WorldWideScience

Sample records for buoyancy

  1. Neutral Buoyancy Laboratory (NBL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutral Buoyancy Laboratory (NBL) is an astronaut training facility and neutral buoyancy pool operated by NASA and located at the Sonny Carter Training Facility,...

  2. Fun with Buoyancy.

    Science.gov (United States)

    Cuicchi, Paul M.; Winter, Joshua B.; Hamil, Burnette

    2003-01-01

    Presents an activity to teach buoyancy. The lab determines what mass of sand can be added to the open end of hollow plastic containers of various shapes so that objects just float at the surface, without sinking, with their entire volume submerged. Discusses Archimedes' principle and aligns with current national science education standards.…

  3. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current situ...... situation, and proposes a number of activities in order to improve the buoyancy regulation system. This work was performed under EU ENERGIE contract no. ENK5-CT-2002-00603, and is a contribution to WP 2.3/2.4 and D40/D41....

  4. Buoyancy instability of homologous implosions

    CERN Document Server

    Johnson, Bryan M

    2015-01-01

    I consider the hydrodynamic stability of imploding gases as a model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes under a homologous flow, a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)^(|N0| ti)$, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(pi |N0| ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular...

  5. Buoyancy-driven Magnetohydrodynamic Waves

    Science.gov (United States)

    Hague, A.; Erdélyi, R.

    2016-09-01

    Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs) that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies of standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown that the frequency of IGWs may depart significantly from the Brunt-Väisälä frequency, even for a weak magnetic field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has previously been misinterpreted. An observational test is urged to validate the theoretical findings.

  6. Exploring Titan with Autonomous, Buoyancy Driven Gliders

    Science.gov (United States)

    Morrow, M. T.; Woolsey, C. A.; Hagerman, G. M.

    Buoyancy driven underwater gliders are highly efficient winged underwater vehicles which locomote by modifying their internal shape. The concept, which is already well-proven in Earth's oceans, is also an appealing technology for remote terrain exploration and environmental sampling on worlds with dense atmospheres. Because of their high efficiency and their gentle, vertical take-off and landing capability, buoyancy driven gliders might perform long duration, global mapping tasks as well as light-duty, local sampling tasks. Moreover, a sufficiently strong gradient in the planetary boundary layer may enable the vehicles to perform dynamic soaring, achieving even greater locomotive efficiency. Shape Change Actuated, Low Altitude Robotic Soarers (SCALARS) are an appealing alternative to more conventional vehicle technology for exploring planets with dense atmospheres. SCALARS are buoyancy driven atmospheric gliders with a twin-hulled, inboard wing configuration. The inboard wing generates lift, which propels the vehicle forward. Symmetric changes in mass distribution induce gravitational pitch moments that provide longitudinal control. Asymmetric changes in mass distribution induce twist in the inboard wing that provides directional control. The vehicle is actuated solely by internal shape change; there are no external seals and no exposed moving parts, save for the inflatable buoyancy ballonets. Preliminary sizing analysis and dynamic modeling indicate the viability of using SCALARS to map the surface of Titan and to investigate features of interest.

  7. 14 CFR 29.755 - Hull buoyancy.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.755 Hull buoyancy. Water-based and amphibian rotorcraft. The hull and auxiliary floats, if used, must have enough... stability great enough to minimize the probability of capsizing the rotorcraft for the worst combination...

  8. 14 CFR 27.751 - Main float buoyancy.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  9. 14 CFR 29.751 - Main float buoyancy.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft...

  10. 46 CFR 197.342 - Buoyancy-changing devices.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Buoyancy-changing devices. 197.342 Section 197.342... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.342 Buoyancy-changing devices. (a) A dry suit or other buoyancy-changing device not directly connected to the exhaust valve of...

  11. The Island Wind-Buoyancy Paradox

    Science.gov (United States)

    de Boer, A. M.; Nof, D.

    2003-04-01

    In recent years, a variety of studies have suggested that the meridional overturning circulation is at least partially controlled by the Southern Ocean winds. However, the overturning requires transformation of water masses, a process driven by buoyancy fluxes. This seems paradoxical as the wind and buoyancy fluxes are generally thought to be independent. The paradox is resolved qualitatively, using salinity and temperature mixed dynamical-box models, and quantitatively, employing a numerical model. The salinity and temperature box models suggest that stronger southern winds will tend to weaken the vertical and horizontal salinity stratification so that it is easier for the conversion of deep to surface water (and vice versa) to take place. The (process-orientated) reduced-gravity numerical model is adapted to include a thermodynamic parameterization for the surface heat and freshwater fluxes. In response to stronger southern winds, the thermocline thickens in the north, releasing more heat to the atmosphere and, thereby, converting more surface to deep water.

  12. Energy spectrum of buoyancy-driven turbulence

    KAUST Repository

    Kumar, Abhishek

    2014-08-25

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Πu, we demonstrate that, for stably stratified flows, the kinetic energy spectrum Eu(k)∼k-11/5, the potential energy spectrum Eθ(k)∼k-7/5, and Πu(k)∼k-4/5 are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence Eu(k) follows Kolmogorov\\'s spectrum with a constant energy flux. For Rayleigh-Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing Πu(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results show that convective turbulence for unit Prandt number exhibits a constant Πu(k) and Eu(k)∼k-5/3 for a narrow band of wave numbers. © 2014 American Physical Society.

  13. Biologically inspired highly efficient buoyancy engine

    Science.gov (United States)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  14. Effects of Buoyancy on Langmuir Circulation

    Institute of Scientific and Technical Information of China (English)

    SONG Jun; SONG Jin-Bao

    2008-01-01

    Based on the Navier-Stokes equation,an equation describing the Langmuir circulation is derived by a perturbation method when the influences of Coriolis force and buoyancy force are both considered.The approach used in the analysis is similar to the works carried out by Craik and Leibovich[J.Fluid Mech.73 (1976)401],Leibovich [J.Fluid Mech.79 (1977) 715]and Huang[J.Fluid Mech.91 (1979) 191].Potential applications of the equation proposed are discussed in the area of Antarctic circumpolar current.

  15. Buoyancy driven turbulence and distributed chaos

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of recent direct numerical simulations, laboratory experiments and atmospheric measurements, that buoyancy driven turbulence exhibits a broad diversity of the types of distributed chaos with its stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$. The distributed chaos with $\\beta = 1/3$ (determined by the helicity correlation integral) is the most common feature of the stably stratified turbulence (due to the strong helical waves presence). These waves mostly dominate spectral properties of the vertical component of velocity field, while the horizontal component is dominated by the diffusive processes both for the weak and strong stable stratification ($\\beta =2/3$). For the last case influence of the low boundary can overcome the wave effects and result in $\\beta =1/2$ for the vertical component of the velocity field (the spontaneous breaking of the space translational symmetry - homogeneity). For the unstably stratified turbulence in the Rayleigh-Taylor mixing zone the di...

  16. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Li, Zhigang

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening...... and the diameter of the opening, respectively. The basic nature of airflow through single-sided openings, including airflow rate, air velocity, temperature difference between the rooms and the dimensions of the horizontal openings, were measured. A bi-directional airflow rate was measured using the constant...... injection tracer gas technique. Smoke visualizations showed that the airflow patterns are highly transient and unstable, and that the airflow rate oscillates with time. Correlations between the Froude (Archimedes) number Fr (Ar) and the L/D ratio are presented. In some cases the measured airflow rates fit...

  17. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening...... and the diameter of the opening, respectively. The basic nature of airflow through single-sided openings, including airflow rate, air velocity, temperature difference between the rooms and the dimensions of the horizontal openings, were measured. A bi-directional airflow rate was measured using the constant...... quite well with the Epstein's formula ratio are presented. In some cases the measured airflow rates fit quite well with the Epstein's formula but in other cases the measured data show clear deviations from the Epstein's formula. Thus, revised formulas for natural ventilation are proposed....

  18. Microgravity Flow Regime Data: Buoyancy and Mixing Apparatus Effects

    Science.gov (United States)

    Shephard, Adam; Best, Frederick

    2010-01-01

    Zero-g two-phase flow data set qualification and flight experiment design have not been standardized and as a result, agreement among researchers has not been reached regarding what experimental conditions adequately approximate those of microgravity. The effects of buoyancy forces and mixing apparatus on the flow regime transitions are presented in this study. The gravity conditions onboard zero-g aircraft are at best 10-3 g which is used to approximate the 10-5 g conditions of microgravity, thus the buoyancy forces present on zero-g aircraft can become significantly large and unrepresentative of microgravity. When buoyancy forces approach those of surface tension forces, buoyancy induced coalescence occurs. When discussing flow regime transitions, these large buoyancy forces lead to flow regime transitions which otherwise would not occur. The buoyancy attributes of the two-phase flow data sets available in the literature are evaluated to determine which data sets exhibit buoyancy induced transitions. Upon comparison of the representative data sets, the affects of different mixing apparatus can be seen in the superficial velocity flow regime maps.

  19. Neutral Buoyancy Simulator - SADE NBS Test

    Science.gov (United States)

    1983-01-01

    One of the main components of the Hubble Space Telescope (HST) is the Solar Array Drive Electronics (SADE) system. This system interfaces with the Support System Module (SSM) for exchange of operational commands and telemetry data. SADE operates and controls the Solar Array Drive Mechanisms (SADM) for the orientation of the Solar Array Drive (SAD). It also monitors the position of the arrays and the temperature of the SADM. During the first HST servicing mission, the astronauts replaced the SADE component because of some malfunctions. This turned out to be a very challenging extravehicular activity (EVA). Two transistors and two diodes had been thermally stressed with the conformal coating discolored and charred. Soldered cornections became molten and reflowed between the two diodes. The failed transistors gave no indication of defective construction. All repairs were made and the HST was redeposited into orbit. Prior to undertaking this challenging mission, the orbiter's crew trained at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS) to prepare themselves for working in a low gravity environment. They also practiced replacing HST parts and exercised maneuverability and equipment handling. Pictured is an astronaut practicing climbing a space platform that was necessary in making repairs on the HST.

  20. Neutral Buoyancy Simulator- NB38 -Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator (NBS) that served as the test center for shuttle astronauts training for Hubble related missions. Shown are astronauts Bruce McCandless and Sharnon Lucid being fitted for their space suits prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  1. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Buoyancy Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Buoyancy Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  2. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Buoyancy Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Buoyancy Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  3. Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices

    Science.gov (United States)

    Smith, Roger K.; Montgomery, Michael T.; Zhu, Hongyan

    2005-07-01

    Motivated primarily by its application to understanding tropical-cyclone intensification and maintenance, we re-examine the concept of buoyancy in rapidly rotating vortices, distinguishing between the buoyancy of the symmetric balanced vortex or system buoyancy, and the local buoyancy associated with cloud dynamics. The conventional definition of buoyancy is contrasted with a generalized form applicable to a vortex, which has a radial as well as a vertical component. If, for the special case of axisymmetric motions, the balanced density and pressure distribution of a rapidly rotating vortex are used as the reference state, the buoyancy field then characterizes the unbalanced density perturbations, i.e. the local buoyancy. We show how to determine such a reference state without approximation. The generation of the toroidal circulation of a vortex, which is necessary for vortex amplification, is characterized in the vorticity equation by the baroclinicity vector. This vector depends, inter-alia, on the horizontal (or radial) gradient of buoyancy evaluated along isobaric surfaces. We show that for a tropical-cyclone-scale vortex, the buoyancy so calculated is significantly different from that calculated at constant height or on surfaces of constant σ ( σ = ( p - p*)/( ps - p*), where p is the actual pressure, p* some reference pressure and ps is the surface pressure). Since many tropical-cyclone models are formulated using σ-coordinates, we examine the calculation of buoyancy on σ-surfaces and derive an expression for the baroclinicity vector in σ-coordinates. The baroclinic forcing term in the azimuthal vorticity equation for an axisymmetric vortex is shown to be approximately equal to the azimuthal component of the curl of the generalized buoyancy. A scale analysis indicates that the vertical gradient of the radial component of generalized buoyancy makes a comparatively small contribution to the generation of toroidal vorticity in a tropical cyclone, but may be

  4. March of buoyancy elements during extreme rainfall over India

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay; Simon, Anu; Thomas, Aype; Bhardwaj, Amit; Das, Sweta; Senroy, Soma; Roy Bhowmik, S. K.

    2017-03-01

    A major rain storm in Uttarakhand (India) caused heavy rains and major loss of life from floods and land slide during 16-18 June, 2013. The observed daily maximum rainfall rates (3-hourly) during the 16th and 17th June were 220 and 340 mm respectively. This event is addressed via sensitivity studies using a cloud resolving non-hydrostatic model with detailed microphysics. The streaming of moist air from the east-south-east and warmer air from the south-west contributed to the sustained large population and amplitude of buoyancy and the associated CAPE contributed to the longer period of heavy rains. This study addresses the concept of Buoyancy as a means for large vertical accelerations, stronger vertical motions, extreme rain rates and the mechanisms that relate to the time rates of change. A post-processing algorithm provides an analysis of time rate of change for the buoyancy. Moist air streams and warm/moist air intrusions into heavily raining clouds are part of this buoyancy enhancement framework. Improvements in modeling of the extreme rain event came from adaptive observational strategy that showed lack of moisture data sets in these vital regions. We show that a moist boundary layer near the Bay of Bengal leads to moist rivers of moisture where the horizontal convergence confines a large population of buoyancy elements with large magnitudes of buoyancy that streams towards the region of extreme orographic rains. The areas covered in this study include: (i) Use of high resolution cloud modeling (1-km), (ii) Now casting of rains using physical initialization with a Newtonian relaxation, (iii) Use of an adaptive observational strategy, (iii) Sensitivity of the evolution of fields and population of buoyancy elements to boundary layer moisture, (iv) Role of orography and details of buoyancy budget.

  5. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.

    Science.gov (United States)

    Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N

    2016-01-21

    We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.

  6. Neutral Buoyancy underwater electrical cornector test

    Science.gov (United States)

    1978-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Included in the plans for the space station was a space telescope. This telescope would be attached to the space station and directed towards outerspace. Astronomers hoped that the space telescope would provide a look at space that is impossible to see from Earth because of Earth's atmosphere and other man made influences. Pictured is a large structure that is being used as the antenna base for the space telescope.

  7. Buoyancy-Driven Polymerase Chain Reaction (PCR) Devices

    Energy Technology Data Exchange (ETDEWEB)

    Ness, K D; Wheeler, E K; Benett, W; Stratton, P; Christian, A; Chen, A; Ortega, J; Weisgraber, T H; Goodson, K E

    2004-09-28

    Polymerase chain reaction (PCR) facilitates DNA detection by significantly increasing the concentration of specific DNA segments. A new class of PCR instruments uses a buoyancy-driven re-circulating flow to thermally cycle the DNA sample and benefits from reduced cycle times, low sample volumes, a miniaturized format, and low power consumption. This paper analyzes a specific buoyancy PCR device in a micro-channel ''race-track'' geometry to determine key parameters about PCR cycle times and other figures of merit as functions of device dimensions. The 1-D model balances the buoyancy driving force with frictional losses. A hydrostatic pressure imbalance concept is used between the left and right sides of the fluid loop to calculate the buoyancy driving force. Velocity and temperature distributions within the channels are determined from two-dimensional analysis of the channel section, with developing region effects included empirically through scaled values of the local Nusselt number. Good agreement between four independent verification steps validate the 1-D simulation approach: (1) analytical expressions for the thermal entrance length are compared against, (2) comparison with a full 3-D finite element simulation, (3) comparison with an experimental flow field characterization, and (4) calculation of the minimum PCR runtime required to get a positive PCR signal from the buoyancy-driven PCR device. The 1-D approach closely models an actual buoyancy-driven PCR device and can further be used as a rapid design tool to simulate buoyancy PCR flows and perform detailed design optimizations studies.

  8. Mixing and dissipation in a geostrophic buoyancy-driven circulation

    Science.gov (United States)

    Vreugdenhil, Catherine A.; Gayen, Bishakhdatta; Griffiths, Ross W.

    2016-08-01

    Turbulent mixing and energy dissipation have important roles in the global circulation but are not resolved by ocean models. We use direct numerical simulations of a geostrophic circulation, resolving turbulence and convection, to examine the rates of dissipation and mixing. As a starting point, we focus on circulation in a rotating rectangular basin forced by a surface temperature difference but no wind stress. Emphasis is on the geostrophic regime for the horizontal circulation, but also on the case of strong buoyancy forcing (large Rayleigh number), which implies a turbulent convective boundary layer. The computed results are consistent with existing scaling theory that predicts dynamics and heat transport dependent on the relative thicknesses of thermal and Ekman boundary layers, hence on the relative roles of buoyancy and rotation. Scaling theory is extended to describe the volume-integrated rate of mixing, which is proportional to heat transport and decreases with increasing rotation rate or decreasing temperature difference. In contrast, viscous dissipation depends crucially on whether the thermal boundary layer is laminar or turbulent, with no direct Coriolis effect on the turbulence unless rotation is extremely strong. For strong forcing, in the geostrophic regime, the mechanical energy input from buoyancy goes primarily into mixing rather than dissipation. For a buoyancy-driven circulation in a basin comparable to the North Atlantic we estimate that the total rate of mixing accounts for over 95% of the mechanical energy supply, implying that buoyancy is an efficient driver of mixing in the oceans.

  9. How did Archimedes discover the law of buoyancy by experiment?

    Science.gov (United States)

    Kuroki, Hidetaka

    2016-03-01

    After Archimedes and Vitruvius era, for more than 2000 years, it has been believed that the displaced water measurement of golden crown is impossible, and at his Eureka moment, Archimedes discovered the law of buoyancy (Proposition 7 of his principles) and proved the theft of a goldsmith by weighing the golden crown in water. A previous study showed that a small amount of displaced water was able to be measured with enough accuracy by the introduced method. Archimedes measured the weight of displaced water. He did not find the law of buoyancy but rather specific gravity of things at the moment. After which, Archimedes continued to measure the specific gravity of various solids and fluids. Through these measurements, he reached the discovery of the law of buoyancy directly by experiment. In this paper, the process to the discovery of Archimedes' principle (Proposition 5) is presented.

  10. An Analytic Model for Buoyancy Resonances in Protoplanetary Disks

    CERN Document Server

    Lubow, Stephen H

    2014-01-01

    Zhu, Stone, and Rafikov (2012) found in 3D shearing box simulations a new form of planet-disk interaction that they attributed to a vertical buoyancy resonance in the disk. We describe an analytic linear model for this interaction. We adopt a simplified model involving azimuthal forcing that produces the resonance and permits an analytic description of its structure. We derive an analytic expression for the buoyancy torque and show that the vertical torque distribution agrees well with results of Athena simulations and a Fourier method for linear numerical calculations carried out with the same forcing. The buoyancy resonance differs from the classic Lindblad and corotation resonances in that the resonance lies along tilted planes. Its width depends on damping effects and is independent of the gas sound speed. The resonance does not excite propagating waves. At a given large azimuthal wavenumber k_y > 1/h (for disk thickness h), the buoyancy resonance exerts a torque over a region that lies radially closer to...

  11. Using Surface Integrals for Checking Archimedes' Law of Buoyancy

    Science.gov (United States)

    Lima, F. M. S.

    2012-01-01

    A mathematical derivation of the force exerted by an "inhomogeneous" (i.e. compressible) fluid on the surface of an "arbitrarily shaped" body immersed in it is not found in the literature, which may be attributed to our trust in Archimedes' law of buoyancy. However, this law, also known as Archimedes' principle (AP), does not yield the force…

  12. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    Science.gov (United States)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  13. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...

  14. 46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced...

  15. Buoyancy Effect on MHD Flow Past a Permeable Bed

    Directory of Open Access Journals (Sweden)

    S. Venkataramana

    1986-10-01

    Full Text Available In this paper, the effect of buoyancy force on the parallel flows bounded above by a rigid permeable plate which may be moving or stationary and below, by a permeable bed has been investigated. To discuss the solution, the flow region is divided into two zones. In Zone 1, the flow is laminar and is governed by the Navier-Stokes equations from the impermeable upper rigid plate to the permeable bed. In Zone 2, the flow is governed by the Darcy law in the permeable bed below the nominal surface. The expressions for velocity and temparature distributions, Slip velocity, slip temperature, mass flow rate and the rates of heat transfer coefficients are obtained. The effects of magnetic, porous, slip and buoyancy parameters and Biot number on the above physical quantities are investigated. The thickness of the boundary layer in Zone 2 has been evaluated.

  16. Buoyancy-corrected gravimetric analysis of lightly loaded filters.

    Science.gov (United States)

    Rasmussen, Pat E; Gardner, H David; Niu, Jianjun

    2010-09-01

    Numerous sources of uncertainty are associated with the gravimetric analysis of lightly loaded air filter samples (cut sizes (0.056-9.9 microm). By maintaining tight controls on humidity (within 0.5% RH of control setting) throughout pre- and postweighing at each stepwise increase in RH, it was possible to quantify error due to water absorption: 45% of the total mass change due to water absorption occurred between 16 and 50% RH, and 55% occurred between 50 and 60% RH. The buoyancy corrections ranged from -3.5 to +5.8 microg in magnitude and improved relative standard deviation (RSD) from 21.3% (uncorrected) to 5.6% (corrected) for a 7.2 microg sample. It is recommended that protocols for weighing low-mass particle samples (e.g., nanoparticle samples) should include buoyancy corrections and tight temperature/humidity controls. In some cases, conditioning times longer than 24 hr may be warranted.

  17. Design and Analysis of Typical Buoyancy Tank Riser Tensioner Systems

    Institute of Scientific and Technical Information of China (English)

    Zhuang Kang; Lusheng Jia; Liping Sun; Wenzhou Liang

    2012-01-01

    The method for design and analysis of a buoyancy tank riser tensioner system (BTRTS) was put forward in this paper,taking the free standing hybrid riser's top buoyancy tank as an example.The design procedure was discussed and was also illustrated in a flowchart,after a short description of the global arrangement,structure configuration,and the function of different types of buoyancy tanks (BT).The objective of this paper is to describe a way of developing a BT with minimal hydro force,maximal net lift,and no redundancy of comparunents.The method of determining the main dimensions of the BT,namely the length and the outer diameter,was outlined.A series of investigations was conducted for a West Africa FSHR BT design,and the effect of the ratio of the length to the outer diameter (L/D) on the hydrodynamics and the weight of the BT was discussed.The methodology of designing the internal structure of the BT was presented.The effects of the number of compartments and the dimension of the inner stem on the BT weight and strength were compared.The relationship between inner structure and the number one index of the BT as well as the riser's top tension factor (TTF) were illustrated for normal operating conditions and conditions with one or more compartments (or inner stem) damaged.A design instance was given in this paper,when L/D is 4-6,the BT weight and the drag force are compromised.When the BT is divided into 10 compartments,the riser TTF will reach the maximum value,and the ratio of the stem OD to shell OD is about 0.3.A global strength analysis method of the BT and the main load case matrix was also included in the paper,together with the local strength analysis of the buoyancy tank's pad-eye assembly.

  18. Floating rings in vertical soap films : capillary driven bidimensional buoyancy

    CERN Document Server

    Adami, N

    2013-01-01

    The present study aims to investigate the motion of buoyant rings in vertical soap films. Thickness differences and related bi-dimensional densities are considered as the motor leading to bi-dimensional buoyancy. We show how this effect can be re-interpreted thanks to surface tension profiles in soap films. We propose a model involving surface tension profiles in order to describe the motion of buoyant particles in vertical soap films, and compare it to experimental data.

  19. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  20. Using surface integrals for checking the Archimedes' law of buoyancy

    OpenAIRE

    Lima, F. M. S.

    2011-01-01

    A mathematical derivation of the force exerted by an \\emph{inhomogeneous} (i.e., compressible) fluid on the surface of an \\emph{arbitrarily-shaped} body immersed in it is not found in literature, which may be attributed to our trust on Archimedes' law of buoyancy. However, this law, also known as Archimedes' principle (AP), does not yield the force observed when the body is in contact to the container walls, as is more evident in the case of a block immersed in a liquid and in contact to the ...

  1. Equilibrium models of coronal loops that involve curvature and buoyancy

    CERN Document Server

    Hindman, Bradley W

    2013-01-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  2. Equilibrium Models of Coronal Loops That Involve Curvature and Buoyancy

    Science.gov (United States)

    Hindman, Bradley W.; Jain, Rekha

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  3. Phenomenology of buoyancy-driven turbulence: recent results

    CERN Document Server

    Verma, Mahendra K; Pandey, Ambrish

    2016-01-01

    In this paper, we review the recent developments in the field of buoyancy-driven turbulence. Scaling and numerical arguments show that the stably-stratified turbulence with moderate stratification has kinetic energy spectrum $E_u(k) \\sim k^{-11/5}$ and the kinetic energy flux $\\Pi_u(k) \\sim k^{-4/5}$, which is called Bolgiano-Obukhov scaling. The energy flux for the Rayleigh-B\\'{e}nard convection (RBC) however is approximately constant in the inertial range that results in Kolmorogorv's spectrum ($E_u(k) \\sim k^{-5/3}$) for the kinetic energy. The phenomenology of RBC should apply to other flows where the buoyancy feeds the kinetic energy, e.g. bubbly turbulence and fully-developed Rayleigh Taylor instability. This paper also covers several models that predict the Reynolds and Nusselt numbers of RBC. Recent works show that the viscous dissipation rate of RBC scales as $\\sim \\mathrm{Ra}^{1.3}$, where $\\mathrm{Ra}$ is the Rayleigh number.

  4. Lagrangian chaos in three- dimensional steady buoyancy-driven flows

    Science.gov (United States)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2016-11-01

    Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  5. Experimental study of buoyancy driven natural ventilation through horizontal openings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Li, Zhigang

    2007-01-01

    An experimental study of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. Measurements were made for opening ratios L/D range from 0.027 to 4.455, where L and D are the length and the diameter of the opening, respectiv......An experimental study of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. Measurements were made for opening ratios L/D range from 0.027 to 4.455, where L and D are the length and the diameter of the opening......, respectively. The bidirectional air flow rate was measured using constant injection tracer gas technique. Smoke visualizations showed that the air flow patterns are highly transient, unstable and complex, and that air flow rates oscillate with time. Correlations between the Froude number Fr and the L/D ratio...... of a ventilation system, but also be implemented in more detailed models, especially multi-zone models, for simulation of the performance of natural ventilation systems...

  6. Buoyancy Driven Mixing with Continuous Volumetric Energy Deposition

    Science.gov (United States)

    Wachtor, Adam J.; Jebrail, Farzaneh F.; Dennisen, Nicholas A.; Andrews, Malcolm J.; Gore, Robert A.

    2014-11-01

    An experiment involving a miscible fluid pair is presented which transitioned from a Rayleigh-Taylor (RT) stable to RT unstable configuration through continuous volumetric energy deposition (VED) by microwave radiation. Initially a light, low microwave absorbing fluid rested above a heavier, more absorbing fluid. The alignment of the density gradient with gravity made the system stable, and the Atwood number (At) for the initial setup was approximately -0.12. Exposing the fluid pair to microwave radiation preferentially heated the bottom fluid, and caused its density to drop due to thermal expansion. As heating of the bottom fluid continued, the At varied from negative to positive, and after the system passed through the neutral stability point, At = 0, buoyancy driven mixing ensued. Continuous VED caused the At to continue increasing and further drive the mixing process. Successful VED mixing required careful design of the fluid pair used in the experiment. Therefore, fluid selection is discussed, along with challenges and limitations of data collection using the experimental microwave facility. Experimental and model predictions of the neutral stability point, and onset of buoyancy driven mixing, are compared, and differences with classical, constant At RT driven turbulence are discussed.

  7. On the general concept of buoyancy in sedimentation and ultracentrifugation

    Science.gov (United States)

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    2013-08-01

    Gravity or ultracentrifuge settling of colloidal particles and macromolecules usually involves several disperse species, either because natural and industrial colloids display a large size polydispersity, or because additives are put in on purpose to allow for density-based fractionation of the suspension. Such ‘macromolecular crowding’, however, may have surprising effects on sedimentation, for it strongly affects the buoyant force felt by a settling particle. Here we show that, as a matter of fact, the standard Archimedes' principle is just a limiting law, valid only for mesoscopic particles settling in a molecular fluid, and we obtain a fully general expression for the actual buoyancy force providing a microscopic basis to the general thermodynamic analysis of sedimentation in multi-component mixtures. The effective buoyancy also depends on the particle shape, being much more pronounced for thin rods and discs. Our model is successfully tested on simple colloidal mixtures, and used to predict rather unexpected effects, such as denser particles floating on top of a lighter fluid, which we actually observe in targeted experiments. This ‘generalized Archimedes principle’ may provide a tool to devise novel separation methods sensitive to particle size and shape.

  8. Relations between morphology, buoyancy and energetics of requiem sharks

    Science.gov (United States)

    Papastamatiou, Yannis P.

    2016-01-01

    Sharks have a distinctive shape that remained practically unchanged through hundreds of millions of years of evolution. Nonetheless, there are variations of this shape that vary between and within species. We attempt to explain these variations by examining the partial derivatives of the cost of transport of a generic shark with respect to buoyancy, span and chord of its pectoral fins, length, girth and body temperature. Our analysis predicts an intricate relation between these parameters, suggesting that ectothermic species residing in cooler temperatures must either have longer pectoral fins and/or be more buoyant in order to maintain swimming performance. It also suggests that, in general, the buoyancy must increase with size, and therefore, there must be ontogenetic changes within a species, with individuals getting more buoyant as they grow. Pelagic species seem to have near optimally sized fins (which minimize the cost of transport), but the majority of reef sharks could have reduced the cost of transport by increasing the size of their fins. The fact that they do not implies negative selection, probably owing to decreased manoeuvrability in confined spaces (e.g. foraging on a reef). PMID:27853556

  9. Characteristics of Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Li, Zhigang

    Air flow through horizontal openings is an important issue of mass and energy transfer between different zones in buildings. This kind of mass and energy transfer have important implications regarding energy saving, thermal comfort, control of contaminants, micro-organisms and spread of fire...... and smoke. Air flow through vertical openings has been widely investigated but little is known about the flow in the horizontal openings, especially when they are driven by buoyancy. A literature survey shows that the brine-water system and the scale model are normally used forthe research work of air flow....... Computational fluid dynamics (CFD) are used to study these two air flow cases. The air flow rate and air flow pattern are predicted and compared with the full-scale measurements. The measurement data are used to compare two CFD models: standard k- ε model and large eddy simulation (LES) model. The cases...

  10. Nonlinear optimization of buoyancy-driven ventilation flow

    Science.gov (United States)

    Nabi, Saleh; Grover, Piyush; Caulfield, C. P.

    2016-11-01

    We consider the optimization of buoyancy-driven flows governed by Boussinesq equations using the Direct-Adjoint-Looping method. We use incompressible Reynolds-averaged Navier-Stokes (RANS) equations, derive the corresponding adjoint equations and solve the resulting sensitivity equations with respect to inlet conditions. For validation, we solve a series of inverse-design problems, for which we recover known globally optimal solutions. For a displacement ventilation scenario with a line source, the numerical results are compared with analytically obtained optimal inlet conditions available from classical plume theory. Our results show that depending on Archimedes number, defined as the ratio of the inlet Reynolds number to the Rayleigh number associated with the plume, qualitatively different optimal solutions are obtained. For steady and transient plumes, and subject to an enthalpy constraint on the incoming flow, we identify boundary conditions leading to 'optimal' temperature distributions in the occupied zone.

  11. Study on buoyancy convection phenomenon in the crystal growth process

    Institute of Scientific and Technical Information of China (English)

    DUAN Li; KANG Qi

    2009-01-01

    Real-time phase shift Mach-Zehnder interference technique,imaging technique,and computer image processing technique were combined to perform a real-time diagnosis of NaCIO3 crystal,which described both the dissolution process end the crystallization process of the NaCIO3 crystal in real-time condition.The dissolution fringes and the growth fringes in the process were obtained.Moreover,a distribution of concentration field in this process was obtained by inversion calculation.Finally,the buoyancy convection phenomenon caused by gravity in the crystal growth process was analyzed.The results showed that this convection phenomenon directly influences the growth rate of each crystal face in the crystal.

  12. Study on buoyancy convection phenomenon in the crystal growth process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Real-time phase shift Mach-Zehnder interference technique, imaging technique, and computer image processing technique were combined to perform a real-time diagnosis of NaClO3 crystal, which de- scribed both the dissolution process and the crystallization process of the NaClO3 crystal in real-time condition. The dissolution fringes and the growth fringes in the process were obtained. Moreover, a distribution of concentration field in this process was obtained by inversion calculation. Finally, the buoyancy convection phenomenon caused by gravity in the crystal growth process was analyzed. The results showed that this convection phenomenon directly influences the growth rate of each crystal face in the crystal.

  13. Buoyancy Instabilities in a Weakly Collisional Intracluster Medium

    CERN Document Server

    Kunz, Matthew W; Reynolds, Christopher S; Stone, James M

    2012-01-01

    The intracluster medium of galaxy clusters is a weakly collisional, high-beta plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign, the magnetothermal instability (MTI) in the outskirts of non-isothermal clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena MHD code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We highlight the importance of the microscale instabilities that inevitably accompany and regulate the pressure anisotropies generated by the HBI and MTI. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal...

  14. Statistical Change Detection for Diagnosis of Buoyancy Element Defects on Moored Floating Vessels

    DEFF Research Database (Denmark)

    Blanke, Mogens; Fang, Shaoji; Galeazzi, Roberto;

    2012-01-01

    Floating platforms with mooring systems are used extensively in off-shore operations. Part of the mooring systems are underwater buoyancy elements that are attached to the mooring lines. Loss or damage of a buoyancy element is invisible but changes the characteristics of the mooring system...

  15. Consistent Two-Equation Closure Modelling for Atmospheric Research: Buoyancy and Vegetation Implementations

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Kelly, Mark C.; Leclerc, Monique Y.

    2012-01-01

    A self-consistent two-equation closure treating buoyancy and plant drag effects has been developed, through consideration of the behaviour of the supplementary equation for the length-scale-determining variable in homogeneous turbulent flow. Being consistent with the canonical flow regimes of grid......}$$ is the dissipation rate of turbulent kinetic energy, E, and $${\\omega = \\varepsilon/E}$$ is the specific dissipation), comparing the suggested buoyancy-modified closure against Monin–Obukhov similarity theory. Assessment of the closure implementing both buoyancy and plant drag together has been done, comparing...

  16. Basal buoyancy and fast-moving glaciers: in defense of analytic force balance

    Science.gov (United States)

    van der Veen, C. J.

    2016-06-01

    The geometric approach to force balance advocated by T. Hughes in a series of publications has challenged the analytic approach by implying that the latter does not adequately account for basal buoyancy on ice streams, thereby neglecting the contribution to the gravitational driving force associated with this basal buoyancy. Application of the geometric approach to Byrd Glacier, Antarctica, yields physically unrealistic results, and it is argued that this is because of a key limiting assumption in the geometric approach. A more traditional analytic treatment of force balance shows that basal buoyancy does not affect the balance of forces on ice streams, except locally perhaps, through bridging effects.

  17. Control of a Buoyancy-Based Pilot Underwater Lifting Body

    Directory of Open Access Journals (Sweden)

    Finn Haugen

    2010-04-01

    Full Text Available This paper is about position control of a specific small-scale pilot underwater lifting body where the lifting force stems from buoyancy adjusted with an air pocket in the lifting body. A mathematical model is developed to get a basis for a simulator which is used for testing and for designing the control system, including tuning controller parameters. A number of different position controller solutions were tried both on a simulator and on the physical system. Successful control on both the simulator and the physical system was obtained with cascade control based on feedback from measured position and height of the air pocket in the lifting body. The primary and the secondary controllers of the cascade control system were tuned using Skogestad's model-based PID tuning rules. Feedforward from estimated load force was implemented in combination with the cascade control system, giving a substantial improvement of the position control system, both with varying position reference and varying disturbance (load mass.

  18. Using surface integrals for checking the Archimedes' law of buoyancy

    CERN Document Server

    Lima, F M S

    2011-01-01

    A mathematical derivation of the force exerted by an \\emph{inhomogeneous} (i.e., compressible) fluid on the surface of an \\emph{arbitrarily-shaped} body immersed in it is not found in literature, which may be attributed to our trust on Archimedes' law of buoyancy. However, this law, also known as Archimedes' principle (AP), does not yield the force observed when the body is in contact to the container walls, as is more evident in the case of a block immersed in a liquid and in contact to the bottom, in which a \\emph{downward} force that \\emph{increases with depth} is observed. In this work, by taking into account the surface integral of the pressure force exerted by a fluid over the surface of a body, the general validity of AP is checked. For a body fully surrounded by a fluid, homogeneous or not, a gradient version of the divergence theorem applies, yielding a volume integral that simplifies to an upward force which agrees to the force predicted by AP, as long as the fluid density is a \\emph{continuous func...

  19. Buoyancy and Penrose Process Produce Jets from Rotating Black Holes

    CERN Document Server

    Semenov, V S; Heyn, M F

    2014-01-01

    The exact mechanism by which astrophysical jets are formed is still unknown. It is believed that necessary elements are a rotating (Kerr) black hole and a magnetised accreting plasma. We model the accreting plasma as a collection of magnetic flux tubes/strings. If such a tube falls into a Kerr black hole, then the leading portion loses angular momentum and energy as the string brakes, and to compensate for this loss, momentum and energy is redistributed to the trailing portion of the tube.} {We found that buoyancy creates a pronounced helical magnetic field structure aligned with the spin axis. Along the field lines, the plasma is centrifugally accelerated close to the speed of light. This process leads to unlimited stretching of the flux tube since one part of the tube continues to fall into the black hole and simultaneously the other part of the string is pushed outward. Eventually, reconnection cuts the tube, the inner part is filled with new material and the outer part forms a collimated bubble-structured...

  20. Flow field topology of transient mixing driven by buoyancy

    Science.gov (United States)

    Duval, Walter M B.

    2004-01-01

    Transient mixing driven by buoyancy occurs through the birth of a symmetric Rayleigh-Taylor morphology (RTM) structure for large length scales. Beyond its critical bifurcation the RTM structure exhibits self-similarity and occurs on smaller and smaller length scales. The dynamics of the RTM structure, its nonlinear growth and internal collision, show that its genesis occurs from an explosive bifurcation which leads to the overlap of resonance regions in phase space. This event shows the coexistence of regular and chaotic regions in phase space which is corroborated with the existence of horseshoe maps. A measure of local chaos given by the topological entropy indicates that as the system evolves there is growth of uncertainty. Breakdown of the dissipative RTM structure occurs during the transition from explosive to catastrophic bifurcation; this event gives rise to annihilation of the separatrices which drives overlap of resonance regions. The global bifurcation of explosive and catastrophic events in phase space for the large length scale of the RTM structure serves as a template for which mixing occurs on smaller and smaller length scales. Copyright 2004 American Institute of Physics.

  1. Neutral Buoyancy Simulator - NB32 - Large Space Structure

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory; it was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, HST was finally designed and built; and it finally became operational in the 1990s. HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. MSFC's Neutral Buoyancy Simulator served as the training facility for shuttle astronauts for Hubble related missions. Shown is astronaut Sharnon Lucid having her life support system being checked prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  2. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Buoyancy Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Buoyancy Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  3. Annual and seasonal mean buoyancy fluxes for the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.

    INSAT-derived monthly mean precipitation, combined with estimates of evaporation from COADS, are used to prepare the annual mean and seasonal distributions of evaporation-precipitation (E-P)) and buoyancy fluxes for the tropical Indian Ocean...

  4. The Role of Magnetic Buoyancy in a Babcock-Leighton Type Solar Dynamo

    Indian Academy of Sciences (India)

    Dibyendu Nandy; Arnab Rai Choudhuri

    2000-09-01

    We study the effects of incorporating magnetic buoyancy in a model of the solar dynamo—which draws inspiration from the Babcock-Leighton idea of surface processes generating the poloidal field. We present our main results here.

  5. Maximum acceptable inherent buoyancy limit for aircrew/passenger helicopter immersion suit systems.

    Science.gov (United States)

    Brooks, C J

    1988-12-01

    Helicopter crew and passengers flying over cold water wear immersion suits to provide hypothermic protection in case of ditching in cold water. The suits and linings have trapped air in the material to provide the necessary insulation and are thus very buoyant. By paradox, this buoyancy may be too much for a survivor to overcome in escaping from the cabin of a rapidly sinking inverted helicopter. The Canadian General Standard Board requested that research be conducted to investigate what should be the maximum inherent buoyancy in an immersion suit that would not inhibit escape, yet would provide adequate thermal insulation. This experiment reports on 12 subjects who safely escaped with 146N (33 lbf) of added buoyancy from a helicopter underwater escape trainer. It discusses the logic for and recommendation that the inherent buoyancy in a helicopter crew/passenger immersion suit system should not exceed this figure.

  6. Buoyancy package for self-contained acoustic doppler current profiler mooring

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Krishnakumar, V.

    A buoyancy package for self-contained Acoustic Doppler Current Profiler(SC-ADCP 1200 RD instruments USA) was designed and fabricated indigenously, for subsurface mooring in coastal waters. The system design is discussed. The design to keep SC...

  7. Neutral Buoyancy Simultor (NBS) NB-1 Large Mass Transfer simulation

    Science.gov (United States)

    1980-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle.

  8. Gravitaxis of Euglena gracilis depends only partially on passive buoyancy

    Science.gov (United States)

    Richter, Peter R.; Schuster, Martin; Lebert, Michael; Streb, Christine; Häder, Donat-Peter

    In darkness, the unicellular freshwater flagellate Euglena gracilis shows a pronounced negative gravitactic behavior, and the cells swim actively upward in the water column. Up to now it was unclear whether this behavior is based on a passive (physical) alignment mechanism (e.g., buoyancy due to a fore-aft asymmetry of the cell body) or on an active physiological mechanism. A sounding rocket experiment was performed in which the effect of sub-1g-accelerations (0.05, 0.08, 0.12, and 0.2g) on untreated living cells and immobilized (fixation with liquid nitrogen) cells was observed. By means of computerized image analysis the angles of the cells long axis with respect to the acceleration vector were analyzed in order to calculate and compare the reorientation kinetics of the immobilized cells versus that of the controls. In both groups, the reorientation kinetics depended on the dose, but the reorientation of the living cells was about five times faster than that of the immobilized cells. This indicates that in young cells gravitaxis can be explained by a physical mechanism only to a small extend. In older cultures, in which the cells often have a drop shaped cell body, the physical reorientation is considerably faster, and a more pronounced influence of passive alignment caused by fore/aft asymmetry (drag-gravity model) can not be excluded. In addition to these results, Euglena gracilis cells seem to respond very sensitively to small accelerations when they are applied after a longer microgravity period. The data indicate that gravitactic orientation occurred at an acceleration as low as 0.05g.

  9. Effects of body condition on buoyancy in endangered North Atlantic right whales.

    Science.gov (United States)

    Nousek-McGregor, Anna E; Miller, Carolyn A; Moore, Michael J; Nowacek, Douglas P

    2014-01-01

    Buoyancy is an important consideration for diving marine animals, resulting in specific ecologically relevant adaptations. Marine mammals use blubber as an energy reserve, but because this tissue is also positively buoyant, nutritional demands have the potential to cause considerable variation in buoyancy. North Atlantic right whales Eubalaena glacialis are known to be positively buoyant as a result of their blubber, and the thickness of this layer varies considerably, but the effect of this variation on buoyancy has not been explored. This study compared the duration and rate of ascending and descending glides, recorded with an archival tag, with blubber thickness, measured with an ultrasound device, in free-swimming right whales. Ascending whales with thicker blubber had shorter portions of active propulsion and longer passive glides than whales with thinner blubber, suggesting that blubber thickness influences buoyancy because the buoyant force is acting in the same direction as the animal's movement during this phase. Whales with thinner layers also used similar body angles and velocities when traveling to and from depth, while those with thicker layers used shallower ascent angles but achieved higher ascent velocities. Such alterations in body angle may help to reduce the cost of transport when swimming against the force of buoyancy in a state of augmented positive buoyancy, which represents a dynamic response to reduce the energetic consequences of physiological changes. These results have considerable implications for any diving marine animal during periods of nutritional stress, such as during seasonal migrations and annual variations in prey availability.

  10. Academic Buoyancy and Academic Outcomes: Towards a Further Understanding of Students with Attention-Deficit/Hyperactivity Disorder (ADHD), Students without ADHD, and Academic Buoyancy Itself

    Science.gov (United States)

    Martin, Andrew J.

