now allows researchers to produce continuous graphene films over large areas. In parallel, researchers will need liquid, large scale, formulations of graphene to produce functional graphene materials that take advantage of graphene's mechanical, electrical, and barrier properties. In this Account, we describe methods for creating graphene solutions from graphite. Graphite provides a cheap source of carbon, but graphite is insoluble. With extensive sonication, it can be dispersed in organic solvents or water with adequate additives. Nevertheless, this process usually creates cracks and defects in the graphite. On the other hand, graphite intercalation compounds (GICs) provide a means to dissolve rather than disperse graphite. GICS can be obtained through the reaction of alkali metals with graphite. These compounds are a source of graphenide salts and also serve as an excellent electronic model of graphene due to the decoupling between graphene layers. The graphenide macroions, negatively charged graphene sheets, form supple two-dimensional polyelectrolytes that spontaneously dissolve in some organic solvents. The entropic gain from the dissolution of counterions and the increased degrees of freedom of graphene in solution drives this process. Notably, we can obtain graphenide solutions in easily processable solvents with low boiling points such as tetrahydrofuran or cyclopentylmethylether. We performed a statistical analysis of high resolution transmission electronic micrographs of graphene sheets deposited on grids from GICs solution to show that the dissolved material has been fully exfoliated. The thickness distribution peaks with single layers and includes a few double- or triple-layer objects. Light scattering analysis of the

  12. Microsoft big data solutions

    CERN Document Server

    Jorgensen, Adam; Welch, John; Clark, Dan; Price, Christopher; Mitchell, Brian

    2014-01-01

    Tap the power of Big Data with Microsoft technologies Big Data is here, and Microsoft's new Big Data platform is a valuable tool to help your company get the very most out of it. This timely book shows you how to use HDInsight along with HortonWorks Data Platform for Windows to store, manage, analyze, and share Big Data throughout the enterprise. Focusing primarily on Microsoft and HortonWorks technologies but also covering open source tools, Microsoft Big Data Solutions explains best practices, covers on-premises and cloud-based solutions, and features valuable case studies. Best of all,

  13. Calculus problems and solutions

    CERN Document Server

    Ginzburg, Abraham

    2011-01-01

    Ideal for self-instruction as well as for classroom use, this text helps students improve their understanding and problem-solving skills in analysis, analytic geometry, and higher algebra. More than 1,200 problems appear in the text, with concise explanations of the basic notions and theorems to be used in their solution. Many are followed by complete answers; solutions for the others appear at the end of the book. Topics include sequences, functions of a single variable, limit of a function, differential calculus for functions of a single variable, fundamental theorems and applications of dif

  14. All Road Density (18km)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Density (km / km^2) of all roads in the western United States. Dataset was developed to generalize the 2000 US Census TIGER/Line Roads layer to a density within 18km...

  15. Population Density and Group Size

    Science.gov (United States)

    Tucker, James; Friedman, S. Thomas

    1972-01-01

    This study looks at the relationship between the size of the small interacting group (in numbers of persons) and its environment; in this case, the density of its immediate population. Results indicated a significant inverse relationship between population density and the size of small interacting groups. (Author)

  16. The Density of Sustainable Settlements

    DEFF Research Database (Denmark)

    Lauring, Michael; Silva, Victor; Jensen, Ole B.

    2010-01-01

    This paper is the initial result of a cross-disciplinary attempt to encircle an answer to the question of optimal densities of sustainable settlements. Urban density is an important component in the framework of sustainable development and influences not only the character and design of cities...

  17. Space, Density and Urban Form

    NARCIS (Netherlands)

    Berghauser Pont, M.Y.; Haupt, P.A.

    2009-01-01

    The concentration of humans – in some cases judged as too high, in others not high enough – and the problems connected to this, have resulted in discussions on density. Prior to the 20th century, density in European cities was merely an outcome of complex circumstances. During the second half of the

  18. Glassiness and Heterogeneous Dynamics in Dense Solutions of Ring Polymers

    Science.gov (United States)

    Michieletto, Davide; Nahali, Negar; Rosa, Angelo

    2017-11-01

    Understanding how topological constraints affect the dynamics of polymers in solution is at the basis of any polymer theory and it is particularly needed for melts of rings. These polymers fold as crumpled and space-filling objects and, yet, they display a large number of topological constraints. To understand their role, here we systematically probe the response of solutions of rings at various densities to "random pinning" perturbations. We show that these perturbations trigger non-Gaussian and heterogeneous dynamics, eventually leading to nonergodic and glassy behavior. We then derive universal scaling relations for the values of solution density and polymer length marking the onset of vitrification in unperturbed solutions. Finally, we directly connect the heterogeneous dynamics of the rings with their spatial organization and mutual interpenetration. Our results suggest that deviations from the typical behavior observed in systems of linear polymers may originate from architecture-specific (threading) topological constraints.

  19. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  20. Gravity Anomaly of Polyhedral Bodies Having a Polynomial Density Contrast

    Science.gov (United States)

    D'Urso, M. G.; Trotta, S.

    2017-07-01

    We analytically evaluate the gravity anomaly associated with a polyhedral body having an arbitrary geometrical shape and a polynomial density contrast in both the horizontal and vertical directions. The gravity anomaly is evaluated at an arbitrary point that does not necessarily coincide with the origin of the reference frame in which the density function is assigned. Density contrast is assumed to be a third-order polynomial as a maximum but the general approach exploited in the paper can be easily extended to higher-order polynomial functions. Invoking recent results of potential theory, the solution derived in the paper is shown to be singularity-free and is expressed as a sum of algebraic quantities that only depend upon the 3D coordinates of the polyhedron vertices and upon the polynomial density function. The accuracy, robustness and effectiveness of the proposed approach are illustrated by numerical comparisons with examples derived from the existing literature.

  1. QCD evolution of the gluon density in a nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Ayala Filho, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica]|[Universidade Federal de Pelotas, RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B. Gay [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Petersburg Nuclear Physics Inst., St. Petersburg (Russian Federation). Theory Dept.

    1996-04-01

    The Glauber approach to the gluon density in a nucleus, suggested by A. Mueller, is developed and studied in detail. Using the GRV parameterization for the gluon density in a nucleon, the value as well as energy and Q{sup 2} dependence of the gluon density in a nucleus is calculated. It is shown that the shadowing corrections are under theoretical control and are essential in the region of small x. The change crucially the value of the gluon density as well as the value of the anomalous dimension of the nuclear structure function, unlike of the nucleon one. The systematic theoretical way to treat the correction to the Glauber approach is developed and a new evolution equation is derived and solved. It is shown that the solution of the new evolution equation can provide a self consistent matching of `soft` high energy phenomenology with `hard` QCD physics. (author). 51 refs., 25 figs., 1 tab.

  2. Polymer solution phase separation: Microgravity simulation

    Science.gov (United States)

    Cerny, Lawrence C.; Sutter, James K.

    1989-01-01

    In many multicomponent systems, a transition from a single phase of uniform composition to a multiphase state with separated regions of different composition can be induced by changes in temperature and shear. The density difference between the phase and thermal and/or shear gradients within the system results in buoyancy driven convection. These differences affect kinetics of the phase separation if the system has a sufficiently low viscosity. This investigation presents more preliminary developments of a theoretical model in order to describe effects of the buoyancy driven convection in phase separation kinetics. Polymer solutions were employed as model systems because of the ease with which density differences can be systematically varied and because of the importance of phase separation in the processing and properties of polymeric materials. The results indicate that the kinetics of the phase separation can be performed viscometrically using laser light scattering as a principle means of following the process quantitatively. Isopycnic polymer solutions were used to determine the viscosity and density difference limits for polymer phase separation.

  3. Effect of lactated Ringer's solution and compound electrolyte solution on the corneal endothelium in phacoemulsification

    Directory of Open Access Journals (Sweden)

    Yang Xia

    2017-11-01

    Full Text Available AIM: To compare the effect of compound electrolyte solution and lactated Ringer's solution on corneal function in cataract phacoemulsification, and to provide scientific basis for clinical selection of appropriate perfusion fluid. METHODS: The patients with senile cataract were randomly divided into control group with lactated Ringer's solution as anterior chamber perfusion and experimental group with compound electrolyte as anterior chamber perfusion. Surgical removal of cataract and phacoemulsification with intraocular lens implantation were taken. The corneal endothelial cell density, central corneal thickness, hexagonal cell ratio and endothelial cell coefficient of variation were measured at preoperative and postoperative points. RESULTS: Totally 60 patients successfully completed all follow-ups, the experimental group of 30 cases, the control group of 30 cases. The density of corneal endothelial cells in experimental group was significantly higher than those in the lactated Ringer's solution group at 1 and 3d after operations(P=0.030, 0.046. The coefficient of variation of corneal endothelial cells in lactated Ringer's solution group was higher than that in compound electrolyte group at 1 and 14d after operation(P=0.025, 0.014. The visual acuity of the compound electrolyte group was better than that of the lactated Ringer's solution on the first day after operation(P=0.04. CONCLUSION: In the phacoemulsification of senile cataract, the compound electrolyte perfusion has better histocompatibility, which can maintain the stability of corneal endothelial cell structure and reduce corneal endothelial cell injury. The compound electrolyte perfusion solution is more suitable for senile cataract phacoemulsification surgery.

  4. Phenomenology of polymer solution dynamics

    National Research Council Canada - National Science Library

    Phillies, George D. J

    2011-01-01

    ... solutions, not dilute solutions or polymer melts. From centrifugation and solvent dynamics to viscosity and diffusion, experimental measurements and their quantitative representations are the core of the discussion...

  5. Can Solution Supersaturation Affect Protein Crystal Quality?

    Science.gov (United States)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  6. Molecular Thermodynamic Modeling of Fluctuation Solution Theory Properties

    DEFF Research Database (Denmark)

    O’Connell, John P.; Abildskov, Jens

    2013-01-01

    Fluctuation Solution Theory provides relationships between integrals of the molecular pair total and direct correlation functions and the pressure derivative of solution density, partial molar volumes, and composition derivatives of activity coefficients. For dense fluids, the integrals follow...... a relatively simple corresponding-states behavior even for complex systems, show welldefined relationships for infinite dilution properties in complex and near-critical systems, allow estimation of mixed-solvent solubilities of gases and pharmaceuticals, and can be expressed by simple perturbation models...

