WorldWideScience

Sample records for buoyancy driven natural

  1. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Li, Zhigang

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening and...

  2. Experimental Study of Wind-Opposed Buoyancy-Driven Natural Ventilation

    DEFF Research Database (Denmark)

    Andersen, A.; Bjerre, M.; Chen, Z. D.;

    Natural ventilation driven by natural forces, i.e. wind and thermal buoyancy, is an environmentally friendly system for buildings and has been increasingly used around the world in recent years to mitigate the impact on the global environment due to the significant energy consumption by heating......, ventilation and air-conditioning (HV AC). There is a need for the understanding and development of theories and tools related to the design, operation and control of natural ventilation systems....

  3. Simulation of buoyancy-driven natural ventilation of buildings - Impact of computational domain

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Guohui [Department of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2010-08-15

    Two computational domains have been used for simulation of buoyancy-driven natural ventilation in vertical cavities for different total heat fluxes and wall heat distributions. Results were compared between cavities with horizontal and vertical inlets. The predicted ventilation rate and heat transfer coefficient have been found to depend on the domain size and inlet position as well as the cavity size and heat distribution ratio. The difference in the predicted ventilation rate or heat transfer coefficient using two domains is generally larger for wider cavities with asymmetrical heating and is also larger for ventilation cavities with a horizontal inlet than those with a vertical inlet. The difference in the heat transfer coefficient is generally less than that in the ventilation rate. In addition, a ventilation cavity with symmetrical heating has a higher ventilation rate but generally lower heat transfer coefficient than does an asymmetrically heated cavity. A computational domain larger than the physical size should be used for accurate prediction of the flow rate and heat transfer in ventilation cavities or naturally ventilated buildings with large openings, particularly with multiple inlets and outlets. This is demonstrated with two examples for natural ventilation of buildings. (author)

  4. Numerical investigations of buoyancy-driven natural ventilation in a simple three-storey atrium building and thermal comfort evaluation

    International Nuclear Information System (INIS)

    The numerical investigations of buoyancy-driven natural ventilation and thermal comfort evaluation in a simple three-storey atrium building as a part of the passive ventilation strategy was undertaken using a validated Computational Fluid Dynamic (CFD) model. The Reynolds Averaged Navier–Stokes (RANS) modeling approach with the SST-k–ω turbulence model and the discrete transfer radiation model (DTRM) was used for the numerical investigations. The steady-state governing equations were solved using a commercial solver FLUENT©. Various flow situations of the buoyancy-driven natural ventilation in the building during day and night time were examined. The numerical results obtained for the airflow rates, airflow patterns and temperature distributions inside the building are presented in this paper. Using the numerical results, the well-known thermal comfort indices PMV (predicted mean vote) and PPD (predicted percentage of dissatisfied) were calculated for the evaluation of the thermal comfort conditions in the occupied regions of the building. It was noticed that thermal conditions prevailing in the occupied areas of the building as a result of using the buoyancy-driven ventilation were mostly in comfort zone. From the study of the night time ventilation, it was found that hot water (80 °C) circulation (heated by solar collectors during daytime) along the chimney walls during night time and heat sources present in the building can be useful in inducing night ventilation airflows in the building as a part of the passive ventilation strategy. -- Highlights: • A simple three-storey atrium building. • Numerical modeling of buoyancy-driven ventilation flow in the building. • Effect of solar intensity and geographical location on ventilation. • CFD predictions were used to calculate thermal comfort indices. • Evaluation of thermal comfort conditions for the occupants

  5. Exploring Titan with Autonomous, Buoyancy Driven Gliders

    Science.gov (United States)

    Morrow, M. T.; Woolsey, C. A.; Hagerman, G. M.

    Buoyancy driven underwater gliders are highly efficient winged underwater vehicles which locomote by modifying their internal shape. The concept, which is already well-proven in Earth's oceans, is also an appealing technology for remote terrain exploration and environmental sampling on worlds with dense atmospheres. Because of their high efficiency and their gentle, vertical take-off and landing capability, buoyancy driven gliders might perform long duration, global mapping tasks as well as light-duty, local sampling tasks. Moreover, a sufficiently strong gradient in the planetary boundary layer may enable the vehicles to perform dynamic soaring, achieving even greater locomotive efficiency. Shape Change Actuated, Low Altitude Robotic Soarers (SCALARS) are an appealing alternative to more conventional vehicle technology for exploring planets with dense atmospheres. SCALARS are buoyancy driven atmospheric gliders with a twin-hulled, inboard wing configuration. The inboard wing generates lift, which propels the vehicle forward. Symmetric changes in mass distribution induce gravitational pitch moments that provide longitudinal control. Asymmetric changes in mass distribution induce twist in the inboard wing that provides directional control. The vehicle is actuated solely by internal shape change; there are no external seals and no exposed moving parts, save for the inflatable buoyancy ballonets. Preliminary sizing analysis and dynamic modeling indicate the viability of using SCALARS to map the surface of Titan and to investigate features of interest.

  6. Numerical investigations of buoyancy-driven natural ventilation in a simple atrium building and its effect on the thermal comfort conditions

    International Nuclear Information System (INIS)

    In the present study use of solar-assisted buoyancy-driven natural ventilation in a simple atrium building is explored numerically with particular emphasis on the thermal comfort conditions in the building. Initially various geometric configurations of the atrium space were considered in order to investigate airflows and temperature distributions in the building using a validated computational fluid dynamics (CFD) model. The Reynolds Averaged Navier–Stokes (RANS) modelling approach with the SST-k–ω turbulence model and the Discrete Transfer Radiation Model (DTRM) was used for the investigations. The steady-state governing equations were solved using a commercial CFD solver FLUENT©. From the numerical results obtained, it was noted that an atrium space integrated with a solar chimney would be a relatively better option to be used in an atrium building. In the geometry selected, the performance of the building in response to various changes in design parameters was investigated. The produced airflows and temperature distributions were then used to evaluate indoor thermal comfort conditions in terms of the thermal comfort indices, i.e. the well-known predicted mean vote (PMV) index, its modifications especially for natural ventilation, predicted percent dissatisfied (PPD) index and Percent dissatisfied (PD) factor due to draft. It was found that the thermal conditions in the occupied areas of the building developed as a result of the use of solar-assisted buoyancy-driven ventilation for the particular values of the design parameters selected are mostly in the comfortable zone. Finally, it is demonstrated that the proposed methodology leads to reliable thermal comfort predictions, while the effect of various design variables on the performance of the building is easily recognized. - Highlights: ► Numerical investigations were carried for the use of buoyancy-driven displacement ventilation in a simple atrium building. ► Effect of various atrium configurations

  7. Buoyancy driven turbulence and distributed chaos

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of recent direct numerical simulations, laboratory experiments and atmospheric measurements, that buoyancy driven turbulence exhibits a broad diversity of the types of distributed chaos with its stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$. The distributed chaos with $\\beta = 1/3$ (determined by the helicity correlation integral) is the most common feature of the stably stratified turbulence (due to the strong helical waves presence). These waves mostly dominate spectral properties of the vertical component of velocity field, while the horizontal component is dominated by the diffusive processes both for the weak and strong stable stratification ($\\beta =2/3$). For the last case influence of the low boundary can overcome the wave effects and result in $\\beta =1/2$ for the vertical component of the velocity field (the spontaneous breaking of the space translational symmetry - homogeneity). For the unstably stratified turbulence in the Rayleigh-Taylor mixing zone the di...

