Moreau, F; Romani, R
1982-11-01
Mitochondria from avocado (Persea americana Mill, var. Fuerte and Hass) can be rapidly prepared at every stage of ripening using differential centrifugation and self-generated Percoll gradients. The procedure results in improved oxidative and phosphorylative properties, especially for mitochondria isolated from preclimacteric fruits.A gradual change in the buoyant density of avocado mitochondria takes place during ripening. Climacteric and postclimacteric avocado mitochondria have the same buoyant density as other plant mitochondria (potato, cauliflower), whereas mitochondria from preclimacteric fruit have a lower density. The transition in buoyant density occurs during the climacteric rise, and two populations of intact mitochondria (p = 1.060 and p = 1.075) can be separated at this stage. Evidence indicates that the difference in mitochondrial buoyant density between preclimacteric and postclimacteric mitochondria is likely due to interactions with soluble cytosolic components.
Buoyant densities of phototrophic sulfur bacteria and cyanobacteria
Guerrero, R.
1985-01-01
The buoyant densities of bacterial cells are greatly influenced by the accumulation of intracellular reserve material. The buoyant density of phototrophic bacteria that are planktonic is of particular interest, since these organisms must remain in the photic zone of the water column for optimal growth. Separation of cells by their buoyant density may also be of use in separating and identifying organisms from a natural population. The bacteria used were obtained from pure cultures, enrichments, or samples taken directly from the environment.
Energy Technology Data Exchange (ETDEWEB)
Vranjes, J., E-mail: jvranjes@yahoo.com [Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife (Spain); Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain); Kono, M., E-mail: kono@fps.chuo-u.ac.jp [Faculty of Policy Studies, Chuo University, Tokyo (Japan)
2015-01-15
Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.
Density gradient centrifugation in urografin of Moraxella and Kingella cells and appendages.
Frøholm, L O; Bøvre, K
1978-04-01
Purification of fimbriae (pili) by density gradient banding in Urografin medium was attempted. Moraxella nonliquefaciens and Kingella kingae fimbriae were of higher density than their cells of origin, but fimbrial fractions obtained by homogenization and differential centrifugation still banded together with presumed outer membrane fragments and some whole cells in Urografin gradients. The cellular density of genetic variants with different fimbriation/competence levels was also studied. For one strain of M. nonliquefaciens and two strains of K. kingae, cells harvested from agar plates tended to show several bands on isopycnic density gradient centrifugation, with slightly higher general density of fimbriated variants than non-fimbriated. A single density band could be observed with cells from log phase broth cultures of selected strains which showed no distinct difference between fimbriation or competence variants of each strain. Cells of M. nonliquefaciens and M. bovis showed comparable buoyant densities, whereas those of K. kingae had a higher density.
Energy Technology Data Exchange (ETDEWEB)
Abe, Satoshi, E-mail: abe.satoshi@jaea.go.jp; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke
2016-07-15
Highlights: • This paper shows results of a small scale experiment and CFD analyses on a density stratification erosion with a vertical buoyant jet. • The particle image velocimetry (PIV) and quadrupole mass spectrometer (QMS) with a multiport rotating valve were applied. • Two typical well-used RANS models were applied. • The simulated stratification erosion was in agreement with the experimental result, which suggested that the turbulence mixing occurred only in the jet impinging region. - Abstract: The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project to investigate thermal hydraulic phenomena in a reactor containment vessel during a severe accident. The hydrogen distribution in the vessel is one of significant safety issues in discussing a potential of hydrogen combustion in the containment. Density stratification and its break-up are important phenomena affecting the hydrogen distribution. This paper focuses on a density stratification erosion and break-up mechanism with a vertical buoyant jet promoting the turbulent helium transport. Small scale experiment and computational fluid dynamics (CFD) analyses were carried out for investigating this phenomena. In the experiment, a rectangular vessel made with acrylic plates with a width of 1.5 m, a length of 1.5 m and a height of 1.8 m was used for visualizing flow field with particle image velocimetry (PIV) system. The quadrupole mass spectrometer (QMS) system with a multiport rotating valve was applied for measuring gaseous concentration at 20 elevation points. In CFD analysis with OpenFOAM, two typical well-used turbulence models were used: low-Reynolds number type k–ε model and SST k–ω model, with a turbulence model modification to consider the buoyant effect in the stratification. As a result, the stratification erosion in the CFD analyses with the modified turbulence model agreed well with the experimental data, indicating importance of the turbulence damping by the buoyant effect.
Effects of Density Gradients on Braneworld Stars
Ovalle, Jorge
During the last few years the braneworld consequences on general relativity have been studied with great interest. The implications in both, cosmological and astrophysics scenarios, have been considered for many authors. However there are some aspects of braneworld consequences which have not been clearly elucidated yet. For instance, the role played for density gradients in the astrophysics scenario is not clear so far, leaving thus the study of braneworld stars as one of the most difficult scenarios. Here it is shown an approach which allows the study of density gradients and their consequences through the Weyl fluid produced inside a stellar distributions. Some general aspects are discussed in detail.
GPS, GNSS, and Ionospheric Density Gradients
Kintner, P. M.; O'Hanlon, B.; Humphreys, T. E.
2009-12-01
Ionospheric density and density gradients affect GNSS signals in two ways. They can introduce ranging errors or irregularities that form on the density gradients producing scintillation. Here we focus on the issue of ranging errors. There are two approaches to mitigating ranging errors produced by ionospheric density gradients which can be 20-30 m during major magnetic storms. The first approach is to use a reference receiver(s) to determine the ionospheric contribution to ranging errors. The ranging error is then transmitted to the user for correction within the mobile receiver. This approach is frequently referred to as differential GPS and, when multiple reference receivers are used, the system is referred to as an augmentation system. This approach is vulnerable to ionospheric gradients depending on the reference receiver spacing(s) and latency in applying the correction within the mobile receiver. The second approach is to transmit navigation signals at two frequencies and then use the relative delay between the two signals to both estimate the ranging error and calculate the correct range. Currently the dual frequency technique is used by US military receivers with an encryption key and some civilian receivers which must be stationary and average over times long compared to those required for navigation. However, the technology of space based radio navigation is changing. GPS will soon be a system with three frequencies and multiple codes. Furthermore Europe, Russia, and China are developing independent systems to complement and compete with GPS while India and Japan are developing local systems to enhance GPS performance in their regions. In this talk we address two questions. How do density gradients affect augmentation systems including the social consequences and will the new GPS/GNSS systems with multiple civilian frequencies be able to remove ionospheric errors. The answers are not at all clear.
DAENEN, S; HUIGES, W; MODDERMAN, E; HALIE, MR
1993-01-01
Studies with synchronized or exponentially growing bacteria and mammalian cell lines are not able to demonstrate small changes in buoyant density during the cell cycle. Flowcytometric analysis of density separated acute myeloid leukemia cells, a system not dependent on time-related variables, shows
A new framework for simulating forced homogeneous buoyant turbulent flows
Carroll, Phares L.; Blanquart, Guillaume
2015-06-01
This work proposes a new simulation methodology to study variable density turbulent buoyant flows. The mathematical framework, referred to as homogeneous buoyant turbulence, relies on a triply periodic domain and incorporates numerical forcing methods commonly used in simulation studies of homogeneous, isotropic flows. In order to separate the effects due to buoyancy from those due to large-scale gradients, the linear scalar forcing technique is used to maintain the scalar variance at a constant value. Two sources of kinetic energy production are considered in the momentum equation, namely shear via an isotropic forcing term and buoyancy via the gravity term. The simulation framework is designed such that the four dimensionless parameters of importance in buoyant mixing, namely the Reynolds, Richardson, Atwood, and Schmidt numbers, can be independently varied and controlled. The framework is used to interrogate fully non-buoyant, fully buoyant, and partially buoyant turbulent flows. The results show that the statistics of the scalar fields (mixture fraction and density) are not influenced by the energy production mechanism (shear vs. buoyancy). On the other hand, the velocity field exhibits anisotropy, namely a larger variance in the direction of gravity which is associated with a statistical dependence of the velocity component on the local fluid density.
Regularized Multitask Learning for Multidimensional Log-Density Gradient Estimation.
Yamane, Ikko; Sasaki, Hiroaki; Sugiyama, Masashi
2016-07-01
Log-density gradient estimation is a fundamental statistical problem and possesses various practical applications such as clustering and measuring nongaussianity. A naive two-step approach of first estimating the density and then taking its log gradient is unreliable because an accurate density estimate does not necessarily lead to an accurate log-density gradient estimate. To cope with this problem, a method to directly estimate the log-density gradient without density estimation has been explored and demonstrated to work much better than the two-step method. The objective of this letter is to improve the performance of this direct method in multidimensional cases. Our idea is to regard the problem of log-density gradient estimation in each dimension as a task and apply regularized multitask learning to the direct log-density gradient estimator. We experimentally demonstrate the usefulness of the proposed multitask method in log-density gradient estimation and mode-seeking clustering.
Effect of large density ratios on turbulence budgets in buoyant jets with coflow
Charonko, John; Prestridge, Kathy
2016-11-01
Turbulence statistics and energy transport budgets have been measured in two fully turbulent jets with coflow at density ratios of s = 1 . 2 & 4.2 to improve our understanding of variable-density mixing in turbulent flows. The exit Reynolds number was matched for both flows at 20,000 and simultaneous planar PIV and acetone PLIF measurements were acquired so the coupled evolution of the velocity and density statistics could be examined in terms of density-weighted average quantities. Measurements were taken over 10,000 snapshots of the flow at three locations to assure statistical convergence, and the spatial resolution (288 μm) is well below the Taylor microscale. Variable-density effects caused changes in both the magnitude and distribution of the evolving turbulence, with differences most pronounced within the jet half-width. As the jet tends toward pseudo self-similarity, a new scaling based on effective diameter and density successfully scales the energy budgets of the two jets, but significant differences were still seen in the core. For the high density ratio jet, the turbulent kinetic energy production is negative on the centerline, as opposed to slightly positive, leading to large changes in advection and diffusion. A mechanism for these differences is proposed.
Purification of white spot syndrome virus by iodixanol density gradient centrifugation.
Dantas-Lima, J J; Corteel, M; Cornelissen, M; Bossier, P; Sorgeloos, P; Nauwynck, H J
2013-10-01
Up to now, only a few brief procedures for purifying white spot syndrome virus (WSSV) have been described. They were mainly based on sucrose, NaBr and CsCl density gradient centrifugation. This work describes for the first time the purification of WSSV through iodixanol density gradients, using virus isolated from infected tissues and haemolymph of Penaeus vannamei (Boone). The purification from tissues included a concentration step by centrifugation (2.5 h at 60,000 g) onto a 50% iodixanol cushion and a purification step by centrifugation (3 h at 80,000 g) through a discontinuous iodixanol gradient (phosphate-buffered saline, 5%, 10%, 15% and 20%). The purification from infected haemolymph enclosed a dialysis step with a membrane of 1,000 kDa (18 h) and a purification step through the earlier iodixanol gradient. The gradients were collected in fractions and analysed. The number of particles, infectivity titre (in vivo), total protein and viral protein content were evaluated. The purification from infected tissues gave WSSV suspensions with a very high infectivity and an acceptable purity, while virus purified from haemolymph had a high infectivity and a very high purity. Additionally, it was observed that WSSV has an unusually low buoyant density and that it is very sensitive to high external pressures.
Evidence that platelet buoyant density, but not size, correlates with platelet age in man
Energy Technology Data Exchange (ETDEWEB)
Mezzano, D.; Hwang, K.; Catalano, P.; Aster, R.H.
1981-01-01
Following infusion of 51Cr-labeled autologous platelets into normal subjects, high-density (HD) and low-density (LD) platelet cohorts were isolated by prolonged centrifugation in isosmotic arabino-galactan (Stractan). Specific radio-activity of LD platelets declined rapidly post-infusion (T1/2 . 1.5 days), but specific radioactivity of HD platelets remained constant or increased over a 3--4-day period and gradually declined for 6--7 days thereafter. These differences were exaggerated when platelet cohorts enriched in LD or HD cells by slow centrifugation in high-density albumin were labeled and transfused. Mean survival of a platelet cohort enriched with HD cells was significantly (P less than 0.02) shorter (7.73 days) than that of a cohort enriched with LD cells (9.33) days). In normal subjects treated with aspirin, capacity for thromboxane synthesis was regained more rapidly (P less than 0.05) in LD than in HD platelets. HD and LD platelets differed only slightly in mean volume (HD platelets . 7.57 mu3, LD platelets . 6.87 mu3, 0.05 less than P less than 0.01). We believe the most logical interpretation of these findings is that under normal conditions in man, newly formed platelets are less dense on the average than total platelets and become more dense as they age in the circulation. Thus, specific radioactivity of LD platelets declines rapidly as these platelets move into a more dense compartment and are replaced by newly formed, unlabelled cells; specific radioactivity of HD platelets remains constant or increases as labelled platelets enter this compartment in numbers equal to or greater than the number leaving it at the end of their life span. The similarity in mean volumes of LD and HD platelets suggests that platelet size is unrelated to platelet age under normal conditions.
Evidence that platelet buoyant density, but not size, correlates with platelet age in man.
Mezzano, D; Hwang, K; Catalano, P; Aster, R H
1981-01-01
Following infusion of 51Cr-labeled autologous platelets into normal subjects, high-density (HD) and low-density (LD) platelet cohorts were isolated by prolonged centrifugation in isosmotic arabino-galactan (Stractan). Specific radio-activity of LD platelets declined rapidly post-infusion (T1/2 = 1.5 days), but specific radioactivity of HD platelets remained constant or increased over a 3--4-day period and gradually declined for 6--7 days thereafter. These differences were exaggerated when platelet cohorts enriched in LD or HD cells by slow centrifugation in high-density albumin were labeled and transfused. Mean survival of a platelet cohort enriched with HD cells was significantly (P less than 0.02) shorter (7.73 days) than that of a cohort enriched with LD cells (9.33) days). In normal subjects treated with aspirin, capacity for thromboxane synthesis was regained more rapidly (P less than 0.05) in LD than in HD platelets. HD and LD platelets differed only slightly in mean volume (HD platelets = 7.57 mu3, LD platelets = 6.87 mu3, 0.05 less than P less than 0.01). We believe the most logical interpretation of these findings is that under normal conditions in man, newly formed platelets are less dense on the average than total platelets and become more dense as they age in the circulation. Thus, specific radioactivity of LD platelets declines rapidly as these platelets move into a more dense compartment and are replaced by newly formed, unlabelled cells; specific radioactivity of HD platelets remains constant or increases as labelled platelets enter this compartment in numbers equal to or greater than the number leaving it at the end of their life span. The similarity in mean volumes of LD and HD platelets suggests that platelet size is unrelated to platelet age under normal conditions.
Energy Technology Data Exchange (ETDEWEB)
Ren, Y; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann Jr, N C; Smith, D R
2011-03-21
In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.
Jang, Myungsu; Kim, Somin; Jeong, Haneul; Ju, Sang-Yong
2016-10-01
Sorted single-walled carbon nanotubes (SWNTs) are of paramount importance for their utilization in high-end optoelectronic applications. Sodium cholate (SC)-based density gradient ultracentrifugation (DGU) has been instrumental in isolating small diameter (d t) SWNTs. Here, we show that SWNTs wrapped by flavin mononucleotide (FMN) as a dispersing agent are sorted in DGU, and show sorting order reversal behavior, departing from prototypical SC-SWNT trends. Larger d t SWNTs are sorted in lower density (ρ), and buoyant ρ distribution of FMN-SWNT ranges from 1.15-1.25 g cm-3. Such a nanotube layering pattern originates from both the binding affinity between FMN and SWNT and the less-susceptible hydrated volume of remote phosphate sidechains of FMN according to nanotube d t change.
Christie, K.E.; Hjeltnes, B.; Uglenes , I.; Winton, J.R.
1993-01-01
Plasma was collected from Atlantic salmon Salrno salar with acute infectious salmon anaemia (ISA) and used to challenge Atlantic salmon parr by intraperitoneal injection. Treatment of plasma with the lipid solvent, chloroform, showed that the etiological agent of ISA contained essential lipids, probably as a viral envelope. Some infectivity remained following treatment with freon. Injection challenges using fractions from equilibrium density gradient centrifugation of plasma from fish with acute ISA revealed a band of infectivity in the range 1.184 to 1.262 g cm-3. The band was believed to conta~n both complete ISA-virus particles and infectious particles lacking a complete envelope, nucleocapsid or genome. Density gradient centrifugation of infectious plasma for enrichment of the putative ISA virus appeared to offer a suitable method for obtaining virus-specific nucleic acid for use in the construction of cDNA libraries.
Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient
El-Amin, Mohamed
2010-12-01
In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.
Effect of Crustal Density Structures on GOCE Gravity Gradient Observables
Directory of Open Access Journals (Sweden)
Robert Tenzer and Pavel Novák
2013-01-01
Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the _ crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The _ gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.
Separation of colloidal two dimensional materials by density gradient ultracentrifugation
Energy Technology Data Exchange (ETDEWEB)
Kuang, Yun; Song, Sha [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Huang, Jinyang, E-mail: huangjy@mail.buct.edu.cn [Department of Mathematics, College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Sun, Xiaoming, E-mail: sunxm@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)
2015-04-15
Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size
Analytical gradients for excitation energies from frozen-density embedding.
Kovyrshin, Arseny; Neugebauer, Johannes
2016-08-21
The formulation of analytical excitation-energy gradients from time-dependent density functional theory within the frozen-density embedding framework is presented. In addition to a comprehensive mathematical derivation, we discuss details of the numerical implementation in the Slater-function based Amsterdam Density Functional (ADF) program. Particular emphasis is put on the consistency in the use of approximations for the evaluation of second- and third-order non-additive kinetic-energy and exchange-correlation functional derivatives appearing in the final expression for the excitation-energy gradient. We test the implementation for different chemical systems in which molecular excited-state potential-energy curves are affected by another subsystem. It is demonstrated that the analytical implementation for the evaluation of excitation-energy gradients yields results in close agreement with data from numerical differentiation. In addition, we show that our analytical results are numerically more stable and thus preferable over the numerical ones.
Fabrication and evaluation of uniform and gradient density epoxies
Energy Technology Data Exchange (ETDEWEB)
Domeier, L.A.; Skala, D.M.; Goods, S.H. [and others
1997-11-01
Filled epoxy materials which vary in density in a designed manner have been fabricated and their mechanical properties evaluated. Density variations were produced by incorporating different volume fractions of either glass microballoons (GMB) or alumina. Several different sample types were evaluated including uniform density (0.8 g/cm{sup 3} < {rho} < 2.0 g/cm{sup 3}) samples and gradient density samples (GMB only, 0.8 g/cm{sup 3} < {rho} < 1.2 g/cm{sup 3}). The uniform density specimens were evaluated for the effects of filler type and concentration on modulus and toughness. Results indicated that addition of alumina filler significantly increased the resulting modulus while addition of GMB had little measurable effect. These differences could be understood in terms of the differing moduli of the additives relative to that of the epoxy matrix. In the former case the alumina particulates had a modulus much greater than that of the epoxy while in the latter case, the modulus of the GMB additive was only slightly greater than that of the matrix. Addition of either filler significantly degraded the toughness of the composite specimens and precluded the use of gradients to enhance toughness performance. Discontinuous {open_quotes}block{close_quotes} gradients used for testing were fabricated by simple sequential pours of formulations with different GMB loadings and were evaluated for modulus, strength and ductility. Continuous gradients were fabricated in process studies by programmed shifts in the peristaltic pumping/mixing ratio of epoxies filled with either alumina or GMB. None of the continuous gradient materials were mechanically tested. These results suggest that applications utilizing gradient materials containing alumina and similar high modulus fillers to provide designed stiffness rather than improved toughness are the most appropriate targets for future investigation.
Enhancement of electric and magnetic wave fields at density gradients
Directory of Open Access Journals (Sweden)
A. Reiniusson
2006-03-01
Full Text Available We use Freja satellite data to investigate irregular small-scale density variations. The observations are made in the auroral region at about 1000-1700 km. The density variations are a few percent, and the structures are found to be spatial down to a scale length of a few ion gyroradii. Irregular density variations are often found in an environment of whistler mode/lower hybrid waves and we show that at the density gradients both the electric and magnetic wave fields are enhanced.
Effect of Crustal Density Structures on GOCE Gravity Gradient Observables
Directory of Open Access Journals (Sweden)
Robert Tenzer Pavel Novák
2013-01-01
Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the Earth¡¦s crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The Earth¡¦s gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.
A density gradient theory based method for surface tension calculations
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios
2016-01-01
The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... systems, from non-polar binary mixtures to complex multicomponent associating fluids, combined with the Peng-Robinson and the Cubic Plus Association equations of state. From an overall point of view, the approximation method with the density path profile passing the saddle point and the full density...
Unsteady turbulent buoyant plumes
Woodhouse, Mark J; Hogg, Andrew J
2015-01-01
We model the unsteady evolution of turbulent buoyant plumes following temporal changes to the source conditions. The integral model is derived from radial integration of the governing equations expressing the conservation of mass, axial momentum and buoyancy. The non-uniform radial profiles of the axial velocity and density deficit in the plume are explicitly described by shape factors in the integral equations; the commonly-assumed top-hat profiles lead to shape factors equal to unity. The resultant model is hyperbolic when the momentum shape factor, determined from the radial profile of the mean axial velocity, differs from unity. The solutions of the model when source conditions are maintained at constant values retain the form of the well-established steady plume solutions. We demonstrate that the inclusion of a momentum shape factor that differs from unity leads to a well-posed integral model. Therefore, our model does not exhibit the mathematical pathologies that appear in previously proposed unsteady i...
Andersson, K; Hjorth, R
1985-01-01
Plasmids extracted from bacterial cells by alkaline extraction can easily be isolated from linear DNA by isopycnic centrifugation in CsTFA. This is a fast and simple method which circumvents the use of the intercalating dye, ethidium bromide, and consequently the problems associated with its removal. The buoyant densities for covalently closed circular DNA and linear DNA in CsTFA are 1.60 g/ml and 1.65 g/ml, respectively. The isolation is achieved regardless of plasmid size and can be accomplished at temperatures of between 4 and 30 degrees C. Plasmid DNA isolated in gradients of CsTFA are of a high purity and have been found to be intact when cleaved with restriction enzymes and ligated with T4 DNA ligase.
Viscardi, R M; Ullsperger, S; Resau, J H
1992-01-01
Isolating fresh, relatively pure type II pneumocytes from the lung, particularly of fetal origin, is a difficult process. Separation by buoyant density gradient centrifugation has been used successfully to isolate adult type II cells. There is concern, however, that Percoll, a gradient medium that is commonly used for type II cell isolation, may be toxic to cells. We evaluated a new gradient medium, Nycodenz, that is (1) a true solution, (2) transparent, (3) not metabolized by cells, and (4) nontoxic to cells. Type II pneumocytes were isolated from 19- and 21-day gestation fetal and adult rat lung by elastase digestion and separated on preformed isotonic Nycodenz gradients (2 mL each of 27.6, 20.7, 13.8, and 4.6 (w/v) solutions). Type II pneumocytes were recovered from the density range 1.057-1.061 and identified by binding of FITC-conjugated and gold-complexed Maclura pomifera lectin. Cells derived from 19-day fetal lung contained abundant glycogen and reacted with a monoclonal antibody to the cytokeratins 8 and 18, which are markers of the fetal type II cell. Adult type II cells reacted with antibodies to cytokeratins 8, 18, and 19. Type II cell purity was 79.7 +/- 2.4%, 83.8 +/- 2.8%, and 82.6 +/- 1.8% (means +/- SEM) for 19- and 21-day gestation fetal and adult lung preparations, respectively. Cell viability was greater than 95%. The final cell yield for adult preparations was 17.8 +/- 2.7 x 10(6)/rat (means +/- SEM). To determine if the freshly isolated type II pneumocytes were functionally active, the incorporation of [3H]choline into phosphatidylcholine was measured. The percent saturation of phosphatidylcholine was high for both populations of freshly isolated cells. However, adult type II pneumocytes incorporated [3H]choline into phosphatidylcholine more rapidly than 21-day gestation fetal cells (5.97 x 10(-3) dpm/10(6) cells/h vs. 0.32 x 10(-3) dpm/10(6) cells/h, P less than .005). We have demonstrated that, using the Nycodenz isolation method, it is
Interacting Eigenmodes of a plasma diode with a density gradient
Energy Technology Data Exchange (ETDEWEB)
Loefgren, T.; Gunell, H.
1997-08-01
The formation of narrow high frequency electric field spikes in plasma density gradients is investigated using one-dimensional particle in cell simulations. It is found that the shape of the plasma density gradient is very important for the spike formation. The spike appears also in simulations with immobile ions showing that a coupling to the ion motion, as for example in wave interactions, is not necessary for the formation of HF spikes. However, the HF spike influences the ion motion, and ion waves are seen in the simulations. It has been found, in experiments and simulations, that the electron velocity distribution function deviates from the Maxwellian distribution. Dispersion relations are calculated using realistic distribution functions. The spike can be seen as a coupled system of two Eigenmodes of a plasma diode fed by the beam-plasma interaction. Based on a simplified fluid description of such Eigenmodes, explanations for the localization of the spike, spatially and in frequency, are given. The density amplitude is comparable with the DC density level close to the cathode. Space charge limits of waves in this region seem to determine the amplitude of the spike through the Poisson`s equation. 12 refs, 19 figs.
The density gradient effect on quantum Weibel instability
Energy Technology Data Exchange (ETDEWEB)
Mahdavi, M., E-mail: m.mahdavi@umz.ac.ir; Khodadadi Azadboni, F., E-mail: f.khodadadi@stu.umz.ac.ir [Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar (Iran, Islamic Republic of)
2015-03-15
The Weibel instability plays an important role in stopping the hot electrons and energy deposition mechanism in the fast ignition of inertial fusion process. In this paper, the effects of the density gradient and degeneracy on Weibel instability growth rate are investigated. Calculations show that decreasing the density degenerate in the plasma corona, near the relativistic electron beam emitting region by 8.5% leads to a 92% reduction in the degeneracy parameter and about 90% reduction in Weibel instability growth rate. Also, decreasing the degenerate density near the fuel core by 8.5% leads to 1% reduction in the degeneracy parameter and about 8.5% reduction in Weibel instability growth rate. The Weibel instability growth rate shrinks to zero and the deposition condition of relativistic electron beam energy can be shifted to the fuel core for a suitable ignition by increasing the degeneracy parameter in the first layer of plasma corona.
Mineral density volume gradients in normal and diseased human tissues.
Directory of Open Access Journals (Sweden)
Sabra I Djomehri
Full Text Available Clinical computed tomography provides a single mineral density (MD value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca to phosphorus (P and Ca to zinc (Zn elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc. A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49, hypomineralized dentin (0.32-0.46, cementum (1.51, and bone (1.68 were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765 and in cementum (595-990, highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.
Buoyant Norbury's vortex rings
Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder
2014-11-01
Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.
Moho Density Contrast in Central Eurasia from GOCE Gravity Gradients
Directory of Open Access Journals (Sweden)
Mehdi Eshagh
2016-05-01
Full Text Available Seismic data are primarily used in studies of the Earth’s inner structure. Since large parts of the world are not yet sufficiently covered by seismic surveys, products from the Earth’s satellite observation systems have more often been used for this purpose in recent years. In this study we use the gravity-gradient data derived from the Gravity field and steady-state Ocean Circulation Explorer (GOCE, the elevation data from the Shuttle Radar Topography Mission (SRTM and other global datasets to determine the Moho density contrast at the study area which comprises most of the Eurasian plate (including parts of surrounding continental and oceanic tectonic plates. A regional Moho recovery is realized by solving the Vening Meinesz-Moritz’s (VMM inverse problem of isostasy and a seismic crustal model is applied to constrain the gravimetric solution. Our results reveal that the Moho density contrast reaches minima along the mid-oceanic rift zones and maxima under the continental crust. This spatial pattern closely agrees with that seen in the CRUST1.0 seismic crustal model as well as in the KTH1.0 gravimetric-seismic Moho model. However, these results differ considerably from some previously published gravimetric studies. In particular, we demonstrate that there is no significant spatial correlation between the Moho density contrast and Moho deepening under major orogens of Himalaya and Tibet. In fact, the Moho density contrast under most of the continental crustal structure is typically much more uniform.
Turbulent buoyant jets and plumes
Rodi, Wolfgang
The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami
Stable smoothed particle magnetohydrodynamics in very steep density gradients
Lewis, Benjamin T; Monaghan, Joseph J; Price, Daniel J
2015-01-01
The equations of smoothed particle magnetohydrodynamics (SPMHD), even with the various corrections to instabilities so far proposed, have been observed to be unstable when a very steep density gradient is necessarily combined with a variable smoothing length formalism. Here we consider in more detail the modifications made to the SPMHD equations in LBP2015 that resolve this instability by replacing the smoothing length in the induction and anisotropic force equations with an average smoothing length term. We then explore the choice of average used and compare the effects on a test `cylinder-in-a-box' problem and the collapse of a magnetised molecular cloud core. We find that, aside from some benign numerical effects at low resolutions for the quadratic mean, the formalism is robust as to the choice of average but that in complicated models it is essential to apply the average to both equations; in particular, all four averages considered exhibit similar conservation properties. This improved formalism allows ...
NUMERICAL PREDICTION OF LINE BUOYANT JETS IN CROSS FLOWS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The k-ε turbulence model was used to establish the mathematicalmodel of two-dimensional line buoyant jets in crossflow. The hybrid finite analytic method and staggered grid were applied to the calculation of line buoyant jets. Only receiving water with uniform density is considered. The distribution of velocity, temperature and turbulent kinetic energy were analyzed, and the variation of the maximum velocity was given. The effect of velocity ratio and densimetric Froude number on line buoyant jets was considered.
Bull Fertility and Its Relation with Density Gradient Selected Sperm
Directory of Open Access Journals (Sweden)
Allouche Lynda ,
2017-01-01
Full Text Available Background Sperm selection method is usually used to collect these cells for in vitro-assisted reproduction. Few studies reported the relationship of in vivo fertility and semen parameters after sperm selection; hence, the present study attempted to assess different semen parameters after post-thaw or sperm selection, using density gradient separation BoviPure®, to predict in vivo fertility. Materials and Methods In this experimental study, frozen semen quality of four Montbeliarde bulls were assessed after post-thaw (PT or after sperm selection (SSp, using density gradient separation BoviPure®, to predict the fertility rate in vivo. In addition to PT or SSp, semen was examined for concentration, motility, morphology abnormalities, viability, acrosome and plasma membrane integrities. Fertility was measured as non-return rates within 56 days after the first insemination (NRR or as corrected NRR, expressed as CNRR, to the factors influencing fertility using linear mixed model. Non-parametric Kruskal-Wallis test was performed to compare semen parameter variables. Fertility rates were compared using Chi-square test. Pearson correlation analysis was used to test the relationship between CNRR and semen parameters. Data was analysed using SPSS package program, version 21.0. Results Most of the examined bulls exhibited a high fertility rate (3/4 bulls, 62.1- 81.8% for NRR or 67.2-98.5% for CNRR. Fertility rate, expressed as CNRR, was significantly related to semen parameters after SSp, but not after PT. Thus, CNRR was increased with decrease of total motility, progressive spermatozoa and abaxial implantation frequencies after SSp (r=-0.999, P=0.001; r=-0.990, P=0.010; r=-0.988, P= 0.012, respectively; while, CNRR was decreased with decrease of SSp immotile spermatozoa (r=+0.995, P=0.005, underlying that maximal limit of determined immotile spermatozoa is 47%. Conclusion High frequencies of total and progressive motility spermatozoa, and abaxial
Energy Technology Data Exchange (ETDEWEB)
Abe, Satoshi, E-mail: abe.satoshi@jaea.go.jp; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke
2015-08-15
Highlights: . • The third international benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in the reactor containment vessel. • Two types turbulence model modification were applied in order to accurately simulate the turbulence helium transportation in the density stratification. • The analysis result in case with turbulence model modification is good agreement with the experimental data. • There is a major difference of turbulence helium–mass transportation between in case with and without the turbulence model modification. - Abstract: Density stratification in the reactor containment vessel is an important phenomenon on an issue of hydrogen safety. The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project on containment thermal hydraulics. As a part of the activity, we participated in the third international CFD benchmark exercise (IBE-3) focused on density stratification erosion by a vertical buoyant jet in containment vessel. This paper shows our approach for the IBE-3, focusing on the turbulence transport phenomena in eroding the density stratification and introducing modified turbulence models for improvement of the CFD analyses. For this analysis, we modified the CFD code OpenFOAM by using two turbulence models; the Kato and Launder modification to estimate turbulent kinetic energy production around a stagnation point, and the Katsuki model to consider turbulence damping in density stratification. As a result, the modified code predicted well the experimental data. The importance of turbulence transport modeling is also discussed using the calculation results.
Turbulent Buoyant Jets in Flowing Ambients
DEFF Research Database (Denmark)
Chen, Hai-Bo; Larsen, Torben; Petersen, Ole
1991-01-01
The mean behaviour of horizontal turbulent buoyant jets in co-flowing currents is investigated experimentally and numerically, in terms of jet trajectory, dilution and centerline density deficit and velocity decay. It is demonstrated in the paper that the laboratory data on the jet trajectory and...
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation
Peng, Wei
2013-01-01
Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols-so-called detonation nanodiamonds (DNDs)-are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach. © 2013 The Royal Society of Chemistry.
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation
Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M.; Bakr, Osman M.
2013-05-01
Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly Applications requiring DNDs with specific particle or aggregate sizes are now within reach.Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly Applications requiring DNDs with specific particle or aggregate sizes are now within reach. Electronic supplementary information (ESI) available: Discussion of the influence of sample solution concentrations on DLS measurements, comparisons of the size distributions of our raw milled particles and NanoAmando particles, a detailed description of the RZDGU procedure, discussion of the influences of the gradients and centrifugation times on fractionation, TEM images, zeta potentials, AUC analysis and
Calculate Electric Field Gradient of TiO2 Within Density Functional Theory
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>TiO2 electric field gradient has been calculated utilizing WIEN2K program, which is ab initio based on density function theory (DFT). DFT uses the charge density as a variable instead of electronic wave
Lee, S Y; Park, B S; Yi, J H; Yi, W
1997-11-01
Gradient coil inductance has been remarkably reduced by the minimum-inductance design technique, which minimizes the magnetic energy stored by the gradient coil. The planar gradient coil designed by this technique, however, often has poor magnetic field linearity. Scaling the spatial frequencies of the current density function derived by this method, the magnetic field linearity of the planar gradient coil can be greatly improved with a small sacrifice of gradient coil inductance. A figure of merit of the planar gradient coil has been found to be improved by scaling the spatial frequencies.
A numerical study on charged-particle scattering and radiography of a steep density gradient
Shao, Guangchao; Wang, Xiaofang
2016-09-01
Electron and proton radiography of polystyrene planar targets with different density gradients is studied by Monte Carlo simulations in a regime that the incident charged-particle's kinetic energy is much higher than its energy loss in the targets. It is shown that by scattering of the electrons or protons, the density gradient causes modulations of the charged-particle beam transmitted from the target and the modulation contrast is sensitive only to a steep gradient, which suggests a novel diagnostic method wherein a steep density gradient could be distinguished from the scattering of a charged-particle beam in radiography. By using a 100-MeV charged-particle beam, it is found that the modulation is evident for a steep density gradient of width smaller than 1 μm for electron radiography and 0.6 μm for proton radiography, respectively, but almost negligible when the density gradient width is greater than 1 μm. The feasibility of diagnosing the steep density gradients in compressed matter is confirmed by the simulations of radiographing a laser-ablated planar foil. Simulations also show that it is possible to diagnose the density gradients inside a multilayered spherical capsule.
Energy Technology Data Exchange (ETDEWEB)
Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.
Cell Growth on ("Janus") Density Gradients of Bifunctional Zeolite L Crystals.
Kehr, Nermin Seda; Motealleh, Andisheh; Schäfer, Andreas H
2016-12-28
Nanoparticle density gradients on surfaces have attracted interest as two-dimensional material surfaces that can mimic the complex nano-/microstructure of the native extracellular matrix, including its chemical and physical gradients, and can therefore be used to systematically study cell-material interactions. In this respect, we report the preparation of density gradients made of bifunctional zeolite L crystals on glass surfaces and the effects of the density gradient and biopolymer functionalization of zeolite L crystals on cell adhesion. We also describe how we created "Janus" density gradient surfaces by gradually depositing two different types of zeolite L crystals that were functionalized and loaded with different chemical groups and guest molecules onto the two distinct sides of the same glass substrate. Our results show that more cells adhered on the density gradient of biopolymer-coated zeolites than on uncoated ones. The number of adhered cells increased up to a certain surface coverage of the glass by the zeolite L crystals, but then it decreased beyond the zeolite density at which a higher surface coverage decreased fibroblast cell adhesion and spreading. Additionally, cell experiments showed that cells gradually internalized the guest-molecule-loaded zeolite L crystals from the underlying density gradient containing bifunctional zeolite L crystals.
BMP4 density gradient in disk-shaped confinement
Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.
We present a quantitative model that explains the scaling of BMP4 gradients during gastrulation and the recent experimental observation that geometric confinement of human embryonic stem cells is sufficient to recapitulate much of germ layer patterning. Based on a assumption that BMP4 diffusion rate is much smaller than the diffusion rate of it's inhibitor molecules, our results confirm that the length-scale which defines germ layer territories does not depend on system size.
Bell-Plesset effects for an accelerating interface with contiguous density gradients
Energy Technology Data Exchange (ETDEWEB)
Amendt, P
2005-12-20
A Plesset-type treatment [J. Appl. Phys. 25, 96 (1954)] is used to assess the effects of contiguous density gradients at an accelerating spherical classical interface on Rayleigh-Taylor and Bell-Plesset perturbation growth. Analytic expressions are obtained that describe enhanced Rayleigh-Taylor instability growth from contiguous density gradients aligned with the acceleration and which increase the effective Atwood number of the perturbed interface. A new pathway for geometric amplification of surface perturbations on an accelerating interface with contiguous density gradients is identified. A resonance condition between the density-gradient scalelength and the radius of the interface is also predicted based on a linearized analysis of Bernoulli's equation, potentially leading to enhanced perturbation growth. Comparison of the analytic treatment with detailed two-dimensional single-mode growth-factor simulations shows good agreement for low-mode numbers where the effects of spherical geometry are most manifested.
Integration of the Density Gradient Model into a General Purpose Device Simulator
Directory of Open Access Journals (Sweden)
Andreas Wettstein
2002-01-01
Full Text Available A generalized Density Gradient model has been implemented into the device simulator Dessis [DESSIS 7.0 reference manual (2001. ISE Integrated Systems Engineering AG, Balgriststrasse 102, CH-8008 Zürich].We describe the multidimensional discretization scheme used and discuss our modifications to the standard Density Gradient model. The evaluation of the model shows good agreement to results obtained by the Schro¨dinger equation.
Density gradients and internal dust in the Orion nebula
Directory of Open Access Journals (Sweden)
Luc Binette
2002-01-01
Full Text Available La estructura de ionización de la nebulosa de Orión puede ser descrita como una piel delgada sobre la superficie de una nube densa. Proponemos que una estratificación en la densidad, descrita por una ley de potencias (n / x_2, donde x es la distancia al frente de ionización, presenta propiedades que concuerdan con nuestros espectros de rendija larga de la nebulosa de Orión. Por ejemplo, existe una relación de unicidad entre el brillo superficial en HB, o la densidad del frente de ionización en [S II], y la escala L de la ley de potencias, donde L es la distancia entre el frente de ionización y el lugar donde comienza a crecer la densidad, cerca de la estrella excitadora. Es necesario incluir polvo interno a fin de obtener un ajuste aceptable a las observaciones tanto de la densidad del [S II], como del brillo superficial en HB. Los modelos que incluyen granos de polvo pequeños proporcionan un mejor ajuste que aquellos con granos grandes. Los gradientes de los cocientes de líneas observados a lo largo de la rendija se reproducen cualitativamente por nuestros modelos de densidad estratificada, suponiendo una temperatura estelar de 38,000 K. La desexcitación colisional parece ser la responsable de la mitad del gradiente observado en el cociente [N II] 5755/[N II] 6583, el cual es sensible a la temperatura. Proponemos que la relación empírica encontrada por Wen & O`Dell (1995 entre la densidad y la distancia a la estrella puede deberse a una estratificación de la densidad en forma de ley de potencias.
Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek
2016-10-30
A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc.
Kreutzfeldt, C
1980-10-01
A calculation program is proposed suitable for programmable pocket calculators (e.g. HP series) to estimate s20,w f omega2 dt values from density gradient centrifugation data. The program can be applied to linear or exponential density gradients prepared from sucrose or glycerol solutions spun in zonal rotors or swinging bucket rotors. A wide solute concentration range and temperature range is accounted for. Constants for empirical density calculation of glycerol and sucrose solutions concentrated in % (w/v) are estimated. Experimental verification of the program was carried out.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_sglobal tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
Multispecies Density and Temperature Gradient Dependence of Quasilinear Particle and Energy Fluxes
Energy Technology Data Exchange (ETDEWEB)
G. Rewoldt; R.V. Budny; W.M. Tang
2004-08-09
The variations of the normalized quasilinear particle and energy fluxes with artificial changes in the density and temperature gradients, as well as the variations of the linear growth rates and real frequencies, for ion temperature gradient and trapped-electron modes, are calculated. The quasilinear fluxes are normalized to the total energy flux, summed over all species. Here, realistic cases for tokamaks and spherical torii are considered which have two impurity species. For situations where there are substantial changes in the normalized fluxes, the ''diffusive approximation,'' in which the normalized fluxes are taken to be linear in the gradients, is seen to be inaccurate. Even in the case of small artificial changes in density or temperature gradients, changes in the fluxes of different species (''off-diagonal'') generally are significant, or even dominant, compared to those for the same species (''diagonal'').
Li, Xiao-Dong; Forero-Romero, Jaime E; Kim, Juhan
2014-01-01
We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the Universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter $\\Omega_m$ or the dark energy equation of state $w$ are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the Universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without...
Density-dependent adaptive resistance allows swimming bacteria to colonize an antibiotic gradient.
Hol, Felix J H; Hubert, Bert; Dekker, Cees; Keymer, Juan E
2016-01-01
During antibiotic treatment, antibiotic concentration gradients develop. Little is know regarding the effects of antibiotic gradients on populations of nonresistant bacteria. Using a microfluidic device, we show that high-density motile Escherichia coli populations composed of nonresistant bacteria can, unexpectedly, colonize environments where a lethal concentration of the antibiotic kanamycin is present. Colonizing bacteria establish an adaptively resistant population, which remains viable for over 24 h while exposed to the antibiotic. Quantitative analysis of multiple colonization events shows that collectively swimming bacteria need to exceed a critical population density in order to successfully colonize the antibiotic landscape. After colonization, bacteria are not dormant but show both growth and swimming motility under antibiotic stress. Our results highlight the importance of motility and population density in facilitating adaptive resistance, and indicate that adaptive resistance may be a first step to the emergence of genetically encoded resistance in landscapes of antibiotic gradients.
The dynamics of a suspension of solidifying, buoyant ice crystals
Rees Jones, David; Wells, Andrew
2015-11-01
In a wide range of geophysical and industrial situations, the solidification of a liquid melt occurs through the growth of solid crystals suspended in the melt. For example, so-called frazil ice crystals form by freezing of the polar oceans, and crystals also form in the interior of solidifying magma chambers. The growth of these crystals is dynamically coupled to the fluid flow: advection enhances the transport and removal of latent heat that controls crystal growth, whilst the particles provide hydrodynamic feedbacks on the flow. The crystal density is typically different to the liquid density, which induces relative motion, and crystals may also induce density gradients within the liquid itself through the temperature field. We develop scaling arguments for the relative importance of crystal growth, agglomeration, nucleation and transport as a function of particle size and properties of the fluid flow. We introduce a new framework for the direct numerical simulation of the coupling of solidifying, buoyant particles to the fluid flow using a Lattice Boltzmann Method and present results for idealized test cases motivated by our scaling analysis.
Institute of Scientific and Technical Information of China (English)
XUE Yun-feng; WANG Yu-jia; YANG Jie
2009-01-01
A new algorithm for linear instantaneous independent component analysis is proposed based on max-imizing the log-likelihood contrast function which can be changed into a gradient equation. An iterative method is introduced to solve this equation efficiently. The unknown probability density functions as well as their first and second derivatives in the gradient equation are estimated by kernel density method. Computer simulations on artificially generated signals and gray scale natural scene images confirm the efficiency and accuracy of the proposed algorithm.
Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations
Cancès, Eric; Pernal, Katarzyna
2008-04-01
We present projected gradient algorithms designed for optimizing various functionals defined on the set of N-representable one-electron reduced density matrices. We show that projected gradient algorithms are efficient in minimizing the Hartree-Fock or the Müller-Buijse-Baerends functional. On the other hand, they converge very slowly when applied to the recently proposed BBk (k =1,2,3) functionals [O. Gritsenko et al., J. Chem. Phys. 122, 204102 (2005)]. This is due to the fact that the BBk functionals are not proper functionals of the density matrix.
Non-Boussinesq Integral Model for Horizontal Turbulent Buoyant Round Jets
Directory of Open Access Journals (Sweden)
J. Xiao
2009-01-01
Full Text Available Horizontal buoyant jet is a fundamental flow regime for hydrogen safety analysis in power industry. The purpose of this study is to develop a fast non-Boussinesq engineering model the horizontal buoyant round jets. Verification of this integral model is established with available experimental data and comparisons over a large range of density variations with the CFD codes GASFLOW. The model has proved to be an efficient engineering tool for predicting horizontal strongly buoyant round jets.