  7. Aliteracy : causes and solutions

    NARCIS (Netherlands)

    Nielen, Thijs Martinus Johannes

    2016-01-01

    The reading motivation of the majority of students declines in the upper half of primary school, which implies a risk for aliteracy: Students can read but, due to lack of practice, their skills remain underdeveloped (Chapter 2). In this thesis we have explored causes and solutions for this important

  8. School Solutions for Cyberbullying

    Science.gov (United States)

    Sutton, Susan

    2009-01-01

    This article offers solutions and steps to prevent cyberbullying. Schools can improve their ability to handle cyberbullying by educating staff members, students, and parents and by implementing rules and procedures for how to handle possible incidents. Among the steps is to include a section about cyberbullying and expectations in the student…

  9. Antisocial Personalities, Antidemocractic Solutions.

    Science.gov (United States)

    Schneiderman, Howard G.

    1996-01-01

    Provides critical analysis of David T. Lykken's article "Psychopathy, Sociopathy, and Crime" (1996) and its correlation between unstable families and sociopathy and the use of parental licensing as a solution. Discusses reasons for the appeal of parental licensing as well as the issue of state control replacing social control. (GR)

  10. Cells and Hypotonic Solutions.

    Science.gov (United States)

    Bery, Julia

    1985-01-01

    Describes a demonstration designed to help students better understand the response of plant and animal cells to hypotonic solutions. The demonstration uses a balloon inside a flexible, thin-walled cardboard box. Air going in corresponds to water entering by osmosis, and, like real cells, if stretched enough, the balloon will burst. (DH)

  11. Glycosylation of solute carriers

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Carlsson, Michael C; Pedersen, Stine Helene Falsig

    2016-01-01

    Solute carriers (SLCs) are one of the largest groups of multi-spanning membrane proteins in mammals and include ubiquitously expressed proteins as well as proteins with highly restricted tissue expression. A vast number of studies have addressed the function and organization of SLCs as well...

  12. Obesity and Regional Immigrant Density.

    Science.gov (United States)

    Emerson, Scott D; Carbert, Nicole S

    2017-11-24

    Canada has an increasingly large immigrant population. Areas of higher immigrant density, may relate to immigrants' health through reduced acculturation to Western foods, greater access to cultural foods, and/or promotion of salubrious values/practices. It is unclear, however, whether an association exists between Canada-wide regional immigrant density and obesity among immigrants. Thus, we examined whether regional immigrant density was related to obesity, among immigrants. Adult immigrant respondents (n = 15,595) to a national population-level health survey were merged with region-level immigrant density data. Multi-level logistic regression was used to model the odds of obesity associated with increased immigrant density. The prevalence of obesity among the analytic sample was 16%. Increasing regional immigrant density was associated with lower odds of obesity among minority immigrants and long-term white immigrants. Immigrant density at the region-level in Canada may be an important contextual factor to consider when examining obesity among immigrants.

  13. Eigenmodes of Langmuir waves trapped into the density holes

    Science.gov (United States)

    Krasnoselskikh, V.; Sundkvist, D.; Bale, S.; Pulupa, M.; Breuillard, H.; Maksimovic, M.; Kellogg, P.; Kaiser, M.; Zaslavsky, A.

    2009-04-01

    Recently Ergun with co-authors [1] have published an interesting observation by WAVES experiment onboard STEREO (S/WAVES) satellite: Langmuir wave eigenmodes trapped into the density holes in the solar wind. We present the theoretical study of such eigenmodes trapped into the density holes in the framework of the first Zakharov equation, where the prescribed density profile is supposed to be moving but static. We assign different 2 and 3 dimensional density holes, in the last case we consider the profiles having cylindrical symmetry and we analyze the eigenmode type solutions. We compare electric field envelope profiles with the observations of the S/WAVES experiment. We obtain the condition that relates the density hole depth with its characteristic spatial scales for the trapped wave mode to exist. It is similar to the Zakharov's condition that defines the threshold for nonlinearity to dominate over dispersion. The major consequence of this study consists in the conclusion that the role these wave modes can play in the process of the beam-plasma interaction is determined by the characteristics of the density fluctuations in the solar wind. They can be important if the probability of the occurrence of density fluctuations satisfying the condition for the wave trapping is large enough. [1] Ergun, R. et al., PRL, 2007

  14. Hölder continuity property of the densities of SDEs with singular drift coefficients

    OpenAIRE

    Hayashi, Masafumi; Kohatsu, Arturo; Yuki, Go

    2014-01-01

    We prove that the solution of stochastic differential equations with deterministic diffusion coefficient admits a Hölder continuous density via a condition on the integrability of the Fourier transform of the drift coefficient. In our result, the integrability is an important factor to determine the order of Hölder continuity of the density. Explicit examples and some applications are given.

  15. Density fluctuations in traffic flow

    CERN Document Server

    Yukawa, S

    1996-01-01

    Density fluctuations in traffic current are studied by computer simulations using the deterministic coupled map lattice model on a closed single-lane circuit. By calculating a power spectral density of temporal density fluctuations at a local section, we find a power-law behavior, \\sim 1/f^{1.8}, on the frequency f, in non-congested flow phase. The distribution of the headway distance h also shows the power law like \\sim 1/h^{3.0} at the same time. The power law fluctuations are destroyed by the occurence of the traffic jam.

  16. Renormalization group approach to density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kemler, Sandra; Braun, Jens [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2015-07-01

    We study a two-point particle irreducible (2PPI) approach to many-body physics which relies on a renormalization group (RG) flow equation for the associated effective action. This approach relates to Density Functional Theory and can in principle be used to study ground-state properties of non-relativistic many-body systems from microscopic interactions, such as (heavy) nuclei. We apply our formalism to a 0+1-dimensional model, namely the quantum anharmonic oscillator and use the well-known exact solution to benchmark our approximations of the full RG flow. Moreover, we present flow equations for specific types of 1+1-dimensional field theories which allow us study the ground-state properties of self-bound systems of spinless fermions which can also be viewed as toy models of nuclei.

  17. Amplitude modulation reflectometry for density profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, V.; Sanchez, J.; Luna, E. de la; Estrada, T.; Branas, B.; Frances, M. [Association EURATOM/CIEMAT, Madrid (Spain); Hirsch, M.; Geist, T.; Hartfuss, H.J. [Max Plank Institut fuer Plasmaphysik, Euratom-Ass, 85748 Garching (Germany); Hanson, G.R.; Wilgen, J.B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-8072 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    1997-03-01

    Amplitude modulation (AM) reflectometry is a technique for density profile measurements in magnetic fusion plasmas based on the measurement of the phase delay of the modulation in the amplitude of a microwave beam launched and reflected at the plasma. Results from AM experiments in the PBX-M tokamak and the W7-AS stellarator are presented. A general analysis of the capabilities of the technique is performed, particularly centered in the effects of spatial turbulence. Simulations of the effects of two-dimensional turbulence have been performed for medium size (W7-AS) and large devices (LHD stellarator, ITER), showing the capability of the AM technique to operate in turbulent plasmas. Finally, possible solutions to the problem of parasitic reflections in AM systems are presented as development options. (orig.) 4 refs.

  18. Stiff fluid spike solutions from Bianchi type V seed solutions

    Science.gov (United States)

    Gregoris, D.; Lim, W. C.; Coley, A. A.

    2017-12-01

    In this paper we expand upon our previous work Coley et al (2016 Class. Quantum Grav. 33 215010) by using the entire family of Bianchi type V stiff fluid solutions as seed solutions of the Stephani transformation. Among the new exact solutions generated, we observe a number of important physical phenomena. The most interesting phenomenon is exact solutions with intersecting spikes. Other interesting phenomena are solutions with saddle states and a close-to-FL epoch.

  19. Anatomy and physiology of Cattail as related to different population densities

    OpenAIRE

    Corrêa,F. F.; R. H. Madail; Barbosa, S; Pereira,M. P.; E. M. Castro; SORIANO,C.T.G.; Pereira,F.J.

    2015-01-01

    The objective of this work was to evaluate the effects of the population density of Typha angustifolia plants in the anatomical and physiological characteristics. Plants were collected from populations of high density (over 50% of colonization capacity) and low density (less than 50% of colonization capacity) and cultivated under controlled greenhouse conditions. Plants from both populations were grown in plastic trays containing 4 L of nutritive solution for 60 days. At the end of this perio...

  20. Truncation scheme of time-dependent density-matrix approach II

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin University School of Medicine, Mitaka, Tokyo (Japan); Schuck, Peter [Institut de Physique Nucleaire, IN2P3-CNRS, Universite Paris-Sud, Orsay (France); Laboratoire de Physique et de Modelisation des Milieux Condenses, CNRS et Universite Joseph Fourier, Grenoble (France)

    2017-09-15

    A truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for reduced density matrices, where a three-body density matrix is approximated by two-body density matrices, is improved to take into account a normalization effect. The truncation scheme is tested for the Lipkin model. It is shown that the obtained results are in good agreement with the exact solutions. (orig.)

  1. Calculation of electric dipole intensity parameter to explore some interaction between hard metal ions Pr(III) and Nd(III) with π-electron density of butene-1,4 and butyne-1,4-diols in non-aqueous solutions: An absorption spectral study

    Science.gov (United States)

    Singh, Th. David; Sumitra, Ch.; Bag, G. C.; Devi, M. Indira; Singh, N. Rajmuhon

    2006-01-01

    Pr(III) and Nd(III) are hard acceptors in HSAB (hard and soft acid base) sense and hence are known to exhibit practically a little affinity towards electrons. At the same time these metal ions show strong preference for oxygen donor chelating ligands. The ligands chosen for this study are structurally related diols, viz. butane-1,4, butene-1,4 and butyne-1,4-diols which form identical seven membered chelate ring by coordinating to metals in a bidentate manner through oxygen on 1 and 4 positions of the diol molecules. Complexation of these diols with Pr(III) and Nd(III) was carried out in DMF, CH3OH, CH3CN and their equimolar binary mixtures using comparative absorption spectrophotometry of 4f-4f transitions. The variation of oscillator strengths (P) of different 4f-4f bands as well as the magnitude and variation of Judd-Ofelt electric dipole intensity parameters (Tλ, λ = 2, 4, 6) was discussed. They correlate the interaction between the metal 4f-orbitals of Pr(III) and Nd(III) with the π-electron densities of the double and triple bonds present in butene-1,4 and butyne-1,4-diols, respectively. The value of empirical intensity parameter [Tλ(complex)/Tλ (aquo)] was calculated and its plot against oscillator strength (P) is drawn.