  8. Transient buoyancy-driven ventilation: Part 2. Modelling heat transfer

    OpenAIRE

    Steven D. Sandbach and Gregory F. Lane-Serff

    2011-01-01

    A new mathematical model for buoyancy-driven ventilation [Sandbach SD, Lane-Serif GF. Transient buoyancy-driven ventilation: Part 1. Modelling advection. Building and Environment, 2011] is modified to include heat transfer at the boundaries. Heat transfers at the ceiling and floor are included, using Newton's law of cooling to model convective heat transfer between the air and the solid boundaries, Fourier's law to model conductive heat transfer through the floor and ceiling, and a linear ver...

  9. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.

    Science.gov (United States)

    Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N

    2016-01-21

    We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations. PMID:26607320

  10. Energy Spectrum of Buoyancy-driven Turbulence

    CERN Document Server

    Verma, Mahendra K; Chatterjee, Anando G

    2014-01-01

    Using direct numerical simulation we demonstrate that stably stratified flows with large Richardson number follow Bolgiano-Obukhov scaling, i.e, the kinetic energy spectrum $E_u(k) \\sim k^{-11/5}$, the entropy spectrum $E_\\theta(k) \\sim k^{-7/5}$, and kinetic energy flux $\\Pi_u(k) \\sim k^{-4/5}$. This is due to the conversion of kinetic energy to potential energy because of buoyancy. We also demonstrate that $E_u(k) \\sim k^{-5/3}$ for stratified flow with weaker buoyancy or smaller Richardson number. We argue that due to the positive energy supply by buoyancy and non-decreasing $\\Pi_u(k)$, Rayleigh B\\'{e}nard convection should follow Kolmogorov-Obukhov scaling ($E_u(k) \\sim k^{-5/3}$).

  11. Energy spectrum of Buoyancy-driven Flows

    CERN Document Server

    Kumar, Abhishek; Verma, Mahendra K

    2014-01-01

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux $\\Pi_u$, we demonstrate that for stably stratified flows, the kinetic energy spectrum $E_u(k) \\sim k^{-11/5}$, the entropy spectrum $E_\\theta(k) \\sim k^{-7/5}$, and $\\Pi_u(k) \\sim k^{-4/5}$ (Bolgiano-Obukhov scaling). This scaling is due to the depletion of kinetic energy because of buoyancy. For weaker buoyancy in stratified flows, $E_u(k)$ follows Kolmgorov's spectrum with a constant energy flux. We also argue that for Rayleigh B\\'{e}nard convection, the Bolgiano-Obukhov scaling will not hold for the bulk flow due to the positive energy supply by buoyancy and non-decreasing $\\Pi_u(k)$.

  12. Energy Spectrum of Buoyancy-Driven Turbulence

    OpenAIRE

    Kumar, Abhishek; Chatterjee, Anando G.; Verma, Mahendra K.

    2014-01-01

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux $\\Pi_u$, we demonstrate that for stably stratified flows, the kinetic energy spectrum $E_u(k) \\sim k^{-11/5}$, the entropy spectrum $E_\\theta(k) \\sim k^{-7/5}$, and $\\Pi_u(k) \\sim k^{-4/5}$, consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence $E_u(k)$ follo...

  13. Modelling and Linear Control of a Buoyancy-Driven Airship

    OpenAIRE

    Wu, Xiaotao,; Moog, Claude; Hu, Yueming

    2009-01-01

    We describe the modelling and control of a newkind airship which is propelled by buoyancy. Based on the Newton-Euler equations and Kirchhoff equations, and referred to the models of underwater gliders and aircraft, a 6DOF nonlinear mathematical model of a buoyancy-driven airship is derived, with features distributed internal mass, and no thrust, elevators and rudders. The attitudes are controlled by the motion of internal mass. The performances of the airship are studied in the vertical plane...

  14. Energy spectrum of buoyancy-driven turbulence

    KAUST Repository

    Kumar, Abhishek

    2014-08-25

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Πu, we demonstrate that, for stably stratified flows, the kinetic energy spectrum Eu(k)∼k-11/5, the potential energy spectrum Eθ(k)∼k-7/5, and Πu(k)∼k-4/5 are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence Eu(k) follows Kolmogorov\\'s spectrum with a constant energy flux. For Rayleigh-Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing Πu(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results show that convective turbulence for unit Prandt number exhibits a constant Πu(k) and Eu(k)∼k-5/3 for a narrow band of wave numbers. © 2014 American Physical Society.

  15. Buoyancy-Driven Polymerase Chain Reaction (PCR) Devices

    Energy Technology Data Exchange (ETDEWEB)

    Ness, K D; Wheeler, E K; Benett, W; Stratton, P; Christian, A; Chen, A; Ortega, J; Weisgraber, T H; Goodson, K E

    2004-09-28

    Polymerase chain reaction (PCR) facilitates DNA detection by significantly increasing the concentration of specific DNA segments. A new class of PCR instruments uses a buoyancy-driven re-circulating flow to thermally cycle the DNA sample and benefits from reduced cycle times, low sample volumes, a miniaturized format, and low power consumption. This paper analyzes a specific buoyancy PCR device in a micro-channel ''race-track'' geometry to determine key parameters about PCR cycle times and other figures of merit as functions of device dimensions. The 1-D model balances the buoyancy driving force with frictional losses. A hydrostatic pressure imbalance concept is used between the left and right sides of the fluid loop to calculate the buoyancy driving force. Velocity and temperature distributions within the channels are determined from two-dimensional analysis of the channel section, with developing region effects included empirically through scaled values of the local Nusselt number. Good agreement between four independent verification steps validate the 1-D simulation approach: (1) analytical expressions for the thermal entrance length are compared against, (2) comparison with a full 3-D finite element simulation, (3) comparison with an experimental flow field characterization, and (4) calculation of the minimum PCR runtime required to get a positive PCR signal from the buoyancy-driven PCR device. The 1-D approach closely models an actual buoyancy-driven PCR device and can further be used as a rapid design tool to simulate buoyancy PCR flows and perform detailed design optimizations studies.

  16. Semi-Empirical Models for Buoyancy-Driven Ventilation

    DEFF Research Database (Denmark)

    Terpager Andersen, Karl

    2015-01-01

    A literature study is presented on the theories and models dealing with buoyancy-driven ventilation in rooms. The models are categorised into four types according to how the physical process is conceived: column model, fan model, neutral plane model and pressure model. These models are analysed a...

  17. The effect of mechanical stirring on buoyancy-driven circulations

    CERN Document Server

    Tailleux, Remi

    2009-01-01

    The theoretical analysis of the energetics of mechanically-stirred horizontal convection for a Boussinesq fluid yields the formula: G(APE) = \\gamma_{mixing} G(KE) + (1+\\gamma_{mixing}) W_{r,laminar} where G(APE) and G(KE) are the work rate done by the buoyancy and mechanical forcing respectively, \\gamma_{mixing} is the mixing efficiency, and W_{r,laminar} is the background rate of increase in gravitational potential energy due to molecular diffusion. The formula shows that mechanical stirring can easily induce a very strong buoyancy-driven overturning cell (meaning a large G(APE)) even for a relatively low mixing efficiency, whereas this is only possible in absence of mechanical stirring if \\gamma_{mixing} >> 1. Moreover, the buoyancy-driven overturning becomes mechanically controlled when $\\gamma_{mixing} G(KE) >> (1+\\gamma_{mixing}) W_{r,laminar}$. This result explains why the buoyancy-driven overturning cell in the laboratory experiments by \\cite{Whitehead2008} is amplified by the lateral motions of a stir...