    2014-01-01

    Background: Academic buoyancy is students' capacity to successfully overcome setback and challenge that is typical of the ordinary course of everyday academic life. It may represent an important factor on the psycho-educational landscape assisting students who experience difficulties in school and schoolwork. Aims: This study investigated the…

  11. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles.

    Directory of Open Access Journals (Sweden)

    Yu-Ren Liou

    Full Text Available Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including fluorescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs conjugated with antibodies (i.e., targeted biotin-MBs. Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2 μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10 g for 1 min, and then allowed 1 hour at 4 °C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs, which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44(+ and MDA-MB-453 cells (CD44-, which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44(+ is a commonly used cancer

  12. Drag, but not buoyancy, affects swim speed in captive Steller sea lions

    Directory of Open Access Journals (Sweden)

    Ippei Suzuki

    2014-04-01

    Full Text Available Swimming at an optimal speed is critical for breath-hold divers seeking to maximize the time they can spend foraging underwater. Theoretical studies have predicted that the optimal swim speed for an animal while transiting to and from depth is independent of buoyancy, but is dependent on drag and metabolic rate. However, this prediction has never been experimentally tested. Our study assessed the effects of buoyancy and drag on the swim speed of three captive Steller sea lions (Eumetopias jubatus that made 186 dives. Our study animals were trained to dive to feed at fixed depths (10–50 m under artificially controlled buoyancy and drag conditions. Buoyancy and drag were manipulated using a pair of polyvinyl chloride (PVC tubes attached to harnesses worn by the sea lions, and buoyancy conditions were designed to fall within the natural range of wild animals (∼12–26% subcutaneous fat. Drag conditions were changed with and without the PVC tubes, and swim speeds were recorded and compared during descent and ascent phases using an accelerometer attached to the harnesses. Generalized linear mixed-effect models with the animal as the random variable and five explanatory variables (body mass, buoyancy, dive depth, dive phase, and drag showed that swim speed was best predicted by two variables, drag and dive phase (AIC = −139. Consistent with a previous theoretical prediction, the results of our study suggest that the optimal swim speed of Steller sea lions is a function of drag, and is independent of dive depth and buoyancy.

  13. Numerically quantifying the relative importance of topography and buoyancy in driving groundwater flow

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Both topography and buoyancy can drive groundwater flow;however,the interactions between them are still poorly understood.In this paper,the authors conduct numerical simulations of variable-density fluid flow and heat transport to quantify their relative importance.The finite element modeling experiments on a 2-D conceptual model reveal that the pattern of groundwater flow depends largely upon the relative magnitude of the flow rate due to topography alone and the flow rate due to buoyancy alone.When fluid velocity due to topography is greater than that due to buoyancy at large water table gradients,topography-driven ’forced convection’ overwhelms buoyancy-driven ’free convection’.When flow velocity due to buoyancy is greater than that due to topography at small water table gradients,mixed free and forced convection takes place.In this case,free convection becomes dominant,but topography-driven flow still plays an important role since it pushes the free convection cells to migrate laterally in the downhill direction.Consequently,hydrothermal fluid flow remains changing periodically with time and no steady state can be reached.The presence of a low-permeability layer near the surface helps eliminate the topography effect on the underlying free convection.

  14. Ceramic Spheres—A Novel Solution to Deep Sea Buoyancy Modules

    Directory of Open Access Journals (Sweden)

    Bo Jiang

    2016-06-01

    Full Text Available Ceramic-based hollow spheres are considered a great driving force for many applications such as offshore buoyancy modules due to their large diameter to wall thickness ratio and uniform wall thickness geometric features. We have developed such thin-walled hollow spheres made of alumina using slip casting and sintering processes. A diameter as large as 50 mm with a wall thickness of 0.5–1.0 mm has been successfully achieved in these spheres. Their material and structural properties were examined by a series of characterization tools. Particularly, the feasibility of these spheres was investigated with respect to its application for deep sea (>3000 m buoyancy modules. These spheres, sintered at 1600 °C and with 1.0 mm of wall thickness, have achieved buoyancy of more than 54%. As the sphere’s wall thickness was reduced (e.g., 0.5 mm, their buoyancy reached 72%. The mechanical performance of such spheres has shown a hydrostatic failure pressure above 150 MPa, corresponding to a rating depth below sea level of 5000 m considering a safety factor of 3. The developed alumina-based ceramic spheres are feasible for low cost and scaled-up production and show great potential at depths greater than those achievable by the current deep-sea buoyancy module technologies.

  15. Buoyancy Instabilities in Galaxy Clusters: Convection Due to Adiabatic Cosmic Rays and Anisotropic Thermal Conduction

    CERN Document Server

    Sharma, P; Quataert, E; Parrish, I J

    2009-01-01

    Using a linear stability analysis and two and three-dimensional nonlinear simulations, we study the physics of buoyancy instabilities in a combined thermal and relativistic (cosmic ray) plasma, motivated by the application to clusters of galaxies. We argue that cosmic ray diffusion is likely to be slow compared to the buoyancy time on large length scales, so that cosmic rays are effectively adiabatic. If the cosmic ray pressure $p_{cr}$ is $\\gtrsim 25 %$ of the thermal pressure, and the cosmic ray entropy ($p_{\\rm cr}/\\rho^{4/3}$; $\\rho$ is the thermal plasma density) decreases outwards, cosmic rays drive an adiabatic convective instability analogous to Schwarzschild convection in stars. Global simulations of galaxy cluster cores show that this instability saturates by reducing the cosmic ray entropy gradient and driving efficient convection and turbulent mixing. At larger radii in cluster cores, the thermal plasma is unstable to the heat flux-driven buoyancy instability (HBI), a convective instability genera...

  16. On the coupling between buoyancy forces and electroconvective instability near ion-selective surfaces

    CERN Document Server

    Karatay, Elif; Mani, Ali

    2016-01-01

    Recent investigations have revealed that ion transport from aqueous electrolytes to ion-selective surfaces is subject to electroconvective instability that stems from coupling of hydrodynamics with electrostatic forces. Electroconvection is shown to enhance ion mixing and the net rate of transport. However, systems subject to electroconvection inherently involve fluid density variation set by salinity gradient in the bulk fluid. In this study we thoroughly examine the interplay of gravitational convection and chaotic electroconvection. Our results reveal that buoyant forces can significantly influence the transport rates, otherwise set by electroconvection, when the Rayleigh number $Ra$ of the system exceeds a value $Ra \\sim 1000$. We show that buoyancy forces can significantly alter the flow patterns in these systems. When the buoyancy acts in the stabilizing direction, it limits the extent of penetration of electroconvection, but without eliminating it. When the buoyancy destabilizes the flow, it alters the...

  17. Origin of Domes on Europa: The Role of Thermally Induced Compositional Buoyancy,

    Science.gov (United States)

    Pappalardo, R. T.; Barr, A. C.

    2004-01-01

    The surface of Jupiter's moon Europa is peppered by topographic domes, interpreted as sites of intrusion and extrusion. Diapirism is consistent with dome morphology, but thermal buoyancy alone cannot produce sufficient driving pressures to create the observed dome elevations. Instead, diapirs may initiate by thermal convection that induces compositional segregation. Exclusion of impurities from warm upwellings allows sufficient buoyancy for icy plumes to create the observed surface topography, provided the ice shell has a small effective elastic thickness (0.2 to 0.5 km) and contains low-eutectic point impurities at the few percent level. This model suggests that the ice shell may be depleted in impurities over time.

  18. CFD modelling of buoyancy-driven natural ventilation opposed by wind

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M.; Ji, Y. [De Montfort Univ., Leceister (United Kingdom). Inst. of Energy and Sustainable Development; Hunt, G. [Imperial College of London, London (United Kingdom). Dept. of Civil and Environmental Engineering

    2005-07-01

    This study formed the basis for generating guidelines on how to use computational fluid dynamics (CFD) to model natural ventilation in low-energy building designs. Previous studies have investigated steady natural displacement ventilation in a single space driven by buoyancy alone. The simulations used an external flow domain which allowed airflow through inlets and outlets to be modelled without the need for boundary conditions at these locations. CFD methods were used successfully to model buoyancy-driven displacement ventilation in which wind forces oppose the flow. Simulations were then conducted for a wind assisted buoyancy-driven displacement ventilation flow. The use of boundary conditions was the basic differences in the way these simulations were modelled. It was emphasized that the simulations are for natural displacement ventilation in which wind forces oppose buoyancy. Results of analytical predictions and experimental measurements were found to be in good agreement. The small discrepancies in the interface height separating the warm stratified air from the cooler ambient layer below can be attributed to differences in the plume behaviour and performance of the gauze used for inhibiting horizontal momentum. The under-prediction in the reduced gravity of the upper layer may also be due to the small differences in plume structure. 12 refs., 1 tab., 11 figs.

  19. Investigating Students' Ideas about Buoyancy and the Influence of Haptic Feedback

    Science.gov (United States)

    Minogue, James; Borland, David

    2016-01-01

    While haptics (simulated touch) represents a potential breakthrough technology for science teaching and learning, there is relatively little research into its differential impact in the context of teaching and learning. This paper describes the testing of a haptically enhanced simulation (HES) for learning about buoyancy. Despite a lifetime of…

  20. Numerical investigation of the onset of centrifugal buoyancy in a rotating cavity

    Science.gov (United States)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John

    2016-11-01

    Buoyancy-induced flows in a differentially heated rotating annulus present a multitude of dynamics when control parameters such as rotation rate, temperature difference and Prandtl number are varied. Whilst most of the work in this area has been motivated by applications involving geophysics, the problem of buoyancy-induced convection in rotating systems is also relevant in industrial applications such as the flow between rotating disks of turbomachinery internal air systems, in which buoyancy plays a major role and poses a challenge to accurately predict temperature distributions and heat transfer rates. In such applications the rotational speeds involved are very large, so that the centrifugal accelerations induced are much higher than gravity. In this work we perform direct numerical simulations and linear stability analysis of flow induced by centrifugal buoyancy in a sealed rotating annulus of finite gap with flat end-walls, using a canonical setup representative of an internal air system rotating cavity. The analysis focuses on the behaviour of small-amplitude disturbances added to the base flow, and how those affect the onset of Rossby waves and, ultimately, the transition to a fully turbulent state where convection columns no longer have a well-defined structure. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  1. Investigating Students' Ideas About Buoyancy and the Influence of Haptic Feedback

    Science.gov (United States)

    Minogue, James; Borland, David

    2016-04-01

    While haptics (simulated touch) represents a potential breakthrough technology for science teaching and learning, there is relatively little research into its differential impact in the context of teaching and learning. This paper describes the testing of a haptically enhanced simulation (HES) for learning about buoyancy. Despite a lifetime of everyday experiences, a scientifically sound explanation of buoyancy remains difficult to construct for many. It requires the integration of domain-specific knowledge regarding density, fluid, force, gravity, mass, weight, and buoyancy. Prior studies suggest that novices often focus on only one dimension of the sinking and floating phenomenon. Our HES was designed to promote the integration of the subconcepts of density and buoyant forces and stresses the relationship between the object itself and the surrounding fluid. The study employed a randomized pretest-posttest control group research design and a suite of measures including an open-ended prompt and objective content questions to provide insights into the influence of haptic feedback on undergraduate students' thinking about buoyancy. A convenience sample (n = 40) was drawn from a university's population of undergraduate elementary education majors. Two groups were formed from haptic feedback (n = 22) and no haptic feedback (n = 18). Through content analysis, discernible differences were seen in the posttest explanations sinking and floating across treatment groups. Learners that experienced the haptic feedback made more frequent use of "haptically grounded" terms (e.g., mass, gravity, buoyant force, pushing), leading us to begin to build a local theory of language-mediated haptic cognition.

  2. "'Sink or Swim': Buoyancy and Coping in the Cognitive Test Anxiety--Academic Performance Relationship"

    Science.gov (United States)

    Putwain, David W.; Daly, Anthony L.; Chamberlain, Suzanne; Sadreddini, Shireen

    2016-01-01

    This study explores the relationship between students' self-report levels of cognitive test anxiety (worry), academic buoyancy (withstanding and successfully responding to routine school challenges and setbacks), coping processes and their achieved grades in high-stakes national examinations at the end of compulsory schooling. The sample comprised…

  3. Influence of Buoyancy Control Performance on Power Production by the Wave Dragon Nissum Bredning Prototype

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Tedd, James; Friis-Madsen, E.

    2007-01-01

    This paper reports on the real sea performance of the buoyancy control system of Wave Dragon, a floating wave energy converter using the overtopping principle. The device operates with the full independent control system which has been tested during three years of operation. The impact...

  4. Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans

    NARCIS (Netherlands)

    King, B.; Stone, M.; Zhang, H.P.; Gerkema, T.; Marder, M.; Scott, R.B.; Swinney, H.L.

    2012-01-01

    We examine the possible existence of internal gravity wave "turning depths," depths below which the local buoyancy frequency N(z) becomes smaller than the wave frequency. At a turning depth, incident gravity waves reflect rather than reaching the ocean bottom as is generally assumed. Here we conside

  5. An analytical theory of the buoyancy-Kolmogorov subrange transition in turbulent flows with stable stratification.

    Science.gov (United States)

    Sukoriansky, Semion; Galperin, Boris

    2013-01-13

    The buoyancy subrange of stably stratified turbulence is defined as an intermediate range of scales larger than those in the inertial subrange. This subrange encompasses the crossover from internal gravity waves (IGWs) to small-scale turbulence. The energy exchange between the waves and small-scale turbulence is communicated across this subrange. At the same time, it features progressive anisotropization of flow characteristics on increasing spatial scales. Despite many observational and computational studies of the buoyancy subrange, its theoretical understanding has been lagging. This article presents an investigation of the buoyancy subrange using the quasi-normal scale elimination (QNSE) theory of turbulence. This spectral theory uses a recursive procedure of small-scale modes elimination based upon a quasi-normal mapping of the velocity and temperature fields using the Langevin equations. In the limit of weak stable stratification, the theory becomes completely analytical and yields simple expressions for horizontal and vertical eddy viscosities and eddy diffusivities. In addition, the theory provides expressions for various one-dimensional spectra that quantify turbulence anisotropization. The theory reveals how the dispersion relation for IGWs is modified by turbulence, thus alleviating many unique waves' features. Predictions of the QNSE theory for the buoyancy subrange are shown to agree well with various data.

  6. 40 CFR 1065.690 - Buoyancy correction for PM sample media.

    Science.gov (United States)

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.690... mass uncorrected for buoyancy. ρ air = density of air in balance environment. ρ weight = density of... Where: p abs = absolute pressure in balance environment. M mix = molar mass of air in...

  7. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

    2007-08-01

    When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

  8. Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport

    NARCIS (Netherlands)

    Rappoldt, C.; Pieters, G.J.J.M.; Adema, E.B.; Baaijens, G.J.; Grootjans, A.P.; Duijn, van C.J.

    2003-01-01

    Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surfa

  9. Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference betwe

  10. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Directory of Open Access Journals (Sweden)

    Itsumi Nakamura

    Full Text Available We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes, indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  11. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Science.gov (United States)

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  12. Examination of Buoyancy-Reduction Effect in Induction-Heating Cookers by Using 3D Finite Element Method

    Science.gov (United States)

    Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa

    In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.

  13. BUOYANCY INSTABILITY IN THE NATURAL CONVECTION BOUNDARY LAYER AROUND A VERTICAL HEATED FLAT PLATE

    Institute of Scientific and Technical Information of China (English)

    颜大椿; 张汉勋

    2002-01-01

    A systematic research on the buoyancy instability in the natural convection boundary layer was conducted, including the basic characteristics such as its spectral components, wave length and velocity, the location of its critical layer,and amplitude distributions of the triple independent eigenmodes with the linear instability theory, the growth rates of its temperature and velocity fluctuations and the corresponding neutral curves for the buoyancy eigenmode were also obtained.Results indicated that the neutral curve of the velocity fluctuation had a nose shape consistent with that obtained in the numerical calculation, but for the temperature fluctuation, a ring-like region could be measured at a lower Grashof number before the nose-shaped main portion of the neutral curve.

  14. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan

    2015-07-26

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed particles in a fuel stream using continuous-wave (CW) Argon-ion laser. Velocity fields were also quantified with particle mage velocimetry (PIV) system having kHz repetition rate. The results showed that the dynamic motion of negative buoyance induced vortices near the nozzle exit was coupled strongly with a flame flickering instability. Typically during the flame flickering, the negative buoyant vortices oscillated at the flickering frequency. The vortices were distorted by the flickering motion and exhibited complicated transient vortical patterns, such as tilting and stretching. Numerical simulations were also implemented based on an open source C++ package, LaminarSMOKE, for further validations.

  15. The effects of buoyancy on turbulent nonpremixed jet flames in crossflow

    Science.gov (United States)

    Boxx, Isaac G.

    An experimental research study was conducted to investigate what effect buoyancy had on the mean and instantaneous flow-field characteristics of turbulent jet-flames in crossflow (JFICF). The study used an experimental technique wherein a series of normal-gravity, hydrogen-diluted propane JFICF were compared with otherwise identical ones in low-gravity. Experiments were conducted at the University of Texas Drop Tower Facility, a new microgravity science laboratory built for this study at the University of Texas at Austin. Two different diagnostic techniques were employed, high frame-rate digital cinematographic imaging and planar laser Mie scattering (PLMS). The flame-luminosity imaging revealed significant elongation and distortion of the large-scale luminous structure of the JFICF. This was seen to affect the flametip oscillation and burnout characteristics. Mean and root-mean-square (RMS) images of flame-luminosity were computed from the flame-luminosity image sequences. These were used to compare visible flame-shapes, flame chord-lengths and jet centerline-trajectories of the normal- and low-gravity flames. In all cases the jet-centerline penetration and mean luminous flame-width were seen to increase with decreasing buoyancy. The jet-centerline trajectories for the normal-gravity flames were seen to behave differently to those of the low-gravity flames. This difference led to the conclusion that the jet transitions from a momentum-dominated forced convection limit to a buoyancy-influenced regime when it reaches xiC ≈ 3, where xiC is the Becker and Yamazaki (1978) buoyancy parameter based on local flame chord-length. The mean luminous flame-lengths showed little sensitivity to buoyancy or momentum flux ratio. Consistent with the flame-luminosity imaging experiments, comparison of the instantaneous PLMS flow-visualization images revealed substantial buoyancy-induced elongation and distortion of the large-scale shear-layer vortices in the flow. This effect

  16. Optical Tracking Measurement on Vortex Induced Vibration of Flexible Riser with Short-Length Buoyance Module

    Science.gov (United States)

    Fan, Dixia; Du, Honglin; Triantafyllou, Michael

    2016-11-01

    We address experimentally the vortex induced vibrations (VIV) of long flexible cylinders. We employ optical tracking, using an array of high speed cameras. Compared to strain gauges and accelerometers, this non-intrusive approach, allows direct measurement of the flexible cylinder displacement with far denser spatial distribution. The measurements reveal essential features of flexible cylinder VIV, including complex geometries such as cylinders containing short-length buoyancy modules, with module to cylinder diameter ratio of 1:3.2 and module to bare cylinder length ratio of 1:1. The experiments are conducted with aspect ratio of 170 and 3 different coverage ratios, of 100%, 50% and 20%. The measurements demonstrate bi-frequency response due to excitation from both buoyancy module and bare cylinder, at low Strouhal number, down to values of 0.08, and the generation of traveling wave patterns.

  17. What buoyancy really is. A generalized Archimedes' principle for sedimentation and ultracentrifugation

    Science.gov (United States)

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    Particle settling is a pervasive process in nature, and centrifugation is a much versatile separation technique. Yet, the results of settling and ultracentrifugation experiments often appear to contradict the very law on which they are based: Archimedes Principle - arguably, the oldest Physical Law. The purpose of this paper is delving at the very roots of the concept of buoyancy by means of a combined experimental-theoretical study on sedimentation profiles in colloidal mixtures. Our analysis shows that the standard Archimedes' principle is only a limiting approximation, valid for mesoscopic particles settling in a molecular fluid, and we provide a general expression for the actual buoyancy force. This "Generalized Archimedes Principle" accounts for unexpected effects, such as denser particles floating on top of a lighter fluid, which in fact we observe in our experiments.

  18. Neutral buoyancy testing of architectural and environmental concepts of space vehicle design

    Science.gov (United States)

    Lenda, J. A.; Rosener, A. A.; Stephenson, M. L.

    1972-01-01

    Design guidelines are presented that are applicable to providing habitability areas and furniture elements for extended periods in a zero gravity environment. This was accomplished by: (1) analyzing the existing habitability crew area requirements, mobility and restraint aids, cross-cultural design, and establishing a man model for zero gravity; (2) designing specific furniture elements, chair and table, and volumes for a stateroom, office, bathroom, galley, and wardroom; and (3) neutral buoyancy testing and evaluation of these areas.

  19. Buoyancy Effects on the Scaling Characteristics of Atmospheric Boundary Layer Wind Fields in the Mesoscale Range

    CERN Document Server

    Kiliyanpilakkil, V P; Ruiz-Columbié, A; Araya, G; Castillo, L; Hirth, B; Burgett, W

    2015-01-01

    We have analyzed long-term wind speed time-series from five field sites up to a height of 300 m from the ground. Structure function-based scaling analysis has revealed that the scaling exponents in the mesoscale regime systematically depend on height. This anomalous behavior is shown to be caused by the buoyancy effects. In the framework of the extended self-similarity, the relative scaling exponents portray quasi-universal behavior.

  20. Experimental Study of Wind-Opposed Buoyancy-Driven Natural Ventilation

    DEFF Research Database (Denmark)

    Andersen, A.; Bjerre, M.; Chen, Z. D.;

    Natural ventilation driven by natural forces, i.e. wind and thermal buoyancy, is an environmentally friendly system for buildings and has been increasingly used around the world in recent years to mitigate the impact on the global environment due to the significant energy consumption by heating......, ventilation and air-conditioning (HV AC). There is a need for the understanding and development of theories and tools related to the design, operation and control of natural ventilation systems....

  1. Zero Power Buoyancy Control for Distributed Autonomous Sensor Networks Conducted During Crimson Viper 2010 Field Experiment

    Science.gov (United States)

    2011-03-04

    STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE...producing simple, small, power-efficient data harvesting nodes with variable buoyancy, enabling unsupervised underwater sensing with subsequent surfacing...aerosol samples for subsequent analysis at NRL. At regular intervals, a hand-held hyperspectral sensor as to be used to collect near-water optical

  2. What buoyancy really is. A Generalized Archimedes Principle for sedimentation and ultracentrifugation

    OpenAIRE

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    2012-01-01

    Particle settling is a pervasive process in nature, and centrifugation is a much versatile separation technique. Yet, the results of settling and ultracentrifugation experiments often appear to contradict the very law on which they are based: Archimedes Principle - arguably, the oldest Physical Law. The purpose of this paper is delving at the very roots of the concept of buoyancy by means of a combined experimental-theoretical study on sedimentation profiles in colloidal mixtures. Our analysi...

  3. Numerical Simulation on Floating Behavior of Buoyancy Tank Foundation of Anemometer Tower

    Institute of Scientific and Technical Information of China (English)

    丁红岩; 韩艳丽; 张浦阳

    2014-01-01

    The intact stability and damage stability of a model of an anemometer tower with buoyancy tank founda-tion are computed by the finite element software MOSES in this paper. The natural period of the anemometer tower is discussed through frequency domain analysis. The influence of a single factor, such as towing point position, wave height, wave direction and wave period, on towing stability is discussed through time domain analysis. At the same time, the towing stability under the condition of various combinations of many factors is analyzed based on the meas-ured data of the target area. Computer simulation results show that the intact stability is preferable and the damage stability is sufficient under the condition of plenty of subdivisions. Within the scope of the buoyancy tank foundation, the higher the towing point position is, the better the stability is. Wave height has a great impact on the motion ampli-tude of buoyancy tank foundation, but the effect on the acceleration is not obvious;wave period has a great impact on the acceleration, while the effect on the motion amplitude is not obvious;following-waves towing is more conducive to safety than atry.

  4. Fluid mechanics of ventilation system generated by buoyancy and momentum sources and experiments research

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; HUANG Chen; FU Yu-ying; CAO Wei-wu

    2010-01-01

    This paper presents fluid mechanics of ventilation system formed by the momentum source and the buoyancy source,which investigates inter-action between the plume and the non-isothermal air jet since buoyancy source is produced by the plume and momentum source is generated by the air jet,respectively.The interaction is discussed by a mathematical model,an idealized situation of the plume rising from a point heat source of buoyancy alone-in particular the initial momentum flux at the source is zero.Furthermore,the paper discusses the effects of the parameters such as strength of source,air-flow volume and air-flow velocity used in the mathematical-physical model.Considering the effect of the plume generated by the indoor heat source,one expression of trajectory of the non-isothermal air jet produced by jet diffuser is deduced.And field-experiment has also been carried out to illustrate the effect on flowing-action of the air jet and validate the theoretical work.It can be concluded that the heat sources do have effect on the flowing-action of the air jet,and the effect mainly depends on the interaction produced by the plume and the air jet.The results show that the thermal buoyant effect of plumes on the air jet should be taken into account if the indoor heat sources are large enough.Numerical simulation is conducted and coincides with the experimental results as well.

  5. Buoyancy effect on the flow pattern and the thermal performance of an array of circular cylinders

    CERN Document Server

    Fornarelli, Francesco; Oresta, Paolo

    2016-01-01

    In this paper we found, by means of numerical simulations, a transition in the oscillatory character of the flow field for a particular combination of buoyancy and spacing in an array of six circular cylinders at a Reynolds number of 100 and Prandtl number of 0.7. The cylinders are iso-thermal and they are aligned with the Earth acceleration (g). According to the array orientation, an aiding or an opposing buoyancy is considered. The effect of natural convection with respect to the forced convection is modulated with the Richardson number, Ri, ranging between -1 and 1. Two values of center to center spacing (s=3.6d - 4d) are considered. The effects of buoyancy and spacing on the flow pattern in the near and far field are described. Several transitions in the flow patterns are found and a parametric analysis of the dependence of the force coefficients and Nusselt number with respect to the Richardson number is reported. For Ri=-1, the change of spacing ratio from 3.6 to 4 induces a transition in the standard d...

  6. CO$_2$ dissolution controlled by buoyancy driven shear dispersion in a background hydrological flow

    CERN Document Server

    Unwin, H Juliette T; Woods, Andrew W

    2015-01-01

    We present an analytical and numerical study of the long-time flow which controls the dissolution of a plume of CO$_2$ following injection into an anticline structure in a deep saline aquifer of finite vertical extent. Over times of tens to thousands of years, some of the CO$_2$ will dissolve into the underlying groundwater to produce a region of relatively dense, CO$_2$ saturated water directly below the plume of CO$_2$. Continued dissolution then requires the supply of CO$_2$ unsaturated aquifer water. This may be provided by a background hydrological flow or buoyancy driven flow caused by the density contrast between the CO$_2$ saturated and unsaturated water in the aquifer. At long times, the interaction of the cross-layer diffusive mixing with the buoyancy, leads to buoyancy driven shear dispersion of the CO$_2$. With a background hydrological flow, the upstream transport of dissolved CO$_2$ by this dispersion becomes balanced by the oncoming hydrological flow so that CO$_2$ rich water can only spread a ...

  7. Buoyancy effects on rotation and translation of large particles in turbulent flow

    Science.gov (United States)

    Byron, Margaret; Tao, Yiheng; Variano, Evan

    2013-11-01

    We use laboratory experiments to investigate the effects of homogeneous, isotropic turbulence on particles of varying buoyancy, size, and shape. The buoyancy is varied between a specific gravity of 1.001 and 1.05. All particles are roughly 1 cm, which in this flow is close to Taylor's turbulent microscale. We vary the shape to compare spherical particles to non-spherical particles while matching the settling velocity, volume, and/or surface area. Particles are fabricated in custom shapes using transparent hydrogels whose refractive index is close to water. We embed tracers within the particles and use PIV to image the interior of the particle simultaneously with the exterior flowfield of homogeneous isotropic turbulence, generated by two active-grid synthetic jet arrays. We find that the settling velocity of these particles, regardless of shape, is reduced relative to the quiescent settling velocity as predicted by the Clift-Gauvin model. We explore the distribution of rotation rates, as characterized by the variance of angular velocity. We find significant anisotropy in the angular velocities of negatively buoyant particles, which vanishes as particles approach neutral buoyancy. We also see differences in angular velocity distribution between particles of varying eccentricity.

  8. Buoyancy under control: underwater locomotor performance in a deep diving seabird suggests respiratory strategies for reducing foraging effort.

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available BACKGROUND: Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag and report locomotor adjustments to the change of buoyancy with depth. METHODOLOGY/PRINCIPAL FINDINGS: Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. CONCLUSIONS/SIGNIFICANCE: Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants--as in other families of diving seabirds--of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control.

  9. Battleship Buoyancy

    Science.gov (United States)

    Dishaw, J. Patrick

    2010-04-01

    One of the most dramatic demonstrations of the Archimedes principle is the simple fact that battleships float. I estimate the depth of a battleship in seawater as an example in my physics classes. I use the battleship Arizona as an exemplar of a class of U.S. battleships used during World War II. The Arizona was 608 ft (185.3 m) long and 97 ft 1 in (29.6 m) wide at its widest dimension. The unloaded weight of the ship was 31,400 U.S. tons (2.79× 108 N). How deep would the Arizona sink into seawater of density 1028 kg/m3?

  10. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    Science.gov (United States)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet

  11. Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans.

    Science.gov (United States)

    Gray, Noel-Marie; Kainec, Kimberly; Madar, Sandra; Tomko, Lucas; Wolfe, Scott

    2007-06-01

    Previous analyses have shown that secondarily aquatic tetrapods, including whales, exhibit osteological adaptations to life in water as part of their complex buoyancy control systems. These structural specializations of bone span hyperostosis through osteoporosis. The past 15 years of paleontological effort has provided an unprecedented opportunity to examine the osteological transformation of whales as they make their transition to an obligate aquatic lifestyle over a 10-million-year period. It is hypothesized that whales manifest their osteological specialization in the same manner as extant semiaquatic and fully aquatic mammals. This study presents and analysis of the microstructural features of bone in early and late archaic cetaceans, and in a comparative sample of modern terrestrial, semiaquatic, and aquatic mammals. Bone histology was examined from the ribs of 10 fossilized individuals representing five early cetacean families, including Pakicetidae, Ambulocetidae, Protocetidae, Remintonocetidae, and Basilosauridae. Comparisons were then made with rib histology from nine genera of extant mammals including: Odocoileus (deer), Bos (cow), Equus (horse), Canis (dog), Lutra (river otter), Enhydra (sea otter), Choeropsis (pygmy hippo), Trichechus (sea cow), and Delphinus (dolphin). Results show that the transition from terrestrial, to semiaquatic, to obligate aquatic locomotion in archaeocetes involved a radical shift in bone function achieved by means of profound changes at the microstructural level. A surprising finding was that microstructural change predates gross anatomical shift in archaeocetes associated with swimming. Histological analysis shows that high bone density is an aquatic specialization that provides static buoyancy control (ballast) for animals living in shallow water, while low bone density is associated with dynamic buoyancy control for animals living in deep water. Thus, there was a shift from the typical terrestrial form, to osteopetrosis

  12. The Solar Vortex: Electric Power Generation using Anchored, Buoyancy-Induced Columnar Vortices

    Science.gov (United States)

    Glezer, Ari

    2015-04-01

    Naturally-occurring, buoyancy-driven columnar vortices (``dust devils'') that are driven by the instability of thermally stratified air layers and sustained by the entrainment of ground- heated air, occur spontaneously in the natural environment with core diameters of 1-50 m and heights up to 1 km. These vortices convert low-grade waste heat in the air layer overlying the warm surface into a solar-induced wind with significant kinetic energy. Unlike dust devil vortices that are typically free to wander laterally, the Solar Vortex (SoV) is deliberately triggered and anchored within a cylindrical domain bounded by an azimuthal array of stationary ground-mounted vertical vanes and sustained by continuous entrainment of the ground-heated air through these vanes. The mechanical energy of the anchored vortex is exploited for power generation by coupling the vortex to a vertical-axis turbine. This simple, low-cost electric power generating unit is competitive in cost, intermittency, and capacity factor with traditional solar power technologies. The considerable kinetic energy of the vortex column cannot be explained by buoyancy alone, and the fundamental mechanisms associated with the formation, evolution, and dynamics of an anchored, buoyancy-driven columnar vortex were investigated experimentally and numerically with specific emphasis on flow manipulation for increasing the available kinetic energy and therefore the generated power. These investigations have also considered the dependence of the vortex scaling and strength on the thermal resources and on the flow enclosure in the laboratory and in the natural environment. Preliminary outdoor tests of a two-meter scale prototype successfully demonstrated the ability to engender and anchor a columnar vortex using only solar radiation and couple the flow to a vertical axis wind turbine. A kilowatt-scale outer door prototype will be tested during the summer of 2015.

  13. A transient thermal model of a neutral buoyancy cryogenic fluid delivery system

    Science.gov (United States)

    Bue, Grant C.; Conger, Bruce S.

    A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.

  14. Effect of tracer buoyancy on tracer experiments conducted in fractured crystalline bedrock

    Science.gov (United States)

    Becker, Matthew W.

    2003-02-01

    Tracer buoyancy has been shown to influence breakthrough from two-well tracer experiments conducted in porous media. Two-well tracer experiments are presented from fractured crystalline bedrock, in which the specific gravity of the tracer injectate varied from 1.0002 to 1.0133. Under the forced hydraulic conditions imposed, no difference in breakthrough was noted for the three experiments. These results show that even relatively dense tracer injectate solutions may have an insignificant effect on breakthrough when imposed gradients are sufficiently large.

  15. Experimental study of buoyancy-driven flow in a half-scale stairwell model

    Energy Technology Data Exchange (ETDEWEB)

    Zohrabian, A.S.; Mokhtarzadeh-Dehghan, M.R.; Reynolds, A.J. (Brunel Univ., Uxbridge (GB). Dept. of Mechanical Engineering); Marriott, B.S.T. (Logica EIS Ltd., London (GB))

    1989-01-01

    This paper describes an experimental study of buoyancy-driven flows of mass and energy in a half-scale model of a stairwell. Two different geometries are considered. The stairwell model forms a closed system, within which the circulation of air is maintained by the continuous operation of a heater placed in the lower floor. The rig, its instrumentation and the computerized data-logging system are described in detail. The overall features of the flow are also described. The results include the velocity and temperature distributions and the circulating volume flow. The effects of heat input rate on these parameters are also discussed. (author).

  16. Dynamic effects of plate-buoyancy subduction at Manila Trench, South China Sea

    Science.gov (United States)

    Jiang, L.; Zhan, W.; Sun, J.; Li, J.

    2015-12-01

    Bathymetric map of SCS plate shows two subducting buoyancies, the fossil ridge and the oceanic plateau, which are supposed to impact slab segmentation into the north from Taiwan to 18°N, and the south from 17°N to Mindoro. Hypocenter distribution show that slab dip angle turns lower southwards from 45° to 30° in the north segment, and relatively equals ~45° in the south segment at the depth of 100km. Moreover, volcano distribution can be segmented into Miocene WVC, Quaternary EVC in the north and combined SVC in the south (Fig. A). We found that WVC and SVC mostly locate in a parallel belt ~50km apart to Manila trench, however EVC turn father southwards from 50km to 100km (Fig. B). Above characters congruously indicate that SCS plate kept equal dip angle in Miocene; then the north segment shallowed at 18°N and developed northwards in Quaternary, resulting in lower dip angle than the invariant south segment. To check the transformation of slab dip angle from 45° to 30° between 17~18°N, focal mechanism solution nearby 17°N are found 90° in rake and dip angle, strike parallel to the fossil ridge, indicating a slab tear located coincident with the ridge, where is a weak zone of higher heat flow and lower plate coupling ratio than the adjacent zones and slab can be easily tore as an interface for SCS plate segmentation. Subduction of the two buoyancies within SCS plate is supposed as influential dynamic factor: It caused the trench retreat rate reduced, forming a cusp and a flat convex of Manila trench shape; Moreover, the buoyancies resisted subduction, resulting in shear stress heterogeneity of SCS plate, in consequence the fossil ridge as a fragile belt potentially became stress concentration zone that easily tore; Then the buoyant oceanic plateau might lead to shallowing of the northern SCS plate. To examine the hypothesis, dynamic effects of the two subducting buoyancies are being respectively investigated based on numerical models. (Grt. 41376063, 2013

  17. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7.

  18. Simulation of buoyancy-induced turbulent flow from a hot horizontal jet

    Institute of Scientific and Technical Information of China (English)

    El-AMIN M. F.; SUN Shuyu; SALAM Amgad

    2014-01-01

    Experimental visualizations and numerical simulations of a horizontal hot water jet entering cold water into a rectangular storage tank are described. Three different temperature differences and their corresponding Reynolds numbers are considered. Both experimental visualization and numerical computations are carried out for the same flow and thermal conditions. The realizable k-e model is used for modeling the turbulent flow while the buoyancy is modeled using the Boussinesq approximation. Polynomial approximations of the water properties are used to compare with the Boussinesq approximation. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank as well as the Froude number are analyzed. The experimental visualizations are performed at intervals of five seconds for all different cases. The simulated results are compared with the visualized results, and both of them show the stratification phenomena and buoyancy force effects due to temperature difference and density variation. After certain times, depending on the case condition, the flow tends to reach a steady state.

  19. Laboratory experiments with a buoyancy forced circulation in a rotating basin

    Science.gov (United States)

    Vreugdenhil, Catherine; Griffiths, Ross; Gayen, Bishakhdatta

    2016-11-01

    We consider the relative influence of buoyancy forcing and Coriolis effects on convection forced by a differential in heating at a horizontal surface in a rectangular basin. Laboratory experiments with water are reported for a rotating f-plane basin and a range of Ekman number E = 2 ×10-7 - 1 ×10-5 . Heating is applied over half of the base as a uniform flux and cooling applied over the other half as a uniform temperature, resulting in a flux Rayleigh number RaF = O (1014) large enough to ensure turbulent convection, where RaF defined in terms of domain length L. Compared to the non-rotating circulation where Nusselt number (a measure of the convective to conductive heat transfer) scales as Nu RaF1 / 6 , the strongly rotating regime is determined by a geostrophic balance of the larger scales of horizontal flow in the inviscid thermal boundary with Nu Ro 1 / 6 , where Ro =B 1 / 2 / (f 3 / 2 L) is the natural Rossby number (B is buoyancy flux per unit area and f is Coriolis parameter). We also find evidence for a further transition into a regime where the circulation is dominated by deep 'chimney' convection in a field of small vortical plumes and Nu is more weakly dependent on rotation.

  20. Simulation of buoyancy-induced turbulent flow from a hot horizontal jet

    KAUST Repository

    El-Amin, Mohamed

    2014-02-01

    Experimental visualizations and numerical simulations of a horizontal hot water jet entering cold water into a rectangular storage tank are described. Three different temperature differences and their corresponding Reynolds numbers are considered. Both experimental visualization and numerical computations are carried out for the same flow and thermal conditions. The realizable k - ε model is used for modeling the turbulent flow while the buoyancy is modeled using the Boussinesq approximation. Polynomial approximations of the water properties are used to compare with the Boussinesq approximation. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank as well as the Froude number are analyzed. The experimental visualizations are performed at intervals of five seconds for all different cases. The simulated results are compared with the visualized results, and both of them show the stratification phenomena and buoyancy force effects due to temperature difference and density variation. After certain times, depending on the case condition, the flow tends to reach a steady state. © 2014 Publishing House for Journal of Hydrodynamics.

  1. Modeling and Assessment of Buoyancy-Driven Stratified Airflow in High-Space Industrial Hall

    Institute of Scientific and Technical Information of China (English)

    WANG Han-qing; CHEN Ke; HU Jian-jun; KOU Guang-xiao; WANG Zhi-yong

    2009-01-01

    In industrial environment,heat sources often are contaminant sources and health threatening con-taminants are mainly passive,so a detailed understanding of airflow mode can assist in work environment hy-giene measurement and prevention.This paper presented a numerical investigation of stratified airflow scenario in a high-space industrial hall with validated commercial code and experimentally acquired boundary conditions.Based upon an actually undergoing engineering project,this study investigated the performance of the buoyancy-driven displacement ventilation in a large welding hall with big components manufactured.The results have demonstrated that stratified airflow sustained by thermal buoyancy provides zoning effect in terms of clean and polluted regions except minor stagnant eddy areas.The competition between negative buoyant jets from displace-ment radial diffusers and positive buoyant plume from bulk object constitutes the complex transport characteris-tics under and above stratification interface.Entrainment,downdraft and turbulent eddy motion complicate the upper mixing zone,but the exhaust outlet plays a less important role in the whole field flow.And the corre-sponding suggestions concerning computational stability and convergence,further improvements in modeling and measurements were given.

  2. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere

    Science.gov (United States)

    van Hunen, Jeroen; van den Berg, Arie P.

    2008-06-01

    The tectonic style and viability of modern plate tectonics in the early Earth is still debated. Field observations and theoretical arguments both in favor and against the uniformitarian view of plate tectonics back until the Archean continue to accumulate. Here, we present the first numerical modeling results that address for a hotter Earth the viability of subduction, one of the main requirements for plate tectonics. A hotter mantle has mainly two effects: 1) viscosity is lower, and 2) more melt is produced, which in a plate tectonic setting will lead to a thicker oceanic crust and harzburgite layer. Although compositional buoyancy resulting from these thick crust and harzburgite might be a serious limitation for subduction initiation, our modeling results show that eclogitization significantly relaxes this limitation for a developed, ongoing subduction process. Furthermore, the lower viscosity leads to more frequent slab breakoff, and sometimes to crustal separation from the mantle lithosphere. Unlike earlier propositions, not compositional buoyancy considerations, but this lithospheric weakness could be the principle limitation to the viability of plate tectonics in a hotter Earth. These results suggest a new explanation for the absence of ultrahigh-pressure metamorphism (UHPM) and blueschists in most of the Precambrian: early slabs were not too buoyant, but too weak to provide a mechanism for UHPM and exhumation.

  3. Vortex ring formation in starting forced plumes with negative and positive buoyancy

    Science.gov (United States)

    Gao, L.; Yu, S. C. M.

    2016-11-01

    The limiting process of vortex ring formation in starting forced plumes, with Richardson number in the range of -0.06 ≤ Ri ≤ 0.06, was studied numerically under the Boussinesq approximation. The examination of the dynamics of the starting flow evolution reveals that the plume-ambient density difference affects the vortex ring pinch-off mainly through three mechanisms, i.e., the baroclinic production of vorticity, the buoyancy acceleration (or deceleration) on the vortical structures, and its effect on the trailing shear layer instability. As Ri increases from negative to positive values, three regimes can be identified in terms of the vortex interaction patterns during the pinch-off process, i.e., the weak-interaction regime (-0.06 results show that the variation trends of formation number and separation number against Ri change near the critical value of Ric ≈ - 0.02. In the weak-interaction regime, both formation number and separation number increase rapidly against Ri. While in the transition and strong-interaction regimes alike, the formation number increases at a much slower rate than in the weak-interaction regime, and the separation number declines dramatically as Ri increases. Finally, a qualitative explanation on the variation patterns of formation number and separation number is proposed based on the buoyancy effects on the dynamic properties of the leading vortex ring and the vortex interaction patterns.

  4. EXPERIMENTAL INVESTIGATION INTO HOT WATER SLOT JETS WITH NEGATIVELY BUOYANCY IN CROSS FLOW

    Institute of Scientific and Technical Information of China (English)

    YANG Zhong-hua; HUAI Wen-xin; DAI Hui-chao

    2005-01-01

    An experiment was conducted to examine the near-field behavior of negatively buoyant planar jets in flowing environment. Hot water jet was projected downwards at different angles from a slot into a uniform cross flow. Micro Acoustic Doppler Velocimeter (Micro ADV) system is used to measure the velocity and turbulent fluxes of Reynolds stresses. The whole field temperatures were measured with fast response thermocouples. Pure jets experiments were made also to study the effect of buoyancy in negatively buoyant jets. It is found that the influenced area of hot jets is larger than which of pure jets when the jet angle is 90° and the influenced area of hot jets is smaller than which of pure jets when the jet angle is 45°. The difference is not obvious at 60° angle jets. This means that the rising of temperature has effect not only on negatively buoyancy, but also on the intensity of turbulence. The contrast of these two influences dominates the trend of jet flow.