  2. FOREWORD: Special issue on density

    Science.gov (United States)

    Fujii, Kenichi

    2004-04-01

    This special issue on density was undertaken to provide readers with an overview of the present state of the density standards for solids, liquids and gases, as well as the technologies developed for measuring density. This issue also includes topics on the refractive index of gases and on techniques used for calibrating hydrometers so that almost all areas concerned with density standards are covered in four review articles and seven original articles, most of which describe current research being conducted at national metrology institutes (NMIs). A review article was invited from the Ruhr-Universität Bochum to highlight research on the magnetic suspension densimeters. In metrology, the determinations of the volume of a weight and the density of air are of primary importance in establishing a mass standard because the effect of the buoyancy force of air acting on the weight must be known accurately to determine the mass of the weight. A density standard has therefore been developed at many NMIs with a close relation to the mass standard. Hydrostatic weighing is widely used to measure the volume of a solid. The most conventional hydrostatic weighing method uses water as a primary density standard for measuring the volume of a solid. A brief history of the determination of the density of water is therefore given in a review article, as well as a recommended value for the density of water with a specified isotopic abundance. The most modern technique for hydrostatic weighing uses a solid density standard instead of water. For this purpose, optical interferometers for measuring the diameters of silicon spheres have been developed to convert the length standard into the volume standard with a small uncertainty. A review article is therefore dedicated to describing the state-of-the-art optical interferometers developed for silicon spheres. Relative combined standard uncertainties of several parts in 108 have been achieved today for measuring the volume and density of

  3. From Goods to Solutions

    DEFF Research Database (Denmark)

    Chakkol, Mehmet; Johnson, Mark; Raja, Jawwad

    2014-01-01

    Purpose – This paper aims to adopt service-dominant logic (SDL) to empirically explore network configurations resulting from the provision of goods, goods and services, and solutions. Design/methodology/approach – This paper uses a single, in-depth, exploratory case study in a truck manufacturer...... different value propositions and the resulting network configurations are discussed. In so doing, evidence is provided of a more complex, tetradic network configuration for solutions, with varying degrees of interplay between actors in the flow of operand and operant resources to create value....... and its supply network. An abductive approach is adopted. In total, 54 semi-structured interviews were conducted. Findings – Three value propositions are clearly discernible within the truck provider. These range from a truck to a “solution”. These propositions have different supply network configurations...

  4. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  5. Earnest Rutherford, the solution

    CERN Multimedia

    2003-01-01

    If you did not make it to the Science & Society talk by John Campbell last week and are still wondering about the spelling of "Earnest", here is the solution: Two months after the birth of his fourth child on 30 August 1871 in Spring Grove, New Zealand, James Rutherford registered his son, who was recorded as "Earnest" in the Birth Register. Presumably the Registrar wrote the name down as it sounded and the father failed to notice the mistake when signing the Register.

  6. Solution Processing - Rodlike Polymers

    Science.gov (United States)

    1979-08-01

    side it necessary and identify by block number) Para-ordered Polymers High Modulus Fibers and Films Polybenzobisoxazoles Polybenzobisthiazoles 20...considerations important in solution processing are considered, with special emphasis on the dry-jet wet spinning process used to form fibers . Pertinent...Company, Summit, N.J. iii TABLE OF CONTENTS 1. INTRODUCTION ................ .......................... .. 1 2. REMARKS ON DRY-JET WET SPUN FIBER

  7. High-density digital data recording/reproducing system

    Science.gov (United States)

    Leighou, R. O.

    1976-01-01

    Problems associated with reliably recording and reproducing digital data at densities of 10 to 30 kilobits per inch and the solutions to these problems are discussed. The three problems are skew, dc offset, and tape imperfections. The solutions are to use a 14-track, wideband II tape recorder; record NRZ-L; use a 24-bit sync word, 504-bit frame length, and odd parity in every 8-bit byte; and to employ circuit design techniques that minimize the effects of the remaining dc offset and tape imperfections.

  8. Investigation of microalgae with photon density waves

    Science.gov (United States)

    Frankovitch, Christine; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2007-09-01

    Phototropic microalgae have a large potential for producing valuable substances for the feed, food, cosmetics, pigment, bioremediation, and pharmacy industries as well as for biotechnological processes. Today it is estimated that the microalgal aquaculture worldwide production is 5000 tons of dry matter per year (not taking into account processed products) making it an approximately $1.25 billion U.S. per year industry. For effective observation of the photosynthetic growth processes, fast on-line sensor systems that analyze the relevant biological and technical process parameters are preferred. The optical properties of the microalgae culture influence the transport of light in the photobioreactor and can be used to extract relevant information for efficient cultivation practices. Microalgae cultivation media show a combination of light absorption and scattering, which are influenced by the concentrations and the physical and chemical properties of the different absorbing and scattering species (e.g. pigments, cell components, etc.). Investigations with frequency domain photon density waves (PDW) allow for the examination of absorption and scattering properties of turbid media, namely the absorption and reduced scattering coefficient. The reduced scattering coefficient can be used to characterize physical and morphological properties of the medium, including the cell concentration, whereas the absorption coefficient correlates with the pigment content. Nannochloropsis oculata, a single-cell species of microalgae, were examined in a nutrient solution with photon density waves. The absorption and reduced scattering coefficients were experimentally determined throughout the cultivation process, and applied to gain information about the cell concentration and average cell radius.

  9. Covariant density functional theory for nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Badarch, U.

    2007-07-01

    The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)

  10. An evaporation model of multicomponent solution drops

    Science.gov (United States)

    Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.

    2010-11-01

    Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.

  11. Novel fluorescent probe for low density lipoprotein, based on the enhancement of Europium emission band

    OpenAIRE

    Courrol, Lilia Coronato; Monteiro, A.M.; SILVA, F.R.O.; L. Gomes; VIEIRA, N.D.; Gidlund, Magnus; Figueiredo Neto, A.M.

    2007-01-01

    We report here the observation of the enhancement of Europium-tetracycline complex emission in Low Density Lipoprotein (LDL) solutions. Europium emission band of tetracycline solution containing Europium (III) chloride hexahydrate was tested to obtain effective enhancement in the presence of native LDL and oxidized LDL. Europium emission lifetime in the presence of lipoproteins was measured, resulting in a simple method to measure the lipoproteins quantity in an aqueous solution at physiologi...

  12. Approximate analytical solutions to the condensation-coagulation equation of aerosols

    DEFF Research Database (Denmark)

    Smith, Naftali R.; Shaviv, Nir J.; Svensmark, Henrik

    2016-01-01

    to the coagulation limit plus a condensation correction. Our solutions are then compared with numerical results. We show that the solutions can be used to estimate the sensitivity of the cloud condensation nuclei number density to the nucleation rate of small condensation nuclei and to changes in the formation rate......We present analytical solutions to the steady state nucleation-condensation-coagulation equation of aerosols in the atmosphere. These solutions are appropriate under different limits but more general than previously derived analytical solutions. For example, we provide an analytic solution...

  13. Bulk density of small meteoroids

    Science.gov (United States)

    Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.

    2011-06-01

    Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also

  14. Density Sorting During the Evolution of Continental Crust

    Science.gov (United States)

    Kelemen, P. B.; Behn, M. D.; Hacker, B. R.

    2015-12-01

    We consider two settings - in addition to "delamination" of arc lower crust - in which dense, mafic eclogites founder into the convecting mantle while buoyant, felsic lithologies accumulate at the base of evolving continental crust. Arc processes play a central role in generating continental crust, but it remains uncertain how basaltic arc crust is transformed to andesitic continental crust. Dense, SiO2-poor products of fractionation may founder from the base of arc crust by "delamination", but lower arc crust after delamination has significantly different trace elements compared to lower continental crust (LCC). In an alternative model, buoyant magmatic rocks generated at arcs are first subducted, mainly via subduction erosion. Upon heating, these buoyant lithologies ascend through the mantle wedge or along a subduction channel, and are "relaminated" at
the base of overlying crust (e.g., Hacker et al EPSL 11, AREPS 15). Average buoyant lavas and plutons
for the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs fall within the range of estimated LCC major and trace elements. Relamination is more efficient in generating continental crust than delamination. Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle. There is a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across the region where Tibetan crust overlies Indian crust, into thickened Tibetan crust. About half the subducted Indian crust is present, whereas the other half is missing. Data (Vp/Vs; Miocene lavas formed by interaction of continental crust with mantle; xenolith thermometry) indicate 1000°C or more from ca 50 km depth to the Moho since the Miocene. We build on earlier studies (LePichon et al Tectonics 92, T'phys 97; Schulte-Pelkum et al Nature 05; Monsalve et al JGR 08) to advance the hypothesis that rapid growth of garnet occurs at 70-80 km and 1000°C within subducting Indian crust. Dense eclogites founder

  15. Redox flow batteries based on supporting solutions containing chloride

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2017-11-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  16. High-throughput ab-initio dilute solute diffusion database

    Science.gov (United States)

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  17. Probabilistic representations of solutions to the heat equation

    Indian Academy of Sciences (India)

    In this paper we provide a new (probabilistic) proof of a classical result in partial differential equations, viz. if is a tempered distribution, then the solution of the heat equation for the Laplacian, with initial condition , is given by the convolution of with the heat kernel (Gaussian density). Our results also extend the ...

  18. New results on periodic solutions of delayed Nicholson's blowflies models

    Directory of Open Access Journals (Sweden)

    Xinhua Hou

    2012-03-01

    Full Text Available This paper is concerned with a class of Nicholson's blowflies models with a nonlinear density-dependent mortality term. We use coincidence degree theory and give several sufficient conditions which guarantee the existence of positive periodic solutions of the model. Moreover, we give an example to illustrate our main results.

  19. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative ...

  20. Blending of Nsu and Ibeku Clays: A Solution Towards the ...

    African Journals Online (AJOL)

    Blending of Nsu and Ibeku Clays: A Solution Towards the Replacement of GP 107-3 Refractory Brick in the Metallurgical Industry. ... The properties considered are apparent porosity, bulk density, linear shrinkage, cold crushing strength, refractoriness, thermal shock resistance. The results revealed that some of the blends of ...

  1. Density Large Deviations for Multidimensional Stochastic Hyperbolic Conservation Laws

    Science.gov (United States)

    Barré, J.; Bernardin, C.; Chetrite, R.

    2017-12-01

    We investigate the density large deviation function for a multidimensional conservation law in the vanishing viscosity limit, when the probability concentrates on weak solutions of a hyperbolic conservation law. When the mobility and diffusivity matrices are proportional, i.e. an Einstein-like relation is satisfied, the problem has been solved in Bellettini and Mariani (Bull Greek Math Soc 57:31-45, 2010). When this proportionality does not hold, we compute explicitly the large deviation function for a step-like density profile, and we show that the associated optimal current has a non trivial structure. We also derive a lower bound for the large deviation function, valid for a more general weak solution, and leave the general large deviation function upper bound as a conjecture.