Investigation of Vapor-Liquid Nucleation for Associating Fluids by Density Gradient Theory
Institute of Scientific and Technical Information of China (English)
FU Dong; LIU Jianmin
2009-01-01
An equation of state (EOS) applicable to both the uniform and non-uniform associating fluids was established by using the density-gradient expansion, in which the influence parameter κis formulated as a function of tempera-ture. The molecular parameters were regressed by fitting to the experimental data of vapor pressures and liquid den-sities. Within the framework of density gradient theory (DGT), the nucleation rates for water, heavy water, metha-nol, ethanol, 1-propanoi, 1-butanol, 1-pentanol and 1-hexanol were calculated. The results were satisfactory com-pared with the experimental data. Our study shows that DGT preserves all the advantages of density functional the-ory (DFT) in capturing the structure and properties of nucleus but gives much more accurate nucleation rates by adjusting the influence parameter.
Mu, Xiaoqun; Alpak, Faruk O; Chapman, Walter G
2016-01-01
Density gradient theory (DGT) allows fast and accurate determination of surface tension and density profile through a phase interface. Several algorithms have been developed to apply this theory in practical calculations. While the conventional algorithm requires a reference substance of the system, a modified "stabilized density gradient theory" (SDGT) algorithm is introduced in our work to solve DGT equations for multiphase pure and mixed systems. This algorithm makes it possible to calculate interfacial properties accurately at any domain size larger than the interface thickness without choosing a reference substance or assuming the functional form of the density profile. As part of DGT inputs, the perturbed chain statistical associating fluid theory (PC-SAFT) equation of state (EoS) was employed for the first time with the SDGT algorithm. PC-SAFT has excellent performance in predicting liquid phase properties as well as phase behaviors. The SDGT algorithm with the PC-SAFT EoS was tested and compared with ...
Density Gradient Ultracentrifugation to Isolate Endogenous Protein Complexes after Affinity Capture.
Fernandez-Martinez, Javier; LaCava, John; Rout, Michael P
2016-07-01
This protocol describes the isolation of native protein complexes by density gradient ultracentrifugation. The outcome of an affinity capture and native elution experiment is generally a mixture of (1) the complex(es) associated with the protein of interest under the specific conditions of capture, (2) fragments of the complex generated by degradation or disassembly during the purification procedure, and (3) the protease or reagent used to natively elute the sample. To separate these components and isolate a homogeneous complex, an additional step of purification is required. Rate-zonal density gradient ultracentrifugation is a reliable and powerful technique for separating particles based on their hydrodynamic volume. The density gradient is generated by mixing low- and high-density solutions of a suitable low-molecular-weight inert solute (e.g., sucrose or glycerol). The gradient is formed in a solvent that could be any of the solvents used for the affinity capture and native elution and should help to preserve the structure and activity of the assembly.
Vertical density gradient in the eastern North Atlantic during the last 30,000 years
Energy Technology Data Exchange (ETDEWEB)
Rogerson, M.; Ramirez, J. [University of Hull, Geography Department, Hull (United Kingdom); Bigg, G.R. [University of Sheffield, Department of Geography, Sheffield (United Kingdom); Rohling, E.J. [University of Southampton, National Oceanography Centre, School of Ocean and Earth Science, Southampton (United Kingdom)
2012-08-15
Past changes in the density and momentum structure of oceanic circulation are an important aspect of changes in the Atlantic Meridional Overturning Circulation and consequently climate. However, very little is known about past changes in the vertical density structure of the ocean, even very extensively studied systems such as the North Atlantic. Here we exploit the physical controls on the settling depth of the dense Mediterranean water plume derived from the Strait of Gibraltar to obtain the first robust, observations-based, probabilistic reconstruction of the vertical density gradient in the eastern North Atlantic during the last 30,000 years. We find that this gradient was weakened by more than 50%, relative to the present, during the last Glacial Maximum, and that changes in general are associated with reductions in AMOC intensity. However, we find only a small change during Heinrich Event 1 relative to the Last Glacial Maximum, despite strong evidence that overturning was substantially altered. This implies that millennial-scale changes may not be reflected in vertical density structure of the ocean, which may be limited to responses on an ocean-overturning timescale or longer. Regardless, our novel reconstruction of Atlantic density structure can be used as the basis for a dynamical measure for validation of model-based AMOC reconstructions. In addition, our general approach is transferrable to other marginal sea outflow plumes, to provide estimates of oceanic vertical density gradients in other locations. (orig.)
Institute of Scientific and Technical Information of China (English)
Shyam S.R. Allamaneni; Ashok Agarwal; Sreedhar Rama; Pavithra Ranganathan; Rakesh K. Sharma
2005-01-01
Aim: To 1) compare post-wash and post-thaw parameters of sperm processed with PureSperm density gradient technique and swim-up method; and 2) test the efficacy of two commonly available density gradient media PureSperm and Isolate. Methods: This prospective study used semen specimens from 22 patients. Specimens from nine patients were processed by both PureSperm density gradient and swim-up method. These specimens were then cryopreserved.Thirteen specimens were processed by both PureSperm (40 % and 80 %) and Isolate (50 % and 90 %) double density gradient techniques. The two fractions processed by both PureSperm and swim-up were analyzed for post-wash sperm characteristics. Post-thaw analysis was done after 24 hours. Sperm fractions obtained after processing with PureSperm and Isolate were compared for post-wash sperm characteristics and ROS levels. Results: Specimens prepared with PureSperm had significantly higher median total motile sperm counts (TMSC) (32.2 × 106 vs.17.6 × 106), recovery rates (69.2 % vs. 50.0 %), and longevity at 4 hours (83.0 % vs. 55.0 %) compared to specimen prepared by swim-up. Post-thaw specimens also had a higher recovery and longevity at 4 hours with PureSperm as compared to the swim-up. Semen specimens processed by PureSperm had significantly higher total sperm count,TMSC, and percentage recovery rates (30.0 % vs. 19.7 %) than Isolate. Conclusion: Semen quality is better preserved in fresh and cryopreserved semen prepared with PureSperm density gradient compared to swim-up. A significant enrichment of sperm is observed with PureSperm compared to Isolate. Higher recovery rates of mature motile sperm obtained after PureSperm sperm preparation may be beneficial for successful ART.
The effect of density gradient on the growth rate of relativistic Weibel instability
Energy Technology Data Exchange (ETDEWEB)
Mahdavi, M., E-mail: m.mahdavi@umz.ac.ir [Physics Department, University of Mazandaran, P.O. Box 47415-416, Babolsar (Iran, Islamic Republic of); Khodadadi Azadboni, F., E-mail: f.khodadadi@stu.umz.ac.ir [Physics Department, University of Mazandaran, P.O. Box 47415-416, Babolsar (Iran, Islamic Republic of); Young Researchers Club, Sari Branch, Islamic Azad University, P.O. Box 48161-194, Sari (Iran, Islamic Republic of)
2014-02-15
In this paper, the effect of density gradient on the Weibel instability growth rate is investigated. The density perturbations in the near corona fuel, where temperature anisotropy, η, is larger than the critical temperature anisotropy, η{sub c}, (η > η{sub c}), enhances the growth rate of Weibel instability due to the sidebands coupled with the electron oscillatory velocity. But for η < η{sub c}, the thermal spread of the energetic electrons reduces the growth rate. Also, the growth rate can be reduced if the relativistic parameter (Lorentz factor) is sufficiently large, γ > 2. The analysis shows that relativistic effects and density gradient tend to stabilize the Weibel instability. The growth rate can be reduced by 88% by reducing η by a factor of 100 and increasing relativistic parameter by a factor of 3.
Johnson, Gregory C.; Schmidtko, Sunke; Lyman, John M.
2012-01-01
Temperature and salinity both contribute to ocean density, including its seasonal cycle and spatial patterns in the mixed layer. Temperature and salinity profiles from the Argo Program allow construction and analysis of a global, monthly, mixed layer climatology. Temperature changes dominate the seasonal cycle of mixed layer density in most regions, but salinity changes are dominant in the tropical warm pools, Arctic, and Antarctic. Under the Intertropical Convergence Zone, temperature and sa...
DEFF Research Database (Denmark)
Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim
2001-01-01
Laser induced pressure pulse space charge measurements were made on 1.5 mm thick plaques of high purity low density polyethylene equipped with vacuum-evaporated aluminium electrodes. Temperature differences up to 20 °C were maintained across the samples, which were subjected to dc fields up to 1.......5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...
Muramatsu, Akinori
2013-11-01
When a low density gas compared with the ambient gas is discharged from a round nozzle, side jets that are radial ejections of jet fluid are generated at the initial region of the jet. The density ratio between the jet fluid and the ambient fluid is a main parameter for the side-jet formation. Since the side-jet formation is also related to the instability of shear layer, it depends on the velocity gradient of the shear layer in the jet. The velocity gradient is evaluated by a ratio of the momentum thickness and the nozzle diameter at the nozzle exit. Compressibility suppresses the instability and the generation of the side jets. The compressibility is evaluated by a Mach number, which is a ratio defined by an issuing velocity of the jet and a sound velocity in the ambient fluid. Influence of these three parameters on the side-jet formation was examined experimentally. The density ratio and momentum thickness ratio were varied from 0.14 to 1.53, and from 14 to 155, respectively. The Mach number was varied to 0.7. Existence of side jets was confirmed by flow visualization using a laser sheet. Domains for the side-jet formation by the density ratio, the momentum thickness ratio, and the Mach number were determined.
Pitfalls of using the geometric-mean combining rule in the density gradient theory
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios
2016-01-01
It is popular and attractive to model the interfacial tension using the density gradient theory with the geometric-mean combining rule, in which the same equation of state is used for the interface and bulk phases. The computational efficiency is the most important advantage of this theory. In th...... the interface could be considered as a warning for the unsuccessful applications of the geometric-mean density gradient theory combined with the chosen thermodynamic model, even if numerical pitfalls do not occur. (C) 2016 Elsevier B.V. All rights reserved.......It is popular and attractive to model the interfacial tension using the density gradient theory with the geometric-mean combining rule, in which the same equation of state is used for the interface and bulk phases. The computational efficiency is the most important advantage of this theory....... In this work, it has been mathematically shown that the theory fails if the solution profile is not monotonic in the path function, which is defined as the summation of the density multiplied by the square root of the influence parameter over all components. A computational solution procedure is then presented...
Institute of Scientific and Technical Information of China (English)
ZHU Shouxian; ZHANG Wenjing
2008-01-01
Much has been written of the error in computing the baroclinic pressure gradient (BPG) with sigma coordinates in ocean or atmos- pheric numerical models. The usual way to reduce the error is to subtract area-averaged density stratification of the whole computa- tion region. But if there is great difference between the area-averaged and the local averaged density stratification, the error will be obvious. An example is given to show that the error from this method may be larger than that from no correction sometimes. The definition of local area is put forward. Then, four improved BPG difference schemes of subtracting the local averaged density strat- ification are designed to reduce the error. Two of them are for diagnostic calculation (density field is fixed), and the others are for prognostic calculation (density field is not fixed). The results show that the errors from these schemes all significantly decrease.
Morrell, J M; Persson, B; Tjellström, H; Laessker, A; Nilsson, H; Danilova, M; Holmes, P V
2005-12-01
In the absence of commercially viable methods for cryopreserving turkey spermatozoa, new processing methods are required to extend the functional life of stored turkey spermatozoa for artificial insemination. The present study evaluates the efficacy of a new extender (Turkey Semen Extend) and investigates the use of density gradient centrifugation in processing turkey spermatozoa for artificial insemination. The new extender is compared with two commercially available turkey semen extenders, Beltsville Poultry Semen Extender and Ovodyl. Turkey spermatozoa in Turkey Semen Extend were still motile 20 h after collection, representing a considerable improvement over the other semen extenders (40%, 0% and 8% for Turkey Semen Extend, Beltsville Poultry Semen Extender and Ovodyl, respectively). A field trial on a commercial turkey farm showed improved fertilization rates following insemination of turkey hens with semen extended in Turkey Semen Extend (89.7%) compared with Beltsville Poultry Semen Extender (86.9%). This difference is statistically significant (p < 0.05). Processing on a density gradient, optimized for turkey spermatozoa, also increased sperm survival (50% gradient-prepared spermatozoa still motile after 18 h compared with <10% non-processed spermatozoa). Preliminary studies indicate that gradient preparation of spermatozoa may aid survival during cryopreservation.
Energy Technology Data Exchange (ETDEWEB)
Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)
2014-10-07
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
Ringholm, Magnus; Bast, Radovan; Oggioni, Luca; Ekström, Ulf; Ruud, Kenneth
2014-10-01
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
Energy Technology Data Exchange (ETDEWEB)
Sawicka, B.D. (AECL Research, Chalk River Labs., Ontario (Canada)); Murphy, J.G.; Taheri, F.; Kanary, L.E. (Advanced Materials Engineering Centre, Halifax, Nova Scotia (Canada))
1992-06-01
Residual stresses caused by processing techniques reduce the safe allowable design life of components. This is especially critical for brittle materials, like ceramics, which do not exhibit plastic deformation. During development of the manufacturing process for an experimental high-precision ceramic component, a characteristic cracking pattern occurred in a series of prototypes, which suggested development of stresses during densification, either during drying or sintering. To examine parameters which may influence the development of these residual stresses, a series of simple geometry specimens were prepared and characterized for density gradients using computed tomography (CT). Using the measured values of density gradients, a model of the sintering process was made and the resultant stress distribution in the parts calculated. Results indicate that the use of nonlinear finite element analysis in conjunction with hypoelastic materials modeling qualitatively represents the sintering stresses.
Sawicka, B. D.; Murphy, J. G.; Taheri, F.; Kanary, L. E.
1992-06-01
Residual stresses caused by processing techniques reduce the safe allowable design life of components. This is especially critical for brittle materials, like ceramics, which do not exhibit plastic deformation. During development of the manufacturing process for an experimental high-precision ceramic component, a characteristic cracking pattern occurred in a series of prototypes, which suggested development of stresses during densification, either during drying or sintering. To examine parameters which may influence the development of these residual stresses, a series of simple geometry specimens were prepared and characterized for density gradients using computed tomography (CT). Using the measured values of density gradients, a model of the sintering process was made and the resultant stress distribution in the parts calculated. Results indicate that the use of nonlinear finite element analysis in conjunction with hypoelastic materials modelling qualitatively represents the sintering stresses.
Chauffert, Nicolas; Boucher, Marianne; Mériaux, Sébastien; CIUCIU, Philippe
2015-01-01
Performing k-space variable density sampling is a popular way of reducing scanning time in Magnetic Resonance Imaging (MRI). Unfortunately, given a sampling trajectory, it is not clear how to traverse it using gradient waveforms. In this paper, we actually show that existing methods [1, 2] can yield large traversal time if the trajectory contains high curvature areas. Therefore, we consider here a new method for gradient waveform design which is based on the projection of unrealistic initial trajectory onto the set of hardware constraints. Next, we show on realistic simulations that this algorithm allows implementing variable density trajectories resulting from the piecewise linear solution of the Travelling Salesman Problem in a reasonable time. Finally, we demonstrate the application of this approach to 2D MRI reconstruction and 3D angiography in the mouse brain.
Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation
Directory of Open Access Journals (Sweden)
Monika Mortimer
2016-10-01
Full Text Available Sustainable production and use of carbon nanotube (CNT-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa from unbound multiwall carbon nanotubes (MWCNTs and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstrate separation of protozoa (Tetrahymena thermophila from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. The optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.
Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation
Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Holden, Patricia A.
2016-01-01
Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstrate separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. The optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation. PMID:27917301
Sahai, Aakash
2015-11-01
We model the phase-mixing self-injection of electrons into the plasma-wakefield acceleration structures driven in a longitudinally rising density gradient. In several laser-plasma acceleration experiments a long tail of accelerated electrons of different energies is experimentally observed. Self-injection is the process where some of the plasma electrons lose coherence with the wave due to non-linearities. The non-linearity is inherently and intentionally induced in the plasma oscillations due to the variation of the restoring force along the rising density gradient. These electrons then get trapped in and propagate with the accelerating phase of the plasma-wave. The onset of trapping is shown to scale with the gradient of the rising density and the amplitude of oscillations using the phase-mixing model. We computationally verify the phase-mixing model in planar geometry using PIC codes. The trapping of electrons in cylindrical electron plasma oscillations in the non-linear regime is verified with scaling similar to the planar geometry phase-mixing model. A full theory of longitudinal phase-mixing of radial oscillations is currently underway. The importance of this work for laser-plasma acceleration lies in consistently accelerating just the desired mono-energetic bunch. Work supported by the US Department of Energy under DE-SC0010012 and the National Science Foundation under NSF-PHY-0936278. Done...processed 1928 records...14:16:38
The influence of near-wall density and viscosity gradients on turbulence in channel flows
Patel, Ashish; Pecnik, Rene
2016-01-01
The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel are studied by means of Direct Numerical Simulation (DNS) of the low-Mach number approximation of the Navier--Stokes equations. Different constitutive relations for density and viscosity as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semi-local Reynolds number $Re_\\tau^*$. This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semi-local wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to th...
The effect of longitudinal density gradient on electron plasma wake field acceleration
Tsiklauri, David
2016-01-01
3-, 2- and 1-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow out regime are presented. Earlier results are extended by (i) studying the effect of longitudinal density gradient; (ii) avoiding use of co-moving simulation box; (iii) inclusion of ion motion; and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of ten-fold increasing density over 10 cm long Lithium vapor plasma, results in spatially more compact and three times larger, compared to the uniform density case, electric fields (-6.4 x 10^{10} V/m), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from initial 20.4 GeV), with an energy transfer efficiencies from leading to trailing bunch of 75 percent. In the uniform density case -2.5 x 10^{10} V/m wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with an energy transfer eff...
Directory of Open Access Journals (Sweden)
Kazuya Iwai
2016-05-01
Full Text Available Diagnostic methods that focus on the extracellular vesicles (EVs present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA and microRNA (miRNA, which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm and higher density (1.11 g/ml than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively. Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions.
Iwai, Kazuya; Minamisawa, Tamiko; Suga, Kanako; Yajima, Yasutomo; Shiba, Kiyotaka
2016-01-01
Diagnostic methods that focus on the extracellular vesicles (EVs) present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA) and microRNA (miRNA), which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm) and higher density (1.11 g/ml) than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively). Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions. PMID:27193612
Inhomogeneous radiation degradation in polymers studied with a density gradient column
Gillen, K. T.; Clough, R. L.
Radiation dose-rate effects are known to exist in many polymers and are typically caused by oxidation reactions. Since the buildup of oxidation products often leads to an increase in polymer density, a density gradient column was used in a novel way to study the mechanisms responsible for dose-rate effects in a commercial ethylene propylene rubber (EPR) electrical cable insulation material. After various aging conditions, density profiles of samples were obtained by measuring the density of small pieces cut successively from the outside to the inside of the approximately 1-mm thick insulation. By monitoring density profiles as a function of dose rate and total radiation dose, two inhomogeneous mechanisms were found to be responsible for the observed dose-rate effects in this EPR material. At high dose rates, oxygen-diffusion-limited degradation was identified, as evidenced by a density profile which showed increased density near the air-exposed surfaces of the insulation but little change in density in the interior of the sample. As the dose rate was lowered, the oxidation region spread inward until it encompassed the entire sample at dose rates below about 100 krad/hr. The second mechanism, responsible for continuing the dose-rate effects at lower dose rates, appears to involve copper-catalyzed oxidation. This mechanism is often found to be significant in thermal aging studies; evidence that it may also be significant under room-temperature, radiation-aging conditions came from the density profile results, which revealed large increases in density as the inside of the insulation (near the tinned-copper conductor) was approached. For the same total radiation dose, this increase became larger as the dose rate was lowered. Preliminary chemical analysis profiling techniques indicate significantly enhanced copper and tin concentrations as the inside of the insulation is approached, even for insulation stripped from the metallic conductor before aging. This implies that
DEFF Research Database (Denmark)
Campagnoli, C; Multhaupt, H A; Ludomirski, A;
1997-01-01
cells recovered did not differ. Seven of seven male pregnancies were correctly identified. One case of trisomy 21 was detected. CONCLUSION: The in situ hybridization analysis of fetal nucleated erythrocytes isolated from maternal blood using single density gradient centrifugation, anti-CD71/anti...... of the isolated cells were subjected to in situ hybridization with specific DNA probes for the Y chromosome and chromosome 21 to confirm the fetal origin. RESULTS: After MiniMACS the enrichment factors for the CD71/GPA- and CD36/GPA-positive cells from maternal blood were similar, and the percentages of fetal...
Calaminici, Patrizia; Janetzko, Florian; Köster, Andreas M; Mejia-Olvera, Roberto; Zuniga-Gutierrez, Bernardo
2007-01-28
Density functional theory optimized basis sets for gradient corrected functionals for 3d transition metal atoms are presented. Double zeta valence polarization and triple zeta valence polarization basis sets are optimized with the PW86 functional. The performance of the newly optimized basis sets is tested in atomic and molecular calculations. Excitation energies of 3d transition metal atoms, as well as electronic configurations, structural parameters, dissociation energies, and harmonic vibrational frequencies of a large number of molecules containing 3d transition metal elements, are presented. The obtained results are compared with available experimental data as well as with other theoretical data from the literature.
Zeng, L.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A.; Bobrek, M.
2016-11-01
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.
Kadantsev, Eugene S.; Klooster, Rob; De Boeij, Paul L.; Ziegler, Tom
2007-01-01
Analytic energy gradients with respect to atomic coordinates for systems with translational invariance are formulated within the framework of Kohn-Sham Density Functional Theory. The energy gradients are implemented in the BAND program for periodic DFT calculations which directly employs a Bloch bas
Minimax current density gradient coils: analysis of coil performance and heating.
Poole, Michael S; While, Peter T; Lopez, Hector Sanchez; Crozier, Stuart
2012-08-01
Standard gradient coils are designed by minimizing the inductance or resistance for an acceptable level of gradient field nonlinearity. Recently, a new method was proposed to minimize the maximum value of the current density in a coil additionally. The stated aim of that method was to increase the minimum wire spacing and to reduce the peak temperature in a coil for fixed efficiency. These claims are tested in this study with experimental measurements of magnetic field and temperature as well as simulations of the performance of many coils. Experimental results show a 90% increase in minimum wire spacing and 40% reduction in peak temperature for equal coil efficiency and field linearity. Simulations of many more coils indicate increase in minimum wire spacing of between 50 and 340% for the coils studied here. This method is shown to be able to increase coil efficiency when constrained by minimum wire spacing rather than switching times or total power dissipation. This increase in efficiency could be used to increase gradient strength, duty cycle, or buildability.
Vole preference of bilberry along gradients of simulated moose density and site productivity.
Pedersen, Simen; Andreassen, Harry P; Persson, Inga-Lill; Julkunen-Tiitto, Riitta; Danell, Kjell; Skarpe, Christina
2011-12-01
Browsing by large herbivores might either increase or decrease preference for the plant by other herbivores, depending on the plant response. Using a cafeteria test, we studied the preference by root voles (Microtus oeconomus [Pallas, 1776]) for bilberry (Vaccinium myrtillus L.) previously subjected to 4 levels of simulated moose (Alces alces [Linnaeus, 1758]) density. The different levels of moose density were simulated at population densities relevant for Fennoscandian conditions, in exclosures situated along a site productivity gradient. We expected: (i) voles to prefer bilberry from high productivity sites over low productivity sites; (ii) voles to prefer browsed bilberry, if plants allocate resources to compensatory growth or to avoid browsed bilberry if plants allocate resources to defense; (iii) these effects to increase with increasing simulated moose density; and (iv) the concentration of plant chemicals and the plant morphology to explain vole preference. Specifically, we predicted that voles would prefer: (i) plants with high nitrogen content; (ii) plants with low content of defensive substances; and (iii) tall plants with long shoots. Voles preferred bilberry from the high productivity sites compared to the low productivity sites. We also found an interaction between site productivity and simulated moose density, where voles preferred unbrowsed plants at low productivity sites and intermediate levels of browsing at high productivity sites. There was no effect of plant chemistry or morphology on vole preference. We conclude that moose browsing impacts the food preference of voles. With the current high densities of moose in Fennoscandia, this could potentially influence vole food selection and population dynamics over large geographical areas.
Current Density-Functional Theory using meta-Generalized Gradient Exchange--Correlation Functionals
Furness, James W; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-01-01
We present the self-consistent implementation of current-dependent (hybrid) meta generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn--Sham current density-functional theory (KS-CDFT). A unique feature of the non-perturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 a.u. ($\\sim 235000$T) in strength. CDFT functionals based on the TPSS and B98 forms are investigated and their performance is assessed by comparison with accurate CCSD(T) data. In the weak field regime magnetic properties such as magnetizabilities and NMR shielding constants show modest but systematic improvements over GGA functionals. However, in strong field regime the mGGA based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T...
Emergence flux declines disproportionately to larval density along a stream metals gradient.
Schmidt, Travis S; Kraus, Johanna M; Walters, David M; Wanty, Richard B
2013-08-01
Effects of contaminants on adult aquatic insect emergence are less well understood than effects on insect larvae. We compared responses of larval density and adult emergence along a metal contamination gradient. Nonlinear threshold responses were generally observed for larvae and emergers. Larval densities decreased significantly at low metal concentrations but precipitously at concentrations of metal mixtures above aquatic life criteria (cumulative criterion accumulation ratio (CCAR) ≥ 1). In contrast, adult emergence declined precipitously at low metal concentrations (CCAR ≤ 1), followed by a modest decline above this threshold. Adult emergence was a more sensitive indicator of the effect of low metals concentrations on aquatic insect communities compared to larvae, presumably because emergence is limited by a combination of larval survival and other factors limiting successful emergence. Thus effects of exposure to larvae are not manifest until later in life (during metamorphosis and emergence). This loss in emergence reduces prey subsidies to riparian communities at concentrations considered safe for aquatic life. Our results also challenge the widely held assumption that adult emergence is a constant proportion of larval densities in all streams.
DEFF Research Database (Denmark)
Van Nieuwenhove, Nicolas; Hillaire-Marcel, Claude; Bauch, Henning A.
2016-01-01
We attempt to assess the Holocene surface-subsurface seawater density gradient on millennial time-scale based on the reconstruction of potential density (σθ) by combining data from dinoflagellate cyst assemblages and planktic foraminiferal (Neogloboquadrina pachyderma (s)) stable oxygen isotopes (δ...
Webster, Duncan; Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph
2015-03-18
Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, pbone marrow plays a significant role in determining osteoblast and osteoclast activity.
Institute of Scientific and Technical Information of China (English)
郭胤仕; 朱任之
2004-01-01
Objective To find out a specific method for diagnosis of malignant pleural effusions( MPEs )with higher sensitivity and practicality. Methods The diagnosis of MPEs were made using density gradient centrifugation ( DGC ) , smear cytologic examination (SCE) and pleural needle biopsy (PNB). Comparisons between these results and those of benign pleural effusions were also made. Results The positive rates of DGC,SCE and PNB for diagnosing MPEs were 94. 3% ,62.9% and 44.6% , respectively, and the positive rate of SCE combined with PNB for diagnosing MPEs was 73.2 %. The positive rate of the exfoliative tumor cells ( ETCs ) by DGC was much higher than that of SCE or/and PNB with no false-positive. Conclusion The ETCs isolated by DGC from the MPEs is quite specific for the diagnosis of malignant tumors with higher sensitivity and practicality in clinico-pathological practice.
Pedrosa, M M; Legaz, M E
1995-04-01
Four major arginase isoforms, I, II, III and IV, have been detected in Evernia prunastri thallus. They differ in terms of both physical and biochemical properties. The isoelectric point (pI) of these proteins has been determined by both isoelectric focusing in density gradient column and high-performance capillary electrophoresis (HPCE). Isoelectric focusing revealed charge microheterogeneity for isoforms II and IV whereas arginases I and II had the same pI value of 5.8. HPCE separation confirmed this charge microheterogeneity for isoform IV but not for isoform III, and provided evidence of microheterogeneity for isoforms I and II. The effect of various electrolyte buffers and running conditions on the HPCE separation of arginase isoform were investigated. Addition of 0.5 mM spermidine (SPD) to the running buffer reduced the electroosmotic flow (EOF) and permitted discriminating between the native proteins and protein fragments.
Sahai, Aakash A; Muggli, Patric
2014-01-01
We model the trapping of plasma $e^-$ within the density structures excited by a propagating energy source ($\\beta_{S}\\simeq1$) in a rising plasma density gradient. Rising density gradient leads to spatially contiguous coupled up-chirped plasmons ($d{\\omega^2_{pe}(x)}/{dx}>0$). Therefore phase mixing between plasmons can lead to trapping until the plasmon field is high enough such that $e^-$ trajectories returning towards a longer wavelength see a trapping potential. Rising plasma density gradients are ubiquitous for confining the plasma within sources at the vacuum-plasma interfaces. Therefore trapping of plasma-$e^-$ in a rising ramp is important for acceleration diagnostics and to understand the energy dissipation from the excited plasmon train \\cite{LTE-2013}. Down-ramp in density \\cite{density-transition-2001} has been used for plasma-$e^-$ trapping within the first bucket behind the driver. Here, in rising density gradient the trapping does not occur in the first plasmon bucket but in subsequent plasmon...
Sahai, Aakash Ajit
We model the phase-mixing self-injection of electrons into plasma-wakefield acceleration structures driven in a longitudinally rising density gradient. Self-injection is the process where some of the plasma electrons lose coherence with the wave due to non-linearities. The non-linearity is inherently and intentionally induced in the plasma oscillations due to the variation of the restoring force along the rising density gradient. These electrons then get trapped in and propagate with the accelerating phase of the plasma-wave. The electron oscillations driven by matched energy-sources are shown to get trapped in the wakefields similar in scaling to the phase-mixing of free oscillations. The onset of trapping is shown to scale with the gradient of rising density and the amplitude of oscillations. The planar longitudinal electron oscillations undergo trajectory crossing above a threshold amplitude or in a density inhomogeneity leading to phase-mixing and trapping of the oscillating electrons to a phase of the wave. In this thesis, we analyze the scaling of the phase-mixing based trapping of electron oscillations, independent of a threshold, in planar geometry driven by an electron beam in a rising density gradient. The cylindrical and spherical geometry electron oscillations undergo phase-mixing irrespective of the amplitude of oscillations. Here, driven radial electron oscillations in cylindrical geometry are shown to undergo phase-mixing leading to trapping of the plasma electrons in a longitudinally rising density gradient. We also present preliminary scaling results of phase-mixing based trapping of radially oscillating electrons in a rising density gradient.
Ernst, D.
2015-11-01
We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.
The effect of electron beam pitch angle and density gradient on solar type III radio bursts
Pechhacker, Roman
2012-01-01
1.5D Particle-In-Cell simulations of a hot, low density electron beam injected into magnetized, maxwellian plasma were used to further explore the alternative non-gyrotropic beam driven electromagnetic emission mechanism, first studied in Tsiklauri (2011). Variation of beam injection angle and background density gradient showed that the emission process is caused by the perpendicular component of the beam injection current, whereas the parallel component only produces Langmuir waves, which play no role in the generation of EM waves in our mechanism. Particular emphasis was put on the case, where the beam is injected perpendicularly to the background magnetic field, as this turned off any electrostatic wave generation along the field and left a purely electromagnetic signal in the perpendicular components. The simulations establish the following key findings: i) Initially waves at a few w_ce/gamma are excited, mode converted and emitted at w_pe ii) The emission intensity along the beam axis is proportional to ...
Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation
Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.; Sun, Jianwei
2016-10-01
A "best-of-both-worlds" van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov-van Voorhis nonlocal correlation functional. The resultant SCAN +r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies and lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.
Bozkaya, Uğur; Sherrill, C David
2016-05-07
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.
Institute of Scientific and Technical Information of China (English)
Jaime Goslvez; Stephen Johnston; Carmen Lpez-Fernndez; Altea Goslbez; Francisca Arroyo; Jose Lus Fernndez; Juan G lvarez
2014-01-01
Objective:To investigate the DNA longevity characteristics associated with each resultant fraction following density gradient centrifugation (DGC) in comparison to that of the original neat ejaculated sample. Methods:An aliquot of neat semen (NSS) collected from 7 patients was processed using DGC resulting in 3 fractions;Fraction 1:seminal plasma/40%gradient interface (GI);Fraction 2:40%GI/80%GI;Fraction 3:80%GI/pellet. An aliquot of each fraction and NSS was cryopreserved, thawed and incubated at 37 ℃for 24h;the increase of sperm DNA fragmentation was assessed using the Dyn-Halosperm assay following 0, 3, 6 and 24h of incubation. Results:While there was a significant reduction in the incidence of baseline sperm DNA fragmentation following DGC in Fraction 3, sperm DNA longevity was shown to be higher in the NSS than in any other sub-population following incubation. The highest levels of baseline DNA damage were found in Fractions 1 and 2;these fractions also showed the highest rate DNA fragmentation following incubation, subsequently exhibiting the lowest DNA longevity. Conclusion:1) Unnecessary incubation of spermatozoa prior to artificial insemination or in vitro fertilization, should be avoided, since sperm DNA longevity is significantly reduced after ex vivo sperm handling and 2) Although sperm selection by DCG significantly reduces the baseline levels of SDF of sperm in Fraction 3, sperm DNA longevity in this fraction was ultimately lower following 24 h incubation when compared to sperm recovered from non-centrifuged NSS.
Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; Rhodes, T. L.; Dimits, A. M.; Bravenec, R.; Grierson, B. A.; Holland, C.; Lohr, J.; Marinoni, A.; McKee, G. R.; Petty, C. C.; Rost, J. C.; Schmitz, L.; Wang, G.; Zemedkun, S.; Zeng, L.
2016-05-01
A series of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven trapped electron mode (DGTEM) turbulence dominates the inner core of H-mode plasmas during strong electron cyclotron heating (ECH). Adding 3.4 MW ECH doubles Te/Ti from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This suggests that fusion α-heating may degrade inner core confinement in H-mode plasmas with moderate density peaking and low collisionality, with equal electron and ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] (and GENE [Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes but also density fluctuation spectra from Doppler backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0>qmin>1 .
Biferale, L.; Meneveau, C.; Verzicco, R.
2014-01-01
Small droplets in turbulent flows can undergo highly variable deformations and orientational dynamics. For neutrally buoyant droplets smaller than the Kolmogorov scale, the dominant effects from the surrounding turbulent flow arise through Lagrangian time histories of the velocity gradient tensor. H
Radial gradients of phase space density in the inner electron radiation
Kim, Kyung-Chan; Shprits, Yuri
2012-12-01
While the outer radiation belt (3.5 inner radiation belt (1.2 inner electron belt in recent years. It has been generally accepted that the equilibrium structure of radiation belt electrons is explained by the slow inward radial diffusion from a source in the outer belt and losses by Coulomb collision and wave-particle interaction. In this study, we examine this well accepted theory using the radial profiles of the phase space density (PSD), inferred from in situ measurements made by three different satellites: S3-3, CRRES, and POLAR. Our results show that electron PSD in the inner electron belt has a clear prominent local peak and negative radial gradient in the outer portion of the inner zone, i.e., decreasing PSD with increasingL-value. A likely explanation for the peaks in PSD is acceleration due to energy diffusion produced by lightning-generated and anthropogenic whistlers. These results indicate that either additional local acceleration mechanism is responsible for the formation of the inner electron belt or inner electron belt is formed by sporadic injections of electrons into the inner zone. The currently well accepted model of slow diffusion and losses will be further examined by the upcoming Radiation Belt Storm Probes (RBSP) mission.
A rapid and scalable density gradient purification method for Plasmodium sporozoites
Directory of Open Access Journals (Sweden)
Kennedy Mark
2012-12-01
Full Text Available Abstract Background Malaria remains a major human health problem, with no licensed vaccine currently available. Malaria infections initiate when infectious Plasmodium sporozoites are transmitted by Anopheline mosquitoes during their blood meal. Investigations of the malaria sporozoite are, therefore, of clear medical importance. However, sporozoites can only be produced in and isolated from mosquitoes, and their isolation results in large amounts of accompanying mosquito debris and contaminating microbes. Methods Here is described a discontinuous density gradient purification method for Plasmodium sporozoites that maintains parasite infectivity in vitro and in vivo and greatly reduces mosquito and microbial contaminants. Results This method provides clear advantages over previous approaches: it is rapid, requires no serum components, and can be scaled to purify >107 sporozoites with minimal operator involvement. Moreover, it can be effectively applied to both human (Plasmodium falciparum, Plasmodium vivax and rodent (Plasmodium yoelii infective species with excellent recovery rates. Conclusions This novel method effectively purifies viable malaria sporozoites by greatly reducing contaminating mosquito debris and microbial burdens associated with parasite isolation. Large-scale preparations of purified sporozoites will allow for enhanced in vitro infections, proteomics, and biochemical characterizations. In conjunction with aseptic mosquito rearing techniques, this purification technique will also support production of live attenuated sporozoites for vaccination.
DEFF Research Database (Denmark)
Paidarová, Ivana; Sauer, Stephan P. A.
2012-01-01
We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradient...
A model for thin layer formation by delayed particle settling at sharp density gradients
Prairie, Jennifer C.; White, Brian L.
2017-02-01
Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.
Energy Technology Data Exchange (ETDEWEB)
Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.; Sharma, D.; Ghosh, J.; Saxena, Y. C. [Institute for Plasma Research, Gandhinagar 382428 (India); Thomas, Edward [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)
2015-09-15
Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of the dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.
Dilution of Buoyant Surface Plumes
DEFF Research Database (Denmark)
Larsen, Torben; Petersen, Ole
The purpose of present work is to establish a quantitative description of a surface plume which is valid for the range of density differences occurring in relation to sewage outfalls.......The purpose of present work is to establish a quantitative description of a surface plume which is valid for the range of density differences occurring in relation to sewage outfalls....
Energy Technology Data Exchange (ETDEWEB)
Delcey, Mickaël G. [Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, 751 20 Uppsala (Sweden); Pedersen, Thomas Bondo [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway); Aquilante, Francesco [Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, 751 20 Uppsala (Sweden); Dipartimento di chimica “G. Ciamician,” Università di Bologna, V. F. Selmi 2, 40126 Bologna (Italy); Lindh, Roland, E-mail: roland.lindh@kemi.uu.se [Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, 751 20 Uppsala (Sweden); Uppsala Center for Computational Chemistry - UC_3, Uppsala University, P.O. Box 518, 751 20 Uppsala (Sweden)
2015-07-28
An efficient implementation of the state-averaged complete active space self-consistent field (SA-CASSCF) gradients employing density fitting (DF) is presented. The DF allows a reduction both in scaling and prefactors of the different steps involved. The performance of the algorithm is demonstrated on a set of molecules ranging up to an iron-Heme b complex which with its 79 atoms and 811 basis functions is to our knowledge the largest SA-CASSCF gradient computed. For smaller systems where the conventional code could still be used as a reference, both the linear response calculation and the gradient formation showed a clear timing reduction and the overall cost of a geometry optimization is typically reduced by more than one order of magnitude while the accuracy loss is negligible.
On the cooling of a buoyant boundary current
Ou, Hsien-Wang
2005-06-01
Through a steady-state reduced-gravity model, we examine the downstream evolution of a buoyant boundary current as it is subjected to surface cooling. It is found that the adverse pressure gradient associated with the diminishing buoyancy is countered by falling pressure head, so the overall strength of the current—as measured by the (transport-weighted) mean square velocity—remains unchanged. This constancy also applies to the cross-stream difference of the square velocity because of the vorticity constraint, which leads to the general deduction that the net current shear is enhanced regardless of its upstream sign. As a consequence, if the upstream flow contains near-shore and offshore branches that are comparable in strength, this parity would persist downstream; but if the near-shore branch is weaker to begin with, it may be stagnated by cooling, with the ensuing generation of anti-cyclonic eddies. On account of the geostrophic balance, the buoyant layer narrows as the square root of the buoyancy—the same rate as the falling pressure head, but more rapid than that of the local deformation radius. Some of the model predictions are compared with observations from the Tsushima Current in the Japan/East Sea.
Infrared Sensing of Buoyant Surface Plumes
DEFF Research Database (Denmark)
Petersen, Ole; Larsen, Torben
1988-01-01
This paper is concerned with laboratory experiments on buoyant surface plumes where heat is the source of buoyancy. Temperature distributions were measured at the water surface using infra-red sensing, and inside the waterbody a computer based measurement system was applied. The plume is described...
Energy Technology Data Exchange (ETDEWEB)
Lembarki, A.
1994-12-01
In this work, we have developed some gradient-corrected exchange-correlation functionals. This study is in keeping with the density functional theory (DFT) formalism. In the first part of this memory, a description of Hartree-Fock (HF), post-HF and density functional theories is given. The second part is devoted the study the different approximations of DFT exchange-correlation functionals which have been proposed in the last years. In particular, we have underlined the approximations used for the construction of these functionals. The third part of this memory consists in the development of new gradient-corrected functionals. In this study, we have established a new relation between exchange energy, correlation energy and kinetic energy. We have deduced two new possible forms of exchange or correlation functionals, respectively. In the fourth part, we have studied the exchange potential, for which the actual formulation does not satisfy some theoretical conditions, such as the asymptotic behavior -1/r. Our contribution lies in the development of an exchange potential with a correct asymptotic -1/r behavior for large values of r. In this chapter, we have proposed a model which permits the obtention of the exchange energy from the exchange potential, using the virial theorem. The fifth part of this memory is devoted the application of these different functionals to simple systems (H{sub 2}O, CO, N{sub 2}O, H{sub 3}{sup +} and H{sub 5}{sup +}) in order to characterize the performance of DFT calculations in regards to those obtained with post-HF methods. (author). 215 refs., 8 figs., 28 tabs.
Plocková, Jana; Chmelík, Josef
2006-06-23
In previous papers, several approaches to programming of the resulting force field in GFFF were described and investigated. The experiments were dealing with flow-velocity and channel thickness, i.e. factors influencing hydrodynamic lift forces (HLF). The potential of density and viscosity of carrier liquid for field programming was predicted and demonstrated by preliminary experiments. This work is devoted to experimental verification of the influence of carrier liquid density and viscosity. Several carrier liquid density and simultaneously viscosity gradients using water-methanol mixtures are in this work implemented in the separation of a model silica mixture. Working with the water-methanol gradients, one is not able to separate the influence of density from the contribution of viscosity. However, we found experimental conditions to show the isolated effect of carrier liquid density (two water-methanol mixtures of equal viscosity differing in their densities). In order to demonstrate the isolated effect of viscosity, we implemented in this work a new system of (hydroxypropyl)methyl cellulose (HPMC) carrier liquids. Three different HPMC compositions enabled to vary the viscosity more than two times at almost constant density. With increasing carrier liquid viscosity, the focusing and elevating trend was clearly pronounced for 5 and 10 microm silica particles. By the isolated effect of increased viscosity, the centre of the 10 microm particle zone was elevated to the streamline at 16% of the channel height. These experiments have shown that the influence of carrier liquid viscosity on HLF should be taken into account even at higher levels above the channel bottom, i.e. beyond the near-wall region. Further, it is shown that higher value of carrier liquid viscosity improves the separation of the model mixture in terms of time and resolution.
Pfaff, R.; Rowland, D.; Klenzing, J.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Roddy, P.; Hunton, D.
2009-01-01
DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradients
Salamakha, O V; Rogatykh, N P; Savochkina, I V; Tikhomirova, L A; Bazarenko, I L
1989-01-01
The mycelium of Streptomyces fradiae was fractionated by differential centrifugation in a sucrose density gradient (SDG) using various samples of the inoculation material and aliquots of the cultural broth taken in the course of tylosin production. The mode of mycelium distribution in SDG made it possible to select the most active inoculation material. The mycelium was redistributed from sucrose layers with a high density to those with a lower density in the course of fermentation. The fractions differed in the antibiotic activity but none of them had an activity higher than in the control centrifuged in 30% sucrose and washed off just like the fractions. Therefore, mycelium fractionation in SDG would not elevate its antibiotic activity. The paper presents the cytological characteristics of different fractions changing in the course of fermentation.
Observations and numerical modelling of a non-buoyant front in the Tay Estuary, Scotland
Neill, S. P.; Copeland, G. J. M.; Ferrier, G.; Folkard, A. M.
2004-01-01
Acoustic Doppler current profiler (ADCP) and density data have been collected for a section of front which consistently occurs on the flood tide along a break in bathymetry in the Tay Estuary. Lateral velocity shear in a vertical profile through the front was measured to be 0.52 s -1. An estuarine cross-sectional numerical model was developed with buoyancy-driven flow. Results from the numerical model showed that shears of such magnitude cannot be produced by buoyancy alone. Instead, a hypothesis was devised for the generation of the bathymetry-aligned front, and tested using the numerical model. The flooding current flows over sandbanks at the southern bank of the estuary and is then directed over (rather than along) the bathymetry break due to a sudden topographic restriction at the Tayport Narrows. Due to tidal phase effects, this overbank flow has a lower density than the ambient main channel water, hence behaving as a buoyant plume. The plume entrains higher density bottom water and a recirculation cell is set up in the lee of the bathymetry break. A surface convergent front occurs because a corresponding towards-bank flow (confirmed by field data) occurs in the centre of the channel. The numerical model was applied to this configuration using suitable initial and boundary conditions based on field observations. Lateral velocity profiles and the strength of shear show good agreement with the field data. It is suggested that the presence of a density gradient is required to generate the front but is not the main driving force.
Neish, G A; Green, B R
1977-12-14
Saprolegnia diclina DNA has been fractionated using preparative AgNO3/Cs2SO4 and CsCl density gradients. In addition to the previously identified major satellite DNA, there are two minor DNA components banding at 1.682 and 1.701 g - cm(-3) in CsCl. Purified major satellite DNA bands at 1.707 g - cm(-3) giving a base composition of 48% G + C in good agreement with 47% G + C calculated from its Tm value. The nuclear DNA base composition is 58% G + C by both methods. The base composition of the major satellite DNA suggests that it may represent ribosomal DNA cistrons.