  5. Nonlinear waves in stratified Taylor--Couette flow. Part 2. Buoyancy flux

    CERN Document Server

    Leclercq, Colin; Caulfield, Colm-Cille P; Dalziel, Stuart B; Linden, Paul F

    2016-01-01

    This paper is the second part of a two-fold study of mixing, i.e. the formation of layers and upwelling of buoyancy, in axially stratified Taylor--Couette flow, with fixed outer cylinder. In a first paper, we showed that the dynamics of the flow was dominated by coherent structures made of a superposition of nonlinear waves. (Mixed)-ribbons and (mixed)-cross-spirals are generated by interactions between a pair of linearly unstable helical modes of opposite `handedness', and appear to be responsible for the formation of well-mixed layers and sharp density interfaces. In this paper, we show that these structures are also fully accountable for the upwards buoyancy flux in the simulations. The mechanism by which this occurs is a positive coupling between the density and vertical velocity components of the most energetic waves. This coupling is primarily caused by diffusion of density at low Schmidt number Sc, but can also be a nonlinear effect at larger Sc. Turbulence was found to contribute negatively to the buo...

  6. A Review of Some Recent Studies on Buoyancy Driven Flows in an Urban Environment

    Directory of Open Access Journals (Sweden)

    Bodhisatta Hajra

    2014-01-01

    Full Text Available This paper reviews some recent studies (after 2000 pertaining to buoyancy driven flows in nature and thier use in reducing air pollution levels in a city (city ventilation. Natural convection flows occur due to the heating and cooling of various urban surfaces (e.g., mountain slopes, leading to upslope and downslope flows. Such flows can have a significant effect on city ventilation which has been the subject of study in the recent times due to increased pollution levels in a city. A major portion of the research reviewed here consists of natural convection flows occurring along mountain slopes, with a few studies devoted to flows along building walls. The studies discussed here primarily include field measurements and computational fluid dynamics (CFD models. This review shows that for densely populated cities with high pollution levels, natural convection flows (mountain slope or building walls can significantly aid the dispersion of pollutants. Additional studies in this area using CFD and water channel measurements can explain the physical processes involved in such flows and help improve CFD modelling. Future research should focus on a complete understanding of the mechanisms of buoyancy flows in nature and developing design guidelines for better planning of cities.

  7. Results of Buoyancy-gravity Effects in ITER Cable-in- Conduit Conductor with Dual Channel

    Science.gov (United States)

    Bruzzone, P.; Stepanov, B.; Zanino, R.; Richard, L. Savoldi

    2006-04-01

    The coolant in the ITER cable-in-conduit conductors (CICC) flows at significant higher speed in the central channel than in the strand bundle region due to the large difference of hydraulic impedance. When energy is deposited in the bundle region, e.g. by ac loss or radiation, the heat removal in vertically oriented dual channel CICC with the coolant flowing downward is affected by the reduced density of helium (buoyancy) in the bundle region, which is arising from the temperature gradient due to poor heat exchange between the two channels. At large deposited power, flow stagnation and back-flow can cause in the strand bundle area a slow temperature runaway eventually leading to quench. A new test campaign of the thermal-hydraulic behavior was carried out in the SULTAN facility on an instrumented section of the ITER Poloidal Field Conductor Insert (PFIS). The buoyancy-gravity effect was investigated using ac loss heating, with ac loss in the cable calibrated in separate runs. The extent of upstream temperature increase was explored over a broad range of mass flow rate and deposited power. The experimental behavior is partly reproduced by numerical simulations. The results from the tests are extrapolated to the likely operating conditions of the ITER Toroidal Field conductor with the inboard leg cooled from top to bottom and heat deposited by nuclear radiation from the burning plasma.

  8. The use of spirometry to evaluate pulmonary function in olive ridley sea turtles (Lepidochelys olivacea) with positive buoyancy disorders.

    Science.gov (United States)

    Schmitt, Todd L; Munns, Suzanne; Adams, Lance; Hicks, James

    2013-09-01

    This study utilized computed spirometry to compare the pulmonary function of two stranded olive ridley sea turtles (Lepidochelys olivacea) presenting with a positive buoyancy disorder with two healthy captive olive ridley sea turtles held in a large public aquarium. Pulmonary function test (PFT) measurements demonstrated that the metabolic cost of breathing was much greater for animals admitted with positive buoyancy than for the normal sea turtles. Positively buoyant turtles had higher tidal volumes and significantly lower breathing-frequency patterns with significantly higher expiration rates, typical of gasp-type breathing. The resulting higher energetic cost of breathing in the diseased turtles may have a significant impact on their long-term survival. The findings represent a method for clinical respiratory function analysis for an individual animal to assist with diagnosis, therapy, and prognosis. This is the first study, to our knowledge, to evaluate objectively sea turtles presenting with positive buoyancy and respiratory disease using pulmonary function tests.

  9. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  10. Swim bladder function and buoyancy control in pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus).

    Science.gov (United States)

    Stewart, John; Hughes, Julian M

    2014-04-01

    Physoclist fish are able to regulate their buoyancy by secreting gas into their hydrostatic organ, the swim bladder, as they descend through the water column and by resorbing gas from their swim bladder as they ascend. Physoclists are restricted in their vertical movements due to increases in swim bladder gas volume that occur as a result of a reduction in hydrostatic pressure, causing fish to become positively buoyant and risking swim bladder rupture. Buoyancy control, rates of swim bladder gas exchange and restrictions to vertical movements are little understood in marine teleosts. We used custom-built hyperbaric chambers and laboratory experiments to examine these aspects of physiology for two important fishing target species in southern Australia, pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus). The swim bladders of pink snapper and mulloway averaged 4.2 and 4.9 % of their total body volumes, respectively. The density of pink snapper was not significantly different to the density of seawater (1.026 g/ml), whereas mulloway were significantly denser than seawater. Pink snapper secreted gas into their swim bladders at a rate of 0.027 ± 0.005 ml/kg/min (mean ± SE), almost 4 times faster than mulloway (0.007 ± 0.001 ml/kg/min). Rates of swim bladder gas resorption were 11 and 6 times faster than the rates of gas secretion for pink snapper and mulloway, respectively. Pink snapper resorbed swim bladder gas at a rate of 0.309 ± 0.069 ml/kg/min, 7 times faster than mulloway (0.044 ± 0.009 ml/kg/min). Rates of gas exchange were not affected by water pressure or water temperature over the ranges examined in either species. Pink snapper were able to acclimate to changes in hydrostatic pressure reasonably quickly when compared to other marine teleosts, taking approximately 27 h to refill their swim bladders from empty. Mulloway were able to acclimate at a much slower rate, taking approximately 99 h to refill their swim bladders. We estimated that the

  11. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow......Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank...... parts of the tank is measured by experiments and used as input to the CFD model. Water temperatures at different levels of the tank are measured and compared to CFD calculated temperatures. The investigations focus on validation of the CFD model and on understanding of the CFD calculations.The results...

  12. Safety divers prepare HST mockup in the Neutral Buoyancy Simulator at MSFC

    Science.gov (United States)

    1993-01-01

    Safety divers in the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) prepare a mockup of the Hubble Space Telescope (HST) for one of 32 separate training sessions conducted by four of the STS-61 crew members in June. The three-week process allowed mission trainers to refine the timelines for the five separate spacewalks scheduled to be conducted on the actual mission scheduled for December 1993. The HST is separated into two pieces since the water tank depth cannot support the entire structure in one piece. The full length payload bay mockup shows the Solar Array Carrier in the foreground and the various containers that will house replacement hardware that will be carried on the mission.

  13. Does size and buoyancy affect the long-distance transport of floating debris?

    Science.gov (United States)

    Ryan, Peter G.

    2015-08-01

    Floating persistent debris, primarily made from plastic, disperses long distances from source areas and accumulates in oceanic gyres. However, biofouling can increase the density of debris items to the point where they sink. Buoyancy is related to item volume, whereas fouling is related to surface area, so small items (which have high surface area to volume ratios) should start to sink sooner than large items. Empirical observations off South Africa support this prediction: moving offshore from coastal source areas there is an increase in the size of floating debris, an increase in the proportion of highly buoyant items (e.g. sealed bottles, floats and foamed plastics), and a decrease in the proportion of thin items such as plastic bags and flexible packaging which have high surface area to volume ratios. Size-specific sedimentation rates may be one reason for the apparent paucity of small plastic items floating in the world’s oceans.

  14. Buoyancy leads to high productivity of the Changjiang diluted water: a note

    Institute of Scientific and Technical Information of China (English)

    CHEN Chen-Tung Arthur

    2008-01-01

    Being the mightiest river emptying into the East China Sea (ECS) and the Pacific Ocean,compounded with the large increase of nitrogen and phosphorus input due to anthropogenic activities,the Changjiang River (Yangtze River) has become a dominating source of these nutrients to the estuary.The high nutrient concentrations notwithstanding,however,outside of the estuary the high biological productivity of the Changjiang diluted water (CDW) are most probably fueled mainly by nutrient-rich subsurface waters originating from the upwelled Kuroshio waters.This is because while the buoyancy of the CDW spreads it out on the ECS continen-tal shelf,the CDW entrains subsurface waters along with the nutrients.Nutrients thus supplied are several times more than those supplied by the Changjiang River.

  15. Buoyancy-driven instabilities of acid-base fronts: the case of a color indicator

    Science.gov (United States)

    Riolfo, L. A.; Kuster, S.; Trevelyan, P. M. J.; El Hasi, C.; Zalts, A.; Almarcha, C.; D'Onofrio, A.; de Wit, A.

    2011-11-01

    Buoyancy-driven hydrodynamic instabilities of acid-base fronts are studied both experimentally and theoretically in the case where an aqueous solution of a strong acid is put above a denser aqueous solution of a color indicator in the gravity field. The neutralization reaction between the acid and the color indicator as well as their differential diffusion modifies the initially stable density profile in the system and can trigger convective motion both above and below the initial contact line. The type of patterns observed as well as their wavelength and the speed of the reaction front are shown to depend on the value of the initial concentrations of the acid and of the color indicator and on their ratio. A reaction-diffusion model explains how the hydrodynamic instability scenarios change when the concentration of the reactants are varied.

  16. Heart Rate Responses to Unaided Orion Side Hatch Egress in the Neutral Buoyancy Laboratory

    Science.gov (United States)

    English, Kirk L.; Hwang, Emma Y.; Ryder, Jeffrey W.; Kelly, Cody; Walker, Thomas; Ploutz-Snyder, Lori

    2016-01-01

    The Orion capsule will be the next NASA-built vehicle used for near and deep space exploration. The nominal landing scenario for Orion involves splashdown in the Pacific Ocean and subsequent aided crew egress conducted by military personnel. Contingency operations, however, require the crew to egress the capsule unaided, deploy an inflatable life raft, and to ingress the raft. Unaided egress is expected to be physiologically demanding, but no data exist to corroborate this. Thus, we evaluated the heart rate response to unaided Orion side hatch egress and raft ingress as par of the NASA crew Survival Engineering Team's evaluation of egress procedures using the Post-landing Orion Recovery Trainer (PORT) article in the Neutral Buoyancy Laboratory (NBL).

  17. Effects of buoyancy-driven convection on nucleation and growth of protein crystals.

    Science.gov (United States)

    Nanev, Christo N; Penkova, Anita; Chayen, Naomi

    2004-11-01

    Protein crystallization has been studied in presence or absence of buoyancy-driven convection. Gravity-driven flow was created, or suppressed, in protein solutions by means of vertically directed density gradients that were caused by generating suitable temperature gradients. The presence of enhanced mixing was demonstrated directly by experiments with crustacyanin, a blue-colored protein, and other materials. Combined with the vertical tube position the enhanced convection has two main effects. First, it reduces the number of nucleated hen-egg-white lysozyme (HEWL) crystals, as compared with those in a horizontal capillary. By enabling better nutrition from the protein in the solution, convection results in growth of fewer larger HEWL crystals. Second, we observe that due to convection, trypsin crystals grow faster. Suppression of convection, achieved by decreasing solution density upward in the capillary, can to some extent mimic conditions of growth in microgravity. Thus, impurity supply, which may have a detrimental effect on crystal quality, was avoided.

  18. Solving problems to learn concepts, how does it happen? A case for buoyancy

    Science.gov (United States)

    Buteler, Laura; Coleoni, Enrique

    2016-12-01

    Problem solving is a preferred activity teachers choose to help students learn concepts. At the same time, successful problem solving is widely regarded as a very good indicator of conceptual learning. Many studies have provided evidence that problem solving often improves students' chances of learning concepts. Still, the question remains relatively unexplored as to how this activity is useful to promote concept learning. In this study we explore this question in the setting of three university students solving a problem on hydrostatics, in which the concept of buoyancy is involved. We use coordination class theory to study how these students progress on their conceptual understanding. We were able to describe how this progress is related to contextual traits, as well as to students' particular epistemic stances. Finally, we discuss some implications for research and for teaching.

  19. Dispersion enhancement and damping by buoyancy driven flows in 2D networks of capillaries

    CERN Document Server

    D'Angelo, Maria Veronica; Allain, Catherine; Rosen, Marta; Hulin, Jean-Pierre

    2008-01-01

    The influence of a small relative density difference on the displacement of two miscible liquids is studied experimentally in transparent 2D networks of micro channels. Both stable displacements in which the denser fluid enters at the bottom of the cell and displaces the lighter one and unstable displacements in which the lighter fluid is injected at the bottom and displaces the denser one are realized. Except at the lowest mean flow velocity U, the average $C(x,t)$ of the relative concentration satisfies a convection-dispersion equation. The dispersion coefficient is studied as function of the relative magnitude of fluid velocity and of the velocity of buoyancy driven fluid motion. A model is suggested and its applicability to previous results obtained in 3D media is discussed.

  20. Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid

    Science.gov (United States)

    Borrelli, A.; Giantesio, G.; Patria, M. C.; Roşca, N. C.; Roşca, A. V.; Pop, I.

    2017-02-01

    This work examines the steady three-dimensional stagnation-point flow of an electrically conducting Newtonian fluid in the presence of a uniform external magnetic field H0 under the Oberbeck-Boussinesq approximation. We neglect the induced magnetic field and examine the three possible directions of H0 which coincide with the directions of the axes. In all cases it is shown that the governing nonlinear partial differential equations admit similarity solutions. We find that the flow has to satisfy an ordinary differential problem whose solution depends on the Hartmann number M, the buoyancy parameter λ and the Prandtl number Pr. The skin-friction components along the axes are computed and the stagnation-point is classified. The numerical integration shows the existence of dual solutions and the occurrence of the reverse flow for some values of the parameters.

  1. Simulation of DPM distribution in a long single entry with buoyancy effect

    Institute of Scientific and Technical Information of China (English)

    Zheng Yi; Thiruvengadam Magesh; Lan Hai; Tien C. Jerry

    2015-01-01

    Diesel particulate matter (DPM) is considered carcinogenic after prolonged exposure. With more diesel-powered equipment used in underground mines, miners’ exposure to DPM has become an increasing concern. This paper used computational fluid dynamics (CFD) method to study DPM distribution based on an experiment conducted by the Diesel Emissions Evaluation Program (DEEP) in Canada. Twenty-four cases were simulated where the emissions from both truck and load-haul-dumps (LHDs) were examined. Each vehicle was placed in two stream wise locations, and the vehicles were oriented either facing or with the rear end toward the main fresh airflow. A species transport model with buoyancy effect was then used to examine the DPM dispersion pattern. High DPM regions were identified downstream, around, and even upstream of diesel engines. This can provide guidelines for good working practices and selection of diesel emission reduction technologies underground.

  2. Numerical experiments modeling the buoyancy of bubbles in a vertical plane layer of a magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tsebers, A.O.

    1985-12-01

    The buoyancy of elliptical bubbles in the absence of surface tension are determined through a numerical experiment as a function of the semiaxis ratio, and the results are found to be in good agreement with the well-known Taylor-Saffman solution. Particular attention is given to the effect of the motion of bubbles on the development of a MHD instability in a transverse magnetic field, and it is shown that this motion stabilizes the development of perturbations in the motion direction and intensifies perturbations in the direction transverse to the motion. It is further shown that in the presence of a magnetic field, the configurations of the buoyant bubbles are not determined uniquely by physical parameters but also depend on their initial profiles. 6 references.

  3. The Enabling and Protective Role of Academic Buoyancy in the Appraisal of Fear Appeals Used Prior to High Stakes Examinations

    Science.gov (United States)

    Symes, Wendy; Putwain, David W.; Remedios, Richard

    2015-01-01

    Prior to high stakes examinations, teachers may engage in instructional practices to encourage their students to prepare well for their exams, including the use of "fear appeals". The current study examined whether academic buoyancy played a role in student appraisals of fear appeals as threatening or challenging. High school students…

  4. The Effect of Buoyancy Force in Computational Fluid Dynamics Simulation of a Two-Dimensional Continuous Ohmic Heating Process

    Directory of Open Access Journals (Sweden)

    Elzubier A. Salih

    2009-01-01

    Full Text Available Problem statement: Earlier research on ohmic heating technique focused on viscous food and foods containing solid particles. In this study, use of ohmic heating on sterilization of guava juice is carried out. Computational fluid dynamics was used to model and simulate the system. Investigate the buoyancy effect on the CFD simulation of continuous ohmic heating systems of fluid foods. Approach: A two-dimensional model describing the flow, temperature and electric field distribution of non-Newtonian power law guava juice fluid in a cylindrical continuous ohmic heating cell was developed. The electrical conductivity, thermo physical and rheological properties of the fluid was temperature dependent. Numerical simulation was carried out using FLUENT 6.1 software package. A user defined functions available in FLUENT 6.1 was employed for the electric field equation. The heating cell used consisted of a cylindrical tube of diameter 0.05 m, height 0.50 m and having three collinear electrodes of 0.02 m width separated by a distance of 0.22 m. The sample was subjected to zero voltage at the top and bottom of electrodes while electrical potential of 90 volts (AC 50-60 Hz was set at the middle electrode. The inlet velocity is 0.003 m sec-1 and the temperature is in the range of 30-90°C. Results: Simulation was carried with and without buoyancy driven force effect. The ohmic heating was successfully simulated using CFD and the results showed that the buoyancy had a strong effect in temperature profiles and flow pattern of the collinear electrodes configuration ohmic heating. A more uniform velocity and temperature profiles were obtained with the buoyancy effect included. Conclusion: For accurate results, the inclusion of buoyancy effect into the CFD simulation is important.

  5. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.

    Science.gov (United States)

    Ponganis, P J; St Leger, J; Scadeng, M

    2015-03-01

    The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are

  6. The buoyancy of large siliceous magma chambers is sufficient to initiate supereruptions

    Science.gov (United States)

    Malfait, W.; Sanchez-Valle, C.; Seifert, R.; Petitgirard, S.; Perrillat, J.; Ota, T.; Nakamura, E.; Lerch, P.; Mezouar, M.

    2012-12-01

    The geological record shows abundant evidence for rare, but extremely large caldera-forming eruptions of siliceous magmas that dwarf all historical volcanic episodes in erupted volume [1] and environmental impact [2, 3]. Because of the large size of the magma chambers that feed these eruptions, the overpressure generated by magma recharge is insufficient to fracture the cap rock and trigger an eruption [4]. For these thick magma chambers, the buoyancy of the magma potentially creates a sufficient overpressure capable of fracturing the cap rock, but the lack of data on the density of rhyolite melts precludes the appropriate estimation of the overpressure and the role of buoyancy in initiating supervolcano eruptions. The density of rhyolite melts has not been determined at super-liquidus temperatures or elevated pressures because traditional techniques, including Archimedean methods, sink/float experiments and acoustic measurements, are limited by the high melt viscosity. Here, we measured the density of rhyolitic/granitic melts with 0, 4.5 and 7.7 wt% of dissolved water at geologically relevant conditions: 0.9 to 3.6 GPa, 1270 to 1950 K. High pressure and temperature conditions were generated in a Paris-Edinburgh large volume press. Before and after each density measurement, the molten state of the sample was verified by X-ray diffraction. The density of the melt (ρPT) was determined from the X-ray attenuation coefficient of the sample, determined in situ (μPT) and at room conditions (μ0), and the density at room conditions (ρ0): ρPT=ρ0.(μPT/μ0). The acquired data were combined with available ambient pressure data on super-cooled liquids [5, 6] to derive a third order Birch-Murnaghan equation of state that accurately predicts the density of rhyolite melts as a function of pressure, temperature and water content, and the partial molar volume of dissolved water. Application of the melt equation of state to calculate the overpressure at the roof of supervolcano

  7. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.

    Science.gov (United States)

    Rongy, L; Goyal, N; Meiburg, E; De Wit, A

    2007-09-21

    Density differences across an autocatalytic chemical front traveling horizontally in covered thin layers of solution trigger hydrodynamic flows which can alter the concentration profile. We theoretically investigate the spatiotemporal evolution and asymptotic dynamics resulting from such an interplay between isothermal chemical reactions, diffusion, and buoyancy-driven convection. The studied model couples the reaction-diffusion-convection evolution equation for the concentration of an autocatalytic species to the incompressible Stokes equations ruling the evolution of the flow velocity in a two-dimensional geometry. The dimensionless parameter of the problem is a solutal Rayleigh number constructed upon the characteristic reaction-diffusion length scale. We show numerically that the asymptotic dynamics is one steady vortex surrounding, deforming, and accelerating the chemical front. This chemohydrodynamic structure propagating at a constant speed is quite different from the one obtained in the case of a pure hydrodynamic flow resulting from the contact between two solutions of different density or from the pure reaction-diffusion planar traveling front. The dynamics is symmetric with regard to the middle of the layer thickness for positive and negative Rayleigh numbers corresponding to products, respectively, lighter or heavier than the reactants. A parametric study shows that the intensity of the flow, the propagation speed, and the deformation of the front are increasing functions of the Rayleigh number and of the layer thickness. In particular, the asymptotic mixing length and reaction-diffusion-convection speed both scale as square root Ra for Ra>5. The velocity and concentration fields in the asymptotic dynamics are also found to exhibit self-similar properties with Ra. A comparison of the dynamics in the case of a monostable versus bistable kinetics is provided. Good agreement is obtained with experimental data on the speed of iodate-arsenous acid fronts

  8. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  9. Buoyed by geophysics : geophysics, just-in-time procurement help save millions on Ekwan pipeline buoyancy control

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2005-09-01

    Large-diameter natural gas pipelines buried in wet muskeg have the potential to rise to the surface due to buoyancy. Until recently, the most reliable method to prevent this was to attach specially manufactured bolt-on concrete weights at closely spaced intervals. However, these weights significantly increase capital budgets by millions of dollars because each weight weighs 2,540 kg and costs $1,000. A less costly alternative for buoyancy control in shallow muskeg is for the contractor to simply dig a deeper ditch. Another option is to hold down the pipeline by polyester straps attached to screw anchors. The challenge of applying these less costly options is that heavy equipment cannot be brought to the site to determine ground conditions until after all procurement, assessment and design is completed. Engineers must therefore select a buoyancy control measure based only on air photos and possibly a few drill holes. However, air photos do not indicate the depth of muskeg. Although some muskeg areas may turn out to be thick enough to avoid buoyancy control altogether, once construction is underway, it is too late to opt for cheaper alternatives. EnCana Corporation's 24-inch Ekwan pipeline was recently constructed through a remote area of British Columbia to connect the Greater Sierra natural gas discovery to a tie-in point on Nova Gas Transmission's northwest mainline. Air photos indicated that half of the route was through muskeg. AMEC E and C Services Inc. was responsible for the engineering and management of the project. The company used a combination of geophysical techniques to learn about the ground conditions. Toboggan mounted portable equipment was hauled by snowmobiles along trails made earlier by the survey crews. Ground penetrating radar assessed the muskeg thickness. Fixed frequency electromagnetic surveys also enhanced the results of the ground penetrating radar. The number of bolt-on weights was reduced from 9,000 to 3,700, a savings of $3

  10. Superhydrophobic treatment using atmospheric-pressure He/C4F8 plasma for buoyancy improvement

    Science.gov (United States)

    Noh, Sooryun; Moon, A.-Young; Moon, Se Youn

    2015-04-01

    A superhydrophobic miniature boat was fabricated with aluminum alloy plates treated with atmospheric-pressure helium (He)/octafluorocyclobutane (C4F8) plasma using 13.56 MHz rf power. When only 0.13% C4F8 was added to He gas, the contact angle of the surface increased to 140° and the surface showed superhydrophobic properties. On the basis of chemical and morphological analyses, fluorinated functional groups (CF, CF2, and CF3) and nano-/micro-sized particles were detected on the Al surface. These features brought about superhydrophobicity similar to the lotus effect. While the miniature boat, assembled with plasma-treated plates, was immersed in water, a layer of air (i.e., a plastron) surrounded the superhydrophobic surfaces. This effect contributed to the development of a 4.7% increase in buoyancy. In addition, the superhydrophobic properties lasted for two months under the submerged condition. These results demonstrate that treatment with atmospheric-pressure He/C4F8 plasma is a promising method of improving the load capacity and antifouling properties, and reducing the friction of marine ships through a fast and low-cost superhydrophobic treatment process.

  11. Parametric Studies on Buoyancy Induced Flow through Circular Pipes in Solar water heating system

    Directory of Open Access Journals (Sweden)

    Dr. S. V. Prayagi

    2011-01-01

    Full Text Available Solar energy is the primary source of energy for our planet. The average solar energy reaching the earth in the tropical zone is about 1kWh/m2 giving approximately 5 to 10 kWh/m2 per day. Increased utilization of solar energy in India would result in all around benefits, both in term of cleaner environment and monetary gain.The energy from the sun can be used for various purposes such as water heating, water distillation, refrigeration, drying, power generation etc. The present work deals with solar water heating system in particular. Performance of the solar collectors can be determined using the famous Hottel-Whillier-Bliss equation [1]. The analysis is simple for the forced convection situation, where the flow rate is artificially maintained constant to a desired value and the heat transfer coefficient can easily be predicted using the information available in the literature. However the natural convection situation it is very difficult to analyze as appropriate correlations for predicting the values of induced mass flow rate due to thermosiphon effect and the associated heat transfer coefficient are not available. The aim of the present investigation, therefore, is to establish correlations for heat transfer and flow characteristics for the buoyancy induced flow through inclined tubes in case of solar water heating system in particular. Considering the complexity of the problem, experimental approach is preferred. In order to produce required data, experiments were performed using inclined tubes of various lengths, diameters, inclinations, and different heat inputs.

  12. Neutral Buoyancy Simulator-NB50B-SADE Training Exercises

    Science.gov (United States)

    1983-01-01

    One of the main components of the Hubble Space Telescope (HST) is the Solar Array Drive Electronics (SADE) system. This system interfaces with the Support System Module (SSM) for exchange of operational commands and telemetry data. SADE operates and controls the Solar Array Drive Mechanisms (SADM) for the orientation of the Solar Array Drive (SAD). It also monitors the position of the arrays and the temperature of the SADM. During the first HST servicing mission, the astronauts replaced the SADE component because of some malfunctions. This turned out to be a very challenging extravehicular activity (EVA). Two transistors and two diodes had been thermally stressed with the conformal coating discolored and charred. Soldered cornections became molten and reflowed between the two diodes. The failed transistors gave no indication of defective construction. All repairs were made and the HST was redeposited into orbit. Prior to undertaking this challenging mission, the orbiter's crew trained at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS) to prepare themselves for working in a low gravity environment. They also practiced replacing HST parts and exercised maneuverability and equipment handling. Pictured are crew members practicing on a space platform.

  13. Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop

    Science.gov (United States)

    Lamorgese, A.; Mauri, R.

    2016-03-01

    We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.

  14. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, I.R. [NIIEFA – JSC “D.V. Efremov Institute of Electrophysical Apparatus”, St. Petersburg, 196641 (Russian Federation); Obukhov, D.M., E-mail: obukhov@sintez.niiefa.spb.su [NIIEFA – JSC “D.V. Efremov Institute of Electrophysical Apparatus”, St. Petersburg, 196641 (Russian Federation); Genin, L.G. [MPEI – National Research University “Moscow Power Engineering Institute”, 14 Krasnokazarmennaya str., Moscow (Russian Federation); Sviridov, V.G.; Razuvanov, N.G.; Batenin, V.M.; Belyaev, I.A. [JIHT – Joint Institute of High Temperatures of the Russian Academy of Science, 13/19, Igorskaya str., Moscow (Russian Federation); Poddubnyi, I.I. [MPEI – National Research University “Moscow Power Engineering Institute”, 14 Krasnokazarmennaya str., Moscow (Russian Federation); Pyatnitskaya, N.Yu. [JIHT – Joint Institute of High Temperatures of the Russian Academy of Science, 13/19, Igorskaya str., Moscow (Russian Federation)

    2016-03-15

    Highlights: • Heat transfer in vertical duct mercury flow in coplanar magnetic field is studied. • Mean velocity, temperature and temperature pulsations are measured. • Buoyancy influence on heat transfer is found. - Abstract: This article investigates an effect which was found out in downward flow of liquid metal (LM) in vertical rectangular duct in coplanar magnetic field (MF). The experiments have been performed on facility which located in JIHT. This facility is magneto hydrodynamic (MHD) mercury close-loop. The temperature field measurements have been performed at one side heating conditions in coplanar magnetic field. The averaged temperature fields, wall temperature distributions and statistical characteristics of temperature fluctuation have been obtained. The strong influence of counter thermo-gravitational convection (TGC) on average and fluctuation parameters has been observed. The influence of TGC in magnetic field leads to developing of temperature low-frequency fluctuations with high magnitude. The temperature fluctuation amplitude in a wide range of operating conditions is higher than turbulence level.

  15. Buoyancy-driven instability of a miscible horizontal displacement in a Hele-Shaw cell

    Science.gov (United States)

    Haudin, F.; Riolfo, L. A.; Knaepen, B.; de Wit, A.

    2012-11-01

    In Hele-Shaw cells, viscous fingers are forming when a fluid is injected into a more viscous one. If the two fluids are reversed, with the less mobile fluid injected into the low viscosity one, the situation is expected to be stable from a viscous point of view. Nevertheless, a destabilization of the interface can be observed due to a buoyancy-driven effect if a density difference exists between the two miscible fluids. As a result, the Poiseuille profile established in the gap of the cell locally destabilizes and convection rolls are forming. In a view from above, a striped pattern is observed at the miscible interface between the two fluids. To characterize the development of this instability, we have performed an experimental study of viscously stable miscible displacements in a Hele-Shaw cell with radial injection. The displacing fluids are aqueous solutions of glycerol and the displaced ones are either dyed water or dyed glycerol solutions. The way the relative properties of the two fluids is influencing the onset time of the instability and the characteristic size of the pattern is studied. The influence of the gap width and of the flow rate on the buoyantly unstable dynamics is also characterized.

  16. Influence of rheology on buoyancy driven instabilities of miscible displacements in 2D micromodels

    Science.gov (United States)

    D'Angelo, M. V.; Auradou, H.; Rosen, M.; Hulin, J. P.

    2009-05-01

    The stability of miscible displacements of Newtonian and shear-thinning fluids of slightly different densities (Δρ/ρ approx 3× 10-4) with a mean flow velocity U is investigated in a 2D transparent network of channels (average width = 0.33 mm). Concentration maps providing information at both the global and local scale are obtained through optical absorption measurements and compared in gravitationally stable and unstable vertical flow configurations; the influence of buoyant flows of typical velocity Ug is characterized by the gravity number Ng = Ug/|U|. For Ng glycerol solution, ld is only the same in the stable and unstable configurations for |Ng| 0.2, front spreading is not diffusive any more. In the stable configuration, in contrast, the front is flattened by buoyancy for Ng solution, both the concentration maps and the value of ld are the same in the stable and unstable configurations over the full range of U values investigated: this stabilization is explained by their high effective viscosity at low shear rates keeping Ng below the instability threshold even at the lowest velocities.

  17. Hypergravity to Explore the Role of Buoyancy in Boiling in Porous Media

    Science.gov (United States)

    Lioumbas, John S.; Krause, Jutta; Karapantsios, Thodoris D.

    2013-02-01

    Boiling in porous media is an active topic of research since it is associated with various applications, e.g. microelectronics cooling, wetted porous media as thermal barriers, food frying. Theoretical expressions customary scale boiling heat and mass transfer rates with the value of gravitational acceleration. Information obtained at low gravity conditions show a deviation from the above scaling law but refers exclusively to non-porous substrates. In addition, the role of buoyancy in boiling at varying gravitational levels (i.e. from microgravity—important to satellites and future Lunar and Martial missions, to high-g body forces—associated with fast aerial maneuvers) is still unknown since most experiments were conducted over a limited range of g-value. The present work aims at providing evidence regarding boiling in porous media over a broad range of hypergravity values. For this, a special device has been constructed for studying boiling inside porous media in the Large Diameter Centrifuge (LDC at ESA/ESTEC). LDC offers the unique opportunity to cancel the shear stresses and study only the effect of increased normal forces on boiling in porous media. The device permits measurement of the temperature field beneath the surface of the porous material and video recordings of bubble activity over the free surface of the porous material. The preliminary results presented from experiments conducted at terrestrial and hypergravity conditions, reveal for the first time the influence of increased levels of gravity on boiling in porous media.

  18. EFFECTS OF BUOYANCY RATIO ON CONVECTIVE HEAT AND SOLUTE TRANSFER IN NEWTONIAN FLUID SATURATED INCLINED POROUS CAVITY

    Directory of Open Access Journals (Sweden)

    A LATRECHE

    2014-12-01

    Full Text Available This paper summarizes a numerical study of the effects of buoyancy ratio on double-diffusive natural convection in square inclined cavity filled with fluid saturated porous media. Transverse gradients of heat and solute are applied on the two horizontal walls of the cavity, while the other two walls are impermeable and adiabatic. The Darcy model with the Boussinesq approximation is used to solve the governing equations. The flow is driven by a combined buoyancy effect due to both temperature and concentration variations. A finite volume approach has been used to solve the non-dimensional governing equations. The results are presented in streamline, isothermal, iso-concentration, Nusselt and Sherwood contours for different values of the non-dimensional governing parameters.

  19. Effects of buoyancy on lean premixed v-flames, Part II. VelocityStatistics in Normal and Microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, R.K.; Bedat, B.; Yegian, D.T.

    1999-07-01

    The field effects of buoyancy on laminar and turbulent premixed v-flames have been studied by the use of laser Doppler velocimetry to measure the velocity statistics in +1g, -1g and {micro}g flames. The experimental conditions covered mean velocity, Uo, of 0.4 to 2 m/s, methane/air equivalence ratio, f, of 0.62 to 0.75. The Reynolds numbers, from 625 to 3130 and the Richardson number from 0.05 to 1.34. The results show that a change from favorable (+1g) to unfavorable (-1g) mean pressure gradient in the plume create stagnating flows in the far field whose influences on the mean and fluctuating velocities persist in the near field even at the highest Re we have investigated. The use of Richardson number < 0.1 as a criterion for momentum dominance is not sufficient to prescribe an upper limit for these buoyancy effects. In {micro}g, the flows within the plumes are non-accelerating and parallel. Therefore, velocity gradients and hence mean strain rates in the plumes of laboratory flames are direct consequences of buoyancy. Furthermore, the rms fluctuations in the plumes of {micro}g flames are lower and more isotropic than in the laboratory flames to show that the unstable plumes in laboratory flames also induce velocity fluctuations. The phenomena influenced by buoyancy i.e. degree of flame wrinkling, flow acceleration, flow distribution, and turbulence production, can be subtle due to their close coupling with other flame flow interaction processes. But they cannot be ignored in fundamental studies or else the conclusions and insights would be ambiguous and not very meaningful.

  20. Effects of salinity and sea salt type on egg activation, fertilization, buoyancy and early embryology of European eel, Anguilla anguilla

    DEFF Research Database (Denmark)

    Sørensen, Sune Riis; Butts, Ian; Munk, Peter;

    2016-01-01

    sizes, while the remaining four salt types resulted in smaller eggs. All salt types except NaCl treatments led to high fertilization rates and had no effect on fertilization success as well as egg neutral buoyancies at 7 h post-fertilization. The study points to the importance of considering ionic...... composition of the media when rearing fish eggs and further studies are encouraged...

  1. Velocity measurements and concentration field visualizations in copper electrolysis under the influence of Lorentz forces and buoyancy

    Science.gov (United States)

    Weier, T.; Cierpka, C.; Huller, J.; Gerbeth, G.

    2006-12-01

    Velocity measurements and shadowgraph visualizations for copper electrolysis under the influence of a magnetic field are reported. Experiments in a rectangular cell show the expected strong correlation between flow features and limiting current density. The flow can be understood as driven by the interplay of Lorentz force and buoyancy. For a cylindrical cell with only slightly non-parallel electric and magnetic field lines, the presence and importance of the Lorentz force is demonstrated by velocity measurements. Figs 6, Refs 13.

  2. Geometric aspect and buoyancy effects on nature convection flow in the complex annuli filled with micropolar fluids

    Science.gov (United States)

    Chen, Wen Ruey

    2016-10-01

    This paper studies the steady laminar natural convection of micropolar fluids in the complex annuli between the inner sphere and outer vertical cylinder to present a numerical analysis of the flow and heat transfer characteristics with buoyancy effects. Computations were carried out systematically by the several different parameters of geometric ratio, micropolar material parameter and Rayleigh number to determine the average Nusselt number and the skin friction coefficient on the flow and the thermal fields.

  3. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  4. Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homotopy analysis method

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2015-09-01

    Full Text Available This paper investigates the theoretical influence of buoyancy and thermal radiation on MHD flow over a stretching porous sheet. The model which constituted highly nonlinear governing equations is transformed using similarity solution and then solved using homotopy analysis method (HAM. The analysis is carried out up to the 5th order of approximation and the influences of different physical parameters such as Prandtl number, Grashof number, suction/injection parameter, thermal radiation parameter and heat generation/absorption coefficient and also Hartman number on dimensionless velocity, temperature and the rate of heat transfer are investigated and discussed quantitatively with the aid of graphs. Numerical results obtained are compared with the previous results published in the literature and are found to be in good agreement. It was found that when the buoyancy parameter and the fluid velocity increase, the thermal boundary layer decreases. In case of the thermal radiation, increasing the thermal radiation parameter produces significant increases in the thermal conditions of the fluid temperature which cause more fluid in the boundary layer due to buoyancy effect, causing the velocity in the fluid to increase. The hydrodynamic boundary layer and thermal boundary layer thickness increase as a result of increase in radiation.

  5. On the role of buoyancy force in the ore genesis of SEDEX deposits: Example from Northern Australia

    Institute of Scientific and Technical Information of China (English)

    YANG JianWen; FENG ZuoHai; LUO XianRong; CHEN YuanRong

    2009-01-01

    Finite element modeling on a highly conceptualized 2-D model of fluid flow and heat transport is un-dertaken to simulate the paleo-hydrological system as if the Mount Ise deposits were being formed in the Mount Isa basin, Northern Australia, and to evaluate the potential of buoyancy force in driving ba-sin-scale fluid flow for the formation of sedimentary-exhalative (SEDEX) deposits. Our numerical case studies indicate that buoyancy-driven fluid flow is controlled mainly by the fault penetration depth and its spatial relation with the aquifer. Marine water recharges the basin via one fault and flows through the aquifer where it is heated from below. The heated metalliferous fluid discharges to the basin floor via the other fault. The venting fluid temperatures are computed to be in the range of 115 to 160℃, with fluid velocities of 2.6 to 4.1 m/year over a period of 1 Ma. These conditions are suitable for the formation of a Mount Isa-sized zinc deposit, provided a suitable chemical trap environment is present. Buoyancy force is therefore a viable driving mechanism for basin-scale ore-forming hydrothermal fluid migration, and it is strong enough to lead to the genesis of supergiant SEDEX deposits like the Mount Isa deposit, Northern Australia.

  6. Buoyancy-driven detachment of a wall-bound pendant drop: interface shape at pinchoff and nonequilibrium surface tension.

    Science.gov (United States)

    Lamorgese, A; Mauri, R

    2015-09-01

    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90^{∘}, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000)JFLSA70022-112010.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.

  7. Analytical Investigation of Laminar Viscoelastic Fluid Flow over a Wedge in the Presence of Buoyancy Force Effects

    Directory of Open Access Journals (Sweden)

    B. Rostami

    2014-01-01

    Full Text Available An analytical strong method, the homotopy analysis method (HAM, is employed to study the mixed convective heat transfer in an incompressible steady two-dimensional viscoelastic fluid flow over a wedge in the presence of buoyancy effects. The two-dimensional boundary-layer governing partial differential equations (PDEs are derived by the consideration of Boussinesq approximation. By the use of similarity transformation, we have obtained the ordinary differential nonlinear (ODE forms of momentum and energy equations. The highly nonlinear forms of momentum and energy equations are solved analytically. The effects of different involved parameters such as viscoelastic parameter, Prandtl number, buoyancy parameter, and the wedge angle parameter, which is related to the exponent m of the external velocity, on velocity and temperature distributions are plotted and discussed. An excellent agreement can be seen between the results and the previously published papers for f′′(0 and θ′(0 in some of the tables and figures of the paper for velocity and temperature profiles for various values of viscoelastic parameter and Prandtl number. The effects of buoyancy parameter on the velocity and temperature distributions are completely illustrated in detail.

  8. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  9. Investing the role of buoyancy in iceberg calving dynamics from tidewater glaciers

    Science.gov (United States)

    Trevers, Matt; Payne, Tony; Cornford, Stephen

    2016-04-01

    The Greenland Ice Sheet (GIS) currently makes a major and accelerating contribution to sea level rise (SLR), with its contribution split roughly evenly between surface mass balance changes due to increased melting and dynamic ice loss through calving. In recent decades, many of Greenland's major outlet glaciers have retreated dramatically due to increased iceberg calving, associated with an increase in velocity and inland thinning. The potential contribution to SLR of a complete collapse of the GIS is ~7m. Iceberg calving is an important process not only as a major source of mass loss from the GIS, but also for the controlling influence it has on the dynamics of the grounding line and over the ice sheet as a whole. Despite plenty of scientific attention and a diverse body of literature, the processes involved in calving, their controlling factors and how it feeds back into glacier and ice sheet dynamics are still not fully understood. This presents a major uncertainty into projections of SLR over the coming decades and centuries. Using Elmer/Ice, a state-of-the-art full-Stokes finite-element model, we are able to resolve the stress distributions in high resolution at the calving front. Buoyancy forces have been proposed as a major influencing factor in inducing calving. By investigating the stress distributions induced in a buoyant calving front, we hope to gain an understanding of how environmental influences such as surface thinning and waterline notch-cutting influence the calving rate, and compare this to observations from calving glaciers in Greenland.

  10. Performance enhancement of a Lorentz force velocimeter using a buoyancy-compensated magnet system

    Science.gov (United States)

    Ebert, R.; Leineweber, J.; Resagk, C.

    2015-07-01

    Lorentz force velocimetry (LFV) is a highly feasible method for measuring flow rate in a pipe or a duct. This method has been established for liquid metal flows but also for electrolytes such as saltwater. A decrease in electrical conductivity of the medium causes a decrease of the Lorentz force which needs to be resolved, affecting the accuracy of the measurement. We use an electrical force compensation (EFC) balance for the determination of the tiny force signals in a test channel filled with electrolyte solution. It is used in a 90°-rotated orientation with a magnet system hanging vertically on its load bar. The thin coupling elements of its parallel guiding system limit the mass of the magnets to 1 kg. To overcome this restriction, which limits the magnetic flux density and hence the Lorentz forces, a weight force compensation mechanism is developed. Therefore, different methods such as air bearing are conceivable, but for the elimination of additional horizontal force components which would disturb the force signal, only compensation by lift force provided by buoyancy is reasonable. We present a swimming body setup that will allow larger magnet systems than before, because a large amount of the weight force will be compensated by this lift force. Thus the implementation of this concept has to be made with respect to hydrodynamical and mechanical stability. This is necessary to avoid overturning of the swimming body setup and to prevent inelastic deformation. Additionally, the issue will be presented and discussed whether thermal convection around the lifting body diminishes the signal-to-noise ratio (SNR) significantly or not.

  11. Thermo capillary and buoyancy flows instabilities; Instabilites d`ecoulements thermocapillaires et de thermogravite

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, J.F.