  2. Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography

    Science.gov (United States)

    Deng, Yangfan; Levandowski, Will; Kusky, Tim

    2017-02-01

    Intraplate strain generally focuses in discrete zones, but despite the profound impact of this partitioning on global tectonics, geodynamics, and seismic hazard, the processes by which deformation becomes localized are not well understood. Such heterogeneous intraplate strain is exemplified in central Asia, where the Indo-Eurasian collision has caused widespread deformation while the Tarim block has experienced minimal Cenozoic shortening. The apparent stability of Tarim may arise either because strain is dominantly accommodated by pre-existing faults in the continental suture zones that bound it-essentially discretizing Eurasia into microplates-or because the lithospheric-scale strength (i.e., viscosity) of the Tarim block is greater than its surroundings. Here, we jointly analyze seismic velocity, gravity, topography, and temperature to develop a 3-D density model of the crust and upper mantle in this region. The Tarim crust is characterized by high density, vs, vp, and vp /vs, consistent with a dominantly mafic composition and with the presence of an oceanic plateau beneath Tarim. Low-density but high-velocity mantle lithosphere beneath southern (southwestern) Tarim underlies a suite of Permian plume-related mafic intrusions and A-type granites sourced in previously depleted mantle lithosphere; we posit that this region was further depleted, dehydrated, and strengthened by Permian plume magmatism. The actively deforming western and southern margins of Tarim-the Tien Shan, Kunlun Shan, and Altyn Tagh fault-are underlain by buoyant upper mantle with low velocity; we hypothesize that this material has been hydrated by mantle-derived fluids that have preferentially migrated along Paleozoic continental sutures. Such hydrous material should be weak, and herein strain focuses there because of lithospheric-scale variations in rheology rather than the pre-existence of faults in the brittle crust. Thus this world-class example of strain partitioning arises not simply from

  3. Nonrelativistic grey Sn-transport radiative-shock solutions

    Science.gov (United States)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-06-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2,3], and also confirm his expectation that the precursor temperatures adjacent to the Zel'dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel'dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibrium-diffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Finally, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  4. On a critical radiation density in the Friedmann equation

    Science.gov (United States)

    Baumgärtel, Hellmut

    2012-12-01

    The paper presents a classification of the basic types of admissible solutions of the general Friedmann equation with non-vanishing cosmological constant and for the case that radiation and matter do not couple. There are four distinct types. The classification uses first the discriminant of a polynomial of the third degree, closely related to the right hand side of the Friedmann equation. The decisive term is then a critical radiation density which can be calculated explicitly.

  5. Shuttle Wastewater Solution Characterization

    Science.gov (United States)

    Adam, Niklas; Pham, Chau

    2011-01-01

    During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

  6. Integrated multiphase solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jiskoot, Mark A. [Jiskoot Autocontrol, Kent (United Kingdom)

    1998-07-01

    Everyone accepts that multiphase metering provides substantial cost advantages over conventional test separator methods. However the complexity of the flow regimes and process ensures that there is no single applicable technology currently available for all conditions. Numerous optimistic and ill-founded have been made for accuracy. Because of the commercial opportunities, the market is a technology minefield for the potential specifier and user! Jiskoot has introduced an Integarated approach to provision of Multiphase Solutions (IMS) and is the licensee of two distinctly different technologies. This paper outlines a few multiphase measurements problems and the IMS approach using the Mixmeter and Smartstar technologies. (author)

  7. Design principles for radiation-resistant solid solutions

    Science.gov (United States)

    Schuler, Thomas; Trinkle, Dallas R.; Bellon, Pascal; Averback, Robert

    2017-05-01

    We develop a multiscale approach to quantify the increase in the recombined fraction of point defects under irradiation resulting from dilute solute additions to a solid solution. This methodology provides design principles for radiation-resistant materials. Using an existing database of solute diffusivities, we identify Sb as one of the most efficient solutes for this purpose in a Cu matrix. We perform density-functional-theory calculations to obtain binding and migration energies of Sb atoms, vacancies, and self-interstitial atoms in various configurations. The computed data informs the self-consistent mean-field formalism to calculate transport coefficients, allowing us to make quantitative predictions of the recombined fraction of point defects as a function of temperature and irradiation rate using homogeneous rate equations. We identify two different mechanisms according to which solutes lead to an increase in the recombined fraction of point defects; at low temperature, solutes slow down vacancies (kinetic effect), while at high temperature, solutes stabilize vacancies in the solid solution (thermodynamic effect). Extension to other metallic matrices and solutes are discussed.

  8. Simulated Solute Tempering.

    Science.gov (United States)

    Denschlag, Robert; Lingenheil, Martin; Tavan, Paul; Mathias, Gerald

    2009-10-13

    For the enhanced conformational sampling in molecular dynamics (MD) simulations, we present "simulated solute tempering" (SST) which is an easy to implement variant of simulated tempering. SST extends conventional simulated tempering (CST) by key concepts of "replica exchange with solute tempering" (REST, Liu et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 13749). We have applied SST, CST, and REST to molecular dynamics (MD) simulations of an alanine octapeptide in explicit water. The weight parameters required for CST and SST are determined by two different formulas whose performance is compared. For SST only one of them yields a uniform sampling of the temperature space. Compared to CST and REST, SST provides the highest exchange probabilities between neighboring rungs in the temperature ladder. Concomitantly, SST leads to the fastest diffusion of the simulation system through the temperature space, in particular, if the "even-odd" exchange scheme is employed in SST. As a result, SST exhibits the highest sampling speed of the investigated tempering methods.

  9. Rational homoclinic solution and rogue wave solution for the ...

    Indian Academy of Sciences (India)

    In this paper, a rational homoclinic solution is obtained via the classical homoclinicsolution for the coupled long-wave–short-wave system. Based on the structures of ratinal homoclinic solution, the characteristics of homoclinic solution are discussed which might provide us with useful information on the dynamics of the ...

  10. Solution of IVP of Second Order ODE with Oscillatory Solutions ...

    African Journals Online (AJOL)

    A Numerical method for solution of IVP of second order with oscillatory solutions using VIM is developed. The method is applied to solve some initial value problems of second order ODE with oscillatory solutions. The results are compared with some existing methods and found to compete favourably with existing methods.

  11. Solute-Filled Syringe For Formulating Intravenous Solution

    Science.gov (United States)

    Owens, Jim; Bindokas, AL; Dudar, Tom; Finley, Mike; Scharf, Mike

    1993-01-01

    Prefilled syringe contains premeasured amount of solute in powder or concentrate form used to deliver solute to sterile interior of large-volume parenteral (LVP) bag. Predetermined amount of sterile water also added to LVP bag through sterilizing filter, and mixed with contents of syringe, yielding sterile intravenous solution of specified concentration.

  12. Sleep spindle density in narcolepsy

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Hvidtfelt, Mathias

    2017-01-01

    BACKGROUND: Patients with narcolepsy type 1 (NT1) show alterations in sleep stage transitions, rapid-eye-movement (REM) and non-REM sleep due to the loss of hypocretinergic signaling. However, the sleep microstructure has not yet been evaluated in these patients. We aimed to evaluate whether...... the sleep spindle (SS) density is altered in patients with NT1 compared to controls and patients with narcolepsy type 2 (NT2). METHODS: All-night polysomnographic recordings from 28 NT1 patients, 19 NT2 patients, 20 controls (C) with narcolepsy-like symptoms, but with normal cerebrospinal fluid hypocretin...... levels and multiple sleep latency tests, and 18 healthy controls (HC) were included. Unspecified, slow, and fast SS were automatically detected, and SS densities were defined as number per minute and were computed across sleep stages and sleep cycles. The between-cycle trends of SS densities in N2...

  13. High Energy Density Electrolytic Capacitor

    Science.gov (United States)

    Evans, David A.

    1996-01-01

    A new type of electrolytic capacitor which combines an electrolytic capacitor anode with an electrochemical capacitor cathode was developed. The resulting capacitor has a four time higher energy density than standard electrolytic capacitors, with comparable electric performance. The prototype, a 480 microFarad, 200 V device, has an energy density exceeding 4 J/cc. Now a 680 microFarad 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. The potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V hybrid capacitors and results from ongoing qualification testing of the MIL-style tantalum capacitors.

  14. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  15. Union Density and Hospital Outcomes.

    Science.gov (United States)

    Koys, Daniel J; Martin, Wm Marty; LaVan, Helen; Katz, Marsha

    2015-01-01

    The authors address the hospital outcomes of patient satisfaction, healthcare quality, and net income per bed. They define union density as the percentage of a hospital's employees who are in unions, healthcare quality as its 30-day acute myocardial infraction (AMI; heart attack) mortality rate, and patient satisfaction as its overall Hospital Consumer Assessment of Healthcare Providers and Systems score. Using a random sample of 84 union and 84 nonunion hospitals from across the United States, multiple regression analyses show that union density is negatively related to patient satisfaction. Union density is not related to healthcare quality as measured by the AMI mortality rate or to net income per bed. This implies that unions per se are not good or bad for hospitals. The authors suggest that it is better for hospital administrators to take a Balanced Scorecard approach and be concerned about employee satisfaction, patient satisfaction, healthcare quality, and net income.

  16. An information theory approach to the density of the earth

    Science.gov (United States)

    Graber, M. A.

    1977-01-01

    Information theory can develop a technique which takes experimentally determined numbers and produces a uniquely specified best density model satisfying those numbers. A model was generated using five numerical parameters: the mass of the earth, its moment of inertia, three zero-node torsional normal modes (L = 2, 8, 26). In order to determine the stability of the solution, six additional densities were generated, in each of which the period of one of the three normal modes was increased or decreased by one standard deviation. The superposition of the seven models is shown. It indicates that current knowledge of the torsional modes is sufficient to specify the density in the upper mantle but that the lower mantle and core will require smaller standard deviations before they can be accurately specified.

  17. An Extreme Learning Machine Approach to Density Estimation Problems.

    Science.gov (United States)

    Cervellera, Cristiano; Maccio, Danilo

    2017-10-01

    In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F -discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods.

  18. Aquifer washing by micellar solutions: 1. Optimization of alcohol-surfactant-solvent solutions

    Science.gov (United States)

    Martel, Richard; Gélinas, Pierre J.; Desnoyers, Jacques E.