Water exit dynamics of buoyant spheres
Truscott, Tadd T.; Epps, Brenden P.; Munns, Randy H.
2016-11-01
Buoyant spheres released below the free surface can rise well above the surface in a phenomenon known as pop-up. Contrary to intuition, increasing the release depth sometimes results in a lower pop-up height. We present the pop-up height of rising buoyant spheres over a range of release depths (1-12.5 diameters) and Reynolds numbers (4 ×104 to 6 ×105 ). While the dynamics of rising buoyant spheres and bubbles has been thoroughly investigated for Reynolds numbers below 104, pop-up in these larger-Reynolds-number regimes has not been studied. Yet the underwater motions of the sphere for the Reynolds numbers we study are the key to understanding the pop-up height. Two major regimes are apparent: vertical and oscillatory. The vertical regime exhibits a nearly vertical underwater trajectory and results in the largest pop-up heights. The oscillatory regime exhibits an underwater trajectory with periodic lateral motions and results in lower pop-up heights; this periodic lateral motion is modulated by unsteady vortex shedding in the wake of the sphere. Despite these complex fluid structure interactions, the experiments presented herein yield extremely repeatable results.
ROUNDED FLOWING STATES OF OBSTRUCTED BUOYANT JET
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; FANG Shen-guang
2006-01-01
The mutual relationships of three effective factors, the diameter D/d (d is the diameter of exit) of obstructed plate, exit densimetric Froude number and the distance H/d of the plate from jet orifice for obstructed buoyant jet in static ambient, are analyzed to explain normal and abnormal rounded flowing (reverberated and bifurcated flowing).The critical Froude numbers for obstructed buoyant jets with H/d=2, 4, 6, 8 which distinguished normal and abnormal flowing pattern are obtained. Normal rounded flowing is found only for a plate under a special value of H/d. A fitted formula of critical Froude numbers with H/d and D/d is presented to distinguish rounded flowing types. The occurring of reverberated or bifurcated flowing in abnormal rounded flow is analyzed. Based on the results of obstructed buoyant jets with D/d=1, normal rounded flowing occurred only for all conditions and axial dilution behind the plate under different H/D is obtained.
Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem
2014-05-06
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low
Up-Hill Diffusion Creating Density Gradient - What is the Proper Entropy?
Sato, Naoki
2016-01-01
It is always some constraint that yields any nontrivial structure from statistical averages. As epitomized by the Boltzmann distribution, the energy conservation is often the principal constraint acting on mechanical systems. Here, we investigate a different type: the topological constraint imposed on `space'. Such constraint emerges from the null space of the Poisson operator linking energy gradient to phase space velocity, and appears as an adiabatic invariant altering the preserved phase space volume at the core of statistical mechanics. The correct measure of entropy, built on the distorted invariant measure, behaves consistently with the second law of thermodynamics. The opposite behavior (decreasing entropy and negative entropy production) arises in arbitrary coordinates. An ensamble of rotating rigid bodies is worked out. The theory is then applied to up-hill diffusion in a magnetosphere.
Damping-Growth Transition for Ion-Acoustic Waves in a Density Gradient
DEFF Research Database (Denmark)
D'Angelo, N.; Michelsen, Poul; Pécseli, Hans
1975-01-01
A damping-growth transition for ion-acoustic waves propagating in a nonuniform plasma (e-folding length for the density ln) is observed at a wavelength λ∼2πln. This result supports calculations performed in connection with the problem of heating of the solar corona by ion-acoustic waves generated...
Energy Technology Data Exchange (ETDEWEB)
Mardirossian, Narbe [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720 (United States); Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2015-02-21
A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 10{sup 10} choices carved out of a functional space of almost 10{sup 40} possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.
Petrenko, Alexey; Sosedkin, Alexander
2016-01-01
Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1e15 1/cm^3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project --- the proof-of-prin...
Petrenko, A.; Lotov, K.; Sosedkin, A.
2016-09-01
Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1015cm-3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project-the proof-of-principle experiment on proton driven plasma wakefield acceleration at CERN.
Highly durable superhydrophobic coatings with gradient density by movable spray method
Tenjimbayashi, Mizuki; Shiratori, Seimei
2014-09-01
Superhydrophobic surface is expected to be applied in anti-fouling, anti-icing, and anti-bacterial. However, practical use is interrupted by low mechanical strength, time-consuming process, and limited coating substrate. Here highly durable superhydrophobic coatings were prepared by simple and novel spraying method, which sprays with changing the "spray distance between substrate and spray" (SD), named "movable spray method." We prepared the solution that changes wettability and durability with spraying distance by mixing SiO2 nanoparticles and ethyl alpha cyanoacrylate polymer (EAC). Then, we evaluated the chemical components and surface morphologies of each spraying distance coatings (0 ˜ 50 cm) by XPS, SEM, and laser scanning microscope. It revealed that surface roughness and SiO2/EAC ratio increased as the SD increases. Thus, durable superhydrophobic coatings were designed by spraying with increasing SD gradually. Glow discharge-optical emission spectrometry analysis revealed that designed coatings showed the gradual increase of SiO2/EAC ratio. As a result, coatings prepared on glass, wood, or aluminum substrates maintained their superhydrophobicity up to the abrasion at 40 kPa. This movable spray method is simple coating by the wet process and prepares robust hydrophobic coating on complex shape and large area substrates. The gradient functional surface was found to have mechanical durability and superhydrophobicity, and wide area applications will be expected.
Directory of Open Access Journals (Sweden)
Damien H. Chua
2009-01-01
Full Text Available We investigate the spatial variability of electron densities in the nightside ionosphere and its effects on very-low frequency (VLF wave propagation using a suite of instruments from the FORMOSAT-3/Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC spacecraft.We use observations from the Tiny Ionospheric Photometer (TIP instruments to infer the horizontal electron density gradients along each satellite track. We demonstrate that the OI 1356 _ radiance measured by the TIP instruments tracks the horizontal electron density structure well with high spatial resolution and unprecedented sensitivity. Accurate measurements of the horizontal electron density gradients are important for improving retrieved electron density profiles from GPS occultation and other tomographic remote sensing techniques. The processes underlying the variability in the large-scale, nightside electron density gradients are the main drivers of ionospheric weather. TIP observations reveal significant variability in both the small and large scale structure of the nightside ionosphere. The relative intensities, relative widths, and latitudinal separation of the northern and southern ionization crests of the Appleton anomalies show a high degree of longitudinal variation.We demonstrate how the TIP observations can be used to measure the horizontal gradient of the refractive index of whistler-mode VLF waves propagating in a cold, collisionless plasma. These measurements are critical for understanding how gradients in electron density associated with ionospheric structure such as depletions and the Appleton anomalies affect VLF wave propagation through the equatorial and mid-latitude ionosphere.
Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI
Nunes, Daniel; Cruz, Tomás L.; Jespersen, Sune N.; Shemesh, Noam
2017-04-01
White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and
Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar
2016-10-01
We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.
Directory of Open Access Journals (Sweden)
Williams Jackie
2003-11-01
Full Text Available Abstract Background Large scale in vitro production of the mosquito stages of malaria parasites remains elusive, with only limited success for complete sporogonic development and only one report of development through to infective sporozoites. The initial step in this process is the production, in vitro, of ookinetes from gametocytaemic blood. Methods for isolation of these ookinetes from blood cells have been described; however, in addition to yield often being low, processing time and potential for contamination by erythrocytes remain high. Methods This study compares two procedures for retaining mature ookinetes from blood stage cultures, whilst removing red blood cells and other contaminants prior to further culture of the parasite. The well established method of isolation on Nycodenz cushions is compared with a novel method utilizing the innate magnetic properties of the haem pigment crystals found in the cytoplasm of ookinetes. Results Yield and viability of ookinetes were similar with both isolation methods. However, in our hands magnetic isolation produced a cleaner ookinete preparation much more quickly. Moreover, decreasing the flow rate through the magnetic column could further enhance the yield. Conclusion We recommend the enrichment of an ookinete preparation prior to further culture being performed using the magnetic properties of Plasmodium berghei ookinetes as an alternative to their density. The former technique is faster, removes more erythrocytes, but day-to-day costs are greater.
Mirajkar, Harish N
2016-01-01
The presence of stratified layer in atmosphere and ocean leads to buoyant vertical motions, commonly referred to as plumes. It is important to study the mixing dynamics of a plume at a local scale in order to model their evolution and growth. Such a characterization requires measuring the velocity and density of the mixing fluids simultaneously. Here, we present the results of a buoyant plume propagating in a linearly stratified medium with a density difference of 0.5%, thus yielding a buoyancy frequency of N=0.15 s^{-1}. To understand the plume behaviour, statistics such as centerline and axial velocities along varying downstream locations, turbulent kinetic energy, Reynolds stress, and buoyancy flux were measured. The centerline velocity was found to decrease with increase in height. The Reynolds stress and buoyancy flux profiles showed the presence of a unstable layer and the mixing associated within that layer.
Carlson, Rebecca K; Truhlar, Donald G; Gagliardi, Laura
2015-09-08
We extend the on-top density functional of multiconfiguration pair-density functional theory (MC-PDFT) to include the gradient of the on-top density as well as the gradient of the density. We find that the theory is reasonably stable to this extension; furthermore, it provides improved accuracy for molecules containing transition metals. We illustrate the extended on-top density functionals by applying them to Cr2, Cu2, Ag2, Os2, and Re2Cl8(2-) as well as to our previous database of 56 data for bond dissociation energies, barrier heights, reaction energies, proton affinities, and the water dimer. The performance of MC-PDFT is comparable to or better than that of CASPT2.
Weber, Valéry; Tymczak, Christopher J; Challacombe, Matt
2006-06-14
The application of theoretical methods based on density-functional theory is known to provide atomic and cell parameters in very good agreement with experimental values. Recently, construction of the exact Hartree-Fock exchange gradients with respect to atomic positions and cell parameters within the Gamma-point approximation has been introduced. In this article, the formalism is extended to the evaluation of analytical Gamma-point density-functional atomic and cell gradients. The infinite Coulomb summation is solved with an effective periodic summation of multipole tensors. While the evaluation of Coulomb and exchange-correlation gradients with respect to atomic positions are similar to those in the gas phase limit, the gradients with respect to cell parameters needs to be treated with some care. The derivative of the periodic multipole interaction tensor needs to be carefully handled in both direct and reciprocal space and the exchange-correlation energy derivative leads to a surface term that has its origin in derivatives of the integration limits that depend on the cell. As an illustration, the analytical gradients have been used in conjunction with the QUICCA algorithm to optimize one-dimensional and three-dimensional periodic systems at the density-functional theory and hybrid Hartree-Fock/density-functional theory levels. We also report the full relaxation of forsterite supercells at the B3LYP level of theory.
Control of colloids with gravity, temperature gradients, and electric fields
Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M
2003-01-01
We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.
Directory of Open Access Journals (Sweden)
Chuan Teck F
2004-01-01
Full Text Available Abstract Background Sucrose density gradient centrifugation and cross-flow filtration methods have been developed and standardised for the safe and reproducible production of inactivated arbovirus antigens which are appropriate for use in diagnostic serological applications. Methods To optimise the maximum titre of growth during the propagation of arboviruses, the multiplicity of infection and choice of cell line were investigated using stocks of Ross River virus and Barmah Forest virus grown in both mosquito and mammalian cell lines. To standardise and improve the efficacy of the inactivation of arboviral suspensions, stocks of Ross River virus, Barmah Forest virus, Japanese encephalitis virus, Murray Valley encephalitis virus and Alfuy virus were chemically inactivated using binary ethylenimine at a final concentration of 3 mM. Aliquots were then taken at hourly intervals and crude inactivation rates were determined for each virus using a plaque assay. To ensure complete inactivation, the same aliquots were each passaged 3 times in Aedes albopictus C6/36 cells and the presence of viral growth was detected using an immunofluorescent assay. For larger quantities of viral suspensions, centrifugation on an isopycnic sucrose density gradient or cross-flow filtration was used to produce concentrated, pure antigens or partially concentrated, semi-purified antigens respectively. Results The results of the propagation experiments suggested that the maximum viral titres obtained for both Ross River virus and Barmah Forest virus were affected by the incubation period and choice of cell line, rather than the use of different multiplicity of infection values. Results of the binary ethylenimine inactivation trial suggested that standardised periods of 5 or 8 hours would be suitable to ensure effective and complete inactivation for a number of different arboviral antigens. Conclusion Two methods used to prepare inactivated arbovirus antigens have been
Torabi, Forough; Binduraihem, Adel; Miller, David
2017-03-01
Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. Immature spermatozoa may be unable to interact because they do not express the appropriate hyaladherins on their surface. Fresh human semen samples were fractionated using differential density gradient centrifugation (DDGC) and the ability of these fractions to bind hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 was located mainly on the acrosome and equatorial segment and became more restricted to the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronic acid conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm populations obtained after DDGC or after interaction with hyaluronic acid were assessed for DNA fragmentation and chromatin maturity. Strong relationships between both measures and sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation enhanced hyaluronic acid binding of both DDGC-pelleted sperm and sperm washed free of seminal fluid. In conclusion, hyaladherins were detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA fragmentation and better chromatin maturity. Capacitation induced changes in the distribution and presence of hyaladherins may enhance hyaluronic-acid-binding.
Hevia, Arancha; Delgado, Susana; Margolles, Abelardo; Sánchez, Borja
2015-11-19
The idea of considering the gut microbiota as a virtual human organ has led to the concept of fecal microbiota transplantation (FMT), which has recently been extremely successful in the treatment of cases of recurrent Clostridium difficile infection. Administration of safe, viable, and representative fecal microbiota is crucial for FMT. To our knowledge, suitable techniques and systematic conditions for separating the fecal microbiota from stool samples have not been thoroughly investigated. In this work we show the potential to separate stool microorganisms from the rest of fecal material using a procedure with a Nycodenz® density gradient, yielding 10(10) viable bacteria per two grams of feces. This procedure did not affect the original microbiota composition in terms of viability, distribution and proportions, as assessed by a phylogenetic metagenomic approach. Obtaining the fecal microbiota by concentration and separation of the microorganisms from the rest of the stool components would allow the standardization of its recovery and its long-term preservation. FMT or similar microbiota restoration therapies could be used for the treatment of several disorders, or even for aesthetic purposes, so the method described in our work may contribute to the setting of the basis for the development of safe and standardized products.
Dekoulis, George
2016-07-01
This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.
Jeeva, K.; Gurubaran, S.; Williams, E. R.; Kamra, A. K.; Sinha, A. K.; Guha, A.; Selvaraj, C.; Nair, K. U.; Dhar, Ajay
2016-11-01
The scope of this paper is to explore the mechanisms operating over Maitri (70.76°S, 11.74°E, 117 m above mean sea level), a coastal Antarctic station, that produce an anomalous fair-weather diurnal pattern of the atmospheric electric potential gradient (PG) and air-Earth current density (AEC). The anomaly in the diurnal variations of AEC and the PG is displaying an ostensible minimum at 10 UT and a diminished response to the thunderstorm over the African continent in the 14-16 UT time frame. The data sets (2005-2014, except 2012) of the PG, and to some extent, AEC, from Maitri, are used to explore this anomaly. It follows that the fair-weather electrical phenomena over Maitri can be ascribed to global electrified convection on the one hand and to regional phenomena like convection due to the replacement of warm air by katabatic winds on the other hand. The katabatic winds originate on the polar plateau and blow from 130° at Maitri which are likely to transport various elements from the mountain slopes, and space charge from the polar plateau is expected to produce various disturbances in the PG and AEC monitored over the coastal Antarctica. This mechanism may be responsible for peaks in the early UT hours and also for the anomalous behavior of atmospheric electrical parameters observed at Maitri. Maitri data are compared with that of Carnegie cruise and Vostok to explain the source of anomaly.
Institute of Scientific and Technical Information of China (English)
Sun Bo; Zhang Ping
2008-01-01
The electronic structures and properties of PuO2 and Pu2O3 have been studied according to the first principles by using the all-electron projector-augmented-wave (PAW) method. The local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Pu 5f electrons. We discuss how the properties of PuO2 and Pu2O3 are affected by choosing the values of U and exchange-correlation potential. Also, the oxidation reaction of Pu2O3, leading to the formation of PuO2, and its dependence on U and exchange-correlation potential have been studied. Our results show that by choosing an appropriate U it is possible to consistently describe structural, electronic, and thermodynamic properties of PuO2 and Pu2O3, which enable the modelling of the redox process involving Pu-based materials.
Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection
Institute of Scientific and Technical Information of China (English)
DUAN Li; KANG Qi; HU Wen-Rui
2008-01-01
@@ We investigate the surface deformations of buoyant-thermocapillary convection in a rectangular cavity due to gravity and temperature gradient between the two sidewalls. The cavity is 52mm×42 mm in horizontal cross section, the thickness of liquid layer h is changed from 2.5mm to 6.5 mm. Surface deformations of h = 3.5 mm and 6.0mm are discussed and compared. Temperature difference is increased gradually, and the flow in the liquid layer will change from stable convection to unstable convection. Two kinds of optical diagnostic system with image processor are developed for study of the kinetics of buoyant-thermocapillaxy convection, they give out the information of liquid free surface. The quantitative results are calculated by Fourier transform and correlation analysis, respectively. With the increasing temperature gradient, surface deformations calculated are more declining. It is interesting phenomenon that the inclining directions of the convections in thin and thick liquid layers are different. For a thin layer, the convection is mainly controlled by thermocapillary effect. However,for a thick layer, the convection is mainly controlled by buoyancy effect. The surface deformation theoretically analysed is consistent with our experimental results. The present experiment proves that surface deformation is related to temperature gradient and thickness of the liquid layer. In other words, surface deformation lies on capillary convection and buoyancy convection.
Directory of Open Access Journals (Sweden)
Vera Fernanda Martins Hossepian de Lima
2011-08-01
Full Text Available O objetivo neste trabalho foi desenvolver um método de seleção do sexo de espermatozoides bovinos por centrifugação em gradiente de densidade de Percoll. Utilizou-se sêmen congelado de touros mantidos em regime de colheita de sêmen. A fração de espermatozoides X ou Y foi separada por centrifugação em treze diferentes gradientes de densidade de Percoll formados por 1 a 12 camadas com densidades que variaram de 1,004 g/mL a 1,123 g/mL. As soluções com diferentes densidades foram preparadas misturando-se, em proporções diferentes, meio de cultura Hank's e uma solução estoque composta de NaCl 1,5 M e Percoll (1:9, v/v. Sobre cada gradiente foi colocado um total de 50 × 10(6 espermatozoides descongelados em 0,7 mL de meio Hank's e centrifugados a 250 X g por 30 minutos, em rotor horizontal, a 25°C. Os espermatozoides das frações superior e inferior foram tratados com Quinacrina Mustarda e analisados (200 deles quanto à presença do corpúsculo-F. Dos espermatozoides encontrados no sedimento de dois gradientes, compostos de 8 e 12 frações com densidades variando entre 1,050 a 1,120 g/mL e 1,044 a 1,123 g/mL, respectivamente, visualizaram-se 25% com corpúsculo-F e os 75% restantes prováveis portadores do cromossomo X. O aumento na porcentagem de espermatozoides X após a centrifugação em gradiente de densidade permitirá que esse método de sexagem seja usado em larga escala na produção comercial de carne e leite bem como no teste de progênie.The objective of this work was to develop a bovine spermatozoid sex selection method by using Percoll density gradient centrifugation. It was used frozen semen of bulls kept in semen collection regime. Fraction X or Y was separated by centrifugation in three different Percoll density gradient formed by 1 to 12 layers with densities varying from 1.004 g/mL to 1.123 g/mL. Solutions with different densities were prepared by mixing, at different proportions, Hank's culture medium and a
Sahai, Aakash A; Tableman, A R; Mori, W B; Katsouleas, T C
2014-01-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma ...
Tobner, Cornelia M; Paquette, Alain; Reich, Peter B; Gravel, Dominique; Messier, Christian
2014-03-01
Increasing concern about loss of biodiversity and its effects on ecosystem functioning has triggered a series of manipulative experiments worldwide, which have demonstrated a general trend for ecosystem functioning to increase with diversity. General mechanisms proposed to explain diversity effects include complementary resource use and invoke a key role for species' functional traits. The actual mechanisms by which complementary resource use occurs remain, however, poorly understood, as well as whether they apply to tree-dominated ecosystems. Here we present an experimental approach offering multiple innovative aspects to the field of biodiversity-ecosystem functioning (BEF) research. The International Diversity Experiment Network with Trees (IDENT) allows research to be conducted at several hierarchical levels within individuals, neighborhoods, and communities. The network investigates questions related to intraspecific trait variation, complementarity, and environmental stress. The goal of IDENT is to identify some of the mechanisms through which individuals and species interact to promote coexistence and the complementary use of resources. IDENT includes several implemented and planned sites in North America and Europe, and uses a replicated design of high-density tree plots of fixed species-richness levels varying in functional diversity (FD). The design reduces the space and time needed for trees to interact allowing a thorough set of mixtures varying over different diversity gradients (specific, functional, phylogenetic) and environmental conditions (e.g., water stress) to be tested in the field. The intention of this paper is to share the experience in designing FD-focused BEF experiments with trees, to favor collaborations and expand the network to different conditions.
An Experimental Investigation on Inclined Negatively Buoyant Jets
Directory of Open Access Journals (Sweden)
Raed Bashitialshaaer
2012-09-01
Full Text Available An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow rate. Five geometric quantities describing the jet trajectory that are useful in the design of brine discharge systems were determined. Dimensional analysis demonstrated that the geometric jet quantities studied, if normalized with the jet exit diameter, could be related to the densimetric Froude number. Analysis of the collected data showed that this was the case for a Froude number less than 100, whereas for larger values of the Froude number the scatter in the data increased significantly. As has been observed in some previous investigations, the slope of the best-fit straight line through the data points was a function of the initial jet angle (θ, where the slope increased with θ for the maximum levels (Y_{m} studied, but had a more complex behavior for horizontal distances.
Mohammadpour, Mozhdeh; Jamshidi, Zahra
2016-05-01
The prospect of challenges in reproducing and interpretation of resonance Raman properties of molecules interacting with metal clusters has prompted the present research initiative. Resonance Raman spectra based on the time-dependent gradient approximation are examined in the framework of density functional theory using different methods for representing the exchange-correlation functional. In this work the performance of different XC functionals in the prediction of ground state properties, excitation state energies, and gradients are compared and discussed. Resonance Raman properties based on time-dependent gradient approximation for the strongly low-lying charge transfer states are calculated and compared for different methods. We draw the following conclusions: (1) for calculating the binding energy and ground state geometry, dispersion-corrected functionals give the best performance in comparison to ab initio calculations, (2) GGA and meta GGA functionals give good accuracy in calculating vibrational frequencies, (3) excited state energies determined by hybrid and range-separated hybrid functionals are in good agreement with EOM-CCSD calculations, and (4) in calculating resonance Raman properties GGA functionals give good and reasonable performance in comparison to the experiment; however, calculating the excited state gradient by using the hybrid functional on the hessian of GGA improves the results of the hybrid functional significantly. Finally, we conclude that the agreement of charge-transfer surface enhanced resonance Raman spectra with experiment is improved significantly by using the excited state gradient approximation.
Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M
2015-05-01
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
Buoyant subduction on Venus: Implications for subduction around coronae
Burt, J. D.; Head, J. W.
1993-03-01
Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.
Directory of Open Access Journals (Sweden)
Marianne Sandin
2015-09-01
Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.
Buoyant Magnetic Loops Generated by Global Convective Dynamo Action
Nelson, Nicholas J; Brun, A Sacha; Miesch, Mark S; Toomre, Juri
2012-01-01
Our global 3D simulations of convection and dynamo action in a Sun-like star reveal that persistent wreaths of strong magnetism can be built within the bulk of the convention zone. Here we examine the characteristics of buoyant magnetic structures that are self-consistently created by dynamo action and turbulent convective motions in a simulation with solar stratification but rotating at three times the current solar rate. These buoyant loops originate within sections of the magnetic wreaths in which turbulent flows amplify the fields to much larger values than is possible through laminar processes. These amplified portions can rise through the convective layer by a combination of magnetic buoyancy and advection by convective giant cells, forming buoyant loops. We measure statistical trends in the polarity, twist, and tilt of these loops. Loops are shown to preferentially arise in longitudinal patches somewhat reminiscent of active longitudes in the Sun, although broader in extent. We show that the strength o...
Gritsenko, O V; Mentel, Ł M; Baerends, E J
2016-05-28
In spite of the high quality of exchange-correlation energies Exc obtained with the generalized gradient approximations (GGAs) of density functional theory, their xc potentials vxc are strongly deficient, yielding upshifts of ca. 5 eV in the orbital energy spectrum (in the order of 50% of high-lying valence orbital energies). The GGAs share this deficiency with the local density approximation (LDA). We argue that this error is not caused by the incorrect long-range asymptotics of vxc or by self-interaction error. It arises from incorrect density dependencies of LDA and GGA exchange functionals leading to incorrect (too repulsive) functional derivatives (i.e., response parts of the potentials). The vxc potential is partitioned into the potential of the xc hole vxchole (twice the xc energy density ϵxc), which determines Exc, and the response potential vresp, which does not contribute to Exc explicitly. The substantial upshift of LDA/GGA orbital energies is due to a too repulsive LDA exchange response potential vxresp (LDA) in the bulk region. Retaining the LDA exchange hole potential plus the B88 gradient correction to it but replacing the response parts of these potentials by the model orbital-dependent response potential vxresp (GLLB) of Gritsenko et al. [Phys. Rev. A 51, 1944 (1995)], which has the proper step-wise form, improves the orbital energies by more than an order of magnitude. Examples are given for the prototype molecules: dihydrogen, dinitrogen, carbon monoxide, ethylene, formaldehyde, and formic acid.
Directory of Open Access Journals (Sweden)
Leopoldo Vázquez
Full Text Available It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha, though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.
Vázquez, Leopoldo; Renton, Katherine
2015-01-01
It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.
Directory of Open Access Journals (Sweden)
Francesco Chianucci
2015-01-01
Full Text Available Over the last few decades, wild ungulate populations have exhibited relevant geographic and demographic expansion in most European countries; roe deer is amongst the most widespread ungulate species. The increasing roe deer densities have led to strong impact on forest regeneration; the problem has been recently recognized in coppice woods, a silvicultural system which is widespread in Italy, where it amounts to about 56% of the total national forested area.In this study we investigated the effect of roe deer browsing on the vegetative regeneration of Turkey oak few years after coppicing, along a gradient of roe deer density. A browsing index revealed that browsing impact was high at any given roe deer density but increased at higher density, with the browsing rate ranging from 65% to 79%. We also analyzed the long-term impact of browsing six and eleven years after coppicing under a medium roe deer density. Results indicated the early impact are not ephemeral but produced prolonged impacts through time, with an average reduction in volume of -57% and -41% six and eleven years after coppicing, respectively. Based on these results we proposed integrating browsing monitoring with roe deer density estimation to allow identifying ungulate densities which are compatible with silvicultural and forest management objectives. The proposed browsing index can be regarded as an effective management tool, on account of its simplicity and cost-effectiveness, being therefore highly suitable for routine, large scale monitoring of browsing impact.
Bjornsson, Ragnar; Bühl, Michael
2010-06-14
Electric field gradients (EFGs) were computed for the first-row transition metal nuclei in Cr(C(6)H(6))(CO)(3), MnO(3)F, Mn(CO)(5)H, MnCp(CO)(3), Co(CO)(4)H, Co(CO)(3)(NO) and VCp(CO)(4), for which experimental gas-phase data (in form of nuclear quadrupole coupling constants) are available from microwave spectroscopy. A variety of exchange-correlation functionals were assessed, among which range-separated hybrids (such as CAM-B3LYP or LC-omegaPBE) perform best, followed by global hybrids (such as B3LYP and PBE0) and gradient-corrected functionals (such as BP86). While large basis sets are required on the metal atom for converged EFGs, smaller basis sets can be employed on the ligands. In most cases, EFGs show little sensitivity toward the geometrical parameters.
cassiani, massimo; stohl, andreas; brioude, jerome
2014-05-01
The vertical gradient of air density has been included in a skewed probability density function formulation for turbulence in the convective boundary layer and the related drift term for Lagrangian stochastic particle modelling has been obtained based on the well-mixed condition. The formulation has been extended to include unsteady turbulence statistics. Tests were carried out to validate the model including consistency between forward and backward simulations and preservation of well-mixed state with unsteady conditions. The stationary state CBL drift term with density correction was incorporated in the FLEXPART/FLEXPART-WRF Lagrangian models. Currently only the steady state horizontally homogeneous drift term were included. To avoid numerical instability, using the steady homogenous drift in the presence of non-stationary and horizontally non-homogeneous conditions, a re-initialization procedure for particle velocity was used. The criteria for re-initialization and resulting errors were assessed.
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.
2016-11-01
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.
Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage
El-Amin, Mohamed
2012-02-01
The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non-Boussinesq buoyant jet in which a low-density gas jet is injected/leak into a high-density ambient. The density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type and the rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment consists of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The top-hat profile assumption is used to obtain the mean centerline velocity, width, density and concentration of the H 2-air horizontal jet in addition to kinematic relations which govern the jet trajectories. A set of ordinary differential equations is obtained and solved numerically using Runge-Kutta method. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained based on Gaussian model. Finally, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained by solving the governing partial differential equations. Additionally, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Laricchia, S; Fabiano, E; Della Sala, F
2014-01-01
We test Laplacian-level meta-generalized gradient approximation (meta-GGA) non-interacting kinetic energy functionals based on the fourth-order gradient expansion (GE4). We consider several well known Laplacian-level meta-GGAs from literature (bare GE4, modified GE4, and the MGGA functional of Perdew and Constantin [Phys. Rev. B \\textbf{75},155109 (2007)]), as well as two newly designed Laplacian-level kinetic energy functionals (named L0.4 and L0.6). First, a general assessment of the different functionals is performed, testing them for model systems (one-electron densities, Hooke's atom and different jellium systems), atomic and molecular kinetic energies as well as for their behavior with respect to density-scaling transformations. Finally, we assess, for the first time, the performance of the different functionals for Subsystem Density Functional Theory (DFT) calculations on non-covalently interacting systems. We find that the different Laplacian-level meta-GGA kinetic functionals may improve the descript...
Bozkaya, Uğur
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller-Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Energy Technology Data Exchange (ETDEWEB)
Bozkaya, Uğur, E-mail: ugur.bozkaya@atauni.edu.tr [Department of Chemistry, Atatürk University, Erzurum 25240, Turkey and Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Characterization of Horizontally-Issuing Reacting Buoyant Jets
2011-03-01
aquatic discharges. Research into aquatic discharges has been conducted for decades. In 1982, Satyanarayana and Jaluria arranged a set of experiments... Satyanarayana , S., Jaluria, A. A Study of Laminar Buoyant Jets Discharged at an Inclination to the Vertical Buoyancy Force. International Journal of
Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current
DEFF Research Database (Denmark)
Chen, H. B.; Larsen, Torben
1995-01-01
This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically...
Laboratory Study of Dispersion of Buoyant Surface Plumes
DEFF Research Database (Denmark)
Petersen, Ole; Larsen, Torben
1990-01-01
-differences. Other methods as infra-red sensing are used for visualizing purpose. The results are used to calibrate an integral model of the dispersion. Conclusions are that the dispersion of a buoyant surface plume can be treated the superposition of a buoyancy induced stretching and turbulent diffusion, reduced...
Propagating buoyant mantle upwelling on the Reykjanes Ridge
Martinez, Fernando; Hey, Richard
2017-01-01
Crustal features of the Reykjanes Ridge have been attributed to mantle plume flow radiating outward from the Iceland hotspot. This model requires very rapid mantle upwelling and a "rheological boundary" at the solidus to deflect plume material laterally and prevent extreme melting above the plume stem. Here we propose an alternative explanation in which shallow buoyant mantle upwelling instabilities propagate along axis to form the crustal features of the ridge and flanks. As only the locus of buoyant upwelling propagates this mechanism removes the need for rapid mantle plume flow. Based on new geophysical mapping we show that a persistent sub-axial low viscosity channel supporting buoyant mantle upwelling can explain the current oblique geometry of the ridge as a reestablishment of its original configuration following an abrupt change in opening direction. This mechanism further explains the replacement of ridge-orthogonal crustal segmentation with V-shaped crustal ridges and troughs. Our findings indicate that crustal features of the Reykjanes Ridge and flanks are formed by shallow buoyant mantle instabilities, fundamentally like at other slow spreading ridges, and need not reflect deep mantle plume flow.
Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.
1998-01-01
We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.
PREDICTION OF CHARACTERISTICS FOR VERTICAL ROUND NEGATIVE BUOYANT JETS IN HOMOGENEOUS AMBIENT
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The k-ε turbulence model is used to establish a mathematicalmodel of a vertical round jet with negative buoyancy in a static homogeneous ambient. The hybrid finite analytic method, with a non-uniform staggered grid, is used to calculate the whole flow field. The variations of centerline velocity, density and turbulent kinetic energy along the axial line for a given exit densimetric Froude number are found to converge to single curves under the unified scaling law derived by Chen and Rodi. The profiles of mean velocities, mean density difference and the half-width of negative buoyant jets for velocity and density are given. The calculation confirmed that the maximum height of rise is proportional to M03/4B0-1/2 ,where M0 and B0 are the momentum flux and the buoyancy flux at the source, respectively.
Near field characteristics of buoyant helium plumes
Indian Academy of Sciences (India)
Kuchimanchi K Bharadwaj; Debopam Das; Pavan K Sharma
2015-05-01
Puffing and entrainment characteristics of helium plumes emanating out into ambient air from a circular orifice are investigated in the present study. Velocity and density fields are measured across a diametric plane using Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) respectively in phase resolved manner. Experiments are performed in Froude numbers range 0.2–0.4 and for Reynolds numbers 58–248. Puffing frequency measurements reveal that the plume puffing frequencies are insensitive to the plume exit conditions, since the instability is buoyancy driven. The frequencies obtained in the present case are in agreement with frequencies obtained by Cetegen & Kasper (1996) for plumes originating from circular nozzles of various L/D ratios. Velocity and density measurements reveal that toroidal vortex formed during a puffing cycle entrains ambient air as it traverses downstream and this periodic engulfment governs the entrainment mechanism in pulsating plumes. The obtained velocity and density fields are used to calculate mass entrainment rates. It is revealed that though the flow is unsteady, the contribution of unsteady term in mass conservation to entrainment is negligible, and it becomes zero over a puff cycle. Finally, an empirical relation for variation of mass entrainment with height has been proposed, in which the non-dimensional mass entrainment is found to follow a power law with the non-dimensional height.
Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.
2013-10-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783
López Arvizu, Gregorio; Calaminici, Patrizia
2007-05-21
Density functional calculations have been performed for small nickel clusters, Ni(n), Ni(n) (+), and Ni(n)(-) (ntheory approach. Newly developed nickel all-electron basis sets optimized for generalized gradient approximation (GGA) as well as an all-electron basis set optimized for the local density approximation were employed. For both neutral and charged systems, several isomers and different multiplicities were studied in order to determine the lowest energy structures. A vibrational analysis was performed in order to characterize these isomers. Structural parameters, harmonic frequencies, binding energies, ionization potentials, and electron affinities are reported. This work shows that the employed GGA basis sets for the nickel atom are important for the correct prediction of the ground state structures of small nickel clusters and that the structural assignment of these systems can be performed, with a good resolution, over the ionization potential.
密度梯度碳／碳复合材料的制备及性能%Preparation and Properties of Density Gradient Carbon/Carbon Composites
Institute of Scientific and Technical Information of China (English)
陈强; 张守阳
2011-01-01
采用强制流动热梯度化学气相渗透法在1000～1250℃制备了密度梯度碳／碳复合材料；借助三点弯曲试验和激光闪烁法测定了复合材料的弯曲性能与导热系数，用偏光显微镜及扫描电子显微镜观察了基体热解碳的组织结构及断口形貌。结果表明：该复合材料上层的最大密度为1．65g·cm^-3，下层的最小密度为1．10g·cm^-3，具有明显的密度梯度；复合材料的密度越大，抗弯强度越高；其导热系数也随密度的增加而增大；沉积温度是影响基体热解碳组织的主要因素，高温有利于粗糙层热解碳的生成，而低温有利于光滑层热解碳的生成。%Density gradient carbon/carbon composites were infiltrated using forced flow thermal gradient chemical vapor infiltration in the range of 1 000- 1 250℃. Flexural strength and thermal conductivity were determined by 3 point bending test and laser flashing method. Mierostructure of deposited pyrolytic carbon and morphology of fracture surface were observed by polarized light microscopy and scanning electron microscopy. The results show that maximal density of upper part of the composites was 1.65 g · cm^-3 , while miniumum density of bottom part was 1. 10 g ·em^-3 , and obvions density gradient was found. Flexural strength and coefficient of thermal conductivity increased with the increase of density of the composites. The deposition temperature had a great impact on the mierostrueture of the pyolytic carbon. A higher temperature was favourable for the formation of rough layer hydrocarbon, while a lower temperature was favourable for the formation of smooth layer hydrocarbon.
46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced...
Cassiani, Massimo; Stohl, Andreas; Brioude, Jerome
2015-03-01
A correction for the vertical gradient of air density has been incorporated into a skewed probability density function formulation for turbulence in the convective boundary layer. The related drift term for Lagrangian stochastic dispersion modelling has been derived based on the well-mixed condition. Furthermore, the formulation has been extended to include unsteady turbulence statistics and the related additional component of the drift term obtained. These formulations are an extension of the drift formulation reported by Luhar et al. (Atmos Environ 30:1407-1418, 1996) following the well-mixed condition proposed by Thomson (J Fluid Mech 180:529-556, 1987). Comprehensive tests were carried out to validate the formulations including consistency between forward and backward simulations and preservation of a well-mixed state with unsteady conditions. The stationary state CBL drift term with density correction was incorporated into the FLEXPART and FLEXPART-WRF Lagrangian models, and included the use of an ad hoc transition function that modulates the third moment of the vertical velocity based on stability parameters. Due to the current implementation of the FLEXPART models, only a steady-state horizontally homogeneous drift term could be included. To avoid numerical instability, in the presence of non-stationary and horizontally inhomogeneous conditions, a re-initialization procedure for particle velocity was used. The criteria for re-initialization and resulting errors were assessed for the case of non-stationary conditions by comparing a reference numerical solution in simplified unsteady conditions, obtained using the non-stationary drift term, and a solution based on the steady drift with re-initialization. Two examples of "real-world" numerical simulations were performed under different convective conditions to demonstrate the effect of the vertical gradient in density on the particle dispersion in the CBL.
Gritsenko, O. V.; Mentel, Ł. M.; Baerends, E. J.
2016-05-01
In spite of the high quality of exchange-correlation energies Exc obtained with the generalized gradient approximations (GGAs) of density functional theory, their xc potentials vxc are strongly deficient, yielding upshifts of ca. 5 eV in the orbital energy spectrum (in the order of 50% of high-lying valence orbital energies). The GGAs share this deficiency with the local density approximation (LDA). We argue that this error is not caused by the incorrect long-range asymptotics of vxc or by self-interaction error. It arises from incorrect density dependencies of LDA and GGA exchange functionals leading to incorrect (too repulsive) functional derivatives (i.e., response parts of the potentials). The vxc potential is partitioned into the potential of the xc hole vxchole (twice the xc energy density ɛxc), which determines Exc, and the response potential vresp, which does not contribute to Exc explicitly. The substantial upshift of LDA/GGA orbital energies is due to a too repulsive LDA exchange response potential vxresp L D A in the bulk region. Retaining the LDA exchange hole potential plus the B88 gradient correction to it but replacing the response parts of these potentials by the model orbital-dependent response potential vxresp G L L B of Gritsenko et al. [Phys. Rev. A 51, 1944 (1995)], which has the proper step-wise form, improves the orbital energies by more than an order of magnitude. Examples are given for the prototype molecules: dihydrogen, dinitrogen, carbon monoxide, ethylene, formaldehyde, and formic acid.
Pechhacker, Roman
2012-01-01
A beam of super-thermal, hot electrons was injected into maxwellian plasma with a density gradient along a magnetic field line. 1.5D particle-in-cell simulations were carried out which established that the EM emission is produced by the perpendicular component of the beam injection momentum. The beam has a positive slope in the distribution function in perpendicular momentum phase space, which is the characteristic feature of a cyclotron maser. The cyclotron maser in the overdense plasma generates emission at the electron cyclotron frequency. The frequencies of generated waves were too low to propagate away from the injection region, hence the wavelet transform shows a pulsating wave generation and decay process. The intensity pulsation frequency is twice the relativistic cyclotron frequency. Eventually, a stable wave packet formed and could mode couple on the density gradient to reach frequencies of the order of the plasma frequency, that allowed for propagation. The emitted wave is likely to be a z-mode wav...
Directory of Open Access Journals (Sweden)
David J Kinahan
Full Text Available Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic "Lab-on-a-Disc" cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are 'low-pass', i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both 'hydrostatically' and 'hydrodynamically' triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, 'dual siphon' configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction.
Directory of Open Access Journals (Sweden)
M.V. Resende
2011-06-01
Full Text Available The objective of the present study was to determine the sperm enrichment with X-bearing spermatozoa, after one centrifugation in a Percoll or OptiPrep continuous density gradient, using quantitative real-time polymerase chain reaction (qPCR of sperm DNA and resultant in vitro-produced bovine embryos by PCR. Frozen/thawed sperm was layered on density gradients and the tubes were centrifuged. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Cleavage and blastocyst rates were determined through in vitro production of embryos and PCR was performed to identify the embryos' genetic sex. A difference in blastocyst rate was found in the Percoll treatment compared to OptiPrep (P<0.05. The percentage of female embryos in the Percoll and OptiPrep groups was 62.0% and 47.1%, respectively. These results were confirmed by qPCR of spermatozoa DNA and underestimation was seen only in the Percoll group. It was possible to sexing sperm using simple approach.
Linking Soil Physical Parameters Along a Density Gradient in a Loess-Soil Long-Term Experiment
DEFF Research Database (Denmark)
Eden, Marie; Møldrup, Per; Schjønning, Per
2012-01-01
It is important to understand the impact of texture and organic carbon (OC) on soil structure development. Only few studies investigated this for silt-dominated soils. In this study, soil physical properties were determined on samples from a controlled experiment (Static Fertilization Experiment...... coefficient data; the model pore-connectivity factor was fairly constant, whereas the water blockage factor was markedly different. Water and air parameters both implied that change in bulk density was the major driver for diffusive and convective parameters in the experiment....
Supergranulation as the Largest Buoyantly Driven Convective Scale of the Sun
Cossette, Jean-Francois; Rast, Mark P.
2016-09-01
The origin of solar supergranulation remains a mystery. Unlike granulation, the size of which is comparable to both the thickness of the radiative boundary layer and local scale-height in the photosphere, supergranulation does not reflect any obvious length scale of the solar convection zone. Moreover, recent observations of flows in the photosphere using Doppler imaging or correlation or feature tracking show a monotonic decrease in horizontal flow power at scales larger than supergranulation. Both local area and global spherical shell simulations of solar convection by contrast show the opposite, an increase in horizontal flow amplitudes to a low wavenumber. We examine these disparities and investigate how the solar supergranulation may arise as a consequence of nonlocal heat transport by cool diving plumes. Using three-dimensional anelastic simulations with surface driving, we show that the kinetic energy of the largest convective scales in the upper layers of a stratified domain reflects the depth of transition from strong buoyant driving to adiabatic stratification below caused by the dilution of the granular downflows. This depth is quite shallow because of the rapid increase of the mean density below the photosphere. We interpret the observed monotonic decrease in solar convective power at scales larger than supergranulation to be a consequence of this rapid transition, with the supergranular scale the largest buoyantly driven mode of convection in the Sun.
Filtered Rayleigh Scattering Measurements in a Buoyant Flowfield
2007-03-01
graph in Figure 35 have a Reynolds number of 238 and a Grashof number of 1242. The referenced literature of Law et al, 2003, and Satyanarayana and...and is consistent with the literature (Law et al., 2003 and Satyanarayana and Jaluria, 1982). A key advantage for using the time averaged image to...Journal, Vol. 44, No. 7, pp. 1505-1515. Satyanarayana , S. and Jaluria, Yogesh. (1982), “A Study of Laminar Buoyant Jets Discharged at an
Milbury, Colleen; Johnson, Brandon C.; Melosh, H. Jay; Collins, Gareth S.; Blair, David M.; Soderblom, Jason M.; Nimmo, Francis; Phillips, Roger J.; Bierson, Carver J.; Zuber, Maria T.
2015-11-01
overall porosity, but higher vertical gradients, giving craters within SPA more-negative BAs than those within the highlands crust. These simulations demonstrate that the BA and porosities reported here are valid for determining general trends only.
Greening, David W; Xu, Rong; Ji, Hong; Tauro, Bow J; Simpson, Richard J
2015-01-01
Exosomes are 40-150 nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of tumorigenic proteins, mRNA and miRNA. Exosomes are important regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest their importance for diagnostic and therapeutic applications, and as drug delivery vehicles. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. In this chapter, we reveal the protocol and key insights into the isolation, purification and characterization of exosomes, distinct from shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, a comprehensive evaluation of exosome isolation methods including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM-coated magnetic beads (IAC-Exos) were examined. All exosome isolation methodologies contained 40-150 nm vesicles based on electron microscopy, and positive for exosome markers (Alix, TSG101, HSP70) based on immunoblotting. This protocol employed a proteomic profiling approach to characterize the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method in exosome isolation. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, IAC-Exos was shown to be the most effective method to isolate exosomes. However, the use of density-based separation (DG-Exos) provides significant advantages for exosome isolation when the use of immunoaffinity capture is limited (due to antibody availability and suitability of exosome markers).