    1997-10-22

    Fluid flows in which liquid layers are submitted to temperature gradient applied horizontally are studied. The thermo capillary and buoyancy effects are thus described. In the experiments, the form of the cell which contains the fluid is different and the fluid heating position too. Each of these experiments reveals a different aspect of the mechanism which is responsible of the flow instability. In the first experiment, the fluid is contained in a rectangular cell longer than larger and whose two longer vertical walls are differentially heated. The waves lengths, frequencies, propagation directions and instability thresholds of stationary, unsteady or oscillating modes obtained theoretically are compared to the structures observed experimentally. The instability mechanisms are essentially bound to the temperature vertical profile in the fluid and the heat exchanges between the fluid and the ambient air are particularly described. In the second experiment, the fluid is contained in an annular cell whose vertical cylindrical walls are differentially heated. The results obtained in the rectangular cell can be transposed to the annular cell substituting the constant thermal gradient of the rectangular geometry by those of the annular geometry, inversely proportional to the radial distance. The introduction of local parameters allows to show that the instability is developed at first near the inside cylinder. In the last experiment, the fluid layer is heated by an electric wire immersed in a parallel direction to the free surface. The development of an ascending vertical flow above the wire induces a deformation of the free surface which can be added to the instability mechanisms of the previous cells. (O.M.) 58 refs.

  12. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    Science.gov (United States)

    1978-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Another facet of the space station would be electrical cornectors which would be used for powering tools the astronauts would need for construction, maintenance and repairs. Shown is an astronaut training during an underwater electrical connector test in the NBS.

  13. Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

    Directory of Open Access Journals (Sweden)

    Moshari Shahab

    2014-06-01

    Full Text Available With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

  14. Tectonic controls on earthquake size distribution and seismicity rate: slab buoyancy and slab bending

    Science.gov (United States)

    Nishikawa, T.; Ide, S.

    2014-12-01

    There are clear variations in maximum earthquake magnitude among Earth's subduction zones. These variations have been studied extensively and attributed to differences in tectonic properties in subduction zones, such as relative plate velocity and subducting plate age [Ruff and Kanamori, 1980]. In addition to maximum earthquake magnitude, the seismicity of medium to large earthquakes also differs among subduction zones, such as the b-value (i.e., the slope of the earthquake size distribution) and the frequency of seismic events. However, the casual relationship between the seismicity of medium to large earthquakes and subduction zone tectonics has been unclear. Here we divide Earth's subduction zones into over 100 study regions following Ide [2013] and estimate b-values and the background seismicity rate—the frequency of seismic events excluding aftershocks—for subduction zones worldwide using the maximum likelihood method [Utsu, 1965; Aki, 1965] and the epidemic type aftershock sequence (ETAS) model [Ogata, 1988]. We demonstrate that the b-value varies as a function of subducting plate age and trench depth, and that the background seismicity rate is related to the degree of slab bending at the trench. Large earthquakes tend to occur relatively frequently (lower b-values) in shallower subduction zones with younger slabs, and more earthquakes occur in subduction zones with deeper trench and steeper dip angle. These results suggest that slab buoyancy, which depends on subducting plate age, controls the earthquake size distribution, and that intra-slab faults due to slab bending, which increase with the steepness of the slab dip angle, have influence on the frequency of seismic events, because they produce heterogeneity in plate coupling and efficiently inject fluid to elevate pore fluid pressure on the plate interface. This study reveals tectonic factors that control earthquake size distribution and seismicity rate, and these relationships between seismicity and

  15. Modeling the buoyancy-driven Black Sea Water outflow into the North Aegean Sea

    Directory of Open Access Journals (Sweden)

    Nikolaos Kokkos

    2016-04-01

    Full Text Available A three-dimensional numerical model was applied to simulate the Black Sea Water (BSW outflux and spreading over the North Aegean Sea, and its impact on circulation and stratification–mixing dynamics. Model results were validated against satellite-derived sea surface temperature and in-situ temperature and salinity profiles. Further, the model results were post-processed in terms of the potential energy anomaly, ϕ, analyzing the factors contributing to its change. It occurs that BSW contributes significantly on the Thracian Sea water column stratification, but its signal reduces in the rest of the North Aegean Sea. The BSW buoyancy flux contributed to the change of ϕ in the Thracian Sea by 1.23 × 10−3 W m−3 in the winter and 7.9 × 10−4 W m−3 in the summer, significantly higher than the corresponding solar heat flux contribution (1.41 × 10−5 W m−3 and 7.4 × 10−5 W m−3, respectively. Quantification of the ϕ-advective term crossing the north-western BSW branch (to the north of Lemnos Island, depicted a strong non-linear relation to the relative vorticity of Samothraki Anticyclone. Similar analysis for the south-western branch illustrated a relationship between the ϕ-advective term sign and the relative vorticity in the Sporades system. The ϕ-mixing term increases its significance under strong winds (>15 m s−1, tending to destroy surface meso-scale eddies.

  16. Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture.

    Science.gov (United States)

    Luni, Camilla; Feldman, Hope C; Pozzobon, Michela; De Coppi, Paolo; Meinhart, Carl D; Elvassore, Nicola

    2010-08-11

    This work presents the development of an array of bioreactors where finely controlled stirring is provided at the microliter scale (100-300 mul). The microliter-bioreactor array is useful for performing protocol optimization in up to 96 parallel experiments of hematopoietic stem cell (HSC) cultures. Exploring a wide range of experimental conditions at the microliter scale minimizes cost and labor. Once the cell culture protocol is optimized, it can be applied to large-scale bioreactors for stem cell production at the clinical level. The controlled stirring inside the wells of a standard 96-well plate is provided by buoyancy-driven thermoconvection. The temperature and velocity fields within the culture volume are determined with numerical simulations. The numerical results are verified with experimental velocity measurements using microparticle image velocimetry (muPIV) and are used to define feasible experimental conditions for stem cell cultures. To test the bioreactor array's functionality, human umbilical cord blood-derived CD34(+) cells were cultured for 7 days at five different stirring conditions (0.24-0.58 mums) in six repeated experiments. Cells were characterized in terms of proliferation, and flow cytometry measurements of viability and CD34 expression. The microliter-bioreactor array demonstrates its ability to support HSC cultures under stirred conditions without adversely affecting the cell behavior. Because of the highly controlled operative conditions, it can be used to explore culture conditions where the mass transport of endogenous and exogenous growth factors is selectively enhanced, and cell suspension provided. While the bioreactor array was developed for culturing HSCs, its application can be extended to other cell types.

  17. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    Directory of Open Access Journals (Sweden)

    Mar Fernández-Méndez

    Full Text Available Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2, maintaining an estimated net primary production of 0.4-40 mg C m(-2 d(-1, and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.

  18. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    Science.gov (United States)

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L; Glud, Ronnie N; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.

  19. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    Science.gov (United States)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    with results from ab initio calculations. The density model has been applied to examine the mineral-melt buoyancy relations at depth and the implications of these results for the dynamics of magma chambers, crystal settling and the stability and mobility of magmas in the upper mantle will be discussed.

  20. Buoyancy-induced squeezing of a deformable drop through an axisymmetric ring constriction

    Science.gov (United States)

    Ratcliffe, Thomas; Zinchenko, Alexander Z.; Davis, Robert H.

    2010-08-01

    Axisymmetric boundary-integral (BI) simulations were made for buoyancy-induced squeezing of a deformable drop through a ring constriction. The algorithm uses the Hebeker representation for the solid-particle contribution. A high-order, near-singularity subtraction technique is essential for near-critical squeezing. The drop velocity and minimum drop-solid spacing were determined for different ring and hole sizes, viscosity ratios, and Bond numbers, where the latter is a dimensionless ratio of gravitational to interfacial forces. The drop velocity decelerates typically 100-fold or more, and the drop-solid spacing reduces to typically 0.1%-1% of the nondeformed drop radius as the drop passes through the constriction. The critical Bond number (below which trapping occurs) was determined for different conditions. For supercritical conditions, the nondimensional time required for the drop to pass through the ring increases for a fixed drop-to-hole size with increasing viscosity ratio and decreasing Bond number, but it has a nonmonotonic dependence on the ratio of the radii of the drop and ring cross section. Numerical results indicate that the square of the drop squeezing time is inversely proportional to the Bond number minus the critical Bond number for near-critical squeezing. The critical Bond number, determined from dynamic BI calculations, compares favorably to that obtained precisely from a static algorithm. The static algorithm uses the Young-Laplace equation to calculate the pendant and sessile portions of the drop interface coupled through the conditions of global pressure continuity and total drop volume conservation. Over a limited parameter space, the critical Bond number increases almost linearly with the drop-to-hole ratio and is a weak function of the ratio of the ring cross-sectional radius to the hole radius. Another dynamic phenomenon, in addition to drop squeezing, is a drop "dripping" around the outer edge of the ring constriction, and a critical

  1. Buoyancy induced limits for nanoparticle synthesis experiments in horizontal premixed low-pressure flat-flame reactors

    Science.gov (United States)

    Weise, C.; Faccinetto, A.; Kluge, S.; Kasper, T.; Wiggers, H.; Schulz, C.; Wlokas, I.; Kempf, A.

    2013-06-01

    Premixed low-pressure flat-flame reactors can be used to investigate the synthesis of nanoparticles. The present work examines the flow field inside such a reactor during the formation of carbon (soot) and iron oxide (from Fe(CO)5) nanoparticles, and how it affects the measurements of nanoparticle size distribution. The symmetry of the flow and the impact of buoyancy were analysed by three-dimensional simulations and the nanoparticle size distribution was obtained by particle mass spectrometry (PMS) via molecular beam sampling at different distances from the burner. The PMS measurements showed a striking, sudden increase in particle size at a critical distance from the burner, which could be explained by the flow field predicted in the simulations. The simulation results illustrate different fluid mechanical phenomena which have caused this sudden rise in the measured particle growth. Up to the critical distance, buoyancy does not affect the flow, and an (almost) linear growth is observed in the PMS experiments. Downstream of this critical distance, buoyancy deflects the hot gas stream and leads to an asymmetric flow field with strong recirculation. These recirculation zones increase the particle residence time, inducing very large particle sizes as measured by PMS. This deviation from the assumed symmetric, one-dimensional flow field prevents the correct interpretation of the PMS results. To overcome this problem, modifications to the reactor were investigated; their suitability to reduce the flow asymmetry was analysed. Furthermore, 'safe' operating conditions were identified for which accurate measurements are feasible in premixed low-pressure flat-flame reactors that are transferrable to other experiments in this type of reactor. The present work supports experimentalists to find the best setup and operating conditions for their purpose.

  2. Experimental study of gliding arc plasma channel motion: buoyancy and gas flow phenomena under normal and hypergravity conditions

    Science.gov (United States)

    Potočňáková, Lucia; Šperka, Jiří; Zikán, Petr; van Loon, Jack J. W. A.; Beckers, Job; Kudrle, Vít

    2017-04-01

    The details of plasma channel motion are investigated by frame-by-frame image analysis of high speed recording of a gliding arc. The gliding arc is operated in several noble gases at various flow rates, voltages and artificial gravity levels. Several peculiarities in evolution of individual glides are observed, described and discussed, such as accelerating motion of plasma channel or shortcutting events of various kinds. Statistics of averaged parameters are significantly different for buoyancy and gas drag dominated regimes, which is put into relation with differing flow patterns for hypergravity and high gas flow.

  3. Buoyancy Effects on Unsteady MHD Flow of a Reactive Third-Grade Fluid with Asymmetric Convective Cooling

    Directory of Open Access Journals (Sweden)

    Tirivanhu Chinyoka

    2015-01-01

    Full Text Available This article examines the combined effects of buoyancy force and asymmetrical convective cooling on unsteady MHD channel flow and heat transfer characteristics of an incompressible, reactive, variable viscosity and electrically conducting third grade fluid. The chemical kinetics in the flow system is exothermic and the asymmetric convective heat transfers at the channel walls follow the Newton’s law of cooling. The coupled nonlinear partial differential equations governing the problem are derived and solved numerically using a semi-implicit finite difference scheme. Graphical results are presented and physical aspects of the problem are discussed with respect to various parameters embedded in the system.

  4. Solutions to Buoyancy-Drag Equation for Dynamical Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Zone

    Institute of Scientific and Technical Information of China (English)

    Y.G. Cao; W.K. Chow; N.K. Fong

    2011-01-01

    With a self-similar parameter b(At) = Hi/λi, where At is the Atwood number, Hi and λi are the a.mplluae and wavelength of bubble (i = 1) and spike (i = 2) respectively, we derive analytically the solutions to the buoyancy-drag equation recently proposed for dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing zone. Numerical solutions are obtained with a simple form ofb(At)--- 1/(1 + At) and comparisons with recent LEM (linear electric motor) experiments are made, and an agreement is found with properly chosen initial conditions.

  5. Effect of Thermal Buoyancy on Fluid Flow and Inclusion Motion in Tundish without Flow Control Devices--Part Ⅱ: Inclusion Motion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-feng

    2005-01-01

    Following up the fluid flow simulation in a 60 t tundish, the trajectories of inclusions in the 60 t tundish without flow control are simulated by considering the force balance between the drag force and the inertial buoyancy force. The Stochastic model yields more accurate inclusion motion than the non-Stochastic model due to including the effect of the turbulent fluctuation. The average residence time of inclusions decreases with increasing size. The thermal buoyancy favors inclusions removal especially the small inclusions. Using solute transport like the dye injection in water model and copper addition in the real steel tundish cannot accurately study the motion of the inclusions. In the simulation, more than 68% inclusions bigger than 10μm are removed to the top, and less than 32% enters the mold. The thermal buoyancy has little effect on the fraction of inclusions moved to the top of the inlet zone, and it mainly favors the removal of inclusions smaller than 100μm to the top surface of the outlet zone. For inclusions bigger than 100μm , the effect of thermal buoyancy on their motion can be ignored compared to the inertial buoyancy effect.

  6. Heart Rate Responses to Unaided Orion Side Hatch Egress in the Neutral Buoyancy Laboratory

    Science.gov (United States)

    English, Kirk L.; Hwang Emma Y.; Ryder, Jeffrey W.; Kelly, Cody; Walker, Thomas; Ploutz-Snyder, Lori L.

    2016-01-01

    NASA is developing the Orion capsule as a vehicle for transporting crewmembers to and from the International Space Station (ISS) and for future human space exploration missions. Orion and other commercial vehicles are designed to splash down in the ocean where nominally support personnel will assist crewmembers in egressing the vehicle. However, off-nominal scenarios will require crewmembers to egress the vehicle unaided, deploy survival equipment, and ingress a life raft. PURPOSE: To determine the heart rate (HR) responses to unaided Orion side hatch egress and raft ingress as a part of the NASA Crew Survival Engineering Team's evaluation of the PORT Orion mockup in the Neutral Buoyancy Laboratory (NBL). METHODS: Nineteen test subjects, including four astronauts (N=19, 14 males/5 females, 38.6+/-8.4 y, 174.4+/-9.6 cm, 75.7+/-13.1 kg), completed a graded maximal test on a cycle ergometer to determine VO2peak and HRpeak and were divided into five crews of four members each; one subject served on two crews. Each crew was required to deploy a life raft, egress the Orion vehicle from the side hatch, and ingress the life raft with two 8 kg emergency packs per crew. Each crew performed this activity one to three times; a total of ten full egresses were completed. Subjects wore a suit that was similar in form, mass, and function to the Modified Advanced Crew Escape Suit (MACES) including helmet, gloves, boots, supplemental O2 bottles, and a CO2-inflated life preserver (approx.18 kg); subjects began each trial seated supine in the PORT Orion mockup with seat belts and mockup O2 and communication connections and ended each trial with all four crewmembers inside the life raft. RESULTS: VO2peak was 40.8+/-6.8 mL/kg/min (3.1+/-0.7 L/min); HRpeak was 181+/-10 bpm. Total egress time across trials was 5.0+/-1.6 min (range: 2.8-8.0 min); all subjects were able to successfully complete all trials. Average maximum HR at activity start, at the hatch opening, in the water, and in the

  7. Implementing Nonlinear Buoyancy and Excitation Forces in the WEC-Sim Wave Energy Converter Modeling Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, M.; Yu, Y. H.; Nelessen, A.; Ruehl, K.; Michelen, C.

    2014-05-01

    Wave energy converters (WECs) are commonly designed and analyzed using numerical models that combine multi-body dynamics with hydrodynamic models based on the Cummins Equation and linearized hydrodynamic coefficients. These modeling methods are attractive design tools because they are computationally inexpensive and do not require the use of high performance computing resources necessitated by high-fidelity methods, such as Navier Stokes computational fluid dynamics. Modeling hydrodynamics using linear coefficients assumes that the device undergoes small motions and that the wetted surface area of the devices is approximately constant. WEC devices, however, are typically designed to undergo large motions in order to maximize power extraction, calling into question the validity of assuming that linear hydrodynamic models accurately capture the relevant fluid-structure interactions. In this paper, we study how calculating buoyancy and Froude-Krylov forces from the instantaneous position of a WEC device (referred to as instantaneous buoyancy and Froude-Krylov forces from herein) changes WEC simulation results compared to simulations that use linear hydrodynamic coefficients. First, we describe the WEC-Sim tool used to perform simulations and how the ability to model instantaneous forces was incorporated into WEC-Sim. We then use a simplified one-body WEC device to validate the model and to demonstrate how accounting for these instantaneously calculated forces affects the accuracy of simulation results, such as device motions, hydrodynamic forces, and power generation.

  8. Numerical Investigation of Heat Transfer with Thermal Radiation in an Enclosure in Case of Buoyancy Driven Flow

    Directory of Open Access Journals (Sweden)

    Christoph Hochenauer

    2014-08-01

    Full Text Available The purpose of this paper is to investigate state of the art approaches and their accuracy to compute heat transfer including radiation inside a closed cavity whereas buoyancy is the only driving force. This research is the first step of an all-embracing study dealing with underhood airflow and thermal management of vehicles. Computational fluid dynamic (CFD simulation results of buoyancy driven flow inside a simplified engine compartment are compared to experimentally gained values. The test rig imitates idle condition without any working fan. Thus, the airflow is only driven by natural convection. A conventional method used for these applications is to compute the convective heat transfer coefficient and air temperature using CFD and calculate the wall temperature separately by performing a thermal analysis. The final solution results from coupling two different software tools. In this paper thermal conditions inside the enclosure are computed by the use of CFD only. The impact of the turbulence model as well as the results of various radiation models are analyzed and compared to the experimental data.

  9. Buoyancy and Dissolution of the Floating Crust Layer in Tank 241-SY-101 During Transfer and Back-Dilution

    Energy Technology Data Exchange (ETDEWEB)

    CW Stewart; JH Sukamto; JM Cuta; SD Rassat

    1999-11-22

    To remediate gas retention in the floating crust layer and the potential for buoyant displacement gas releases from below the crust, waste will be transferred out of Hanford Tank 241-SY-101 (SY-101) in the fall of 1999 and back-diluted with water in several steps of about 100,000 gallons each. To evaluate the effects of back-dilution on the crust a static buoyancy model is derived that predicts crust and liquid surface elevations as a function of mixing efficiency and volume of water added during transfer and back-dilution. Experimental results are presented that demonstrate the basic physics involved and verify the operation of the models. A dissolution model is also developed to evaluate the effects of dissolution of solids on crust flotation. The model includes dissolution of solids suspended in the slurry as well as in the crust layers. The inventory and location of insoluble solids after dissolution of the soluble fraction are also tracked. The buoyancy model is applied to predict the crust behavior for the first back-dilution step in SY-101. Specific concerns addressed include conditions that could cause the crust to sink and back-dilution requirements that keep the base of the crust well above the mixer pump inlet.

  10. Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect

    CERN Document Server

    Khaibrakhmanov, Sergey A; Parfenov, Sergey Yu; Sobolev, Andrey M

    2016-01-01

    We investigate the fossil magnetic field in the accretion and protoplanetary discs using the Shakura and Sunyaev approach. The distinguishing feature of this study is the accurate solution of the ionization balance equations and the induction equation with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and the Hall effect. We consider the ionization by cosmic rays, X-rays and radionuclides, radiative recombinations, recombinations onto dust grains, and also thermal ionization. The buoyancy appears as the additional mechanism of magnetic flux escape in the steady-state solution of the induction equation. Calculations show that Ohmic diffusion and magnetic ambipolar diffusion constraint the generation of the magnetic field inside the `dead' zones. The magnetic field in these regions is quasi-vertical. The buoyancy constraints the toroidal magnetic field strength close to the disc inner edge. As a result, the toroidal and vertical magnetic fields become comparable. The Hall effect is important in the re...

  11. Effects of Viscosity on the Gravi-kinesis Responses of Swimming Paramecia Studied Using Manetic Force Buoyancy Variation

    Science.gov (United States)

    Jung, Ilyong; Valles, James M.

    2013-03-01

    Previous studies have shown that paramecia exhibit negative gravi-kinesis. They exert a stronger propulsive force when swimming up than when swimming down. This behavior is very surprising since it suggests they sense their tiny apparent weight of only ~ 80pN. In an effort to understand the mechanism of this sensing, we are testing how the viscosity of the swimming medium influences their gravi-kinetic response. We employ the technique of magnetic force buoyancy variation to simulate different effective gravity levels on swimming Paramecia. We are analyzing their swimming response employing a phenomenological model that relates the parameters describing their helical trajectories to the beating of their cilia. This work was supported by NSF PHY0750360 and at the NHMFL by NSF DMR-0084173

  12. NUMERICAL MODELLING OF VELOCITY AND TEMPERATURE DISTRIBUTIONS OF THE BUOYANCY CONVECTION EFFECT IN KNbO3 MELT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Numerical modelling of velocity and temperature fields in high-temperature KNbO3 melt of a loop-shaped Pt wire heater is carried out by using the commercial com putational code ANSYS for the mathematical solution of the governing equations.Based on the experimental boundary conditions and the Boussinesq approximation,the numerical modelling of a steady and two-dimensional model is applied to study the process under consideration of the buoyancy-driven convection condition. The result is compared with the previous experimental and theoretical data obtained in our laboratory, and the former is in agreement with the latter. Thus a theoretical guide for reasonable growth conditions is provided by studying in depth the real fluid flow effects in the crystal growth from the melt.

  13. Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: the case of a color indicator.

    Science.gov (United States)

    Kuster, S; Riolfo, L A; Zalts, A; El Hasi, C; Almarcha, C; Trevelyan, P M J; De Wit, A; D'Onofrio, A

    2011-10-14

    Buoyancy-driven hydrodynamic instabilities of acid-base fronts are studied both experimentally and theoretically in the case where an aqueous solution of a strong acid is put above a denser aqueous solution of a color indicator in the gravity field. The neutralization reaction between the acid and the color indicator as well as their differential diffusion modifies the initially stable density profile in the system and can trigger convective motions both above and below the initial contact line. The type of patterns observed as well as their wavelength and the speed of the reaction front are shown to depend on the value of the initial concentrations of the acid and of the color indicator and on their ratio. A reaction-diffusion model based on charge balances and ion pair mobility explains how the instability scenarios change when the concentration of the reactants are varied.

  14. Effects of vehicle station-keeping and end-effector disturbance compensation on neutral-buoyancy teleoperation

    Science.gov (United States)

    Valdez, Michael S.

    1993-12-01

    Experiments were conducted with a neutral-buoyancy robot to test whether vehicle station keeping and end effector disturbance compensation significantly affect human teleoperation performance. The vehicle used for experiments, called the Submersible for Telerobotic Astronautical Research (STAR) is a free-flying underwater telerobot equipped with a three degree of freedom arm, a stereo pan/tilt camera platform, and a vision-based navigation system. Using visual feedback from a fixed onboard camera, test subject performed a Fitts- type tapping task with the arm while the vision navigator and control system held the vehicle steady relative to a visual reference target. This paper describes the testbed vehicle, experiments, data analysis, and conclusions.

  15. Buoyancy-driven mixing of fluids in a confined geometry; Melange gravitationnel de fluides en geometrie confinee

    Energy Technology Data Exchange (ETDEWEB)

    Hallez, Y

    2007-12-15

    The present work based on Direct Numerical Simulations is devoted to the study of mixing between two miscible fluids of different densities. The movement of these fluids is induced by buoyancy. Three geometries are considered: a cylindrical tube, a square channel and a plane two-dimensional flow. For cylindrical tubes, the results of numerical simulations fully confirm previous experimental findings by Seon et al., especially regarding the existence of three different flow regimes, depending on the tilt angle. The comparison of the various geometries shows that tridimensional flows in tubes or channels are similar, whereas the two-dimensional model fails to give reliable information about real 3D flows, either from a quantitative point of view or for a phenomenological understanding. A peculiar attention is put on a joint analysis of the concentration and vorticity fields and allows us to explain several subtle aspects of the mixing dynamics. (author)

  16. Role of magnetic field strength and numerical resolution in simulations of the heat-flux driven buoyancy instability

    CERN Document Server

    Avara, Mark J; Bogdanović, Tamara

    2013-01-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channelled along field lines. This anisotropic heat conduction profoundly changes the stability of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux driven buoyancy instability (HBI), relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of 2-d simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction thereby shutting off the heat flux. However, we find that simulations which begin with intermediate initial field strengths have a qualitatively different beh...

  17. Buoyancy-Driven Radiative Unsteady Magnetohydrodynamic Heat Transfer over a Stretching Sheet with non-Uniform Heat Source/sink

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2016-01-01

    Full Text Available In the present study an unsteady mixed convection boundary layer flow of an electrically conduct- ing fluid over an stretching permeable sheet in the presence of transverse magnetic field, thermal radiation and non-uniform heat source/sink effects is investigated. The unsteadiness in the flow and temperature fields is due to the time-dependent nature of the stretching velocity and the surface temperature. Both opposing and assisting flows are considered. The dimensionless governing or- dinary non-linear differential equations are solved numerically by applying shooting method using Runge-Kutta-Fehlberg method. The effects of unsteadiness parameter, buoyancy parameter, thermal radiation, Eckert number, Prandtl number and non-uniform heat source/sink parameter on the flow and heat transfer characteristics are thoroughly examined. Comparisons of the present results with previously published results for the steady case are found to be excellent.

  18. It takes three to tango: 1. Simulating buoyancy-driven flow in the presence of large viscosity contrasts

    Science.gov (United States)

    Suckale, Jenny; Nave, Jean-Christophe; Hager, Bradford H.

    2010-07-01

    Buoyancy-driven flow is of fundamental importance for numerous geodynamic phenomena. Since the equations of motion governing multiphase flow are rarely amenable to analytical solutions, numerical simulations provide a compelling alternative. They offer the ability to carefully analyze flow phenomena under differing regimes, initial conditions, and flow dynamics. The three key challenges in these computations are (1) the accurate solution of the equations of motion in the presence of large viscosity contrasts, (2) the representation of strongly deforming interfaces between different fluids, and (3) the accurate coupling of fluid and interface solver. In three dimensions, these challenges become even more intricate, and the appropriate choice of numerical scheme has a profound influence on the tractability, accuracy, robustness, and efficiency of the computational simulation. This is the first paper of two that examine numerical simulations of buoyancy-driven flow in the presence of large viscosity contrasts. In this paper, we present our numerical approach which tackles the above three main challenges through a combination of three numerical methods, namely, (1) an extended ghost fluid type discretization which we developed specifically for the Stokes regime, (2) the level set method, and (3) the extension velocity technique. We find that all three components are crucial to obtain a versatile numerical tool for simulating complex structures in evolving flow. We validate our code by reproducing four benchmark problems in two and three dimensions. We devote special attention to comparing our method to other existing techniques, detailing the advantages of this approach. Finally, we highlight several types of geophysical flow problems for which we believe our method to be well suited.

  19. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria.

    Science.gov (United States)

    Agostoni, Marco; Waters, Christopher M; Montgomery, Beronda L

    2016-02-01

    The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters.

  20. Passive urban ventilation by combined buoyancy-driven slope flow and wall flow: Parametric CFD studies on idealized city models

    Science.gov (United States)

    Luo, Zhiwen; Li, Yuguo

    2011-10-01

    This paper reports the results of a parametric CFD study on idealized city models to investigate the potential of slope flow in ventilating a city located in a mountainous region when the background synoptic wind is absent. Examples of such a city include Tokyo in Japan, Los Angeles and Phoenix in the US, and Hong Kong. Two types of buoyancy-driven flow are considered, i.e., slope flow from the mountain slope (katabatic wind at night and anabatic wind in the daytime), and wall flow due to heated/cooled urban surfaces. The combined buoyancy-driven flow system can serve the purpose of dispersing the accumulated urban air pollutants when the background wind is weak or absent. The microscopic picture of ventilation performance within the urban structures was evaluated in terms of air change rate (ACH) and age of air. The simulation results reveal that the slope flow plays an important role in ventilating the urban area, especially in calm conditions. Katabatic flow at night is conducive to mitigating the nocturnal urban heat island. In the present parametric study, the mountain slope angle and mountain height are assumed to be constant, and the changing variables are heating/cooling intensity and building height. For a typical mountain of 500 m inclined at an angle of 20° to the horizontal level, the interactive structure is very much dependent on the ratio of heating/cooling intensity as well as building height. When the building is lower than 60 m, the slope wind dominates. When the building is as high as 100 m, the contribution from the urban wall flow cannot be ignored. It is found that katabatic wind can be very beneficial to the thermal environment as well as air quality at the pedestrian level. The air change rate for the pedestrian volume can be as high as 300 ACH.

  1. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland); Dehbi, A., E-mail: abdel.dehbi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Leriche, E., E-mail: emmanuel.leriche@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne, LMFA-UJM St-Etienne, CNRS UMR 5509 Universite de St-Etienne, 23 rue Docteur Paul Michelon, F-42023 Saint-Etienne (France); Soldati, A., E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, IT-33100 Udine (Italy); Deville, M.O., E-mail: michel.deville@epfl.ch [Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland)

    2011-10-15

    Highlights: > 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. > Description of velocity and temperature first and second moments with changing in the Rayleigh number. > Strong decoupling between the turbulent kinetic energy and the dissipation rate. > Particle recirculation sustained by the vertical hot boundary layer. > Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10{sup 9}, 10{sup 10}) and three values of the particle diameter (d{sub p} = 15, 25, 35 [{mu}m]). We consider the cavity filled with air and particles with the same density of water {rho}{sub w} = 1000 [kg/m{sup 3}] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift

  2. Buoyancy of Rigid Body in the Invariant Density and Static Fluid%匀质、静止流体中刚性物体所受的浮力

    Institute of Scientific and Technical Information of China (English)

    张丽辉; 谢颖; 吴永超

    2012-01-01

    根据流体静力学的结论,计算了重力场内匀质、静止流体中刚性物体在三种不同情形下所受的浮力,与阿基米德原理给出的结论一致.计算和讨论过程加深了对浮力本质的认识.%Principle of Archimedes is important way to compute buoyancy of object in the fluid. In gravitational field, we use basics principle of fluid statics, analyze buoyancy of object in the invariant density and static fluid , and obtain buoyancy of object in three different condition. It is indication that, we obtain buoyancy of object in three different condition agree with principle of Archimedes. In the process of calculation and discussion, we can understand the essence of buoyancy.

  3. Experimental study of the structure of flow regions with negative turbulent kinetic energy production in confined three-dimensional shear flows with and without buoyancy

    Science.gov (United States)

    Liberzon, A.; Lüthi, B.; Guala, M.; Kinzelbach, W.; Tsinober, A.

    2005-09-01

    Regions of negative turbulent kinetic energy (TKE) production are observed and studied in two different flows, namely in turbulent thermal Rayleigh-Bénard convection in a cubic cell, and in a mechanically agitated shear flow in absence of buoyancy, with a main focus on the small scale structure of the flow. The experimental investigation is performed using three-dimensional (3D) particle tracking velocimetry, which allows for measuring the three velocity components and the full tensor of velocity derivatives in a finite 3D volume. The capability to compute the TKE production term in its complete form P =-⟨uiuj⟩Sij is crucial due to the three dimensionality of the flows. A comparative analysis of four different flow situations is performed in regions with positive and negative TKE production with and without buoyancy effects. In both, convective shear flow and shear flow without buoyancy, negative TKE production is associated with the unusual, more pronounced alignment of the velocity vector u with the first eigenvector λ1S of the mean rate-of-strain tensor, related to the stretching eigenvalue, Λ1S, in contrast to the positive TKE production associated with the alignment with the third eigenvector (i.e., related to the negative, compressing eigenvalue). In the negative TKE production region of convective flow we find (i) increased values for mean strain, (ii) increased values of the first contribution PΛ1 in the eigenframe of the mean rate-of-strain tensor, and decreased values of the vertical contribution to the production term in a fixed frame of reference, (iii) stronger anisotropy of u, (iv) higher levels of fluctuating strain s2 and enstrophy ω2, as well as (v) higher rates of their production, -sijsjkski and ωiωjsij, compared to the respective values in positive TKE production region. In the shear flow without buoyancy, all the mentioned quantities are lower in the negative TKE production region than in the positive TKE production region. From this

  4. Importance of initial buoyancy field on evolution of mantle thermal structure:Implications of surface boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Petar Glisovic; Alessandro M. Forte

    2015-01-01

    Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition). As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid) boundary condition. A rigid boundary condition dem-onstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like) on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs), especially below the Pacific. The evolution of sub-duction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique slow feature

  5. Numerical experiments on the role of buoyancy and rheology during the formation of extension-driven gneiss domes

    Science.gov (United States)

    Korchinski, Megan; Rey, Patrice; Teyssier, Christian; Whitney, Donna; Mondy, Luke

    2016-04-01

    Domal structures that are cored with crystallized partially melted crustal rocks are ubiquitous features in active and exhumed orogens. The exposure of these gneiss/migmatite domes at the Earth's surface represents an opportunity to study the mechanisms of flow within the deep crust, and the mode of emplacement of high-pressure rocks into the shallow crust. End-member gneiss dome types include (1) extension-driven domes that core metamorphic core complexes, and (2) buoyancy-driven domes that are exhumed by diapiric flow. Numerical models are ideally suited to test the relative roles of buoyancy and extension-driven mechanisms in dome dynamics, and therefore to explore the interaction of physical parameters involved in doming. To that end, this research utilizes a 2D visco-plastic thermomechanical modeling framework to undertake a parametric numerical experiment where the density (range of 2700-3100 kg.m3) and viscosity (range of 1E19-1E21 Pa.s) of the lower crust are systematically varied. The style and timing of "intrusion" of partially molten lower crust into non-molten lower crust is similar for densities of 2700-3100 kg.m3 across two lower crustal viscosities tested here (1E19 Pa.s, 1E21 Pa.s). However, dome development and upwards flow of lower crust material for a relatively high-density, middle-viscosity lower crust (2900-3100 kg.m^3; 1E20 Pa.s) involves a significant upward translation of the Moho, relative to the low-density, middle-viscosity model results. In addition, the high-density, middle-viscosity model shows a decrease in the volume of partial melt in the lower crust, and distributed brittle faulting in the upper crust. Thus, this experiment suite illustrates that variations in density and viscosity of the lower crust influence (1) faults distribution in the upper crust, (2) flow patterns within the lower crust, (3) upward translation of the solidus into the lower crust, and (4) upward displacement of the Moho. The style of extension within the

  6. Coexisting contraction-extension consistent with buoyancy of the crust and upper mantle in North-Central Italy

    CERN Document Server

    Aoudia, A; Ismail-Zadeh, A T; Panza, G F; Pontevivo, A

    2002-01-01

    The juxtaposed contraction and extension observed in the crust of the Italian Apennines and elsewhere has, for a long time, attracted the attention of geoscientists and is a long-standing enigmatic feature. Several models, invoking mainly external forces, have been put forward to explain the close association of these two end-member deformation mechanisms clearly observed by geophysical and geological investigations. These models appeal to interactions along plate margins or at the base of the lithosphere such as back-arc extension or shear tractions from mantle flow or to subduction processes such as slab roll back, retreat or pull and detachment. We present here a revisited crust and upper mantle model that supports delamination processes beneath North-Central Italy and provides a new background for the genesis and age of the recent magmatism in Tuscany. Although external forces must have been important in the building up of the Apennines, we show that internal buoyancy forces solely can explain the coexist...

  7. Numerical Study of Buoyancy Convection of Air under Permanent Magnetic Field and Comparison with That under Gravity Field

    Directory of Open Access Journals (Sweden)

    Kewei Song

    2014-01-01

    Full Text Available Magnetothermal free convection of air in a square enclosure under a nonuniform magnetic field provided by a permanent neodymium-iron-boron magnet is numerically studied. The natural convection under the gravity field alone is also studied for comparison. The physical fields of magnetizing force, velocity, and temperature as well as the local distribution characteristic of Nusselt number are all presented in this paper. The results show that the buoyancy convection of air in the square enclosure under magnetic field is quite different from that under the gravity field. The local value of Nusselt number under the magnetic field supplied by a permanent magnet with a residual magnetic flux density of about 4.5 Tesla can reach a high value of about three times larger than the maximum local value of Nusselt number under the gravity field. Relatively uniform distributions of temperature gradient and Nusselt number can be obtained along the cold wall of the enclosure under the magnetic field. A permanent magnet with high magnetic energy product with Br reaching to 3.5 Tesla can play a comparative role on the averaged Nusselt number compared with that under the gravity environment.

  8. CFD Study on Inter-Action and Heat Transfer between Non-Isothermal Airflow of Momentum Source and Plume of Buoyancy Force in an Air-Conditioned Space

    Directory of Open Access Journals (Sweden)

    Wuwei Cao

    2010-10-01

    Full Text Available This paper presents indoor airflow and thermal environment which is formed by a cooling jet and a local heat source in a ventilated room. To illustrate the effects of the combined the plume and the jet-flow, a series of simulated values with different calculated conditions such as different buoyancy flux are analysed by Fluent simulation software. This paper presents an index θ to describe the physical phenomenon by the thermal interaction between the cold jetflow and the plume. It is concluded that if the heat source is increasing considerably, the buoyancy source will be a leading factor of the indoor thermal field, though its initial momentum is considered to be zero.

  9. Effect of Thermal Buoyancy on Fluid Flow and Inclusion Motion in Tundish without Flow Control Devices--Part Ⅰ: Fluid Flow

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-feng; ZHI Jian-jun; MOU Ji-ning; CUI Jian

    2005-01-01

    The κ-ε two-equation model is used to simulate the fluid flow in the continuous casting tundish coupling with the effect of thermal buoyancy. The natural convection induced by the thermal buoyancy generates an upward flow pattern especially at the outlet zone, and has little effect on the fluid flow in the inlet zone. The maximum viscosity is 700 times larger than the laminar viscosity, which indicates the strong turbulent flow in the tundish. The maximum temperature difference in the whole tundish is 8.2 K. The temperature near the stopper rod and the short wall is obviously lower than that in the inlet zone. The existence of the stopper rod has a big effect on the fluid flow entering the SEN and the mold. All the characteristics of the tundish geometry should be considered to accurately simulate the fluid flow in the tundish.

  10. Thermo capillary and buoyancy convection in a fluid locally heated on its free surface; Convection thermocapillaire et thermogravitaire dans un fluide chauffe localement sur sa surface libre

    Energy Technology Data Exchange (ETDEWEB)

    Favre, E.

    1997-09-26

    coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.

  11. An Integrated Capillary, Buoyancy, and Viscous-Driven Model for Brine/CO2Relative Permeability in a Compositional and Parallel Reservoir Simulator

    KAUST Repository

    Kong, X.

    2012-11-03

    The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.

  12. Relationship between level of neutral buoyancy and dual-Doppler observed mass detrainment levels in deep convection

    Directory of Open Access Journals (Sweden)

    G. L. Mullendore

    2013-01-01

    Full Text Available Although it is generally accepted that the level of neutral buoyancy (LNB is only a coarse estimate of updraft depth, the LNB is still used to understand and predict storm structure in both observations and modeling. This study uses case studies to quantify the variability associated with using environmental soundings to predict detrainment levels. Nine dual-Doppler convective cases were used to determine the observed level of maximum detrainment (LMD to compare with the LNB. The LNB for each case was calculated with a variety of methods and with a variety of sources (including both observed and simulated soundings. The most representative LNB was chosen as the proximity sounding from NARR using the most unstable parcel and including ice processes.

    The observed cases were a mix of storm morphologies, including both supercell and multicell storms. As expected, the LMD was generally below the LNB, the mean offset for all cases being 2.2 km. However, there was a marked difference between the supercell and non-supercell cases. The two supercell cases had LMDs of 0.3 km and 0.0 km below the LNB. The remaining cases had LMDs that ranged from 4.0 km below to 1.6 km below the LNB, with a mean offset of 2.8 km below. Observations also showed that evolution of the LMD over the lifetime of the storm can be significant (e.g., >2 km altitude change in 30 min, and this time evolution is lacking from models with coarse time steps, missing significant changes in detrainment levels that may strongly impact the amount of boundary layer mass transported to the upper troposphere and lower stratosphere.

  13. 80-Myr history of buoyancy and volcanic fluxes along the trails of the Walvis and St. Helena hotspots (South Atlantic)

    Science.gov (United States)

    Vidal, V.; Adam, C.; Escartin, J.

    2007-12-01

    Walvis and St.~Helena are the only long-lived hotspot chains in the South Atlantic. Therefore, their characterization is important to constrain the processes associated with mantle plume formation, their temporal evolution, and the interaction with plate and mantle dynamics in the region. We study the temporal evolution of plume buoyancy and magma production rate along both hotspot chains, which are constrained from the swell and volume of volcanic materials emplaced along the chain. The regional depth anomaly is calculated by correcting the 2' bathymetry grid of Smith & Sandwell (1997) for thermal subsidence and sediment loading. We separate the topography associated with volcanism and the swell surrounding the hotspot chains using the MiFil filtering method (Adam et al., 2005). We then estimate the temporal variations associated with both parameters by computing volumes along the hotspot tracks. Neither Walvis nor St.~Helena show a 'classical' hotspot behavior. We find that two plumes are at the origin of the St.~Helena chain. This study also shows a swell associated with the Circe seamount, supporting the existence of a hotspot NW of the St.~Helena trail. The variation in swell and volcanic fluxes suggests temporal variability in the plume behavior at time scales of 10-20~m.y. and 5~m.y., which may be related to oscillations and instabilities of the plume conduit, respectively. Cumulative fluxes in the area are largest for Walvis and weakest for Circe, and all are significantly lower than that reported for the Hawai'i hotspot.

  14. Numerical investigation of mixed convection heat transfer from two isothermal circular cylinders in tandem arrangement: buoyancy, spacing ratio, and confinement effects

    Science.gov (United States)

    Salcedo, Erick; Cajas, Juan C.; Treviño, César; Martínez-Suástegui, Lorenzo

    2016-11-01

    This paper presents a two-dimensional numerical study for mixed convection in a laminar cross-flow with a pair of stationary equal-sized isothermal cylinders in tandem arrangement confined in a channel. The governing equations are solved using the control volume method on a nonuniform orthogonal Cartesian grid, and the immersed boundary method is employed to identify the cylinders placed in the flow field. The numerical scheme is first validated against standard cases of symmetrically confined isothermal circular cylinders in plane channels, and grid convergence tests were also examined. The objective of the present study was to investigate the influence of buoyancy and the blockage ratio constraint on the flow and heat transfer characteristics of the immersed cylinder array. Using a fixed Reynolds number based on cylinder diameter of ReD = 200 , a fixed value of the Prandtl number of Pr = 7 , and a blockage ratio of D/H = 0.2 , all possible flow regimes are considered by setting the longitudinal spacing ratio (σ = L/D ) between the cylinder axes to 2, 3, and 5 for values of the buoyancy parameter (Richardson number) in the range -1≤ Ri≤ 4 . The interference effects and complex flow features are presented in the form of mean and instantaneous velocity, vorticity, and temperature distributions. The results demonstrate how the buoyancy, spacing ratio, and wall confinement affect the wake structure and vortex dynamics. In addition, local and average heat transfer characteristics of both cylinders are comprehensively presented for a wide range in the parametric space.

  15. Numerical investigation of mixed convection heat transfer from two isothermal circular cylinders in tandem arrangement: buoyancy, spacing ratio, and confinement effects

    Science.gov (United States)

    Salcedo, Erick; Cajas, Juan C.; Treviño, César; Martínez-Suástegui, Lorenzo

    2017-04-01

    This paper presents a two-dimensional numerical study for mixed convection in a laminar cross-flow with a pair of stationary equal-sized isothermal cylinders in tandem arrangement confined in a channel. The governing equations are solved using the control volume method on a nonuniform orthogonal Cartesian grid, and the immersed boundary method is employed to identify the cylinders placed in the flow field. The numerical scheme is first validated against standard cases of symmetrically confined isothermal circular cylinders in plane channels, and grid convergence tests were also examined. The objective of the present study was to investigate the influence of buoyancy and the blockage ratio constraint on the flow and heat transfer characteristics of the immersed cylinder array. Using a fixed Reynolds number based on cylinder diameter of ReD = 200, a fixed value of the Prandtl number of Pr = 7, and a blockage ratio of D/H = 0.2, all possible flow regimes are considered by setting the longitudinal spacing ratio (σ = L/D) between the cylinder axes to 2, 3, and 5 for values of the buoyancy parameter (Richardson number) in the range -1≤ Ri≤ 4. The interference effects and complex flow features are presented in the form of mean and instantaneous velocity, vorticity, and temperature distributions. The results demonstrate how the buoyancy, spacing ratio, and wall confinement affect the wake structure and vortex dynamics. In addition, local and average heat transfer characteristics of both cylinders are comprehensively presented for a wide range in the parametric space.