    1998-03-01

    Phase diagrams were used for the formulation of alcohol-surfactant-solvent and to identify the DNAPL (Dense Non Aqueous Phase Liquid) extraction zones. Four potential extraction zones of Mercier DNAPL, a mixture of heavy aliphatics, aromatics and chlorinated hydrocarbons, were identified but only one microemulsion zone showed satisfactory DNAPL recovery in sand columns. More than 90 sand column experiments were performed and demonstrate that: (1) neither surfactant in water, alcohol-surfactant solutions, nor pure solvent can effectively recover Mercier DNAPL and that only alcohol-surfactant-solvent solutions are efficient; (2) adding salts to alcohol-surfactant or to alcohol-surfactant-solvent solutions does not have a beneficial effect on DNAPL recovery; (3) washing solution formulations are site specific and must be modified if the surface properties of the solids (mineralogy) change locally, or if the interfacial behavior of liquids (type of oil) changes; (4) high solvent concentrations in washing solutions increase DNAPL extraction but also increase their cost and decrease their density dramatically; (5) maximum DNAPL recovery is observed with alcohol-surfactant-solvent formulations which correspond to the maximum solubilization in Zone C of the phase diagram; (6) replacing part of surfactant SAS by the alcohol n-butanol increases washing solution efficiency and decreases the density and the cost of solutions; (7) replacing part of n-butanol by the nonionic surfactant HOES decreases DNAPL recovery and increases the cost of solutions; (8) toluene is a better solvent than D-limonene because it increases DNAPL recovery and decreases the cost of solutions; (9) optimal alcohol-surfactant-solvent solutions contain a mixture of solvents in a mass ratio of toluene to D-limonene of one or two. Injection of 1.5 pore volumes of the optimal washing solution of n-butanol-SAS-toluene- D-limonene in water can recover up to 95% of Mercier DNAPL in sand columns. In the first

  19. Simulating QCD at finite density

    CERN Document Server

    de Forcrand, Philippe

    2009-01-01

    In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.

  20. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  1. Sorting cells by their density.

    Directory of Open Access Journals (Sweden)

    Nazila Norouzi

    Full Text Available Sorting cells by their type is an important capability in biological research and medical diagnostics. However, most cell sorting techniques rely on labels or tags, which may have limited availability and specificity. Sorting different cell types by their different physical properties is an attractive alternative to labels because all cells intrinsically have these physical properties. But some physical properties, like cell size, vary significantly from cell to cell within a cell type; this makes it difficult to identify and sort cells based on their sizes alone. In this work we continuously sort different cells types by their density, a physical property with much lower cell-to-cell variation within a cell type (and therefore greater potential to discriminate different cell types than other physical properties. We accomplish this using a 3D-printed microfluidic chip containing a horizontal flowing micron-scale density gradient. As cells flow through the chip, Earth's gravity makes each cell move vertically to the point where the cell's density matches the surrounding fluid's density. When the horizontal channel then splits, cells with different densities are routed to different outlets. As a proof of concept, we use our density sorter chip to sort polymer microbeads by their material (polyethylene and polystyrene and blood cells by their type (white blood cells and red blood cells. The chip enriches the fraction of white blood cells in a blood sample from 0.1% (in whole blood to nearly 98% (in the output of the chip, a 1000x enrichment. Any researcher with access to a 3D printer can easily replicate our density sorter chip and use it in their own research using the design files provided as online Supporting Information. Additionally, researchers can simulate the performance of a density sorter chip in their own applications using the Python-based simulation software that accompanies this work. The simplicity, resolution, and throughput of this

  2. Sorting cells by their density.

    Science.gov (United States)

    Norouzi, Nazila; Bhakta, Heran C; Grover, William H

    2017-01-01

    Sorting cells by their type is an important capability in biological research and medical diagnostics. However, most cell sorting techniques rely on labels or tags, which may have limited availability and specificity. Sorting different cell types by their different physical properties is an attractive alternative to labels because all cells intrinsically have these physical properties. But some physical properties, like cell size, vary significantly from cell to cell within a cell type; this makes it difficult to identify and sort cells based on their sizes alone. In this work we continuously sort different cells types by their density, a physical property with much lower cell-to-cell variation within a cell type (and therefore greater potential to discriminate different cell types) than other physical properties. We accomplish this using a 3D-printed microfluidic chip containing a horizontal flowing micron-scale density gradient. As cells flow through the chip, Earth's gravity makes each cell move vertically to the point where the cell's density matches the surrounding fluid's density. When the horizontal channel then splits, cells with different densities are routed to different outlets. As a proof of concept, we use our density sorter chip to sort polymer microbeads by their material (polyethylene and polystyrene) and blood cells by their type (white blood cells and red blood cells). The chip enriches the fraction of white blood cells in a blood sample from 0.1% (in whole blood) to nearly 98% (in the output of the chip), a 1000x enrichment. Any researcher with access to a 3D printer can easily replicate our density sorter chip and use it in their own research using the design files provided as online Supporting Information. Additionally, researchers can simulate the performance of a density sorter chip in their own applications using the Python-based simulation software that accompanies this work. The simplicity, resolution, and throughput of this technique make

  3. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.

    Science.gov (United States)

    Wang, Mingliang; Wong, Chung F

    2006-04-13

    We have combined ultrasoft pseudopotential density functional theory utilizing plane wave basis with a Poisson-Boltzmann/solvent-accessible surface area (PB/SA) model to calculate the solvation free energy of small neutral organic compounds in water. The solute charge density obtained from density functional theory was directly used in solving the Poisson-Boltzmann equation to obtain the reaction field. The polarized electronic wave function of the solute in the solvent was solved by including the reaction field in the density functional Hamiltonian. The quantum mechanical and Poisson-Boltzmann equations were solved self-consistently until the charge density and reaction field converged. Using the solute charge density directly instead of a point-charge representation permitted asymmetric distortion and spreading out of the electron cloud. Because the electron density could leave the van der Waals surface to penetrate into the high-dielectric solvent, the reaction field generated by this density was generally smaller than that obtained by using the point-charge representation. In applying this model to calculate the solvation free energy of 31 small neutral organic molecules spanning a range of 25 kcal/mol, we obtained a root-mean-square error of only 1.3 kcal/mol if we allowed one adjustable parameter to shift the calculated solvation free energy.

  4. Strong nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2017-01-01

    This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.

  5. Waveform inversion schemes for 3D density structure

    Science.gov (United States)

    Blom, N.; Fichtner, A.

    2014-12-01

    We develop waveform inversion schemes for density, based on numerical wave propagation, adjoint techniques and various non-seismological constraints to enhance resolution. Density variations drive convection in the Earth and serve as a discriminator between thermal and compositional heterogeneities. However, classical seismological observables and gravity provide only weak constraints, with strong trade-offs. To put additional constraints on density structure, we develop waveform inversion schemes that exploit the seismic waveform itself for the benefit of improved density resolution. Our inversion scheme is intended to incorporate any information that can help to constrain 3D density structure. This includes non-seismological information, such as gravity and the geoid, the mass and moment of inertia of the Earth, and mineral physical constraints on maximum density heterogeneities (assuming reasonable variations in temperature and composition). In a series of initial synthetic experiments, we aim to construct efficient optimisation schemes that allow us to assimilate all the available types of information. For this, we use 2D numerical wave propagation combined with adjoint techniques for the computation of sensitivity kernels. With these kernels, we drive gradient-based optimisation schemes that incorporate our non-seismological constraints. Specifically, we assess the usefulness of an inversion strategy where additional information is used as hard constraints, as opposed to the optimisation of a single objective functional that incorporates all the information. Hard constraints may consist of the Earth's mass or moment of inertia, and are applied by solving a separate optimisation problem to project the initial (unconstrained) solution onto an allowed range. These synthetic experiments will allow us to assess to what extent velocity and density structure need to be coupled in order to obtain useful and meaningful results to a density inversion.

  6. Extremal Density Matrices for the Expectation Value of a Qudit Hamiltonian

    Science.gov (United States)

    Castaños, O.; Figueroa, A.; López, J.; López-Peña, R.

    2017-05-01

    An algebraic procedure to find extremal density matrices for the expectation value of a finite Hamiltonian matrix is established. The extremal density matrices for pure states provide a complete description of the system, that is, its corresponding energy spectrum and projectors. For density matrices representing mixed states, one gets the most probable eigenstates that yield extremal mean values of the energy. The procedure uses mainly the stationary solutions of the von Neumann equation of motion, the orbits of the Hamiltonian, and the positivity conditions of the density matrix. The method is illustrated for matrix Hamiltonians of dimensions d = 2 and d = 3.

  7. Persistent Self-Association of Solute Molecules in Solution.

    Science.gov (United States)

    Tang, Weiwei; Mo, Huaping; Zhang, Mingtao; Parkin, Sean; Gong, Junbo; Wang, Jingkang; Li, Tonglei

    2017-11-02

    The structural evolvement of a solute determines the crystallization outcome. The self-association mechanism leading to nucleation, however, remains poorly understood. Our current study explored the solution chemistry of a model compound, tolfenamic acid (TFA), in three different solvents mainly by solution NMR. It was found that hydrogen-bonded pairs of solute-solute or solute-solvent stack with each through forming a much weaker π-π interaction as the concentration increases. Depending on the solvent, configurations of the solution species may be retained in the resultant crystal structure or undergo rearrangement. Yet, the π-π stacking is always retained in the crystal regardless of the solvent used for the crystallization. The finding suggests that nucleation not only involves the primary intermolecular interaction (hydrogen bonding) but also engages the secondary forces in the self-assembly process.

  8. Exact Solutions to Maccari's System

    Science.gov (United States)

    Pan, Jun-Ting; Gong, Lun-Xun

    2007-07-01

    Based on the generalized Riccati relation, an algebraic method to construct a series of exact solutions to nonlinear evolution equations is proposed. Being concise and straightforward, the method is applied to Maccari's system, and some exact solutions of the system are obtained. The method is of important significance in exploring exact solutions for other nonlinear evolution equations.

  9. 2010 Water & Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  10. Natural climate solutions

    Science.gov (United States)

    Griscom, Bronson W.; Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y‑1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y‑1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e‑1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2‑1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  11. Fire danger rating network density

    Science.gov (United States)

    Rudy M. King; R. William Furman

    1976-01-01

    Conventional statistical techniques are used to answer the question, "What is the necessary station density for a fire danger network?" The Burning Index of the National Fire-Danger Rating System is used as an indicator of fire danger. Results are presented as station spacing in tabular form for each of six regions in the western United States.

  12. Bounded Densities and Their Derivatives

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, V.

    2009-01-01

    This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing ...

  13. SYNTHESIS, CHARACTERIZATION AND DENSITY FUNCTIONAL ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. We synthesized a number of aniline derivatives containing acyl groups to compare their barriers of rotation around the N-CO groups. Geometry optimization for all the rotamers have been performed using density functional theory (DFT) at the B3LYP/6-31G** level of theory. For each stationary point we carried ...