Behzadi, Hadi; Hadipour, Nasser L; Mirzaei, Mahmoud
2007-01-01
A density functional theory (DFT) study was carried out to calculate (17)O, (14)N and (2)H electric field gradient (EFG) tensors in accurate neutron diffraction structures of alpha-glycine at 288 and 427 K. B3LYP is the used method and 6-311+G(*) and 6-311++G(**) are the basis sets in the calculations of EFG tensors at the sites of (17)O, (14)N and (2)H nuclei in the monomer and the octameric cluster of alpha-glycine at two temperatures. Quadrupole coupling constants and asymmetry parameters are the converted parameters of calculated EFG tensors to experimentally measurable ones. The calculated results of monomer and the target molecule in octameric cluster reveal that hydrogen-bonding interactions play an important role in the crystalline structure of alpha-glycine where the results of the target molecule in octameric cluster are in good agreement with the experiments.
Directory of Open Access Journals (Sweden)
Wei-hui Liu
Full Text Available BACKGROUND: Because few definitive markers are available for hepatic cancer stem cells (HCSCs, based on physical rather than immunochemical properties, we applied a novel method to enrich HCSCs. METHODOLOGY: After hepatic tumor cells (HTCs were first isolated from diethylinitrosamine-induced F344 rat HCC model using percoll discontinuous gradient centrifugation (PDGC and purified via differential trypsinization and differential attachment (DTDA, they were separated into four fractions using percoll continuous gradient centrifugation (PCGC and sequentially designated as fractions I-IV (FI-IV. Morphological characteristics, mRNA and protein levels of stem cell markers, proliferative abilities, induced differentiation, in vitro migratory capacities, in vitro chemo-resistant capacities, and in vivo malignant capacities were determined for the cells of each fraction. FINDINGS: As the density of cells increased, 22.18%, 11.62%, 4.73% and 61.47% of primary cultured HTCs were segregated in FI-FIV, respectively. The cells from FIII (density between 1.041 and 1.062 g/ml displayed a higher nuclear-cytoplasmic ratio and fewer organelles and expressed higher levels of stem cell markers (AFP, EpCAM and CD133 than cells from other fractions (P<0.01. Additionally, in vitro, the cells from FIII showed a greater capacity to self-renew, differentiate into mature HTCs, transit across membranes, close scratches, and carry resistance to chemotherapy than did cells from any other fraction; in vivo, injection of only 1×10(4 cells from FIII could generate tumors not only in subcutaneous tissue but also in the livers of nude mice. CONCLUSIONS: Through our novel method, HCSC-like cells were successfully enriched in FIII. This study will greatly contribute to two important areas of biological interest: CSC isolation and HCC therapy.
Gao, Feng; Kreidermacher, Adam; Fritsch, Ingrid; Heyes, Colin D
2013-05-07
Redox magnetohydrodynamics (MHD) is a promising technique for developing new electrochemical-based microfluidic flow devices with unique capabilities, such as easily switching flow direction and adjusting flow speeds and flow patterns as well as avoiding bubble formation. However, a detailed description of all the forces involved and predicting flow patterns in confined geometries is lacking. In addition to redox-MHD, density gradients caused by the redox reactions also play important roles. Flow in these devices with small fluid volumes has mainly been characterized by following microbead motion by optical microscopy either by particle tracking velocimetry (PTV) or by processing the microbead images by particle image velocimetry (PIV) software. This approach has limitations in spatial resolution and dimensionality. Here we use fluorescence correlation spectroscopy (FCS) to quantitatively and accurately measure flow speeds and patterns in the ~5-50 μm/s range in redox-MHD-based microfluidic devices, from which 3D flow maps are obtained with a spatial resolution down to 2 μm. The 2 μm spatial resolution flow speeds map revealed detailed flow profiles during redox-MHD in which the velocity increases linearly from above the electrode and reaches a plateau across the center of the cell. By combining FCS and video-microscopy (with PTV and PIV processing approaches), we are able to quantify a vertical flow of ~10 μm/s above the electrodes as a result of density gradients caused by the redox reactions and follow convection flow patterns. Overall, combining FCS, PIV, and PTV analysis of redox-MHD is a powerful combination to more thoroughly characterize the underlying forces in these promising microfluidic devices.
Directory of Open Access Journals (Sweden)
J. P. Kochendorfer
2008-03-01
Full Text Available The soil-water balance and plant water use are investigated over a domain encompassing the central United States using the Statistical-Dynamical Ecohydrology Model (SDEM. The seasonality in the model and its use of the two-component Shuttleworth-Wallace canopy model allow for application of an ecological optimality hypothesis in which vegetation density, in the form of peak green leaf area index (LAI, is maximized, within upper and lower bounds, such that, in a typical season, soil moisture in the latter half of the growing season just reaches the point at which water stress is experienced. Another key feature of the SDEM is that it partitions evapotranspiration into transpiration, evaporation from canopy interception, and evaporation from the soil surface. That partitioning is significant for the soil-water balance because the dynamics of the three processes are very different. The partitioning and the model-determined peak in green LAI are validated based on observations in the literature, as well as through the calculation of water-use efficiencies with modeled transpiration and large-scale estimates of grassland productivity. Modeled-determined LAI are seen to be at least as accurate as the unaltered satellite-based observations on which they are based. Surprising little dependence on climate and vegetation type is found for the percentage of total evapotranspiration that is soil evaporation, with most of the variation across the study region attributable to soil texture and the resultant differences in vegetation density. While empirical evidence suggests that soil evaporation in the forested regions of the most humid part of the study region is somewhat overestimated, model results are in excellent agreement with observations from croplands and grasslands. The implication of model results for water-limited vegetation is that the higher (lower soil moisture content in wetter (drier climates is more-or-less completely offset by the greater
Sato, Shunsuke A.; Taniguchi, Yasutaka; Shinohara, Yasushi; Yabana, Kazuhiro
2015-12-01
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.
Energy Technology Data Exchange (ETDEWEB)
Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)
2015-12-14
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.
Video Image Analysis of Turbulent Buoyant Jets Using a Novel Laboratory Apparatus
Crone, T. J.; Colgan, R. E.; Ferencevych, P. G.
2012-12-01
Turbulent buoyant jets play an important role in the transport of heat and mass in a variety of environmental settings on Earth. Naturally occurring examples include the discharges from high-temperature seafloor hydrothermal vents and from some types of subaerial volcanic eruptions. Anthropogenic examples include flows from industrial smokestacks and the flow from the damaged well after the Deepwater Horizon oil leak of 2010. Motivated by a desire to find non-invasive methods for measuring the volumetric flow rates of turbulent buoyant jets, we have constructed a laboratory apparatus that can generate these types of flows with easily adjustable nozzle velocities and fluid densities. The jet fluid comprises a variable mixture of nitrogen and carbon dioxide gas, which can be injected at any angle with respect to the vertical into the quiescent surrounding air. To make the flow visible we seed the jet fluid with a water fog generated by an array of piezoelectric diaphragms oscillating at ultrasonic frequencies. The system can generate jets that have initial densities ranging from approximately 2-48% greater than the ambient air. We obtain independent estimates of the volumetric flow rates using well-calibrated rotameters, and collect video image sequences for analysis at frame rates up to 120 frames per second using a machine vision camera. We are using this apparatus to investigate several outstanding problems related to the physics of these flows and their analysis using video imagery. First, we are working to better constrain several theoretical parameters that describe the trajectory of these flows when their initial velocities are not parallel to the buoyancy force. The ultimate goal of this effort is to develop well-calibrated methods for establishing volumetric flow rates using trajectory analysis. Second, we are working to refine optical plume velocimetry (OPV), a non-invasive technique for estimating flow rates using temporal cross-correlation of image
Effect of Side Wind on the Directional Stability and Aerodynamics of a Hybrid Buoyant Aircraft
Directory of Open Access Journals (Sweden)
Haque Anwar U
2016-01-01
Full Text Available Directional stability characteristics explain the capabilities of a hybrid buoyant aircraft’s performance against the side wind, which induces flow separation that is chaotic in nature and may lead to oscillations of the aerodynamic surfaces. A numerical study is carried out to estimate the effect of side wind. The boundary conditions for the computational domain are set to velocity inlet and pressure outlet. Due to the incompressible flow at the cruise velocity, the density is taken to be constant. For these steady state simulations, the time is discretized in first order implicit and the SIMPLE scheme is employed for pressure velocity coupling alongwith k-ω SST model. Based on the results obtained so far, it is concluded that voluminous hybrid lifting fuselage is the major cause of directional.
Experiments on the fragmentation of a buoyant liquid volume in another liquid
Landeau, Maylis; Olson, Peter
2014-01-01
We present experiments on the instability and fragmentation of volumes of heavier liquid released into lighter immiscible liquids. We focus on the regime defined by small Ohnesorge numbers, density ratios of order one, and variable Weber numbers. The observed stages in the fragmentation process include deformation of the released fluid by either Rayleigh-Taylor instability or vortex ring roll-up and destabilization, formation of filamentary structures, capillary instability, and drop formation. At low and intermediate Weber numbers, a wide variety of fragmentation regimes is identified. Those regimes depend on early deformations, which mainly result from a competition between the growth of Rayleigh-Taylor instabilities and the roll-up of a vortex ring. At high Weber numbers, turbulent vortex ring formation is observed. We have adapted the standard theory of turbulent entrainment to buoyant vortex rings with initial momentum. We find consistency between this theory and our experiments, indicating that the conc...
Measurements of Accelerations of Large Neutrally-buoyant Particles in Intense Turbulence
Brown, Rachel D; Voth, Greg A
2009-01-01
We measure acceleration statistics of neutrally buoyant spherical particles with diameter 0.4 , clearly resolve the transition from the tracer like behavior of small particles to the much smaller accelerations of large particles. For d>5 eta, decreases with diameter as d^{-2/3} in agreement with inertial range scaling arguments. A model relating to the pressure structure functions matches the transition from small to large particle behavior if the particles respond to pressure differences over (1.7 +- 0.3) d. A model relating to the fluid acceleration averaged over the particle diameter predicts the transition with no free parameters, but does not show clean inertial range scaling in the size range studied. Consistent with earlier work, we find that the scaled acceleration probability density function shows very little dependence on particle size.
Buoyant triacylglycerol-filled green algae and methods therefor
Energy Technology Data Exchange (ETDEWEB)
Goodenough, Ursula; Goodson, Carrie
2015-04-14
Cultures of Chlamydomonas are disclosed comprising greater than 340 mg/l triacylglycerols (TAG). The cultures can include buoyant Chlamydomonas. Methods of forming the cultures are also disclosed. In some embodiments, these methods comprise providing Chlamydomonas growing in log phase in a first culture medium comprising a nitrogen source and acetate, replacing the first culture medium with a second medium comprising acetate but no nitrogen source, and subsequently supplementing the second medium with additional acetate. In some embodiments, a culture can comprise at least 1,300 mg/l triacyglycerols. In some embodiments, cultures can be used to produce a biofuel such as biodiesel.
Dynamics of finite size neutrally buoyant particles in isotropic turbulence
Energy Technology Data Exchange (ETDEWEB)
Elhimer, M; Jean, A; Praud, O; Bazile, R; Marchal, M; Couteau, G, E-mail: elhimer@imft.fr [Universite de Toulouse, INPT, UPS, IMFT - Institut de Mecanique des Fluides de Toulouse, Allee Camille Soula, F-31400 Toulouse (France); CNRS, IMFT, F-31400 Toulouse (France)
2011-12-22
The dynamics of neutrally buoyant particles suspended in a turbulent flow is investigated experimentally, with particles having diameters larger than the Kolmogorov length scale. To that purpose, a turbulence generator have been constructed and the resulting flow characterized. The fluid was then seeded with polystyrene particles of diameter about 1 mm and their velocity measured separately and simultaneously with the surrounding fluid. Comparison of the velocities statistics between the two phases shows no appreciable discrepancy. However, simultaneous velocity measurement shows that particles may move in different direction from the underlying flow.
Milbury, C.; Johnson, B. C.; Melosh, H., IV; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Nimmo, F.; Bierson, C. J.; Phillips, R. J.; Zuber, M. T.
2015-12-01
As a result of NASA's dual spacecraft Gravity Recovery And Interior Laboratory (GRAIL) mission [Zuber et al., 2013; doi:10.1126/science.1231507], we now know that the lunar crust is highly porous and that the porosity varies laterally [Wieczorek et al., 2013; doi:10.1126/science.1231530] and vertically [Besserer et al., 2014; doi:10.1002/2014GL060240]. Analysis of complex craters located within the lunar highlands reveals that: 1) craters larger than diameter D~210 have positive Bouguer Anomalies (BAs), 2) craters with D ≲ 100 km have both positive and negative BAs that vary about the (near 0) mean by approximately ± 25 mGal, and, 3) D and BA are anticorrelated for craters with D ≲ 100 km [Soderblom et al., 2015; submitted]. Numerical modeling by Milbury et al. [2015, LPSC] shows that pre-impact porosity is the dominant influence on the gravity signature of complex craters with D ≲ 100 km, and mantle uplift dominates the gravity for those with D > 140 km. Phillips et al. [2015, LPSC] showed that complex craters located in the South Pole-Aitken (SPA) basin tend to have more-negative BAs than similar craters in the highlands. By including (pre-impact) vertical porosity/density gradients in our impact simulations, we reproduce the observed anticorrelation between BA and D for D ≲ 100 km, and the observed difference between the BAs of SPA and highland craters. We use the iSALE hydrocode including pore space compaction [Wünnemann et al., 2006; doi:10.1016/j.icarus.2005.10.013] and dilatant bulking [Collins, 2014; doi:10.1002/2014JE004708] to understand how the gravity signature of impact craters develop. In this study we vary density/porosity with depth. We find that simulations that have constant porosity with depth have a lower BA for a given crater diameter than those with varying porosity. We used two different mean porosities (7% and 14%) and found that the BA increases with increasing porosity, similar to simulations with constant porosity. Larger
Evolution of the buoyant bubbles in M87
Churazov, E; Kaiser, C R; Böhringer, H; Forman, W R
2000-01-01
The morphology of the X-ray and radio emitting features in the central 50 kpc region around the galaxy M87 strongly suggests that buoyant bubbles of cosmic rays (inflated by an earlier nuclear active phase of the galaxy) are slowly rising through the cooling gas. In the absence of strong surface tension, an intrinsic property of initially spherical bubbles is their transformation into tori as they rise through an external medium. Such structures can be identified in the radio images of the halo of M87. During their rise the bubbles uplift relatively cool X-ray emitting ambient gas from the central regions of the cooling flow to larger distances. This gas is colder than the ambient gas and has a higher volume emissivity. As a result, rising "radio" bubbles may be trailed by elongated X-ray features as indeed is observed in M87. We performed simple hydrodynamical simulations in order to qualitatively illustrate the evolution of the buoyant bubbles in the M87 environment.
Energy Technology Data Exchange (ETDEWEB)
Montes, Carmen Sotelo; Weber, John C. [World Agroforestry Centre (ICRAF), Sahel Office, B.P. E 5118 Bamako (Mali); Silva, Dimas Agostinho da; Bolzon de Muniz, Graciela Ines [Universidade Federal do Parana (UFPR), Av. Lothario Meissner, 900, CEP.: 80270-170-Curitiba (Brazil); Garcia, Rosilei A. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Florestas, Departamento de Produtos Florestais, BR 465, km 07, 23890-000, Seropedica, Rio de Janeiro (Brazil)
2011-01-15
Prosopis africana and Balanites aegyptiaca are native tree species in the West African Sahel and provide wood for fuel, construction and other essential products. A provenance/progeny test of each species was established at one relatively dry site in Niger, and evaluated at 13 years. Gross calorific value of the wood was determined for a random sample of trees in each test: gross CV and CVm{sup 3} = gross calorific value in MJ kg{sup -1} and MJ m{sup -3}, respectively. The major objectives were to determine if gross CV was positively correlated with wood density and tree growth, and if gross CV and/or CVm{sup 3} varied with rainfall gradients in the sample region. Provenances were grouped into a drier and more humid zone, and correlations were computed among all trees and separately in each zone. Results indicated that gross CV was not significantly correlated with density in either species. Gross CV was positively correlated with growth of P. africana (but not B. aegyptiaca) only in the drier zone. Gross CVm{sup 3} was positively correlated with growth of both species, and the correlations were stronger in the drier zone. Multiple regressions with provenance latitude, longitude and elevation indicated that provenance means for gross CV increased, in general, from the drier to the more humid zones. Regressions with gross CVm{sup 3} were not significant. Results are compared with earlier research reports from the provenance/progeny tests and with other tropical hardwood species; and practical implications are presented for tree improvement and conservation programs in the region. (author)
Zimik, Soling
2016-01-01
Fibroblast-myocyte coupling can modulate electrical-wave dynamics in cardiac tissue. In diseased hearts, the distribution of fibroblasts is heterogeneous, so there can be gradients in the fibroblast density (henceforth we call this GFD) especially from highly injured regions, like infarcted or ischemic zones, to less-wounded regions of the tissue. Fibrotic hearts are known to be prone to arrhythmias, so it is important to understand the effects of GFD in the formation and sustenance of arrhythmic re- entrant waves, like spiral or scroll waves. Therefore, we investigate the effects of GFD on the stability of spiral and scroll waves of electrical activation in a state-of-the- art mathematical model for cardiac tissue in which we also include fibroblasts. By introducing GFD in controlled ways, we show that spiral and scroll waves can be unstable in the presence of GFDs because of regions with varying spiral or scroll-wave frequency {\\omega}, induced by the GFD. We examine the effects of the resting membrane pote...
Directory of Open Access Journals (Sweden)
Osamu Inoue
2017-01-01
Full Text Available To evaluate the clinical efficacy of a procedure comprising a combination of Percoll continuous density gradient and modified swim-up techniques for the removal of human immunodeficiency virus type 1 (HIV-1 from the semen of HIV-1 infected males, a total of 129 couples with an HIV-1 positive male partner and an HIV-1 negative female partner (serodiscordant couples who were treated at Keio University Hospital between January 2002 and April 2012 were examined. A total of 183 ejaculates from 129 HIV-1 infected males were processed. After swim-up, we successfully collected motile sperms at a recovery rate as high as 100.0% in cases of normozoospermia (126/126 ejaculates, oligozoospermia (6/6, and asthenozoospermia (36/36. The recovery rate of oligoasthenozoospermia was 86.7% (13/15. In processed semen only four ejaculates (4/181:2.2% showed viral nucleotide sequences consistent with those in the blood of the infected males. After using these sperms, no horizontal infections of the female patients and no vertical infections of the newborns were observed. Furthermore, no obvious adverse effects were observed in the offspring. This protocol allowed us to collect HIV-1 negative motile sperms at a high rate, even in male factor cases. We concluded that our protocol is clinically effective both for decreasing HIV-1 infections and for yielding a healthy child.
Inoue, Osamu; Kuji, Naoaki; Ito, Hiroe; Yamada, Mitsutoshi; Hamatani, Toshio; Oyadomari, Aimi; Kato, Shingo; Hanabusa, Hideji; Isaka, Keiichi; Tanaka, Mamoru
2017-01-01
To evaluate the clinical efficacy of a procedure comprising a combination of Percoll continuous density gradient and modified swim-up techniques for the removal of human immunodeficiency virus type 1 (HIV-1) from the semen of HIV-1 infected males, a total of 129 couples with an HIV-1 positive male partner and an HIV-1 negative female partner (serodiscordant couples) who were treated at Keio University Hospital between January 2002 and April 2012 were examined. A total of 183 ejaculates from 129 HIV-1 infected males were processed. After swim-up, we successfully collected motile sperms at a recovery rate as high as 100.0% in cases of normozoospermia (126/126 ejaculates), oligozoospermia (6/6), and asthenozoospermia (36/36). The recovery rate of oligoasthenozoospermia was 86.7% (13/15). In processed semen only four ejaculates (4/181:2.2%) showed viral nucleotide sequences consistent with those in the blood of the infected males. After using these sperms, no horizontal infections of the female patients and no vertical infections of the newborns were observed. Furthermore, no obvious adverse effects were observed in the offspring. This protocol allowed us to collect HIV-1 negative motile sperms at a high rate, even in male factor cases. We concluded that our protocol is clinically effective both for decreasing HIV-1 infections and for yielding a healthy child. PMID:26908065
Losev, V V; Laznikova, T N; Dmitrieva, S V
1981-05-01
The method of differential centrifugation in the sucrose density gradient (SDG) enabled one to trace the changes in the development of the seed and fermentation mycelium of the gentamicin-producing organism. Correlation between gentamicin distribution in the SDG and the culture productivity was found. It was shown that the culture grown under the optimal aeration and agitation conditions was characterized by formation of higher amounts of the mycelium in the 5th and 6th layers of the SDG. Such mycelium was more productive than that from the other SDG layers. The most productive 48-hour seed culture had the more significant part of the mycelium in the 3rd layer of the SDG. When such a culture had the more significant part of the mycelium in the 3rd layer of the SDG. When such a culture was used as the seed material, the activity of the fermentation broth was the highest. The method of differential centrifugation in the SDG provides determination of the culture productivity by the volumes of the fermentation mycelium in the 5th and 6th layers or the seed mycelium in the 3rd layer of the SDG.
Directory of Open Access Journals (Sweden)
Vinš Václav
2014-03-01
Full Text Available The density gradient theory (GT combined with a SAFT-type (Statistical Associating Fluid Theory equation of state has been used for modeling the surface tension of associating fluids represented by a series of six alkanols ranging from methanol to 1-pentanol. The effect of nonzero dipole moment of the selected alkanols on the predicted surface tension was investigated in this study. Results of the GT + non-polar Perturbed Chain (PC SAFT equation of state were compared to predictions of GT combined with the PC-polar-SAFT, i.e. PCP-SAFT, equation. Both GT + PC-SAFT and GT + PCP-SAFT give reasonable prediction of the surface tension for pure alkanols. Results of both models are comparable as no significant difference in the modeled saturation properties and in the predicted surface tension using GT was found. Consideration of dipolar molecules of selected alkanols using PCP-SAFT had only minor effect on the predicted properties compared to the non-polar PC-SAFT model.
Santiago-Moreno, J; Esteso, M C; Castaño, C; Toledano-Díaz, A; Rodríguez, E; López-Sebastián, A
2014-10-01
This study compares the effectiveness of two methods of sperm selection - Capripure(®) density-gradient centrifugation (DGC) and dextran swim-up (DSU) - in semen samples from Iberian ibex (Capra pyrenaica) and European mouflon (Ovis musimon). During the increasing photoperiod, Capripure(®) DGC improved the percentage of sperm with progressive motility (Pmouflon, Capripure(®) DGC selection was unaffected by photoperiod, had no influence on any sperm variable, and selected 47.8% of the initial total number of mouflon spermatozoa in ejaculate samples. Photoperiod had no influence on the effectiveness of DSU in either ibexes or mouflons. In the ibexes, DSU reduced (Pmouflons, DSU had no significant influence on any sperm variable, and selected 27.8% of the initial total number. Capripure(®) DGC improved ibex and mouflon sperm motility (Pmouflon, sperm cells showing non-progressive motility were found after only 20 h of post-centrifugation incubation following Capripure(®) DGC selection. In conclusion, Capripure(®) DGC would seem a useful method for selecting the best spermatozoa from both ibex and mouflon ejaculates.
The Hatteras Front: August 2004 velocity and density structure
Savidge, Dana K.; Austin, Jay A.
2007-07-01
The Hatteras Front is a persistent mesoscale cross-shelf oriented front off Cape Hatteras, North Carolina. It is the boundary between relatively cool, fresh Mid-Atlantic Bight shelf waters and warmer, saltier shelf waters of the South Atlantic Bight, which both converge along-shelf upon Cape Hatteras year round. The Frontal Interaction Near Cape Hatteras (FINCH) project was conducted in 2004-2005 to intensively sample the Hatteras Front with shipboard ADCP and undulating towed CTD. This paper documents velocity and density structures associated with the cross-shelf oriented zone of Hatteras Front during the August 2004 field season. Property gradients across the Hatteras Front are large, with temperature (T) and salinity (S) differences of ˜4-6°C, 2-5 psu, respectively over distances of 1-2 km. The T and S are not completely compensating, and a strong density (ρ) gradient also exists, with Δρ of ˜2 kg/m3 across a gentler 10 km wide front. The density gradient results in a steric sea-level height gradient of ˜1-2 cm across the Front, which is in approximate geostrophic balance with a surface intensified jet, directed shoreward along the cross-shelf oriented Front. The velocity is sheared with depth at 3.0 × 10-2 to 5.0 × 10-2 s-1 in the upper 5 m of the jet; a rate consistent with the density gradient according to the thermal wind relationship. Shoreward transport of ˜4.8 × 104 m3/s results from the surface intensified jet. The structure of the velocity field associated with the Hatteras Front resembles that of a slope-controlled buoyant plume, as described by Lentz and Helfrich (2002). Velocity and density structures are similar during both advancing (southwestward) and retreating (northeastward) motion of the Front.
Turbulence statistics in a negatively buoyant particle plume - laboratory measurement
Bordoloi, Ankur; Clark, Laura; Veliz, Gerardo; Heath, Michael; Variano, Evan
2016-11-01
Negatively buoyant plumes of nylon particles are investigated in quiescent salt-water solution using flow visualization and stereoscopic PIV. Particles of the size 2 mm are continuously released through a nozzle from the top inside a water tank using a screw-conveyor based release mechanism. The plume propagates downward due to gravity, and by virtue of interacting particle wakes, becomes turbulent. The two phases are refractive index matched, so that the velocity field in the interstitial fluid can be quantified using PIV. We examine the velocity fields in the fluid phase to characterize turbulence statistics, such as turbulent kinetic energy, Reynolds stresses in the fully developed region of the plume. Further, we develop an image processing method to obtain particle distribution and particle slip inside the plume. In the presentation, we will discuss these results in the light of existing literature for rising plumes of bubbles under similar experimental conditions.
Development of surfaces repelling negatively buoyant solid particles
Semmler, Carina; Alexeev, Alexander
2011-03-01
Using a hybrid computational method that integrates the lattice Boltzmann model for fluid dynamics and the lattice spring model for solids, we examine the motion of negatively buoyant solid microparticles in shear flow near a solid wall decorated with regularly distributed rigid posts. The posts are arranged in a square pattern and tilted relative to the flow direction. We show that when rigid posts are tilted against flow, secondary flows emerge that prevent the deposition of suspended particles on the solid surface. We probe the effect of post geometry on the development of secondary flows and identify the optimal post architecture in terms of the mass of levitated solid particles. Our results are useful for designing anti-fouling surfaces that repel colloidal particles carried by fluid.
NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows
Fedorovich, E; Viegas, D; Wyngaard, J
1998-01-01
Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...
Turbulent buoyant confined jet with variable source temperature
El-Amin, M F; Sun, S
2013-01-01
In this work, experimental and numerical investigations are considered for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-epsilon turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during whole time. Numerical exp...
Numerical simulations of buoyant reactive jets with sidewall effects
Institute of Scientific and Technical Information of China (English)
ZHANG Heping; JIANG Xi; WANG Wei; YANG Yun; XU Liang; FAN Weicheng
2004-01-01
The near field dynamics of buoyant reactive jets with adjacent sidewalls is investigated by time-dependent three-dimensional direct simulations. The physical problem is a fuel jet issuing vertically into an oxidant ambient environment in a corner configuration with sidewall boundaries. Simulation results are presented for two cases with different jet nozzle geometries: a corner-round reactive jet and a corner-square reactive jet with the same cross-sectional area on the nozzle plane. Buoyancy-induced large vortical structures evolve spatially in the flow field and transition to turbulence occurs downstream. Calculation of the mean flow properties shows that entrainment of the corner-round jet is stronger than that of the corner-square jet due to the stronger vortex deformation in the corner-round case.
Vinš, Václav; Planková, Barbora; Hrubý, Jan
2013-05-01
In this study, the Cahn-Hilliard density gradient theory (GT) is used for predicting the surface tension of various binary mixtures at relatively wide temperature ranges and for testing the application of the GT for predictions of homogeneous nucleation. The GT was combined with two physically based equations of state (EoS), namely the perturbed-chain (PC) statistical associating fluid theory (SAFT) and its modification for polar substances the perturbed-chain polar (PCP) SAFT. The GT applied to the planar phase interface was employed to predict the interfacial tension for various quadrupolar (CO2 and benzene) and dipolar (difluoromethane, i.e., R32; pentafluoroethane, i.e., R125; and 1,1,1,2-tetrafluoroethane, i.e., R134a) substances and for five binary mixtures including polar components ( n-decane + CO2, benzene + CO2, R32 + R125, R32 + R134a, R134a + R125). The PCP-SAFT EoS combined with the GT provides more accurate results for both the quadrupolar and dipolar substances than the original PC-SAFT EoS. Besides the planar phase interface, the GT was also applied to the spherical phase interface simulating a critical cluster occurring in homogeneous nucleation of droplets. Carbon dioxide was considered, because it has a relatively high quadrupole moment and because of its relevance to natural gas processing. Application of the PCP-SAFT EoS provides a significant improvement compared to the PC-SAFT EoS, and it is clearly superior to the classical cubic Peng-Robinson EoS, which is still used for modeling droplet nucleation.
The effects of possibly buoyant flat slab segments on Nazca and South American plate motions
Lithgow-Bertelloni, C. R.; Shea, R.; Crameri, F.
2014-12-01
Flat slabs are ubiquitous today and in Earth's past, present in at least 10% of present-day subduction zones. The Nazca slab is a classic example with large dip variations along strike, including two prominent flat segments in Peru and Argentina that coincide with the subduction of aseismic ridges. The origin of flat segments remain enigmatic though much work has examined the consequences for upper plate deformation and continued subduction. In the case of the Argentinian flat segment, detailed seismic imaging has shown significantly increased crustal thickness in the flat part of the slab. Our present understanding of oceanic crust formation suggests that incrased crustal thickness forms in response to larger degrees of partial melt, which in turn decrease the water content of the formed crust. The residuum from this process is depleted. The resulting combined lithospheric column is buoyant with respect to the underlying mantle, and likely cold from its contact with the overlying plate and unlikely to undergo the basalt-eclogite transition due to kinetic hindrances. This has consequences for mantle flow and the shear stresses it exerts at the base of the lithosphere and hence to plate motions. Interestingly, the motion of the Nazca-South America pair is difficult to reproduce even in the most sophisticated models (Stadler et al. 2010) without invoking special coupling, rheology or forces. We examine the effects of the subduction of neutral and buoyant flat segments on mantle flow and plate motions, globally and locally for Nazca and South America. We construct high-resolution models of the morphology and density structure of the Nazca slab and embed them in an existing global slab model. We compute the global viscous flow induced and predict plate motions consistent with the density heterogeneity and plate geometry. As an end member we also examine a Nazca slab that dips uniformly with a 30 degree dip. We find, perhaps unsurprisingly, that the most important
Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow
Oldroyd, Holly J.; Pardyjak, Eric R.; Higgins, Chad W.; Parlange, Marc B.
2016-12-01
We develop several critical concepts that should be considered when interpreting, modelling and designing future experiments for flows over sloping terrain. Vertical buoyancy fluxes in katabatic flows can be positive and a source of turbulent kinetic energy (TKE) despite the statically stable, thermal stratification that drives these flows. This phenomenon occurs when the ratio of along-slope to slope-normal kinematic heat fluxes is greater than the cotangent of the slope angle, suggesting a critical value of slope-angle steepness found in earlier studies. We provide field-data-based evidence that the along-slope heat flux may dominate the variables in this inequality, and therefore in generating buoyant TKE production or suppression over a steep slope. These data show the along-slope heat flux can be more variable and significantly larger in magnitude than the slope-normal component. The gradient Richardson number does not include the effects of the along-slope buoyancy; furthermore, none of the canonical stability parameters can properly reflect the TKE redistribution from turbulent transport divergence and the sink of TKE in cases of counter-gradient momentum fluxes, which we frequently observe near the peak of the katabatic jet. In such cases, canonical stability parameters inadequately represent the physical mechanisms associated with stability. These results have broad implications related to accurately modelling turbulence and surface exchanges over sloping terrain and illustrate the need to more thoroughly investigate the along-slope heat flux and its drivers, the meaning and definitions of stability, and the effects of non-local turbulent transport.
Singh Aurora, Tarlok
2013-04-01
In introductory physics, students verify Archimedes' principle by immersing an object in water in a container, with a side-spout to collect the displaced water, resulting in a large uncertainty, due to surface tension. A modified procedure was introduced, in which a plastic bucket is suspended from a force sensor, and an object hangs underneath the bucket. The object is immersed in water in a glass beaker (without any side spout), and the weight loss is measured with a computer-controlled force sensor. Instead of collecting the water displaced by the object, tap water was added to the bucket to compensate for the weight loss, and the Archimedes' principle was verified within less than a percent. With this apparatus, buoyant force was easily studied as a function of volume of displaced water; as well as a function of density of saline solution. By graphing buoyant force as a function of volume (or density of liquid), value of g was obtained from slope. Apparatus and sources of error will be discussed.
Directory of Open Access Journals (Sweden)
Rosa Sayoko Kawasaki-Oyama
2008-03-01
Ficoll-Paque gradient density method (d=1.077g/ml. METHODS: Ten samples of the umbilical cord blood obtained from full-term deliveries were submitted to two different procedures of mesenchymal stem cell culture: a Method without the Ficoll-Paque density gradient, which concentrates all nucleated cells; b Method with the Ficoll-Paque density gradient, which selects only low-density mononuclear cells. Cells were initially plated into 25 cm² cultures flasks at a density of 1x10(7 nucleated cells/cm² and 1x10(6 mononuclear cells/cm². RESULTS: It was obtained 2-13x10(7 (median = 2.35x10(7 nucleated cells/cm² by the method without the Ficoll-Paque gradient density, and 3.7-15.7x10(6 (median = 7.2x10(6 mononuclear cells/cm² by the method with the Ficoll-Paque gradient density. In all cultures adherent cells were observed 24 hours after being cultured. Cells presented fibroblastoid and epithelioid morphology. In most of the cultures, cell proliferation occurred in the first week, but after the second week only some cultures - derived from the method without the Ficoll-Paque gradient density - maintained the growth rate reaching confluence. Those cultures were submitted to trypsinization with 0.25% trypsin/EDTA solution and cultured for two to three months. CONCLUSION: In the samples analyzed, cell separation and mesenchymal stem cell culture techniques from human umbilical cord blood by the method without the Ficoll-Paque density gradient was more efficient than the method with the Ficoll-Paque density gradient.
Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames
Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.
1997-01-01
Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient
Muratori, Monica; Tarozzi, Nicoletta; Cambi, Marta; Boni, Luca; Iorio, Anna Lisa; Passaro, Claudia; Luppino, Benedetta; Nadalini, Marco; Marchiani, Sara; Tamburrino, Lara; Forti, Gianni; Maggi, Mario; Baldi, Elisabetta; Borini, Andrea
2016-05-01
Predicting the outcome of in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) is one main goal of the present research on assisted reproduction. To understand whether density gradient centrifugation (DGC), used to select sperm, can affect sperm DNA integrity and impact pregnancy rate (PR), we prospectively evaluated sperm DNA fragmentation (sDF) by TUNEL/PI, before and after DGC. sDF was studied in a cohort of 90 infertile couples the same day of IVF/ICSI treatment. After DGC, sDF increased in 41 samples (Group A, median sDF value: 29.25% [interquartile range, IQR: 16.01-41.63] in pre- and 60.40% [IQR: 32.92-93.53] in post-DGC) and decreased in 49 (Group B, median sDF value: 18.84% [IQR: 13.70-35.47] in pre- and 8.98% [IQR: 6.24-15.58] in post-DGC). PR was 17.1% and 34.4% in Group A and B, respectively (odds ratio [OR]: 2.58, 95% confidence interval [CI]: 0.95-7.04, P = 0.056). After adjustment for female factor, female and male age and female BMI, the estimated OR increased to 3.12 (95% CI: 1.05-9.27, P = 0.041). According to the subgroup analysis for presence/absence of female factor, heterogeneity in the association between the Group A and B and PR emerged (OR: 4.22, 95% CI: 1.16-15.30 and OR: 1.53, 95% CI: 0.23-10.40, respectively, for couples without, n = 59, and with, n = 31, female factor).This study provides the first evidence that the DGC procedure produces an increase in sDF in about half of the subjects undergoing IVF/ICSI, who then show a much lower probability of pregnancy, raising concerns about the safety of this selection procedure. Evaluation of sDF before and after DGC configures as a possible new prognostic parameter of pregnancy outcome in IVF/ICSI. Alternative sperm selection strategies are recommended for those subjects who undergo the damage after DGC.
MEAN BEHAVIOR OF THREE DIMENSIONAL LINE BUOYANT JETS IN CROSS FLOWS
Institute of Scientific and Technical Information of China (English)
Han Hui-ling; Zhang Hong-min; Liang Su-tao; Li Wei
2003-01-01
This paper presents the results of a numerical calculation on the mean behavior of finite length line buoyant jets from slot with width B, discharged perpendicularly into relatively deep cross-flows in the mixing region. The length of diffuser was varied from 4 to 20 times the width of diffuser. The calculations were performed with the standard K-ε model and Hybrid Finite Analytic Method (HFAM) with staggered grid. The phenomenon and development of vortex pairs are simulated successfully and the influence of diffuser length and buoyant on turbulent buoyant jets are analyzed.
The vertical distribution of buoyant plastics at sea
Directory of Open Access Journals (Sweden)
J. Reisser
2014-11-01
Full Text Available Millimeter-sized plastics are numerically abundant and widespread across the world's ocean surface. These buoyant macroscopic particles can be mixed within the upper water column due to turbulent transport. Models indicate that the largest decrease in their concentration occurs within the first few meters of water, where subsurface observations are very scarce. By using a new type of multi-level trawl at 12 sites within the North Atlantic accumulation zone, we measured concentrations and physical properties of plastics from the air–seawater interface to a depth of 5 m, at 0.5 m intervals. Our results show that plastic concentrations drop exponentially with water depth, but decay rates decrease with increasing Beaufort scale. Furthermore, smaller pieces presented lower rise velocities and were more susceptible to vertical transport. This resulted in higher depth decays of plastic mass concentration (mg m−3 than numerical concentration (pieces m−3. Further multi-level sampling of plastics will improve our ability to predict at-sea plastic load, size distribution, drifting pattern, and impact on marine species and habitats.
Taylor-Couette flow instabilities in neutrally-buoyant suspensions
Majji, Madhu; Banerjee, Sanjoy; Morris, Jeffrey F.
2016-11-01
Experimentally-determined instabilities and flow states of a neutrally-buoyant suspension are described. The flow is studied in a concentric-cylinder device with inner-to-outer cylinder ratio of 0.877 with inner cylinder rotating and outer stationary. The cylinder length to annular gap ratio is 20, while the gap to particle size ratio is approximately 30, for spherical particles of 250 μm diameter. Using a slowly increasing or decreasing Re ramp, the flow agrees with all expectations for the pure fluid, while a slowly decreasing (quasi-static) ramp is used for the suspension flow, which is found to be unstable at lower Reynolds number Re (based on the effective viscosity) than pure fluid, and exhibits spiraling and ribbon states not found for a pure fluid with only inner cylinder rotating. Strikingly, the suspension at solid fraction ϕ >= 0 . 05 goes unstable first to a nonaxisymetric state rather than axisymmetric Taylor vortices. At 0 . 1 states during quais-static ramping of Re , while for ϕ = 0 . 3 , the base state Couette flow gives way to wavy spirals (WS) at Re 80 and exhibits only the WS state up to Re = 150 . Transient behavior on sudden change of Re and particle tracking will also be presented.
Buoyant radio-lobes in a viscous intracluster medium
Reynolds, C S; Fabian, A C; Stone, J M; Vernaleo, J C
2004-01-01
(Abridged) Ideal hydrodynamic models of the intracluster medium (ICM) in the core regions of galaxy clusters fail to explain both the observed temperature structure of this gas, and the observed morphology of radio-galaxy/ICM interactions. It has recently been suggested that, even in the presence of reasonable magnetic fields, thermal conduction in the ICM may be crucial for reproducing the temperature floor seen in many systems. If this is indeed correct, it raises the possibility that other transport processes may be important. With this motivation, we present a numerical investigation of the buoyant evolution of AGN-blown cavities in ICM that has a non-negligible shear viscosity. We use the ZEUS-MP code to follow the 3-d evolution of an initially static, hot bubble in a beta-model ICM atmosphere with varying degrees of shear viscosity. With no explicit viscosity, it is found that the combined action of Rayleigh-Taylor and Kelvin-Helmholtz instabilities shred the ICM cavity and one does not reproduce the in...
NUMERICAL STUDY ON THE STABILITY AND MIXING OF VERTICAL ROUNE BUOYANT JET IN SHALLOW WATER
Institute of Scientific and Technical Information of China (English)
曾玉红; 槐文信
2005-01-01
The k-epsilon model was applied to establish the mathematical model of vertical round buoyant jet discharging into confined depth, and it was solved using the Hybrid Finite Analytic Method ( HFAM ). The numerical predictions demonstrate two generic flow patterns for different jet discharge and environmental parameters: ( i ) a stable buoyant flow discharge with the mixed fluid leaving the near-field warm in a surface warm water layer;( ii ) an unstable buoyant flow discharge with recirculation and re-entrainment of warm water in the near field. Furthermore, the mixing characters of vertical round buoyant jet were numerically predicted. Both the stability criterion and numerical predictions of bulk dilutions are in excellent agreement with Lee and Jirka ' s experiments and theory.
Energy density of marine pelagic fish eggs
DEFF Research Database (Denmark)
Riis-Vestergaard, J.
2002-01-01
Analysis of the literature on pelagic fish eggs enabled generalizations to be made of their energy densities, because the property of being buoyant in sea water appears to constrain the proximate composition of the eggs and thus to minimize interspecific variation. An energy density of 1.34 J mul...
The effect of particle properties on the depth profile of buoyant plastics in the ocean
Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.
2016-01-01
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies. PMID:27721460
The effect of particle properties on the depth profile of buoyant plastics in the ocean
Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.
2016-10-01
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.
Supergranulation as the Sun's largest buoyantly driven mode of convection
Cossette, Jean-Francois; Rast, Mark
2016-05-01
Solar supergranulation has been characterized as horizontally divergent flow motions having a typical scale of 32 Mm using Doppler imaging, granule tracking and helioseismology. Unlike granules, the size of which is comparable to both the thickness of the radiative boundary layer and local scale height at the photosphere, supergranules do not appear to correspond to any particular length scale of the flow. Possible explanations ranging from convection theories involving Helium ionization to spatial correlation or self-organization of granular flows have been proposed as physical mechanisms to explain solar supergranulation. However, its existence remains largely a mystery. Remarkably, horizontal velocity power spectra obtained from Doppler imaging and correlation tracking of flow features at the solar surface reveal the presence of peaks corresponding to granular and supergranular scales, followed by a monotonic decrease in power at scales larger than supergranulation, which suggests that large-scale modes in the deep layers of the convection zone may be suppressed. Using 3D anelastic simulations of solar convection we investigate whether supergranulation may reflect the largest buoyantly driven mode of convection inside the Sun. Results show that the amount of kinetic energy contained in the largest flow scales relative to that associated with supergranular motions is a function of the depth of the transition from a convectively unstable to convectively stable mean stratification inside the simulation. This suggests that the observed monotonic decrease in power at scales larger than supergranulation may be explained by rapid cooling in the subphotospheric layers and an essentially isentropic solar interior, wherein convective driving is effectively suppressed.
Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.
2008-04-01
Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l Bassler (2004 Nature 428 716).
Thampi, Smitha V.; Bagiya, Mala S.; Chakrabarty, D.; Acharya, Y. B.; Yamamoto, M.
2014-12-01
A GNU Radio Beacon Receiver (GRBR) system for total electron content (TEC) measurements using 150 and 400 MHz transmissions from Low-Earth Orbiting Satellites (LEOS) is fabricated in house and made operational at Ahmedabad (23.04°N, 72.54°E geographic, dip latitude 17°N) since May 2013. This system receives the 150 and 400 MHz transmissions from high-inclination LEOS. The first few days of observations are presented in this work to bring out the efficacy of an ensemble average method to convert the relative TECs to absolute TECs. This method is a modified version of the differential Doppler-based method proposed by de Mendonca (1962) and suitable even for ionospheric regions with large spatial gradients. Comparison of TECs derived from a collocated GPS receiver shows that the absolute TECs estimated by this method are reliable estimates over regions with large spatial gradient. This method is useful even when only one receiving station is available. The differences between these observations are discussed to bring out the importance of the spatial differences between the ionospheric pierce points of these satellites. A few examples of the latitudinal variation of TEC during different local times using GRBR measurements are also presented, which demonstrates the potential of radio beacon measurements in capturing the large-scale plasma transport processes in the low-latitude ionosphere.
Powering of cool filaments in cluster cores by buoyant bubbles. I. Qualitative model
Churazov, E; Schekochihin, A
2013-01-01
Cool-core clusters (e.g., Perseus or M87) often possess a network of bright gaseous filaments, observed in radio, IR, optical and X-ray bands. We propose that these filaments are powered by the reconnection of the magnetic field in the wakes of buoyant bubbles. AGN-inflated bubbles of relativistic plasma rise buoyantly in the cluster atmosphere, stretching and amplifying the field in the wake to values of $\\beta =8\\pi P_{gas}/B^2\\sim 1$. The field lines in the wake have opposite directions and are forced together as the bubble motion stretches the filament. This setup bears strong similarity to the coronal loops on the Sun or the Earth magneto-tail. The reconnection process naturally explains both the required level of local dissipation rate in filaments and the overall luminosity of filaments. The original source of power for the filaments is the potential energy of buoyant bubbles, inflated by the central AGN.