  18. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow is...

  19. Release of radon contaminants from Yucca Mountain: The role of buoyancy driven flow

    International Nuclear Information System (INIS)

    The potential for the repository heat source to promote buoyancy driven flow and thereby cause release of radon gas out of Yucca Mountain has been examined through a critical review of the theoretical and experimental studies of this process. The review indicates that steady-state buoyancy enhanced release of natural radon and other contaminant gases should not be a major concern at Yucca Mountain. Barometric pumping and wind pumping are identified as two processes that will have a potentially greater effect on surface releases of gases

  20. Experimental studies and CFD calculations for buoyancy driven mixing phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Jose da, E-mail: M.dasilva@fzd.d [Institute of Safety Research, Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany); Thiele, Sebastian; Hoehne, Thomas; Vaibar, Roman; Hampel, Uwe [Institute of Safety Research, Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2010-09-15

    In nuclear reactor safety the mixing of borated and deborated water is a critical issue that needs investigation, assessment and prediction. Such mixing is buoyancy driven and numerical codes must correctly model momentum transfer between fluids of different density. To assess and develop CFD models for buoyancy driven mixing we set up a simple vertical mixing test facility (VeMix) and equipped it with a newly developed planar electrical imaging sensor. This imaging sensor acquires conductivity images of the liquid at the rear channel wall with a speed of 2,500 frames/s. By adding NaCl tracer to the denser fluid we were able to visualize the mixing process in high spatial and temporal detail. Furthermore, an image processing algorithm based on the optical flow concept was implemented and tested which allows the measurement of flow pattern velocities. Selected experiments at different Richardson numbers were run with two components of different density (pure water and glucose-water mixture) simulating borated and deborated water in a light water reactor scenario. These experiments were compared to CFD calculations using standard turbulence models. Good agreement between experimental data and CFD simulations was found.

  1. Buoyancy driven flow within an inclined elliptic enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Mahfouz, F.M. [Mechanical Engineering Department, UET, Taxila (Pakistan)

    2011-10-15

    Buoyancy driven flow and associated heat convection in an elliptical enclosure has been investigated. The enclosure which is the space between two horizontal concentric confocal elliptic tubes is heated through its inner tube surface which is maintained at either uniform temperature or uniform heat flux. The induced buoyancy driven flow and the associated heat convection are predicted at different enclosure orientations. The full governing equations in terms of vorticity, stream function and temperature are solved numerically using Fourier Spectral Method. Beside Rayleigh and Prandtl numbers the heat convection process in the enclosure depends on the geometry of the enclosure and the angle of inclination with respect to gravity vector. The geometry of the enclosure is represented in terms of major axes ratio and axis ratio of inner tube. The study considered a moderate range of Rayleigh numbers between 5 x 10{sup 3} and 1 x 10{sup 5} while Prandtl number is fixed at 0.7. The inner tube axis ratio is considered between 0 and 1 while the ratio between the two major axes is considered up to 3. The angle of inclination of the minor axes with respect to gravity vector is varied from 0 to 90 deg.. The results for local and average Nusselt numbers as well as temperature distribution are obtained and discussed together with the details of both flow and thermal fields. For isothermal heating conditions, the study has shown an optimum value for major axes ratio that minimizes the rate of heat transfer in the enclosure. While in case of heating at uniform heat flux the study revealed existence of major axes ratio at which the mean temperature of the inner wall is maximum. Another aspect of this paper is the prediction of global flow circulation around the inner tube in case of asymmetrical orientation of the enclosure with respect to the gravity vector. (authors)

  2. Field evidence for buoyancy-driven water flow in a Sphagnum dominated peat bog

    NARCIS (Netherlands)

    Adema, E.B.; Baaijens, G. J.; van Belle, J.; Rappoldt, C.; Grootjans, A. P.; Smolders, A. J. P.

    2006-01-01

    Nocturnal buoyancy-driven water flow in bogs is proposed as a mechanism to replenish the nutrient availability in the top of the acrotelm. In an earlier paper, we provided evidence for buoyancy-driven water flow on theoretical and experimental grounds. In this paper, field evidence is given for the

  3. A Review of Some Recent Studies on Buoyancy Driven Flows in an Urban Environment

    OpenAIRE

    Bodhisatta Hajra

    2014-01-01

    This paper reviews some recent studies (after 2000) pertaining to buoyancy driven flows in nature and thier use in reducing air pollution levels in a city (city ventilation). Natural convection flows occur due to the heating and cooling of various urban surfaces (e.g., mountain slopes), leading to upslope and downslope flows. Such flows can have a significant effect on city ventilation which has been the subject of study in the recent times due to increased pollution levels in a city. A major...

  4. An Antarctic Circumpolar Current driven by surface buoyancy forcing

    Science.gov (United States)

    Hogg, Andrew McC.

    2010-12-01

    Simulations of an idealised, but eddy-resolving, channel model of the Antarctic Circumpolar Current (ACC) are used to investigate the sensitivity of ACC transport to wind and surface buoyancy forcing. The results are consistent with theoretical predictions of the eddy-saturated limit, where transport is independent of wind stress. In this parameter regime, buoyancy forcing provides the primary control over ACC transport.

  5. Buoyancy-driven CO2/brine flow at reservoir conditions

    Science.gov (United States)

    Oh, J.; Kim, K.; Han, W.; Kim, T.; Kim, J.; Park, E.

    2013-12-01

    Suitable geological formations should guarantee a long-term safe and reliable storage of the injected supercritical CO2. In this study we targeted the cases of gravity-driven CO2 plume migration in a storage formation and the resulting CO2 leakage to overlying formation through a possible fractures or abandoned wells. A laboratory experiment and numerical model for two-phase core-flooding tests were designed to understand the buoyancy effect on supercritical CO2 migration under reservoir conditions. A series of core flooding tests were performed with Berea sandstone cores which have 20 % porosity and 1.7×10-13 m2 permeability. Unlike the normal core-flooding tests, the core was set up in a vertical direction and the CO2 was released at the bottom of the core to investigate the gravity effect on CO2 migration. During the test, the downstream pressure was maintained at 10 MPa, and the confining pressure was kept at 20 MPa. The temperature was set to be 40 °C to reflect the 1 km subsurface environment. The CO2-flooding (drainage) tests with brine-saturated core were performed with various CO2-release periods. The CO2 saturation was measured with a linear X-ray scanner. In addition to laboratory experiments, numerical simulations were performed to provide further insight into the CO2 migration behavior. TOUGH2 with ECO2N module was used to simulate CO2/brine core-flooding tests. Dimensionless numbers (Capillary number and Bond number) were calculated with the simulation results at various time points covering both the release and monitoring period.

  6. Buoyancy-driven convection may switch between reactive states in three-dimensional chemical waves

    OpenAIRE

    Šebestíková, L. (Lenka); Hauser, M J B

    2012-01-01

    Traveling waves in an extended reactor, whose width cannot be neglected, represent a three-dimensional (3D) reaction-diffusion-convection system. We investigate the effects of buoyancy-driven convection in such a setting. The 3D waves traveled through horizontal layers of the iodate–arsenous acid (IAA) reaction solution containing excess of arsenous acid. The depth of the reaction solution was the examined parameter. An increase in the intensity of buoyancy-driven flow caused an increase of t...