  16. Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect

    Science.gov (United States)

    Khaibrakhmanov, S. A.; Dudorov, A. E.; Parfenov, S. Yu.; Sobolev, A. M.

    2017-01-01

    We investigate the fossil magnetic field in the accretion and protoplanetary discs using the Shakura and Sunyaev approach. The distinguishing feature of this study is the accurate solution of the ionization balance equations and the induction equation with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and the Hall effect. We consider the ionization by cosmic rays, X-rays and radionuclides, radiative recombinations, recombinations on dust grains and also thermal ionization. The buoyancy appears as the additional mechanism of magnetic flux escape in the steady-state solution of the induction equation. Calculations show that Ohmic diffusion and magnetic ambipolar diffusion constraint the generation of the magnetic field inside the `dead' zones. The magnetic field in these regions is quasi-vertical. The buoyancy constraints the toroidal magnetic field strength close to the disc inner edge. As a result, the toroidal and vertical magnetic fields become comparable. The Hall effect is important in the regions close to the borders of the `dead' zones because electrons are magnetized there. The magnetic field in these regions is quasi-radial. We calculate the magnetic field strength and geometry for the discs with accretion rates (10^{-8}-10^{-6}) {M}_{⊙} {yr}^{-1}. The fossil magnetic field geometry does not change significantly during the disc evolution while the accretion rate decreases. We construct the synthetic maps of dust emission polarized due to the dust grain alignment by the magnetic field. In the polarization maps, the `dead' zones appear as the regions with the reduced values of polarization degree in comparison to those in the adjacent regions.

  17. Thermal-solutal capillary-buoyancy flow of a low Prandtl number binary mixture with a -1 capillary ratio in an annular pool

    Science.gov (United States)

    Yu, Jia-Jia; Wu, Chun-Mei; Li, You-Rong; Chen, Jie-Chao

    2016-08-01

    A series of three-dimensional numerical simulations on thermal-solutal capillary-buoyancy flow in an annular pool were carried out. The pool was filled with silicon-germanium melt with an initial silicon mass fraction of 1.99%. The Prandtl number and the Lewis number of the working fluid are 6.37 × 10-3 and 2197.8, respectively. Both the radial temperature gradient and the solute concentration gradient were applied to the annular pool. The capillary ratio was assumed to be -1, which means that the solutal and thermal capillary effects were equal and opposite. Results show that the thermal-solutal capillary-buoyancy flow always occurs at this special case with the capillary ratio of -1, and even in a shallow annular pool with an aspect ratio of 0.05. With the increase of the thermal Marangoni number, four kinds of flow patterns appear orderly, including concentric rolls, petal-like, spoke, and rosebud-like patterns. These flow patterns are strongly influenced by the local interaction between the solutal and thermal capillary effects and the vertical solute concentration gradient near the outer cylinder. A small vortex driven by the dominant solutal capillary effect emerges near the inner cylinder, which is different from the flow pattern in a pure fluid. In addition, the critical thermal Marangoni number of the initial three-dimensional flow decreases with the increase of the aspect ratio of the annular pool.

  18. Experimental study on buoyancy-driven exchange flows through breaches of a tokamak vacuum vessel in a fusion reactor under the loss-of-vacuum-event conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Kazuyuki; Tomoaki, Kunugi; Ogawa, Masurou; Seki, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1997-02-01

    As one of thermofluid safety studies in the International Thermonuclear Experimental Reactor, buoyancy-driven exchange flow behavior through breaches of a vacuum vessel (VV) has been investigated quantitatively by using a preliminary loss-of-vacuum-event (LOVA) apparatus that simulated the tokamak VV of a fusion reactor with a small-scaled model. To carry out the present experiments under the atmospheric pressure condition, helium gas and air were provided as the working fluids. The inside of the VV was initially filled with helium gas and the outside was atmosphere. The breaches on the VV under the LOVA condition were simulated by opening six simulated breaches to which were set the different positions on the VV. When the buoyancy-driven exchange flow through the breach occurred, helium gas went out from the inside of the VV through the breach to the outside and air flowed into the inside of the VV through the breach from the outside. The exchange rate in the VV between helium gas and air was calculated from the measured weight change of the VV with time since the experiment has started. experimental parameters were breach position, breach number, breach length, breach size, and breach combination. The present study clarifies that the relation between the exchange rate and the breach position of the VV depended on the magnitude of the potential energy from the ground level to the breach position, and then, the exchange rate decreased as the breach length increased and as the breach size decreased.

  19. Transient laminar opposing mixed convection in a symmetrically heated duct with a plane symmetric sudden contraction-expansion: Buoyancy an inclination effects

    Science.gov (United States)

    Martínez-Suástegui, Lorenzo; Barreto, Enrique; Treviño, César

    2015-11-01

    Transient laminar opposing mixed convection is studied experimentally in an open vertical rectangular channel with two discrete protruded heat sources subjected to uniform heat flux simulating electronic components. Experiments are performed for a Reynolds number of Re = 700, Prandtl number of Pr = 7, inclination angles with respect to the horizontal of γ =0o , 45o and 90o, and different values of buoyancy strength or modified Richardson number, Ri* =Gr* /Re2 . From the experimental measurements, the space averaged surface temperatures, overall Nusselt number of each simulated electronic chip, phase-space plots of the self-oscillatory system, characteristic times of temperature oscillations and spectral distribution of the fluctuating energy have been obtained. Results show that when a threshold in the buoyancy parameter is reached, strong three-dimensional secondary flow oscillations develop in the axial and spanwise directions. This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant number 167474 and by the Secretaría de Investigación y Posgrado del IPN, Grant number SIP 20141309.

  20. Impacts of a wind stress and a buoyancy flux on the seasonal variation of mixing layer depth in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    XIAO Xianjun; WANG Dongxiao; ZHOU Wen; ZHANG Zuqiang; QIN Yinghao; HE Na; ZENG Lili

    2013-01-01

    The seasonal variation of mixing layer depth (MLD) in the ocean is determined by a wind stress and a buoy-ance flux. A South China Sea (SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD. It is found that the variability of MLD in the SCS is shallow in summer and deep in winter, as is the case in general. Owing to local atmosphere forcing and ocean dynamics, the seasonal variability shows a regional characteristic in the SCS. In the northern SCS, the MLD is shallow in summer and deep in winter, affected coherently by the wind stress and the buoyance flux. The variation of MLD in the west is close to that in the central SCS, influenced by the advection of strong western boundary currents. The eastern SCS presents an annual cycle, which is deep in summer and shallow in winter, primarily impacted by a heat flux on the air-sea interface. So regional characteristic needs to be cared in the analysis about the MLD of SCS.

  1. Research on the Self-balancing Sinking Pipe Technology by Temporary Buoyancy Plug%加临时浮力塞自平衡浮力法下管技术研究

    Institute of Scientific and Technical Information of China (English)

    余大有; 陈月化; 唐志宏

    2014-01-01

    Single-plug-buoyancy-method-was-used-to-sink-gas-pipe,-but-space-under-the-plug-was-small.-With-creasing-depth-of-the-gas-hole,-air-under-the-plug-had-been-compressed,-then-the-buoyancy-provided-by-air-decreased-too-much-to-meet-demand-of-sinking-pipe.-To-increase-the-length-of-air-column,-temporary-buoyancy-plug-was-been-made.-This-plug-has-been-placed-same-depth-of-the-single-plug-self-balancing-method-to-sink-pipe.-A-sealing-plate-was-welded-as-temporary-buoyancy-plug,-and-this-method-also-used-upon-empty-pipe-section-to-pro-duce-buoyancy.-When-the-upon-empty-pipe`s-length-reached-de-signed-length,-concrete-buoyancy-plug-was-going-to-be-installed.-And-air-will-be-aerated-into-the-empty-pipe-under-the-concrete-plug,-with-the-pressure-increasing,-the-steel-ball-which-was-placed-in-the-temporary-buoyancy-plug,-exfoliated-into-mud.-Air-was-aerated-into-space-under-the-temporary-buoyancy-plug.-Compared-to-single-plug-self-balancing-buoyancy-method,-tem-porary-buoyancy-plug-has-increased-length-of-air-column,-then-the-buoyancy-produced-by-air-was-also-increased.-Implementa-tion-is-that-all-steel-pipe-can-be-sinked-only-with-one-time-aera-tion.%现有单塞自平衡浮力法下管,塞下充气量较小,并且随着下管深度的增加,塞下空气进一步压缩,提供的浮力逐渐减小,无法满足下管要求。为增加管内储气段长度,设置临时浮力塞。所加临时浮力塞与单塞自平衡下管时的浮力塞处于同一深度,在此处焊接带加强筋的封板作为临时浮力塞,利用常规空管提供浮力。当临时浮力塞上部空管高度达到设计值时,加设混凝土材质浮力塞并充气,随着充气压力的增大,设置在临时浮力塞下部的钢球脱落,空气进入临时浮力塞下部空间。与单塞自平衡浮力法相比,增加了临时浮力塞下这段充气量,因此提供的浮力也增大,从而实现一次性充气下完全布钢管。

  2. Some Exact Solutions of Boundary Layer Flows along a Vertical Plate with Buoyancy Forces Combined with Lorentz Forces under Uniform Suction

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2008-01-01

    Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.

  3. Combined Effect of Buoyancy Force and Navier Slip on MHD Flow of a Nanofluid over a Convectively Heated Vertical Porous Plate

    Directory of Open Access Journals (Sweden)

    Winifred Nduku Mutuku-Njane

    2013-01-01

    Full Text Available We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu, aluminium oxide (Al2O3, and titanium dioxide (TiO2 are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ, magnetic field parameter (Ha, buoyancy effect (Gr, Eckert number (Ec, suction/injection parameter (fw, Biot number (Bi, and slip parameter (β, on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate.

  4. Improving the buoyancy force and Archimedes principle experiment%对浮力实验和阿基米德实验的改进

    Institute of Scientific and Technical Information of China (English)

    陈风青

    2013-01-01

    An experiment of exploring the direction of buoyancy force was put forward ,which could be conducted by students independently . The Archimedes principle experiment was also im-proved .The experiment errors were reduced ,the experimental results were intuitive and clear .At the same time ,some suggestions and comments regarding the arrangement of teaching were proposed .%  通过学生自主实验,提出了相对简易的探究浮力方向的实验方法,同时对阿基米德实验进行了改进。改进后的阿基米德实验降低了实验偏差,实验效果直观、明显。本文还对教材的编排提出了建议和意见。

  5. Modeling and Analysis of a Buoyancy-Ballast Driven Airship%一类“浮力-压块”驱动飞艇建模与分析

    Institute of Scientific and Technical Information of China (English)

    邬依林; 刘屿

    2012-01-01

    In view of a new kind of buoyancy-ballast driven airship, the model and dynamics of a kind of buoyancy-ballast driven airship are studied. Based on Kirchhoff equations and Newton-Euler laws, we developed the six degree of freedom nonlinear dynamic model for an airship equipped with independent ballonets and moveable ballast by analysis its movement and stress. On the condition of little perturbation, the nonlinear dynamic model is divided into three group equations by restricting airship motion in longitudinal, lateral and e2-e3 planes respectively. Then the characteristics of mode and respond to input of airship are studied using linearization model and its related parameter. The results of simulation verify the correctness of established model and rationality of theoretical analysis on this kind of stratospheric airship, thus making itself a theoretical basis for the design of its control strategy.%针对一类新型“浮力-压块”驱动的自治飞艇,研究了该类飞艇的动力学建模和动力学特性.在Kirchhoff方程和Newton-Euler理论基础上,通过对飞艇运动及受力分析,建立了包括独立气囊和可运动压块的飞艇六自由度非线性动力学模型,并采用小扰动线性化方法,将飞艇运动分别限制在纵向、横侧向和e2-e3平面内,得到与之对应的三组飞艇线性化方程,其后基于飞艇相关参数和线性化模型,利用Matlab软件平台对飞艇运动模态和输入响应特性进行了分析研究.仿真结果验证了谊类飞艇模型的正确性和理论分析的合理性,为其后控制策略设计提供理论依据.

  6. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    Science.gov (United States)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  7. A new method for deriving analytical solutions of partial differential equations-Algebraically explicit analytical solutions of two-buoyancy natural convection in porous media

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Analytical solutions of governing equations of various phenomena have their irre-placeable theoretical meanings. In addition, they can also be the benchmark solu-tions to verify the outcomes and codes of numerical solutions, and even to develop various numerical methods such as their differencing schemes and grid generation skills as well. A hybrid method of separating variables for simultaneous partial differential equation sets is presented. It is proposed that different methods of separating variables for different independent variables in the simultaneous equa-tion set may be used to improve the solution derivation procedure, for example, using the ordinary separating method for some variables and using extraordinary methods of separating variables, such as the separating variables with addition promoted by the first author, for some other variables. In order to prove the ability of the above-mentioned hybrid method, a lot of analytical exact solutions of two-buoyancy convection in porous media are successfully derived with such a method. The physical features of these solutions are given.

  8. Fatal nosocomial Legionnaires' disease: relevance of contamination of hospital water supply by temperature-dependent buoyancy-driven flow from spur pipes.

    Science.gov (United States)

    Patterson, W J; Seal, D V; Curran, E; Sinclair, T M; McLuckie, J C

    1994-06-01

    The investigation, epidemiology, and effectiveness of control procedures during an outbreak of Legionnaires' disease involving three immunosuppressed patients are described. The source of infection appeared to be a network of fire hydrant spurs connected directly to the incoming hospital mains water supply. Removal of these hydrants considerably reduced, but failed to eliminate, contamination of water storage facilities. As an emergency control procedure the incoming mains water was chlorinated continuously. Additional modifications to improve temperature regulation and reduce stagnation also failed to eliminate the legionellae. A perspex test-rig was constructed to model the pre-existing hospital water supply and storage system. This showed that through the hydraulic mechanism known as 'temperature buoyancy', contaminated water could be efficiently and quickly exchanged between a stagnant spur pipe and its mains supply. Contamination of hospital storage tanks from such sources has not previously been considered a risk factor for Legionnaires' disease. We recommend that hospital water storage tanks are supplied by a dedicated mains pipe without spurs.

  9. Analysis of Thermal-Hydraulic Gravity/ Buoyancy Effects in the Testing of the ITER Poloidal Field Full Size Joint Sample (PF-FSJS)

    Science.gov (United States)

    Zanino, R.; Bruzzone, P.; Ciazynski, D.; Ciotti, M.; Gislon, P.; Nicollet, S.; Savoldi Richard, L.

    2004-06-01

    The PF-FSJS is a full-size joint sample, based on the NbTi dual-channel cable-in-conduit conductor (CICC) design currently foreseen for the International Thermonuclear Experimental Reactor (ITER) Poloidal Field coil system. It was tested during the summer of 2002 in the Sultan facility of CRPP at a background peak magnetic field of typically 6 T. It includes about 3 m of two jointed conductor sections, using different strands but with identical layout. The sample was cooled by supercritical helium at nominal 4.5-5.0 K and 0.9-1.0 MPa, in forced convection from the top to the bottom of the vertical configuration. A pulsed coil was used to test AC losses in the two legs resulting, above a certain input power threshold, in bundle helium backflow from the heated region. Here we study the thermal-hydraulics of the phenomenon with the M&M code, with particular emphasis on the effects of buoyancy on the helium dynamics, as well as on the thermal-hydraulic coupling between the wrapped bundles of strands in the annular cable region and the central cooling channel. Both issues are ITER relevant, as they affect the more general question of the heat removal capability of the helium in this type of conductors.

  10. A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability.

    Directory of Open Access Journals (Sweden)

    Tânia Reis

    2010-11-01

    Full Text Available Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet.

  11. 空心微珠/环氧树脂高强浮力材料的性能及断裂分析%Performance and fracture of hollow glass microsphere/epoxy resin high-strength buoyancy material

    Institute of Scientific and Technical Information of China (English)

    林碧兰; 路新瀛; 陈勤

    2011-01-01

    The high-strength buoyancy material was synthesized with adhesive matrix of epoxy resin and filler of hollow glass microsphere (HGM) activated by silane coupling agent. The characteristics of HGM treated with silane were analyzed by XRD and FRIR. The effect of type and content of HGM on performance of buoyancy material was investigated through density test and uniaxial static compression test. The fracture characteristics and water absorption of buoyancy material were studied by SEM and water absorption test. The results show that the structure of HGM is amorphous. Silane is grafted on the surface of HGM after activation. HGM is perfectly combined with epoxy resin and there is no gap between their interface. The high specific compression strength of HGM is beneficial to the performance of buoyancy material. The density, compression strength and specific compression strength of buoyancy material are 0. 645 ~ 0. 850 g/cm3 , 60 ~ 93 MPa and 92 ~ 112 MPa · cm3 · g-1, respectively. On the fracture surface of buoyancy material with less HGM, HGM is destroyed and there is tailing in the matrix, while the damage degree of HGM increases with the increase of HGM content and finally HGM is destroyed thoroughly. The water absorption of buoyancy material is low.%以环氧树脂为基体,经硅烷活化处理的空心玻璃微珠(HGM)为填充剂,制备了高强浮力材料.采用XRD、FRIR分析了HGM的结构和硅烷处理效果,通过密度测试和单轴静态压缩试验研究了HGM的类型和含量对浮力材料性能的影响,利用SEM和吸水率试验研究了浮力材料的断裂特性和吸水性.结果表明:HGM为无定形结构;硅烷分子接枝在HGM表面,使得HGM与环氧树脂完好结合且两者界面没有间隙沟槽;HGM的较大比压缩强度有利于提高浮力材料的性能;高强浮力材料密度为0.645~0.850 g/cm3,抗压强度为60~93 MPa,比压缩强度为92~112 MPa·cm3·g-1;HGM 含量较少时,浮力材料断裂表面HGM破

  12. Dynamics of the Leeuwin Current: Part 2. Impacts of mixing, friction, and advection on a buoyancy-driven eastern boundary current over a shelf

    Science.gov (United States)

    Benthuysen, Jessica; Furue, Ryo; McCreary, Julian P.; Bindoff, Nathaniel L.; Phillips, Helen E.

    2014-03-01

    depth. When the timescale δt is sufficiently short, the poleward current is nearly barotropic. The current's spatial structure over the shelf is controlled by horizontal mixing, having the structure of a Munk layer. Increasing vertical diffusion deepens the upper layer thickness and strengthens the alongshore current speed. Bottom drag leads to an offshore flow along the bottom, reducing the net onshore transport and weakening the current's poleward acceleration. When δt is long, poleward advection of buoyancy forms a density front near the shelf break, intensifying poleward speeds near the surface. With bottom drag, a bottom Ekman flow advects density offshore, shifting the jet core offshore of the shelf break. The resulting cross-shelf density gradient reverses the meridional current's direction at depth, leading to an equatorward undercurrent.

  13. DESIGN AND RESEARCH FOR A NEW TYPE BUOYANCY-LIFTING ROW FLYING-WINGS%一种新型浮升一体化排式飞翼的设计与研究

    Institute of Scientific and Technical Information of China (English)

    李峰; 叶正寅

    2009-01-01

    It has important sciencfic and engineering applications for aircrafts of low speed to design the buoyancy-lifting aircraft with both bigger volume and higher aerodynamic efficiency. Based on the nero-foil NACA0030, some aerodynamic configurations of row flying-wings with the higher volume efficiency (vol-me/surface) were constructed. Different arrayed row flying-wings were calculated and investigated minutely. An aerodynamic configuration of row sweptback flying-wings with the better maneuverability and stability was educed. The numerical simulation results indicate that the lift-drag ratios of row straight flying-wings and row sweptback flying-wings increase by up to 40% and 20%, respectively, and the aerodynamic efficiency of aircrafts are improved obviously from the block of airflow under the anterior flying-wing by the posterior flying-wing. Meanwhile, the chordwise size of buoyancy-lifting row flying-wings is comparatively small so that the surface tension of skin material can be reduced availably. This characteristic provides the wider scope on the skin flexible material selection for high altitude aircrafts.%设计既有较大的内部容积、又有高气动效率的新型浮升一体化气动布局对此类低速飞行器的发展具有重要的科学研究价值和工程应用前景.以NAcA0030翼型为基础,构造了具有较高体积率(体积/表面积)的排式飞翼气动布局.对不同排列形式的排式飞翼进行了详细的计算和评估分析,并提出了具有更好操纵性和稳定性的排式后掠飞翼气动布局.数值模拟结果表明:通过排式飞翼中后翼对前翼下方气流的阻滞作用,排式直飞翼和排式后掠飞翼的升阻比分别增大40%和20%,整个飞行器的气动效率显著提高;同时,浮升一体化排式飞翼的弦向尺寸较小,可有效降低材料的表面张力,这为高空飞行器表面柔性材料提供了较宽的选择范围.

  14. 浮标的双油囊浮力调节装置密封试验方法研究%Study of the Seal Test Method of the Double Oil Tanks Buoyancy Adjusting Device Based on the Autonomous Profiling Floats

    Institute of Scientific and Technical Information of China (English)

    杨江涛

    2014-01-01

    This paper briefly explain the function of the autonomous profiling floats and analyzed the advantages and disad-vantages of the buoyancy adjusting device which used by the floats.The paper advance the double oil tanks structure of the buoyancy adjusting device and also explain it. Then it has focused on the pressure seal test method and introduced the test process and inspection method. It has also provided the reference for the same kind of test method.%对剖面漂流浮标作了简要说明,并对目前常用的浮力调节装置结构形式优缺点进行了分析,介绍了双油囊结构形式的浮力调节装置,对其结构进行了说明,并阐述了对其耐压密封试验的方法。

  15. Topology Optimization including Inequality Buoyancy Constraints

    NARCIS (Netherlands)

    Picelli, R.; Van Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; Van Keuen, A.

    2014-01-01

    This paper presents an evolutionary topology optimization method for applications in design of completely submerged buoyant devices with design-dependent fluid pressure loading. This type of structures aid rig installations and pipeline transportation in all water depths in offshore structural engin

  16. Titan Montgolfiere Buoyancy Modulation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Titan is ideally suited for balloon exploration due to its low gravity and dense atmosphere. Current NASA mission architectures baseline Montgolfiere balloon...

  17. Análise da absorção de água em dois polímeros expandidos: desenvolvimento do módulo de flutuabilidade de um mini-robô submarino Study of expanded polymers water absorption for buoyancy modulus development of a submarine mini-robot

    Directory of Open Access Journals (Sweden)

    Nadège Bouchonneau

    2010-09-01

    Full Text Available Polímeros expandidos são bastante competitivos para serem utilizados como materiais de flutuabilidade, devido a sua baixa densidade. Em particular, eles se apresentam muito eficientes no desenvolvimento de módulos de flutuabilidade de robôs submarinos do tipo ROV (Remote Operated Vehicle. Este trabalho descreve um estudo da absorção de água em dois diferentes tipos de polímeros expandidos (poliuretano e poliestireno expandido, em diferentes meios aquosos (água do mar e água destilada. Estudo sobre o efeito da geometria das amostras com relação à cinética de absorção de água demonstrou que as amostras com maior área de contato com a água se apresentam mais susceptíveis à absorção de água. Os estudos também revelaram que o poliuretano expandido sofreu uma importante perda de material devido ao seu manuseio durante os ensaios de absorção. A influência do meio aquoso foi também bastante notável para este material, no qual apresentou uma maior taxa de absorção nos ensaios com água destilada em comparação com os ensaios utilizando água do mar. Os resultados das análises demonstraram que o melhor material para ser utilizado como módulo de flutuabilidade do robô submarino é o poliestireno expandido, pois este material não apresentou uma notável degradação e perda de material durante os ensaios de absorção.Owing to the low density and relative low price, expanded polymers appear to be competitive for buoyancy systems. Expanded polymers are particularly efficient to develop buoyancy modules of submarine robots such as ROV (Remote Operated Vehicle. This work describes water absorption mechanisms of two expanded polymers (expanded polyurethane and expanded polystyrene, in various aqueous media (seawater and distilled water. The influence of the samples geometry on the water absorption kinetics was studied. The samples with a larger contact area with water were found to be more susceptible to water absorption

  18. Buoyancy-driven flow excursions in fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  19. Buoyancy and g-modes in young superfluid neutron stars

    CERN Document Server

    Passamonti, A; Ho, W C G

    2015-01-01

    We consider the local dynamics of a realistic neutron star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a number of key issues that should be kept in mind whenever equation of state data is compiled from nuclear physics for use in neutron star calculations. We provide explicit results for a particular stellar model and a specific nucleonic equation of state, making use of cooling simulations to show how the local wave spectrum evolves as the star ages. Our results show that the composition gradient is effectively dominated by the muons whenever they are present. When the star cools below the superfluid transition, the support fo...

  20. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    Science.gov (United States)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed outside the boundary layer. Vaporization of FC-72 droplets in the boundary layer next to the heated surface was not observed.

  1. Buoyancy-driven flow excursions in fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-12-31

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating moderator downward through channels in cylindrical fuel tubes. Powers were limited to prevent a flow excursion from occurring in one or more of these parallel channels. During full-power operation, limits prevented a boiling flow excursion from taking place. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increases beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of historical levels.

  2. Experiments on buoyancy and surface tension following Galileo Galilei

    Science.gov (United States)

    Straulino, S.; Gambi, C. M. C.; Righini, A.

    2011-01-01

    We analyze passages of Galileo's writings on aspects of floating. Galileo encountered peculiar effects such as the "floating" of light objects made of dense material and the creation of large drops of water that were difficult to explain because they are related to our current understanding of surface tension. Even though Galileo could not understand the phenomenon, his proposed explanations and experiments are interesting from an educational point of view. We replicate the experiment on water and wine that was described by Galileo in his Two New Sciences.

  3. Diving into buoyancy: exploring the Archimedes principle through engineering

    OpenAIRE

    Thiam, Mouhamadou

    2016-01-01

    In our daily lives, we observe objects sinking, floating, or rising when immersed in a fluid. The Archimedes principle, which explains an object's behavior when immersed in a fluid, is important in fluid mechanics; however, it is a relatively complex concept for middle school students to grasp, as they often harbor misconceptions. To initiate conceptual change among students regarding the misconception "heavy objects sink and light objects float," I created a project during which students bui...

  4. Positive-Buoyancy Rover for Under Ice Mobility

    Science.gov (United States)

    Leichty, John M.; Klesh, Andrew T.; Berisford, Daniel F.; Matthews, Jaret B.; Hand, Kevin P.

    2013-01-01

    A buoyant rover has been developed to traverse the underside of ice-covered lakes and seas. The rover operates at the ice/water interface and permits direct observation and measurement of processes affecting freeze- over and thaw events in lake and marine environments. Operating along the 2- D ice-water interface simplifies many aspects of underwater exploration, especially when compared to submersibles, which have difficulty in station-keeping and precision mobility. The buoyant rover consists of an all aluminum body with two aluminum sawtooth wheels. The two independent body segments are sandwiched between four actuators that permit isolation of wheel movement from movement of the central tether spool. For normal operations, the wheels move while the tether spool feeds out line and the cameras on each segment maintain a user-controlled fixed position. Typically one camera targets the ice/water interface and one camera looks down to the lake floor to identify seep sources. Each wheel can be operated independently for precision turning and adjustments. The rover is controlled by a touch- tablet interface and wireless goggles enable real-time viewing of video streamed from the rover cameras. The buoyant rover was successfully deployed and tested during an October 2012 field campaign to investigate methane trapped in ice in lakes along the North Slope of Alaska.

  5. The cognitive development of Galileo's theory of buoyancy

    Science.gov (United States)

    Palmieri, Paolo

    2005-01-01

    Some thirty years ago, in a seminal book, William Shea argued that between 1610 and 1632 Galileo worked out "the methodology of his intellectual revolution", and that hydrostatics was one fundamental area of research Galileo concerned himself with at that time. According to Shea, that methodology was deeply rooted in Archimedean mathematics and basically consisted in mathematically investigating classes of phenomena, such as floating bodies, under certain idealized conditions. I believe that Shea's view is fundamentally correct. I will develop it further, by reconsidering Galileo's methodology in finer detail, specifically in relation to the development of his theory of floating bodies.

  6. Multiple steady states of exhaust airflow in a multi-branch tunnel with the combined effects of buoyancy and fan power%热压与风机动力共同作用下多分支隧道内排烟气流的多解性

    Institute of Scientific and Technical Information of China (English)

    阳东; 赵成梅

    2015-01-01

    The multi‐branch tunnel has multiple routes for smoke extraction and air supply ,consequently its ventilation and smoke control modes could have multiple solutions owing to the competitive effects of buoyancy and fan power .For the smoke control of a multi‐branch tunnel ,the mass and energy balance equations for every possible flow pattern were established ,and the corresponding multiple solutions were obtained using mathematical methods .The results demonstrate that ,even though the exhaust ventilation mode and fan type have been determined in accordance with the anticipation ,multiple states of exhausted flow remain and the operation point of the fans will drift away from the design accordingly .This could cause a totally different direction of smoke route from the anticipated one .It is also shown that the type of fan has significant effects on the existence of multiple solutions .%多分支隧道的排烟与补风路径较多,热压与风机动力的竞争可能造成其通风排烟模式具有多解性。针对某一多分支隧道的防排烟工况,利用理论分析建立了各种气流模式的控制方程,通过数学方法获得了理论解。结果证明,在按照预期设计选定通风排烟模式与风机以后,多分支隧道内的排烟气流仍然可能存在多种状态,风机的运行工况点也会随之漂移,导致排烟方向可能与设计预期完全相反。研究还发现,通过改变风机选型能起到抑制排烟气流出现多解的作用。

  7. A Model of Secondary Hydrocarbon Migration As a Buoyancy-Driven Separate Phase Flow Un modèle de migration secondaire des hydrocarbures considéré comme un écoulement en phases séparées régi par la poussée d'Archimède

    Directory of Open Access Journals (Sweden)

    Lehner F. K.

    2006-11-01

    Full Text Available A mathematical model of secondary migration is described which permits the prediction of hydrocarbon migration and accumulation patterns in a sedimentary basin, if source rock expulsion rates and geometrical and hydraulic properties of major carrier systems are known through geological time. In this model, secondary migration is treated as buoyancy-driven, segregated flow of hydrocarbons in hydrostatic aquifers. Lateral, updip migration is conceived as a Boussinesq-type, free-surface flow, with source and sink terms representing supply from source rocks and leakage through cap rocks and faults. This permits a two-dimensional, map-view mathematical description of a three-dimensional, time-dependent secondary migration system. A nine-point finite difference approximation has been developed to minimize numerical dispersion, and upstream-weighting is used to obtain stable solutions. Example computations for simple, single carrier bed structures are presented. L'article décrit un modèle mathématique de migration secondaire prédisant la migration des hydrocarbures et leur accumulation dans un bassin sédimentaire, lorsque les taux d'expulsion des roches mères et les propriétés géométriques et hydrauliques des principaux systèmes de drainage sont connus à l'échelle du temps géologique. Dans ce modèle, la migration secondaire est traitée comme un écoulement des hydrocarbures en phase séparée, contrôlé par la poussée d'Archimède, dans des aquifères hydrostatiques. La migration latérale est considérée comme un écoulement de type Boussinesq, à surface libre, avec des termes sources et puits représentant les apports venant des roches mères et les fuites à travers les couvertures et les failles. Ceci permet une description mathématique bidimensionnelle cartographiable d'un système de migration secondaire tridimensionnel et dépendant du temps. On utilise une approximation type différences finies à neuf points pour minimiser

  8. CFD Analysis of the Effect on Buoyancy Due to Terrain Temperature Based on an Integrated DEM and Landsat Infrared Imagery Análisis CFD de vientos convectivos naturales debidos a la temperatura de un terreno basado en un modelo DEM integrado con imágenes infrarrojas Landsat

    Directory of Open Access Journals (Sweden)

    Santiago Giraldo

    2008-12-01

    Full Text Available This paper deals with the influence of concrete structures on atmospheric temperatureand the convection winds generated in the Aburra Valley in Medell´ın,Colombia. This area is characterised by low wind velocities with a high industrydensity. A digital elevation model was used from the Radar ShuttleTopography Mission and post-processed in order to obtain a valid volumetricCFD domain. The construction process includes hole-filling due to imperfectionsin the original radar data, decimation of the original cloud-of-points to reduce the excess of detail in regions with low curvature, and the introductionof a volume of air over the terrain surface (CFD domain. Landsat satellitedata was used to set the terrain temperatures for various material compositions.The converted infrared image was then registered into the CFD domainusing an interpolation technique.Navier–Stokes Equations were solved for buoyant, turbulent flow of compressiblefluids accounting for convection and heat transfer effects. Simulationincludes buoyancy and turbulence flow through the k–epsilon model using thehigh-performance computing facilities of Westgrid (Western Canada ResearchGrid. Preliminary results show wind distributions that compare to the oneobserved at low–altitude in the region.El presente trabajo estudia la influencia de estructuras de concreto en la temperatura atmosférica y los vientos convectivos generados en el Valle de Aburrá en Medellín, Colombia. Esta zona se caracteriza por vientos de bajas velocidades con alta densidad industrial. Un modelo de elevación digital fue obtenido de la misión topográfica del radar Shuttle y post-procesado en aras de obtener un dominio volumétrico CFD válido. El proceso de construcción incluye el parchado de agujeros debidos a imperfectos en los datos originarios del radar, decimación de la nube de puntos original para reducir el exceso de detalle en regiones con baja curvatura y la generación de un volumen de

  9. Experimental and Theoretical Studies on Velocity Field of Buoyancy Convection in KNbO3 Melt

    Institute of Scientific and Technical Information of China (English)

    JIN Wei-Qing; Shinichi YODA; JIANG Yuan-Fang; PAN Zhi-Lei; LIANG Xin-An

    2001-01-01

    The Schlieren technique coupling with a differential interference microscope was applied to visualize the KNbOa melt motion in a loop-shaped Pt wire heater. The natural convection in KNbOa melt was traced by observing themovement of the tiny KNbO3 crystals (~ 10 μm) and the stream velocities of these tracer crystals were measured. In theoretical analysis, the Navier-Stokes equation was solved as a stable field. The general solution for this system of the differential equation was expressed by an approximate power series of azimuth and radius vector. The expression was substituted in the differential equation; a non-trivial solution was obtained exactly. The velocity distribution in the vertical section was obtained which is in qualitative agreement with the experimental result.

  10. EXPERIMENTAL AND THEORETICAL STUDIES ON VELOCITY FIELD OF BUOYANCY CONVECTION IN KNbO3 MELT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ The Schlieren technique coupling with a differential interference microscope was applied to visualize the KNbO3 melt motion in a loop-shaped Pt wire heater. The natural convection in KNbO3 melt was traced by observing the movement of the tiny KNbO3 crystals (~10μm) and the stream velocities of these tracer crystals were measured. In theoretical analysis, the Navier-Stokes equation was solved as a stable field. The general solution for this system of the differential equation was expressed by an approximate power series of azimuth and radius vector. The expression was substituted in the differential equation; a non-trivial solution was obtained exactly.The velocity distribution in the vertical section was obtained which is in qualitative agreement with the experimental result.

  11. Onshore Wind Stress and Buoyancy Flux Observed on a Dissipative Mediterranean Beach

    Science.gov (United States)

    2015-12-01

    and terrestrial radiation. On April 11, 2015, a second sonic anemometer was added at a height of 3m. All sensors were wired to a Campbell Scientific...from mixing upward while under unstable conditions when thermal instability and convection work to enhance turbulent mixing. Studies have... convective sublayer, 1.20  z / L  0.12 , describes conditions where thermal instabilities become significant but do not yet dominate mechanical

  12. Multidisciplinary design approach and safety analysis of ADSR cooled by buoyancy driven flows

    NARCIS (Netherlands)

    Ceballos Castillo, C.A.

    2007-01-01

    Transmutation is useful to reduce the storing time and the amount of nuclear waste to be stored in the geological repository. Transmutation can be achieved in all types of reactors: thermal systems, fast systems, critical and subcritical systems. Fast spectrum systems have significant advantages bec

  13. Rubber Balloons, Buoyancy and the Weight of Air: A Look Inside

    Science.gov (United States)

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2009-01-01

    We discuss three methods of measuring the density of air most commonly used in a teaching context. Emphasis is put on the advantages and/or difficulties of each method. In particular, we show that the 'rubber balloon' method can still be performed with meaningful physical insight, but it requires a very careful approach. (Contains 4 figures and 3…

  14. Particle fluid interactivity deteriorates buoyancy driven thermal transport in nanosuspensions : A multi component lattice Boltzmann approach

    CERN Document Server

    S, Savithiri; Pattamatta, Arvind; Das, Sarit K

    2015-01-01

    Severe contradictions exist between experimental observations and computational predictions regarding natural convective thermal transport in nanosuspensions. The approach treating nanosuspensions as homogeneous fluids in computations has been pin pointed as the major contributor to such contradictions. To fill the void, inter particle and particle fluid interactivities (slip mechanisms), in addition to effective thermophysical properties, have been incorporated within the present formulation. Through thorough scaling analysis, the dominant slip mechanisms have been identified. A Multi Component Lattice Boltzmann Model (MCLBM) approach has been proposed, wherein the suspension has been treated as a non homogeneous twin component mixture with the governing slip mechanisms incorporated. The computations based on the mathematical model can accurately predict and quantify natural convection thermal transport in nanosuspensions. The role of slip mechanisms such as Brownian diffusion, thermophoresis, drag, Saffman ...

  15. INFLUENCE OF VISCOUS AND BUOYANCY FORCES ON THE MOBILIZATION OF RESIDUAL TETRACHLOROETHYLENE DURING SURFACTANT FLUSHING

    Science.gov (United States)

    The potential for nonaqueous phase liquid (NAPL) mobilization is one of the most important considerations in the development and implementation of surfactant-based remediation technologies. Column experiments were performed to investigate the onset and extent of tetrachloroethyle...

  16. Buoyancy effects on upward brine displacement caused by CO2 injection

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Rinaldi, A.

    2010-01-15

    Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO{sub 2} injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the cooling in the upper aquifer that occurs in the model. The expected effect of upward brine displacement is either establishment of a new hydrostatic equilibrium or sustained upward flux into the bottom-most region of the upper aquifer.

  17. Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux

    Directory of Open Access Journals (Sweden)

    Nirmal C. Sacheti

    2014-01-01

    Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.

  18. Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy

    NARCIS (Netherlands)

    Weijer, W.; Ruijter, W.P.M. de; Sterl, A.; Drijfhout, S.

    2002-01-01

    The heat and salt input from the Indian to Atlantic Oceans by Agulhas Leakage is found to influence the Atlantic overturning circulation in a low-resolution Ocean General Circulation Model. The model used is the Hamburg Large-Scale Geostrophic (LSG) model, which is forced by mixed boundary condition

  19. Buoyancy-driven leakage of oil from a ruptured submarine pipeline

    NARCIS (Netherlands)

    Kranenburg, C.

    1983-01-01

    The rupture of a submarine oil pipeline starts various mechanisms leading to an oil spill. Among these mechanisms the leakage of oil driven by the difference in specific gravities of oil and sea-water is difficult to estimate. A simple mathematical model has been developed and laboratory experiments

  20. In-Situ Production of Hydrogen for Buoyancy on Titan Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Resupply of materials in space applications is a significant logistical problem. Historically the replacement materials have been carried with the spacecraft. This...

  1. Analytical and experimental study of instabilities in buoyancy-driven convection in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Georgiadis, J.G.; Behringer, R.; Johnson, G.A.

    1992-04-01

    During the second year of support under the DOE grant, significant progress was made in two directions: (1) Visualization of structure and tow field in randomly packed beds via Magnetic Resonance Imaging, and (2) Shadowgraphic visualization of natural convection in porous systems. This report describes the activities in detail, cite publications which resulted from this project, and conclude with plans for the last phase of the experimental investigation.

  2. Dynamic regimes of buoyancy-affected two-phase flow in unconsolidated porous media

    Science.gov (United States)

    Stöhr, M.; Khalili, A.

    2006-03-01

    The invasion and subsequent flow of a nonwetting fluid (NWF) in a three-dimensional, unconsolidated porous medium saturated with a wetting fluid of higher density and viscosity have been studied experimentally using a light-transmission technique. Distinct dynamic regimes have been found for different relative magnitudes of viscous, capillary, and gravity forces. It is shown that the ratio of viscous and hydrostatic pressure gradients can be used as a relevant dimensionless number K for the characterization of the different flow regimes. For low values of K , the invasion is characterized by the migration and fragmentation of isolated clusters of the NWF resulting from the prevalence of gravity and capillary forces. At high values of K , the dominance of viscous and gravity forces leads to an anisotropic fingerlike invasion. When the invasion stops after the breakthrough of the NWF at the open upper boundary, the invasion structure retracts under the influence of gravity and transforms into stable vertical channels. It is shown that the stability of these channels is the result of a balance between hydrostatic and viscous pressure gradients.

  3. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    Directory of Open Access Journals (Sweden)

    Marijn Billiet

    2015-10-01

    Full Text Available Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

  4. Algebraically explicit analytical solutions of two-buoyancy natural convection in porous media

    Institute of Scientific and Technical Information of China (English)

    CAI Ruixian; ZHANG Na; LIU Weiwei

    2003-01-01

    Analytical solutions of governing equations of various physical phenomena have their own irreplaceable theoretical meaning. In addition, they can also be the benchmark solutions to verify the outcomes and codes of numerical solution, and to develop various numerical methods such as their differencing schemes and grid generation skills as well. In order to promote the development of the discipline of natural convection, three simple algebraically explicit analytical solution sets are derived for a non-linear simultaneous partial differential equation set with five dependent unknown variables, which represents the natural convection in porous media with both temperature and concentration gradients. An extraordinary method separating variables with addition is applied in this paper to deduce solutions.

  5. A method of evaluating efficiency during space-suited work in a neutral buoyancy environment

    Science.gov (United States)

    Greenisen, Michael C.; West, Phillip; Newton, Frederick K.; Gilbert, John H.; Squires, William G.

    1991-01-01

    The purpose was to investigate efficiency as related to the work transmission and the metabolic cost of various extravehicular activity (EVA) tasks during simulated microgravity (whole body water immersion) using three space suits. Two new prototype space station suits, AX-5 and MKIII, are pressurized at 57.2 kPa and were tested concurrently with the operationally used 29.6 kPa shuttle suit. Four male astronauts were asked to perform a fatigue trial on four upper extremity exercises during which metabolic rate and work output were measured and efficiency was calculated in each suit. The activities were selected to simulate actual EVA tasks. The test article was an underwater dynamometry system to which the astronauts were secured by foot restraints. All metabolic data was acquired, calculated, and stored using a computerized indirect calorimetry system connected to the suit ventilation/gas supply control console. During the efficiency testing, steady state metabolic rate could be evaluated as well as work transmitted to the dynamometer. Mechanical efficiency could then be calculated for each astronaut in each suit performing each movement.

  6. In-situ Production of Hydrogen for Buoyancy on Titan Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on current observations Titan is believed to have a rich, dense atmosphere. If the findings of the Cassini and Huygens missions corroborate this, the next...

  7. Floating along buoyancy levels: dispersal and survival of western Baltic fish eggs

    DEFF Research Database (Denmark)

    Petereit, C.; Hinrichsen, H.-H.; Franke, A.

    2014-01-01

    Vertical distribution is an important feature of pelagic fish eggs and yolk sac larvae impacting their survival and dispersal, especially in heterogeneous and highly variable estuarine environments like the Baltic Sea. Egg densities determining the vertical distribution pattern were experimentally...... ascertained for cod (Gadus morhua), plaice (Pleuronectes platessa) and flounder (Platichthys flesus) from the western Baltic Sea. Plaice eggs floated at lower mean (± standard deviation) density range (1.0136 ± 0.0007 g cm-3) compared to cod (1.0146 ± 0.0009 g cm-3) and flounder eggs (1.0160 ± 0.0015 g cm-3...... for any of the species. Available egg density data for Baltic Sea cod, plaice and flounder are summarized considering ICES subdivisions and stock management units. A hydrodynamic drift modeling approach was applied releasing drifters in the Belt Sea continuously from December to May, covering the species...