Institute of Scientific and Technical Information of China (English)
Enno; Uhl; Peter; Biber; Matthias; Ulbricht; Michael; Heym; Tamás; Horváth; Ferenc; Lakatos; Janós; Gál; Leonhard; Steinacker; Giustino; Tonon; Maurizio; Ventura; Hans; Pretzsch
2015-01-01
Background: Most current approaches in forest science and practice require information about structure and growth of individual trees rather than- or in addition to- sum and mean values of growth and yield at forest stand level as provided by classic experimental designs. By inventing the wheel design, Nelder provided the possibility to turn to the individual tree as basic information unit. Such trials provide valuable insights into the dependency of growth on stand density at particular sites.Methods: Here, we present an extension of the original design and evaluation by Nelder.(i) We established Nelder wheels along an environmental gradient through Europe in atlantic climate in Belgium and Germany, Mediterranean climate in Italy, continental climate in Hungary as well as on high land climate in Mexico. Such disjunct Nelder wheels along an environmental gradient can be regarded and analysed as a two-factor design with the factors of site condition and stand density.(ii) We present an advanced statistical approach to evaluate density dependent growth dynamics of trees planted in form of the Nelder design, which considers spatio-temporal autocorrelation.(iii)We prove the usefulness of the methods in improving ecological theory concerning density related productivity,trade-offs between facilitation and competition, and allometric relations between size variables.Results: First evaluations based on remeasured Nelder wheels in oak(Quercus robur L.) show a size growth differentiation during the first observation period. In particular, height growth is accelerated under higher competition indicating facilitation effects. We detect furthermore a high variability in allometric relations.Conclusions: The proposed design, methods, and results are discussed regarding their impact on forest practice,model building, and ecological theory. We conclude that the extended Nelder approach is highly efficient in providing currently lacking individual tree level information.
Directory of Open Access Journals (Sweden)
Enno Uhl
2015-05-01
Full Text Available Background Most current approaches in forest science and practice require information about structure and growth of individual trees rather than - or in addition to - sum and mean values of growth and yield at forest stand level as provided by classic experimental designs. By inventing the wheel design, Nelder provided the possibility to turn to the individual tree as basic information unit. Such trials provide valuable insights into the dependency of growth on stand density at particular sites. Methods Here, we present an extension of the original design and evaluation by Nelder. (i We established Nelder wheels along an environmental gradient through Europe in atlantic climate in Belgium and Germany, Mediterranean climate in Italy, continental climate in Hungary as well as on high land climate in Mexico. Such disjunct Nelder wheels along an environmental gradient can be regarded and analysed as a two-factor design with the factors of site condition and stand density. (ii We present an advanced statistical approach to evaluate density dependent growth dynamics of trees planted in form of the Nelder design, which considers spatio-temporal autocorrelation. (iii We prove the usefulness of the methods in improving ecological theory concerning density related productivity, trade-offs between facilitation and competition, and allometric relations between size variables. Results First evaluations based on remeasured Nelder wheels in oak (Quercus roburL. show a size growth differentiation during the first observation period. In particular, height growth is accelerated under higher competition indicating facilitation effects. We detect furthermore a high variability in allometric relations. Conclusions The proposed design, methods, and results are discussed regarding their impact on forest practice, model building, and ecological theory. We conclude that the extended Nelder approach is highly efficient in providing currently lacking individual tree level
Institute of Scientific and Technical Information of China (English)
TIAN Yu; LI Wei; ZHANG Ai-qun
2013-01-01
This paper presents a computational model of simulating a deep-sea hydrothermal plume based on a Lagrangian particle random walk algorithm.This model achieves the efficient process to calculate a numerical plume developed in a fluid-advected environment with the characteristics such as significant filament intermittency and significant plume meander due to flow variation with both time and location.Especially,this model addresses both non-buoyant and buoyant features of a deep-sea hydrothermal plume in three dimensions,which significantly challenge a strategy for tracing the deep-sea hydrothermal plume and localizing its source.This paper also systematically discusses stochastic initial and boundary conditions that are critical to generate a proper numerical plume.The developed model is a powerful tool to evaluate and optimize strategies for the tracking of a deep-sea hydrothermal plume via an autonomous underwater vehicle (AUV).
STABILITY AND MIXING CHARACTER FOR BUOYANT JETS IN QUIESCENT SHALLOW WATER
Institute of Scientific and Technical Information of China (English)
ZENG Yu-hong
2005-01-01
The near field stability and mixing characteristics of buoyant jets produced by thermal diffuse in quiescent shallow water are investigated numerically to predict under what combinations of discharge and ambient characteristics the near field will be stable or unstable.Analyses for different discharging types show that the discharge stability is purely dependent on the near-field behavior of the jets, or the dynamic interaction of the buoyant jet region, the surface impingement region and the internal hydraulic jump region, and is independent of the far-field geometry of the receiving water.The stability criterion is a function of the relative submerged depth, and source densimetric Froude number.
Note: Buoyant-force assisted liquid membrane electrochemical etching for nano-tip preparation
Zeng, Yongbin; Wang, Yufeng; Wu, Xiujuan; Xu, Kun; Qu, Ningsong
2014-12-01
A liquid membrane electrochemical etching process for preparing nano-tips is proposed by the introduction of buoyant force to the lower tip, in which the lower portion of the anodic wire is immersed into a floating layer. A mathematical model of this method is derived. Both calculation and experimental results demonstrate that the introduction of buoyant force can significantly decrease the tip radius. The lubricating oil and deionized water floating layers were tested for the processing of nano-tips. Further, high-aspect-ratio nano-electrodes were prepared by applying a relative vertical movement to the anodic wire.
Institute of Scientific and Technical Information of China (English)
杨奎奇; 汪应宏; 张绍良; 赵清
2012-01-01
选取超大型综合性城市以外的全国不同区域和职能类型的33个城市为样本，采用地价密度梯度曲线模型，对其进行曲线回归分析，得出各城市商业、住宅地价的中心值和曲率系数。分析发现现阶段我国城市地价密度梯度曲线总体上符合城市地价变动的一般规律：城市中心地价与城市规模呈正相关关系；曲率系数与城市规模呈负相关关系；商业地价曲线曲率系数比住宅地价曲线曲率系数高。再此基础上对地价梯度曲线曲率系数进行聚类分析，总结出中国城市地价的不同类型特征。另外通过对我国东中西部30个城市样本的地价梯度系数的统计分析，从空间差异角度发现三类地区的地价呈现不同特征规律。%Taking 33 cities from different regions and categories in China as research ob- jects, this essay carries out land price curve regression analysis to simulate their land price density gradient. Then some coefficients of density gradient curve of urban commercial and residential land price are obtained. According to these coefficients, the phenomenon of Chinese urban land price density curves adapting to the normal rules of market economic countries is observed through analysis, which indicates that the city land price can reflect the true value of land, the main method of allocation of land resource in China through 30 years of marketing reform. Moreover, the conclusion that land price density gradients have different categories in China has been drawn based on clustering analysis of commer- cial and residential curve curvature. According to the commercial land price curve curva- ture and residential land price curvature, the cities in China except multi-center cities such as Beijing and Shanghai, are identified into four types. Every type of city is corresponding separately to different levels of development, city capacity, economic scale and parameters of land price curvature
Esrafili, Mehdi D; Elmi, Fatemeh; Hadipour, Nasser L
2007-02-08
A systematic computational investigation was carried out to characterize the 17O, 14N and 2H electric field gradient, EFG, as well as 17O, 15N, 13C and 1H chemical shielding tensors in the anhydrous chitosan crystalline structure. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the target molecule in the crystalline phase were considered through a hexameric cluster. The computations were performed with the B3LYP method and 6-311++G(d,p) and 6-31++G(d,p) standard basis sets using the Gaussian 98 suite of programs. Calculated EFG and chemical shielding tensors were used to evaluate the 17O, 14N and 2H nuclear quadrupole resonance, NQR, and 17O, 15N, 13C and 1H nuclear magnetic resonance, NMR, parameters in the hexameric cluster, which are in good agreement with the available experimental data. The difference between the calculated NQR and NMR parameters of the monomer and hexamer cluster shows how much hydrogen bonding interactions affect the EFG and chemical shielding tensors of each nucleus. These results indicate that both O(3)-H(33)...O(5-3) and N-H(22)...O(6-4) hydrogen bonding have a major influence on NQR and NMR parameters. Also, the quantum chemical calculations indicate that the intra- and intermolecular hydrogen bonding interactions play an essential role in determining the relative orientation of EFG and chemical shielding principal components in the molecular frame axes.
The effect of particle properties on the depth profile of buoyant plastics in the ocean
Kooi, Merel; Reisser, J.; Slat, B.; Ferrari, F.; Schmid, M.; Cunsolo, S.; Brambini, R.; Noble, K.; Sirks, L.A.; Linders, T.E.W.; Schoeneich-Argent, R.I.; Koelmans, A.A.
2016-01-01
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of t
Effect of Technology Enhanced Conceptual Change Texts on Students' Understanding of Buoyant Force
Ozkan, Gulbin; Selcuk, Gamze Sezgin
2015-01-01
In this study, the effect of technology enhanced conceptual change texts on elementary school students' understanding of buoyant force was investigated. The conceptual change texts (written forms) used in this study are proven for effectiveness and are enriched by using technology support in this study. These texts were tried out on two groups. A…
Countering Solutal Buoyant Convection with High Magnetic Fields
Ramachandran, N.; Leslie, F. W.
2002-01-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemist, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitant, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity, we have been able to dramatically effect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility
Influence of cooling on dynamics of buoyant jet
Goncharov, V P
2016-01-01
The Rayleigh--Taylor instability which is responsible for the occurrence of narrow upward jets are studied in the scope of the nonhydrostatic model with horizontally--nonuniform density and the Newtonian cooling. As analysis shows, the total hierarchy of instabilities in this model consists of three regimes -- collapse, algebraic instability, and inertial motion. Realization of these stages, mutual transitions and interference depend on a ratio between two characteristic time scales -- collapse time and cooling time.
Directory of Open Access Journals (Sweden)
Yudha Fika Diliyana
2014-05-01
Full Text Available The aim of this study was to observe the best extender in protecting the membrane of bovine spermatozoafollowing sexing by percoll density gradient centrifugation. Freshly collected semen were obtained fromBalai Besar Inseminasi Buatan Singosari-Malang. The semen were diluted in andromed and CaudalEpididymal Plasma-2 (CEP-2 added with 10% egg yolk extenders.The sperm membrane integrity wasobserved using Hypo-osmotic Swelling Test (HOST. Sperm capacitation and acrososome reaction wereassessed using Chlortetracycline Fluorescence Assay.The results showed that andromed and CEP-2 addedwith 10% egg yolk were able to retain the sperm membrane integrity, whereas sperm capacitation andacrosome reaction were kept low. Caudal Epididymal Plasma-2 (CEP-2 added with 10% egg yolk seemedto give better protection towards the sperm membrane intact in comparison to andromed extender.
Parameter Estimation for a Turbulent Buoyant Jet Using Approximate Bayesian Computation
Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Lapointe, Caelan; Grooms, Ian; Rieker, Gregory B.; Hamlington, Peter E.
2016-11-01
Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other "truth" data to be used for the prediction of unknown model parameters in numerical simulations of real-world engineering systems. In this presentation, we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a simulation with known boundary conditions and problem parameters. Using spatially-sparse temperature statistics from the 2D buoyant jet truth simulation, we show that the ABC method provides accurate predictions of the true jet inflow temperature. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for engineering fluid dynamics research.
Generating buoyant magnetic flux ropes in solar-like convective dynamos
Nelson, Nicholas J
2014-01-01
Our Sun exhibits strong convective dynamo action which results in magnetic flux bundles emerging through the stellar surface as magnetic spots. Global-scale dynamo action is believed to generate large-scale magnetic structures in the deep solar interior through the interplay of convection, rotation, and shear. Portions of these large-scale magnetic structures are then believed to rise through the convective layer, forming magnetic loops which then pierce the photosphere as sunspot pairs. Previous global simulations of 3D MHD convection in rotating spherical shells have demonstrated mechanisms whereby large-scale magnetic wreaths can be generated in the bulk of the convection zone. Our recent simulations have achieved sufficiently high levels of turbulence to permit portions of these wreaths to become magnetically buoyant and rise through the simulated convective layer through a combination of magnetic buoyancy and advection by convective giant cells. These buoyant magnetic loops are created in the bulk of the...
Influence of viscosity contrast on buoyantly unstable miscible fluids in porous media
Pramanik, Satyajit; Mishra, Manoranjan
2015-01-01
The influence of viscosity contrast on buoyantly unstable miscible fluids in a porous medium is investigated through a linear stability analysis (LSA) as well as direct numerical simulations (DNS). The linear stability method implemented in this paper is based on an initial value approach, which helps to capture the onset of instability more accurately than the quasi-steady state analysis. In the absence of displacement, we show that viscosity contrast delays the onset of instability in buoyantly unstable miscible fluids. Further, it is observed that suitably choosing the viscosity contrast and injection velocity a gravitationally unstable miscible interface can be stabilized completely. Through LSA we draw a phase diagram, which shows three distinct stability regions in a parameter space spanned by the displacement velocity and the viscosity contrast. DNS are performed corresponding to parameters from each regime and the results obtained are in accordance with the linear stability results. Moreover, the conv...
Onshore propagation of a buoyant ocean front observed using a shore-based marine radar
Marmorino, G. O.; Cooper, A. L.; Mied, R. P.; Lindemann, G. J.; Trizna, D. B.; Porter, D. L.
2004-06-01
An analysis is presented of a 2-h-long time series of X-band marine radar images, collected at Duck, North Carolina (USA), that captured the evolution of a buoyant ocean front as it propagated onshore, following a period of upwelling-favorable winds. In plan view, the front exhibits a scallop-shaped structure similar to that previously observed along strongly convergent fronts. This alongshore structure consists of broad frontal crests (a few hundred meters in length) alternating with sharply angled troughs, or frontal cusps. The evolution of these frontal shapes is explored using a reduced-gravity model (Cooper et al., J. Geophys. Res.-Oceans 106 (2001) 16887) that allows for nonlinear self-interaction of a propagating front. A model simulation shows cusps that develop quickly from initially broad troughs and that point toward the buoyant water, features resembling the observations. However, the simulation also shows a continuous oscillation of frontal shapes, while the observed front reaches a quasi-steady plan form. We attribute this difference in behavior to the gradual shoaling of the observed front as it steadily advances, ultimately reaching water depths of less than 2 m, which is comparable to the thickness of the buoyant layer. As a consequence of the shoaling, we suggest the cusps become sites of enhanced mixing, where water inshore of the front is also accelerated seaward.
Numerical Study of A Round Buoyant Jet Under the Effect of JONSWAP Random Waves
Institute of Scientific and Technical Information of China (English)
CHEN Yong-ping; LI Chi-wai; ZHANG Chang-kuan; XU Zhen-shan
2012-01-01
This paper presents a numerical study on the hydrodynamic behaviours of a round buoyant jet under the effect of JONSWAP random waves.A three-dimensional large eddy simulation (LES) model is developed to simulate the buoyant jet in a stagnant ambient and JONSWAP random waves.By comparison of velocity and concentration fields,it is found that the buoyant jet exhibits faster decay of centedine velocity,wider lateral spreading and larger initial dilution under the wave effect,indicating that wave dynamics improves the jet entrainment and mixing in the near field,and subsequently mitigate the jet impacts in the far field.The effect of buoyancy force on the jet behaviours in the random waves is also numerically investigated.The results show that the wave effect on the jet entrainment and mixing is considerably weakened under the existence of buoyancy force,resulting in a slower decay rate of centerline velocity and a narrower jet width for the jet with initial buoyancy.
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; FANG Shen-guang; DAI Hui-chao
2006-01-01
Some experiments were made for the buoyant jet from a square orifice with a square disc placed on it in static ambient and concentration along the axis in self-similar area behind disc was measured. And at the same time a three-dimensional mathematical model was established to simulate the whole flowing under different conditions. All the results predicted by the numerical calculation were substantiated by the experiments.The results were compared with experiential formula for obstructed round buoyant vertical jets in static ambient and it was found that the two concentration distributions had good accordance. Star shape of temperature isolines on cross-sections in the near areas from the disc was found and it was a very special figure for obstructed square buoyant vertical jets with a square disc. The shape will transform to concentric circles gradually alike to the round buoyant vertical jet in self-similar area with increasing of the distance from the disc.
Adiabatic density surface, neutral density surface, potential density surface, and mixing path
Institute of Scientific and Technical Information of China (English)
HUANG Rui-xin
2014-01-01
In this paper, adiabatic density surface, neutral density surface and potential density surface are compared. The adiabatic density surface is defined as the surface on which a water parcellcan move adiabatically, without changing its potential temperature and salinity. For a water parcelltaken at a given station and pressure level, the corresponding adiabatic density surface can be determined through simple calculations. This family of surface is neutrally buoyant in the world ocean, and different from other surfaces that are not truly neutrally buoyant. In order to explore mixing path in the ocean, a mixing ratio m is introduced, which is defined as the portion of potential temperature and salinity of a water parcellthat has exchanged with the environment during a segment of migration in the ocean. Two extreme situations of mixing path in the ocean are m=0 (no mixing), which is represented by the adiabatic density curve, and m=1, where the original information is completely lost through mixing. The latter is represented by the neutral density curve. The reality lies in between, namely, 0
Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection
Energy Technology Data Exchange (ETDEWEB)
Kneafsey, T.; Pruess, K.
2009-09-01
Injection of carbon dioxide (CO{sub 2}) into saline aquifers confined by low-permeability cap rock will result in a layer of CO{sub 2} overlying the brine. Dissolution of CO{sub 2} into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO{sub 2} storage security because it accelerates the transfer of buoyant CO{sub 2} into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualization tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO{sub 2} solute-driven convection (CSC). Upon introduction of CO{sub 2} into the system, a layer of CO{sub 2}-laden brine forms at the CO{sub 2}-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO{sub 2} uptake of the convection system indicates that the CO{sub 2} dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments is probably initiated by a small temperature gradient induced by the cell illumination.
Directory of Open Access Journals (Sweden)
Jun Takezawa
2010-01-01
Full Text Available When a replicative DNA polymerase stalls upon encountering a lesion on the template strand, it is relieved by other low-processivity polymerase(s, which insert nucleotide(s opposite the lesion, extend by a few nucleotides, and dissociate from the 3′-OH. The replicative polymerase then resumes DNA synthesis. This process, termed translesion replication (TLS or replicative bypass, may involve at least five different polymerases in mammals, although the participating polymerases and their roles have not been entirely characterized. Using siRNAs originally designed and an alkaline sucrose density gradient sedimentation technique, we verified the involvement of several polymerases in ultraviolet (UV light-induced TLS in HeLa cells. First, siRNAs to Rev3 or Rev7 largely abolished UV-TLS, suggesting that these 2 gene products, which comprise Polζ, play a main role in mutagenic TLS. Second, Rev1-targeted siRNA also abrogated UV-TLS, indicating that Rev1 is also indispensable to mutagenic TLS. Third, Polη-targeted siRNA also prevented TLS to a greater extent than our expectations. Forth, although siRNA to Polι had no detectable effect, that to Polκ delayed UV-TLS. To our knowledge, this is the first study reporting apparent evidence for the participation of Polκ in UV-TLS.
Mirzaei, Mahmoud; Hadipour, Nasser L
2006-04-13
Hydrogen-bonding effects in the real crystalline structure of 9-methyladenine, 9-MA, were studied using calculated electric field gradient, EFG, and chemical shielding, CS, tensors for nitrogen and hydrogen nuclei via density functional theory. The calculations were carried out at the B3LYP and B3PW91 levels with the 6-311++G basis set via the Gaussian 98 package. Nuclear quadrupole coupling constants, C(Q), and asymmetry parameters, eta(Q), are reported for (14)N and (2)H. The chemical shielding anisotropy, Deltasigma, and chemical shielding isotropy, sigma(iso), are also reported for (15)N and (1)H. The difference between the calculated parameters of the monomer and heptameric layer-like cluster 9-MA shows how much H-bonding interactions affect the EFG and CS tensors of each nucleus. This result indicates that N(10) (imino nitrogen) has a major role in H-bonding interactions, whereas that of N(9) is negligible. There is good agreement between the present calculated parameters and reported experimental data. Although some discrepancies were observed, this could be attributed to the different conditions which were applied for calculation and the experiments.
AEROSTATIC AND AERODYNAMIC MODULES OF A HYBRID BUOYANT AIRCRAFT: AN ANALYTICAL APPROACH
Directory of Open Access Journals (Sweden)
Anwar Ul Haque
2015-05-01
Full Text Available An analytical approach is essential for the estimation of the requirements of aerodynamic and aerostatic lift for a hybrid buoyant aircraft. Such aircrafts have two different modules to balance the weight of aircraft; aerostatic module and aerodynamic module. Both these modules are to be treated separately for estimation of the mass budget of propulsion systems and required power. In the present work, existing relationships of aircraft and airship are reviewed for its further application for these modules. Limitations of such relationships are also disussed and it is precieved that it will provide a strating point for better understanding of design anatomy of such aircraft.
Mushroom-Shaped Structures as Tracers of Buoyant Flow in the Galactic Disk
D'Avillez, M A; Avillez, Miguel A. de; Low, Mordecai-Mark Mac
2001-01-01
Recent HI emission observations of the Southern Galactic hemisphere have revealed a mushroom-like structure extending from z=-70 to -450 pc, composed of a stem and a cap. Similar structures occur in three-dimensional simulations of a dynamic galactic disk driven by isolated and clustered supernovae. Using these simulations, we show that hot gas in the Galactic disk that is not evacuated through chimneys expands into the cooler gas of the thick disk, forming mushroom-shaped structures. This new class of objects traces buoyant flow of hot gas into the thick disk.
INFLUENCES OF SLOPE GRADIENT ON SOIL EROSION
Institute of Scientific and Technical Information of China (English)
刘青泉; 陈力; 李家春
2001-01-01
The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows , and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size , soil bulk density , surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41. 5 °～ 50°.
Formation of lower continental crust by relamination of buoyant arc lavas and plutons
Kelemen, Peter B.; Behn, Mark D.
2016-03-01
The formation of the Earth's continents is enigmatic. Volcanic arc magmas generated above subduction zones have geochemical compositions that are similar to continental crust, implying that arc magmatic processes played a central role in generating continental crust. Yet the deep crust within volcanic arcs has a very different composition from crust at similar depths beneath the continents. It is therefore unclear how arc crust is transformed into continental crust. The densest parts of arc lower crust may delaminate and become recycled into the underlying mantle. Here we show, however, that even after delamination, arc lower crust still has significantly different trace element contents from continental lower crust. We suggest that it is not delamination that determines the composition of continental crust, but relamination. In our conceptual model, buoyant magmatic rocks generated at arcs are subducted. Then, upon heating at depth, they ascend and are relaminated at the base of the overlying crust. A review of the average compositions of buoyant magmatic rocks -- lavas and plutons -- sampled from the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs reveals that they fall within the range of estimated major and trace elements in lower continental crust. Relamination may thus provide an efficient process for generating lower continental crust.
Characterization of Buoyant Fluorescent Particles for Field Observations of Water Flows
Directory of Open Access Journals (Sweden)
Flavia Tauro
2010-12-01
Full Text Available In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres’ fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall.
Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model
El-Amin, Mohamed
2010-06-13
Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical simulations of 2D axisymmetric vertical hot water confined jet into a cylindrical tank have been done. Solutions are obtained for unsteady flow while velocity, pressure, temperature and turbulence distributions inside the water tank are analyzed. For seeking verification, an experiment was conducted for measuring of the temperature of the same system, and comparison between the measured and simulated temperature shows a good agreement. Using the simulated results, some models are developed to describe axial velocity, centerline velocity, radial velocity, dynamic pressure, mass flux, momentum flux and buoyancy flux for both unheated (non-buoyant) and heated (buoyant) jet. Finally, the dynamics of the heated jet in terms of the plume function which is a universal quantity and the source parameter are studied and therefore the maximum velocity can be predicted theoretically. © 2010 Springer-Verlag.
Biomimetic Gradient Polymers with Enhanced Damping Capacities.
Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian
2016-04-01
Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures.
Buoyant Response of the Tank 241-SY-101 Crust to Transfer and Back-Dilution
Energy Technology Data Exchange (ETDEWEB)
CW Stewart
1999-11-08
The mixer pump installed in Hanford Tank 241-SY-101 (SY-101) in July 1993 has prevented the large buoyant displacement gas release events (BD GRE) it has historically exhibited. But the absence of periodic disruption from GREs and the action of mixing have allowed the crust to grow. The accelerated gas retention has resulted in over 30 inches of waste level growth and the flammable gas volume stored in the crust has become a hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from below the crust, SY-101 will be diluted in the fall of 1999 to dissolve a large fraction of the solids in the tank. The plan is to transfer waste out and back-dilute with water in several steps of about 100,000 gallons each. Back-dilution water may be added at the transfer pump inlet, the base of the mixer pump, and on top of the crust. The mixer pump will continue to be required to prevent formation of a deep nonconnective layer and resumption of BD GREs. Therefore, it is vital to ensure that the transfer and back-dilution processes do not significantly degrade the pump's effectiveness. Part of the strategy to avoid mixer pump degradation is to keep the base of the crust layer well above the pump inlet, which is 236 inches above the tank bottom. The maximum transfer for which an equal back-dilution is possible without sinking the crust is 90 kgal if water is injected at the 96-inch transfer pump inlet and 120 kgal for injection at the 9-inch mixer pump burrowing ring. To keep the crust base above the lowest observed elevation of 295 inches, transfer and back-dilution must be limited to 143 kgal and 80 kgal, respectively, for the 96-inch back-dilution and 175 kgal with a 112 kgal back-dilution using the 9-inch back-dilution elevation. These limits can be avoided by adding water to the top of the crust to dissolve the negatively buoyant layers. If 20 kgal of water is placed on top of the crust and the rest of the back-dilution is
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Materials-Dee ring and snap hook assemblies and other... Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a) Specifications. Dee ring and snap lock assemblies and other instruments of closure for buoyant vests may...
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Materials-Dee ring and snap hook assemblies and other... Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a) Specifications. Dee ring and snap hook assemblies and other instruments of closure for buoyant vests may...
Gradient Descent Bit Flipping Algorithms for Decoding LDPC Codes
Wadayama, Tadashi; Nakamura, Keisuke; Yagita, Masayuki; Funahashi, Yuuki; Usami, Shogo; Takumi, Ichi
2007-01-01
A novel class of bit-flipping (BF) algorithms for decoding low-density parity-check (LDPC) codes is presented. The proposed algorithms, which are called gradient descent bit flipping (GDBF) algorithms, can be regarded as simplified gradient descent algorithms. Based on gradient descent formulation, the proposed algorithms are naturally derived from a simple non-linear objective function.
Flow instability of buoyant-Marangoni convection in the LEC GaAs melt
Institute of Scientific and Technical Information of China (English)
2008-01-01
Flow transitions and instabilities have significant effects on the quality of the crystals. The flow and heat transfer in the LEC GaAs melt are numerically studied by a time-dependent and three-dimensional turbulent flow model. The effects of the change of the buoyancy and Marangoni force on the flow state are analyzed by changing the temperature difference between the crystal and the crucible walls. The results show that the flow will transform from axisymmetric steady flow to non-axisymmetric oscillatory flow when the temperature difference exceeds the critical value, and that the mechanism of the transition is attributed to the Marangoni instability. The critical temperature differences for the flow transitions corresponding to different melt depth H are numerically predicted. Several important characteristics of the non-axisymmetric buoyant-Marangoni convection are numerically observed and compared with that of the non-axisymmetric mixed convection coupled with crystal rotation.
Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate
Hawley, William B.; Allen, Richard M.; Richards, Mark A.
2016-09-01
The boundary between Earth’s strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics.
Translational and rotational dynamics of a large buoyant sphere in turbulence
Mathai, Varghese; van der Poel, Erwin P; Sun, Chao
2016-01-01
We report experimental measurements of the translational and rotational dynamics of a large buoyant sphere in isotropic turbulence. We introduce an efficient method to simultaneously determine the position and (absolute) orientation of a spherical body from visual observation. The method employs a minimization algorithm to obtain the orientation from the 2D projection of a specific pattern drawn onto the surface of the sphere. This has the advantages that it does not require a database of reference images, is easily scalable using parallel processing, and enables accurate absolute orientation reference. Analysis of the sphere's translational dynamics reveals clear differences between the streamwise and transverse directions. The translational auto-correlations and PDFs provide evidence for periodicity in the particle's dynamics even under turbulent conditions. The angular autocorrelations show weak periodicity. The angular accelerations exhibit wide tails, however without a directional dependence.
Institute of Scientific and Technical Information of China (English)
WU Teng-hu; SHAO Xue-ming; YU Zhao-sheng
2011-01-01
In this article, we employ a fully-resolved numerical simulation method (the fictitious domain method) to investigate the effects of large neutrally-buoyant particles on the turbulent flow in a pipe at low Reynolds number and non-dilute regimes. The tube Reynolds number is fixed to be 4 900, the particle-pipe diameter ratio is 0.1, and the particle volume fraction ranges from 0.33％ to 10％. Our results indicate that the presence of large particles decreases the maximum root-of-mean-square (rms) of the streamwise velocity fluctuation near the wall by weakening the intensity of large-scale streamwise vortices, although in the region very close to the wall the particles increase the rms of streamwise velocity fluctuation. On the other hand, the particles induce small-scale vortices in the near-wall region, resulting in the enhancement of the rms of radial and circumferential velocity fluctuations there.
Three-dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles in Galaxy Clusters
O'Neill, S M; Jones, T W
2009-01-01
We report results of 3D MHD simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three dimensional extensions of two dimensional calculations reported by Jones & De Young (2005). Initially spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into "smoke rings", if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with beta = P_gas/P_mag ~ 10^3 can influence the dynamics of the bubbles, provided...
Directory of Open Access Journals (Sweden)
Aline Costa Lucio
2009-07-01
Full Text Available
The aim of this study was to separate X-bearing bovine sperm by continuous Percoll and OptiPrep density gradients and to validate the sexing of resultant in vitro produced embryos by Polimerase Chain Reaction (PCR. Frozen/thawed sperm was layered on density gradients which were previously prepared in polystyrene tubes, 24 h before procedures and maintained at 4 °C. The tubes were centrifuged at 500 x g for 15 min at 22 °C. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Viability and integrity of sperm were evaluated by Trypan Blue/Giemsa stain. Cleavage and blastocyst rates were determined by in vitro production of embryos and PCR was performed for identification of the embryos’ genetic sex. No damage in viability and acrossomal integrity and in cleavage and blastocyst rates was found in the Percoll and OptiPrep treatment compared to the non-centrifuged group (P>0.05. The percentage of female embryos in the Percoll and OptiPrep group was 63.0 and 47.6%, respectively. The female embryos in control group were 48.7%. A sexual deviation in the Percoll density gradient was achieved without reduction of sperm viability and in vitro production rates.
KEY WORDS: Bovine, centrifugation, in vitro production of embryos, PCR, X-bearing sperm.
The gradient flow in a twisted box
Energy Technology Data Exchange (ETDEWEB)
Ramos, Alberto [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2013-08-15
We study the perturbative behavior of the gradient flow in a twisted box. We apply this information to define a running coupling using the energy density of the flow field. We study the step-scaling function and the size of cutoff effects in SU(2) pure gauge theory. We conclude that the twisted gradient flow running coupling scheme is a valid strategy for step-scaling purposes due to the relatively mild cutoff effects and high precision.
Helfrich, Karl R.
2006-08-01
The nonlinear evolution of a localized layer of buoyant, uniform potential vorticity fluid with depth H, width w and length L released adjacent to a wall in a rotating system is studied using reduced-gravity shallow-water theory and numerical modeling. In the interior, far from the two ends of the layer, the initial adjustment gives, after ignoring inertia-gravity waves, a geostrophic flow of width w and layer velocities parallel to the wall directed in the downstream direction (defined by Kelvin wave propagation). This steady geostrophic flow serves as the initial condition for a semigeostrophic solution using the method of characteristics. At the downstream end, the theory shows that the fluid intrudes along the wall as rarefaction terminating at a nose of vanishing width and depth. However, in a real fluid the presence of the lower layer leads to a blunt gravity current head. The theory is amended by introducing a gravity current head condition that has a blunt bore joined to the rarefaction by a uniform gravity current. The upstream termination of the initial layer produces a Kelvin rarefaction that propagates downstream, decreasing the layer depth along the wall, and initiating upstream flow adjacent to the wall. The theoretical solution compares favorably to numerical solutions of the reduced-gravity shallow-water equations. The agreement between theory and numerical solutions occurs regardless of whether the numerical runs are initiated with an adjusted geostrophic solution or with the release of a stagnant layer. The latter case excites inertia-gravity waves that, despite their large amplitude and breaking, do not significantly affect the evolution of the geostrophic flow. At times beyond the validity of the semigeostrophic theory, the numerical solutions evolve into a stationary array of vortices. The vortex formation can be interpreted as the finite-amplitude manifestation of a linear instability of the new flow established by the passage of the Kelvin
Electric field gradients in Hg compounds
DEFF Research Database (Denmark)
Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.;
2012-01-01
We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved by compar......We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved...
Numerical simulation and analysis of confined turbulent buoyant jet with variable source
El-Amin, Mohamed
2016-01-23
In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.
Experimental Studies for the characterization of the mixing processes in negative buoyant jets
Directory of Open Access Journals (Sweden)
Querzoli G.
2013-04-01
Full Text Available A negatively buoyant jet (NBJ corresponds to the physical phenomenon that develops when a fluid is discharged upwards into a lighter environment or downwards into a heavier receptor fluid. In a NBJ the flow is initially driven mostly by the momentum, so it basically behaves as a simple jet released withthe same angle, while far from the outlet the buoyancy prevails, bending the jet axis down and making it similar to a plume. The coexistence in the same phenomenon of both the characteristics of simple jets and plumes makes the NBJs a phenomenon still not entirely explained but, considering also the numerous practical applications, very interesting to study. Here some of the experimental results are presented. The laboratory experiment were obtained on a model simulating a typical sea discharge of brine from desalination plants: a pipe laid down on the sea bottom, with orifices on its lateral wall, releasing brine (heavier than the sea water with a certain angle to the horizontal, in order to increase the jet path before sinking to the seafloor. A non-intrusive image analysis technique, namely Feature Tracking Velocimetry, is applied to measure velocity fields, with the aim at understanding the influence of some non-dimensional parameters driving the phenomenon (e.g. Reynolds number, release angle on the structure of the NBJ and of the turbulence.
An inkjet-printed buoyant 3-D lagrangian sensor for real-time flood monitoring
Farooqui, Muhammad Fahad
2014-06-01
A 3-D (cube-shaped) Lagrangian sensor, inkjet printed on a paper substrate, is presented for the first time. The sensor comprises a transmitter chip with a microcontroller completely embedded in the cube, along with a $1.5 \\\\lambda 0 dipole that is uniquely implemented on all the faces of the cube to achieve a near isotropic radiation pattern. The sensor has been designed to operate both in the air as well as water (half immersed) for real-time flood monitoring. The sensor weighs 1.8 gm and measures 13 mm$\\\\,\\\\times\\\\,$ 13 mm$\\\\,\\\\times\\\\,$ 13 mm, and each side of the cube corresponds to only $0.1 \\\\lambda 0 (at 2.4 GHz). The printed circuit board is also inkjet-printed on paper substrate to make the sensor light weight and buoyant. Issues related to the bending of inkjet-printed tracks and integration of the transmitter chip in the cube are discussed. The Lagrangian sensor is designed to operate in a wireless sensor network and field tests have confirmed that it can communicate up to a distance of 100 m while in the air and up to 50 m while half immersed in water. © 1963-2012 IEEE.
Buoyant Filter Bio-Reactor (BFBR)--a novel anaerobic wastewater treatment unit.
Panicker, Soosan J; Philipose, M C; Haridas, Ajit
2008-01-01
The Buoyant Filter Bio-Reactor (BFBR) is a novel and very efficient method for the treatment of complex wastewater. Sewage is a complex wastewater containing insoluble COD contributed by fat and proteins. The fat and proteins present in the domestic sewage cause operational problems and underperformance in the Upflow Anaerobic Sludge Blanket Reactor, used now for treating sewage anaerobically. The biogas yield from the BFBR is 0.36 m3/kg COD reduced and the methane content was about 70-80%. Production of methane by anaerobic digestion of organic waste had the benefit of lower energy costs for treatment and is thus environmentally beneficial to the society by providing a clean fuel from renewable feed stocks. The BFBR achieved a COD removal efficiency of 80-90% for an organic loading rate of 4.5 kg/m3/d at a hydraulic retention time of 3.25 hours. The effluent COD was less than 100 mg/l, thus saving on secondary treatment cost. No pretreatment like sedimentation was required for the influent to the BFBR. The BFBR can produce low turbidity effluent as in the activated sludge process (ASP). The land area required for the BFBR treatment plant is less when compared to ASP plant. Hence the problem of scarcity of land for the treatment plant is reduced. The total expenditure for erecting the unit was less than 50% as that of conventional ASP for the same COD removal efficiency including land cost.
Suanda, Sutara H.; Kumar, Nirnimesh; Miller, Arthur J.; Di Lorenzo, Emanuele; Haas, Kevin; Cai, Donghua; Edwards, Christopher A.; Washburn, Libe; Fewings, Melanie R.; Torres, Rachel; Feddersen, Falk
2016-10-01
In upwelling regions, wind relaxations lead to poleward propagating warm water plumes that are important to coastal ecosystems. The coastal ocean response to wind relaxation around Pt. Conception, CA is simulated with a Regional Ocean Model (ROMS) forced by realistic surface and lateral boundary conditions including tidal processes. The model reproduces well the statistics of observed subtidal water column temperature and velocity at both outer and inner-shelf mooring locations throughout the study. A poleward-propagating plume of Southern California Bight water that increases shelf water temperatures by ≈ 5°C is also reproduced. Modeled plume propagation speed, spatial scales, and flow structure are consistent with a theoretical scaling for coastal buoyant plumes with both surface-trapped and slope-controlled dynamics. Plume momentum balances are distinct between the offshore (>30 m depth) region where the plume is surface-trapped, and onshore of the 30 m isobath (within 5 km from shore) where the plume water mass extends to the bottom and is slope controlled. In the onshore region, bottom stress is important in the alongshore momentum equation and generates vertical vorticity that is an order of magnitude larger than the vorticity in the plume core. Numerical experiments without tidal forcing show that modeled surface temperatures are biased 0.5°C high, potentially affecting plume propagation distance and persistence.
Isolation of Low Abundance Proteins and Cells Using Buoyant Glass Microbubble Chromatography
Directory of Open Access Journals (Sweden)
Steingrimur Stefansson
2013-01-01
Full Text Available Conventional protein affinity chromatography relies on highly porous resins that have large surface areas. These properties are ideal for fast flow separation of proteins from biological samples with maximum yields, but these properties can also lead to increased nonspecific protein binding. In certain applications where the purity of an isolated protein is more important than the yield, using a glass solid phase could be advantageous as glass is nonporous and hydrophilic and has a low surface area and low nonspecific protein binding. As a proof of principle, we used protein A-conjugated hollow glass microbubbles to isolate fluorescently labeled neurofilament heavy chain spiked into serum and compared them to protein A Sepharose and protein A magnetic beads (Dynabeads using an anti-neurofilament protein antibody. As expected, a greater volume of glass bubbles was required to match the binding capacity of the magnetic beads and Sepharose resins. On the other hand, nonspecific protein binding to glass bubbles was greatly reduced compared to the other resins. Additionally, since the glass bubbles are buoyant and transparent, they are well suited for isolating cells from biological samples and staining them in situ.
Wave induced mixing and transport of buoyant particles: application to the Statfjord A oil spill
Directory of Open Access Journals (Sweden)
M. Drivdal
2014-05-01
Full Text Available The modelling of wave-current and wave-turbulence interactions have received much attention in recent years. In this study the focus is on how these wave effects modify the transport of particles in the ocean. Here the particles are buoyant tracers that can represent oil droplets, plastic particles or plankton, for example fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production as well as the stronger veering by the Coriolis–Stokes force affect the drift of the particles. The energy and momentum fluxes as well as the Stokes drift depend on the directional wave spectrum that can be obtained from a wave model or from observations. As a first test the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (e.g. classical Ekman theory. Secondly the model is applied to a case where we investigate the oil drift after an offshore oil spill outside the western coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by empirical models. With wind and wave forcing from the ERA Interim archive, it is shown that the wave effects are important for the resultant drift in this case, and has the potential to improve drift forecasting.
Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill
Directory of Open Access Journals (Sweden)
M. Drivdal
2014-12-01
Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.
Isolation of rare tumor cells from blood cells with buoyant immuno-microbubbles.
Directory of Open Access Journals (Sweden)
Guixin Shi
Full Text Available Circulating tumor cells (CTCs are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs. MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM antibody. EpCAM-targeted MBs efficiently (85% and rapidly (within 15 minutes bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88% isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77% isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells.
Numerical simulation and analysis of confined turbulent buoyant jet with variable source
Institute of Scientific and Technical Information of China (English)
EL-AMIN Mohamed F; AL-GHAMDI Abdulmajeed; SALAMA Amgad; SUN Shuyu
2015-01-01
In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ε turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average devia- tion of the simulated temperature by realizablek-ε turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear varia- tion that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experime- nts for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.
Turbulent channel flow of dense suspensions of neutrally-buoyant spheres
Picano, F; Brandt, L
2014-01-01
Dense particle suspensions are widely encountered in many applications and in environmental flows. While many previous studies investigate their rheological properties in laminar flows, little is known on the behaviour of these suspensions in the turbulent/inertial regime. The present study aims to fill this gap by investigating the turbulent flow of a Newtonian fluid laden with solid neutrally-buoyant spheres at relatively high volume fractions in a plane channel. An Immersed Boundary Method has been used to account for the dispersed phase performing Direct Numerical Simulation in the range of volume fractions $\\Phi=0-0.2$. The results show that the mean velocity profiles are significantly altered by the presence of a solid phase with a decrease of the von K\\'arm\\'an constant in the log-law. The overall drag is found to increase with the volume fraction, more than one would expect just considering the increase of the system viscosity due to the presence of the particles. At the highest volume fraction here i...
Bollenbach, Tobias; Heisenberg, Carl-Philipp
2015-04-23
In animal embryos, morphogen gradients determine tissue patterning and morphogenesis. Shyer et al. provide evidence that, during vertebrate gut formation, tissue folding generates graded activity of signals required for subsequent steps of gut growth and differentiation, thereby revealing an intriguing link between tissue morphogenesis and morphogen gradient formation.
Directory of Open Access Journals (Sweden)
Jaques Waisberg
2002-04-01
Full Text Available The prospects for allotransplantation of pancreatic islets in man depend on the development of methods that provide sufficient quantities of pancreatic islets from a single donor, which are capable, when transplanted, of achieve the normalization of carbohydrate metabolism. Objective: Evaluate the efficacy of the isolation of Langerhans islets from dogs, by means of mechanical-enzymatic separation technique with stationary digestion using collagenase, and purification with a discontinuous dextran density gradient. Methods: The counting of islet numbers and evaluation of their sizes was accomplished by staining with diphenylthiocarbazone and using stereoscopic microscopes equipped with eyepiece reticule for the measurement of average diameters of stained islets. Results: The results disclosed that the average number of islets isolated was 81032.20 ± 24736.79 and the average number of islets isolated per kg of body weight was 6938.70 ± 1392.43. The average number of islets isolated per kg of body weight showed significant correlation with body weight and weight of the pancreas resected. Conclusion: The number of islets isolated, of a single donor, by mechanical-enzymatic separation, stationary collagenase digestion and discontinuous dextran density gradient purification can be sufficient to success of pancreatic islets transplant in dogs.A perspectiva do alotransplante de ilhotas pancreáticas no homem está na dependência do desenvolvimento de métodos que propiciem quantidades suficientes de ilhotas pancreáticas, originadas de doador único, capazes de, quando transplantadas, levarem à normalização do metabolismo dos hidratos de carbono. Objetivo: Avaliar, em cães, a eficácia do isolamento das ilhotas de Langerhans por meio da técnica de separação mecânica-enzimática, digestão estacionária com colagenase e purificação pelo gradiente de densidade descontínua de dextran. Métodos: A contagem do número e avaliação do tamanho
Trace Metal and Sulfur Dynamics in the First Meter of Buoyant Hydrothermal Vent Plumes
Findlay, A.; Gartman, A.; Shaw, T. J.; Luther, G. W., III
2014-12-01
The speciation and reactivity of metals and metal sulfides within the buoyant plume is critical to determining the ultimate fate of metals emitted from hydrothermal vents. The concentration, size fractionation, and partitioning of trace metals (Fe, Mn, Cu, Co, Zn, Cd, Pb) were determined within the first meter of the rising plume at three vent fields (TAG, Snakepit, and Rainbow) along the Mid-Atlantic Ridge. At Rainbow, total Fe concentrations exceed total sulfide concentrations by an order of magnitude, whereas at the other two sites, total Fe and total sulfide concentrations are nearly equal. At all three sites, Mn and Fe are primarily in the filtered (< 0.2 μm) fraction and Cu, Co, Zn, Cd, and Pb are mainly in the unfiltered fraction. At TAG and Snakepit, unfiltered copper is correlated with unfiltered cobalt, and unfiltered zinc is correlated with unfiltered cadmium and lead. At Rainbow, unfiltered zinc, cadmium and lead are correlated, but unfiltered copper and cobalt are not, indicating precipitation dynamics at Rainbow are different than those at TAG and Snakepit due to bulk geochemical differences, including a higher iron to sulfide ratio. A sequential HCl/HNO3 leaching method was used to distinguish metals present in pyrite and chalcopyrite in both unfiltered and filtered samples. Significant portions of unfiltered Cu and Co were extracted in HNO3, whereas unfiltered Zn, Cd, and Pb were extracted in HCl. Up to 95 % of filtered Cu, Co, and Zn, up to 80% Cd, and up to 60 % Pb are only extractable in HNO3, indicating that a significant portion of metals < 0.2 μm are incorporated into a recalcitrant fraction such as nanoparticulate pyrite or chalcopyrite.