  7. A Review of Some Recent Studies on Buoyancy Driven Flows in an Urban Environment

    Directory of Open Access Journals (Sweden)

    Bodhisatta Hajra

    2014-01-01

    Full Text Available This paper reviews some recent studies (after 2000 pertaining to buoyancy driven flows in nature and thier use in reducing air pollution levels in a city (city ventilation. Natural convection flows occur due to the heating and cooling of various urban surfaces (e.g., mountain slopes, leading to upslope and downslope flows. Such flows can have a significant effect on city ventilation which has been the subject of study in the recent times due to increased pollution levels in a city. A major portion of the research reviewed here consists of natural convection flows occurring along mountain slopes, with a few studies devoted to flows along building walls. The studies discussed here primarily include field measurements and computational fluid dynamics (CFD models. This review shows that for densely populated cities with high pollution levels, natural convection flows (mountain slope or building walls can significantly aid the dispersion of pollutants. Additional studies in this area using CFD and water channel measurements can explain the physical processes involved in such flows and help improve CFD modelling. Future research should focus on a complete understanding of the mechanisms of buoyancy flows in nature and developing design guidelines for better planning of cities.

  8. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2009-01-01

    constant injection tracer gas technique. Smoke visualizations showed that the airflow patterns are highly transient and unstable, and that the airflow rate oscillates with time. Correlations between the Froude (Archimedes) number Fr (Ar) and the L/D ratio are presented. In some cases the measured airflow...

  9. Buoyancy-driven flow reversal phenomena in radially rotating serpentine ducts

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.J.; Wang, W.J.; Chen, C.K.

    2000-02-01

    Convective characteristics are analyzed numerically in a rotating multipass square duct connecting with 180-deg sharp returns. Isoflux is applied to each duct wall and periodic conditions are used between the entrance and exit of a typical two-pass module. Emphasis is placed on the phenomenon of buoyancy-driven reversed flow in the serpentine duct. Predictions reveal that the radial distance from the rotational axis to the location of flow separation in the radial-outward duct decreases with increasing the Richardson number. In addition, the local buoyancy that is required to yield the radial flow reversal increases with increasing the rotation number. This buoyancy-driven reversed flow in the radial-outward duct always results in local hot spots in the cooling channels. The critical buoyancy for the initiation of flow reversal is therefore concluded for the design purpose.

  10. Floating rings in vertical soap films : capillary driven bidimensional buoyancy

    CERN Document Server

    Adami, N

    2013-01-01

    The present study aims to investigate the motion of buoyant rings in vertical soap films. Thickness differences and related bi-dimensional densities are considered as the motor leading to bi-dimensional buoyancy. We show how this effect can be re-interpreted thanks to surface tension profiles in soap films. We propose a model involving surface tension profiles in order to describe the motion of buoyant particles in vertical soap films, and compare it to experimental data.

  11. Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves.

    Science.gov (United States)

    Wachtor, Adam J; Mocko, Veronika; Williams, Darrick J; Goertz, Matthew P; Jebrail, Farzaneh F

    2013-01-01

    An experiment that seeks to investigate buoyancy driven mixing of miscible fluids by microwave volumetric energy deposition is presented. The experiment involves the use of a light, non-polar fluid that initially rests on top of a heavier fluid which is more polar. Microwaves preferentially heat the polar fluid, and its density decreases due to thermal expansion. As the microwave heating continues, the density of the lower fluid eventually becomes less than that of the upper, and buoyancy driven Rayleigh-Taylor mixing ensues. The choice of fluids is crucial to the success of the experiment, and a description is given of numerous fluid combinations considered and characterized. After careful consideration, the miscible pair of toluene/tetrahydrofuran (THF) was determined as having the best potential for successful volumetric energy deposition buoyancy driven mixing. Various single fluid calibration experiments were performed to facilitate the development of a heating theory. Thereafter, results from two-fluid mixing experiments are presented that demonstrate the capability of this novel Rayleigh-Taylor driven experiment. Particular interest is paid to the onset of buoyancy driven mixing and unusual aspects of the experiment in the context of typical Rayleigh-Taylor driven mixing. PMID:24779141

  12. The effect of mechanical stirring on buoyancy-driven circulations

    OpenAIRE

    Tailleux, Remi; Rouleau, Lucie

    2009-01-01

    The theoretical analysis of the energetics of mechanically-stirred horizontal convection for a Boussinesq fluid yields the formula: G(APE) = \\gamma_{mixing} G(KE) + (1+\\gamma_{mixing}) W_{r,laminar} where G(APE) and G(KE) are the work rate done by the buoyancy and mechanical forcing respectively, \\gamma_{mixing} is the mixing efficiency, and W_{r,laminar} is the background rate of increase in gravitational potential energy due to molecular diffusion. The formula shows that mechanical stirring...

  13. Buoyancy-driven interannual sea level changes in the southeast tropical Pacific

    Science.gov (United States)

    Piecuch, Christopher G.; Ponte, Rui M.

    2012-03-01

    It is commonly held that interannual-to-decadal sea level variability patterns mainly represent the ocean's response to wind forcing. This view is based in part on modeling studies of wind-driven sea level changes along the tropical Pacific. However, because buoyancy forcing (and other generating mechanisms) are usually ignored, this paradigm may overemphasize the role of winds. Focusing on the southeast tropical Pacific, we use a data-constrained ocean state estimate to demonstrate that distinct mechanisms—including the ocean's response to buoyancy forcing as well as nonlinear processes—can also contribute to interannual sea level variability. Contrary to the notion that buoyancy-driven sea level changes are dynamically passive, such changes exhibit a strongly nonlocal, dynamically active character, made manifest in westward propagating waves. As similar findings apply elsewhere, accurate modeling of interannual-to-decadal regional sea level changes requires consideration of a variety of forcing mechanisms, including, but not limited to, the winds.

  14. Prediction of turbulent cavity flow driven by buoyancy and shear

    International Nuclear Information System (INIS)

    A finite-difference numerical procedure, incorporating a buoyant of the k-turbulence model, is employed to compute turbulent, mixed convection in a square cavity for Reynolds number Re=104 to 2x105, and Archimedes number Ar=0 to 0.4. For Ar>0.04 stable advancement of the solution procedure is obtained only through the use of an 'inertial relaxation' method. The calculated flow, temperature, and turbulence fields are presented and compared with available experimental data. At high Re and low Ar the predicted heat transfer agrees with the correlation Nu=1.16 Resup(0.5). When buoyancy is pronounced the computed Nu is some 15 per cent higher than the data; this is suspected to be due to the turbulence model, and possible improvements to the model are suggested. (U.K.)

  15. Buoyancy-driven mixing of fluids in a confined geometry

    International Nuclear Information System (INIS)

    The present work based on Direct Numerical Simulations is devoted to the study of mixing between two miscible fluids of different densities. The movement of these fluids is induced by buoyancy. Three geometries are considered: a cylindrical tube, a square channel and a plane two-dimensional flow. For cylindrical tubes, the results of numerical simulations fully confirm previous experimental findings by Seon et al., especially regarding the existence of three different flow regimes, depending on the tilt angle. The comparison of the various geometries shows that tridimensional flows in tubes or channels are similar, whereas the two-dimensional model fails to give reliable information about real 3D flows, either from a quantitative point of view or for a phenomenological understanding. A peculiar attention is put on a joint analysis of the concentration and vorticity fields and allows us to explain several subtle aspects of the mixing dynamics. (author)

  16. Buoyancy-driven convection may switch between reactive states in three-dimensional chemical waves

    Czech Academy of Sciences Publication Activity Database

    Šebestíková, Lenka; Hauser, M. J. B.