  14. High density matter at RHIC

    Indian Academy of Sciences (India)

    Keywords. Quark-gluon plasma; relativistic heavy ion physics; relativistic heavy ion collider ... matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already ...

  15. Density estimation from local structure

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2009-11-01

    Full Text Available Mixture Model (GMM) density function of the data and the log-likelihood scores are compared to the scores of a GMM trained with the expectation maximization (EM) algorithm on 5 real-world classification datasets (from the UCI collection). They show...

  16. Crown management and stand density

    Science.gov (United States)

    Thomas J. Dean; V. Clark Baldwin

    1996-01-01

    Determination of optimal stand-density continues to be a difficult problem. A trial cannot be established on every combination of soils, topography, and climate possible across the range of a widely distributed species such as loblolly pine, and continual advancements in nutrition and vegetation management, breeding, and utilization make established trials obsolete....

  17. An experimental electron density investigation

    Indian Academy of Sciences (India)

    Unknown

    based on X-ray diffraction measurements at 130 K. The electron density and its associated properties have been evaluated at the bond and the ring critical points for the naphthalene residues as well as for the central ring. The variation of the Laplacian along the axis, above and below the ring plane, is found to be symmetric ...

  18. The topology of the Coulomb potential density. A comparison with the electron density, the virial energy density, and the Ehrenfest force density.

    Science.gov (United States)

    Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan

    2017-12-15

    The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Modeling mantle circulation and density distributions in subduction zones: Implications for seismic studies

    Science.gov (United States)

    Kincaid, C. R.; Druken, K. A.; Griffiths, R. W.; Long, M. D.; Behn, M. D.; Hirth, G.

    2009-12-01

    Subduction of ocean lithosphere drives plate tectonics, large-scale mantle circulation and thermal-chemical recycling processes through arcs. Seismologists have made important advances in our ability to map circulation patterns in subduction zones though anisotropy data/methods and in providing detailed images of mantle density fields. Increasingly, seismic and geodynamic disciplines are combining to extend our understanding of time varying subduction processes and associated vertical mass and energy fluxes. We use laboratory experiments to characterize three-dimensional flow fields in convergent margins for a range in plate forcing conditions and background, buoyancy-driven flow scenarios. Results reveal basic patterns in circulation, buoyant flow morphologies and density distributions that have implications for reconciling seismic data with mantle convection models. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000km of the mantle. Subducting lithosphere is modeled with a Phenolic plate and back-arc extension is produced using Mylar sheets. We recreate basic subduction styles observed in previous dynamic subduction models using simplified, kinematic forcing. Slab plate segments, driven by hydraulic pistons, move with various combinations of downdip, rollback and steepening motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of olivine alignment through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3D velocity fields for use in directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening, back-arc extension) in convergent margins produce relatively simple anisotropy patterns (e.g., trench-normal alignments) and underscore the importance of initial strain marker orientations on alignment patterns in the wedge. Results also

  20. Dual Cryogenic Capacitive Density Sensor

    Science.gov (United States)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  1. Enthalpy of solution of biuret in various aqueous electrolyte solutions and in an urea solution

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Hisashi; Murakami, Sachio (Osaka City Univ. (Japan))

    1989-06-30

    Enthalpies of biuret which is simplest amido acid and does not have hydrophobic group, in various aqueous solutions and in urea solution were measured at 298.15K to clarify the influence of salt on polymer conformal changes of organism or structure and functions of membrane. The isoperibol calorimeter where the quartz thermometer was used as the thermal sensor, was used in the measurement. The performance of this calorimeter was tested by comparing measurements with values in references. From the analysis of enthalpies of biuret solutions, following results of solute-solute-solvent interactions could be obtained: the rate where biuret destroys water structure is smaller in salt solutions than in aqueous solutions and the tendency depends on the ion size; ion-water interaction weakens owing to the ion-biuret interaction in salt solution of biuret; and water molecules are made free. 25 refs., 4 figs., 5 tabs.

  2. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Arnholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points....... First, rather than unions settling for a semi-automatic response to membership decline, the ‘organising model’ was actively imported as a strategic tool for challenging alternative responses to membership decline. Second, the organising model was actively translated into a Danish context and most unions...... cherry-pick some elements while leaving fundamental aspects out. The study nevertheless indicates that a lack of coherency and model-fit to Danish industrial relations might hamper the positive effects of the organising strategy....

  3. Transient Thermoelectric Solution Employing Green's Functions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    The study works to formulate convenient solutions to the problem of a thermoelectric couple operating under a time varying condition. Transient operation of a thermoelectric will become increasingly common as thermoelectric technology permits applications in an increasing number of uses. A number of terrestrial applications, in contrast to steady-state space applications, can subject devices to time varying conditions. For instance thermoelectrics can be exposed to transient conditions in the automotive industry depending on engine system dynamics along with factors like driving style. In an effort to generalize the thermoelectric solution a Greens function method is used, so that arbitrary time varying boundary and initial conditions may be applied to the system without reformulation. The solution demonstrates that in thermoelectric applications of a transient nature additional factors must be taken into account and optimized. For instance, the materials specific heat and density become critical parameters in addition to the thermal mass of a heat sink or the details of the thermal profile, such as oscillating frequency. The calculations can yield the optimum operating conditions to maximize power output andor efficiency for a given type of device.

  4. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX autosol wizard

    Energy Technology Data Exchange (ETDEWEB)

    Terwilliger, Thomas C [Los Alamos National Laboratory; Adams, Paul D [LBNL; Read, Randy J [UNIV OF CAMBRIDGE; Mccoy, Airlie J [UNIV OF CAMBRIDGE

    2008-01-01

    Ten measures of experimental electron-density-map quality are examined and the skewness of electron density is found to be the best indicator of actual map quality. A Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution.

  5. Existence of global solutions to free boundary value problems for bipolar Navier-Stokes-Possion systems

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2013-09-01

    Full Text Available In this article, we consider the free boundary value problem for one-dimensional compressible bipolar Navier-Stokes-Possion (BNSP equations with density-dependent viscosities. For general initial data with finite energy and the density connecting with vacuum continuously, we prove the global existence of the weak solution. This extends the previous results for compressible NS [27] to NSP.

  6. Straw Formation and Enhanced Damping of Strong Density Waves in Saturn’s Rings

    Science.gov (United States)

    Stewart, Glen R.

    2017-06-01

    High resolution Cassini images of strong density waves in Saturn’s rings often show kilometer-scale structures in the wave troughs that are sometimes described as straw-like structures. These structures are likely formed by transient gravitational instabilities within the density wave and have the potential to greatly enhance the local viscous angular momentum transport and thereby limit the maximum amplitude of the density wave. A Hamiltonian theory for density waves has been developed that can describe the rate of local gravitational instabilities in the wave train. The Hamiltonian for single particle motion in the vicinity of an inner Lindblad resonance with a Saturnian satellite can be formulated such that the angle variable conjugate to the radial action is the resonant argument for the resonance. The density wave can then be derived using Hamiltonian perturbation methods to remove the satellite perturbation such that the transformed radial action and conjugate angles include the usual solution for self-gravitating density waves. Local gravitational instabilities in the density wave can now be formulated using a linearized collisionless Boltzmann equation that is expressed in terms of the transformed action-angle variables that contain the density wave solution. The gravitational potential of the linearized perturbation is found to be enhanced by a factor of ten or more in strong density waves, which likely explains the observation of kilometer-scale structures in these waves. The Hamiltonian formalism can also be used to derive an enhanced effective viscosity that results from these straw-like structures.

  7. On the solution of the Hartree-Fock-Bogoliubov equations by the conjugate gradient method

    Energy Technology Data Exchange (ETDEWEB)

    Egido, J.L. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Lessing, J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Martin, V. [Analisis Numerico, Facultad de Informatica, Universidad Politecnica de Madrid, E-28660 Boadilla del Monte, Madrid (Spain); Robledo, L.M. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1995-11-06

    The conjugate gradient method is formulated in the Hilbert space for density and non-density dependent Hamiltonians. We apply it to the solution of the Hartree-Fock-Bogoliubov equations with constraints. As a numerical application we show calculations with the finite range density dependent Gogny force. The number of iterations required to reach convergence is reduced by a factor of three to four as compared with the standard gradient method. (orig.).

  8. Density functional theory of gas-liquid phase separation in dilute binary mixtures.

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-22

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas [Formula: see text] (the Gibbs energy of transfer) is considerably larger than the thermal energy [Formula: see text] for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by [Formula: see text], where [Formula: see text] is the solute density added in liquid. For [Formula: see text], phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  9. Ultrasonic technique for monitoring of liquid density variations.

    Science.gov (United States)

    Kazys, R; Rekuviene, R; Sliteris, R; Mazeika, L; Zukauskas, E

    2015-01-01

    A novel ultrasonic measurement technique for density measurements of different liquids in extreme conditions has been developed. The proposed density measurement method is based on transformation of the acoustic impedance of the measured liquid. The higher accuracy of measurements is achieved by means of the λ/4 acoustic matching layer between the load and the ultrasonic waveguide transducer. Introduction of the matching layer enhances sensitivity of the measurement system. Sometimes, the density measurements must be performed in very complex conditions: high temperature (up to 200 °C), pressure (up to 10 MPa), and high chemical activity of the medium under measurement. In this case, the special geometry metal waveguides are proposed to use in order to protect the piezoelectric transducer surface from influence of a high temperature. The experimental set-up of technique was calibrated using the reference liquids with different densities: ethyl ether, ethyl alcohol, distilled water, and different concentration (20%, 40%, and 60%) sugar-water solutions. The uncertainty of measurements is less than 1%. The proposed measurement method was verified in real conditions by monitoring the density of a melted polypropylene during manufacturing process.

  10. High-density waveguide superlattices with low crosstalk

    Science.gov (United States)

    Song, Weiwei; Gatdula, Robert; Abbaslou, Siamak; Lu, Ming; Stein, Aaron; Lai, Warren Y.-C.; Provine, J.; Pease, R. Fabian W.; Christodoulides, Demetrios N.; Jiang, Wei

    2015-05-01

    Silicon photonics holds great promise for low-cost large-scale photonic integration. In its future development, integration density will play an ever-increasing role in a way similar to that witnessed in integrated circuits. Waveguides are perhaps the most ubiquitous component in silicon photonics. As such, the density of waveguide elements is expected to have a crucial influence on the integration density of a silicon photonic chip. A solution to high-density waveguide integration with minimal impact on other performance metrics such as crosstalk remains a vital issue in many applications. Here, we propose a waveguide superlattice and demonstrate advanced superlattice design concepts such as interlacing-recombination that enable high-density waveguide integration at a half-wavelength pitch with low crosstalk. Such waveguide superlattices can potentially lead to significant reduction in on-chip estate for waveguide elements and salient enhancement of performance for important applications, opening up possibilities for half-wavelength-pitch optical-phased arrays and ultra-dense space-division multiplexing.