Rossby adjustment of a finite-length buoyant patch along a vertical wall
Helfrich, Karl
2004-11-01
The release of a patch of buoyant fluid of initial uniform depth H and width L0 perpendicular to a wall in a rotating system is reconsidered for a patch with finite length along the wall. The lower layer is slightly denser and much deeper. The finite length results in distinct end effects. At the downstream end (in the Kelvin wave direction) a semigeostrophic theory shows that the fluid intrudes along the wall as rarefaction terminated at a nose of zero width and depth. The nose speed increases to c_nose = 3.80 (g^' H)^1/2 for L0 arrow ∞. In a real fluid the presence of the lower layer leads to a blunt gravity current head rather than the thinning nose. For that case the theory is amended by joining the rarefaction to a bore condition of the form cb = c_b(g^', h_0, f), where cb is the bore speed, h0 is the depth of the layer along the wall at the bore head and f is the Coriolis frequency. The bore is attached to the rarefaction by a gravity current with uniform wall depth and width. The analytical solutions are compared to numerical solutions of the reduced-gravity shallow water equations. The modeling reveals that immediately after the release a Kelvin wave propagates away from the upstream termination of the patch and alters the geostrophically adjusted flow to a new, unstable state. The flow rapidly evolves into an array of vortices that prematurely shuts off the flux into the gravity current.
Modelling of a non-buoyant vertical jet in waves and currents
Institute of Scientific and Technical Information of China (English)
徐振山; 陈永平; 陶建峰; 潘毅; 张长宽; 李志伟
2016-01-01
A generic numerical model using the large eddy simulation (LES) technique is developed to simulate a non-buoyant vertical jet in wave and/or current environments. The experimental data obtained in five different cases, i.e., one case of the jet in a wave only environment, two cases of the jet in a cross-flow only environment and two cases of the jet in a wave and cross-flow coexisting environment, are used to validate the model. The grid sensitivity tests are conducted based on four different grid systems and the results illustrate that the non-uniform grid system C (205×99×126 nodes with the minimum size of 1/10 jet diameter) is sufficiently fine for the modelling. The comparative study shows that the wave-current non-linear interaction should be taken into account at the inflow boundary while modelling the jet in wave and cross-flow coexisting environments. All numerical results agree well with the experimental data, showing that: (1) the jet under the influence of the wave action has a faster centerline velocity decay and a higher turbulence level than that in the stagnant ambience, meanwhile the “twin peaks” phenomenon exists on the cross-sectional velocity profiles, (2) the jet under a cross-flow scenario is deflected along the cross-flow with the node in the downstream, (3) the jet in wave and cross-flow coexisting environments has a flow structure of “effluent clouds”, which enhances the mixing of the jet with surrounding waters.
Schoepf, Verena; Hu, Xinping; Holcomb, Michael; Cai, Wei-Jun; Li, Qian; Wang, Yongchen; Xu, Hui; Warner, Mark E.; Melman, Todd F.; Hoadley, Kenneth D.; Pettay, D. Tye; Matsui, Yohei; Baumann, Justin H.; Grottoli, Andréa G.
2017-03-01
Two primary methods—the buoyant weight (BW) and alkalinity anomaly (AA) techniques—are currently used to quantify net calcification rates ( G) in scleractinian corals. However, it remains unclear whether they are directly comparable since the few method comparisons conducted to date have produced inconsistent results. Further, such a comparison has not been made for tropical corals. We directly compared G BW and G AA in four tropical and one temperate coral species cultured under various pCO2, temperature, and nutrient conditions. A range of protocols for conducting alkalinity depletion incubations was assessed. For the tropical corals, open-top incubations with manual stirring produced G AA that were highly correlated with and not significantly different from G BW. Similarly, G AA of the temperate coral was not significantly different from G BW when incubations provided water motion using a pump, but were significantly lower than G BW by 16% when water motion was primarily created by aeration. This shows that the two techniques can produce comparable calcification rates in corals but only when alkalinity depletion incubations are conducted under specific conditions. General recommendations for incubation protocols are made, especially regarding adequate water motion and incubation times. Further, the re-analysis of published data highlights the importance of using appropriate regression statistics when both variables are random and measured with error. Overall, we recommend the AA technique for investigations of community and short-term day versus night calcification, and the BW technique to measure organism calcification rates integrated over longer timescales due to practical limitations of both methods. Our findings will facilitate the direct comparison of studies measuring coral calcification using either method and thus have important implications for the fields of ocean acidification research and coral biology in general.
Sciarra, Giulio; Coussy, Olivier
2010-01-01
Second gradient theories have been developed in mechanics for treating different phenomena as capillarity in fluids, plasticity and friction in granular materials or shear band deformations. Here, there is an attempt of formulating a second gradient Biot like model for porous materials. In particular the interest is focused in describing the local dilatant behaviour of a porous material induced by pore opening elastic and capillary interaction phenomena among neighbouring pores and related micro-filtration phenomena by means of a continuum microstructured model. The main idea is to extend the classical macroscopic Biot model by including in the description second gradient effects. This is done by assuming that the surface contribution to the external work rate functional depends on the normal derivative of the velocity or equivalently assuming that the strain work rate functional depends on the porosity and strain gradients. According to classical thermodynamics suitable restrictions for stresses and second g...
Laser textured surface gradients
Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.
2016-05-01
This work demonstrates a novel technique for fabricating surfaces with roughness and wettability gradients and their subsequent applications for chemical sensors. Surface roughness gradients on brass sheets are obtained directly by nanosecond laser texturing. When these structured surfaces are exposed to air, their wettability decreases with time (up to 20 days) achieving both spatial and temporal wettability gradients. The surfaces are responsive to organic solvents. Contact angles of a series of dilute isopropanol solutions decay exponentially with concentration. In particular, a fall of 132° in contact angle is observed on a surface gradient, one order of magnitude higher than the 14° observed for the unprocessed surface, when the isopropanol concentration increased from 0 to 15.6 wt%. As the wettability changes gradually over the surface, contact angle also changes correspondingly. This effect offers multi-sensitivity at different zones on the surface and is useful for accurate measurement of chemical concentration.
Cell orientation gradients on an inverse opal substrate.
Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze
2015-05-20
The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.
Mueller, Julia S.; Cheek, Brandon D.; Chen, Qingman; Groeschel, Jillian R.; Brewer, Shannon K.; Grabowski, Timothy B.
2013-01-01
Pelagic broadcast spawning cyprinids are common to Great Plains rivers and streams. This reproductive guild produces non-adhesive semi-buoyant eggs that require sufficient current velocity to remain in suspension during development. Although studies have shown that there may be a minimum velocity needed to keep the eggs in suspension, this velocity has not been estimated directly nor has the influence of physicochemical factors on egg buoyancy been determined. We developed a simple, inexpensive flow chamber that allowed for evaluation of minimum current velocity needed to keep semi-buoyant eggs in suspension at any time frame during egg development. The device described here has the capability of testing the minimum current velocity needed to keep semi-buoyant eggs in suspension at a wide range of physicochemical conditions. We used gellan beads soaked in freshwater for 0, 24, and 48 hrs as egg surrogates and evaluated minimum current velocities necessary to keep them in suspension at different combinations of temperature (20.0 ± 1.0° C, 25.0 ± 1.0° C, and 28.0 ± 1.0° C) and total dissolved solids (TDS; 1,000 mg L-1, 3,000 mg L-1, and 6,000 mg L-1). We found that our methodology generated consistent, repeatable results within treatment groups. Current velocities ranging from 0.001–0.026 needed to keep the gellan beads in suspension were negatively correlated to soak times and TDS and positively correlated with temperature. The flow chamber is a viable approach for evaluating minimum current velocities needed to keep the eggs of pelagic broadcast spawning cyprinids in suspension during development.
Rowe, M. D.; Anderson, E. J.; Wynne, T. T.; Stumpf, R. P.; Fanslow, D. L.; Kijanka, K.; Vanderploeg, H. A.; Strickler, J. R.; Davis, T. W.
2016-07-01
Cyanobacterial harmful algal blooms (CHABs) are a problem in western Lake Erie, and in eutrophic fresh waters worldwide. Western Lake Erie is a large (3000 km2), shallow (8 m mean depth), freshwater system. CHABs occur from July to October, when stratification is intermittent in response to wind and surface heating or cooling (polymictic). Existing forecast models give the present location and extent of CHABs from satellite imagery, then predict two-dimensional (surface) CHAB movement in response to meteorology. In this study, we simulated vertical distribution of buoyant Microcystis colonies, and 3-D advection, using a Lagrangian particle model forced by currents and turbulent diffusivity from the Finite Volume Community Ocean Model (FVCOM). We estimated the frequency distribution of Microcystis colony buoyant velocity from measured size distributions and buoyant velocities. We evaluated several random-walk numerical schemes to efficiently minimize particle accumulation artifacts. We selected the Milstein scheme, with linear interpolation of the diffusivity profile in place of cubic splines, and varied the time step at each particle and step based on the curvature of the local diffusivity profile to ensure that the Visser time step criterion was satisfied. Inclusion of vertical mixing with buoyancy significantly improved model skill statistics compared to an advection-only model, and showed greater skill than a persistence forecast through simulation day 6, in a series of 26 hindcast simulations from 2011. The simulations and in situ observations show the importance of subtle thermal structure, typical of a polymictic lake, along with buoyancy in determining vertical and horizontal distribution of Microcystis.
Burridge, H. C.; Hunt, G. R.
2017-02-01
We investigate the incompressible turbulent jet formed when buoyant fluid is steadily ejected horizontally from a circular source into an otherwise quiescent uniform environment. As our primary focus, we introduce a horizontal boundary beneath the source. For sufficiently small separations, the jet attaches and clings to the boundary, herein the "clinging jet," before, farther downstream, the jet is pulled away from the boundary by the buoyancy force. For larger source-boundary separations, the buoyant jet is free to rise under the action of the buoyancy force, herein the "free jet." Based on measurements of saline jets in freshwater surroundings we deduce the conditions required for a jet to cling. We present a data set that spans a broad range of source conditions for the variation in volume flux (indicative of entrainment), jet perimeter, and jet centerline for both "clinging" and "free" jets. For source Froude numbers Fr0≥12 the data collapse when scaled, displaying universal behaviors for both clinging and free jets. Our results for the variation in the volume flux across horizontal planes, π Qjet , show that within a few jet lengths of the source, π Qjet for the clinging jet exceeds that of a free jet with identical source conditions. However, when examined in a coordinate following the jet centerline π Qjet for free jets is greater. Finally, we propose a new parametrization for an existing integral model which agrees well with our experimental data as well as with data from other studies. Our findings offer the potential to tailor the dilution of horizontal buoyant jets by altering the distance at which they are released from a boundary.
Mass Function Gradients and the Need for Dark Matter
Taylor, J A
1998-01-01
There is substantial evidence that the initial mass function (IMF) may be a function of the local star formation conditions. In particular, the IMF is predicted to flatten with increasing local luminosity density, with the formation of massive stars being preferentially enhanced in brighter regions. If IMF gradients are general features of galaxies, several previous astrophysical measurements, such as the surface mass densities of spirals (obtained assuming constant mass to light ratios), were plagued by substantial systematic errors. In this Letter, calculations which account for possible IMF gradients are presented of surface densities of spiral galaxies. Compared to previous estimates, the mass densities corrected for IMF gradients are higher in the outer regions of the disks. For a model based on the Milky Way but with an IMF scaled according to R136, the rotation curve without the traditional dark halo component falls with galactrocentric radius, though slower than it would without IMF gradients. For a s...
High Gradient Accelerator Research
Energy Technology Data Exchange (ETDEWEB)
Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center
2016-07-12
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.
Kang, Ji Yun; Kim, Jung Gi; Park, Hyo Wook; Kim, Hyoung Seop
2016-05-27
The concept of multiscale architectured materials is established using composition and grain size gradients. Composition-gradient nanostructured materials are produced from coarse grained interstitial free steels via carburization and high-pressure torsion. Quantitative analyses of the dislocation density using X-ray diffraction and microstructural studies clearly demonstrate the gradients of the dislocation density and grain size. The mechanical properties of the gradient materials are compared with homogeneous nanostructured carbon steel without a composition gradient in an effort to investigate the gradient effect. Based on the above observations, the potential of multiscale architecturing to open a new material property is discussed.
Peruzzo, Paolo; Pietro Viero, Daniele; Defina, Andrea
2016-11-01
The seeds of many aquatic plants, as well as many propagulae and larvae, are buoyant and transported at the water surface. These particles are therefore subject to surface tension, which may enhance their capture by emergent vegetation through capillary attraction. In this work, we develop a semi-empirical model that predicts the probability that a floating particle is retained by plant stems and branches piercing the water surface, due to capillarity, against the drag force exerted by the flowing water. Specific laboratory experiments are also performed to calibrate and validate the model.
Energy Technology Data Exchange (ETDEWEB)
Giovannini, Massimo, E-mail: massimo.giovannini@cern.ch [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland); INFN, Section of Milan-Bicocca, 20126 Milan (Italy)
2015-06-30
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
Directory of Open Access Journals (Sweden)
Massimo Giovannini
2015-06-01
Full Text Available Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
Gradient systems and mechanical systems
Institute of Scientific and Technical Information of China (English)
Fengxiang Mei; Huibin Wu
2016-01-01
All types of gradient systems and their properties are discussed. Two problems connected with gradient sys-tems and mechanical systems are studied. One is the direct problem of transforming a mechanical system into a gradi-ent system, and the other is the inverse problem, which is transforming a gradient system into a mechanical system.
Collisional transport in a plasma with steep gradients
Energy Technology Data Exchange (ETDEWEB)
Wang, W.; Okamoto, M.; Nakajima, N.; Murakami, S. [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-06-01
The validity is given to the newly proposed two {delta}f method for neoclassical transport calculation, which can be solve the drift kinetic equation considering effects of steep plasma gradients, large radial electric field, finite banana width, and an orbit topology near the axis. The new method is applied to the study of ion transport with steep plasma gradients. It is found that the ion thermal diffusivity decreases as the scale length of density gradient decreases, while the ion particle flux due to ion-ion self collisions increases with increasing gradient. (author)
MacGregor, K B
2003-01-01
We present results from an investigation of the dynamical behavior of buoyant magnetic flux rings in the radiative interior of a uniformly rotating early-type star. Our physical model describes a thin, axisymmetric, toroidal flux tube that is released from the outer boundary of the convective core, and is acted upon by buoyant, centrifugal, Coriolis, magnetic tension, and aerodynamic drag forces. We find that rings emitted in the equatorial plane can attain a stationary equilibrium state that is stable with respect to small displacements in radius, but is unstable when perturbed in the meridional direction. Rings emitted at other latitudes travel toward the surface along trajectories that largely parallel the rotation axis of the star. Over much of the ascent, the instantaneous rise speed is determined by the rate of heating by the absorption of radiation that diffuses into the tube from the external medium. Since the time scale for this heating varies like the square of the tube cross-sectional radius, for t...
Energy Technology Data Exchange (ETDEWEB)
Pedrick, A.P.
1971-06-30
This device may be towed behind crude oil tankers and other ships for the purpose of removing oil slicks, or other flotsam, from the surface of the water in which they are buoyant. The device consists of a coil of hose, a substantial part of which can float above the water surface. By operation of controls on the towing ship, a drum of drums may be rotated within the device to payout the coils of hose to such an extent that they take up an arcuate shape at the water surfaces so that by continued forward movement of the towing vessel, oil slicks and other pollutants at the water surface are swept towards the outer ends of the arcuate lengths of hose. From here they may be sucked and pumped into tanks inboard of the towing vessel through lengths of nonbuoyant hose linking the outer ends of the buoyant hose lengths to pumps near the stren of the towing vessel or ship. (1 claim)
Time Rate Gradient Effects and Negative Mass
Miksch, Edmond
2008-03-01
The Harvard tower Experiment and tests with accurate atomic clocks show that a clock at a high elevation indicates more elapsed time than a clock at a low elevation, both clocks properly measuring time at their locations. This fact mandates that Newton's first law of motion be rewritten to cite impulse balance rather than force balance. Time rate gradient effects explain how the weight of a precisely vertical and precisely uniform electric field or a precisely vertical and precisely uniform magnetic field is supported in a precisely unidirectional gravitational field. Time rate gradient effects also explain how the weight of a unidirectional gravitational field is reacted. It is confirmed that the mass density of the gravitational field is negative. http://www.TimeRateGradient.com; http://www.Negative-Mass.com; http://www.EinsteinsElevator.com
Self Induced Buoyant Blow Off in Upward Flame Spread on Thin Solid Fuels
Johnston, Michael C.; T'ien, James S.; Muff, Derek E.; Olson, Sandra L.; Ferkul, Paul V.
2013-01-01
) is as follows: The observed one-sided extinction is a blow- off induced by buoyant entrainment. It is known that the flammable diffusion flame regime is bounded by quenching and blow ]off limits when varying incoming air velocity. The narrowest samples tested (between 2 and 5 cm) begin within the flammable range, but as the flame grows, the buoyancy driven air velocity increases at the neighborhood of the flame base. The initially stable flame crosses the extinguishment boundary resulting in a flame blow-off. When one-side of the flame extinguishes, the remaining side shrinks due to the reduced heat transfer to the solid. This reduces the induced velocity and the flame becomes stable. It is proposed that this may have implications to upward flame growth beyond this experiment.
High-density turbidity currents: Are they sandy debris flows?
Energy Technology Data Exchange (ETDEWEB)
Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)
1996-01-01
Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.
Dropwise Condensation on a Radial Gradient Surface
Macner, Ashley; Daniel, Susan; Steen, Paul
2013-11-01
In transient dropwise condensation from steam onto a cool surface, distributions of drops evolve by nucleation, growth, and coalescence. This study examines how surface functionalization affects drop growth and coalescence. Surfaces are treated by silanization to deliver either a spatially uniform contact-angle (hydrophilic, neutral, and hydrophobic) or a radial gradient of contact-angles. The time evolution of number-density and associated drop-size distributions are reported. For a typical condensation experiment on a uniform angle surface, the number-density curves show two regimes: an initial increase in number-density as a result of nucleation and a subsequent decrease in number-density as a result of larger scale coalescence events. Without a removal mechanism, the fractional coverage, regardless of treatment, approaches unity. For the same angle-surface, the associated drop-size distributions progress through four different shapes along the growth curve. In contrast, for a radial gradient surface where removal by sweeping occurs, the number-density increases and then levels off to a value close to the maximum number-density that is well below unity coverage and only two shapes of distributions are observed. Implications for heat transfer will be discussed. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.
Theoretical analysis and semianalytical solutions for a turbulent buoyant hydrogen-air jet
El-Amin, Mohamed
2012-01-01
Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a single universal function, called plume function. By combining the obtained analytical expressions of centerline variables with empirical Gaussian expressions of the mean variables, we obtain semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit, and mass fraction).
Gradient Bundle Analysis: A Full Topological Approach to Chemical Bonding
Morgenstern, Amanda
2016-01-01
The "chemical bond" is a central concept in molecular sciences, but there is no consensus as to what a bond actually is. Therefore, a variety of bonding models have been developed, each defining the structure of molecules in a different manner with the goal of explaining and predicting chemical properties. This thesis describes the initial development of gradient bundle analysis (GBA), a chemical bonding model that creates a high resolution picture of chemical interactions within the charge density framework. GBA is based on concepts from the quantum theory of atoms in molecules (QTAIM), but uses a more complete picture of the topology and geometry of the electron charge density to understand and predict bonding interactions. Gradient bundles are defined as volumes bounded by zero-flux surfaces (ZFSs) in the gradient of the charge density with well-defined energies. The structure of gradient bundles provides an avenue for detecting the locations of valence electrons, which correspond to reactive regions in a ...
Constrained length minimum inductance gradient coil design.
Chronik, B A; Rutt, B K
1998-02-01
A gradient coil design algorithm capable of controlling the position of the homogeneous region of interest (ROI) with respect to the current-carrying wires is required for many advanced imaging and spectroscopy applications. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is presented. This constrained current minimum inductance method is derived in the context of previous target field methods. Complete details are shown and all equations required for implementation of the algorithm are given. The method has been implemented on computer and applied to the design of both a 1:1 aspect ratio (length:diameter) central ROI and a 2:1 aspect ratio edge ROI gradient coil. The 1:1 design demonstrates that a general analytic method can be used to easily obtain very short gradient coil designs for use with specialized magnet systems. The edge gradient design demonstrates that designs that allow imaging of the neck region with a head sized gradient coil can be obtained, as well as other applications requiring edge-of-cylinder regions of uniformity.
Bigravity from gradient expansion
Energy Technology Data Exchange (ETDEWEB)
Yamashita, Yasuho [Yukawa Institute for Theoretical Physics, Kyoto University,606-8502, Kyoto (Japan); Tanaka, Takahiro [Yukawa Institute for Theoretical Physics, Kyoto University,606-8502, Kyoto (Japan); Department of Physics, Kyoto University,606-8502, Kyoto (Japan)
2016-05-04
We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.
Increasing SLEDed Linac Gradient
Energy Technology Data Exchange (ETDEWEB)
Farkas, Zoltan D
2001-11-08
This note will show how to increase the SLED [1] gradient by varying Q{sub e}, the external Q of the SLED cavity, by increasing its Q{sub 0} and by increasing the compression ratio. If varying the external Q is to be effective, then the copper losses should be small so that Q{sub 0} >> Q{sub e}. Methods of varying Q{sub e} will be indicated but no experimental data will be presented. If we increase the klystron pulse width from 3.5 to 5 {micro}S and increase Q{sub 0} from the present 100000 to 300000, then the gradient increases by 19% and the beam energy increases from 50 to 60 GeV. This note will also discuss SLED operation at 11424 MHz, the NLC frequency. Without Q{sub e} switching, using SLED at 11424 MHz increases the SLAC gradient from 21 MV/m to 34 MV/m, and at the same repetition rate, uses about 1/5 of rf average power. If we also double the compression ratio, we reach 47 MV/m and over 100 GeV beam energy.
Dropwise condensation on a cold gradient substrate
Macner, Ashley; Daniel, Susan; Steen, Paul
2012-11-01
Distributions of drops that arise from dropwise condensation evolve by nucleation, growth, and coalescence of drops. An understanding of how surface-energy gradients applied to the substrate affect drop growth and coalescence is needed for design of effective surfaces for large-scale dropwise condensation. Transient dropwise condensation from a vapor phase onto a cold and chemically treated surface is reported. The surfaces were treated to deliver either a uniform contact-angle or a gradient of contact-angles by silanization. The time evolution of drop-size and number-density distributions is reported. For a typical condensation experiment, the drop distributions advance through two stages: an increase in drop density as a result of nucleation and a decrease in drop density as a result of larger scale coalescence events. Because the experiment is transient in nature, the shape of the distribution can be used to predict the number of drop generations and their stage of development. Preliminary results for gradient surfaces will be discussed and compared against observations of behavior on uniformly coated surfaces. NASA Space Technology Research Fellowship (NSTRF).
Reinforcement Learning by Value Gradients
Fairbank, Michael
2008-01-01
The concept of the value-gradient is introduced and developed in the context of reinforcement learning. It is shown that by learning the value-gradients exploration or stochastic behaviour is no longer needed to find locally optimal trajectories. This is the main motivation for using value-gradients, and it is argued that learning value-gradients is the actual objective of any value-function learning algorithm for control problems. It is also argued that learning value-gradients is significantly more efficient than learning just the values, and this argument is supported in experiments by efficiency gains of several orders of magnitude, in several problem domains. Once value-gradients are introduced into learning, several analyses become possible. For example, a surprising equivalence between a value-gradient learning algorithm and a policy-gradient learning algorithm is proven, and this provides a robust convergence proof for control problems using a value function with a general function approximator.
The Differential Virial Theorem with Gradient Formulas for the Operators
Finley, James P
2016-01-01
A gradient dependent formula is derived for the spinless one-particle density-matrix operator z from the differential virial theorem. A gradient dependent formula is also derived for a spinless one-particle density-matrix operator that can replace the two operators of the differential virial theorem that arise from the kinetic energy operator. Other operators are also derived that can replace the operators mentioned above in the differential virial theorem; these operators depend on the real part of spinless one-particle density-matrix.
Glass, Robert J.; Yarrington, Lane
2003-03-01
Fingering, nonmonotonicity, fragmentation, and pulsation within gravity/buoyant destabilized two-phase/unsaturated flow systems has been widely observed with examples in homogeneous to heterogeneous porous media, in single fractures to fracture networks, and for both wetting and nonwetting invasion. To model this phenomena, we consider a mechanistic approach based on forms of modified invasion percolation (MIP) that include gravity, the influence of the local interfacial curvature along the phase-phase interface, and the simultaneous invasion and reinvasion of both wetting and nonwetting fluids. We present example simulations and compare them to experimental data for three very different situations: (1) downward gravity-driven fingering of water into a dry, homogeneous, water-wettable, porous medium; (2) upward buoyancy-driven migration of gas within a water saturated, heterogeneous, water-wettable, porous medium; and (3) downward gravity-driven fingering of water into a dry, water-wettable, rough-walled fracture.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The RNG к-ε model considering the buoyancy effect,which is solved by the hybrid finite analytic method,is used to simulate the mixture of the horizontal round thermal buoyant jet in compound open channel flow.The mixing features near the spout and flowing characteristic of the secondary currents are studied by numerical simulation.Meanwhile,(1) the distribution of the measured isovels for stream-wise velocity,(2) secondary currents,(3) the distribution of the measured isovels for temperature of typical cross-section near the spout,were obtained by the three-dimensional Micro ADV and the Temperature measuring device.Compared with experimental data,the RNG к-εmodel based on buoyancy effect can preferably simulate the jet which performs the bifurcation phenomenon,jet reattachment (Conada effect) and beach secondary currents phenomenon with the effect of ambient flow,buoyancy,and secondary currents of compound section and so on.
Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland
2013-01-01
Two motions of oscillation and vacillating breathing (swing) of a red blood cell have been observed in bounded Poiseuille flows (Phys. Rev. E 85, 16307 (2012)). To understand such motions, we have studied the oscillating motion of a neutrally buoyant rigid particle of the same shape in Poiseuille flow in a narrow channel and obtained that the crucial point is to have the particle interacting with Poiseuille flow with its mass center moving up and down in the channel central region. Since the mass center of the cell migrates toward the channel central region, its oscillating motion of the inclination angle is similar to the aforementioned motion as long as the cell keeps the shape of long body. But as the up-and-down oscillation of the cell mass center damps out, the oscillating motion of the inclination angle also damps out and the cell inclination angle approaches to a fixed angle.
Haridas, Ajit; Suresh, S; Chitra, K R; Manilal, V B
2005-03-01
A novel high-rate anaerobic reactor, called "Buoyant Filter Bioreactor" (BFBR), has been developed for treating lipid-rich complex wastewater. The BFBR is able to decouple the biomass and insoluble COD retention time from the hydraulic retention time by means of a granular filter bed made of buoyant polystyrene beads. Filter clogging is prevented by an automatic backwash driven by biogas release, which fluidizes the granular filter bed in a downward direction. During filter backwash, the solids captured in the filter are reintroduced into the reaction zone of the reactor. The reaction zone is provided with a mixing system, which is independent of the hydraulic retention time. The performance of a laboratory-scale BFBR was studied for the treatment of dairy effluent, chosen as a model complex wastewater. The dairy effluent was not pre-treated for fat removal. The BFBR was operated over 400 d and showed greater than 85% COD removal at 10 kg COD/(m3/d). The COD conversion to methane in the BFBR was essentially complete. The BFBR performance improved with age, and with feed containing 3200 mg COD/l, the treated effluent had 120 mg COD/l and no turbidity. The hold-up of degradable biosolids, including scum, inside the BFBR was estimated using starvation tests. When load is increased, scum accumulates inside the BFBR and then decays after undergoing change from hydrophobic to hydrophilic. This is explained as the accumulation of fat solids, its conversion to insoluble long chain fatty acids and its further solubilization and degradation.
Gedanken Densities and Exact Constraints in Density Functional Theory
Perdew, John P; Sun, Jianwei; Burke, Kieron
2014-01-01
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is no...
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Materials-Dee ring and snap hook assemblies and other....060-3a Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a) Specifications. Dee ring and snap hook assemblies and other instruments of closure for...
DEFF Research Database (Denmark)
El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof
2015-01-01
In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress...
Institute of Scientific and Technical Information of China (English)
陈智敏; 张昱; 杨敏; 肖淑敏; 张冬青; 李红岩; 郭瑞光
2011-01-01
采用乙酸乙酯漂浮方法和酸溶解法分别解决了再生水进水中有机杂质以及再生水中剩余絮凝剂干扰隐孢子虫和贾第鞭毛虫检测的关键问题,在此基础上,建立了成本远低于EPA 1623法的隐孢子虫和贾第鞭毛虫检测方法的密度梯度分离/免疫荧光技术.利用该方法对我国北方2个城市的污水再生处理系统进行了检测,再生水进出水的回收率分别为18%～31%卵囊和24%～95%包囊,能够满足检测要求.结果表明,在5个再生水系统的9个进水样品中,隐孢子虫的阳性率为89%,平均浓度为26个/10 L;贾第鞭毛虫的阳性率为100%,平均浓度为138个/10 L.再生水出水中也有两虫检出.%For the reclaimed influents and the reclaimed effluents with excess coagulant, the ethyl acetate floatation and acid dissociation were suggested to be added to enhance the purification and increase the recovery,respectively. Then an immunofluorescence assay and density gradient separation method for detection of Cryptosporidium oocysts and Giardia cysts, was developed in reclaimed wastewater systems. The Cryptosporidium oocysts and Giardia cysts of reclaimed wastewaters were detected in T and B cities in north China using immunofluorescence assay and density gradient separation method. The acceptable recoveries obtained from reclaimed influents and effluents were in the range of 18％～31％ oocysts and 24％ ～95％ cysts. The results showed that Cryptosporidium were detected in 89％ samples with mean concentration of 26 oocysts/10 L,while Giardia were detected in 100％ samples with mean concentration of 138 cysts/10 L in the influents of 5 reclaimed wastewater systems. Besides, Cryptosporidium oocysts and Giardia cysts were also present in the effluents of some reclaimed wastewater systems.
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation.
Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M; Bakr, Osman M
2013-06-07
Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly Applications requiring DNDs with specific particle or aggregate sizes are now within reach.
Generalized conjugate gradient squared
Energy Technology Data Exchange (ETDEWEB)
Fokkema, D.R.; Sleijpen, G.L.G. [Utrecht Univ. (Netherlands)
1994-12-31
In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.
Subduction zones seen by GOCE gravity gradients
DEFF Research Database (Denmark)
Švarc, Mario; Herceg, Matija; Cammarano, Fabio
In this study, the GOCE (Gravity field and steady state Ocean Circulation Explorer) gradiometry data were used to study geologic structures and mass variations within the lithosphere in areas of known subduction zones. The advantage of gravity gradiometry over other gravity methods...... is that gradients are extremely sensitive to localized density contrasts within regional geological settings, which makes it ideally suited for detecting subduction zones. Second order gravity gradients of disturbing potential were extracted from global geopotential model, the fifth release GOCE model ‘EGM_TIM_RL05......’. In order to remove the signal which mainly corresponds to the gravity signal of the lower mantle, long wavelength part of the gravity signal was removed up to degree and order 60. Because the areas with notable topography differences coincide with subduction zones, topography correction was also performed...
Damping of toroidal ion temperature gradient modes
Energy Technology Data Exchange (ETDEWEB)
Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-04-01
The temporal evolution of linear toroidal ion temperature gradient (ITG) modes is studied based on a kinetic integral equation including an initial condition. It is shown how to evaluate the analytic continuation of the integral kernel as a function of a complex-valued frequency, which is useful for analytical and numerical calculations of the asymptotic damping behavior of the ITG mode. In the presence of the toroidal {nabla}B-curvature drift, the temporal dependence of the density and potential perturbations consists of normal modes and a continuum mode, which correspond to contributions from poles and from an integral along a branch cut, respectively, of the Laplace-transformed potential function of the complex-valued frequency. The normal modes have exponential time dependence with frequencies and growth rates determined by the dispersion relation while the continuum mode, which has a ballooning structure, shows a power law decay {proportional_to} t{sup -2} in the asymptotic limit, where t is the time variable. Therefore, the continuum mode dominantly describes the long-time asymptotic behavior of the density and potential perturbations for the stable system where all normal modes have negative growth rates. By performing proper analytic continuation for the homogeneous version of the kinetic integral equation, dependences of the normal modes` growth rate, real frequency, and eigenfunction on {eta}{sub i} (the ratio of the ion temperature gradient to the density gradient), k{sub {theta}} (the poloidal wavenumber), s (the magnetic shear parameter), and {theta}{sub k} (the ballooning angle corresponding to the minimum radial wavenumber) are numerically obtained for both stable and unstable cases. (author)
Haque, Anwar U.; Asrar, Waqar; Omar, Ashraf A.; Sulaeman, Erwin; J. S Ali, Mohamed
2016-03-01
Dorsal fin is used in swimming animals like shark for the generation of thrust as well as to meet the requirement of the lateral stability. In the case of aircraft, rudders are normally used for the said requirement. In the present work, this nature inspired idea is explored for its application to neutralize the unavoidable asymmetric thrust produced by the twin engines of a hybrid buoyant aircraft. First, the estimation of asymmetric thrust is obtained with the help of analytical techniques for maximum thrust condition at 4 degree angle of attack. The moment generated by it is utilized for the sizing of a dorsal fin which looks similar to a tapered wing and is placed aft of the center of gravity. Wind tunnel testing at subsonic speed is carried out to explore the design features of this rotatable dorsal fin. It is found that a small rotation of 5 degree can generate the required moment. However, such rotation requires a complete pneumatic/electro-mechanical system and an alternative of it is to use a cambered airfoil for the dorsal fin installed at fixed location. Such a flow controlling device can also be used as an antenna mast, which is commonly installed out the fuselage of the aircraft for communication purposes. Moreover, by incorporating this technique, a pilot doesn't have to put an extra effort to make the aircraft stable in the presence of side wind.
Directory of Open Access Journals (Sweden)
Haque Anwar U
2016-01-01
Full Text Available Dorsal fin is used in swimming animals like shark for the generation of thrust as well as to meet the requirement of the lateral stability. In the case of aircraft, rudders are normally used for the said requirement. In the present work, this nature inspired idea is explored for its application to neutralize the unavoidable asymmetric thrust produced by the twin engines of a hybrid buoyant aircraft. First, the estimation of asymmetric thrust is obtained with the help of analytical techniques for maximum thrust condition at 4 degree angle of attack. The moment generated by it is utilized for the sizing of a dorsal fin which looks similar to a tapered wing and is placed aft of the center of gravity. Wind tunnel testing at subsonic speed is carried out to explore the design features of this rotatable dorsal fin. It is found that a small rotation of 5 degree can generate the required moment. However, such rotation requires a complete pneumatic/electro-mechanical system and an alternative of it is to use a cambered airfoil for the dorsal fin installed at fixed location. Such a flow controlling device can also be used as an antenna mast, which is commonly installed out the fuselage of the aircraft for communication purposes. Moreover, by incorporating this technique, a pilot doesn’t have to put an extra effort to make the aircraft stable in the presence of side wind.
MULTI-PARAMETRIC STUDY OF RISING 3D BUOYANT FLUX TUBES IN AN ADIABATIC STRATIFICATION USING AMR
Energy Technology Data Exchange (ETDEWEB)
Martínez-Sykora, Juan; Cheung, Mark C. M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Moreno-Insertis, Fernando [Instituto de Astrofísica de Canarias, E-38200 La Laguna (Tenerife) (Spain)
2015-11-20
We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.
Multi-Parametric Study of Rising 3D Buoyant Flux Tubes in an Adiabatic Stratification Using AMR
Martinez-Sykora, Juan; Cheung, Mark C M
2015-01-01
We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, MHD simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vortic...
Rosén, T.; Einarsson, J.; Nordmark, A.; Aidun, C. K.; Lundell, F.; Mehlig, B.
2015-12-01
We numerically analyze the rotation of a neutrally buoyant spheroid in a shear flow at small shear Reynolds number. Using direct numerical stability analysis of the coupled nonlinear particle-flow problem, we compute the linear stability of the log-rolling orbit at small shear Reynolds number Rea. As Rea→0 and as the box size of the system tends to infinity, we find good agreement between the numerical results and earlier analytical predictions valid to linear order in Rea for the case of an unbounded shear. The numerical stability analysis indicates that there are substantial finite-size corrections to the analytical results obtained for the unbounded system. We also compare the analytical results to results of lattice Boltzmann simulations to analyze the stability of the tumbling orbit at shear Reynolds numbers of order unity. Theory for an unbounded system at infinitesimal shear Reynolds number predicts a bifurcation of the tumbling orbit at aspect ratio λc≈0.137 below which tumbling is stable (as well as log rolling). The simulation results show a bifurcation line in the λ -Rea plane that reaches λ ≈0.1275 at the smallest shear Reynolds number (Rea=1 ) at which we could simulate with the lattice Boltzmann code, in qualitative agreement with the analytical results.
Taisne, B.; Tait, S.
2009-06-01
When a volume of magma is released from a source at depth, one key question is whether or not this will culminate in an eruption or in the emplacement of a shallow intrusion. We address some of the physics behind this question by describing and interpreting laboratory experiments on the propagation of cracks filled with fixed volumes of buoyant liquid in a brittle, elastic host. Experiments were isothermal, and the liquid was incompressible. The cracks propagated vertically because of liquid buoyancy but were then found to come to a halt at a configuration of static mechanical equilibrium, a result that is inconsistent with the prediction of the theory of linear elastic fracture mechanics in two dimensions. We interpret this result as due to a three-dimensional effect. At the curved crack front, horizontal cracking is necessary in order for vertical propagation to take place. As the crack elongates and thins, the former becomes progressively harder and, in the end, impossible to fracture. We present a scaling law for the final length and breadth of cracks as a function of a governing dimensionless parameter, constructed from the liquid volume, the buoyancy, and host fracture toughness. An important implication of this result is that a minimum volume of magma is required for a volcanic eruption to occur for a given depth of magma reservoir.
Jones, K E; Pierce, S E
2016-03-01
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.
Rosen, T; Nordmark, A; Aidun, C K; Lundell, F; Mehlig, B
2015-01-01
We numerically analyse the rotation of a neutrally buoyant spheroid in a shear flow at small shear Reynolds number. Using direct numerical stability analysis of the coupled nonlinear particle-flow problem we compute the linear stability of the log-rolling orbit at small shear Reynolds number, ${\\rm Re}_a$. As ${\\rm Re}_a \\to 0$ and as the box size of the system tends to infinity we find good agreement between the numerical results and earlier analytical predictions valid to linear order in ${\\rm Re}_a$ for the case of an unbounded shear. The numerical stability analysis indicates that there are corrections to the analytical result of order ${\\rm Re}_a^{3/2}$. We also compare the analytical results to results of lattice-Boltzmann simulations to analyse the stability of the tumbling orbit at shear Reynolds numbers of order unity. Theory for an unbounded system at infinitesimal shear Reynolds number predicts a bifurcation of the tumbling orbit at aspect ratio $\\lambda_{\\rm c} \\approx 0.137$ below which tumbling ...
On the solution of the Hartree-Fock-Bogoliubov equations by the conjugate gradient method
Energy Technology Data Exchange (ETDEWEB)
Egido, J.L. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Lessing, J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Martin, V. [Analisis Numerico, Facultad de Informatica, Universidad Politecnica de Madrid, E-28660 Boadilla del Monte, Madrid (Spain); Robledo, L.M. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1995-11-06
The conjugate gradient method is formulated in the Hilbert space for density and non-density dependent Hamiltonians. We apply it to the solution of the Hartree-Fock-Bogoliubov equations with constraints. As a numerical application we show calculations with the finite range density dependent Gogny force. The number of iterations required to reach convergence is reduced by a factor of three to four as compared with the standard gradient method. (orig.).
Directory of Open Access Journals (Sweden)
B. Gera
2012-03-01
Full Text Available An interesting transport phenomenon is observed through openings between two compartments separated by a thin, vented, horizontal partition such as those between containment internals in nuclear power systems, in industrial installations in event of fire, passive cooling of heated structures and in natural building ventilation. A heavier fluid located on the top of a lighter fluid and separated by a horizontal vent constitutes a gravitationally unstable system. Horizontal vents produce flow, which are unstable with irregular oscillatory behavior. The objective of the present work was to simulate such type of flow across a circular opening in horizontal partition in presence of buoyancy force. Unsteady, axisymmetric Navier-Stokes equations have been solved with Finite Volume Method. The equations were solved using the in-house CFD code based upon the well-established pressure-based finite volume methodology. In terms of temporal differencing second order accurate Crank-Nicolson scheme was used. Interpolation to cell faces for the convective terms was performed using a third order QUICK scheme, second order central differencing was used for the viscous terms. Pressure-velocity coupling was based on the SIMPLE procedure. The upper chamber was filled with salt water and the lower chamber with fresh water, creating a density differential between the two chambers. Opposing forces at the interface created a gravitationally unstable system, and an oscillating exchange of fluid developed. Three different cases for vent length to diameter ratio (L/D 0.008, 0.0376 and 0.106 from a reported experiment were examined. The pulsation frequencies and their decay with time have been determined. The flow coefficients were computed and compared with experimental results.
Institute of Scientific and Technical Information of China (English)
杨玉霞; 郑健樑; 张平; 林健贤; 张文忻
2007-01-01
BACKGROUND: It is important to study the methods of culturing bone marrow-derived mesenchymal stem cells (MSCs) to obtain a great amount of high purity MSCs for applying ocular tissues constructed by tissue engineering technique to treat eye diseases.OBJECTTVE: To separate and culture in vitro MSCs from bone marrow of the adult rats by density gradient centrifugation combined with adherence culture, and observe the growing characteristics and the possibility of mass multiplication.DESIGN: A completely randomized grouping design/repetitive measuring experiment.SETTING: Pathological laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University.MATERIALS: Four six-week-old SD rats about 250 g, grade Ⅱ of cleaning, were provided by the Animal Center of Sun Yat-sen University [certificate number: SCSK(Yue)2004/0011], about 250 g each rat and there was no limit to the sex. The main reagents and instruments included low sugar Dulbecco modified Eagle culture medium (DMEM/F12, American Gibco Corporation), trypsin (fetal bovine serum (FBS, Hangzhou Sijiqing Bio-Engineering Material Research Institute), American Gibco Corporation), disodium edetate, lymphocyte separating medium, fibronectin, CD44, CD34, CD31 monoclonal antibodies, two-step-method kit for immunohistochemistry (Beijing Zhong shan Biotechnology Corporation).METHODS: This experiment was conducted at the Key laboratory of Ophthalmology (Sun Yat-sen University), Ministry of ethanol (750 g/L) for 10 minutes. Under aseptic condition, the medullaris cavitas was exposed, the syringe containing application m edium was directly punctured into the femoral cavity, the cells in the medullaris cavitas were washed out with the culture medium containing heparin and taken as the cell suspension. The bone marrow-derived MSCs were separated and purified by density gradient centrifugation combined with adherence culture, and the growing conditions of the wells. When the cells had generally connected with each other, they were
Gradient zone boundary control in salt gradient solar ponds
Energy Technology Data Exchange (ETDEWEB)
Hull, John R. (Downers Grove, IL)
1984-01-01
A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.
U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...