    2012-01-01

    Roč. 85, č. 3 (2012), 036303. ISSN 1539-3755 R&D Projects: GA ČR GAP105/10/0919 Institutional research plan: CEZ:AV0Z20600510 Keywords : buoyancy-driven convection * chemical waves * iodate-arsenous acid reaction Subject RIV: BK - Fluid Dynamics Impact factor: 2.313, year: 2012

  17. Impact of computational domain on the prediction of buoyancy-driven ventilation cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Guohui [Department of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2010-05-15

    Traditional solar heated cavity structures such as solar chimneys make use of the stored solar energy in the interior wall to enhance natural ventilation of buildings but integration of photovoltaic devices into the exterior wall of such a structure can result in different proportions of heat distribution on both interior and exterior walls. This paper presents results of CFD simulation of the buoyancy-driven airflow and heat transfer in vertical cavities of different heights and widths with different total heat fluxes and wall heat distributions for ventilation cooling. Two sizes of computational domain were used for simulation - a small domain same as the physical size of a cavity and a large extended domain that is much larger than the cavity. The predicted natural ventilation rate and heat transfer coefficient have been found to depend on not only the cavity size and the quantity and proportion of heat distribution on the cavity walls but also the domain size. The difference in the predicted ventilation rate or heat transfer coefficient using the small and large domains is generally larger for wider cavities where heat distribution on two vertical walls is highly asymmetrical; incoming air would be distorted from symmetrical distribution across the inlet opening; and/or significant reverse flow would occur at the outlet opening. The difference in the heat transfer coefficient is generally less than that in the ventilation rate. In addition, a cavity with symmetrical heating has a higher ventilation rate but lower heat transfer coefficient than does an asymmetrically heated cavity. (author)

  18. Turbulence-induced secondary motion in a buoyancy-driven flow in a circular pipe

    OpenAIRE

    Hallez, Yannick; Magnaudet, Jacques

    2009-01-01

    We analyze the results of a direct numerical simulation of the turbulent buoyancy-driven flow that sets in after two miscible fluids of slightly different densities have been initially superimposed in an unstable configuration in an inclined circular pipe closed at both ends. In the central region located midway between the end walls, where the flow is fully developed, the resulting mean flow is found to exhibit nonzero secondary velocity components in the tube cross section. We present a det...

  19. Passive systems for buildings using buoyancy-driven airflows

    OpenAIRE

    Abreu, Maria Isabel; Corvacho, Helena; Dias, Ricardo P.

    2011-01-01

    The need for countries to become less dependent on fossil fuels has been a determining factor in recent years due to increasing energy and comfort concerns in modern building design. Therefore, the maximization of the use of renewable energies, like the sun, and the use of natural energy flows become strategies to explore. There are already passive building systems that show interesting performances. Different studies have proved that the above-mentioned systems can lead to important energy s...

  20. Buoyancy driven convection in open-cell metal foam using the volume averaging theory

    International Nuclear Information System (INIS)

    Heat sinks with open-cell aluminium foam are studied numerically in buoyancy driven convection with air as surrounding medium. Results from a 2D numerical model are compared to experiments for different foam heights. The numerical model is based on the volume averaging theory. If only convective heat transfer is taken into account in the numerical model, the relative differences between the numerical and experimental results are smaller than 29% for all foam heights studied. However, when the influence of radiation is included in the numerical model, it is shown that the numerical results differ less than 9% with the experimental ones. This clearly shows that it is necessary to properly model radiative heat transfer in numerical models of open-cell aluminium foam in buoyancy driven convection. Finally, a sensitivity study of ten main parameters of the volume averaged model (closure terms, effective properties) and the experimental setup (substrate temperature, dimensions of the heat sink) is performed. It is shown that the construction details and dimensions of the experimental setup have the largest impact on the heat transfer rate and not the convection coefficient, as is often assumed. - Highlights: • Heat sinks with metal foam are studied in buoyancy driven convection. • Study is done numerically based on VAT and comparison is made with experiments. • When only convection is taken into account: differences are smaller than 29%. • When radiative heat transfer is included: differences are smaller than 9%. • Sensitivity study shows that convection coefficient is not most important parameter

  1. CO$_2$ dissolution controlled by buoyancy driven shear dispersion in a background hydrological flow

    CERN Document Server

    Unwin, H Juliette T; Woods, Andrew W

    2015-01-01

    We present an analytical and numerical study of the long-time flow which controls the dissolution of a plume of CO$_2$ following injection into an anticline structure in a deep saline aquifer of finite vertical extent. Over times of tens to thousands of years, some of the CO$_2$ will dissolve into the underlying groundwater to produce a region of relatively dense, CO$_2$ saturated water directly below the plume of CO$_2$. Continued dissolution then requires the supply of CO$_2$ unsaturated aquifer water. This may be provided by a background hydrological flow or buoyancy driven flow caused by the density contrast between the CO$_2$ saturated and unsaturated water in the aquifer. At long times, the interaction of the cross-layer diffusive mixing with the buoyancy, leads to buoyancy driven shear dispersion of the CO$_2$. With a background hydrological flow, the upstream transport of dissolved CO$_2$ by this dispersion becomes balanced by the oncoming hydrological flow so that CO$_2$ rich water can only spread a ...

  2. Role of magnetic field strength and numerical resolution in simulations of the heat-flux driven buoyancy instability

    CERN Document Server

    Avara, Mark J; Bogdanović, Tamara

    2013-01-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channelled along field lines. This anisotropic heat conduction profoundly changes the stability of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux driven buoyancy instability (HBI), relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of 2-d simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction thereby shutting off the heat flux. However, we find that simulations which begin with intermediate initial field strengths have a qualitatively different beh...

  3. Numerical Investigation of Heat Transfer with Thermal Radiation in an Enclosure in Case of Buoyancy Driven Flow

    Directory of Open Access Journals (Sweden)

    Christoph Hochenauer

    2014-08-01

    Full Text Available The purpose of this paper is to investigate state of the art approaches and their accuracy to compute heat transfer including radiation inside a closed cavity whereas buoyancy is the only driving force. This research is the first step of an all-embracing study dealing with underhood airflow and thermal management of vehicles. Computational fluid dynamic (CFD simulation results of buoyancy driven flow inside a simplified engine compartment are compared to experimentally gained values. The test rig imitates idle condition without any working fan. Thus, the airflow is only driven by natural convection. A conventional method used for these applications is to compute the convective heat transfer coefficient and air temperature using CFD and calculate the wall temperature separately by performing a thermal analysis. The final solution results from coupling two different software tools. In this paper thermal conditions inside the enclosure are computed by the use of CFD only. The impact of the turbulence model as well as the results of various radiation models are analyzed and compared to the experimental data.

  4. Design and Energy Performance of a Buoyancy Driven Exterior Shading Device for Building Application in Taiwan

    Directory of Open Access Journals (Sweden)

    Kuo-Tsang Huang

    2015-03-01

    Full Text Available Traditional dynamic shading systems are usually driven by electricity for continuously controlling the angle of blind slats to minimize the indoor solar heat gain over times. This paper proposed a novel design of buoyancy driven dynamic shading system, using only minimum amount of electricity. The energy performance and the improved thermal comfort induced by the system were simulated by EnergyPlus for a typical office space under the context of Taiwanese climate. The design processes are composed of three parts: an alterable angle of blind slats that raises the energy performance to be suitable for every orientation, the buoyancy driven transmission mechanism, and a humanized controller that ensures its convenience. The environmental friendly design aspects and control mechanisms to fulfill demands for manufacturing, assembling, maintenance and recycling, etc., were also presented as readily for building application. Besides, the effectiveness of cooling energy saving and thermal comfort enhancing were compared against the cases without exterior blinds and with traditional fixed blinds installed. The results show that the cooling energy is drastically reduced over times and the blind system is effectively enhancing the indoor thermal comfort.