  11. Analytical solutions for cosmological perturbations in a one-component universe with shear stress

    CERN Document Server

    Škovran, Matej

    2014-01-01

    In this paper we construct explicit solutions for scalar, vector and tensor perturbations in a less known setting, a flat universe filled by an isotropic elastic solid with pressure and shear modulus proportional to energy density. The solutions generalize well known formulas for cosmological perturbations in a universe filled by an ideal fluid.

  12. A discrete solvent reaction field model for calculating frequency-dependent hyperpolarizabilities of molecules in solution

    NARCIS (Netherlands)

    Jensen, L; van Duijnen, PT; Snijders, JG

    2003-01-01

    We present a discrete solvent reaction field (DRF) model for the calculation of frequency-dependent hyperpolarizabilities of molecules in solution. In this model the solute is described using density functional theory (DFT) and the discrete solvent molecules are described with a classical

  13. Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2017-01-05

    Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the non-existence of solutions.

  14. Solution Space Coupling in the Random K-Satisfiability Problem

    Science.gov (United States)

    Zeng, Ying; Zhou, Hai-Jun

    2013-09-01

    The random K-satisfiability (K-SAT) problem is very difficult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We divide a given difficult random K-SAT formula into two easy sub-formulas and let the two corresponding solution spaces to interact with each other through a coupling field x. We investigate the statistical mechanical property of this coupled system by mean field theory and computer simulations. The coupled system has an ergodicity-breaking (clustering) transition at certain critical value xd of the coupling field. At this transition point, the mean overlap value between the solutions of the two solution spaces is very close to 1. The mean energy density of the coupled system at its clustering transition point is less than the mean energy density of the original K-SAT problem at the temperature-induced clustering transition point. The implications of this work for designing new heuristic K-SAT solvers are discussed.

  15. Criticality and Heterogeneity in the Solution Space of Random Constraint Satisfaction Problems

    Science.gov (United States)

    Zhou, Haijun

    Random constraint satisfaction problems are interesting model systems for spin-glasses and glassy dynamics studies. As the constraint density of such a system reaches certain threshold value, its solution space may split into extremely many clusters. In this work we argue that this ergodicity-breaking transition is preceded by a homogeneity-breaking transition. For random K-SAT and K-XORSAT, we show that many solution communities start to form in the solution space as the constraint density reaches a critical value αcm, with each community containing a set of solutions that are more similar with each other than with the outsider solutions. At αcm the solution space is in a critical state. The connection of these results to the onset of dynamical heterogeneity in lattice glass models is discussed.

  16. Thermodynamic and transport properties of some biologically active compounds in aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dhondge, Sudhakar S., E-mail: s_dhondge@hotmail.co [P.G. Department of Chemistry, S.K. Porwal College, Kamptee, Nagpur 441 002 (India); Zodape, Sangesh P.; Parwate, Dilip V. [Department of Chemistry, R.T.M. Nagpur University, Nagpur 440 033 (India)

    2011-01-15

    The experimental data of density and viscosity have been obtained for aqueous solutions of biologically active compounds like salbutamol sulphate (SS), diethylcarbamazine citrate (DEC), and chlorpheniramine maleate (CPM) in the concentration range (0 to 0.15) mol . kg{sup -1} at three different temperatures. The derived parameters, such as apparent molar volume of solute ({phi}{sub V})), limiting apparent molar volume of solute ({phi}{sub V}{sup 0}), limiting apparent molar expansivity ({phi}{sub E}{sup 0}), thermal expansion coefficient ({alpha}*) and Jones-Dole equation viscosity A and B coefficients, were obtained using the density and viscosity results. It has been observed that the electrolyte-salt (SS) as well as adducts exhibit a positive viscosity B coefficient having negative ((dB)/(dT)). These results are interpreted in the light of possible solute-solute and solute-solvent interactions.

  17. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.

    2016-05-13

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  18. Future climate. Engineering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, J.F.; Hagedorn-Rasmussen, P.; Fonnesbech, B.

    2009-09-15

    Future Climate Engineering Solutions - Joint Report is the common output and a documentation of more than 1 year's effort by 13 engineering associations - in 12 countries - to demonstrate how technologies can combat climate change. The report consists of three parts: Summaries of 10 national climate plans and technology prospects, 5 Key Common Findings, and a Climate Call from Engineers to create a new global climate treaty. The basic assumption of the project is recognition that GHG emissions, and their concentration in the atmosphere, must be reduced to a sustainable level. The project definition of a sustainable level is equivalent to the best-case stabilisation scenario which was presented in the 4th Assessment Report (AR4) by the UN Intergovernmental Panel on Climate Change (IPCC), whereby the global mean temperature is most likely to stabilise at 2.0-2.4 deg. C. The Future Climate website www.futureclimate.info holds more information about the project, including possibility to download project material, including the full national climate plans.

  19. Passive Micromixing Solution

    Directory of Open Access Journals (Sweden)

    Brahim DENNAI

    2011-08-01

    Full Text Available Mixing rate is characterized by the diffusion flux given by the Fick’s law. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet flow. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 92 % within a typical mixing chamber of 2.25 mm diameter and 0.20 mm length when the Reynolds number is Re = 490. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in micro system.

  20. Solutions for Hot Situations

    Science.gov (United States)

    2003-01-01

    From the company that brought the world an integral heating and cooling food service system after originally developing it for NASA's Apollo Program, comes yet another orbital offshoot: a product that can be as thin as paper and as strong as steel. Nextel Ceramic Textiles and Composites from 3M Company offer space-age protection and innovative solutions for hot situations, ranging from NASA to NASCAR. With superior thermal protection, Nextel fabrics, tape, and sleevings outperform other high temperature textiles such as aramids, carbon, glass, and quartz, permitting engineers and manufacturers to handle applications up to 2,500 F (1,371 C). The stiffness and strength of Nextel Continuous Ceramic Fibers make them a great match for improving the rigidity of aluminum in metal matrix composites. Moreover, the fibers demonstrate low shrinkage at operating temperatures, which allow for the manufacturing of a dimensionally stable product. These novel fibers also offer excellent chemical resistance, low thermal conductivity, thermal shock resistance, low porosity, and unique electrical properties.

  1. Automated analysis of mammographic densities.

    Science.gov (United States)

    Byng, J W; Boyd, N F; Fishell, E; Jong, R A; Yaffe, M J

    1996-05-01

    Information derived from mammographic parenchymal patterns provides one of the strongest indicators of the risk of developing breast cancer. To address several limitations of subjective classification of mammographic parenchyma into coarse density categories, we have been investigating more quantitative, objective methods of analysing the film-screen mammogram. These include measures of the skewness of the image brightness histogram, and of image texture characterized by the fractal dimension. Both measures were found to be strongly correlated with radiologists' subjective classifications of mammographic parenchyma (Spearman correlation coefficients, Rs = -0.88 and -0.76 for skewness and fractal dimension measurements, respectively). Further, neither measure was strongly dependent on simulated changes in mammographic technique. Correlation with subjective classification of mammographic density was better when both the skewness and fractal measures were used in combination than when either was used alone. This suggests that each feature provides some independent information.

  2. Network reconstruction via density sampling

    CERN Document Server

    Squartini, Tiziano; Gabrielli, Andrea; Garlaschelli, Diego

    2016-01-01

    Reconstructing weighted networks from partial information is necessary in many important circumstances, e.g. for a correct estimation of systemic risk. It has been shown that, in order to achieve an accurate reconstruction, it is crucial to reliably replicate the empirical degree sequence, which is however unknown in many realistic situations. More recently, it has been found that the knowledge of the degree sequence can be replaced by the knowledge of the strength sequence, which is typically accessible, complemented by that of the total number of links, thus considerably relaxing the observational requirements. Here we further relax these requirements and devise a procedure valid when even the the total number of links is unavailable. We assume that, apart from the heterogeneity induced by the degree sequence itself, the network is homogeneous, so that its link density can be estimated by sampling subsets of nodes with representative density. We show that the best way of sampling nodes is the random selecti...

  3. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  4. Economies of density for on-site waste water treatment.

    Science.gov (United States)

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-09-15

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied extensively, the economics of decentralised WMS are less understood. A key motivation for studying the costs of decentralised WMS is to compare the cost of centralised and decentralised WMS in order to decide on cost-efficient sanitation solutions. This paper outlines a model designed to assess those costs which depend on the spatial density of decentralised wastewater treatment plants in a region. Density-related costs are mostly linked to operation and maintenance activities which depend on transportation, like sludge removal or the visits of professionals to the plants for control, servicing or repairs. We first specify a modelled cost-density relationship for a region in a geometric two-dimensional space by means of heuristic routing algorithms that consider time and load-capacity restrictions. The generic model is then applied to a Swiss case study for which we specify a broad range of modelling parameters. As a result, we identify a 'hockey-stick'-shaped cost curve that is characterised by strong cost reductions at high density values which level out at around 1 to 1.5 plants per km(2). Variations in the cost curves are mostly due to differences in management approaches (scheduled or unscheduled emptying). In addition to the well-known diseconomies of scale in the case of centralised sanitation, we find a similar generic cost behaviour for decentralised sanitation due to economies of density. Low densities in sparsely populated regions thus result in higher costs for both centralised and decentralised system. Policy implications are that efforts to introduce decentralised options in a region should consider the low-density/high-cost problem when comparing centralised

  5. Density functionals from deep learning

    Science.gov (United States)

    McMahon, Jeffrey

    Density-functional theory is a formally exact description of a many-body quantum system in terms of its density; in practice, however, approximations to the universal density functional (DF) are necessary. Machine learning has recently been proposed as a novel approach to discover such a DF (or components of it). Conventional machine learning algorithms, however, are limited in their ability to process data in their raw form, leading to invariance and/or sensitivity issues. In this presentation, an alternative approach based on deep learning will be demonstrated. Deep learning allows computational models that are capable of discovering intricate structure in large and/or high-dimensional data sets with multiple levels of abstraction, and do not suffer from the aforementioned issues. Results from the application of this approach to the prediction of the kinetic-energy DF of noninteracting electrons will be presented. Using theoretical results from computer science, a connection between the underlying model and the theorems of Hohenberg and Kohn will also be suggested.

  6. On VC-density over indiscernible sequences

    OpenAIRE

    Guingona, Vincent; Hill, Cameron Donnay

    2011-01-01

    In this paper, we study VC-density over indiscernible sequences (denoted VC_ind-density). We answer an open question in [1], showing that VC_ind-density is always integer valued. We also show that VC_ind-density and dp-rank coincide in the natural way.