Institute of Scientific and Technical Information of China (English)
何国平; 刘雨生; 童先宏; 郑圣霞; 张荣; 王念念; 吴丽敏; 周桂香
2009-01-01
Objective To investigate and establish a simple, rapid and lower-cost method to enrich fetal nucleated red blood cell(FNRBC) in peripheral blood of pregnant woman. Methods About 10 ml of peripheral blood sample from 18 pregnant women with gestational weeks arranged from 8 to 16 was collected, and then subjected to the discontinuous density gradient centrifugation. After the primary cell isolation, Keihuaer acid-fast staining method was used to mark the isolated cells previously spread on the slides. The special morphocytology and colour staining of FNRBC could be distinctly distinguished from the surrounding mother cells. Following that, the special antibody against fetal hemoglobin was further used to validate the fetus-originated characteristics for the positive FNRBC staining slides.Results After dealing with Keihuaer acid-fast staining, the cytoplasm of positive FNRBC was stained to be scarlet,nucleolus to be blue,while the cytoplasm of mother cells were colorless. The positive FNRBC were detected in 14 of 18 healthy pregnant women, average 1 to 6 cells per case,the positive rate was 77.8%. The same experimental results was further validated with the special antibody against fetal hemoglobin immunocytochemical staining,the diagnose accordance rate was 100.0%. Conclusions The density gradient centrifugation,together with Keihuaer acid-fast staining were highly special for the enrichment of FNRBC in peripheral blood of pregnant woman. The practical operation of this method was simple,fast and the future investigations would hopefully prove its worth in the clinical application of noninvasive prenatal diagnosis of gene disorders.%目的 探索建立一种简便、快速、较低成本的用于孕妇外周血胎儿有核红细胞(FNRBC)富集的实验方法.方法 采集18名孕周在8～16周的孕妇外周血10 ml,经Percoll不连续密度梯度离心初步分离后,运用Keihuaer抗酸染色法对玻片上的细胞进行染色标记,显微镜下观察、辨
Imhof, Hannes K; Laforsch, Christian
2016-11-01
Microplastic has been ubiquitously detected in freshwater ecosystems. A variety of freshwater organisms were shown to ingest microplastic particles, while a high potential for adverse effects are expected. However, studies addressing the effect of microplastic in freshwater species are still scarce compared to studies on marine organisms. In order to gain further insights into possible adverse effects of microplastic particles on freshwater invertebrates and to set the base for further experiments we exposed the mud snail (Potampoyrgus antipodarum) to a large range of common and environmentally relevant non-buoyant polymers (polyamide, polyethylene terephthalate, polycarbonate, polystyrene, polyvinylchloride). The impact of these polymers was tested by performing two exposure experiments with irregular shaped microplastic particles with a broad size distribution in a low (30%) and a high microplastic dose (70%) in the food. First, possible effects on adult P. antipodarum were assessed by morphological and life-history parameters. Second, the effect of the same mixture on the development of juvenile P. antipodarum until maturity was analyzed. Adult P. antipodarum showed no morphological changes after the exposure to the microplastic particles, even if supplied in a high dose. Moreover, although P. antipodarum is an established model organism and reacts especially sensitive to endocrine active substances no effects on embryogenesis were detected. Similarly, the juvenile development until maturity was not affected. Considering, that most studies showing effects on marine and freshwater invertebrates mostly exposed their experimental organisms to very small (≤20 μm) polystyrene microbeads, we anticipate that these effects may be highly dependent on the chemical composition of the polymer itself and the size and shape of the particles. Therefore, more studies are necessary to enable the identification of harmful synthetic polymers as some of them may be
Density perturbations with relativistic thermodynamics
Maartens, R
1997-01-01
We investigate cosmological density perturbations in a covariant and gauge- invariant formalism, incorporating relativistic causal thermodynamics to give a self-consistent description. The gradient of density inhomogeneities splits covariantly into a scalar part, a rotational vector part that is determined by the vorticity, and a tensor part that describes the shape. We give the evolution equations for these parts in the general dissipative case. Causal thermodynamics gives evolution equations for viswcous stress and heat flux, which are coupled to the density perturbation equation and to the entropy and temperature perturbation equations. We give the full coupled system in the general dissipative case, and simplify the system in certain cases.
Conjugate Gradient with Subspace Optimization
Karimi, Sahar
2012-01-01
In this paper we present a variant of the conjugate gradient (CG) algorithm in which we invoke a subspace minimization subproblem on each iteration. We call this algorithm CGSO for "conjugate gradient with subspace optimization". It is related to earlier work by Nemirovsky and Yudin. We apply the algorithm to solve unconstrained strictly convex problems. As with other CG algorithms, the update step on each iteration is a linear combination of the last gradient and last update. Unlike some other conjugate gradient methods, our algorithm attains a theoretical complexity bound of $O(\\sqrt{L/l} \\log(1/\\epsilon))$, where the ratio $L/l$ characterizes the strong convexity of the objective function. In practice, CGSO competes with other CG-type algorithms by incorporating some second order information in each iteration.
Flame Propagation Through Concentration Gradient
Institute of Scientific and Technical Information of China (English)
JunyaIINO; MitsuakiTANABE; 等
2000-01-01
The experiment was carried out in homogeneous propane-air mixture and in several concentration gradient of mixture.Igniter is put on the upper side of the combustion chamber,In concentration gradient experiment.ixture was ignited from lean side.An experimental study was conducted in a combustion chamber.The combustion chamber has glass windows for optical measurements at any side.For the measurement of distribution of fuel concentration,infraed absorption method using 3.39μm He-Ne laser was used,and for the observation of proagating flams,Schlieren method was employed.As a measurment result of flame propagation velocity and flammable limit,for a mixture of an identical local equivalence ratio.flame propagation velocity in concentration gradient is faster than that in homogeneous mixture,and rich flammable limit in concentration gradient shows a tendency to be higher than that in homogeneous mixture.
Sobolev gradients and differential equations
Neuberger, John William
1997-01-01
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe
2016-09-07
An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS.
Long pendulums in gravitational gradients
Energy Technology Data Exchange (ETDEWEB)
Suits, B H [Physics Department, Michigan Technological University, Houghton, MI 49931 (United States)
2006-03-01
Previous results for long pendulums above a spherical Earth are generalized for arbitrary non-uniform gravitational fields in the limit of small oscillation. As is the case for the previous results, gravitational gradients are multiplied by the length of the string even though the string is assumed massless. The effect is shown to arise from the constraint on the motion imposed by the string. The significance of these results for real gradients is discussed. (letters and comments)
Multiconfiguration Pair-Density Functional Theory.
Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura
2014-09-09
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
Graded/Gradient Porous Biomaterials
Directory of Open Access Journals (Sweden)
Xigeng Miao
2009-12-01
Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.
Analysis of physical mechanisms underlying density-dependent transport in porous media
Landman, A.J.
2005-01-01
In this thesis, the interaction between (large) density gradients and flow and transport in porous media is studied. Large gradients in the density of groundwater exist for example near deep salt rock formations, which are considered as possible long-term storage sites for radioactive waste. Furthermore, density effects play a role in many other groundwater applications, such as salt water intrusion. Density gradients mainly affect the flow field and mass transport in two ways: by fluid volum...
The effect of water uptake gradient in membrane electrode assembly on fuel cell performance
Energy Technology Data Exchange (ETDEWEB)
Fujita, H., E-mail: hajime.phy@gmail.co [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Shiraki, F.; Oshima, Y.; Tatsumi, T.; Yoshikawa, T.; Sasaki, T. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Oshima, A. [Institute for Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Washio, M. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan)
2011-02-15
Novel proton exchange membranes (PEMs) with functionally gradient ionic sites were fabricated utilizing low energy electron beam (EB) irradiations. The low energy electron beam irradiation to polymer membranes possessed the property of gradient energy deposition in the membrane thickness direction. In the process of EB grafting of styrene onto base films, selective ranges of the gradient energy deposition were used. Micro FT-IR spectra showed that the simulated energy deposition of EB irradiation to base polymer membranes in the thickness direction corresponded to the amount of styrene grafted onto EB-irradiated films. After sulfonation, a functionally gradient ionic site PEM (gradient-PEM) was prepared, corresponding to EB depth-dose profile. The functionally gradients of ionic sites in the gradient-PEM and flat-PEM were evaluated with XPS and SEM-EDX. The results of XPS and SEM-EDX suggest that the prepared gradient-PEM had a gradient sulfonated acid groups. In addition, the polarization performance of MEA based on gradient-PEM was improved in high current density. It was thought that water uptake gradient could have a function to prevent flooding in the MEA during FC operation. Thus, the functionally gradient-PEMs could be a promising solution to manage the water behavior in MEA.
Protein adsorption on gradient surfaces on polyethylene prepared in a shielded gas plasma
Spijker, Hendrikje; Bos, Roelof; van Oeveren, Willem; de Vries, Jacob; Busscher, Hendrik
1999-01-01
In this study, a new and simple method is described to prepare wettability gradients on polymers by means of glow discharge in a partly shielded argon plasma. The surface characteristics of thus prepared gradients on low density polyethylene were determined by contact angle measurements and electron
DEFF Research Database (Denmark)
Garnett, E S; Webber, C E; Coates, G
1977-01-01
breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...
2008-07-02
comprise a mechanical jacket surrounding a hollow core enclosing the seismic sensor and signal transfer means. Elongated axial stress elements for...to S. H. Bittleston, discloses a semi-dry marine seismic streamer cable that consists of a number of connected streamer cable sections which each...transmitting axial loads and a radial reinforcement member for relieving radial loads are provided in the jacket . The core is filled with a fluid or fluid
Arm classification and velocity gradients in spiral galaxies
Energy Technology Data Exchange (ETDEWEB)
Biviano, A.; Girardi, M.; Giuricin, G.; Mardirossian, F.; Mezzetti, M. (Trieste Univ. (Italy) Scuola Internazionale Superiore di Studi Avanzati (Italy) Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy) Scuola Internazionale Superiore di Studi Avanzati (Italy) Centro Interuniversitario Regionale di Astrofisica e Cosmologia (Italy))
1991-08-01
On the basis of published rotation curves, velocity gradients are compiled for 94 galaxies. A significant correlation is found in this sample of galaxies between their gradients and arm classes (as given by Elmegreen and Elmegreen, 1982); galaxies with steeper curves tend to have a flocculent arm structure, and galaxies with flatter curves tend to have a grand design morphology. The correlation is true, since it is not induced by other correlations. The present result is in agreement with previous suggestions by Whitmore (1984) and with the recent result by Elmegreen and Elmegreen; it is also consistent with the predictions of density wave theory for the formation of the spiral structure. 89 refs.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał
2016-12-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Institute of Scientific and Technical Information of China (English)
LI YouRong; GONG ZhenXing; WU ChunMei; WU ShuangYing
2012-01-01
Using asymptotical analysis,we investigate the characteristics of the coupled thermal and solutal capillary convection with the radial temperature and solute concentration gradients in a shallow annular pool with the free surface.The pool is heated from the outer cylinder with high solutal concentration and cooled at the inner cylinder with low solutal concentration.The asymptotic solution is obtained in the core region in the limit as the aspect ratio,which is defined as the ratio of the depth to the width of the pool,goes to zero.The comparison with the previous work certifies that the asymptotic solution is right and believable.The influences of the solutal capillary force,the buoyant force,the Soret effect and the geometric parameters on the fluid flow are analyzed.
Bond Growth under Temperature Gradient.
Directory of Open Access Journals (Sweden)
P.K. Satyawali
1999-12-01
Full Text Available Grain and bond growth for dry snow are determined by the distribution of temperature andtemperature gradient in the snow matrix. From the standpoint of particle approach and based oncubic packing structure, a bond growth model has been developed for TG metamorphism. The paper.highlights the importance of bond formation and its effect on snow viscosity and finally on the rateof settlement. This is very important for developing a numerical snow pack model if microstructureis considered to be a basic parameter. A few experiments have been carried out to validate bond formation under temperature gradient.
Institute of Scientific and Technical Information of China (English)
张才龙; 夏长所; 蒋正尧
2009-01-01
BACKGROUND: Under special conditions, bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and chondroblasts. However, MSCs are few in bone marrow. How to harvest, purity and rapidly proliferate in vitro is a foundation of application in tissue engineering technique. OBJECTIVE: To optimize, collect, purity, assess rabbit BMSCs and to observe the biological character of BMSCs. DESIGN, TIME AND SETTING: The observational study was performed at the Animal Experimental Center of Tongji Medical College from September 2005 to July 2006. MATERIALS: One female New Zealand rabbits aged 2 months were used for MSC collection and primary culture. METHODS: Bone marrow solution was purified by density gradient centrifugation and adherence screening method. Culture solution was obtained. BMSCs were incubated in phosphate buffered solution (PBS), supplemented with 2.5 g/L trypsin (3.0 mL), and placed in an incubator at 37 ℃ for two or three minutes. Cell morphology was observed using an inverted microscope. The digestion was stopped when cytoplasm recovery, long and thin cells with large intercellular space, and few round cells appeared. Subsequently, BMSCs were incubated in serum-free L-DMEM, and placed in a plastic culture flask at 1.0×108/L. MAIN OUTCOME MEASURES: MSC morphology, ultrastructura and surface marker; Proliferation of the first, third, fifth, eighth and tenth passages of BMSCs; Cell growth curve was drawn. RESULTS: BMSCs was pure following density gradient centrifugation and adherence screening method. The third and fifth passage of cells had typical whirlpool-shape. Transmission electron microscope demonstrated that round or oval MSCs possessed large nuclei, big nucleus proportion, a few cellular organ. These were low-differentiated cells. Growth curve of cultured MSCs was "S" shape. The first, third and fifth passage cells had strong reproductive capability. The eighth and tenth passage of cells had significantly reduced proliferation
A high transmission broadband gradient index lens using elastic shell acoustic metamaterial elements
Titovich, Alexey S; Norris, Andrew N
2016-01-01
The use of cylindrical elastic shells as elements in acoustic metamaterial devices is demonstrated through simulations and underwater measurements of a cylindrical-to-plane wave lens. Transformation acoustics (TA) of a circular region to a square dictates that the effective density in the lens remain constant and equal to that of water. Piecewise approximation to the desired effective compressibility is achieved using a square array with elements based on the elastic shell metamaterial concept developed in [30]. The size of the elements are chosen based on availability of shells, minimizing fabrication difficulties. The tested device is neutrally buoyant comprising 48 elements of nine different types of commercial shells made from aluminum, brass, copper, and polymers. Simulations indicate a broadband range in which the device acts as a cylindrical to plane wave lens. The experimental findings confirm the broadband quadropolar response from approximately 20 to 40 kHz, with positive gain of the radiation patte...
Institute of Scientific and Technical Information of China (English)
FAN Xiaoyi; QIAO Jianping
2006-01-01
The landslide data were calculated in the Three Gorges Area of northeast Chongqing. The results showed that landslide frequency distributions of gradients accorded with the Weibull probability density distribution function. The landslide hazard ratios of gradients were acquired by Weibull accumulation probability distribution function in the different geological units. There was discord between landslide hazard ratio of different geological units and variance of landslide gradient. But they were approximate homology in the strata of Jurassic. The results indicate that the Weibull distribution can quantitatively evaluate the landslide hazard ratios of gradients of the different strata in the Three Gorges Area.
Ontogeny of body density and the swimbladder in yellowtail kingfish Seriola lalandi larvae.
Woolley, L D; Qin, J G
2013-02-01
The ontogeny of larval body density and the morphological and histological events during swimbladder development were investigated in two cohorts of yellowtail kingfish Seriola lalandi larvae to understand the relationship between larval morphology and body density. Larvae inflation occurred on 3 dph, and the inflation window was 3-5 dph when the pneumatic duct was still connected to the gut. The swimbladder volume increased with larval age and the epithelial lining on the swimbladder became flattened squamous cells after initial inflation. Seriola lalandi developed into a physoclist with the formation of the rete mirabile and the gas-secreting gland comprised low-columnar epithelial cells. Larvae with successfully inflated swimbladders remained positively buoyant, whereas larvae without SB inflation became negatively buoyant and their body density gradually reached 1.030 ± 0.001 g cm(-3) by 10 dph. Diel density changes were observed after 5 dph, owing to day time deflation and night-time inflation of the swimbladder. These results show that SB inflation has a direct effect on body density in larval S. lalandi and environmental factors should be further investigated to enhance the rate of SB inflation to prevent the sinking death syndrome in the early life stage of the fish larvae.
Treatment of Layered Structures Using a Semilocal meta-GGA Density Functional
DEFF Research Database (Denmark)
Madsen, Georg; Ferrighi, Lara; Hammer, Bjørk
2010-01-01
Density functional theory calculations on solids consisting of covalently bonded layers held together by dispersive interactions are presented. Utilizing the kinetic energy density in addition to the density and its gradients gives the meta-generalized gradient approximation (MGGA) M06-L enough f...
Reinforcement Learning Through Gradient Descent
1999-05-14
Reinforcement learning is often done using parameterized function approximators to store value functions. Algorithms are typically developed for...practice of existing types of algorithms, the gradient descent approach makes it possible to create entirely new classes of reinforcement learning algorithms
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independe...... of the small-scale structure of the Earth’s lithospheric field....
Compositional gradients in Gramineae genes
DEFF Research Database (Denmark)
Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin
2002-01-01
In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...
GOCE level 2 gravity gradients
Bouman, J.; Fiorot, S.; Fuchs, M.; Gruber, T.; Schrama, E.J.O.; Tscherning, C.C.; Veicherts, M.; Visser, P.N.A.M.
2011-01-01
Two of the GOCE Level 2 products are the gravity gradients (GGs) in the Gradiometer Reference Frame (GRF) and the GGs in the Local North-Oriented Frame (LNOF). The GRF is an instrument frame and the GGs are derived from the L1b GGs. The L1b to L2 GG processing involves corrections for temporal gravi
Surface gradients under electrochemical control
Krabbenborg, Sven Olle
2014-01-01
Gradients are systems in which the physicochemical properties of a solution and/or surface change gradually in space and/or time. They are used for a myriad of technological and biological applications, for example for high-throughput screening, or for the investigation of biological systems. The de
A second gradient formulation for a 2D fabric sheet with inextensible fibres
Placidi, Luca; Greco, Leopoldo; Bucci, Sara; Turco, Emilio; Rizzi, Nicola Luigi
2016-10-01
We present numerical simulations of rectangular woven fabrics made of two, initially orthogonal, families of inextensible fibres. We consider an energy functional which includes both first and second gradients of the displacement. The energy density is expressed in terms of the angles between the fibres directions, using trigonometric functions and their gradients. In particular, we focus on an energy density depending on the squared tangent of the shear angle, which automatically satisfies some natural properties of the energy. The numerical results show that final configurations obtained by the second gradient energies are smoother than the first gradient ones. Moreover, we show that if a second gradient energy is considered, the shear energy is better uniformly distributed.
Energy Technology Data Exchange (ETDEWEB)
Mattsson, Ann Elisabet; Modine, Normand Arthur; Desjarlais, Michael Paul; Muller, Richard Partain; Sears, Mark P.; Wright, Alan Francis
2006-11-01
A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.
A macroscopic crowd motion model of gradient flow type
Maury, Bertrand; Santambrogio, Filippo
2010-01-01
A simple model to handle the flow of people in emergency evacuation situations is considered: at every point x, the velocity U(x) that individuals at x would like to realize is given. Yet, the incompressibility constraint prevents this velocity field to be realized and the actual velocity is the projection of the desired one onto the set of admissible velocities. Instead of looking at a microscopic setting (where individuals are represented by rigid discs), here the macroscopic approach is investigated, where the unknwon is the evolution of the density . If a gradient structure is given, say U is the opposite of the gradient of D where D is, for instance, the distance to the exit door, the problem is presented as a Gradient Flow in the Wasserstein space of probability measures. The functional which gives the Gradient Flow is neither finitely valued (since it takes into account the constraints on the density), nor geodesically convex, which requires for an ad-hoc study of the convergence of a discrete scheme.
Thermally tailored gradient topography surface on elastomeric thin films.
Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata
2014-05-14
We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.
PIV MEASUREMENTS FOR GAS FLOW UNDER GRADIENT MAGNETIC FIELDS
Institute of Scientific and Technical Information of China (English)
RUAN Xiaodong; WU Feng; F.YAMAMOTO
2004-01-01
Particle Image Velocimetry (PIV) techniques were developed to measure the convective N2-air flow under gradient magnetic fields. The velocity fields were calculated by the Minimum Quadratic Difference (MQD) algorithm and spurious vectors were eliminated by Delaunay Tessellation.The N2-air flow was measured as the magnetic flux density varying from 0 ～ 1.5 T. A strengthened vortex flow of air was observed under the condition that the magnetic field was applied, and the velocity of N2 jet rose with the increase of the magnetic density. The experimental results show that the magnetic force will induce a vortex flow and cause a convection flow of the air mixture when both gradients of the O2 concentration and the magnetic field intensity exist.
Gradient Plasticity Model and its Implementation into MARMOT
Energy Technology Data Exchange (ETDEWEB)
Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin
2013-08-01
The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.
Bacterial accumulation in viscosity gradients
Waisbord, Nicolas; Guasto, Jeffrey
2016-11-01
Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.
Vertebrate pressure-gradient receivers
DEFF Research Database (Denmark)
Christensen-Dalsgaard, Jakob
2011-01-01
The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...
Multilayer coating for high gradients
Kubo, Takayuki
2016-01-01
The multilayer coating for high gradients is reviewed. Not only the S-I-S structure, but also the S-S bilayer structure are also treated. This is an incomplete manuscript of an invited article which will be submitted to a journal. I have uploaded this version in order to help the understanding on my talk at the TESLA Technology Collaboration meeting at Saclay, France.
Biomimetic Gradient Index (GRIN) Lenses
2006-01-01
optics include single lenses inspired by cephalopod (octopus) eyes and a three-lens, wide field of view, optical system for a surveillance sensor...camera. Details are easily resolv- able with the polymer lens. This lens system was installed on an Evolution unmanned aerial vehicle (UAV) with a...lens system was installed in an NRL Evolution UAV and used to record video images at a height of up to 1000 ft. The index gradients in the polymer
Future of gradient index optics
Hashizume, Hideki; Hamanaka, Kenjiro; Graham, Alan C., III; Zhu, X. Frank
2001-11-01
First developed over 30 years ago, gradient index lenses play an important role not only in telecommunications technology, but also in applications such as information interface and biomedical technology. Traditional manufacturing consists of doping a certain ion, A+ into the mother glass, drawing the glass into rods and then immersing the rods into s molten salt bath containing another certain ion B+. During a thermal ion exchange process, the original ion migrates out of the mother glass, and is replaced by the alternate ion, creating a refractive index variation. Current research is being conducted to improve the thermal ion exchange technology, and open new applications. This research includes extending working distances to greater than 100mm, decreasing the lens diameter, increasing the effective radius, and combining the technology with other technologies such as photolithographically etched masks to produce arrays of gradient index lenses. As a result of this ongoing research, the gradient index lens is expected to continue to be the enabling optical technology in the first decade of the new millennium and beyond.
Primordial vorticity and gradient expansion
Giovannini, Massimo
2012-01-01
The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...
Primordial vorticity and gradient expansion
Giovannini, Massimo; Rezaei, Zahra
2012-02-01
The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the ΛCDM paradigm, the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the order of 10-37 G over the typical comoving scales ranging between 1 and 10 Mpc. While the obtained results seem to be irrelevant for seeding a reasonable galactic dynamo action, they demonstrate how the proposed fully inhomogeneous treatment can be used for the systematic scrutiny of pre-decoupling plasmas beyond the conventional perturbative expansions.
Density structures inside the plasmasphere: Cluster observations
DEFF Research Database (Denmark)
Darrouzet, F.; Decreau, P.M.E.; De Keyser, J.;
2004-01-01
The electron density profiles derived from the EFW and WHISPER instruments on board the four Cluster spacecraft reveal density structures inside the plasmasphere and at its outer boundary, the plasmapause. We have conducted a statistical study to characterize these density structures. We focus...... on the plasmasphere crossing on I I April 2002, during which Cluster observed several density irregularities inside the plasmasphere, as well as a plasmaspheric plume. We derive the density gradient vectors from simultaneous density measurements by the four spacecraft. We also determine the normal velocity...... of the boundaries of the plume and of the irregularities from the time delays between those boundaries in the four individual density profiles, assuming they are planar. These new observations yield novel insights about the occurrence of density irregularities, their geometry and their dynamics. These in...
Laplacian-based generalized gradient approximations for the exchange energy
Cancio, Antonio C
2013-01-01
It is well known that in the gradient expansion approximation to density functional theory (DFT) the gradient and Laplacian of the density make interchangeable contributions to the exchange correlation (XC) energy. This is an arbitrary "gauge" freedom for building DFT models, normally used to eliminate the Laplacian from the generalized gradient approximation (GGA) level of DFT development. We explore the implications of keeping the Laplacian at this level of DFT, to develop a model that fits the known behavior of the XC hole, which can only be described as a system average in conventional GGA. We generate a family of exchange models that obey the same constraints as conventional GGA's, but which in addition have a finite-valued potential at the atomic nucleus unlike GGA's. These are tested against exact densities and exchange potentials for small atoms, and for constraints chosen to reproduce the SOGGA and the APBE variants of the GGA. The model reliably reproduces exchange energies of closed shell atoms, on...
Mapping land cover gradients through analysis of hyper-temporal NDVI imagery
Ali, A.; Bie, de C.A.J.M.; Skidmore, A.K.; Scarrott, R.G.; Hamad, A.A.; Venus, V.; Lymberakis, P.
2013-01-01
The green cover of the earth exhibits various spatial gradients that represent gradual changes in space of vegetation density and/or in species composition. To date, land cover mapping methods differentiate at best, mapping units with different cover densities and/or species compositions, but typica
Community and ecosystem responses to elevational gradients
DEFF Research Database (Denmark)
Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.
2013-01-01
Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients. There...
On the structure of gradient Yamabe solitons
Cao, Huai-Dong; Zhang, Yingying
2011-01-01
We show that every complete nontrivial gradient Yamabe soliton admits a special global warped product structure with a one-dimensional base. Based on this, we prove a general classification theorem for complete nontrivial locally conformally flat gradient Yamabe solitons.
Semenov, Semen; Schimpf, Martin
2004-01-01
The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London-van der Waals interactions, established by gradients in the concentration (density) of solvent molecules. The density gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When these values are compared to those measured in the laboratory, the consistency is better than that found in previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodiffusion cell. The model also allows for the movement of solute in either direction, depending on the relative values of the solvent and solute Hamaker constants.
An education gradient in health, a health gradient in education, or a confounded gradient in both?
Lynch, Jamie L; von Hippel, Paul T
2016-04-01
There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health.
Gradient Flow Convolutive Blind Source Separation
DEFF Research Database (Denmark)
Pedersen, Michael Syskind; Nielsen, Chinton Møller
2004-01-01
Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use of a circ......Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use...
40 CFR 230.25 - Salinity gradients.
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity... fresh or salt water may change existing salinity gradients. For example, partial blocking of...
Temperature Gradient in Hall Thrusters
Energy Technology Data Exchange (ETDEWEB)
D. Staack; Y. Raitses; N.J. Fisch
2003-11-24
Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.
Stringy bounces and gradient instabilities
Giovannini, Massimo
2017-01-01
Bouncing solutions are obtained from a generally covariant action characterized by a potential which is a nonlocal functional of the dilaton field at two separated space-time points. Gradient instabilities are shown to arise in this context but they are argued to be nongeneric. After performing a gauge-invariant and frame-invariant derivation of the evolution equations of the fluctuations, a heuristic criterium for the avoidance of pathological instabilities is proposed and corroborated by a number of explicit examples that turn out to be compatible with a quasi-flat spectrum of curvature inhomogeneities for typical wavelengths larger than the Hubble radius.
Mechanisms of FGF gradient formation during embryogenesis.
Balasubramanian, Revathi; Zhang, Xin
2016-05-01
Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.
NIF optics phase gradient specfication
Energy Technology Data Exchange (ETDEWEB)
Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.
1997-05-02
A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of {approximately}80 {angstrom}/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS&T personnel.
Investigation of Cu2ZnSnS4 thin-film solar cells with carrier concentration gradient
Xu, Jiaxiong
2016-11-01
To investigate the effect of carrier concentration gradient on Cu2ZnSnS4 (CZTS) thin-film solar cells, the properties of CZTS solar cells were studied by numerical method. The photovoltaic performances of carrier concentration gradient CZTS solar cells were calculated by the solutions of Poisson's equation, continuity equation, and current density equation using AFors-Het v2.4 program. The carrier concentration gradient was changed to analyze its effect. Compared with CZTS solar cells without carrier concentration gradient, the photovoltaic performances of CZTS solar cells can be enhanced by using carrier concentration gradient absorber. The carrier concentration gradient can extend the distribution region of built-in electric field, which is beneficial to the drift of photo-generated carriers. However, the carrier concentration gradient also affects the recombination and series resistances of solar cells. When the defect density of CZTS layer is high, the photo-generated carriers are affected significantly by recombination, resulting in slight effect of carrier concentration gradient. Therefore, the defect density should be reduced to enhance the effect of carrier concentration gradient on improving conversion efficiency of CZTS thin-film solar cells.
DEFF Research Database (Denmark)
El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof
2015-01-01
In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress....... A phenomenological back stress formulation is proposed, through which the effect of the GND gradient exponent can be studied. It is shown that this model can lead to more localized GND distributions....
Velocity Gradients as a Tracer for Magnetic Fields
González-Casanova, Diego F.; Lazarian, A.
2017-01-01
Strong Alfvénic turbulence develops eddy-like motions perpendicular to the local direction of magnetic fields. This local alignment induces velocity gradients perpendicular to the local direction of the magnetic field. We use this fact to propose a new technique of studying the direction of magnetic fields from observations, which we call the velocity gradient technique. We test our idea by employing the synthetic observations obtained via 3D magnetohydrodynamical (MHD) numerical simulations for different sonic and Alfvén Mach numbers. We calculate the velocity gradient, {\\boldsymbol{Ω }}, using the velocity centroids. We find that {\\boldsymbol{Ω }} traces the projected magnetic field best for the synthetic maps obtained with sub-Alfvénic simulations and provides good point-wise correspondence between the magnetic field direction and the direction of {\\boldsymbol{Ω }}. The reported alignment is much better than the alignment between the density gradients and the magnetic field, and we demonstrate that it can be used to find the magnetic field strength with an analog of the Chandrasekhar–Fermi method. This new technique does not require dust polarimetry, and our study opens up a new way of studying magnetic fields using spectroscopic data.
Global theory to understand toroidal drift waves in steep gradient
Xie, Hua-sheng; Li, Bo
2016-08-01
Toroidal drift waves with unconventional mode structures and non-ground eigenstates, which differ from a typical ballooning structure mode, are found to be important recently by large scale global gyrokinetic simulations and especially become dominant at strong gradient edge plasmas [cf. H. S. Xie and Y. Xiao, Phys. Plasmas 22, 090703 (2015)]. The global stability and mode structures of drift wave in this steep edge density and temperature gradients are examined by both direct numerical solutions of a model two-dimensional eigen equation and analytical theory employing WKB-ballooning approach. Theory agrees with numerical solutions quite well. Our results indicate that (i) non-ground eigenstates and unconventional mode structures generally exist and can be roughly described by two parameters "quantum number" l and ballooning angle ϑk , (ii) local model can overestimate the growth rate largely, say, >50 % , and (iii) the narrow steep equilibrium profile leads to twisting (triangle-like) radial mode structures. With velocity space integral, semi-local theory predicts that the critical jump gradient of the most unstable ion temperature gradient mode from ground state l = 0 to non-ground state l = 1 is LT-1R ˜50 . These features can have important consequences to turbulent transport.
Density limits investigation and high density operation in EAST tokamak
Zheng, Xingwei; Li, Jiangang; Hu, Jiansheng; Liu, Haiqing; Jie, Yinxian; Wang, Shouxin; Li, Jiahong; Duan, Yanming; Li, Miaohui; Li, Yongchun; Zhang, Ling; Ye, Yang; Yang, Qingquan; Zhang, Tao; Cheng, Yingjie; Xu, Jichan; Wang, Liang; Xu, Liqing; Zhao, Hailin; Wang, Fudi; Lin, Shiyao; Wu, Bin; Lyu, Bo; Xu, Guosheng; Gao, Xiang; Shi, Tonghui; He, Kaiyang; Lan, Heng; Chu, Nan; Cao, Bin; Sun, Zhen; Zuo, Guizhong; Ren, Jun; Zhuang, Huidong; Li, Changzheng; Yuan, Xiaolin; Yu, Yaowei; Wang, Houyin; Chen, Yue; Wu, Jinhua; EAST Team
2016-05-01
Increasing the density in a tokamak is limited by the so-called density limit, which is generally performed as an appearance of disruption causing loss of plasma confinement, or a degradation of high confinement mode which could further lead to a H → L transition. The L-mode and H-mode density limit has been investigated in EAST tokamak. Experimental results suggest that density limits could be triggered by either edge cooling or excessive central radiation. The L-mode density limit disruption is generally triggered by edge cooling, which leads to the current profile shrinkage and then destabilizes a 2/1 tearing mode, ultimately resulting in a disruption. The L-mode density limit scaling agrees well with the Greenwald limit in EAST. The observed H-mode density limit in EAST is an operational-space limit with a value of 0.8∼ 0.9{{n}\\text{GW}} . High density H-mode heated by neutral beam injection (NBI) and lower hybrid current drive (LHCD) are analyzed, respectively. The constancy of the edge density gradients in H-mode indicates a critical limit caused perhaps by e.g. ballooning induced transport. The maximum density is accessed at the H → L transition which is generally caused by the excessive core radiation due to high Z impurities (Fe, Cu). Operating at a high density (>2.8× {{10}19} {{\\text{m}}-3} ) is favorable for suppressing the beam shine through NBI. High density H-mode up to 5.3× {{10}19}{{\\text{m}}-3}~≤ft(∼ 0.8{{n}\\text{GW}}\\right) could be sustained by 2 MW 4.6 GHz LHCD alone, and its current drive efficiency is studied. Statistics show that good control of impurities and recycling facilitate high density operation. With careful control of these factors, high density up to 0.93{{n}\\text{GW}} stable H-mode operation was carried out heated by 1.7 MW LHCD and 1.9 MW ion cyclotron resonance heating with supersonic molecular beam injection fueling.
Ruardy, TG; Schakenraad, JM; vanderMei, HC; Busscher, HJ
1997-01-01
Chemical gradient surfaces are surfaces with a gradually changing chemistry along their length which is responsible for a position bound variation in physical properties, most notably, the wettability. In this review, methods to prepare (palladium deposition, diffusion technique, density gradient me
Importance of pressure gradient in solid oxide fuel cell electrodes for modeling study
Ni, Meng; Leung, Dennis Y. C.; Leung, Michael K. H.
The pressure gradients in the electrodes of a solid oxide fuel cell (SOFC) are frequently neglected without any justification in calculating the concentration overpotentials of the SOFC electrodes in modeling studies. In this short communication, a comparative study has been conducted to study the effect of pressure gradients on mass transfer and the resulting concentration overpotentials of an SOFC running on methane (CH 4) fuel. It is found that the pressure gradients in both anode and cathode are significant in the fuel cell electrochemical activities. Neglecting the anode pressure gradient in the calculation can lead to underestimation of the concentration overpotential by about 20% at a typical current density of 5000 A m -2 and at a temperature of 1073 K. The deviation can be even larger at a higher temperature. At the cathode, neglecting the pressure gradient can result in overestimation of the concentration overpotential by about 10% under typical working conditions.
A finite difference method for the design of gradient coils in MRI--an initial framework.
Zhu, Minhua; Xia, Ling; Liu, Feng; Zhu, Jianfeng; Kang, Liyi; Crozier, Stuart
2012-09-01
This paper proposes a finite-difference (FD)-based method for the design of gradient coils in MRI. The design method first uses the FD approximation to describe the continuous current density of the coil space and then employs the stream function method to extract the coil patterns. During the numerical implementation, a linear equation is constructed and solved using a regularization scheme. The algorithm details have been exemplified through biplanar and cylindrical gradient coil design examples. The design method can be applied to unusual coil designs such as ultrashort or dedicated gradient coils. The proposed gradient coil design scheme can be integrated into a FD-based electromagnetic framework, which can then provide a unified computational framework for gradient and RF design and patient-field interactions.
Gradient-driven diffusion and pattern formation in crowded mixtures
Nandigrami, Prithviraj; Grove, Brandy; Konya, Andrew; Selinger, Robin L. B.
2017-02-01
Gradient-driven diffusion in crowded, multicomponent mixtures is a topic of high interest because of its role in biological processes such as transport in cell membranes. In partially phase-separated solutions, gradient-driven diffusion affects microstructure, which in turn affects diffusivity; a key question is how this complex coupling controls both transport and pattern formation. To examine these mechanisms, we study a two-dimensional multicomponent lattice gas model, where "tracer" molecules diffuse between a source and a sink separated by a solution of sticky "crowder" molecules that cluster to form dynamically evolving obstacles. In the high-temperature limit, crowders and tracers are miscible, and transport may be predicted analytically. At intermediate temperatures, crowders phase separate into clusters that drift toward the tracer sink. As a result, steady-state tracer diffusivity depends nonmonotonically on both temperature and crowder density, and we observe a variety of complex microstructures. In the low-temperature limit, crowders rapidly aggregate to form obstacles that are kinetically arrested; if crowder density is near the percolation threshold, resulting tracer diffusivity shows scaling behavior with the same scaling exponent as the random resistor network model. Though highly idealized, this simple model reveals fundamental mechanisms governing coupled gradient-driven diffusion, phase separation, and microstructural evolution in crowded mixtures.
MAGNETIC FIELD GRADIENT EFFECTS ON ION FLUX BEHAVIORS IN ECR PLASMA SOURCES
Institute of Scientific and Technical Information of China (English)
无
1998-01-01
The available electron cyclotron resonance plasma source has been simulated in two-dimensional configuration space (z, r) and three-dimensional velocity space (Vz, Vr Vθ). The simulation is focused on the magnetic field gradient effects on ion flux behaviors in electron cyclotron resonance plasma sources. The simulation results show that, when the magnetic field gradients increase, electron temperature, plasma density, ionization rate, and ion flux in Zdirection would decrease, while ion energy and plasma potential would increase.
First-principles calculation of electric field gradients in metals, semiconductors, and insulators
Energy Technology Data Exchange (ETDEWEB)
Zwanziger, J.W. [Dalhousie Univ, Dept Chem, Halifax, NS (Canada); Dalhousie Univ, Inst Res Mat, Halifax, NS (Canada); Torrent, M. [CEA Bruyeres-le-Chatel, Dept Phys Theor and Appl, Bruyeres 91 (France)
2008-07-01
A scheme for computing electric field gradients within the projector augmented wave (PAW) formalism of density functional theory is presented. On the basis of earlier work (M. Profeta, F. Mauri, C.J. Pickard, J. Am. Chem. Soc. 125, 541, 2003) the present implementation handles metallic cases as well as insulators and semiconductors with equal efficiency. Details of the implementation, as well as applications and the discussion of the limitations of the PAW method for computing electric field gradients are presented. (authors)
Transport of Parallel Momentum by Toroidal Ion Temperature Gradient Instability near Marginality
Energy Technology Data Exchange (ETDEWEB)
E.S. Yoon and T.S. Hahm
2009-10-20
The turbulent angular momentum flux carried by ions resonant with toroidal ion temperature gradient(ITG) instability is calculated via quasilinear calculation using the phase-space conserving gyrokinetic equation in the laboratory frame. The results near ITG marginality indicate that the inward turbulent equipartition (TEP) momentum pinch [Hahm T.S. et al 2007 Phys. Plasmas 14 072302] remains as the most robust part of pinch. In addition, ion temperature gradient driven momentum flux is inward for typical parameters, while density gradient driven momentum flux is outward as in the previous kinetic result in slab geometry [Diamond P.H. et al 2008 Phys. Plasmas 15 012303].
Initial value problem of the toroidal ion temperature gradient mode
Energy Technology Data Exchange (ETDEWEB)
Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W.
1998-06-01
The initial value problem of the toroidal ion temperature gradient mode is studied based on the Laplace transform of the ion gyrokinetic equation and the electron Boltzmann relation with the charge neutrality condition. Due to the toroidal magnetic drift, the Laplace-transformed density and potential perturbations have a branch cut as well as poles on the complex-frequency plane. The inverse Laplace transform shows that the temporal evolution of the density and potential perturbations consists of the normal modes and the continuum mode, which correspond to contributions from the poles and the branch cut, respectively. The normal modes have exponential time dependence with the eigenfrequencies determined by the dispersion relation while the continuum mode shows power-law decay oscillation. For the stable case, the long-time asymptotic behavior of the potential and density perturbations is dominated by the continuum mode which decays slower than the normal modes. (author)
Analysis of physical mechanisms underlying density-dependent transport in porous media
Landman, A.J.
2005-01-01
In this thesis, the interaction between (large) density gradients and flow and transport in porous media is studied. Large gradients in the density of groundwater exist for example near deep salt rock formations, which are considered as possible long-term storage sites for radioactive waste. Further
Bending efficiency through property gradients in bamboo, palm, and wood-based composites.
Wegst, Ulrike G K
2011-07-01
Nature, to a greater extent than engineering, takes advantage of hierarchical structures. These allow for optimization at each structural level to achieve mechanical efficiency, meaning mechanical performance per unit mass. Palms and bamboos do this exceptionally well; both are fibre-reinforced cellular materials in which the fibres are aligned parallel to the stem or culm, respectively. The distribution of these fibres is, however, not uniform: there is a density and modulus gradient across the section. This property gradient increases the flexural rigidity of the plants per unit mass, mass being a measure of metabolic investment made into an organism's construction. An analytical model is presented with which a 'gradient shape factor' can be calculated that describes by how much a plant's bending efficiency is increased through gradient structures. Combining the 'gradient shape factor' with a 'microstructural shape factor' that captures the efficiency gained through the cellular nature of the fibre composite's matrix, and a 'macroscopical shape factor' with which the tubular shape of bamboo can be described, for example, it is possible to explore how much each of these three structural levels of the hierarchy contributes to the overall bending performance of the stem or culm. In analogy, the bending efficiency of the commonly used wood-based composite medium-density fibreboard can be analysed; its property gradient is due to its manufacture by hot pressing. A few other engineered materials exist that emulate property gradients; new manufacturing routes to prepare them are currently being explored. It appears worthwhile to pursue these further.
Wnt Secretion and Gradient Formation
Directory of Open Access Journals (Sweden)
Vladimir L. Katanaev
2013-03-01
Full Text Available Concentration gradients formed by the lipid-modified morphogens of the Wnt family are known for their pivotal roles during embryogenesis and adult tissue homeostasis. Wnt morphogens are also implicated in a variety of human diseases, especially cancer. Therefore, the signaling cascades triggered by Wnts have received considerable attention during recent decades. However, how Wnts are secreted and how concentration gradients are formed remains poorly understood. The use of model organisms such as Drosophila melanogaster has provided important advances in this area. For instance, we have previously shown that the lipid raft-associated reggie/flotillin proteins influence Wnt secretion and spreading in Drosophila. Our work supports the notion that producing cells secrete Wnt molecules in at least two pools: a poorly diffusible one and a reggie/flotillin-dependent highly diffusible pool which allows morphogen spreading over long distances away from its source of production. Here we revise the current views of Wnt secretion and spreading, and propose two models for the role of the reggie/flotillin proteins in these processes: (i reggies/flotillins regulate the basolateral endocytosis of the poorly diffusible, membrane-bound Wnt pool, which is then sorted and secreted to apical compartments for long-range diffusion, and (ii lipid rafts organized by reggies/flotillins serve as “dating points” where extracellular Wnt transiently interacts with lipoprotein receptors to allow its capture and further spreading via lipoprotein particles. We further discuss these processes in the context of human breast cancer. A better understanding of these phenomena may be relevant for identification of novel drug targets and therapeutic strategies.
GRADIENTES TÉRMICOS NATURAIS NA ESTIMATIVA DO FLUXO DE SEIVA PELO MÉTODO GRANIER
Directory of Open Access Journals (Sweden)
LUCAS MELO VELLAME
2011-01-01
Full Text Available The effects of thermal gradients on stem add one methodological constraint for estimating sap flow through the Granier method (thermal dissipation probe. The present work studied the effect of natural thermal gradients on estimates of sap flow by using thermal dissipation probe in mango plants. The study was carried by using mango plants of the cultivar Tommy Atkins during two development stages: (a during the initial development phase of plants with leaf area of 0.66, 0.73, 1.78 m2 , planted in 15 and 50 liters pots. The study was carried in a greenhouse environment and in the field. Different thermal shields were used around the stem of plants in pots in order to minimize the effects of thermal natural gradients. The measurements of thermal differences were obtained from an adult plant with high leaf density and small exposition of branches to solar radiation. Sensors placed in stems of adult plant with high leaf density provided smaller thermal gradients compared to those inserted in young plant stems. It is necessary to cover the whole branch with neoprene and a shield (skirt type of aluminum paper above and below the location of probe insertion for exposed branches. The air temperature at 2 m height may be used efficiently to correct thermal gradients. It is indispensable the correction of natural thermal gradients in the stem for adequate estimating sap flow density by the Granier method.
NIF optical specifications - the importance of the RMS gradient specification
Energy Technology Data Exchange (ETDEWEB)
Auerbach, J M; Cotton, C T; English, R E; Henesian, M A; Hunt J T; Kelly, J H; Lawson, J K; Sacks, J B; Shoup, M J; Trenholme, W H
1998-07-06
The performance of the National Ignition Facility (NIF), especially in terms of laser focusability, will be determined by several key factors. One of these key factors is the optical specification for the thousands of large aperture optics that will comprise the 192 beamlines. We have previously reported on the importance of the specification of the power spectral density (PSD) on NIF performance. Recently, we have been studying the importance of long spatial wavelength (>33 mm) phase errors on focusability. We have concluded that the preferred metric for determining the impact of these long spatial wavelength phase errors is the rms phase gradient. In this paper, we outline the overall approach to NIF optical specifications, detail the impact of the rms phase gradient on NIF focusability, discuss its trade-off with the PSD in determining the spot size and review measurements of optics similar to those to be manufactured for NIF.
Gradient type optimization methods for electronic structure calculations
Zhang, Xin; Wen, Zaiwen; Zhou, Aihui
2013-01-01
The density functional theory (DFT) in electronic structure calculations can be formulated as either a nonlinear eigenvalue or direct minimization problem. The most widely used approach for solving the former is the so-called self-consistent field (SCF) iteration. A common observation is that the convergence of SCF is not clear theoretically while approaches with convergence guarantee for solving the latter are often not competitive to SCF numerically. In this paper, we study gradient type methods for solving the direct minimization problem by constructing new iterations along the gradient on the Stiefel manifold. Global convergence (i.e., convergence to a stationary point from any initial solution) as well as local convergence rate follows from the standard theory for optimization on manifold directly. A major computational advantage is that the computation of linear eigenvalue problems is no longer needed. The main costs of our approaches arise from the assembling of the total energy functional and its grad...