  5. Studies of heat transfer having relevance to nuclear reactor containment cooling by buoyancy-driven air flow

    International Nuclear Information System (INIS)

    Two separate effects experiments concerned with buoyancy-influenced convective heat transfer in vertical passages which have relevance to the problem of nuclear reactor containment cooling by means of buoyancy-driven airflow are described. A feature of each is that local values of heat transfer coefficient are determined on surfaces maintained at uniform temperature. Experimental results are presented which highlight the need for buoyancy-induced impairment of turbulent convective heat transfer to be accounted for in the design of such passive cooling systems. A strategy is presented for predicting the heat removal by combined convective and radiative heat transfer from a full scale nuclear reactor containment shell using such experimental results

  6. A study of the effects of macrosegregation and buoyancy-driven flow in binary mixture solidification

    Science.gov (United States)

    Sinha, S. K.; Sundararajan, T.; Garg, V. K.

    1993-01-01

    A generalized anisotropic porous medium approach is developed for modelling the flow, heat and mass transport processes during binary mixture solidification. Transient predictions are obtained using FEM, coupled with an implicit time-marching scheme, for solidification inside a two-dimensional rectangular enclosure. A parametric study focusing attention on the effects of solutal buoyancy and thermal buoyancy is presented. It is observed that three parameters, namely the thermal Rayleigh number, the solutal Rayleigh number, and the relative density change parameter, significantly alter the flow fields in the liquid and the mushy regions. Depending upon the nature of these flow fields, the solute enrichment caused by macrosegregation may occur in the top or the bottom region of the enclosure.

  7. Evaluation of buoyancy-driven ventilation in respect of exergy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [College of Civil Engineering, Hunan University, Changsha 410082 (China); College of Civil Engineering, Zhejiang Sci-Tech University, Hangzhou (China); Li, Nianping [College of Civil Engineering, Hunan University, Changsha 410082 (China)

    2010-02-15

    Our work aimed to analyze and evaluate the buoyancy-driven ventilation based on the exergy analysis. We took the exergy load as a desired output for this consumer system and used the functional exergy efficiency to evaluate the ventilation performance. Through the numerical case studies for a high-rise building with a tall atrium, we found that the results from the energy and exergy analysis are quite different from each other, but the latter reveals the real essence of energy utilization in ventilation systems. The results showed that the exergy efficiency of the buoyancy-driven ventilation system is very poor, only 16.9% of the exergy input is effectively utilized and the exergy destruction counts for 83.1% of the total input. However, the exergy efficiency of the mechanical ventilation system is 100% because the input shaft work is entirely utilized to undertake the exergy load; no extra exergy losses are produced. We also analyzed the relationships between the temperature difference and the exergy efficiency. Furthermore, we found that the total radiation-to-exergy efficiency is 3.5 and 15% for ventilation systems equipped with solar collectors and solar cells respectively, it is concluded preliminarily that the latter is more efficient to utilize solar energy to create ventilation. (author)

  8. Signatures of downgoing plate-buoyancy driven subduction in Cenozoic plate motions

    Science.gov (United States)

    Goes, S.; Capitanio, F. A.; Morra, G.; Seton, M.; Giardini, D.

    2011-01-01

    The dynamics of plate tectonics are strongly related to those of subduction. To obtain a better understanding of the driving forces of subduction, we compare relations between Cenozoic subduction motions at major trenches with the trends expected for the simplest form of subduction. i.e., free subduction, driven solely by the buoyancy of the downgoing plate. In models with an Earth-like plate stiffness (corresponding to a plate-mantle viscosity contrast of 2-3 orders of magnitude), free plates subduct by a combination of downgoing plate motion and trench retreat, while the slab is draped and folded on top of the upper-lower mantle viscosity transition. In these models, the slabs sink according to their Stokes' velocities. Observed downgoing-plate motion-plate-age trends are compatible with >80% of the Cenozoic slabs sinking according to their upper-mantle Stokes' velocity, i.e., subducting-plate motion is largely driven by upper-mantle slab pull. Only in a few cases, do young plates move at velocities that require a higher driving force (possibly supplied by lower-mantle-slab induced flow). About 80% of the Cenozoic trenches retreat, with retreat accounting for about 10% of the total convergence. The few advancing trench sections are likely affected by regional factors. The low trench motions are likely encouraged by low asthenospheric drag (equivalent to that for effective asthenospheric viscosity 2-3 orders below the upper-mantle average), and low lithospheric strength (effective bending viscosity ˜2 orders of magnitude above the upper-mantle average). Total Cenozoic trench motions are often very oblique to the direction of downgoing-plate motion (mean angle of 73°). This indicates that other forces than slab buoyancy exert the main control on upper-plate/trench motion. However, the component of trench retreat in the direction of downgoing plate motion (≈ slab pull) correlates with downgoing-plate motion, and this component of retreat generally does not

  9. Experiments on buoyancy-driven crack around the brittle-ductile transition

    Science.gov (United States)

    Sumita, Ikuro; Ota, Yukari

    2011-04-01

    We report the results of laboratory experiments exploring how a buoyancy-driven liquid-filled crack migrates within a viscoelastic medium whose rheology is around the brittle-ductile transition. To model such medium, we use a low concentration agar, which has a small yield stress and a large yield strain (deformation) when it fractures. We find that around the transition, the fluid migrates as a hybrid of a diapir (head) and a dyke (tail). Here the diapir is a bulged crack in which fracturing occurs at its tip and closes at its tail to form a dyke. A small amount of fluid is left along its trail and the fluid decelerates with time. We study how the shape and velocity of a constant volume fluid change as two control parameters are varied; the agar concentration ( C) and the density difference Δρ between the fluid and the agar. Under a fixed Δρ, as C decreases the medium becomes ductile, and the trajectory and shape of the fluid changes from a linearly migrating dyke to a meandering or a bifurcating dyke, and finally to a diapir-dyke hybrid. In this transition, the shape of the crack tip viewed from above, changes from blade-like to a cusped-ellipse. A similar transition is also observed when Δρ increases under a fixed C, which can be interpreted using a force balance between the buoyancy and the yield stress. Our experiments indicate that cracks around the brittle-ductile transition deviates from those in an elastic medium by several ways, such as the relaxation of the crack bulge, slower deceleration rate, and velocity becoming insensitive to medium rheology. Our experiments suggest that the fluid migrates as a diapir-dyke hybrid around the brittle-ductile transition and that fluid migration of various styles can coexist at the same depth, if they have different buoyancy.