  8. Dynamo action and magnetic buoyancy in convection simulations with vertical shear

    CERN Document Server

    Guerrero, G

    2011-01-01

    A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We perform numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location ...

  9. Particle fluid interactivity deteriorates buoyancy driven thermal transport in nanosuspensions : A multi component lattice Boltzmann approach

    OpenAIRE

    S, Savithiri; Dhar,Purbarun; Pattamatta, Arvind; Das, Sarit K

    2015-01-01

    Severe contradictions exist between experimental observations and computational predictions regarding natural convective thermal transport in nanosuspensions. The approach treating nanosuspensions as homogeneous fluids in computations has been pin pointed as the major contributor to such contradictions. To fill the void, inter particle and particle fluid interactivities (slip mechanisms), in addition to effective thermophysical properties, have been incorporated within the present formulation...

  10. Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture

    OpenAIRE

    Luni, Camilla; Feldman, Hope C.; Pozzobon, Michela; De Coppi, Paolo; Meinhart, Carl D.; Elvassore, Nicola

    2010-01-01

    This work presents the development of an array of bioreactors where finely controlled stirring is provided at the microliter scale (100–300 μl). The microliter-bioreactor array is useful for performing protocol optimization in up to 96 parallel experiments of hematopoietic stem cell (HSC) cultures. Exploring a wide range of experimental conditions at the microliter scale minimizes cost and labor. Once the cell culture protocol is optimized, it can be applied to large-scale bioreactors for ste...

  11. Design of a Lighter Than Air Vehicle That Achieves Positive Buoyancy in Air Using a Vacuum

    Science.gov (United States)

    2012-06-01

    calculated for the frame. The skin was predicted to add approximately 0.37 to the W/B if Zylon was used to reinforce a Mylar membrane, which would...stiffening the skin are Zylon and Vectran as shown in Table 6. If graphene could be made in usable sizes and attached to the structure, it would far exceed...Graphene 250 ∙ 109 100 130 0.02 Only Available in small sheets Zylon 303 ∙ 109 1560 5.8 2.5 Fiber Vectran 75 ∙ 109 1400 3.2 3.6 Fiber

  12. Psycho-Educational Factors in the Prediction of Academic Buoyancy in Second Life®

    Science.gov (United States)

    Carrington, Cheril C.

    2013-01-01

    Academic resilience has been widely researched in traditional and online educational settings, but it has not been sufficiently studied in three-dimensional (3D) virtual learning environments (VLEs). This inferential research used multiple regression to quantitatively investigate the extent to which psycho-educational factors including academic…

  13. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean

    DEFF Research Database (Denmark)

    Fernandez-Mendez, Mar; Wenzhöfer, Frank; Peeken, Ilka

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly...... seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central...... Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen...

  14. Buoyancy effects on thermal behavior of a flat-plate solar collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2008-01-01

    Theoretical and experimental investigations of the flow and temperature distribution in a 12.53 m(2) solar collector panel with an absorber consisting of two vertical manifolds interconnected by 16 parallel horizontal fins have been carried out. The investigations are focused on overheating and b...

  15. Instabilities and bifurcations due to buoyancy in a cylindrical container heated from below with and without a free surface

    Science.gov (United States)

    El Gallaf, Anas; Touihri, Ridha; Henry, Daniel; Ben Hadid, Hamda

    2009-11-01

    Three-dimensional simulations of the buoyant convection in a cylindrical container heated from below are presented. Both the thresholds for the onset of the convection and the nonlinear evolution of this convection are calculated. The simulations concern two configurations: a cavity with a rigid upper surface (Rigid-Rigid case) and a cavity with a non-constrained free surface (Rigid-Free case). The results show a similar variation of the primary thresholds with the aspect ratio for the two configurations. In contrast, the nonlinear evolution of the convection is much changed between the two configurations. In particular, subcritical secondary branches with a very large subcriticity are obtained in the R-F case. To cite this article: A. El Gallaf et al., C. R. Mecanique 337 (2009).

  16. Highstand shelf fans: The role of buoyancy reversal in the deposition of a new type of shelf sand body

    Science.gov (United States)

    Steel, Elisabeth; Simms, Alexander R.; Warrick, Jonathan; Yokoyama, Yusuke

    2016-01-01

    Although sea-level highstands are typically associated with sediment-starved continental shelves, high sea level does not hinder major river floods. Turbidity currents generated by plunging of sediment-laden rivers at the fluvial-marine interface, known as hyperpycnal flows, allow for cross-shelf transport of suspended sand beyond the coastline. Hyperpycnal flows in southern California have deposited six subaqueous fans on the shelf of the northern Santa Barbara Channel in the Holocene. Using eight cores and nine grab samples, we describe the deposits, age, and stratigraphic architecture of two fans in the Santa Barbara Channel. Fan lobes have up to 3 m of relief and are composed of multiple hyperpycnite beds ∼5 cm to 40 cm thick. Deposit architecture and geometry suggest the hyperpycnal flows became positively buoyant and lifted off the seabed, resulting in well-sorted, structureless, elongate sand lobes. Contrary to conventional sequence stratigraphic models, the presence of these features on the continental shelf suggests that active-margin shelves may locally develop high-quality reservoir sand bodies during sea-level highstands, and that such shelves need not be solely the site of sediment bypass. These deposits may provide a Quaternary analogue to many well-sorted sand bodies in the rock record that are interpreted as turbidites but lack typical Bouma-type features.

  17. Buoyancy-Driven Fluid Flow Generated by Bacterial Metabolism and its Proposed Relationship to Increased Bacterial Growth in Space

    Science.gov (United States)

    2007-11-02

    Escherichia coli. Carnegie Institute, Washington, DC, p. 184, 1955. Robinson, T. P., Ocio , M. J., Kaloti, A., et al. The effect of the growth...environment on the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 44, 83-92, 1998. Robinson, T. P., Ocio , M. J. Kaloti, A., et al. The

  18. Spatio-temporal variability in western Baltic cod early life stage survival mediated by egg buoyancy, hydrography and hydrodynamics

    DEFF Research Database (Denmark)

    Hinrichsen, H-H.; Hüssy, K.; Huwer, B.

    2012-01-01

    explicit understanding of both the spawning stock size and the early life stage dynamics is required. The objectives of this study are to assess the transport of western Baltic cod early life stages as well as the variability in environmentally-mediated survival along drift routes in relation to both...

  19. Analytical and experimental study of instabilities in buoyancy-driven convection in porous media. Progress report, August 1991--April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Georgiadis, J.G.; Behringer, R.; Johnson, G.A.

    1992-04-01

    During the second year of support under the DOE grant, significant progress was made in two directions: (1) Visualization of structure and tow field in randomly packed beds via Magnetic Resonance Imaging, and (2) Shadowgraphic visualization of natural convection in porous systems. This report describes the activities in detail, cite publications which resulted from this project, and conclude with plans for the last phase of the experimental investigation.

  20. Buoyancy of the ''Y2K'' Persistent Train and the Trajectory of the 04:00:29 UT Leonid Fireball

    Science.gov (United States)

    Jenniskens, Peter; Rairden, Rick L.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The atmospheric trajectory is calculated of a particularly well studied fireball and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a minute after the meteor's first appearance, the train curves into a '2'-shape, which persisted until at least 13 minutes after the fireball. We conclude that the shape results because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91 km altitude, as well as a westerly wind gradient with altitude. In addition, there is downward drift that affects the formation of loops in the train early on.

  1. Negative gravitactic behavior of Euglena gracilis can not be described by the mechanism of buoyancy-oriented upward swimming

    Science.gov (United States)

    Lebert, Michael; Häder, Donat-Peter

    1999-01-01

    Gravitactic behavior of microorganisms has been known for more than a hundred years. Euglena gracilis serves as a model system for gravity-triggered behavioral responses. Two basic mechanisms are discussed for gravitaxis: one is based on a physical mechanism where an asymmetric mass distribution pulls the cell passively in the correct orientation and, in contrast, the involvement of an active sensory system. A recently developed high-resolution motion-tracking system allows the analysis of single tracks during reorientation. The results are compared to a model developed by Fukui and Asai (1985) which describes gravitaxis of Paramecium caudatum on the basis of a physical mechanism. Taking into account the different size, different density, different mass distribution as well as the different velocity, results of the adapted model description of Paramecium were applied to measured data of Euglena. General shapes as well as the time scale of the predicted reorientational movement compared to measurements were different. The analysis clearly rules out the possibility that gravitaxis of Euglena gracilis is based on a pure physical phenomenon, and gives further support to the involvement of an active reorientational system. In addition, it could be shown that cell form changes during reorientation, even in an initial period where no angular change was observed.

  2. Mixed Convection Boundary-layer Flow of a Nanofluid Near Stagnation-point on a Vertical Plate with Effects of Buoyancy Assisting and Opposing Flows

    Directory of Open Access Journals (Sweden)

    Hossein Tamim

    2013-07-01

    Full Text Available In this study, the steady laminar mixed convection boundary layer flow of a nanofluid near the stagnation-point on a vertical plate with prescribed surface temperature is investigated. Here, both assisting and opposing flows are considered and studied. Using appropriate transformations, the system of partial differential equations is transformed into an ordinary differential system of two equations, which is solved numerically by shooting method, coupled with Runge-Kutta scheme. Three different types of nanoparticles, namely copper Cu, alumina Al2O3 and titania TiO2 with water as the base fluid are considered. Numerical results are obtained for the skin-friction coefficient and Nusselt number as well as for the velocity and temperature profiles for some values of the governing parameters, namely, the nanoparticle volume fraction parameter &Phiand mixed convection parameter &lambda It is found that the highest rate of heat transfer occurs in the mixed convection with assisting flow while the lowest one occurs in the mixed convection with opposing flow. Moreover, the skin friction coefficient and the heat transfer rate at the surface are highest for copper–water nanofluid compared to the alumina–water and titania–water nanofluids.

  3. Buoyancy-Driven Heat Transfer During Application of a Thermal Gradient for the Study of Vapor Deposition at Low Pressure Using and Ideal Gas

    Science.gov (United States)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.

    1996-01-01

    A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is positioned vertically. The ground-based experiments are sufficient preliminary tests of theory and should be of significant interest regarding vapor deposited films in microgravity.

  4. Investigation of four problems on the units of Force and Motion with Pressure and Buoyancy in the secondary school physics textbooks

    Science.gov (United States)

    Kavcar, Nevzat; Kaya, Uǧur

    2017-02-01

    In the study the four problems defined on three units in the textbooks in accordance with the 2013 Secondary School Physics Curriculum have been investigated. The study carried out in the Spring semester of education year 2015 - 2016, within the scope of an undergraduate course. Method of the study is the descriptive model based on qualitative research technics. The data collection instruments were textbook evaluation reports prepared by the participants and pre -service teachers, and presentations reflecting teachers' and pre-service teachers' ideas on the textbooks. A document analysis was conducted by means of these data collection tools. It has been concluded that in the related units a significant shortcoming is not found regarding being student-centered, activity-based and contex-based approximations. However, some shortcomings were found in activity-gain concordance with assessment and evaluation applications. On the basis of the collected data, some recommendations for improving the textbooks have been presented.

  5. Design of Glass Beer Bottle Unscrambler Based on Buoyancy%浮力式啤酒理瓶机的设计

    Institute of Scientific and Technical Information of China (English)

    张信禹; 樊军庆; 毛舟; 张志强

    2014-01-01

    利用水作为啤酒瓶的缓冲介质,根据啤酒瓶漂浮在水面因灌水竖起的特点来设计理瓶机。通过冲水管喷射的水流使啤酒瓶往斜坡式输送带运动,达到将杂乱的啤酒瓶整理整齐的目的,所设计的理瓶机理瓶效率达12000个/h。%A beer bottle unscrambler has been designed using water as buffer medium. The beer bottle unscrambler is designed based on the char-acteristics that the water influent into bottles when they float in the water. Beer bottles are drifted towards the slope conveyor though the water sprayed from the pipe. Finally, messy beer bottles are put in order.The efficiency of the unscrambler reached 12000 per hour.

  6. A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Khan, Zafar Hayat; Bég, O. Anwar

    2016-09-01

    In this paper, a mathematical study is conducted of steady incompressible flow of a temperature-dependent viscous nanofluid from a vertical stretching sheet under applied external magnetic field and gravitational body force effects. The Reynolds exponential viscosity model is deployed. Electrically-conducting nanofluids are considered which comprise a suspension of uniform dimension nanoparticles suspended in viscous base fluid. The nanofluid sheet is extended with a linear velocity in the axial direction. The Buonjiornio model is utilized which features Brownian motion and thermophoresis effects. The partial differential equations for mass, momentum, energy and species (nano-particle concentration) are formulated with magnetic body force term. Viscous and Joule dissipation effects are neglected. The emerging nonlinear, coupled, boundary value problem is solved numerically using the Runge-Kutta fourth order method along with a shooting technique. Graphical solutions for velocity, temperature, concentration field, skin friction and Nusselt number are presented. Furthermore stream function plots are also included. Validation with Nakamura's finite difference algorithm is included. Increasing nanofluid viscosity is observed to enhance temperatures and concentrations but to reduce velocity magnitudes. Nusselt number is enhanced with both thermal and species Grashof numbers whereas it is reduced with increasing thermophoresis parameter and Schmidt number. The model is applicable in nano-material manufacturing processes involving extruding sheets.

  7. Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition—a case study of the 2010 eruption of Eyjafjallajökull, Iceland

    Science.gov (United States)

    Dürig, Tobias; Gudmundsson, Magnús Tumi; Karmann, Sven; Zimanowski, Bernd; Dellino, Pierfrancesco; Rietze, Martin; Büttner, Ralf

    2015-11-01

    The 2010 eruption of Eyjafjallajökull volcano was characterized by pulsating activity. Discrete ash bursts merged at higher altitude and formed a sustained quasi-continuous eruption column. High-resolution near-field videos were recorded on 8-10 May, during the second explosive phase of the eruption, and supplemented by contemporary aerial observations. In the observed period, pulses occurred at intervals of 0.8 to 23.4 s (average, 4.2 s). On the basis of video analysis, the pulse volume and the velocity of the reversely buoyant jets that initiated each pulse were determined. The expansion history of jets was tracked until the pulses reached the height of transition from a negatively buoyant jet to a convective buoyant plume about 100 m above the vent. Based on the assumption that the density of the gas-solid mixture making up the pulse approximates that of the surrounding air at the level of transition from the jet to the plume, a mass flux ranging between 2.2 and 3.5 · 104 kg/s was calculated. This mass eruption rate is in good agreement with results obtained with simple models relating plume height with mass discharge at the vent. Our findings indicate that near-field measurements of eruption source parameters in a pulsating eruption may prove to be an effective monitoring tool. A comparison of the observed pulses with those generated in calibrated large-scale experiments reveals very similar characteristics and suggests that the analysis of near-field sensors could in the future help to constrain the triggering mechanism of explosive eruptions.

  8. 不同高宽比的矩形空腔内流体浮升流动特性分析%Flow characteristics of free fluid driven by buoyancy in rectangular cavities with different aspect ratios

    Institute of Scientific and Technical Information of China (English)

    赵忠超; 张娇娇; 成华; 丰威仙

    2014-01-01

    In this paper, the mathematic model of buoyant lift flow in a rectangular cavity was developed by the dimensionless analysis.The effects of aspect ratio of the rectangular cavity on the heat convection were simulated and analyzed through this mathematic model under same working conditions.The results show that the aspect ra-tio of rectangular cavity has great effects on the character of buoyant lift flow and heat convection efficiency.With the aspect ratio increased, the transition layer of laminar flow has the tendency to decrease the Rayleigh number. When the Rayleigh number is kept constant, the average Nusselt number dramatically approaches the maximum and then decreases gradually.The eddy amount, intensity of buoyant flow and the average Nusselt number in-crease with the Rayleigh number.The maximum of average Nusselt number also has the tendency to move in the direction of smaller aspect ratio.%应用无量纲分析方法,建立了矩形空腔内流体浮升流动的数学模型,研究了相同工况下不同高宽比对其流动换热的影响。研究结果表明:不同高宽比对流体的浮升流动具有较大影响,随着高宽比的增大,空腔内流体流动的层流过渡层向Ra值减小的方向偏移,且当Ra数一定时,Numean随高宽比迅速地达到最大值后缓慢减小;随着Ra值的增加,空腔中涡的数量逐渐增加,浮升流动强度增大,Numean增大,且Numean的最大值向高宽比减小的方向偏移。

  9. 77 FR 19069 - Airworthiness Directives; Goodrich Evacuation Systems Approved Under Technical Standard Order...

    Science.gov (United States)

    2012-03-30

    ... inadequate buoyancy to support the raft's passenger capacity during ditching and increase the chance for... inadequate buoyancy to support the raft's passenger capacity during ditching and increase the chance...

  10. 76 FR 81885 - Airworthiness Directives; Goodrich Evacuation Systems Approved Under Technical Standard Order...

    Science.gov (United States)

    2011-12-29

    ... buoyancy to support the raft's passenger capacity during ditching and increase the chance for injury to... inadequate buoyancy to support the raft's passenger capacity during ditching and increase the chance...

  11. Academically Buoyant Students Are Less Anxious about and Perform Better in High-Stakes Examinations

    Science.gov (United States)

    Putwain, David W.; Daly, Anthony L.; Chamberlain, Suzanne; Sadreddini, Shireen

    2015-01-01

    Background: Prior research has shown that test anxiety is negatively related to academic buoyancy, but it is not known whether test anxiety is an antecedent or outcome of academic buoyancy. Furthermore, it is not known whether academic buoyancy is related to performance on high-stakes examinations. Aims: To test a model specifying reciprocal…

  12. A Lot of Good Physics in the Cartesian Diver

    Science.gov (United States)

    De Luca, Roberto; Ganci, Salvatore

    2011-01-01

    The Cartesian diver experiment certainly occupies a place of honour in old physics textbooks as a vivid demonstration of Archimedes' buoyancy. The original experiment, as described in old textbooks, shows Archimedes buoyancy qualitatively: when the increased weight of the diver is not counterbalanced by Archimedes' buoyancy, the diver sinks. When…

  13. 美俄出舱活动水下试验与训练设备研究现状及启示%Researches Stares of Neutral Buoyancy Mockups for EVA Testing and Training in US and Russia and their Enlightment

    Institute of Scientific and Technical Information of China (English)

    周永康; 张磊; 马爱军

    2014-01-01

    在水下中性浮力状态环境中,利用航天器水下模型进行出舱活动试验和训练是地面最有效的失重模拟手段之一,水下设备研制相比飞行设备有其特殊性.本文介绍了美国和俄罗斯出舱活动相关水下试验与训练设备的发展和现状,通过其主要应用、逼真度分级、应用时机和材料选用等分析,给出了对我国有借鉴意义的研制水下试验与训练设备的启示.

  14. 畸变函数对变形单液滴运动数值模拟精度的影响%INFLUENCE OF DISTORTION FUNCTION ON THE ACCURACY OF NUMERICAL SIMULATION OF THE MOTION OF A SINGLE BUOYANCY-DRIVEN DEFORMABLE DROP

    Institute of Scientific and Technical Information of China (English)

    李天文; 孙长贵; 毛在砂; 陈家镛

    1999-01-01

    在正交贴体坐标系中,用流函数-涡函数法模拟了单个变形液滴在无限流体介质中的稳态运动.采用Ryskin和Leal的正交变换方法,液滴外部用强限制法,内部用弱限制法,把求解区域变为1×1的矩形.探讨了正交贴体网格生成时,无界和有界畸变函数对坐标变换及数值模拟结果的影响.结果表明,采用有界畸变函数更为合理,且克服了流函数及涡函数值在靠近外边界处出现突跃和震荡的现象.本文所采用的网格生成方法原则上也可用于其它过程的数值模拟.

  15. 论浮力对热液喷发型(SEDEX)矿床成矿的作用:以澳大利亚北部为例%On the role of buoyancy force in the ore genesis of SEDEX deposits: Example from Northern Australia

    Institute of Scientific and Technical Information of China (English)

    杨建文; 冯佐海; 罗先熔; 陈远荣

    2009-01-01

    采用有限元法模拟了北澳大利亚Mount Isa盆地古流体迁移及温度场的分布,特别评价了浮力对沉积喷发型SEDEX矿床成矿的作用.数值模拟结果表明浮力驱动的热液循环主要由断层深度及其与含水层的空间关系所控制.海水从一条断层向下迁移,然后沿着主要的含水层横向流动.在此过程中地热导致温度逐渐增高,最后在浮力作用下加热后的富含金属元素的流体从另外一条断层向上运动并喷发到海底.计算表明喷发到海底的热液温度范围在115~160℃之间,并在一百万年的时间内保持了2.6~4.1 m·a-1的流速.这些条件在适当的化学圈闭环境下有利于形成Mount Isa规模的SEDEx矿床.因此,浮力是盆地范围热液循环的一个重要驱动机制,其强度之大足以形成类似于北澳大利亚Mount Isa规模的超巨型热液喷发型矿床.

  16. 46 CFR 160.055-7 - Sampling, tests, and inspections.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Sampling, tests, and inspections. 160.055-7 Section 160... and Child, for Merchant Vessels § 160.055-7 Sampling, tests, and inspections. (a) Production tests and... accordance with this section and § 160.001-5. (b) Buoyancy test. The buoyancy of the pad inserts from...

  17. 46 CFR 160.005-5 - Sampling, tests, and inspections.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Sampling, tests, and inspections. 160.005-5 Section 160... (Jacket Type), Models 52 and 56 § 160.005-5 Sampling, tests, and inspections. (a) Production tests and... accordance with this section and § 160.001-5. (b) Buoyancy test. The buoyancy of the pad inserts from...

  18. 46 CFR 160.002-5 - Sampling, tests, and inspections.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Sampling, tests, and inspections. 160.002-5 Section 160... Type), Models 3 and 5 § 160.002-5 Sampling, tests, and inspections. (a) Production tests and... accordance with this section and § 160.001-5. (b) Buoyancy test. The buoyancy of the pad inserts from...

  19. Theoretical and experimental comparison of the Soret coefficient for water-methanol and water-ethanol binary mixtures

    DEFF Research Database (Denmark)

    Saghir, MZ; Jiang, CG; Derawi, Samer;

    2004-01-01

    In multicomponent. mixtures, a much richer variety of phenomena can occur than in Simple (single-component) fluids. Natural convection in single-component. fluids is due to buoyancy forces caused by temperature gradients. In multicomponent mixtures, buoyancy forces may also be caused by concentra...

  20. 76 FR 15229 - Airworthiness Directives; Goodrich Evacuation Systems Approved Under Technical Standard Order...

    Science.gov (United States)

    2011-03-21

    ... inadequate buoyancy to support the raft's passenger capacity during ditching and increase the chance for... ditching and increase the chance for injury to raft passengers. Actions Since Existing AD Was Issued Since... inadequate buoyancy to support the raft's passenger capacity during ditching and increase the chance...

  1. Global Analysis of a Flexible Riser

    Institute of Scientific and Technical Information of China (English)

    Liping Sun; Bo Qi

    2011-01-01

    The mechanical performance of a flexible riser is more outstanding than other risers in violent environmental conditions.Based on the lumped mass method,a steep wave flexible riser configuration attached to a Floating Production Storage and Offloading(FPSO)has been applied to a global analysis in order to acquire the static and dynamic behavior of the flexible riser.The riser was divided into a series of straight massless line segments with a node at each end.Only the axial and torsional properties of the line were modeled,while the mass,weight,and buoyancy were all lumped to the nodes.Four different buoyancy module lengths have been made to demonstrate the importance of mode selection,so as to confirm the optimum buoyancy module length.The results in the sensitivity study show that the flexible riser is not very sensitive to the ocean current,and the buoyancy module can reduce the Von Mises stress and improve the mechanical performance of the flexible riser.Shorter buoyancy module length can reduce the riser effective tension in a specific range of the buoyancy module length when other parameters are constant,but it can also increase the maximum curvature of the riser.As a result,all kinds of the riser performances should be taken into account in order to select the most appropriate buoyancy module length.

  2. Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten

    2014-01-01

    The paper deals with the stochastic optimal control of a wave energy point absorber with strong nonlinear buoyancy forces using the reactive force from the electric generator on the absorber as control force. The considered point absorber has only one degree of freedom, heave motion, which is used...... presented in the paper. The effect of nonlinear buoyancy force – in comparison to linear buoyancy force – and constraints of the controller on the power outtake of the device have been studied in details and supported by numerical simulations....

  3. 46 CFR 173.055 - Watertight subdivision and damage stability standards for existing sailing school vessels.

    Science.gov (United States)

    2010-10-01

    ... board (c) An existing sailing school vessel which is required to meet a one compartment subdivision..., be fitted with a collision bulkhead and sufficient air tankage or other internal buoyancy to...

  4. Physical data collected from Seaglider SG102 during Iceland Faroe Ridge 12 November 06 in the North Atlantic Ocean deployed from 2006-11-12 to 2007-02-17 (NODC Accession 0117323)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  5. Physical data collected from Seaglider SG005 during Iceland Scotland Ridge November 2008 in the North Atlantic Ocean deployed from 2008-11-06 to 2009-02-23 (NODC Accession 0117038)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  6. Physical data collected from Seaglider SG016 during Iceland Faroe Ridge June 2009 in the North Atlantic Ocean deployed from 2009-06-05 to 2009-07-31 (NODC Accession 0117068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  7. Physical data collected from Seaglider SG016 during Iceland Faroes Ridge November 2007 in the North Atlantic Ocean deployed from 2007-11-13 to 2008-02-14 (NODC Accession 0117290)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  8. Physical data collected from Seaglider SG104 during Iceland Scotland Ridge, 31 August 2007 in the North Atlantic Ocean deployed from 2007-09-01 to 2007-11-13 (NODC Accession 0117368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  9. Physical data collected from Seaglider SG005 during Iceland Scotland Ridge June 2008 in the North Atlantic Ocean deployed from 2008-06-06 to 2008-08-29 (NODC Accession 0117036)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  10. Physical data collected from Seaglider SG016 during Iceland Scotland Ridge June 2008 in the North Atlantic Ocean deployed from 2008-06-07 to 2008-08-29 (NODC Accession 0117062)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  11. Physical data collected from Seaglider SG104 during Iceland-Scotland Ridge, 14 February 2008 in the North Atlantic Ocean deployed from 2008-02-14 to 2008-03-14 (NODC Accession 0117355)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  12. Physical data collected from Seaglider SG005 during Iceland-Scotland Ridge Aug 2009 in the North Atlantic Ocean deployed from 2009-08-29 to 2009-11-07 (NODC Accession 0117039)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  13. Physical data collected from Seaglider SG012 during Iceland Scotland Ridge, 31 August 2007 in the North Atlantic Ocean deployed from 2007-08-31 to 2007-10-04 (NODC Accession 0117040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  14. Physical data collected from Seaglider SG103 during Iceland Faroe Ridge November 2007 in the North Atlantic Ocean deployed from 2007-11-13 to 2008-02-12 (NODC Accession 0117352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  15. Physical data collected from Seaglider SG102 during Iceland Faroe Ridge November 2007 in the North Atlantic Ocean deployed from 2007-11-13 to 2008-02-13 (NODC Accession 0117333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  16. Cetacean Strategies.

    Science.gov (United States)

    Gilliland, Denise DelGrosso

    1991-01-01

    Suggested are activities about whales for children in schools not near the ocean. Activities designed to pique students' interest in whales and to investigate the size, breathing, buoyancy, and feeding strategies of whales are discussed. (CW)

  17. Physical data collected from Seaglider SG030 during Washington Coast 8 November 2006 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2006-11-09 to 2006-12-17 (NCEI Accession 0156188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  18. Double-diffusive convection in a rotating cylindrical annulus with conical caps

    CERN Document Server

    Simitev, R D

    2011-01-01

    Double-diffusive convection driven by both thermal and compositional buoyancy in a rotating cylindrical annulus with conical caps is considered with the aim to establish whether a small fraction of compositional buoyancy added to the thermal buoyancy (or vice versa) can significantly reduce the critical Rayleigh number and amplify convection in planetary cores. It is shown that the neutral surface describing the onset of convection in the double-buoyancy case is essentially different from that of the well-studied purely thermal case, and does indeed allow the possibility of low-Rayleigh number convection. In particular, isolated islands of instability are formed by an additional "double-diffusive" eigenmode in certain regions of the parameter space. However, the amplitude of such low-Rayleigh number convection is relatively weak. At similar flow amplitudes purely compositional and double-diffusive cases are characterized by a stronger time dependence compared to purely thermal cases, and by a prograde mean zo...

  19. Floating behavior of hydrophobic glass spheres.

    Science.gov (United States)

    Liu, Xinjie; Wang, Xiaolong; Liang, Yongmin; Zhou, Feng

    2009-08-15

    When a hydrophobic solid sphere is floating on water or salt solutions with different concentrations, it is at equilibrium under the impact of gravity, buoyancy force, and curvature force, the component of surface tension in the vertical direction. We have changed the diameters of the spheres and the concentrations of the two selected salts, NaCl and NaNO(3), to study the floating behaviors of these spheres and the contributions of surface tension and buoyancy force to their floatation. Generally speaking, the surface tension plays a more important role than the buoyancy force when the gravity is small, but the buoyancy force plays an identical or a more important role when the spheres are big enough. The wettability of the spheres significantly influences the height below the contact perimeter especially in salt solutions. The theoretical calculation meniscus slope angles at the sphere three-phase contact line are in agreement with experimental results.

  20. Time-dependent stratification in the Gauthami-Godavari Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.V.N

    and least around the high water slacks. The formation of stratification relaxes viscous constraints and a buoyancy circulation rapidly develops. The breakdown of stratification drastically modifies the circulation and largely removes the vertical shear...

  1. Further applications of Archimedes' principle in the correction of asymmetrical breasts.

    Science.gov (United States)

    Schultz, R C; Dolezal, R F; Nolan, J

    1986-02-01

    Archimedes' law of buoyancy has been extended to the preoperative bedside assessment of volume differences between breasts, whatever their cause. The simple method described has proved to be a helpful aid in surgical procedures for the correction of breast asymmetry.

  2. Documentation for University of Washington Seaglider records archived at NODC (NODC Accession 0092291)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seagliders are small (1.8m hull), reusable, long-range, and buoyancy-driven autonomous underwater vehicles (AUVs) designed to glide from the ocean surface to as deep...

  3. Naval S&T Strategic Plan

    Science.gov (United States)

    2011-01-01

    platforms such as surface drifters, vertically-profiling drifting floats, propeller- driven unmanned underwater vehicles and buoyancy-driven ocean gliders ...time-critical targets, while limiting collateral effects through the use of electromagnetic kinetic projectiles, hypersonic missile propulsion

  4. Physical data collected from Seaglider SG101 during Iceland Scotland Ridge June 2007 in the North Atlantic Ocean deployed from 2007-06-09 to 2007-08-31 (NODC Accession 0117292)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  5. Physical data collected from Seaglider SG101 during Faroes Nov08 in the North Atlantic Ocean deployed from 2008-11-08 to 2009-01-04 (NODC Accession 0117320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  6. Antarctic Fishes.

    Science.gov (United States)

    Eastman, Joseph T.; DeVries, Arthur L.

    1986-01-01

    Explains the adaptations to Antarctic waters that Notothenioidei, a group of advanced bony fishes, have exhibited. Discusses the fishes' mechanisms of production of antifreeze properties and their capacities for neutral buoyancy in water. (ML)

  7. Spectra of currents and temperature off Godavari (east coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, M.S.S; Rao, L.V.G.

    Time series data of currents and temperature obtained from a mooring of current meters off Godavari (East Coast of India) during September 1980 are analysed to study the space scales of semidiurnal and internal oscillations in the range of buoyancy...

  8. Physical data collected from Seaglider SG101 during WA Coast, April 2008 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2008-04-01 to 2008-07-31 (NCEI Accession 0156172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  9. Physical data collected from Seaglider SG103 during Iceland Scotland Ridge February 2007 in the North Atlantic Ocean deployed from 2007-02-18 to 2007-06-09 (NODC Accession 0117336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  10. Physical data collected from Seaglider SG014 during Faroes Aug08 in the North Atlantic Ocean deployed from 2008-08-29 to 2008-10-31 (NODC Accession 0117058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  11. Physical, chemical, and bio-optical data collected from Seaglider SG157 during IOOS OSU sampling on Trinidad Head Line in the North Pacific Ocean deployed from 2014-11-16 to 2015-03-09 (NODC Accession 0125046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  12. Physical data collected from Seaglider SG005 during WA Coast August 2004 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2004-08-30 to 2004-12-23 (NCEI Accession 0155941)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  13. Physical data collected from Seaglider SG005 during Washington Coast, September 2002 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2002-09-11 to 2002-11-03 (NCEI Accession 0155983)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  14. Physical data collected from Seaglider SG012 during Washington Coast, launched 07 February 2005 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2005-02-07 to 2005-06-08 (NCEI Accession 0156075)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  15. Physical data collected from Seaglider SG016 during Faroe Shetland Channel, 12 November 2006 in the North Atlantic Ocean deployed from 2006-11-12 to 2006-12-06 (NODC Accession 0117074)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  16. Physical data collected from Seaglider SG002 during Washington Coast, January 2004 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2004-01-20 to 2004-06-24 (NCEI Accession 0155959)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  17. Physical data collected from Seaglider SG015 during Labrador Sea September 2004 in the Labrador Sea deployed from 2004-09-24 to 2005-03-31 (NODC Accession 0111844)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  18. Physical data collected from Seaglider SG005 during WA Coast June 2005 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2005-06-08 to 2005-11-16 (NCEI Accession 0155972)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  19. Physical data collected from Seaglider SG014 during Washington Coast, 15 March 2007 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2007-03-15 to 2007-09-10 (NCEI Accession 0156140)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  20. Physical data collected from Seaglider SG012 during WA Coast November 2005 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2005-11-16 to 2006-03-04 (NCEI Accession 0156521)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  1. Physical data collected from Seaglider SG004 during Labrador Sea, October 2003 in the Labrador Sea deployed from 2003-10-02 to 2004-02-10 (NODC Accession 0112863)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  2. Physical data collected from Seaglider SG144 during Ocean Station PAPA June 2008 in the North Pacific Ocean, Gulf of Alaska deployed from 2008-06-08 to 2008-08-30 (NCEI Accession 0155762)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  3. Physical data collected from Seaglider SG144 during Ocean Station PAPA June 2009 in the North Pacific Ocean, Gulf of Alaska deployed from 2009-06-14 to 2010-04-02 (NCEI Accession 0155879)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  4. Physical data collected from Seaglider SG016 during Labrador Sea, April 2005 in the Labrador Sea deployed from 2005-04-06 to 2006-01-01 (NODC Accession 0111845)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  5. Physical data collected from Seaglider SG005 during Washington Coast June 2004 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2004-06-24 to 2004-07-28 (NCEI Accession 0155971)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  6. Physical data collected from Seaglider SG014 during Labrador Sea September 2004 in the Labrador Sea deployed from 2004-09-24 to 2005-04-29 (NODC Accession 0111843)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  7. Physical data collected from Seaglider SG030 during Cascadia 17 January 2008 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2008-01-17 to 2008-01-22 (NCEI Accession 0156178)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  8. Physical data collected from Seaglider SG119 during WA Coast September 2008 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2008-09-15 to 2009-01-07 (NCEI Accession 0156194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  9. Physical data collected from Seaglider SG005 during Washington Coast, 8 November 2006 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2006-11-09 to 2007-03-15 (NCEI Accession 0155980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  10. Physical data collected from Seaglider SG014 during Faroe Shetland Channel 14 Feb 2008 in the North Atlantic Ocean deployed from 2008-02-14 to 2008-02-28 (NODC Accession 0117041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  11. Physical data collected from Seaglider SG030 during Cascadia September 2008 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2008-09-15 to 2008-09-19 (NCEI Accession 0156193)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  12. Physical data collected from Seaglider SG103 during Faroes Feb 09 in the North Atlantic Ocean deployed from 2009-02-23 to 2009-06-05 (NODC Accession 0117349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  13. Physical data collected from Seaglider SG005 during Washington Coast August 2003 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2003-08-21 to 2004-01-20 (NCEI Accession 0155930)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  14. Physical data collected from Seaglider SG005 during Washington Coast, 10 September 2007 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2007-09-10 to 2008-01-17 (NCEI Accession 0155995)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  15. Physical data collected from Seaglider SG014 during WA Coast April 2006 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2006-04-24 to 2006-11-09 (NCEI Accession 0156076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  16. Physical data collected from Seaglider SG002 during Washington Coast, December 2004 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2004-12-23 to 2004-12-30 (NCEI Accession 0155944)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  17. Physical data collected from Seaglider SG101 during Iceland Faroe Ridge 12 November 06 in the North Atlantic Ocean deployed from 2006-11-12 to 2007-02-18 (NODC Accession 0117310)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  18. Physical data collected from Seaglider SG008 during Labrador Sea, October 2003 in the Labrador Sea deployed from 2003-10-02 to 2004-01-29 (NODC Accession 0111841)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  19. Physical data collected from Seaglider SG005 during Washington Coast, February 2003 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2003-02-08 to 2003-02-12 (NCEI Accession 0155963)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  20. Physical data collected from Seaglider SG012 during Washington Coast, December 2004 in the North Pacific Ocean, Coastal Waters of Washington/Oregon deployed from 2004-12-23 to 2005-01-25 (NCEI Accession 0156003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  1. Physical data collected from Seaglider SG120 during Ocean Station PAPA August 2008 in the North Pacific Ocean, Gulf of Alaska deployed from 2008-08-30 to 2009-06-04 (NCEI Accession 0155598)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seaglider is a buoyancy driven autonomous underwater vehicle (AUV) developed by scientists and engineers at the University of Washington's School of Oceanography and...

  2. Ocean Acoustic Tomography Mooring Design Study.

    Science.gov (United States)

    1982-04-01

    Figure 5 A- 13 APPENDIX B Power Systems for the Long-Range Acoustic Transmitter STRAWMAN #1 Lithium Primary Battery Lithium Thionyl Chloride ...buoyancy provided by a syntactic foam sphere. - LRT and the top buoyancy at the same depth. - Lithium primary battery placed with LRT. - Tension member...much less pressure). 4. Same as 1. except: - Lithium primary battery placed upon the anchor. - Electromechanical cable (also the tension member

  3. Fault Monitooring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2009-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to line breakage...... algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Detection properties and fault-tolerant control are demonstrated by high delity simulations...

  4. Natural convection gas pendulum and its application in accelerometer and tilt sensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fuxue

    2005-01-01

    It is discovered that the natural convection gas has the pendulum characteristic, which leads to the introduction of the new concept of gas pendulum. In this paper, the buoyancy lift of natural convection gas is analyzed in a hermetic chamber, and the relationship between the buoyancy lift and the change of temperature is formulated. The experimental results show that the gas pendulum,similar to the solid pendulum and liquid pendulum, can be utilized to sense the acceleration and the tilt angle.

  5. The Influence of Shock-Induced Air Bubble Collapse Resulting from Underwater Explosive Events

    Science.gov (United States)

    2012-06-01

    this process occurs, the sphere migrates towards the water surface due to Archimedes ’ principle . 7 Figure 2 provides a good visualization of the...surface. This vertical movement is known as bubble migration and occurs due to the principles of buoyancy. For each period of expansion and...human eye [15]. The less dense water vapor (your breath) displaces the heavier air molecules and rises due to the principles of buoyancy. While air

  6. Transient natural convection heat and mass transfer in a rectangular enclosure - A numerical analysis

    Science.gov (United States)

    Han, Samuel S.; Schafer, Charles F.

    1988-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity with combined horizontal temperature and concentration gradients is performed by a numerical method based on the SIMPLE. Numerical results show that the average Nusselt and Sherwood numbers both decrease markedly when the solutal and thermal buoyancy forces act in the opposite directions. When the solutal and thermal buoyancy forces act in the same directions, however, the average Sherwood number increases significantly and yet the average Nusselt number decreases slightly.

  7. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay; Simon, Anu; Thomas, Aype; Bhardwaj, Amit; Das, Sweta; Senroy, Soma; Roy Bhowmik, S. K.

    2016-06-01

    A major rain storm in Uttarakhand (India) caused heavy rains and major loss of life from floods and land slide during 16-18 June, 2013. The observed daily maximum rainfall rates (3-hourly) during the 16th and 17th June were 220 and 340 mm respectively. This event is addressed via sensitivity studies using a cloud resolving non-hydrostatic model with detailed microphysics. The streaming of moist air from the east-south-east and warmer air from the south-west contributed to the sustained large population and amplitude of buoyancy and the associated CAPE contributed to the longer period of heavy rains. This study addresses the concept of Buoyancy as a means for large vertical accelerations, stronger vertical motions, extreme rain rates and the mechanisms that relate to the time rates of change. A post-processing algorithm provides an analysis of time rate of change for the buoyancy. Moist air streams and warm/moist air intrusions into heavily raining clouds are part of this buoyancy enhancement framework. Improvements in modeling of the extreme rain event came from adaptive observational strategy that showed lack of moisture data sets in these vital regions. We show that a moist boundary layer near the Bay of Bengal leads to moist rivers of moisture where the horizontal convergence confines a large population of buoyancy elements with large magnitudes of buoyancy that streams towards the region of extreme orographic rains. The areas covered in this study include: (i) Use of high resolution cloud modeling (1-km), (ii) Now casting of rains using physical initialization with a Newtonian relaxation, (iii) Use of an adaptive observational strategy, (iii) Sensitivity of the evolution of fields and population of buoyancy elements to boundary layer moisture, (iv) Role of orography and details of buoyancy budget.

  8. Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests

    Science.gov (United States)

    2013-09-30

    layer the eddy flux is significantly diabatic with a shallow eddy-induced (Lagrangian) circulation cell and down-gradient lateral diapycnal flux. These...3D Schematic representation of the eddy effects on the mean buoyancy field decomposed between adiabatic eddy-induced advection and diabatic ...plane). The diabatic component acts to smooth out surface buoyancy extrema and is shown as sinuous arrows in the top plane. Interior diabatic fluxes

  9. The Analysis of Fluid Pressure Impact on String Force and Deformation in Oil and Gas Wells

    Directory of Open Access Journals (Sweden)

    Gao Baokui

    2015-01-01

    Full Text Available Fluid pressure is a crucial factor to tubular string strength and deformation in oil and gas wells, and it is the most difficult factor to deal with. When the string constrained by downhole tools, such as packers, action pattern of fluid on string is changed. Calculation methods of string stress and deformation given by engineering handbooks doesn’t distinguish these issues in detail. So mistakes are often made when these methods are used. Tangled concepts lead to large calculation error. In this paper, the influence of fluid pressure on string axial force and deformation, buoyancy treatment in packed condition, are discussed roundly both in vertical wells and directional wells. Practical calculating method of string axial force through the hook load is presented, and element buoyancy in different borehole trajectory is given. It is found that the traditional simplified buoyancy coefficient method, which is used to calculate string axial force and axial extension, can only be used in vertical wells with tubular string suspended freely, because in this condition buoyancy acts on the bottom of string. If the string is constrained by downhole tools, such as packer or anchor, buoyancy could not be treated as usual. In directional well the buoyancy not only changes string axial force but induces shear stress in string cross section. When calculating the influence of fluid on string, operation sequence and constraints from borehole and downhole tools should be considered comprehensively.

  10. The foraging benefits of being fat in a highly migratory marine mammal.

    Science.gov (United States)

    Adachi, Taiki; Maresh, Jennifer L; Robinson, Patrick W; Peterson, Sarah H; Costa, Daniel P; Naito, Yasuhiko; Watanabe, Yuuki Y; Takahashi, Akinori

    2014-12-22

    Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat.