  7. Density heterogeneity of the cratonic lithosphere

    DEFF Research Database (Denmark)

    Cherepanova, Yulia; Artemieva, Irina

    2015-01-01

    correlation between mantle density variations and the tectonic setting. Three types of cratonic mantle are recognized from mantle density anomalies. 'Pristine' cratonic regions not sampled by kimberlites have the strongest depletion with density deficit of 1.8-3.0% (and SPT density of 3.29-3.33 t/m3...

  8. Design Difficulties in Stand Density Studies

    Science.gov (United States)

    Frank A. Bennett

    1969-01-01

    Designing unbiased stand density studies is difficult. An acceptable sample requires stratification of the plots of age, site, and density. When basal area, percent stocking, or Reineke's stand density index is used as the density measure, this stratification forces a high negative correlation between site and number of trees per acre. Mortality in trees per acre...

  9. Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions

    KAUST Repository

    Shinagawa, Tatsuya

    2015-04-24

    To maintain local pH levels near the electrode during electrochemical reactions, the use of buffer solutions is effective. Nevertheless, the critical effects of the buffer concentration on electrocatalytic performances have not been discussed in detail. In this study, two fundamental electrochemical reactions, oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR), on a platinum rotating disk electrode are chosen as model gas-related aqueous electrochemical reactions at various phosphate concentrations. Our detailed investigations revealed that the kinetic and limiting diffusion current densities for both the ORR and HOR logarithmically decrease with increasing solute concentration (log|jORR|=-0.39c+0.92,log|jHOR|=-0.35c+0.73). To clarify the physical aspects of this phenomenon, the electrolyte characteristics are addressed: with increasing phosphate concentration, the gas solubility decrease, the kinematic viscosity of the solution increase and the diffusion coefficient of the dissolved gases decrease. The simulated limiting diffusion currents using the aforementioned parameters match the measured ones very well (log|jORR|=-0.43c+0.99,log|jHOR|=-0.40c+0.54), accurately describing the consequences of the electrolyte concentration. These alterations of the electrolyte properties associated with the solute concentration are universally applicable to other aqueous gas-related electrochemical reactions because the currents are purely determined by mass transfer of the dissolved gases. © 2015 The Authors.

  10. The Velocity of Density: Can We Build More Sustainable Cities Fast Enough?

    Directory of Open Access Journals (Sweden)

    Markus Moos

    2017-12-01

    Full Text Available Urban planners now commonly advocate for increases in density of the built environment to reduce car dependence and enhance the sustainability of cities. The analysis in this paper asks about the speed at which density as a sustainability policy can be implemented. The Greater Toronto Hamilton Area (GTHA is used as a case study to measure how quickly existing areas could be densified to meet minimum transit supportive density thresholds. Almost 70% of existing residents live in neighborhoods with densities below minimum transit supportive densities. The findings show that increases in minimum densities could be attained roughly within the target time horizon of existing growth plans, but that these increases hinge on assumptions of continuing high growth rates. The sustainability of cities relies on a high ‘velocity of density’, a term proposed in the paper to refer to the speed at which density can be implemented. Density is often slowed or halted by local residents, which could prove problematic if sustainability objectives require speedy implementation, for instance to address climate change. Analysis of the velocity of density suggests that planning for sustainability, and climate change, in cities would benefit from considering a broader set of solutions to car dependence in existing low-density areas than changes to the density of the built form alone.

  11. Coupling quantum Monte Carlo and independent-particle calculations: self-consistent constraint for the sign problem based on density or density matrix

    CERN Document Server

    Qin, Mingpu; Zhang, Shiwei

    2016-01-01

    The vast majority of quantum Monte Carlo (QMC) calculations in interacting fermion systems require a constraint to control the sign problem. The constraint involves an input trial wave function which restricts the random walks. We introduce a systematically improvable constraint which relies on the fundamental role of the density or one-body density matrix. An independent-particle calculation is coupled to an auxiliary-field QMC calculation. The independent-particle solution is used as the constraint in QMC, which then produces the input density or density matrix for the next iteration. The constraint is optimized by the self-consistency between the many-body and independent-particle calculations. The approach is demonstrated in the two-dimensional Hubbard model by accurately determining the spin densities when collective modes separated by tiny energy scales are present in the magnetic and charge correlations. Our approach also provides an ab initio way to predict effective "U" parameters for independent-par...

  12. Density fluctuations in lattice-Boltzmann simulations of multiphase fluids in a closed system

    Energy Technology Data Exchange (ETDEWEB)

    H. Basagaoglu; Paul Meakin

    2007-02-01

    A two-dimensional single component two-phase lattice Boltzmann model was used to simulate the Rayleigh-Taylor instability in a closed system. Spatiotemporally variable densities were generated by gravity acting on the fluid density. The density fluctuations were triggered by rapid changes in the fluid velocity induced by changes in the interface geometry and impact of the dense fluid on the rigid lower boundary of the computational domain. The ratio of the maximum density fluctuations to the maximum fluid velocity increased more rapidly at low velocities than at high velocities. The ratio of the maximum density fluctuations in the dense phase to its maximum velocity was on the order of the inverse of the sound speed. The solution became unstable when the density-based maximum local Knudsen number exceeded 0.13.

  13. Properties of scintillator solutes

    Energy Technology Data Exchange (ETDEWEB)

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  14. Iodine addition using triiodide solutions

    Science.gov (United States)

    Rutz, Jeffrey A.; Muckle, Susan V.; Sauer, Richard L.

    1992-01-01

    The study develops: a triiodide solution for use in preparing ground service equipment (GSE) water for Shuttle support, an iodine dissolution method that is reliable and requires minimal time and effort to prepare, and an iodine dissolution agent with a minimal concentration of sodium salt. Sodium iodide and hydriodic acid were both found to dissolve iodine to attain the desired GSE iodine concentrations of 7.5 +/- 2.5 mg/L and 25 +/- 5 mg/L. The 1.75:1 and 2:1 sodium iodide solutions produced higher iodine recoveries than the 1.2:1 hydriodic acid solution. A two-hour preparation time is required for the three sodium iodide solutions. The 1.2:1 hydriodic acid solution can be prepared in less than 5 min. Two sodium iodide stock solutions (2.5:1 and 2:1) were found to dissolve iodine without undergoing precipitation.

  15. Electrically charged black hole solutions in generalized gauge field theories

    Science.gov (United States)

    Diaz-Alonso, J.; Rubiera-Garcia, D.

    2011-09-01

    We summarize the main features of a class of anomalous (asymptotically flat, but non Schwarzschild-like) gravitational configurations in models of gravitating non-linear electrodynamics (G-NED) whose Lagrangian densities are defined as arbitrary functions of the two field invariants and constrained by several physical admissibility conditions. This class of models and their associated electrostatic spherically symmetric black hole (ESSBH) solutions are characterized by the behaviours of the Lagrangian densities around the vacuum and at the boundary of their domain of definition.

  16. Electrically charged black hole solutions in generalized gauge field theories

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Alonso, J; Rubiera-Garcia, D, E-mail: joaquin.diaz@obspm.fr, E-mail: diego.rubiera-garcia@obspm.fr [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot. 5 Place Jules Janssen, 92190 Meudon (France); Departamento de Fisica, Universidad de Oviedo. Avda. Calvo Sotelo 18, 33007 Oviedo, Asturias (Spain)

    2011-09-22

    We summarize the main features of a class of anomalous (asymptotically flat, but non Schwarzschild-like) gravitational configurations in models of gravitating non-linear electrodynamics (G-NED) whose Lagrangian densities are defined as arbitrary functions of the two field invariants and constrained by several physical admissibility conditions. This class of models and their associated electrostatic spherically symmetric black hole (ESSBH) solutions are characterized by the behaviours of the Lagrangian densities around the vacuum and at the boundary of their domain of definition.

  17. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amooey, Ali Akbar; Ghasemi, Shahram; Mirsoleimani-azizi, Seyed Mohammad; Gholaminezhad, Zohreh; Chaichi, Mohammad Javad [University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2014-06-15

    Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency.

  18. Study of accurate volume measurement system for plutonium nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Hosoma, T. [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-12-01

    It is important for effective safeguarding of nuclear materials to establish a technique for accurate volume measurement of plutonium nitrate solution in accountancy tank. The volume of the solution can be estimated by two differential pressures between three dip-tubes, in which the air is purged by an compressor. One of the differential pressure corresponds to the density of the solution, and another corresponds to the surface level of the solution in the tank. The measurement of the differential pressure contains many uncertain errors, such as precision of pressure transducer, fluctuation of back-pressure, generation of bubbles at the front of the dip-tubes, non-uniformity of temperature and density of the solution, pressure drop in the dip-tube, and so on. The various excess pressures at the volume measurement are discussed and corrected by a reasonable method. High precision-differential pressure measurement system is developed with a quartz oscillation type transducer which converts a differential pressure to a digital signal. The developed system is used for inspection by the government and IAEA. (M. Suetake)

  19. Solute diffusion in liquid metals

    Science.gov (United States)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  20. Colligative properties of simple solutions.

    Science.gov (United States)

    Andrews, F C

    1976-11-05

    Vapor pressure lowering, osmotic pressure, boiling point elevation, and freezing point depression are all related quantitatively to the decrease in micro(1)(soln) upon the addition of solute in forming a solution. In any equilibrium system, regardless of whether it is in a gravitational field or whether it contains walls, semipermeable membranes, phase transitions, or solutes, all equilibria are maintained locally, in the small region of the equilibrium, by the equality of micro(1)(soln). If there are several subsystems in a gravitational field, at any fixed height, microi will have the same value in each subsystem into which substance i can get, and microi + M(i)gh is constant throughout the entire system. In a solution, there is no mechanism by which solvent and solute molecules could sustain different pressures. Both the solvent and solute are always under identical pressures in a region of solution, namely, the pressure of the solution in that region. Since nature does not know which component we call the solvent and which the solute, equations should be symmetric in the two (acknowledging that the nonvolatile component, if any, is commonly chosen to be solute). Simple molecular pictures illustrate what is happening to cause pressure (positive or negative) in liquids, vapor pressure of liquids, and the various colligative properties of solutions. The only effect of solute involved in these properties is that it dilutes the solvent, with the resulting increase in S and decrease in micro(1)(soln). Water can be driven passively up a tree to enormous heights by the difference between its chemical potential in the roots and the ambient air. There is nothing mysterious about the molecular bases for any of these phenomena. Biologists can use the well-understood pictures of these phenomena with confidence to study what is happening in the complicated living systems they consider.