  10. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  11. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    International Nuclear Information System (INIS)

    Highlights: → 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. → Description of velocity and temperature first and second moments with changing in the Rayleigh number. → Strong decoupling between the turbulent kinetic energy and the dissipation rate. → Particle recirculation sustained by the vertical hot boundary layer. → Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 109, 1010) and three values of the particle diameter (dp = 15, 25, 35 [μm]). We consider the cavity filled with air and particles with the same density of water ρw = 1000 [kg/m3] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift and thermophoretic forces

  12. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland); Dehbi, A., E-mail: abdel.dehbi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Leriche, E., E-mail: emmanuel.leriche@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne, LMFA-UJM St-Etienne, CNRS UMR 5509 Universite de St-Etienne, 23 rue Docteur Paul Michelon, F-42023 Saint-Etienne (France); Soldati, A., E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, IT-33100 Udine (Italy); Deville, M.O., E-mail: michel.deville@epfl.ch [Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland)

    2011-10-15

    Highlights: > 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. > Description of velocity and temperature first and second moments with changing in the Rayleigh number. > Strong decoupling between the turbulent kinetic energy and the dissipation rate. > Particle recirculation sustained by the vertical hot boundary layer. > Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10{sup 9}, 10{sup 10}) and three values of the particle diameter (d{sub p} = 15, 25, 35 [{mu}m]). We consider the cavity filled with air and particles with the same density of water {rho}{sub w} = 1000 [kg/m{sup 3}] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift

  13. Effects of buoyancy-driven flow and thermal boundary conditions on physical vapor transport

    Science.gov (United States)

    Nadarajah, Arunan; Rosenberger, Franz; Alexander, J. I. D.

    1992-01-01

    A 2D numerical model was developed in order to ascertain if reduced gravity conditions are beneficial to physical vapor transport (PVT) and to determine its tolerance limits to residual accelerations. This was solved using the PHOENICS finite-volume code. Reduction of gravitational accelerations to less than 0.1 g0 was found to be sufficient to suppress buoyancy-driven convection to an extent that diffusion was the dominant transport mode, whence a greater uniformity in the growth rate could be obtained. It is shown that a uniform temperature gradient on the ampoule walls causes the vapor to be supersaturated throughout the ampoule, potentially resulting in undesirable nucleation at the walls. A 'hump' in the wall temperature profile can be used to avoid this. The prevailing transport conditions determine the size of the hump needed.

  14. Buoyancy-driven instabilities around miscible A+B→C reaction fronts: a general classification.

    Science.gov (United States)

    Trevelyan, P M J; Almarcha, C; De Wit, A

    2015-02-01

    Upon contact between miscible solutions of reactants A and B along a horizontal interface in the gravity field, various buoyancy-driven instabilities can develop when an A+B→C reaction takes place and the density varies with the concentrations of the various chemicals. To classify the possible convective instability scenarios, we analyze the spatial dependence of the large time asymptotic density profiles as a function of the key parameters of the problem, which are the ratios of diffusion coefficients and of solutal expansion coefficients of species A, B, and C. We find that 62 different density profiles can develop in the reactive problem, whereas only 6 of them can be obtained in the nonreactive one. PMID:25768591

  15. Buoyancy-driven ventilation of hydrogen from buildings: Laboratory test and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Barley, C.D.; Gawlik, K. [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

    2009-07-15

    Hydrogen gas leaking from a hydrogen-powered vehicle in a residential garage may form a flammable mixture with air. Passive, buoyancy-driven ventilation is one approach to limiting the concentration to a safe level. We explored the relationship between leak rate, ventilation design, and hydrogen concentration through laboratory testing, an algebraic analysis, and CFD modeling. We used helium to test slow, steady, low-velocity leaks in a full-scale test room under nearly isothermal, steady conditions, and we report the results in sufficient detail that other modelers can use them. The results show the importance and variability of stratification. Our algebraic and CFD models agree very well with the experimental results. We describe our CFD approach in sufficient detail for use by others. We tested under nearly isothermal conditions, but also discuss indoor-outdoor temperature difference as an important risk factor. Information about realistic leakage scenarios is needed to apply these results as safety recommendations. (author)

  16. Dispersion enhancement and damping by buoyancy driven flows in 2D networks of capillaries

    CERN Document Server

    D'Angelo, Maria Veronica; Allain, Catherine; Rosen, Marta; Hulin, Jean-Pierre

    2008-01-01

    The influence of a small relative density difference on the displacement of two miscible liquids is studied experimentally in transparent 2D networks of micro channels. Both stable displacements in which the denser fluid enters at the bottom of the cell and displaces the lighter one and unstable displacements in which the lighter fluid is injected at the bottom and displaces the denser one are realized. Except at the lowest mean flow velocity U, the average $C(x,t)$ of the relative concentration satisfies a convection-dispersion equation. The dispersion coefficient is studied as function of the relative magnitude of fluid velocity and of the velocity of buoyancy driven fluid motion. A model is suggested and its applicability to previous results obtained in 3D media is discussed.

  17. Experimental Simulation of Buoyancy-Driven Vortical Flow in Jupiter Great Red Spot

    Science.gov (United States)

    Makhmalbaf, Hady; Liu, Tianshu; Merati, Parviz

    2015-11-01

    This new experimental study on Geophysical Buoyancy-Driven Vortical Flow presents a new approach to model the Great Red Spot (GRS) that explains some feature of this phenomena that other classic approaches such as shallow layer model and deep layer model do not. The low velocity region at the center and the counter rotating system at the core that recently were observed by high resolution image processing methods, have never been justified before. This setup generates flow structures similar to the GRS's in the test zone and compares the results and suggests that a counter rotating flow structure at the lower altitude is the source of the GRS formation. PhD candidate/research assistant Dept of Mechanical and Aeronautical Engineering Western Michigan University Kalamazoo MI 49008-5343 Room G-106 Fluids Lab T:(269)348-6229 F:(269)276-3421.

  18. The Nonlinear Evolution of Instabilities Driven by Magnetic Buoyancy: A New Mechanism for the Formation of Coherent Magnetic Structures

    CERN Document Server

    Kersale, Evy; Tobias, Steven M

    2007-01-01

    Motivated by the problem of the formation of active regions from a deep-seated solar magnetic field, we consider the nonlinear three-dimensional evolution of magnetic buoyancy instabilities resulting from a smoothly stratified horizontal magnetic field. By exploring the case for which the instability is continuously driven we have identified a new mechanism for the formation of concentrations of magnetic flux.

  19. ROLE OF MAGNETIC FIELD STRENGTH AND NUMERICAL RESOLUTION IN SIMULATIONS OF THE HEAT-FLUX-DRIVEN BUOYANCY INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Avara, Mark J.; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20740 (United States); Bogdanovic, Tamara, E-mail: mavara@astro.umd.edu, E-mail: chris@astro.umd.edu, E-mail: tamarab@gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Tech, Atlanta, GA 30332 (United States)

    2013-08-20

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.

  20. Role of Magnetic Field Strength and Numerical Resolution in Simulations of the Heat-flux-driven Buoyancy Instability

    Science.gov (United States)

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanović, Tamara

    2013-08-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.

  1. Nonlinear Simulations of the Heat Flux Driven Buoyancy Instability and its Implications for Galaxy Clusters

    CERN Document Server

    Parrish, Ian J

    2007-01-01

    In low collisionality plasmas heat flows almost exclusively along magnetic field lines, and the condition for stability to convection is modified from the standard Schwarzschild criterion. We present local two and three-dimensional simulations of a new heat flux driven buoyancy instability (the HBI) that occurs when the temperature in a plasma decreases in the direction of gravity. We find that the HBI drives a convective dynamo that amplifies an initially weak magnetic field by a factor of ~20. In simulations that begin with the magnetic field aligned with the temperature gradient, the HBI saturates by rearranging the magnetic field lines to be almost purely perpendicular to the initial temperature gradient. This magnetic field reorientation results in a net heat flux through the plasma that is less than 1% of the field-free (Spitzer) value. We show that the HBI is likely to be present in the cool cores of clusters of galaxies between ~0.1-100 kpc, where the temperature increases outwards. The saturated stat...