  11. Impacts of harvesting on brine shrimp (Artemia franciscana) in Great Salt Lake, Utah, USA.

    Science.gov (United States)

    Sura, Shayna A; Belovsky, Gary E

    2016-03-01

    Selective harvesting can cause evolutionary responses in populations via shifts in phenotypic characteristics, especially those affecting life history. Brine shrimp (Artemia franciscana) cysts in Great Salt Lake (GSL), Utah, USA are commercially harvested with techniques that select against floating cysts. This selective pressure could cause evolutionary changes over time. Our objectives are to (1) determine if there is a genetic basis to cyst buoyancy, (2) determine if cyst buoyancy and nauplii mortality have changed over time, and (3) to examine GSL environmental conditions over time to distinguish whether selective harvesting pressure or a trend in environmental conditions caused changes in cyst buoyancy and nauplii mortality. Mating crosses between floating and sinking parental phenotypes with two food concentrations (low and high) indicated there is a genetic basis to cyst buoyancy. Using cysts harvested from 1991-2011, we found cyst buoyancy decreased and nauplii mortality increased over time. Data on water temperature, salinity, and chlorophyll a concentration in GSL from 1994 to 2011 indicated that although water temperature has increased over time and chlorophyll a concentration has decreased over time, the selective harvesting pressure against floating cysts is a better predictor of changes in cyst buoyancy and nauplii mortality over time than trends in environmental conditions. Harvesting of GSL A. franciscana cysts is causing evolutionary changes, which has implications for the sustainable management and harvesting of these cysts. Monitoring phenotypic characteristics and life-history traits of the population should be implemented and appropriate responses taken to reduce the impacts of the selective harvesting.

  12. Gastroretentive extended release of metformin from methacrylamide-g-gellan and tamarind seed gum composite matrix.

    Science.gov (United States)

    Priyadarshini, Rosy; Nandi, Gouranga; Changder, Abhijit; Chowdhury, Sailee; Chakraborty, Sudipta; Ghosh, Lakshmi Kanta

    2016-02-10

    Formulation of a gastroretentive extended release tablet of metformin based on polymethacrylamide-g-gellan (Pmaa-g-GG)-tamarind seed gum (TSG) composite matrix is the main purpose of this study. Tablets were prepared employing wet granulation method taking amount of Pmaa-g-GG, TSG and NaHCO3 (SBC, buoyancy contributor) as independent formulation variables. The tablets were then evaluated for in vitro drug release, buoyancy, ex vivo mucoadhesion, swelling and surface morphology. Compatibility between drug and excipients was checked by DSC, FTIR and XRD analysis. Buoyancy-lag-time, mucoadhesive strength, % drug release and release-rate constant were statistically analyzed using Design-Expert software (version 9.0.4.1) and the formulation was then numerically optimized to obtain USP-reference release profile. The optimized formulation showed excellent buoyancy over a 10h period with buoyancy lag time of 2.76min, significant mucoadhesion and drug release over a period of 10h with f2=71.58. Kinetic modeling unveiled anomalous non-Fickian transport based drug release mechanism.

  13. The effects of flow multiplicity on GaN deposition in a rotating disk CVD reactor

    Science.gov (United States)

    Gkinis, P. A.; Aviziotis, I. G.; Koronaki, E. D.; Gakis, G. P.; Boudouvis, A. G.

    2017-01-01

    The effect of gas flow multiplicity, i.e. the possibility of two very different flow regimes prevailing at random in a rotating disk metalorganic chemical vapor deposition (MOCVD) reactor, on the deposited GaN film is investigated. A transport model coupled with a system of chemical reactions in the gas phase and on the wafer where the film is formed, is implemented in the parameter regions where multiple flows are possible. In the region of multiplicity where either plug flow, imposed by forced convection, or buoyancy-dominated flow is possible, the results in the latter case indicate high deposition rate and decreased uniformity. In the former case, increasing the pressure and the rotation rate has a favorable effect on the deposition rate without sacrificing uniformity. In the parameter window of multiplicity where either rotation or combined rotation/buoyancy may prevail, the effects of buoyancy lead to higher deposition rate at the center of the wafer and reduced uniformity. The Arrhenius plots in the regions of multiplicity for exactly the same operating conditions reveal that the system operates in a diffusion-limited regime in the plug flow and in the rotation-dominated flow, in the first and second region of multiplicity respectively. In contrast, in the buoyancy-dominated flow and the combined rotation/buoyancy flow (first and second region of multiplicity respectively) the process shifts into the kinetics-limited regime.

  14. Investigation on the dynamic response and strength of very long floating structures by beam modeling on an elastic foundation; Dansei shishojo no hari model ni yoru chodai futai kozo no doteki tawami kyodo tokusei ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsubogo, T.; Okada, H. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1997-08-01

    A very large floating structure was replaced with the beam on an elastic foundation to examine the response characteristics in waves. Another evidence was regularly and numerically given for the basic characteristics of a very large floating body Suzuki found. New information was also obtained. The frequency response is mainly classified into a wave number control area and proper frequency control area when buoyancy elasticity exists. When the buoyancy structure is long and flexible, the proper frequency becomes continuous and the frequency control area becomes a resonance area. In the wave number control area, the Suzuki`s characteristic wave number becomes a control parameter, and various characteristic values are indicated by characteristic wave numbers. The response in the wave number control area becomes quasi-static when the distribution mass of buoyancy is fully small. The design in which the distribution mass of buoyancy is fully large must be avoided. In the displacement amplitude, the mass on the free end is severest. The proper frequency of vertical vibration relatively moves to the high-frequency side when buoyancy is considered as an elastic foundation. Attention must be thus paid to the proper frequency of vibration on the horizontal surface. 9 refs., 12 figs., 3 tabs.

  15. Experimental study of thermal mixing layer using variable temperature hot-wire anemometry

    Science.gov (United States)

    Sodjavi, Kodjovi; Carlier, Johan

    2013-10-01

    The buoyancy effects on the development of the thermal mixing layer downstream from a horizontal separating plate were studied by comparing stable and unstable counter-gradient configurations. In this study, the novel experimental technique called parameterizable constant temperature anemometer, proposed by Ndoye et al. (Meas Sci Technol 21(7):075401, 2010), was improved to make possible the simultaneous measurement of temperature and two velocity components with an x-wire probe. The buoyancy effects on the flow are discussed through the transport equations of turbulent kinetic energy and temperature variance. In view of the low Richardson numbers at stake ( Ri f < 0.03), the buoyancy forces appeared logically to be quantitatively negligible compared to the main driving forces, but such a low-energy forcing mechanism was in fact sufficient in unstable configurations to increase the shear stress and the expansion rate of the mixing layer significantly, both phenomena being associated with enhanced production of turbulence.

  16. Magnetic Effects and Differential Rotation Near Transition from Solar to Anti-Solar Profiles

    CERN Document Server

    Simitev, Radostin D; Busse, Friedrich H

    2015-01-01

    We present a set of convective dynamo simulations in rotating spherical fluid shells based on an anelastic approximation of compressible fluids. The simulations extend into a "buoyancy-dominated" regime where the buoyancy forcing is dominant while the Coriolis force is no longer balanced by pressure gradients and strong anti-solar differential rotation develops as a result. Dynamos in this regime are strongly dominated by dipole components but at the same time their magnetic energies are relatively small compared to the corresponding kinetic energies of the flow. Despite being relatively weak the self-sustained magnetic fields are able to reverse the direction of differential rotation to solar-like. We find that the convection in the buoyancy-dominated regime is significantly stronger near the pole than in the equatorial region, leading to non-oscillatory dipolar dynamo solutions. The results are obtained with a new simulation code for modelling of convection and MHD dynamo generation in rotating spherical sh...

  17. Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads

    Institute of Scientific and Technical Information of China (English)

    Xu Long; Fei Ge; Lei Wang; Youshi Hong

    2009-01-01

    This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investi-gated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

  18. Thermo-electro-hydrodynamic convection under microgravity: a review

    Science.gov (United States)

    Mutabazi, Innocent; Yoshikawa, Harunori N.; Tadie Fogaing, Mireille; Travnikov, Vadim; Crumeyrolle, Olivier; Futterer, Birgit; Egbers, Christoph

    2016-12-01

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS).

  19. Structural Assembly Demonstration Experiment (SADE) experiment design

    Science.gov (United States)

    Akin, D. L.; Bowden, M. L.

    1982-03-01

    The Structural Assembly Demonstration Experiment concept is to erect a hybrid deployed/assembled structure as an early space experiment in large space structures technology. The basic objectives can be broken down into three generic areas: (1) by performing assembly tasks both in space and in neutral buoyancy simulation, a mathematical basis will be found for the validity conditions of neutral buoyancy, thus enhancing the utility of water as a medium for simulation of weightlessness; (2) a data base will be established describing the capabilities and limitations of EVA crewmembers, including effects of such things as hardware size and crew restraints; and (3) experience of the M.I.T. Space Systems Lab in neutral buoyancy simulation of large space structures assembly indicates that the assembly procedure may create the largest loads that a structure will experience during its lifetime. Data obtained from the experiment will help establish an accurate loading model to aid designers of future space structures.

  20. Numerical Simulation of Macrosegregation for an Fe-0.8 wt pct C Alloy

    Institute of Scientific and Technical Information of China (English)

    Dongrong Liu; Dianzhong Li; Baoguang Sang

    2009-01-01

    Macrosegregation in Fe-0.8 wt pct C alloy solidifying with equiaxed morphology was numerically simulated. Based on a two-phase volumetric averaging approach, heat transfer, melt convection, composition distribution, nucleation and grain evolution on the system scale were described. A weak-coupling numerical procedure was designed to solve conservation equations. Simulations were conducted to study the effects of cooling rate and nuclei density on the macrosegregation pattern. The relative influence of thermal buoyancy- and solutal buoyancy-induced flows on macrosegregation was identified. Calculated results indicate that a higher cooling rate establishes a more homogeneous composition. More uniform solute distributions are formed with increasing nuclei density. In addition, it is noted that the direction of channel segregates depends on the relative strength of thermal and solutal buoyancy forces.

  1. Vortex Formation and Evolution in Planet Harboring Disks under Thermal Relaxation

    CERN Document Server

    Gomes, A Lobo; Uribe, A L; Pinilla, P; Surville, C

    2015-01-01

    We study the evolution of planet-induced vortices in radially stratified disks, with initial conditions allowing for radial buoyancy. For this purpose we run global two dimensional hydrodynamical simulations, using the PLUTO code. Planet-induced vortices are a product of the Rossby wave instability (RWI) triggered in the edges of a planetary gap. In this work we assess the influence of radial buoyancy for the development of the vortices. We found that radial buoyancy leads to smoother planetary gaps, which generates weaker vortices. This effect is less pronounced for locally isothermal and quasi-isothermal (very small cooling rate) disks. We observed the formation of two generations of vortices. The first generation of vortices is formed in the outer wall of the planetary gap. The merged primary vortex induces accretion, depleting the mass on its orbit. This process creates a surface density enhancement beyond the primary vortex position. The second generation of vortices arise in this surface density enhance...

  2. Dynamics of a buoyant plume in a linearly stratified environment using simultaneous PIV-PLIF measurements

    CERN Document Server

    Mirajkar, Harish N

    2016-01-01

    The presence of stratified layer in atmosphere and ocean leads to buoyant vertical motions, commonly referred to as plumes. It is important to study the mixing dynamics of a plume at a local scale in order to model their evolution and growth. Such a characterization requires measuring the velocity and density of the mixing fluids simultaneously. Here, we present the results of a buoyant plume propagating in a linearly stratified medium with a density difference of 0.5%, thus yielding a buoyancy frequency of N=0.15 s^{-1}. To understand the plume behaviour, statistics such as centerline and axial velocities along varying downstream locations, turbulent kinetic energy, Reynolds stress, and buoyancy flux were measured. The centerline velocity was found to decrease with increase in height. The Reynolds stress and buoyancy flux profiles showed the presence of a unstable layer and the mixing associated within that layer.

  3. A magnetohydrodynamic theory of coronal loop transients

    Science.gov (United States)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  4. A numerical study of transient heat and mass transfer in crystal growth

    Science.gov (United States)

    Han, Samuel Bang-Moo

    1987-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.

  5. Influence of buoyant media on particle layer dynamics in microfiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, R.K.; Vigneswaran, S.; Kandasamy, J. [University of Technology Sydney, Sydney, NSW (Australia). Faculty of Engineering & Information Technology

    2010-07-01

    This study forms a part of the physical study of the membrane bioreactor in presence of buoyancy media. Kaolin clay suspension with buoyancy media (anthracite) was used as a suspension and the particle layer development on membrane surface with evolution of time was studied. Presence of buoyancy media reduced the pressure development by almost two folds compared to in absence of the media. The particles deposition on membrane surface was size selective. The mean particle diameter (0.45 {mu} m) deposited on the membrane surface remained almost similar in presence of the media after 7 hrs run where as in its absence the mean diameter finer particles deposition occurred at the beginning followed by coarser particles.

  6. Influence of buoyant media on particle layer dynamics in microfiltration membranes.

    Science.gov (United States)

    Aryal, R K; Vigneswaran, S; Kandasamy, Jaya

    2010-01-01

    This study forms a part of the physical study of the membrane bioreactor in presence of buoyancy media. Kaolin clay suspension with buoyancy media (anthracite) was used as a suspension and the particle layer development on membrane surface with evolution of time was studied. Presence of buoyancy media reduced the pressure development by almost two folds compared to in absence of the media. The particles deposition on membrane surface was size selective. The mean particle diameter (0.45 mum) deposited on the membrane surface remained almost similar in presence of the media after 7 hrs run where as in its absence the mean diameter finer particles deposition occurred at the beginning followed by coarser particles.

  7. Drag-shield drop tower residual acceleration optimisation

    Science.gov (United States)

    Figueroa, A.; Sorribes-Palmer, F.; Fernandez De Pierola, M.; Duran, J.

    2016-07-01

    Among the forces that appear in drop towers for microgravity experiments, aerodynamic drag plays a crucial role in the residual acceleration. Buoyancy can also be critical, especially at the first instances of the drop when the low speed of the experimental platform makes the aerodynamic drag small compared with buoyancy. In this paper the perturbation method is used to formulate an analytical model which has been validated experimentally. The experimental test was conduced by undergraduate students of aerospace engineering at the Institute of Microgravity ‘Ignacio Da Riva’ of the Technical University of Madrid (IDR/UPM) microgravity tower. The test helped students to understand the influence of the buoyancy on the residual acceleration of the experiment platform. The objective of the students was to understand the physical process during the drop, identify the main parameters involved in the residual acceleration and determine the most suitable configuration for the next drop tower proposed to be built at UPM.

  8. Oil droplets transport due to irregular waves: Development of large-scale spreading coefficients.

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C; Ozgokmen, Tamay; King, Thomas; Lee, Kenneth; Lu, Youyu; Zhao, Lin

    2016-03-15

    The movement of oil droplets due to waves and buoyancy was investigated by assuming an irregular sea state following a JONSWAP spectrum and four buoyancy values. A technique known as Wheeler stretching was used to model the movement of particles under the moving water surface. In each simulation, 500 particles were released and were tracked for a real time of 4.0 h. A Monte Carlo approach was used to obtain ensemble properties. It was found that small eddy diffusivities that decrease rapidly with depth generated the largest horizontal spreading of the plume. It was also found that large eddy diffusivities that decrease slowly with depth generated the smallest horizontal spreading coefficient of the plume. The increase in buoyancy resulted in a decrease in the horizontal spreading coefficient, which suggests that two-dimensional (horizontal) models that predict the transport of surface oil could be overestimating the spreading of oil.

  9. Behavior of near-field dilution of thermal buoyant jet discharged horizontally in compound open-channel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The RNG к-ε model considering the buoyancy effect,which is solved by the hybrid finite analytic method,is used to simulate the mixture of the horizontal round thermal buoyant jet in compound open channel flow.The mixing features near the spout and flowing characteristic of the secondary currents are studied by numerical simulation.Meanwhile,(1) the distribution of the measured isovels for stream-wise velocity,(2) secondary currents,(3) the distribution of the measured isovels for temperature of typical cross-section near the spout,were obtained by the three-dimensional Micro ADV and the Temperature measuring device.Compared with experimental data,the RNG к-εmodel based on buoyancy effect can preferably simulate the jet which performs the bifurcation phenomenon,jet reattachment (Conada effect) and beach secondary currents phenomenon with the effect of ambient flow,buoyancy,and secondary currents of compound section and so on.

  10. Chemical differentiation of a convecting planetary interior - Consequences for a one plate planet such as Venus

    Science.gov (United States)

    Parmentier, E. M.; Hess, P. C.

    1992-01-01

    Simple models of the thermal and chemical evolution of a planetary interior are developed to explore the possible consequences of a chemically buoyant depleted mantle layer for planetary evolution. As the depleted layer thickens the melting temperature at the top of the underlying convecting mantle also increases and the degree of partial melting of the mantle added to the depleted layer decreases. As the less depleted mantle with less positive compositional buoyancy is added, the negative thermal buoyancy of the layer eventually exceeds its positive compositional buoyancy. The depleted layer then sinks into and mixes with the convecting interior. On Venus the population of impact craters is indistinguishable from a random distribution over the surface and gives a surface age of about 500 Myr. It is suggested that the above mechanism may explain this episodic global resurfacing of Venus.

  11. Buoyant subduction on Venus: Implications for subduction around coronae

    Science.gov (United States)

    Burt, J. D.; Head, J. W.

    1993-03-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  12. Numerical simulation and global linear stability analysis of low-Re flow past a heated circular cylinder

    KAUST Repository

    Zhang, Wei

    2016-03-31

    We perform two-dimensional unsteady Navier-Stokes simulation and global linear stability analysis of flow past a heated circular cylinder to investigate the effect of aided buoyancy on the stabilization of the flow. The Reynolds number of the incoming flow is fixed at 100, and the Richardson number characterizing the buoyancy is varied from 0.00 (buoyancy-free case) to 0.10 at which the flow is still unsteady. We investigate the effect of aided buoyancy in stabilizing the wake flow, identify the temporal and spatial characteristics of the growth of the perturbation, and quantify the contributions from various terms comprising the perturbed kinetic energy budget. Numerical results reveal that the increasing Ri decreases the fluctuation magnitude of the characteristic quantities monotonically, and the momentum deficit in the wake flow decays rapidly so that the flow velocity recovers to that of the free-stream; the strain on the wake flow is reduced in the region where the perturbation is the most greatly amplified. Global stability analysis shows that the temporal growth rate of the perturbation decreases monotonically with Ri, reflecting the stabilization of the flow due to aided buoyancy. The perturbation grows most significantly in the free shear layer separated from the cylinder. As Ri increases, the location of maximum perturbation growth moves closer to the cylinder and the perturbation decays more rapidly in the far wake. The introduction of the aided buoyancy alters the base flow, and destabilizes the near wake shear layer mainly through the strain-induced transfer term and the pressure term of the perturbed kinetic energy, whereas the flow is stabilized in the far wake as the strain is alleviated. © 2016 Elsevier Ltd. All rights reserved.

  13. Transport Phenomena in Stratified Multi-Fluid Flow in the Presence and Absence of Gravity

    Science.gov (United States)

    Chigier, Norman; Humphrey, William

    1996-01-01

    Experiments are being conducted to study the effects of buoyancy on planar density-stratified shear flows. A wind tunnel generates planar flows separated by an insulating splitter plate, with either flow heated, which emerge from a two-dimensional nozzle. The objective is to isolate and define the effect of gravity and buoyancy on a stratified shear layer. To this end, both stably and unstably stratified layers will be investigated. This paper reports on the results of temperature and velocity measurements across the nozzle exit plane and downstream along the nozzle center plane.

  14. Existence of a persistent background of turbulence

    Science.gov (United States)

    Vanzandt, T. E.

    1983-01-01

    A plausible scenario for the existence of a persistent back-ground of turbulence in the free atmosphere is described. The MST radar technique is the only existing technique that can be used to describe the morphology of occurrence of turbulence as a function of altitude, wind speed, shear, weather conditions, geographical location, etc. This technique was used also to assess the degree of universality of shape and amplitude of the buoyancy wave spectrum and the relation between the buoyancy wave spectrum and turbulence.

  15. Study on the pre——ignition characteristics of wire insulation in the narrow channel setup

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; WANG BaoRui; AI YuHua; KONG WenJun

    2012-01-01

    A narrow channel setup was established and experiments were conducted to study the pre-ignition characteristics of wire insulation under overload conditions in weak buoyancy environment.The pre-ignition temperature variation trend of both the wire insulation and its nearby temperature monitoring points,the movement characteristics of smoke produced from the wire insulation and the ignition delay time of wire insulation were investigated.The results indicated that the narrow channel setup with a height of 10-15 mm was effective to suppress the effect of buoyancy,and the pre-ignition characteristics of wire insulation in microgravity could be predicted well by the narrow channel method.

  16. Compressibility Corrections to Closure Approximations for Turbulent Flow Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cloutman, L D

    2003-02-01

    We summarize some modifications to the usual closure approximations for statistical models of turbulence that are necessary for use with compressible fluids at all Mach numbers. We concentrate here on the gradient-flu approximation for the turbulent heat flux, on the buoyancy production of turbulence kinetic energy, and on a modification of the Smagorinsky model to include buoyancy. In all cases, there are pressure gradient terms that do not appear in the incompressible models and are usually omitted in compressible-flow models. Omission of these terms allows unphysical rates of entropy change.

  17. Similarity Solutions of Marangoni Convection Boundary Layer Flow with Gravity and External Pressure

    Institute of Scientific and Technical Information of China (English)

    张艳; 郑连存

    2014-01-01

    This study is focused on a steady dissipative layer, which is generated by Marangoni convection flow over the surface resulted from an imposed temperature gradient, coupled with buoyancy effects due to gravity and external pressure. A model is proposed with Marangoni condition in the boundary conditions at the interface. The similarity equations are determined and approximate analytical solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximant technique. For the cases that buoyancy force is favorable or unfavor-able to Marangoni flow, the features of flow and temperature fields are investigated in terms of Marangoni mixed convection parameter and Prantl number.

  18. Floating drug delivery of a locally acting H2-antagonist: an approach using an in situ gelling liquid formulation.

    Science.gov (United States)

    Rohith, Ganapati; Sridhar, Bhimagoni Keshavamurthy; Srinatha, Anegundha

    2009-09-01

    In the present work, a gastroretentive in situ gelling liquid formulation for controlled delivery of ranitidine was formulated using sodium alginate (low, medium and high viscosity grades), calcium carbonate (source of cations) and ranitidine. Prepared formulations were evaluated for viscosity, buoyancy lag time and buoyancy duration, drug content and in vitro drug release. Formulation variables such as concentration of sodium alginate, calcium carbonate and drug significantly affected the formulation viscosity, floating behavior and in vitro drug release. Analysis of the release pattern showed that the drug release from in situ gel followed a diffusion mechanism.

  19. DYNAMIC MODELING FOR AIRSHIP EQUIPPED WITH BALLONETS AND BALLAST

    Institute of Scientific and Technical Information of China (English)

    CAI Zi-li; QU Wei-dong; XI Yu-geng

    2005-01-01

    Total dynamics of an airship is modeled. The body of an airship is taken as a submerged rigid body with neutral buoyancy, i. e. , buoyancy with value equal to that of gravity, and the coupled dynamics between the body with ballonets and ballast is considered. The total dynamics of the airship is firstly derived by Newton-Euler laws and Kirchhoff's equations. Furthermore, by using Hamiltonian and Lagrangian semidirect product reduction theories, the dynamics is formulated as a Lie-Poisson system,control design using energy-based methods for Hamiltonian or Lagrangian system.

  20. Evaluation of the use of surrogate Laminaria digitata in eco-hydraulic laboratory experiments

    Institute of Scientific and Technical Information of China (English)

    PAUL Maike; HENRY Pierre-Yves T

    2014-01-01

    Inert surrogates can avoid husbandry and adaptation problems of live vegetation in laboratories. Surrogates are generally used for experiments on vegetation-hydrodynamics interactions, but it is unclear how well they replicate field conditions. Here, surrogates for the brown macroalgae Laminaria digitata were developed to reproduce its hydraulic roughness. Plant shape, stiffness and buoyancy of L. digitata were evaluated and compared to the properties of inert materials. Different surrogate materials and shapes were exposed to unidirectional flow. It is concluded that buoyancy is an important factor in low flow conditions and a basic shape might be sufficient to model complex shaped plants resulting in the same streamlined shape.

  1. Archimedes' principle in fluidized granular systems.

    Science.gov (United States)

    Huerta, D A; Sosa, Victor; Vargas, M C; Ruiz-Suárez, J C

    2005-09-01

    We fluidize a granular bed in a rectangular container by injecting energy through the lateral walls with high-frequency sinusoidal horizontal vibrations. In this way, the bed is brought to a steady state with no convection. We measured buoyancy forces on light spheres immersed in the bed and found that they obey Archimedes' principle. The buoyancy forces decrease when we reduce the injected energy. By measuring ascension velocities as a function of gamma, we can evaluate the frictional drag of the bed; its exponential dependence agrees very well with previous findings. Rising times of the intruders ascending through the bed were also measured, they increase monotonically as we increase the density.

  2. Experiments on the multi-roll-structure of thermocapillary flow in side-heated thin liquid layers

    Science.gov (United States)

    Schwabe, D.; Cramer, A.; Schneider, J.; Benz, S.; Metzger, J.

    1999-01-01

    The multi-roll-structure (MRS) with convection rolls, all with the same sense of rotation and axes perpendicular to the applied temperature gradient appears in thin layers driven by thermocapillarity prior to time dependent states. Detailed experimental and numerical results are reported. The MRS in large Prandtl-number fluids is dominated by thermocapillarity and separates from the buoyancy driven bulk flow for deep layers. We prepare a microgravity experiment MAGIA to study thermocapillary flow structures without coupling to buoyancy in a 20.0 mm wide annular layer with free surface of variable depth heated by the outer wall and cooled at the inside.

  3. The fluid mechanics of continuous flow electrophoresis in perspective

    Science.gov (United States)

    Saville, D. A.

    1980-01-01

    Buoyancy alters the flow in continuous flow electrophoresis chambers through the mechanism of hydrodynamic instability and, when the instability is supressed by careful cooling of the chamber boundaries, by restructuring the axial flow. The expanded roles of buoyancy follow upon adapting the size of the chamber and the electric field so as to fractionate certain sorts of cell populations. Scale-up problems, hydrodynamic stability and the altered flow fields are discussed to show how phenomena overlooked in the design and operations of narrow-gap devices take on an overwhelming importance in wide-gap chambers

  4. Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography

    DEFF Research Database (Denmark)

    Yang, Xianjin; Lassen, Rune Nørbæk; Jensen, Karsten Høgh;

    2015-01-01

    Three-dimensional (3D) crosshole electrical resistivity tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, western Denmark. The purpose was to evaluate the effectiveness of the ERT method for detection of small electrical conductivity (EC) changes during the first 2...... the migration of a CO2 plume consist of buoyancy of gaseous CO2, local heterogeneity, groundwater flow and external pressure exerted by the injector. The CO2 plume at the Vrøgum site migrated mostly upward due to buoyancy and it also skewed toward northeastern region by overcoming local groundwater flow...

  5. Probabilistic analysis of soil: Diaphragm wall friction used for value engineering of deep excavation, north/south metro Amsterdam

    NARCIS (Netherlands)

    Buykx, S.M.; Delfgaauw, S.; Bosch, J.W.

    2009-01-01

    The excavation of deep building pits often requires a check against failure by uplift of low permeability ground layers below excavation level. Whenever the weight of these soil layers is less than the pore-water pressure underneath, measures to resist buoyancy are to be considered. The measures mos

  6. Fine sediment transport by tidal asymmetry in the high-concentrated Ems River: indications for a regime shift in response to channel deepening

    NARCIS (Netherlands)

    Winterwerp, J.C.

    2010-01-01

    This paper describes an analysis of the observed up-river transport of fine sediments in the Ems River, Germany/Netherlands, using a 1DV POINT MODEL, accounting for turbulence-induced flocculation and sediment-induced buoyancy destruction. From this analysis, it is inferred that the net up-river tra

  7. Dispersal of plant fragments in small streams

    DEFF Research Database (Denmark)

    Riis, T.; Sand-Jensen, K.

    2006-01-01

    ) in the exponential equation a suitable measure for comparisons among different macrophyte species, and between stream reaches of different hydrology and vegetation cover. 3. Buoyancy of macrophyte tissue influenced retention. Elodea canadensis stems drifted below the water surface, and were more inclined...

  8. Numerical Study of Double Diffusive Convection in a Lid Driven Cavity with Linearly Salted Side Walls

    Directory of Open Access Journals (Sweden)

    Nithish Reddy

    2017-01-01

    Full Text Available Double diffusive convection phenomenon is widely seen in process industries, where the interplay between thermal and solutal (mass buoyancy forces play a crucial role in governing the outcome. In the current work, double diffusive convection phenomenon in a lid driven cavity model with linearly salted side walls has been studied numerically using Finite element simulations. Top and bottom walls of the cavity are assumed cold and hot respectively while other boundaries are set adiabatic to heat and mass flow. The calculations of energy and momentum transport in the cavity is done using velocity-vorticity form of Navier-Stokes equations consisting of velocity Poisson equations, vorticity transport, energy and concentration equations. Galerkin’s weighted residual method has been implemented to approximate the governing equations. Simulation results are obtained for convective heat transfer for 100buoyancy ratio is positive and vice versa. Maximum Nusselt number is recorded at buoyancy ratio 50 and Richardson number 3.0, on the other hand low Nusselt number is witnessed for buoyancy ratio 50.

  9. The mean rise velocity of pairwise-interacting bubbles in liquid

    NARCIS (Netherlands)

    Wijngaarden, van L.

    1993-01-01

    This paper is concerned with calculations regarding a collection of small gas bubbles rising under buoyancy in a clear liquid. For dilute mixtures interactions can be restricted to those between two bubbles. In the analysis of binary interactions it is assumed that the Reynolds number for relative m

  10. Solution of the Boussinesq equations by means of the finite element method

    NARCIS (Netherlands)

    Steeg, van J.G.; Wesseling, P.

    1978-01-01

    A finite element method is presented for the computation of flows that are influenced by buoyancy forces. The accuracy of several finite elements is studied by solving the Bénard problem and determining the critical Rayleigh number. It is found that the accuracy is greatly enhanced if the shape func

  11. Astronauts Ross and Helms at CAPCOM station during STS-61 simulations

    Science.gov (United States)

    1993-01-01

    Astronauts Jerry L. Ross and Susan J. Helms are pictured at the Spacecraft Communicators console during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  12. Atmospheric stability in CFD &NDASH; Representation of the diurnal cycle in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey;

    ), for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art CFD models. In order to decrease the uncertainty of wind resource assessment, especially in complex terrain, the effect of thermal stratification on the ABL should be included in such models. The present...

  13. Permeability changes in coal resulting from gas desorption. Tenth quarterly report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.M.

    1992-12-31

    Research continued on the study of coal permeability and gas desorption. This quarter, most of the effort involved identifying problems with the microbalance and then getting it repaired. Measurement of the amount of gas adsorbed with the microbalance involved corrections for the buoyancy change with pressure and several experiments with helium were made to determine this correction.

  14. Permeability changes in coal resulting from gas desorption

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.M.

    1992-01-01

    Research continued on the study of coal permeability and gas desorption. This quarter, most of the effort involved identifying problems with the microbalance and then getting it repaired. Measurement of the amount of gas adsorbed with the microbalance involved corrections for the buoyancy change with pressure and several experiments with helium were made to determine this correction.

  15. Assessment of the thermal environment in a simulated aircraft cabin using thermal manikin exposure

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Jama, Agnieszka;

    2007-01-01

    The thermal environment in a full-scale 21-seat section of an aircraft cabin installed in a climate chamber was investigated. Fourteen heated cylinders and two thermal manikins were used to simulate the heat load, buoyancy flow and flow obstruction from passengers in the cabin. Measurements were...

  16. Simulating Surface Oil Transport During the Deepwater Horizon Oil Spill: Experiments with the BioCast System

    Science.gov (United States)

    2014-01-25

    cells beneath the surface. Whereas this may indeed be the fate of some dissolving or emulsified hyrd- ocrabons, a positive buoyancy term (B) was...isolated pockets of tar balls and scattered emulsified oil aggregations. Other ground observations verify this description (Schmidt, 2010). More severe

  17. 46 CFR 160.050-5 - Sampling, tests, and inspection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Sampling, tests, and inspection. 160.050-5 Section 160... Plastic § 160.050-5 Sampling, tests, and inspection. (a) General. Production tests and inspections must be... procedures. Table 160.050-5(e)—Sampling for Buoyancy Tests Lot size Number of life buoys in sample 100...

  18. Numerical Simulation of Multiplicity and Stability of Mixed Convection in Rotating Curved Ducts

    Directory of Open Access Journals (Sweden)

    Wang Liqiu

    2005-01-01

    Full Text Available A numerical study is made on the fully developed bifurcation structure and stability of the mixed convection in rotating curved ducts of square cross-section with the emphasis on the effect of buoyancy force. The rotation can be positive or negative. The fluid can be heated or cooled. The study reveals the rich solution and flow structures and complicated stability features. One symmetric and two symmetric/asymmetric solution branches are found with seventy five limit points and fourteen bifurcation points. The flows on these branches can be symmetric, asymmetric, 2-cell, and up to 14-cell structures. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. It is found that possible physically realizable fully developed flows evolve, as the variation of buoyancy force, from a stable steady multicell state at a large buoyancy force of cooling to the coexistence of three stable steady multicell states, a temporal periodic oscillation state, the coexistence of periodic oscillation and chaotic oscillation, a chaotic temporal oscillation, a subharmonic-bifurcation-driven asymmetric oscillating state, and a stable steady 2-cell state at large buoyancy force of heating.

  19. THE MOVEMENT OF OIL UNDER NON-BREAKING WAVES

    Science.gov (United States)

    The combined effects of wave kinematics, turbulent diffusion, and buoyancy on the transport of oil droplets at sea were investigated in this work using random walk techniques in a Monte Carlo framework. Six hundred oil particles were placed at the water surface and tracked for 5...

  20. Computational Conceptual Change: An Explanation-Based Approach

    Science.gov (United States)

    2012-06-01

    an example of incommensurability, consider Jean Buridean’s theory of projectile dynamics (based heavily on Aristotelian dynamics) with respect to...function. Most adults explain why a boat floats via mechanical causality, using knowledge of density and buoyancy. Piaget (1930) found that children

  1. Exploring trends, causes, and consequences of declining lipids in Lake Superior lake trout

    Science.gov (United States)

    The ability of lake trout to forage in deepwater habitats is facilitated by high lipid content, which affords buoyancy. In Lake Superior, lean lake trout historically occupied depths < 80 m, and siscowet lake trout occupied depths > 80 m. Siscowets have been known f...

  2. The "Family Tree" of Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2011-01-01

    that all the known types of air distribution systems are interconnected in a “family tree”. The influence of supplied momentum flow versus buoyancy forces is discussed, and geometries for high ventilation effectiveness are indicated as well as geometries for fully mixed flow. The paper will also show...

  3. CFD study of dominant effect in combined DTHT by using hypothetical boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2015-05-15

    KAIST MMR is a gas cooled fast reactor (GFR) using supercritical CO{sub 2} as a working fluid of reactor core and power cycle without intermediate heat exchanger which operates in higher pressure and higher temperature conditions compared to PWR. During a Loss of Coolant Accident (LOCA), MMR needs to relay on passive Decay Heat Removal (DHR) system by using natural circulation of gas since passive decay heat removal using conduction and radiation is not providing sufficient decay heat removal. Very limited researches were conducted in the regime where both occur at the same time and in the same order of magnitude. Numerical analysis is done with v''2-f turbulence model to predict the physical phenomena for the future experimental work. The effects of buoyancy and acceleration were studied with CFD for designed cases to distinguish the dominant effect in the combined DTHT regime. Numerical results of the v''2-f turbulence model show that the model can predict the buoyancy induced DTHT phenomenon even when the acceleration parameter is greater than buoyancy parameter but there is no data that shows that acceleration induced DTHT dominates the DTHT phenomena at this moment. More numerical results in the combined DTHT regime will be obtained and studied to provide clearer view on strongly heated turbulent flow and its heat transfer deteriorating mechanism. Adjustment for v''2-f turbulence model to correct the prediction of buoyancy effect will be studied in the near future.

  4. On the levitation force in horizontal core-annular flow with a large viscosity ratio and small density ratio

    NARCIS (Netherlands)

    Ooms, G.; Pourquie, M.J.B.M.; Beerens, J.C.

    2013-01-01

    A numerical study has been made of horizontal core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question how the buoyancy force on the core, caused by a density difference between

  5. Formative Assessment Probes: Using the P-E-O Technique

    Science.gov (United States)

    Keeley, Page

    2013-01-01

    This article describes how observing whether objects sink or float in water using the P-E-O (Predict, Explain, and Observe) technique is an elementary precursor to developing explanations in later grades that involve an understanding of density and buoyancy. Beginning as early as preschool, elementary students engage in activities that encourage…

  6. Characterization of Horizontally-Issuing Reacting Buoyant Jets

    Science.gov (United States)

    2011-03-01

    aquatic discharges. Research into aquatic discharges has been conducted for decades. In 1982, Satyanarayana and Jaluria arranged a set of experiments... Satyanarayana , S., Jaluria, A. A Study of Laminar Buoyant Jets Discharged at an Inclination to the Vertical Buoyancy Force. International Journal of

  7. Bubbles & Turbulence in the Ocean Surface Layer & Topographic Interactions in Coastal Waters

    Science.gov (United States)

    2016-06-07

    Bubbles & Turbulence in the Ocean Surface Layer & Topographic Interactions in Coastal Waters David Farmer Institute of Ocean Sciences 9860 West...ocean surface layer , and their relationship to wave breaking, turbulence and the effects of buoyancy, gas dissolution and advection by coherent...cases, bubble size distributions were measured, along with other characteristics of the surface layer . Our approach has involved determination of the

  8. FORMULATION AND IN VITRO EVALUATION OF METOPROLOL SUCCINATE FLOATING TABLETS BY USING TWO VISCOSITY GRADE OF HPMC

    Directory of Open Access Journals (Sweden)

    Shubhrajit Mantry et al

    2012-09-01

    Full Text Available Metoprolol is a beta1-selective (cardio selective adrenergic receptor blocking agent used in the treatment of Hypertension. The purpose of this investigation is to improve bioavailability by preparing a gastroretentive drug delivery system. Floating tablets of Metoprolol Succinate were prepared by employing two different grades of HPMC K4M and HPMC E15M in different concentrations by effervescent granulation technique. These grades of HPMC K4M and HPMC E15M were evaluated for their gel forming properties. Sodium bicarbonate was incorporated as a gas-generating agent. The tablets were evaluated for uniformity of weight, hardness, friability, drug content, in vitro buoyancy and dissolution studies. The prepared tablets exhibited satisfactory physicochemical characteristics. All the prepared batches showed good in vitro buoyancy. The tablet swelled radially and axially during in vitro buoyancy studies. It was observed that the tablet remained buoyant for 6-8 hours. A combination of 5:1 sodium bicarbonate and magnesium stearate was found to achieve optimum in vitro buoyancy. The tablets with HPMC K4M and HPMC E15M with drug in the ratio of 1:1:2 were found to float for longer duration and released found to be 98.98%. FTIR show that there is no interaction with drug and other excipients. Selected Formulation F4 were subjected to FTIR that shows that is compatible and release was found superior to marketed conventional tablets with respect to floating and found to be stable.

  9. Theoretical and Numerical Study of Heat Transfer Deterioration in High Performance Light Water Reactor

    Directory of Open Access Journals (Sweden)

    David Palko

    2008-01-01

    Full Text Available A numerical investigation of the heat transfer deterioration (HTD phenomena is performed using the low-Re k-ω turbulence model. Steady-state Reynolds-averaged Navier-Stokes equations are solved together with equations for the transport of enthalpy and turbulence. Equations are solved for the supercritical water flow at different pressures, using water properties from the standard IAPWS (International Association for the Properties of Water and Steam tables. All cases are extensively validated against experimental data. The influence of buoyancy on the HTD is demonstrated for different mass flow rates in the heated pipes. Numerical results prove that the RANS low-Re turbulence modeling approach is fully capable of simulating the heat transfer in pipes with the water flow at supercritical pressures. A study of buoyancy influence shows that for the low-mass flow rates of coolant, the influence of buoyancy forces on the heat transfer in heated pipes is significant. For the high flow rates, buoyancy influence could be neglected and there are clearly other mechanisms causing the decrease in heat transfer at high coolant flow rates.

  10. Model and optimization of electromagnetic filtration of metals

    Directory of Open Access Journals (Sweden)

    S. Golak

    2013-04-01

    Full Text Available Electromagnetic buoyancy force causes the movement of non-conducive particles in a conducting liquid under electromagnetic field. The phenomenon allows filtration of small inclusions from molten metals. This paper presents a mathematical model of the filtration process under alternating electromagnetic field and the methodology for maximizing its efficiency.

  11. The Impact of Radiation on the GABLS3 Large-Eddy Simulation through the Night and during the Morning Transition

    NARCIS (Netherlands)

    Edwards, J.M.; Basu, S.; Bosveld, F.C.; Holtslag, A.A.M.

    2014-01-01

    Large-eddy simulation in the GABLS3 intercomparison is concerned with the developed stable boundary layer (SBL) and the ensuing morning transition. The impact of radiative transfer on simulations of this case is assessed. By the time of the reversal of the surface buoyancy flux, a modest reduction o

  12. Lattice Boltzmann simulation of double diffusive natural convection in a square cavity with a hot square obstacle

    Institute of Scientific and Technical Information of China (English)

    Mohsen Nazari; Ladan Louhghalam; Mohamad Hassan Kayhani

    2015-01-01

    Double diffusion convection in a cavity with a hot square obstacle inside is simulated using the lattice Boltzmann method. The results are presented for the Rayleigh numbers 104,105 and 106, the Lewis numbers 0.1, 2 and 10 and aspect ratio A (obstacle height/cavity height) of 0.2, 0.4 and 0.6 for a range of buoyancy number N=0 to−4 with the effect of opposing flow. The results indicate that for|N|b 1, the Nusselt and Sherwood numbers decrease as buoyancy ratio increases, while for|N|N 1, they increase with|N|. As the Lewis number increases, higher buoyan-cy ratio is required to overcome the thermal effects and the minimum value of the Nusselt and Sherwood num-bers occur at higher buoyancy ratios. The increase in the Rayleigh or Lewis number results in the formation of the multi-cell flow in the enclosure and the vortices wil vanish as|N|increases.

  13. Numerical Simulation of Electromagnetic Force in Double-Sided Arc Welding Process

    Institute of Scientific and Technical Information of China (English)

    Hongming GAO; Lin WU; Honggang DONG

    2003-01-01

    Up till now, most of the researchers believe that there are four kinds of forces in the weld pool convection, they aresurface tension, electromagnetic force, buoyancy and gas shear stress. So electromagnetic force is very important,especially when large c

  14. Unmanned Evaluation of Mares Abyss 22 Navy Open Circuit Scuba Regulator for Cold Water Diving

    Science.gov (United States)

    2011-05-05

    relief valve, a buoyancy inflation device, a submersible pressure gauge, or a dry suit inflation device), the cold water performance of regulators in...the sum of data values divided by the number of data values ark a vat housed within the pressurized testing chamber and used for

  15. A Note on Two-Equation Closure Modelling of Canopy Flow

    DEFF Research Database (Denmark)

    Sogachev, Andrey

    2009-01-01

    The note presents a rational approach to modelling the source/sink due to vegetation or buoyancy effects that appear in the turbulent kinetic energy, E, equation and a supplementary equation for a length-scale determining variable, φ, when two-equation closure is applied to canopy and atmospheric...

  16. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NARCIS (Netherlands)

    van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan

    2016-01-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity

  17. Natural versus forced convection in laminar starting plumes

    CERN Document Server

    Rogers, Michael C

    2009-01-01

    A starting plume or jet has a well-defined, evolving head that is driven through the surrounding quiescent fluid by a localized flux of either buoyancy or momentum, or both. We studied the scaling and morphology of starting plumes produced by a constant flux of buoyant fluid from a small, submerged outlet. The plumes were laminar and spanned a wide range of plume Richardson numbers Ri. Ri is the dimensionless ratio of the buoyancy forces to inertial effects, and is thus our measurements crossed over the transition between buoyancy-driven plumes and momentum-driven jets. We found that the ascent velocity of the plume, nondimensionalized by Ri, exhibits a power law relationship with Re, the Reynolds number of the injected fluid in the outlet pipe. We also found that as the threshold between buoyancy-driven and momentum-driven flow was crossed, two distinct types of plume head mophologies existed: confined heads, produced in the Ri > 1 regime, and dispersed heads, which are found in the Ri < 1 regime. Head di...