Global Theory to Understand Toroidal Drift Waves in Steep Gradient
Xie, Hua-Sheng
2016-01-01
Toroidal drift waves with unconventional mode structures and non-ground eigenstates, which differ from typical ballooning structure mode, are found to be important recently by large scale global gyrokinetic simulations and especially become dominant at strong gradient edge plasmas [cf., Xie and Xiao, Phys. Plasmas, 22, 090703 (2015)]. The global stability and mode structures of drift wave in this steep edge density and temperature gradients are examined by both direct numerical solutions of a model two-dimensional eigen equation and analytical theory employing WKB-ballooning approach. Theory agrees with numerical solutions quite well. Our results indicate that (i) non-ground eigenstates and unconventional mode structures generally exist and can be roughly described by two parameters `quantum number' $l$ and ballooning angle $\\vartheta_k$, (ii) local model can overestimate the growth rate largely, say, $>50\\%$, and (iii) the narrow steep equilibrium profile leads to twisting (triangle-like) radial mode structu...
Ion-temperature-gradient modes in stellarator geometry
Energy Technology Data Exchange (ETDEWEB)
Rafiq, T.; Anderson, J.; Nadeem, M.; Persson, M. [Department of Electromagnetics and Euratom/VR Association, Chalmers University of Technology, Goeteborg (Sweden)
2001-10-01
The ion-temperature-gradient (ITG)-driven drift mode is studied in three-dimensional stellarator geometry using a two-fluid reactive model in the electrostatic limit. The model includes first-order FLR effect in the presence of parallel ion dynamics and using the Boltzmann distribution for the electrons. The resulting eigenvalue is solved numerically using the ballooning mode theory. The results are contrasted with the corresponding tokamak results with positive shear. In stellarators, the level of the maximum growth rate of the ITG mode is found to be smaller and the threshold ({eta}{sub i}{approx_equal}2.2) is somewhat higher. The effects of small and large temperature ratios and density gradients are found to be stabilizing on electrostatic ITG modes in stellarators. (author)
Nonchaotic stagnant motion in a marginal quasiperiodic gradient system.
Mitsui, Takahito
2008-08-01
A one-dimensional dynamical system with a marginal quasiperiodic gradient is presented as a mathematical extension of a nonuniform oscillator. The system exhibits a nonchaotic stagnant motion, which is reminiscent of intermittent chaos. In fact, the density function of residence times near stagnation points obeys an inverse-square law, due to a mechanism similar to type-I intermittency. However, unlike intermittent chaos, in which the alternation between long stagnant phases and rapid moving phases occurs in a random manner, here the alternation occurs in a quasiperiodic manner. In particular, in the case of a gradient with the golden ratio, the renewal of the largest residence time occurs at positions corresponding to the Fibonacci sequence. Finally, the asymptotic long-time behavior, in the form of a nested logarithm, is theoretically derived. Compared with the Pomeau-Manneville intermittency, a significant difference in the relaxation property of the long-time average of the dynamical variable is found.
Mathematics of Experimentally Generated Chemoattractant Gradients.
Postma, Marten; van Haastert, Peter J M
2016-01-01
Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed to measure this chemotactic response, but no complete mathematical models of the spatial and temporal gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The results show that gradients delivered with a micropipette are formed nearly instantaneously, are very steep close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette. In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave that Dictyostelium cells experience during cell aggregation.
Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient
Energy Technology Data Exchange (ETDEWEB)
Teng, Hao; Liu, Nansheng, E-mail: lns@ustc.edu.cn; Lu, Xiyun [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Khomami, Bamin, E-mail: bkhomami@utk.edu [Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996 (United States)
2015-12-15
Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Re{sub i} (inner cylinder) =1000 and Re{sub o} (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states that emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, −500 < Re{sub o} < 500 in presence of buoyancy (σ = 0.1) with Re{sub i} = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress R{sub rz} are observed for the strongly counter-rotating regimes (Re{sub o} = − 300 and −500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation
Wireless SAW Based Temperature Gradient Sensor Project
National Aeronautics and Space Administration — Prime Photonics proposes design and development of a surface acoustic wave (SAW) based temperature gradient sensor for instrumentation of thermal protection systems...
On lower order strain gradient plasticity theories
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Hutchinson, J. W.
2003-01-01
the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory......By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter....... The findings raise questions about the physical acceptability of this class of strain gradient theories....
High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches.
Kallos, Efthymios; Katsouleas, Tom; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Stolyarov, Daniil; Yakimenko, Vitaly
2008-02-22
A plasma-wakefield experiment is presented where two 60 MeV subpicosecond electron bunches are sent into a plasma produced by a capillary discharge. Both bunches are shorter than the plasma wavelength, and the phase of the second bunch relative to the plasma wave is adjusted by tuning the plasma density. It is shown that the second bunch experiences a 150 MeV/m loaded accelerating gradient in the wakefield driven by the first bunch. This is the first experiment to directly demonstrate high-gradient, controlled acceleration of a short-pulse trailing electron bunch in a high-density plasma.
Indian Academy of Sciences (India)
Thomas S Ullrich
2004-02-01
QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at RHIC indicated that the conditions to create a new state of matter are indeed reached in the collisions of heavy nuclei. Studies of particle spectra and their correlations at low transverse momenta provide evidence of strong pressure gradients in the highly interacting dense medium and hint that we observe a system in thermal equilibrium. Recent runs with high statistics allow us to explore the regime of hard-scattering processes where the suppression of hadrons at large transverse momentum, and quenching of di-jets are observed thus providing further evidence for extreme high density matter created in collisions at RHIC.
Minimax Current Density Coil Design
Poole, Michael; Lopez, Hector Sanchez; Ng, Michael; Crozier, Stuart; 10.1088/0022-3727/43/9/095001
2010-01-01
'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements...
Vertebrate pressure-gradient receivers.
Christensen-Dalsgaard, Jakob
2011-03-01
The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and strongly dependent on interaural transmission attenuation. Even though the tympanic middle ear has originated independently in the major tetrapod groups, in each group the ancestral condition probably was that the two middle ears were exposed in the mouth cavity with relatively high interaural transmission. Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural transmission and functionally isolated pressure receiver ears in the mammals. Since some of the binaural interaction already takes place at the eardrum in animals with strongly coupled ears, producing enhanced interaural time and level differences, the subsequent neural processing may be simpler. In robotic simulations of lizards, simple binaural subtraction (EI cells, found in brainstem nuclei of both frogs and lizards) produces strongly lateralized responses that are sufficient for steering the animal robustly to sound sources.
Variations of n /sub e/h/ profiles and of vertical gradients at low latitudes during disturbances
Energy Technology Data Exchange (ETDEWEB)
Goncharova, E.E.; Zevakina, R.A.; Palacio, L.
1979-11-01
The paper examines the electron density height profile and vertical gradients of electron density distribution as a function of the type and phase of ionospheric disturbances on the basis of data from the Cuban geophysical center for 1968. The difference between low-latitude height variations of electron density and those at midlatitudes is investigated, and possible causes of electron density height variations at low latitudes are discussed.
... Information › Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your ... compared to people with normal bone density. Detecting Low Bone Density A bone density test will determine ...
Electric field gradient and electronic properties of crown thioether compounds
Energy Technology Data Exchange (ETDEWEB)
Camargo Dalmatti Alves Lima, Filipe, E-mail: flima@if.usp.br; Rodrigues do Nascimento, Rafael; Brown Goncalves, Marcos [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Cottenier, Stefaan [Ghent University, Center for Molecular Modeling (Belgium); Caldas, Marilia Junqueira; Petrilli, Helena Maria [Universidade de Sao Paulo, Instituto de Fisica (Brazil)
2010-04-15
We compare published TDPAC experiments on {sup 111}Cd in the crown thioether C{sub 6}H{sub 12}S{sub 3}AgCl with ab-initio electronic structure calculations performed within the framework of the Density Functional Theory using the Projector Augmented Wave method. We conclude from this comparison that the Cd atom at the very moment of the TDPAC experiment is positively charged, and we point out to a methodological difference between reproducing experimental electric-field gradients in molecules versus solid metals.
Bera, Hriday; Boddupalli, Shashank; Nandikonda, Sridhar; Kumar, Sanoj; Nayak, Amit Kumar
2015-01-01
A novel alginate gel-coated oil-entrapped calcium-alginate-tamarind gum (TG)-magnesium stearate (MS) composite floating beads was developed for intragastric risperidone delivery with a view to improving its oral bioavailability. The TG-blended alginate core beads containing olive oil and MS as low-density materials were accomplished by ionotropic gelation technique. Effects of polymer-blend ratio (sodium alginate:TG) and crosslinker (CaCl2) concentration on drug entrapment efficiency (DEE, %) and cumulative drug release after 8 h (Q8h, %) were studied to optimize the core beads by a 3(2) factorial design. The optimized beads (F-O) exhibited DEE of 75.19±0.75% and Q8h of 78.04±0.38% with minimum errors in prediction. The alginate gel-coated optimized beads displayed superior buoyancy and sustained drug release property. The drug release profiles of the drug-loaded uncoated and coated beads were best fitted in Higuchi kinetic model with Fickian and anomalous diffusion driven mechanisms, respectively. The optimized beads yielded a notable sustained drug release profile as compared to marketed immediate release preparation. The uncoated and coated Ca-alginate-TG-MS beads were also characterized by SEM, FTIR and P-XRD analyses. Thus, the newly developed alginate-gel coated oil-entrapped alginate-TG-MS composite beads are suitable for intragastric delivery of risperidone over a prolonged period of time.
An Inexpensive Digital Gradient Controller for HPLC.
Brady, James E.; Carr, Peter W.
1983-01-01
Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…
Nitsche, Ludwig C.; Nitsche, Johannes M.; Brenner, Howard
1988-01-01
The sedimentation and diffusion of a nonneutrally buoyant Brownian particle in vertical fluid-filled cylinder of finite length which is instantaneously inverted at regular intervals are investigated analytically. A one-dimensional convective-diffusive equation is derived to describe the temporal and spatial evolution of the probability density; a periodicity condition is formulated; the applicability of Fredholm theory is established; and the parameter-space regions are determined within which the existence and uniqueness of solutions are guaranteed. Numerical results for sample problems are presented graphically and briefly characterized.
Dual fuel gradients in uranium silicide plates
Energy Technology Data Exchange (ETDEWEB)
Pace, B.W. [Babock and Wilcox, Lynchburg, VA (United States)
1997-08-01
Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.
High order compact schemes for gradient approximation
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we propose three gradient recovery schemes of higher order for the linear interpolation. The first one is a weighted averaging method based on the gradients of the linear interpolation on the uniform mesh, the second is a geometric averaging method constructed from the gradients of two cubic interpolation on macro element, and the last one is a local least square method on the nodal patch with cubic polynomials. We prove that these schemes can approximate the gradient of the exact solution on the symmetry points with fourth order. In particular, for the uniform mesh, we show that these three schemes are the same on the considered points. The last scheme is more robust in general meshes. Consequently, we obtain the superconvergence results of the recovered gradient by using the aforementioned results and the supercloseness between the finite element solution and the linear interpolation of the exact solution. Finally, we provide several numerical experiments to illustrate the theoretical results.
Makarevich, Roman A.
2016-04-01
A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.
Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients
Panet, Isabelle; Pajot-Métivier, Gwendoline; Greff-Lefftz, Marianne; Métivier, Laurent; Diament, Michel; Mandea, Mioara
2014-02-01
The dynamics of Earth's mantle are not well known. Deciphering mantle flow patterns requires an understanding of the global distribution of mantle density. Seismic tomography has been used to derive mantle density distributions, but converting seismic velocities into densities is not straightforward. Here we show that data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission can be used to probe our planet's deep mass structure. We construct global anomaly maps of the Earth's gravitational gradients at satellite altitude and use a sensitivity analysis to show that these gravitational gradients image the geometry of mantle mass down to mid-mantle depths. Our maps highlight north-south-elongated gravity gradient anomalies over Asia and America that follow a belt of ancient subduction boundaries, as well as gravity gradient anomalies over the central Pacific Ocean and south of Africa that coincide with the locations of deep mantle plumes. We interpret these anomalies as sinking tectonic plates and convective instabilities between 1,000 and 2,500km depth, consistent with seismic tomography results. Along the former Tethyan Margin, our data also identify an east-west-oriented mass anomaly likely in the upper mantle. We suggest that by combining gravity gradients with seismic and geodynamic data, an integrated dynamic model for Earth can be achieved.
Density Functionals of Chemical Bonding
Directory of Open Access Journals (Sweden)
Mihai V. Putz
2008-06-01
Full Text Available The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and authorÃ¢Â€Â™s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR analysis for basic atomic and molecular systems.
Accurate and robust methods for variable density incompressible flows with discontinuities
Energy Technology Data Exchange (ETDEWEB)
Rider, W.J.; Kothe, D.B.; Puckett, E.G.
1996-09-01
We are interested in the solution of incompressible flows which are characterized by large density variations, interfacial physics, arbitrary material topologies and strong vortical content. The issues present in constant density incompressible flow are exacerbated by the presence of density discontinuities. A much greater premium requirement is placed the positivity of computed quantities The mechanism of baroclinc vorticity generation exists ({gradient}p x {gradient}p) to further complicate the physics.
A numerical study of scalar gradients in Kelvin-Helmholtz billows
Parker, J. W.; Bowhill, S. A.
1989-01-01
A high resolution numerical technique is used to model the development of a periodically perturbed shear layer imbedded in an initially vertical gradient of a passive scalar. The technique follows the development of the vorticity through an initial linear growth state and well into the nonlinear development of Kelvin-Helmholtz billows, in the zero-viscosity, zero-diffusion limit. The resulting scalar distribution rapidly develops regions of extremely sharp scalar gradients, which wind around the periodically spaced vortical low gradient cores. Vertical cross sections through different parts of the billow structure are presented and compared with rocket measurements of electron density fine structure in the mesosphere. Gradient limits imposed by finite diffusion are calculated, and implications for atmospheric radar observations are discussed.
Strain gradient effects on steady state crack growth in rate-sensitive materials
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Niordson, Christian Frithiof; Hutchinson, John W.
2012-01-01
Steady state crack propagation produce substantial plastic strain gradients near the tip, which are accompanied by a high density of geometrically necessary dislocations and additional local strain hardening. Here, the objective is to study these gradient effects on Mode I toughness...... of a homogeneous rate-sensitive metal, using a higher order plasticity theory. Throughout, emphasis is on the toughness rate-sensitivity, as a recent numerical study of a conventional material (no gradient effects) has indicated a significant influence of both strain rate hardening and crack tip velocity. Moreover......, a characteristic velocity, at which the toughness becomes independent of the rate-sensitivity, has been observed. It is the aim to bring forward a similar characteristic velocity for the current strain gradient visco-plastic model, as-well as to signify its use in future visco-plastic material modeling....
Satellite gravity gradient grids for geophysics.
Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel
2016-02-11
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.
Intracellular chemical gradients: morphing principle in bacteria
Directory of Open Access Journals (Sweden)
Endres Robert G
2012-09-01
Full Text Available Abstract Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012 postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.
Sediment Transport at Density Fronts in Shallow Water
2012-09-30
in the Hudson occurred at multiple locations along the salinity gradient rather than a single interface between salty and fresh water . The fronts in...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sediment Transport at Density Fronts in Shallow Water ...suspended sediment concentration at density fronts in shallow water (< 1 m), - characterize flow and suspended sediment at a density front through the
Caroselli, E.; Brambilla, V.; Ricci, F.; Mattioli, G.; Levy, O.; Falini, G.; Dubinsky, Z.; Goffredo, S.
2016-09-01
Correlations between environmental parameters (depth temperature and solar radiation) and growth parameters (bulk skeletal density, linear extension rate and net calcification rate) of the solitary azooxanthellate coral, Caryophyllia inornata, were investigated along an 8° latitudinal gradient on the western Italian coasts. Net calcification rate correlated positively with both bulk skeletal density and linear extension rate, showing that C. inornata allocates calcification resources evenly to thickening the skeleton and increasing linear growth. Overall, the three growth parameters did not follow gradients in the two environmental parameters, showing a different trend compared to most studies on zooxanthellate corals. However, the results are in agreement with the only previous analysis of an azooxanthellate coral, Leptopsammia pruvoti, studied along the same latitudinal gradient. In a comparison of the response to temperature of all Mediterranean species whose growth has been investigated to date, azooxanthellate corals were more tolerant to temperature increases than zooxanthellate corals.
Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua
2016-09-01
This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.
Ni, Rui; Ouellette, Nicholas T; Voth, Greg A
2014-01-01
We present simultaneous experimental measurements of the dynamics of anisotropic particles transported by a turbulent flow and the velocity gradient tensor of the flow surrounding them. We track both rod-shaped particles and small spherical flow tracers using stereoscopic particle tracking. By using scanned illumination, we are able to obtain a high enough seeding density of tracers to measure the full velocity gradient tensor near the rod. The alignment of rods with the vorticity and the eigenvectors of the strain rate show agreement with numerical simulations. A full description of the tumbling of rods in turbulence requires specifying a seven-dimensional joint probability density function (PDF) of five scalars characterizing the velocity gradient tensor and two scalars describing the relative orientation of the rod. If these seven parameters are known, then Jeffery's equation specifies the rod tumbling rate and any statistic of rod rotations can be obtained as a weighted average over the joint PDF. To look...
Strain gradient effects in surface roughening
DEFF Research Database (Denmark)
Borg, Ulrik; Fleck, N.A.
2007-01-01
A thin aluminium sheet comprising of large polycrystals is pulled in uniaxial tension and the resulting surface profile is measured in a scanning electron microscope. The surface profile near the grain boundaries reveals a local deformation pattern of width of a few micrometres and is strong...... evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...
Colour and stellar population gradients in galaxies
Tortora, C; Cardone, V F; Capaccioli, M; Jetzer, P; Molinaro, R
2010-01-01
We discuss the colour, age and metallicity gradients in a wide sample of local SDSS early- and late-type galaxies. From the fitting of stellar population models we find that metallicity is the main driver of colour gradients and the age in the central regions is a dominant parameter which rules the scatter in both metallicity and age gradients. We find a consistency with independent observations and a set of simulations. From the comparison with simulations and theoretical considerations we are able to depict a general picture of a formation scenario.
GRADIENT ENERGY DETECTION OF LSB STEGANOGRAPHY
Institute of Scientific and Technical Information of China (English)
Li Zhi; Sui Aifen; Niu Xinxin; Yang Yixian
2005-01-01
The spatial Least Significant Bit (LSB) steganography results in the alteration of the smooth characteristics between adjoining pixels of the raw image. The relation between the length of embedded message and the gradient energy is theoretically analyzed, and then a steganalysis and detection method, named Gradient Energy-Flipping Rate (GEFR) detection is proposed. Based on the analysis of the variation of the gradient energy, which results from the LSB steganography in color and grayscale image, the secret message embedded in the target image is detected, and the length of the embedded message is estimated. The method is proved effective and accurate by simulation (detection rate reaches 0.01bit per pixel).
Sound beam manipulation based on temperature gradients
Energy Technology Data Exchange (ETDEWEB)
Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
2015-10-28
Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.
A Resistivity Gradient Piezoelectric FGM Actuator
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A resistivity gradient actuator based on lead zirconate titanate ceramics was successfully developed and the bending deflections up to 140 μm were obtained. The actuator material was a matrix of PZT ceramic into which smooth gradient of piezoelectric activity was introduced. The application of an electric field then causes the actuator to bend due to differential strains induced by the piezoelectric effect. The resistivity gradient of the actuator was achieved by doping PZT with suitable donor and acceptor dopants. PZT powder was modified and synthesized by using two stage powder fabrication method. The actuator was fabricated by uniaxial pressing followed by isostatic pressing with two layers of different resistivities.
Colour and stellar population gradients in galaxies
Tortora, C.; Napolitano, N. R.; Cardone, V. F.; Capaccioli, M.; Jetzer, P.; Molinaro, R.
We discuss the colour, age and metallicity gradients in a wide sample of local SDSS early- and late-type galaxies. From the fitting of stellar population models we find that metallicity is the main driver of colour gradients and the age in the central regions is a dominant parameter which rules the scatter in both metallicity and age gradients. We find a consistency with independent observations and a set of simulations. From the comparison with simulations and theoretical considerations we are able to depict a general picture of a formation scenario.
Nf=2+1 QCD thermodynamics from gradient flow
Taniguchi, Yusuke; Iwami, Ryo; Kanaya, Kazuyuki; Kitazawa, Masakiyo; Suzuki, Hiroshi; Umeda, Takashi; Wakabayashi, Naoki
2016-01-01
The energy-momentum tensor is a very important quantity in QCD thermodynamics. Its expectation value contains information of the pressure and the energy density as its diagonal part. Further properties like viscosity and specific heat can be extracted from its correlation functions. A non-perturbative evaluation on lattice has been successful only for the pressure and the energy density by making use of property of the thermodynamical free energy intelligently. Recently a new method was introduced to calculate the energy-momentum tensor on lattice using the gradient flow. The method has been applied to quenched QCD and proved to be successful. In this paper we apply the gradient flow method to the Nf=2+1 flavors QCD. We adopt a single but fine lattice spacing which corresponds to $a\\simeq0.07$ fm. A wide range of temperature is covered from $T\\simeq174$ MeV to $697$ MeV. The $u$ and $d$ quarks are rather heavy $m_\\pi/m_\\rho\\simeq0.63$ but the $s$ quark is set to almost its physical mass $m_{\\eta_{ss}}/m_\\phi\\...
Comparison of termite assemblages along a landuse gradient on peat areas in Sarawak, Malaysia.
Vaessen, T.; Verwer, C.; Demies, M.; Kaliang, H.; Meer, van der P.J.
2011-01-01
VAESSEN T, VERWER C, DEMIES M, KALIANG H & VAN DER MEER PJ. 2011. Comparison of termite assemblages along a landuse gradient on peat areas in Sarawak, Malaysia. In this study we assessed the species density and relative abundance of termites in peat land in Sarawak, Malaysia. Termites were sampl
Improved Lieb-Oxford exchange-correlation inequality with gradient correction
Mathieu, Lewin
2014-01-01
We prove a Lieb-Oxford-type inequality on the exchange-correlation energy of a general many-particle quantum state, with a lower constant than the original statement but involving an additional gradient correction. The result is similar to a recent inequality of Benguria, Bley and Loss, except that the correction term is purely local, as is appropriate for density functional theory.
The mapping of electronic energy distributions using experimental electron density.
Tsirelson, Vladimir G
2002-08-01
It is demonstrated that the approximate kinetic energy density calculated using the second-order gradient expansion with parameters of the multipole model fitted to experimental structure factors reproduces the main features of this quantity in a molecular or crystal position space. The use of the local virial theorem provides an appropriate derivation of approximate potential energy density and electronic energy density from the experimental (model) electron density and its derivatives. Consideration of these functions is not restricted by the critical points in the electron density and provides a comprehensive characterization of bonding in molecules and crystals.
Vegetation patterns and environmental gradients in Benin
Adomou, A.
2005-01-01
Key words: West Africa, Benin, vegetation patterns, floristic areas, phytogeography, chorology, floristic gradients, climatic factors, water availability, Dahomey Gap, threatened plants, biodiversity, conservation.Understanding plant species distribution patterns and the underlying factors is a cruc
On lower order strain gradient plasticity theories
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Hutchinson, J. W.
2002-01-01
By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter the t...... the tangential moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that appears to be unphysical.......By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...
Unimodal and crossmodal gradients of spatial attention
DEFF Research Database (Denmark)
Föcker, J.; Hötting, K.; Gondan, Matthias
2010-01-01
Behavioral and event-related potential (ERP) studies have shown that spatial attention is gradually distributed around the center of the attentional focus. The present study compared uni- and crossmodal gradients of spatial attention to investigate whether the orienting of auditory and visual...... spatial attention is based on modality specific or supramodal representations of space. Auditory and visual stimuli were presented from five speaker locations positioned in the right hemifield. Participants had to attend to the innermost or outmost right position in order to detect either visual...... or auditory deviant stimuli. Detection rates and event-related potentials (ERPs) indicated that spatial attention is distributed as a gradient. Unimodal spatial ERP gradients correlated with the spatial resolution of the modality. Crossmodal spatial gradients were always broader than the corresponding...
Artificial photosynthesis: Light-activated calcium gradients
Thompson, David H.
2002-12-01
Photosynthetic organisms use light to create chemical gradients across bilayer membranes that drive energetically unfavourable reactions. Synthetic systems that accomplish the same feat may find uses in a variety of biological and non-biological applications.
CMB Anisotropies from a Gradient Mode
Mirbabayi, Mehrdad
2014-01-01
A pure gradient mode must have no observable dynamical effect at linear level. We confirm this by showing that its contribution to the dipolar power asymmetry of CMB anisotropies vanishes, if Maldacena's consistency condition is satisfied. To this end, the existing second order Sachs-Wolfe formula in the squeezed limit is extended to include a gradient in the long mode and to account for the change in the location of the last scattering surface induced by this mode. At second order, a gradient mode generated in Single-field inflation is shown to induce a quadrupole moment. For instance in a matter-dominated model it is equal to 5/18 times the square of the linear gradient part. This quadrupole can be cancelled by superposing a quadratic perturbation. The result is shown to be a non-linear extension of Weinberg's adiabatic modes: a long-wavelength physical mode which looks locally like a coordinate transformation.
NEW STRAIN GRADIENT THEORY AND ANALYSIS
Institute of Scientific and Technical Information of China (English)
Dake Yi; Tzu Chiang Wang; Shaohua Chen
2009-01-01
A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal model is suggested. Second, based on the model, a new strain gradient theory is derived. Third, the new theory is applied to analyze three representative experiments.
Thermal gradient analysis of solidifying casting
Directory of Open Access Journals (Sweden)
J. Suchoń
2008-08-01
Full Text Available For description of casting solidification and crystallization process the thermal derivative analysis (TDA is commonly used. Besides the process kinetics considered in TDA method to describe the solidification process, the thermal gradient analysis can be also used for this purpose [1, 2]. In conducted studies analysis of thermal gradient distribution inside the solidifying wedge casting was shown which enabled determination of heat flow intensity on casting section.
The local power of the gradient test
Lemonte, Artur
2010-01-01
The asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate $n^{-1/2}$, $n$ being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property. The power performance of all four criteria in one-parameter exponential family is examined.
Pressure Gradient Evolution and Substorm Onset
Zhonghua, Y.; Pu, Z.; Cao, X.; Nishimura, T.; Zhang, H.; Fu, S.; Xie, L.; Guo, R.
2011-12-01
Near-Earth current disruption (NECD) and substorm current wedge (SCW) formation are two related key phenomena for substorm onset. They are believed to be in close association with evolution of pressure gradient near the inner edge of plasma sheet. In the past, a few attempts have been made to investigate the pressure gradient in the late growth phase based on one- or two-spacecraft observations (e.g. , Korth et al., 1991; Pu et al., 1992; Shiokawa et al., 1998; Xing et al., 2010, 2011,etc). In this paper, with linearization assumption in the inner-probe region, we use THEMIS three-probe measurements to estimate the pressure gradient near the inner edge of the equatorward and duskward (dawnward) plasma sheet where pressure gradient in the Z-direction is almost vanished. We therefore can roughly get the two-dimensional pressure gradient in the X- and Y-direction simultaneously. Our observations indicate that the pressure gradients in both the X- and Y-direction enhance right after (within one minute) substorm onset. The enhanced pressure gradient in the Y-direction is duskward (dawnward) when the probes are in the duskside (dawnside) of the enhanced earthward flow in the growth phase. The enhanced dawn-dusk pressure gradients can drive downward field-aligned current (FAC) on the dawnside and upward FAC on the duskside, thus make contributions to the NECD and formation of SCW. THEMIS in situ data and all-sky auroral images for two events are presented, followed by a brief discussion.
Chelation gradients for investigation of metal ion binding at silica surfaces.
Kannan, Balamurali; Higgins, Daniel A; Collinson, Maryanne M
2014-08-26
Centimeter-long surface gradients in bi- and tridentate chelating agents have been formed via controlled rate infusion, and the coordination of Cu(2+) and Zn(2+) to these surfaces has been examined as a function of distance by X-ray photoelectron spectroscopy (XPS). 3-(Trimethoxysilylpropyl)ethylenediamine and 3-(trimethoxysilylpropyl)diethylenetriamine were used as precursor silanes to form the chelation gradients. When the gradients were exposed to a metal ion solution, a series of coordination complexes formed along the length of the substrate. For both chelating agents at the three different concentrations studied, the amine content gradually increased from top to bottom as expected for a surface chemical gradient. While the Cu 2p peak area had nearly the same profile as nitrogen, the Zn 2p peak area did not and exhibited a plateau along much of the gradient. The normalized nitrogen-to-metal peak area ratio (N/M) was found to be highly dependent on the type of ligand, its surface concentration, and the type of metal ion. For Cu(2+), the N/M ratio ranged from 8 to 11 on the diamine gradient and was ∼4 on the triamine gradient, while for Zn(2+), the N/M ratio was 4-8 on diamine and 5-7 on triamine gradients. The extent of protonation of amine groups was higher for the diamine gradients, which could lead to an increased N/M ratio. Both 1:1 and 1:2 ligand/metal complexes along with dinuclear complexes are proposed to form, with their relative amounts dependent on the ligand, ligand density, and metal ion. Collectively, the methods and results described herein represent a new approach to study metal ion binding and coordination on surfaces, which is especially important to the extraction, preconcentration, and separation of metal ions.
Gradient-based compressive image fusion
Institute of Scientific and Technical Information of China (English)
Yang CHEN‡; Zheng QIN
2015-01-01
We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sam-pling for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By com-positing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas’s and Piella’s metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best per-formance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.
Profiling compact toroid plasma density on CTIX with laser deflection
Brockington, Samuel Joseph Erwin
A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.
Bidin, C Moni; Carraro, G; Mendez, R A; Moyano, M
2014-01-01
In 2012, we applied a three-dimensional formulation to kinematic measurements of the Galactic thick disk and derived a surprisingly low dark matter density at the solar position. This result was challenged by Bovy & Tremaine (2012, ApJ, 756, 89), who claimed that the observational data are consistent with the expected dark matter density if a one-dimensional approach is adopted. We analyze the assumption at the bases of their formulation and their claim that this returns a lower limit for the local dark matter density, which is accurate within 20%. We find that the validity of their formulation depends on the underlying mass distribution. We therefore analyze the predictions that their hypothesis casts on the radial gradient of the azimuthal velocity dV/dR and compare it with observational data as a testbed for the validity of their formulation. We find that their hypothesis requires too steep a profile of dV(Z)/dR, which is inconsistent with the observational data both in the Milky Way and in external ga...
Irreducible decomposition of strain gradient tensor in isotropic strain gradient elasticity
Lazar, Markus
2016-01-01
In isotropic strain gradient elasticity, we decompose the strain gradient tensor into its irreducible pieces under the n-dimensional orthogonal group O(n). Using the Young tableau method for traceless tensors, four irreducible pieces (n>2), which are canonical, are obtained. In three dimensions, the strain gradient tensor can be decomposed into four irreducible pieces with 7+5+3+3 independent components whereas in two dimensions, the strain gradient tensor can be decomposed into three irreducible pieces with 2+2+2 independent components. The knowledge of these irreducible pieces is extremely useful when setting up constitutive relations and strain energy.
Connell, Mark A.; Bowyer, Paul J.; Adam Bone, P.; Davis, Adrian L.; Swanson, Alistair G.; Nilsson, Mathias; Morris, Gareth A.
2009-05-01
Pulsed field gradient NMR is a well-established technique for the determination of self-diffusion coefficients. However, a significant source of systematic error exists in the spatial variation of the applied pulsed field gradient. Non-uniform pulsed field gradients cause the decay of peak amplitudes to deviate from the expected exponential dependence on gradient squared. This has two undesirable effects: the apparent diffusion coefficient will deviate from the true value to an extent determined by the choice of experimental parameters, and the error estimated by the nonlinear least squares fitting will contain a significant systematic contribution. In particular, the apparent diffusion coefficient determined by exponential fitting of the diffusional attenuation of NMR signals will depend both on the exact pulse widths used and on the range of gradient amplitudes chosen. These problems can be partially compensated for if experimental attenuation data are fitted to a function corrected for the measured spatial dependence of the gradient and signal strength. This study describes a general alternative to existing methods for the calibration of NMR diffusion measurements. The dominant longitudinal variation of the pulsed field gradient amplitude and the signal strength are mapped by measuring pulsed field gradient echoes in the presence of a weak read gradient. These data are then used to construct a predicted signal decay function for the whole sample, which is parameterised as the exponential of a power series. Results are presented which compare diffusion coefficients obtained using the new calibration method with previous literature values.
Blood-Forsythe, Martin A; DiStasio, Robert A; Car, Roberto; Aspuru-Guzik, Alán
2015-01-01
Accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety of systems. Among the most accurate models for including dispersion into density functional theory (DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrossetti et al., J. Chem. Phys. 140, 18A508 (2014)], in which the correlation energy is modeled at short-range by a semi-local density functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work, we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers of the be...
Mehrotra, Anuja Seth; Puri, Sanjay; Khakhar, D V
2012-04-07
We present a simulation method for direct computation of chemical potentials in multicomponent systems. The method involves application of a field to generate spatial gradients in the species number densities at equilibrium, from which the chemical potential of each species is theoretically estimated. A single simulation yields results over a range of thermodynamic states, as in high throughput experiments, and the method remains computationally efficient even at high number densities since it does not involve particle insertion at high densities. We illustrate the method by Monte Carlo simulations of binary hard sphere mixtures of particles with different sizes in a gravitational field. The results of the gradient Monte Carlo method are found to be in good agreement with chemical potentials computed using the classical Widom particle insertion method for spatially uniform systems.
The salinity gradient power generating system integrated into the seawater desalination system
Zhu, Yongqiang; Wang, Wanjun; Cai, Bingqian; Hao, Jiacheng; Xia, Ruihua
2017-01-01
Seawater desalination is an important way to solve the problem of fresh water shortage. Low energy efficiency and high cost are disadvantages existing in seawater desalination. With huge reserve and the highest energy density among different types of marine energy, salinity gradient energy has a bright application prospect. The promotion of traditional salinity gradient power generating systems is hindered by its low efficiency and specific requirements on site selection. This paper proposes a salinity gradient power generating system integrated into the seawater desalination system which combines the salinity gradient power generating system and the seawater desalination system aiming to remedy the aforementioned deficiency and could serve as references for future seawater desalination and salinity gradient energy exploitation. The paper elaborates on the operating principles of the system, analyzes the detailed working process, and estimates the energy output and consumption of the system. It is proved that with appropriate design, the energy output of the salinity gradient power generating system can satisfy the demand of the seawater desalination system.
A downward buoyant force experiment
Lima, F. M. S.; Venceslau,G.M.; Brasil,G.T.
2014-01-01
In hydrostatics, the Archimedes principle predicts an upward force whenever a body is submerged in a liquid. In contrast to common sense, this physical law is not free of exceptions, as for example when the body touches the container. This is more evident when a rectangular block less dense than the liquid rests on the bottom, with no liquid underneath it, a case in which a downward force is expected, according to a recent work by the first author. In the present work, we describe a simple, l...
Problem-Based Test: Replication of Mitochondrial DNA during the Cell Cycle
Setalo, Gyorgy, Jr.
2013-01-01
Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids,…
Relativistic transport theory for simple fluids at first order in the gradients: a stable picture
Sandoval-Villalbazo, A; García-Colin, L S
2008-01-01
In this paper we show how using a relativistic kinetic equation. The ensuing expression for the heat flux can be casted in the form required by Classical Irreversible Thermodynamics. Indeed, it is linearly related to the temperature and number density gradients and not to the acceleration as the so called first order in the gradients theories contend. Since the specific expressions for the transport coefficients are irrelevant for our purposes, the BGK form of the kinetic equation is used. Moreover, from the resulting hydrodynamic equations it is readily seen that no instabilities are present in the transverse hydrodynamic velocity mode of the simple relativistic fluid.
Perturbative running of the twisted Yang-Mills coupling in the gradient flow scheme
Bribian, Eduardo I
2016-01-01
We report on our ongoing computation of the perturbative running of the Yang-Mills coupling using gradient flow techniques. In particular, we use the gradient flow method with twisted boundary conditions to perform a perturbative expansion of the expectation value of the Yang-Mills energy density up to fourth order in the coupling at finite flow time. We regularise the resulting integrals using dimensional regularisation, and reproduce the universal coefficient of the 1/{\\epsilon} term in the relation between bare and renormalised couplings. The computation of the finite part leading to a determination of the {\\Lambda} parameter in this scheme is underway.
C library for topological study of the electronic charge density.
Vega, David; Aray, Yosslen; Rodríguez, Jesús
2012-12-05
The topological study of the electronic charge density is useful to obtain information about the kinds of bonds (ionic or covalent) and the atom charges on a molecule or crystal. For this study, it is necessary to calculate, at every space point, the electronic density and its electronic density derivatives values up to second order. In this work, a grid-based method for these calculations is described. The library, implemented for three dimensions, is based on a multidimensional Lagrange interpolation in a regular grid; by differentiating the resulting polynomial, the gradient vector, the Hessian matrix and the Laplacian formulas were obtained for every space point. More complex functions such as the Newton-Raphson method (to find the critical points, where the gradient is null) and the Cash-Karp Runge-Kutta method (used to make the gradient paths) were programmed. As in some crystals, the unit cell has angles different from 90°, the described library includes linear transformations to correct the gradient and Hessian when the grid is distorted (inclined). Functions were also developed to handle grid containing files (grd from DMol® program, CUBE from Gaussian® program and CHGCAR from VASP® program). Each one of these files contains the data for a molecular or crystal electronic property (such as charge density, spin density, electrostatic potential, and others) in a three-dimensional (3D) grid. The library can be adapted to make the topological study in any regular 3D grid by modifying the code of these functions.
Cai, Yangjun; Yun, Yang H; Newby, Bi-min Zhang
2010-01-01
A surface with a density gradient of poly(ethylene glycol) (PEG) is an attractive substrate for combinatorial studies of biological phenomena. In this study, the generation of discrete step-wise density gradients of PEG utilizing a contact-printing approach is reported. The step-wise gradient template is achieved by contact-printing n-octadecyltrichlorosilane (OTS) to a glass from a hemispherical elastomeric stamp when the stamp is brought into contact with the substrate, and then step-wisely increasing the contact area as the corresponding contact-printing time for the step decreases. A PEG-silane is then used to backfill the unoccupied spaces of the contact printed OTS gradient to generate the OTS-PEG density gradient. Various characterizations, including water contact angle measurement, lateral force microscopy, and X-ray photoelectron spectroscopy, are conducted and confirmed that the surface coverage of OTS increases (or the coverage of PEG decreases) with the increase of contact-printing time of OTS. The step-wise gradient is illustrated by adsorption of a bovine serum albumin labeled with fluorescein isothiocyanate and subsequent attachment of fibroblasts. The amounts of protein adsorption and cellular attachment increase with the decrease of the surface coverage of PEG.
Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.
2015-01-01
Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing climates.
Perturbations of the solar wind flow by radial and latitudinal pick-up ion pressure gradients
Directory of Open Access Journals (Sweden)
H. J. Fahr
2004-06-01
Full Text Available It has been found that pick-up ions at their dynamical incorporation into the solar wind modify the original conditions of the asymptotic solar wind plasma flow. In this respect, it has meanwhile been revealed in many papers that these type of solar wind modifications, i.e. deceleration and decrease of effective Mach number, are not only due to the pick-up ion loading effects, but also to the action of pick-up ion pressure gradients. Up to now only the effects of radial pick-up ion pressure gradients were considered, however, analogously but latitudinal pressure gradients also appear to be important. Here we study the effects of radial and latitudinal pick-up ion pressure gradients, occurring especially during solar minimum conditions at mid-latitude regions where slow solar wind streams change to fast solar wind streams. First, we give estimates of the latitudinal wind components connected with these gradients, and then after revealing its importance, present a more quantitative calculation of solar wind velocity and density perturbations resulting from these pressure forces. It is shown that the relative density perturbations near and in the ecliptic increase with radial distance and thus may well explain the measured non-spherically symmetric density decrease with distance. We also show that the solar wind decelerations actually seen with Voyager-1/2 are in conciliation with interstellar hydrogen densities of n_{H∞}≥0.1cm^{-3}, in contrast to earlier claims for n_{H∞}=0.05cm^{-3}.
Collective chemotaxis through noisy multicellular gradient sensing
Varennes, Julien; Mugler, Andrew
2016-01-01
Collective cell migration in response to a chemical cue occurs in many biological processes such as morphogenesis and cancer metastasis. Clusters of migratory cells in these systems are capable of responding to gradients of less than 1% difference in chemical concentration across a cell length. Multicellular systems are extremely sensitive to their environment and while the limits to multicellular sensing are becoming known, how this information leads to coherent migration remains poorly understood. We develop a computational model of multicellular sensing and migration in which groups of cells collectively measure noisy chemical gradients. The output of the sensing process is coupled to individual cells polarization to model migratory behavior. Through the use of numerical simulations, we find that larger clusters of cells detect the gradient direction with higher precision and thus achieve stronger polarization bias, but larger clusters also induce more drag on collective motion. The trade-off between these...
Inversion gradients for acoustic VTI wavefield tomography
Li, Vladimir
2017-03-21
Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.
On fracture in finite strain gradient plasticity
DEFF Research Database (Denmark)
Martínez Pañeda, Emilio; Niordson, Christian Frithiof
2016-01-01
are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... predictions. These differences increase significantly when large strains are taken into account, as a consequence of the contribution of strain gradients to the work hardening of the material. The magnitude of stress elevation at the crack tip and the distance ahead of the crack where GNDs significantly alter...
Dynamics of gradient formation by intracellular shuttling
Energy Technology Data Exchange (ETDEWEB)
Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)
2015-08-21
A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.
Adaptive Thermostats for Noisy Gradient Systems
Leimkuhler, Benedict
2015-01-01
We study numerical methods for sampling probability measures in high dimensions where the underlying model is only approximately identified with a gradient system. Extended stochastic dynamical methods are discussed which have application to multiscale models, nonequilibrium molecular dynamics and Bayesian sampling techniques arising in emerging machine learning applications. In addition to providing a more comprehensive discussion of the foundations of these methods, we propose a new numerical method for the Adaptive Langevin/stochastic gradient Nos\\'e-Hoover thermostat that achieves a dramatic improvement in numerical efficiency over the most popular stochastic gradient methods reported in the literature. We also demonstrate that the newly-established method inherits a superconvergence property (fourth order convergence to the invariant measure for configurational quantities) recently demonstrated in the setting of Langevin dynamics. Our findings are verified by numerical experiments.
Conjugate gradient algorithms using multiple recursions
Energy Technology Data Exchange (ETDEWEB)
Barth, T.; Manteuffel, T.
1996-12-31
Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.
Preparation of gradient polyacrylate brushes in microchannels.
Lee, Seongyeol; Youm, Sang Gil; Song, Yeari; Yi, Whikum; Sohn, Daewon
2012-05-01
Gradient poly(2-hydroxyethyl methacrylate) brushes were synthesized by surface-initiated atom transfer radical polymerization (ATRP) confined within a microfluidic system on a silicon wafer. For ATRP, surface initiator, 11-((2-bromo, 2-methyl) propionyloxy) undecyltrichlorosilane (BUC), was synthesized, and allowed to self-assemble in a monolayer on the Si wafer, as analyzed by XPS to confirm the presence of an ester group of BUC. A solution containing 2-hydroxyethylmethacrylate, Cu catalyst, and bipyridin was allowed to flow in a microchannel and polymerize, resulting in the brushes with a gradient of thickness on the Si wafer. Using ellipsometry and ATR-IR, we verified the gradients of well established brushes on the Si wafer. AFM and contact angle data showed that wettability of the brushes did not exhibit a linear relationship with hydrophilicity.
Variation in wood nutrients along a tropical soil fertility gradient.
Heineman, Katherine D; Turner, Benjamin L; Dalling, James W
2016-07-01
Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests.
Gradient Learning Algorithms for Ontology Computing
Directory of Open Access Journals (Sweden)
Wei Gao
2014-01-01
Full Text Available The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting.
Gradient Elasticity Formulations for Micro/Nanoshells
Directory of Open Access Journals (Sweden)
Bohua Sun
2014-01-01
Full Text Available The focus of this paper is on illustrating how to extend the second author’s gradient theory of elasticity to shells. Three formulations are presented based on the implicit gradient elasticity constitutive relation 1 -ld2∇2σij=Cijkl(1-ls2∇2εkl and its two approximations 1+ls2∇2-ld2∇2σij=Cijklεkl and σij=Cijkl(1+ld2∇2-ls2∇2εkl.
Natural Gradient Approach to Multichannel Blind Deconvolution
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper we study the geometrical structures of FIR filters and their application to multichannel blind deconvolution.First we introduce a Lie group structure and a Riemannian structure on the manifolds of the FIR filters.Then we derive the natural gradients on the manifolds using the isometry of the Riemannian metric.Using the natural gradient,we present a novel learning algorithm for blind deconvolution based on the minimization of mutual information.Some properties of the learning algorithm,such as equivariance and stability are also studied.Finally,the simulations are given to illustrate the effectiveness and validity of the proposed algorithm.
Multiplicative Noise Removal using Gradient and Laplacian
Institute of Scientific and Technical Information of China (English)
He Lei Pan Zhen-kuan
2009-01-01
The variational methods for nmltiplicative noise removal have been received considerable attention in recent years.The traditional models based only on gradient result in staircase effect usually.So a hybrid high-order model based on gradient and Laphcian is proposed for mulfiplicative denoising.In order to avoid the shortcomings of explicit scheme in stability,the Gauss-seidel semi-implicit scheme is adopted.Experiments show that the proposed model can avoid staircase effect during removing multiplicative noise while preserving or enhancing edges.
Design of spherical symmetric gradient index lenses
Miñano, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; González, Juan C.; Santamaría, Asunción
2012-10-01
Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.
Laboratory Density Functionals
Giraud, B G
2007-01-01
We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.