  18. Effect of a transverse magnetic field on solidification morphology and microstructures of pure Sn and Sn-15 wt% Pb alloys grown by a Czochralski method

    Science.gov (United States)

    Shen, Zhe; Zhong, Yunbo; Wang, Huai; Ren, Weili; Lei, Zuosheng; Ren, Zhongming

    2015-12-01

    The pure Sn and Sn-15 wt% Pb alloys were grown by a Czochralski method under various magnetic flux densities in this paper. The influence of thermoelectric magnetic (TEM) flows and buoyancy flows on solidification morphology, macrosegregation and microstructures had been investigated experimentally, and the velocity magnitude of TEM flows and buoyancy flows had been studied by 3D numerical simulations. The experimental results indicate that the modification of solidification morphology and microstructures is attributed to the unidirectional Pb solutes transport caused by TEM flows. The 3D numerical simulations results show that the buoyancy flows dominate the flows in the melt under a weak transverse magnetic field (B≤0.43 T), and the unidirectional TEM flows at the vicinity of solid-liquid interface become the dominant flows in the melt with the increase of magnetic field. The interaction of TEM flows and buoyancy flows affecting solidification morphology and microstructures during directional solidification of alloys by the Czochralski method under various magnetic flux densities has been discussed and a corresponding simple evolution mechanism of dendritic growth has been proposed.

  19. 46 CFR 160.077-21 - Approval Testing-Type I and Commercial Hybrid PFD.

    Science.gov (United States)

    2010-10-01

    ... exempt from this test. (3) Buoyancy and inflation medium retention test, UL 1517, Section S10, except the..., 46 CFR 160.176-13(d)(2) through (d)(5) for Type I hybrid PFDs. UL 1517, Section S8, for Type V...

  20. Near East/South Asia Report. No. 2820.

    Science.gov (United States)

    2007-11-02

    quantum jump in capital raisings by companies inl981-82 to Rs. 5.29 billions. The buoyance on new issues contin- ued in 1982-83 when 287 companies raised...July 18—Mr. Hari Shankar Dhube has been appoin- ted Lt. Governor of Mizoram and Mr. T. V. Rajeshwar Lt. Governor of Arunachal Pradesh with effect from

  1. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2011-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line....... Properties of detection and fault-tolerant control are demonstrated by high fidelity simulations....

  2. Caecilita Wake & Donnelly, 2010 (Amphibia: Gymnophiona) is not lungless: implications for taxonomy and for understanding the evolution of lunglessness .

    Science.gov (United States)

    Wilkinson, Mark; Kok, Philippe J R; Ahmed, Farah; Gower, David J

    2014-03-17

    According to current understanding, five lineages of amphibians, but no other tetrapods, are secondarily lungless and are believed to rely exclusively on cutaneous gas exchange. One explanation of the evolutionary loss of lungs interprets lunglessness as an adaptation to reduce buoyancy in fast-flowing aquatic environments, reasoning that excessive buoyancy in such an environment would cause organisms being swept away. While not uncontroversial, this hypothesis provides a plausible potential explanation of the evolution of lunglessness in four of the five lungless amphibian lineages. The exception is the most recently reported lungless lineage, the newly described Guyanan caecilian genus and species Caecilita iwokramae Wake & Donnelly, 2010, which is inconsistent with the reduced disadvantageous buoyancy hypothesis by virtue of it seemingly being terrestrial and having a terrestrial ancestry. Re-examination of the previously only known specimen of C. iwokramae and of recently collected additional material reveal that this species possesses a reasonably well-developed right lung and is a species of the pre-existing caecilian genus Microcaecilia Taylor, 1968. We therefore place Caecilita in the synonymy of Microcaecilia, and re-evaluate the plausibility of the reduced disadvantageous buoyancy hypothesis as a general explanation of the evolution of lunglessness.

  3. Assessment of the thermal environment in an aircraft cabin

    DEFF Research Database (Denmark)

    Ingers, S.; Melikov, Arsen Krikor

    2004-01-01

    A full-scale section of a flight cabin with 21 seats was used to study the thermal environment in aircraft under laboratory conditions. Fourteen heated cylinders and two thermal manikins were used to simulate the heat load, the buoyancy flow and the flow obstruction from passengers in the cabin. ...

  4. Heat transport in bubbling turbulent convection

    NARCIS (Netherlands)

    Lakkaraju, R.; Stevens, R.J.A.M.; Oresta, P.; Verzicco, R.; Lohse, D.; Prosperetti, A.

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to giv

  5. Development and experimental verification of a model for an air jet penetrated by plumes

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2015-03-01

    Full Text Available This article presents the fluid mechanics of a ventilation system formed by a momentum source and buoyancy sources. We investigate the interaction between plumes and a non-isothermal air jet for separate sources of buoyancy produced by the plume and the momentum of the air jet. The mathematical model represents the situation in which a plume rises from two heat sources causing buoyancy. The model is used to discuss the interactions involved. The effects of parameters such as the power of the source and the air-flow volume used in the mathematical-physical model are also discussed. An expression is deduced for the trajectory of the non-isothermal air jet penetrated by plumes. Experiments were also carried out to illustrate the effect on the flow of the air jet and to validate the theoretical work. The results show that the buoyancy source’s efforts to baffle the descent of the cold air have even been effective in reversing the direction of the trajectory. However, increasing the distance between the plumes can reduce the effect of the plumes on the jet curve. And it is apparent that when the velocity of the air supply increases, the interference caused by the plumes can be reduced.

  6. Reducing Test Anxiety among School-Aged Adolescents: A Field Experiment

    Science.gov (United States)

    Putwain, Dave; Chamberlain, Suzanne; Daly, Anthony L.; Sadreddini, Shireen

    2014-01-01

    This paper evaluates the effectiveness of a multimodal and information technology (IT)-delivered intervention for test anxiety. Participants were randomly allocated to an intervention or waiting list group. Test anxiety was measured pre- and post-intervention and academic buoyancy, a construct that refers to students' capacity to withstand…

  7. Laboratory Study of Dispersion of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1990-01-01

    -differences. Other methods as infra-red sensing are used for visualizing purpose. The results are used to calibrate an integral model of the dispersion. Conclusions are that the dispersion of a buoyant surface plume can be treated the superposition of a buoyancy induced stretching and turbulent diffusion, reduced...

  8. Cooperative Science Lesson Plans.

    Science.gov (United States)

    Cooperative Learning, 1991

    1991-01-01

    Offers several elementary level cooperative science lesson plans. The article includes a recipe for cooperative class learning, instructions for making a compost pile, directions for finding evidence of energy, experiments in math and science using oranges to test density, and discussions of buoyancy using eggs. (SM)

  9. Secondary Eyewall Formation in Two Idealized, Full-Physics Modeled Hurricanes

    Science.gov (United States)

    2008-06-26

    28C. The upper boundary is closed, but includes a Rayleigh ‘‘ sponge ’’ layer exclusively in the stratosphere (uppermost six levels) to strongly damp...A. (2002), A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy, Mon. Weather Rev., 130, 1573–1592. Braun, S

  10. Archimedes and the Golden Crown

    Science.gov (United States)

    Thompson, Frank

    2008-01-01

    Archimedes (287-212 BC) is well known for his explanation of buoyancy, and in particular for his "eureka" moment. This experiment uses his density measurement method to find the purity of gold, and additional confirmation of the findings are given by x-ray fluorescence. (Contains 4 figures and 1 table.)

  11. Archimedes Remote Lab for Secondary Schools

    NARCIS (Netherlands)

    Garcia Zubia, J.; Angulo Martinez, I.; Martinez Pieper, G.; Lopez de Ipina Gonzalez de Artaza, D.; Hernandez Jayo, U.; Orduna Fernandez, P.; Dziabenko, O.; Rodriguez Gil, L.; Riesen, van S.A.N.; Anjewierden, A.A.; Kamp, E.; Jong, de A.J.M.

    2015-01-01

    This paper presents a remote lab designed for teaching the Archimedes’ principle to secondary school students, as well as an online virtual lab on the general domain of buoyancy. The Archimedes remote lab is integrated into WebLab-Deusto. Both labs are promoted for usage in frame of the Go-Lab Europ

  12. Oxygen depletion in coastal seas and the effective spawning stock biomass of an exploited fish species.

    Science.gov (United States)

    Hinrichsen, H-H; von Dewitz, B; Dierking, J; Haslob, H; Makarchouk, A; Petereit, C; Voss, R

    2016-01-01

    Environmental conditions may have previously underappreciated effects on the reproductive processes of commercially exploited fish populations, for example eastern Baltic cod, that are living at the physiological limits of their distribution. In the Baltic Sea, salinity affects neutral egg buoyancy, which is positively correlated with egg survival, as only water layers away from the oxygen consumption-dominated sea bottom contain sufficient oxygen. Egg buoyancy is positively correlated to female spawner age/size. From observations in the Baltic Sea, a field-based relationship between egg diameter and buoyancy (floating depth) could be established. Hence, based on the age structure of the spawning stock, we quantify the number of effective spawners, which are able to reproduce under ambient hydrographic conditions. For the time period 1993-2010, our results revealed large variations in the horizontal extent of spawning habitat (1000-20 000 km(2)) and oxygen-dependent egg survival (10-80%). The novel concept of an effective spawning stock biomass takes into account offspring that survive depending on the spawning stock age/size structure, if reproductive success is related to egg buoyancy and the extent of hypoxic areas. Effective spawning stock biomass reflected the role of environmental conditions for Baltic cod recruitment better than the spawning stock biomass alone, highlighting the importance of including environmental information in ecosystem-based management approaches.

  13. Corrigendum to "Formation and erosion of the seasonal thermocline in the Kuroshio Extension Recirculation gyre" [Deep-Sea Res. II 85 (2013) 62-74

    Science.gov (United States)

    Cronin, Meghan F.; Bond, Nicholas A.; Farrar, J. Thomas; Ichikawa, Hiroshi; Jayne, Steven R.; Kawai, Yoshimi; Konda, Masanori; Qiu, Bo; Rainville, Luc; Tomita, Hiroyuki

    2016-10-01

    The authors regret that Fig. 8 bottom panel had a 0.1 offset applied to the buoyancy frequency (N). This plotting error did not affect any other aspect of the original paper. The correctly plotted Fig. 8 is shown below.

  14. Analysis of Flow Evolution and Thermal Instabilities in the Near-Nozzle Region of a Free Plane Laminar Jet

    Directory of Open Access Journals (Sweden)

    Hector Barrios-Piña

    2015-01-01

    Full Text Available This work focuses on the evolution of a free plane laminar jet in the near-nozzle region. The jet is buoyant because it is driven by a continuous addition of both buoyancy and momentum at the source. Buoyancy is given by a temperature difference between the jet and the environment. To study the jet evolution, numerical simulations were performed for two Richardson numbers: the one corresponding to a temperature difference slightly near the validity of the Boussinesq approximation and the other one corresponding to a higher temperature difference. For this purpose, a time dependent numerical model is used to solve the fully dimensional Navier-Stokes equations. Density variations are given by the ideal gas law and flow properties as dynamic viscosity and thermal conductivity are considered nonconstant. Particular attention was paid to the implementation of the boundary conditions to ensure jet stability and flow rates control. The numerical simulations were also reproduced by using the Boussinesq approximation to find out more about its pertinence for this kind of flows. Finally, a stability diagram is also obtained to identify the onset of the unsteady state in the near-nozzle region by varying control parameters of momentum and buoyancy. It is found that, at the onset of the unsteady state, momentum effects decrease almost linearly when buoyancy effects increase.

  15. Chemistry with Inexpensive Materials: Spray Bottles and Plastic Bags.

    Science.gov (United States)

    Zoltewicz, Susan

    1993-01-01

    Presents eight chemistry activities that are interesting and involve simple, easily available materials. Topics include mystery writing, valentine hearts, flame tests, evaporation race, buoyancy versus mass, determination of relative masses of gases, mole sample container, and cold and hot packs. (DDR)

  16. Design and Operation of Automated Ice-Tethered Profilers for Real-Time Seawater Observations in the Polar Oceans

    Science.gov (United States)

    2006-06-01

    required. Instrument ballasting is an application of Archimedes principle : buoyancy force equals the weight of the displaced water, p V g = m g, where m...lokdiga The only way to break out of SURFCON externally is by activating the RESET line via the console port (or with a push button switch on the SURFCON

  17. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  18. Maneuver simulation model of an experimental hovercraft for the Antarctic

    Science.gov (United States)

    Murao, Rinichi

    Results of an investigation of a hovercraft model designed for Antarctic conditions are presented. The buoyancy characteristics, the propellant control system, and simulation model control are examined. An ACV (air cushion vehicle) model of the hovercraft is used to examine the flexibility and friction of the skirt. Simulation results are presented which show the performance of the hovercraft.

  19. Estimates of the temperature flux-temperature gradient relation above a sea floor

    NARCIS (Netherlands)

    Cimatoribus, A.; van Haren, H.

    2016-01-01

    The relation between the ux of temperature (or buoyancy), the verti-cal temperature gradient and the height above the bottom, is investigatedin an oceanographic context, using high-resolution temperature measure-ments. The model for the evolution of a strati?ed layer by Balmforthet al. (1998) is rev

  20. DUKW-21 Autonomous Navigation: Transitioning Between Sea and Land

    Science.gov (United States)

    2010-09-01

    illustrated in Figure 13. Using trigonometry , it can be shown that Wett = Wet sinθ and Went = Wet cosθ. Figure 13: Effective tangential weight...calculate the buoyancy more precisely is needed. Finally, it is ultimately desired to integrate obstacles into the model because on a real beach, not

  1. The movement of particles in liquid metals due to gravity

    Science.gov (United States)

    Weinberg, F.

    1984-09-01

    The buoyancy of a single crystal copper cube in a lead tin melt was examined. A neutral buoyancy melt density of 8828 Kg/m3 at 250 °C was obtained which corresponds to a copper density of 8930 Kg/m3 at 20 °C. The copper cube was found to change from a floating to sinking position with changes in melt density of 1 Kg/m3. Contact with the crucible walls or meniscus prevented the copper cube from moving under buoyancy forces resulting from density differences as high 12 Kg/m3. This is attributed to surface tension forces at the points of contact of the copper, melt, crucible wall, and meniscus. Very small density variations in the copper due to micro-porosity and other imperfections was found to have a very large effect on the movement of the copper under buoyancy forces. In experiments in which grains of tin in partially solidified pure tin were allowed to settle under controlled conditions, it was found that many grains appeared to be separated from neighboring grains. In addition, regions clear of grains were observed in the settling region. It is suggested that this results from clumping of the grains and bridging of the clumps as they settle in the melt.

  2. Mixed Layer Mesoscales for OGCMs: Model development and assessment with T/P, WOCE and Drifter data

    CERN Document Server

    Canuto, V M; Leboissetier, A

    2011-01-01

    We present a model for mixed layer (ML) mesoscale (M) fluxes of an arbitrary tracer in terms of the resolved fields (mean tracer and mean velocity). The treatment of an arbitrary tracer, rather than only buoyancy, is necessary since OGCMs time step T, S, CO2, etc and not buoyancy. The particular case of buoyancy is used to assess the model results. The paper contains three parts: derivation of the results, discussion of the results and assessment of the latter using, among others, WOCE, T/P and Drifter data. Derivation. To construct the M fluxes, we first solve the ML M dynamic equations for the velocity and tracer M fields. The goal of the derivation is to emphasize the different treatments of the non-linear terms in the adiabatic vs. diabatic ocean (deep ocean vs. mixed layer). Results. We derive analytic expressions for the following variables: a) vertical and horizontal M fluxes of an arbitrary tracer, b) M diffusivity in terms of the EKE, c) surface value of the EKE in terms of the vertical M buoyancy fl...

  3. The Goal Specificity Effect on Strategy Use and Instructional Efficiency during Computer-Based Scientific Discovery Learning

    Science.gov (United States)

    Kunsting, Josef; Wirth, Joachim; Paas, Fred

    2011-01-01

    Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…

  4. Effective Teamwork: The EVA NBL Experience

    Science.gov (United States)

    Crocker, Lori

    2007-01-01

    This viewgraph presentation reviews the experience of improving the operation of the ExtraVehiclar Activity (EVA) Neutral Buoyancy Laboratory as a team of NASA employees and contractors. It reviews specific recommendations to use in turning a struggling organization around as a NASA/contractor team

  5. Effect of polymers and excipients on the release kinetics, bioadhesion, and floatability of metronidazole tablet

    Directory of Open Access Journals (Sweden)

    Saahil Arora

    2011-01-01

    Full Text Available Stomach-specific floating tablet of metronidazole based on the buoyancy and bioadhesion concept was prepared with a purpose to retain the drug in stomach for longer duration and helps in releasing the drug in the antrum region of gastric mucosa, a safe heaven for Helicobacter pylori. This research work systematically studied the effects of various polymeric blends of bioadhesive polymers namely chitosan and carbopol 971P with low density polymer- methocel K100LV on the desired in vitro drug release profile in the stomach, buoyancy, swelling index, and mucoadhesion of tablet formulation. Chitosan and carbopol 971P concentration significantly influence the in vitro drug release and bioadhesion strength. An increase in buoyancy was observed with increase in Methocel K100LV concentration in the polymeric blend. The increase in buoyancy and drug release was obtained in the presence of microcrystalline cellulose, sodium bicarbonate, and sodium citrate. The optimum formulation provides desired high drug concentration (~35% during 1 hour and sustained release up to 12 hours, following the Higuchi model. The mechanism of release of metronidazole from the floating bioadhesive tablets was anomalous diffusion transport. The studies indicated successful formulation of gastroretentive compressed tablet with excellent controlled release, mucoadhesion, and hydrodynamic balance.

  6. The Weight of Iron and Feathers

    Science.gov (United States)

    Zendri, G.; Gratton, L. M.; Oss, S.

    2014-01-01

    We discuss the popular question concerning the difference in weight between 1 kg of iron and 1 kg of feathers, by taking into account the non-trivial aspect of the semantic interpretation of "weight" and the weighting procedure. The inclusion of air buoyancy makes the correct answer an interesting one. We describe and comment on the…

  7. 46 CFR 160.171-11 - Performance.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Performance. 160.171-11 Section 160.171-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Immersion Suits § 160.171-11 Performance. (a) Buoyancy....

  8. Infrared Sensing of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1988-01-01

    This paper is concerned with laboratory experiments on buoyant surface plumes where heat is the source of buoyancy. Temperature distributions were measured at the water surface using infra-red sensing, and inside the waterbody a computer based measurement system was applied. The plume is described...

  9. 75 FR 62560 - Exemption and Equivalent Arrangements Under the International Convention on Load Lines, 1966, as...

    Science.gov (United States)

    2010-10-12

    ... hatch covers for hopper dredges and barges that meet ``flooded hopper'' stability criteria. This notice... Guard load line website at: http://www.uscg.mil/hq/cg5/cg5212/loadlines.asp . This notice, the IMO... of critical openings, sufficient reserve buoyancy and freeboard, and accurate stability and...

  10. Comment on "current separation and upwelling over the southeast shelf of Vietnam in the South China Sea" by Chen et al

    DEFF Research Database (Denmark)

    Dippner, Joachim W.; Bombar, Deniz; Loick-Wilde, Natalie;

    2013-01-01

    In a recent paper, Chen et al. (2012) showed that the offshore current in front of the Vietnamese upwelling area in the South China Sea (SCS) is caused by an encounter of southward buoyancy-driven coastal current and tidal rectified currents from the southwest. These findings seem not in agreemen...

  11. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey;

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...

  12. Mechanical versus physiological determinants of swimming speeds in diving Brünnich's guillemots.

    Science.gov (United States)

    Lovvorn, J R; Croll, D A; Liggins, G A

    1999-07-01

    For fast flapping flight of birds in air, the maximum power and efficiency of the muscles occur over a limited range of contraction speeds and loads. Thus, contraction frequency and work per stroke tend to stay constant for a given species. In birds such as auks (Alcidae) that fly both in air and under water, wingbeat frequencies in water are far lower than in air, and it is unclear to what extent contraction frequency and work per stroke are conserved. During descent, compression of air spaces dramatically lowers buoyant resistance, so that maintaining a constant contraction frequency and work per stroke should result in an increased swimming speed. However, increasing speed causes exponential increases in drag, thereby reducing mechanical versus muscle efficiency. To investigate these competing factors, we have developed a biomechanical model of diving by guillemots (Uria spp.). The model predicted swimming speeds if stroke rate and work per stroke stay constant despite changing buoyancy. We compared predicted speeds with those of a free-ranging Brünnich's guillemot (U. lomvia) fitted with a time/depth recorder. For descent, the model predicted that speed should gradually increase to an asymptote of 1.5-1.6 m s-1 at approximately 40 m depth. In contrast, the instrumented guillemot typically reached 1.5 m s-1 within 10 m of the water surface and maintained that speed throughout descent to 80 m. During ascent, the model predicted that guillemots should stroke steadily at 1.8 m s-1 below their depth of neutral buoyancy (62 m), should alternate stroking and gliding at low buoyancies from 62 to 15 m, and should ascend passively by buoyancy alone above 15 m depth. However, the instrumented guillemot typically ascended at 1.25 m s-1 when negatively buoyant, at approximately 1.5 m s-1 from 62 m to 25 m, and supplemented buoyancy with stroking above 25 m. Throughout direct descent, and during ascent at negative and low positive buoyancies (82-25 m), the guillemot

  13. Hotspot swells revisited

    Science.gov (United States)

    King, Scott D.; Adam, Claudia

    2014-10-01

    The first attempts to quantify the width and height of hotspot swells were made more than 30 years ago. Since that time, topography, ocean-floor age, and sediment thickness datasets have improved considerably. Swell heights and widths have been used to estimate the heat flow from the core-mantle boundary, constrain numerical models of plumes, and as an indicator of the origin of hotspots. In this paper, we repeat the analysis of swell geometry and buoyancy flux for 54 hotspots, including the 37 considered by Sleep (1990) and the 49 considered by Courtillot et al. (2003), using the latest and most accurate data. We are able to calculate swell geometry for a number of hotspots that Sleep was only able to estimate by comparison with other swells. We find that in spite of the increased resolution in global bathymetry models there is significant uncertainty in our calculation of buoyancy fluxes due to differences in our measurement of the swells’ width and height, the integration method (volume integration or cross-sectional area), and the variations of the plate velocities between HS2-Nuvel1a (Gripp and Gordon, 1990) and HS3-Nuvel1a (Gripp and Gordon, 2002). We also note that the buoyancy flux for Pacific hotspots is in general larger than for Eurasian, North American, African and Antarctic hotspots. Considering that buoyancy flux is linearly related to plate velocity, we speculate that either the calculation of buoyancy flux using plate velocity over-estimates the actual vertical flow of material from the deep mantle or that convection in the Pacific hemisphere is more vigorous than the Atlantic hemisphere.

  14. MOTION AND DEFORMATION OF VISCOUS DROP IN STOKES FLOW NEAR RIGID WALL

    Institute of Scientific and Technical Information of China (English)

    LU Hua-jian; ZHANG Hui-sheng

    2005-01-01

    A boundary integral method was developed for simulating the motion and deformation of a viscous drop in an axisymmetric ambient Stokes flow near a rigid wall and for direct calculating the stress on the wall. Numerical experiments by the method were performed for different initial stand-off distances of the drop to the wall, viscosity ratios, combined surface tension and buoyancy parameters and ambient flow parameters. Numerical results show that due to the action of ambient flow and buoyancy the drop is compressed and stretched respectively in axial and radial directions when time goes. When the ambient flow action is weaker than that of the buoyancy the drop raises and bends upward and the stress on the wall induced by drop motion decreases when time advances. When the ambient flow action is stronger than that of the buoyancy the drop descends and becomes flatter and flatter as time goes. In this case when the initial stand-off distance is large the stress on the wall increases as the drop evolutes but when the stand-off distance is small the stress on the wall decreases as a result of combined effects of ambient flow, buoyancy and the stronger wall action to the flow. The action of the stress on the wall induced by drop motion is restricted in an area near the symmetric axis, which increases when the initial stand-off distance increases.When the initial stand-off distance increases the stress induced by drop motion decreases substantially. The surface tension effects resist the deformation and smooth the profile of the drop surfaces. The drop viscosity will reduce the deformation and migration of the drop.

  15. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  16. FEM modeling for 3D dynamic analysis of deep-ocean mining pipeline and its experimental verification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    3D dynamic analysis models of 1000 m deep-ocean mining pipeline, including steel lift pipe, pump, buffer and flexible hose, were established by finite element method (FEM). The coupling effect of steel lift pipe and flexible hose, and main external loads of pipeline were considered in the models, such as gravity, buoyancy, hydrodynamic forces, internal and external fluid pressures, concentrated suspension buoyancy on the flexible hose, torsional moment and axial force induced by pump working.Some relevant FEM models and solution techniques were developed, according to various 3D transient behaviors of integrated deep-ocean mining pipeline, including towing motions of track-keeping operation and launch process of pipeline. Meanwhile, an experimental verification system in towing water tank that had similar characteristics of designed mining pipeline was developed to verify the accuracy of the FEM models and dynamic simulation. The experiment results show that the experimental records and simulation results of stress of pipe are coincided. Based on the further simulations of 1 000 m deep-ocean mining pipeline, the simulation results show that, to form configuration of a saddle shape, the total concentrated suspension buoyancy of flexible hose should be 95%-105% of the gravity of flexible hose in water, the first suspension point occupies 1/3 of the total buoyancy, and the second suspension point occupies 2/3 of the total buoyancy. When towing velocity of mining system is less than 0.5 m/s, the towing track of buffer is coincided with the setting route of ship on the whole and the configuration of flexible hose is also kept well.

  17. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Quere, S; Moucha, R; Simmons, N A; Grand, S P; Mitrovica, J X; Rowley, D B

    2008-08-22

    Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomography model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.

  18. FORMULATION AND EVALUATION OF ZIDOVUDINE CONTROLLED RELEASE GAS POWERED SYSTEM USING HYDROPHILLIC POLYMER

    Directory of Open Access Journals (Sweden)

    N. G. Raghavendra Rao

    2011-03-01

    Full Text Available Zidovudine is the first approved compound for the treatment of AIDS; however the main limitation to therapeutic effectiveness of zidovudine is its dose-dependent toxicity, short biological half-life and poor bioavailability. The present research work an attempt has been made to develop the Zidovudine gas powered drug delivery system for controlled release. The Zidovudine gas powered tablets were prepared by direct compression method by using the different grades of hydrophilic polymer like HPMC. The sodium bicarbonates and citric acid were also used as a gas generating agent. The power blend was subjected for pre-compressional parameters. The prepared gas powered tablets are evaluated to post-compressional analysis of parameter such as hardness, friability, weight variation , thickness, drug content, lag time subsequently buoyancy time and in-vitro dissolution studies and swelling index. All the pre and post-compressional parameter are evaluated the results were within acceptable limits. The results of in-vitro buoyancy time and lag time study, the values of in-vitro buoyancy time ranges from 38 to 960 min where as floating lag time ranges from 3.5 to 60 min. The formulation F4 shows the lag time 3.5 min and buoyancy time 960 min. The results of in-vitro buoyancy time and lag time study revealed that as the concentration of sodium bicarbonate increases there is increase in total buoyancy time and decrease in lag time. It is evident from the in-vitro dissolution data that increase in citric acid concentration increased the release rate but reduced the floating time, probably due to of excess carbon dioxide, disturbing the monolithic tablet. The citric acid level in the formulations greatly influenced the drug release. The formulation, F-4 shows maximum drug release at the end of 12 hrs. Form this study, it is concluded that, the formulation retained for longer periods of time in the stomach and provides controlled release of the drug. Hence it

  19. Children's understanding of scientific concepts: A developmental study

    Science.gov (United States)

    Bickerton, Gillian Valerie

    Combining theory-oriented inquiry and research that aims to improve instruction is a major goal of neo-Piagetian theory. Within this tradition, Case's (1992) developmental model enables educational researchers to conduct a detailed analysis of the structural and conceptual changes that occur in children's representation of knowledge in different domains at various points in their development. In so doing, it is now possible for educators to first assess children's "entering competence" in a specific subject and then set developmentally realistic instructional goals. Using Case's (1992) model as a theoretical framework, a developmental study was conducted investigating children's understanding of scientific phenomena, specifically buoyancy, at the ages of 6, 8, and 10 years. The main goal was to determine whether or not children's conceptual levels of understanding change systematically with age in a progressive manner consistent with neo-Piagetian stages of development hypothesized by Case. Participants attended one elementary school in a suburban school district near Vancouver, B.C. Sixty children were individually administered a set of five buoyancy tasks that varied in level of difficulty and involved objects of different weights, shapes and sizes. Each student was asked to predict whether an object would float or sink in different liquids and to support their prediction with an explanation. Analyses using the neo-Piagetian approach of articulating the semantic and syntactic nature of children's mental structures were conducted on the students' responses. Shape, size, weight and substance were identified as the semantic components of buoyancy which are syntactically related Using Case's dimensional metric for classifying different levels of conceptual understanding of buoyancy, the results of the study confirmed that children's understanding of buoyancy did progress through the developmental sequence as hypothesized. The structural progression from

  20. Dynamo generated field emergence through recurrent plasmoid ejections

    CERN Document Server

    Warnecke, Jörn

    2010-01-01

    Magnetic buoyancy is believed to drive the transport of magnetic flux tubes from the convection zone to the surface of the Sun. The magnetic fields form twisted loop-like structures in the solar atmosphere. In this paper we use helical forcing to produce a large-scale dynamo-generated magnetic field, which rises even without magnetic buoyancy. A two layer system is used as computational domain where the upper part represents the solar atmosphere. Here, the evolution of the magnetic field is solved with the stress--and--relax method. Below this region a magnetic field is produced by a helical forcing function in the momentum equation, which leads to dynamo action. We find twisted magnetic fields emerging frequently to the outer layer, forming arch-like structures. In addition, recurrent plasmoid ejections can be found by looking at space--time diagrams of the magnetic field. Recent simulations in spherical coordinates show similar results.

  1. Short-wave vortex instability in stratified flow

    CERN Document Server

    Bovard, Luke

    2014-01-01

    In this paper we investigate a new instability of the Lamb-Chaplygin dipole in a stratified fluid. Through numerical linear stability analysis, a secondary peak in the growth rate emerges at vertical scales about an order of magnitude smaller than the buoyancy scale $L_{b}=U/N$ where $U$ is the characteristic velocity and $N$ is the Brunt-V\\"{a}is\\"{a}l\\"{a} frequency. This new instability exhibits a growth rate that is similar to, and even exceeds, that of the zigzag instability, which has the characteristic length of the buoyancy scale. This instability is investigated for a wide range of Reynolds $Re=2000-20000$ and horizontal Froude numbers $F_{h}=0.05-0.2$, where $F_{h}=U/NR$, $Re=UR/\

  2. Initial approach to assess lateral buckling behavior: comparison between design and operational condition of offshore pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Familiar Solano, Rafael; Reis Antunes, Bruno; Santos Hansen, Alexandre [PETROBRAS, Rio de Janeiro, (Brazil)

    2010-07-01

    Offshore pipelines can be subject to lateral buckling; some strategies are applied to prevent buckle initiation by monitoring the buckling behaviour. Some pipelines have been modified by PETROBRAS with triggers and sleepers; and distributed buoyancies have been added along the pipeline route. This paper investigated the thermo-mechanical design of the pipeline to avoid buckling and its consequences. Both planned buckles at dual sleepers and at distributed buoyancy modules and unplanned buckles were studied. Comparisons between the results obtained in design with finite element analysis and observed during operation with sidescan images were made. Seven planned buckles and two unplanned buckles were mapped and analyzed. It was found that the maximum stress, strain and fatigue damage at the buckle locations were fairly low. The mapping tests showed that the lengths and amplitudes of the buckles were compatible with lateral buckles in the design of pipelines.

  3. C1-Continuous relative permeability and hybrid upwind discretization of three phase flow in porous media

    Science.gov (United States)

    Lee, S. H.; Efendiev, Y.

    2016-10-01

    Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the

  4. Bounds on the calving cliff height of marine terminating glaciers

    Science.gov (United States)

    Ma, Yue; Tripathy, Cory S.; Bassis, Jeremy N.

    2017-02-01

    Increased calving and rapid retreat of glaciers can contribute significantly to sea level rise, but the processes controlling glacier retreat remain poorly understood. We seek to improve our understanding of calving by investigating the stress field controlling tensile and shear failure using a 2-D full-Stokes finite element model. Using idealized rectangular geometries, we find that when rapidly sliding glaciers thin to near buoyancy, full thickness tensile failure occurs, similar to observations motivating height-above-buoyancy calving laws. In contrast, when glaciers are frozen to their beds, basal crevasse penetration is suppressed and calving is minimal. We also find that shear stresses are largest when glaciers are thickest. Together, the tensile and shear failure criteria map out a stable envelope in an ice-thickness-water-depth diagram. The upper and lower bounds on cliff height can be incorporated into numerical ice sheet models as boundary conditions, thus bracketing the magnitude of calving rates in marine-terminating glaciers.

  5. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  6. A numerical model for a room fire; Huonetilan numeerisen palomallin kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Huhtanen, R. [VTT Energy, Espoo (Finland). Nuclear Engineering Lab.

    1994-03-01

    A simple room fire experiment has been used as a development case for numerical fire simulation based on computational fluid dynamics. Experimental values (Steckler et al. 1982) are used to verify simulation. A limited method to use a flee flow boundary condition has been described (flow is assumed to be oblique to the boundary). Description of buoyancy terms, atmospheric pressure and additional terms of turbulence due to buoyancy are also given. Fire source is described as a predefined heat source. Comparison to the experiments shows that flow velocity at the room door, which is the only opening to the room, can be predicted with a good and temperature with a moderate accuracy. (au) (3 refs., 13 figs., 2 tabs.).

  7. Double diffusive convection in a porous enclosure submitted to cross gradients of temperature and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Bourich, M. E-mail: m.bourich@ucam.ac.ma; Amahmid, A. E-mail: amahmid@ucam.ac.ma; Hasnaoui, M. E-mail: hasnaoui@ucam.ac.ma

    2004-07-01

    Numerical results of two dimensional double diffusive natural convection in a square porous cavity submitted to cross gradients of heat and solute concentration are reported in this study. The parameters governing the problem are the thermal Rayleigh number (100{<=}Ra{<=}200), the Lewis number (0.1{<=}Le{<=}10) and the buoyancy ratio (-10{<=}N{<=}10). The effects of the governing parameters on the flow structure and heat and mass transfer are analyzed. It is demonstrated that the solutal buoyancy force induced by horizontal concentration gradients eliminates the multiplicity of solutions obtained in pure thermal convection when N exceeds some critical value, which depends on Le and Ra. For N>0/(N<0), the monocellular trigonometric/(clockwise) solution is maintained for all the explored ranges of the governing parameters considered in this study.

  8. Numerical Simulation of Inter-Flat Air Cross-Contamination under the Condition of Single-Sided Natural Ventilation

    DEFF Research Database (Denmark)

    Liu, Xiaoping; Niu, Jianlei; Perino, Marco;

    2008-01-01

    the two sides, each of which has a flat fa ade with openable windows. When the wind speed is extremely low, with doors closed and windows opened, the flats become single-sided naturally ventilated driven by buoyancy effects. The air pollutants can travel from a lower flat to a vertically adjacent upper...... flat through open windows, caused by indoor/outdoor temperature-difference induced buoyancy. Computational fluid dynamics is employed to explore the characteristics of this process. Based on the comparison with experimental data about the air flow distribution in and around a single-sided naturally...... be a major route of the air cross-contamination in high-rise residential buildings. Finally, an assessment index is proposed to evaluate the potential infection risks associated with this inter-flat air flow occurring in high-rise residential buildings....

  9. Linear stability analysis of magnetized jets: the rotating case

    CERN Document Server

    Bodo, G; Rossi, P; Mignone, A

    2016-01-01

    We perform a linear stability analysis of magnetized rotating cylindrical jet flows in the approximation of zero thermal pressure. We focus our analysis on the effect of rotation on the current driven mode and on the unstable modes introduced by rotation. We find that rotation has a stabilizing effect on the current driven mode only for rotation velocities of the order of the Alfv\\'en velocity. Rotation introduces also a new unstable centrifugal buoyancy mode and the "cold" magnetorotational instability. The first mode is analogous to the Parker instability with the centrifugal force playing the role of effective gravity. The magnetorotational instability can be present, but only in a very limited region of the parameter space and is never dominant. The current driven mode is characterized by large wavelenghts and is dominant at small values of the rotational velocity, while the buoyancy mode becomes dominant as rotation is increased and is characterized by small wavelenghts.

  10. A force balance model for the motion, impact, and bounce of bubbles

    Science.gov (United States)

    Klaseboer, Evert; Manica, Rogerio; Hendrix, Maurice H. W.; Ohl, Claus-Dieter; Chan, Derek Y. C.

    2014-09-01

    A force balance model has been developed to predict the terminal velocity of a sub-millimetric bubble as its rises in water under buoyancy. The dynamics of repeated collisions and rebounds of the bubble against a horizontal solid surface is modeled quantitatively by including forces due to buoyancy, added mass, drag, and hydrodynamic lubrication—the last arises from the drainage of water trapped in the thin film between the solid surface and the surface of the deformable bubble. The result is a self-contained, parameter-free model that is capable of giving quantitative agreement with measured trajectories and observed collisions and rebounds against a solid surface as well as the spatio-temporal evolution of the thin film during collision as measured by interferometry.

  11. Large eddy simulation of turbulent statistical and transport properties in stably stratified flows

    Institute of Scientific and Technical Information of China (English)

    Xiang QIU; Yong-xiang HUANG; Zhi-ming LU; Yu-lu LIU

    2009-01-01

    Three dimensional large eddy simulation (LES) is performed in the inves-tigation of stably stratified turbulence with a sharp thermal interface. Main results are focused on the turbulent characteristic scale, statistical properties, transport properties,and temporal and spatial evolution of the scalar field. Results show that the buoyancy scale increases first, and then goes to a certain constant value. The stronger the mean shear, the larger the buoyancy scale. The overturning scale increases with the flow, and the mean shear improves the overturning scale. The flatness factor of temperature de-parts from the Ganssian distribution in a fairly large region, and its statistical properties are clearly different from those of the velocity fluctuations in strong stratified cases. Tur-bulent mixing starts from small scale motions, and then extends to large scale motions.

  12. APT Blanket Safety Analysis: Preliminary Analyses of Downflow Through a Lateral Row 1 Blanket Model Under Near RHR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    To address a concern about a potential maldistribution of coolant flow through an APT blanket module under low flow near RHR conditions, a scoping study of downflow mixed convection in parallel channels was conducted. Buoyancy will adversely effect the flow distribution in module bins with downflow and non-uniform power distributions. This study consists of two parts: a simple analytical model of flow in a two channel network, and a lumped eleven channel FLOWTRAN-TF model of a front lateral Row-1 blanket module bin. Results from both models indicate that the concern about coolant flow in a vertical model being diverted away from high power regions by buoyancy is warranted. The FLOWTRAN-TF model predicted upflow (i.e., a flow reversal) through several of the high power channels, under some low flow conditions. The transition from the regime with downflow in all channels to a regime with upflow in some channels was abrupt.

  13. Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules: Extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators.

    Science.gov (United States)

    Kröger, Björn; Vinther, Jakob; Fuchs, Dirk

    2011-08-01

    Cephalopods are extraordinary molluscs equipped with vertebrate-like intelligence and a unique buoyancy system for locomotion. A growing body of evidence from the fossil record, embryology and Bayesian molecular divergence estimations provides a comprehensive picture of their origins and evolution. Cephalopods evolved during the Cambrian (∼530 Ma) from a monoplacophoran-like mollusc in which the conical, external shell was modified into a chambered buoyancy apparatus. During the mid-Palaeozoic (∼416 Ma) cephalopods diverged into nautiloids and the presently dominant coleoids. Coleoids (i.e. squids, cuttlefish and octopods) internalised their shells and, in the late Palaeozoic (∼276 Ma), diverged into Vampyropoda and the Decabrachia. This shell internalisation appears to be a unique evolutionary event. In contrast, the loss of a mineralised shell has occurred several times in distinct coleoid lineages. The general tendency of shell reduction reflects a trend towards active modes of life and much more complex behaviour.

  14. Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae).

    Science.gov (United States)

    Sherrard, K M

    2000-06-01

    The cuttlebone is a rigid buoyancy tank that imposes a depth limit on Sepia, the only living speciose cephalopod genus with a chambered shell. Sections of 59 cuttlebones from a geographically diverse sample of 11 species were examined using confocal microscopy. Sepia species that live at greater depths had thicker septa and less space between pillars than did shallow species. A plate theory analysis of cuttlebone strength based on these two measures predicted maximum capture depths accurately in most species. Thus cuttlebone morphology confers differing degrees of strength against implosion from hydrostatic pressure, which increases with increasing habitat depth. Greater strength may come at the cost of increased cuttlebone density, which impinges on the cuttlebone's buoyancy function.

  15. On the shape of a droplet in a wedge: new insight from electrowetting.

    Science.gov (United States)

    Baratian, D; Cavalli, A; van den Ende, D; Mugele, F

    2015-10-21

    The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. Here, we investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces at an angle α. Using electrowetting, we control the contact angle and thereby manipulate the shape and the equilibrium position of aqueous drops in ambient oil. In the absence of contact angle hysteresis and buoyancy, we find that the equilibrium shape is given by a truncated sphere, at a position that is determined by the drop volume and the contact angle. At this position, the net normal force between drop and the surfaces vanishes. The effect of buoyancy gives rise to substantial deviations from this equilibrium configuration which we discuss here as well. We eventually show how the geometric constraint and electrowetting can be used to position droplets inside a wedge in a controlled way, without mechanical actuation.

  16. HALL CURRENT EFFECTS ON FREE CONVECTION MHD FLOW PAST A POROUS PLATE

    Directory of Open Access Journals (Sweden)

    G. Ramireddy

    2011-06-01

    Full Text Available Heat and mass transfer along a vertical porous plate under the combined buoyancy force effects of thermal and species diffusion is investigated in the presence of a transversely applied uniform magnetic field and the Hall currents are taken into account. The governing fundamental equations on the assumption of a small magnetic Reynolds number are approximated by a system of non-linear ordinary differential equations, which are integrated by fourth-order Runge–Kutta method. Velocity, temperature and concentration are shown on graphs. The numerical values of the local shear stress, the local Nusselt number Nu and the local Sherwood number Sh are entered in tables. The effects of the magnetic parameter, Hall parameter and the relative buoyancy force effect between species and thermal diffusion on the velocity, temperature and concentration are discussed. The results are compared with those known from the literature.

  17. Short-term airing by natural ventilation

    DEFF Research Database (Denmark)

    Perino, Marco; Heiselberg, Per

    2009-01-01

    traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates......The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates...... that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ....

  18. Transport through Prince William Sound: numerical study in a nowcast/forecast system

    Science.gov (United States)

    Wu, Xinglong

    2011-04-01

    Using 1-year simulated data from extended Prince William Sound (PWS) nowcast/forecast system, both barotropic and baroclinic transports through two-strait, semi-enclosed PWS are examined. With major tidal constituents removed, hourly time series of volume transports through two straits are significantly correlated with net transport well balanced by the time rate of change of the PWS spatial-mean sea level. A transition frequency band occurs within the coherence function of hourly volume transports, which is characterized by a nearly 180° phase shift between low-frequency (>30 h) and high-frequency (exchange flow is determined to be mainly buoyancy-driven, geostrophic flow, and thus largely affected by seasonal variability of buoyancy over the shelf and PWS.

  19. Spiral precipitation patterns in confined chemical gardens.

    Science.gov (United States)

    Haudin, Florence; Cartwright, Julyan H E; Brau, Fabian; De Wit, A

    2014-12-09

    Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction-diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space.

  20. Stability Analysis of Convection in the Intracluster Medium

    CERN Document Server

    Gupta, Himanshu; Pessah, Martin E; Chakraborty, Sagar

    2016-01-01

    We use the machinery usually employed for studying the onset of Rayleigh--B\\'enard convection in hydro- and magnetohydro-dynamic settings to address the onset of convection induced by the magnetothermal instability and the heat-flux-buoyancy-driven-instability in the weakly-collisional magnetized plasma permeating the intracluster medium. Since most of the related numerical simulations consider the plasma being bounded between two `plates' on which boundary conditions are specified, our strategy provides a framework that could enable a more direct connection between analytical and numerical studies. We derive the conditions for the onset of these instabilities considering the effects of induced magnetic tension resulting from a finite plasma beta. We provide expressions for the Rayleigh number in terms of the wave vector associated with a given mode, which allow us to characterize the modes that are first to become unstable. For both the heat-flux-buoyancy-driven-instability and the magnetothermal instability...