  2. Surface tension effects on the behaviour of a rising bubble driven by buoyancy force

    International Nuclear Information System (INIS)

    In the inviscid and incompressible fluid flow regime, surface tension effects on the behaviour of an initially spherical buoyancy-driven bubble rising in an infinite and initially stationary liquid are investigated numerically by a volume of fluid (VOF) method. The ratio of the gas density to the liquid density is 0.001, which is close to the case of an air bubble rising in water. It is found by numerical experiment that there exist four critical Weber numbers We1, We2, We3 and We4, which distinguish five different kinds of bubble behaviours. It is also found that when 1 ≤ We 2, the bubble will finally reach a steady shape, and in this case after it rises acceleratedly for a moment, it will rise with an almost constant speed, and the lower the Weber number is, the higher the speed is. When We > We2, the bubble will not reach a steady shape, and in this case it will not rise with a constant speed. The mechanism of the above phenomena has been analysed theoretically and numerically. (condensed matter: structure, thermal and mechanical properties)

  3. Stereo Imaging Velocimetry of Mixing Driven by Buoyancy Induced Flow Fields

    Science.gov (United States)

    Duval, W. M. B.; Jacqmin, D.; Bomani, B. M.; Alexander, I. J.; Kassemi, M.; Batur, C.; Tryggvason, B. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2000-01-01

    Mixing of two fluids generated by steady and particularly g-jitter acceleration is fundamental towards the understanding of transport phenomena in a microgravity environment. We propose to carry out flight and ground-based experiments to quantify flow fields due to g-jitter type of accelerations using Stereo Imaging Velocimetry (SIV), and measure the concentration field using laser fluorescence. The understanding of the effects of g-jitter on transport phenomena is of great practical interest to the microgravity community and impacts the design of experiments for the Space Shuttle as well as the International Space Station. The aim of our proposed research is to provide quantitative data to the community on the effects of g-jitter on flow fields due to mixing induced by buoyancy forces. The fundamental phenomenon of mixing occurs in a broad range of materials processing encompassing the growth of opto-electronic materials and semiconductors, (by directional freezing and physical vapor transport), to solution and protein crystal growth. In materials processing of these systems, crystal homogeneity, which is affected by the solutal field distribution, is one of the major issues. The understanding of fluid mixing driven by buoyancy forces, besides its importance as a topic in fundamental science, can contribute towards the understanding of how solutal fields behave under various body forces. The body forces of interest are steady acceleration and g-jitter acceleration as in a Space Shuttle environment or the International Space Station. Since control of the body force is important, the flight experiment will be carried out on a tunable microgravity vibration isolation mount, which will permit us to precisely input the desired forcing function to simulate a range of body forces. To that end, we propose to design a flight experiment that can only be carried out under microgravity conditions to fully exploit the effects of various body forces on fluid mixing. Recent

  4. Experimental study of buoyancy driven natural ventilation through horizontal openings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Li, Zhigang

    2007-01-01

    , respectively. The bidirectional air flow rate was measured using constant injection tracer gas technique. Smoke visualizations showed that the air flow patterns are highly transient, unstable and complex, and that air flow rates oscillate with time. Correlations between the Froude number Fr and the L/D ratio...

  5. Characteristics of Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Li, Zhigang

    transient, unstable and complex, and the air flow rates oscillate with time. Correlations between the Froude number Fr and the opening ratio L/D are obtained, which is reasonable agreement with Epstein's formula derived from brine-water measurements, but the obtained Fr values show considerable deviations...... for a range of L/D ratios. Thus, the developed formulas are established. Meanwhile, the correlation  ratios. Thus, the developed formulas are established. Meanwhile, the correlation between the Archimedes number Ar and the opening ratio L / A are also determined. For the case of one horizontal opening...

  6. Local strong solutions of a parabolic system related to the Boussinesq approximation for buoyancy-driven flow with viscous heating

    OpenAIRE

    Díaz Díaz, Jesús Ildefonso; Rakotoson, J. M.; Schmidt, P G

    2008-01-01

    We propose a modification of the classical Navier-Stokes-Boussinesq system of equations, which governs buoyancy-driven flows of viscous, incompressible fluids. This modification is motivated by unresolved issues regarding the global solvability of the classical system in situations where viscous heating cannot be neglected. A simple model problem leads to a coupled system of two parabolic equations with a source term involving the square of the gradient of one of the unknowns. In the present ...

  7. Evaluation of buoyancy-driven ventilation in atrium buildings using computational fluid dynamics and reduced-scale air model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei-Chun; Lin, Hsien-Te [Department of Architecture, National Cheng Kung University, No. 1 University Road, Tainan City 70101 (China); Chou, Jung-Hua [Department of Engineering Science, National Cheng Kung University (China)

    2009-09-15

    This research focuses on developing a reliable methodology for predicting the performance of buoyancy-driven ventilation in atrium buildings during the design stage using both computational fluid dynamics (CFD) and scale model tests. The results show several features. First, the agreement between CFD simulation and measurement results in the heated zone is better with rng k-{epsilon} and zero-equation turbulent schemes; whereas, in the atrium space, the laminar and zero-equation CFD models provide better results. Second, the external ambient temperature has a larger effect on the temperature distribution in the atrium space than the thermal load inside the building. Third, the position of the stack openings that create a direct ventilation path can improve the internal thermal environment. The size of the stack openings also affects the temperature distribution in the atrium space. Lastly, due to the small temperature difference in hot and humid climates, a buoyancy-only ventilation strategy is not very effective in such a situation. That is, when a low-rise atrium building is situated in a hot and humid environment, additional efforts such as wind-driven ventilation, wind-buoyancy ventilation or mechanically driven ventilation will be necessary to achieve the thermal comfort desired. (author)

  8. Role of Magnetic Field Strength and Numerical Resolution in Simulations of the Heat-flux Driven Buoyancy Instability

    Science.gov (United States)

    Avara, Mark J.; Reynolds, C. S.; Bogdanovic, T.

    2013-04-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the stability of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. We employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux driven buoyancy instability (HBI), relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of 2-d simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction thereby shutting off the heat flux. However, we find that simulations which begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10-25% of the Spitzer value. We explain the presence and persistence of these filaments in terms of the linear stability of the HBI and the total energetics of the plasma. A complimentary 3-d simulation of high resolution confirms the presence of sustained filaments and shows they can be formed in the ideal MHD regime, even without anisotropic viscosity, previously thought to be necessary. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models and a better understanding of conduction in the ICM, our local study proves that systems dominated by HBI do not necessarily quench the conductive heat flux.

  9. Buoyancy-driven convection and mixing in magma chambers - the case of Phlegraean Fields caldera

    Science.gov (United States)

    Montagna, Chiara P.; Longo, Antonella; Bagagli, Matteo; Papale, Paolo

    2016-04-01

    Ascent of primitive magmas from depth into shallow, partially degassed reservoirs is commonly assumed to be a viable eruption trigger. At Phlegraean Fields (Southern Italy), processes of convection and mixing have been identified as taking an active part both in pre- and syn-eruptive stages in many eruptions of different size. We performed numerical simulations of magma chamber replenishment referring to an archetypal case whereby a shallow, small magma chamber containing degassed phonolite is invaded by volatile-rich shoshonitic magma coming from a deeper, larger reservoir. The system evolution is solely driven by buoyancy, as the magma entering the shallower chamber is less dense than the degassed, resident phonolite. The evolution in space and time of physical quantities such as pressure, gas content and density is highly heterogeneous; nonetheless, an overall decreasing exponential trend in time can be observed and characterizes the whole process. The same exponentially decreasing trend can be observed in the amplitude of the ground deformation signals (seismicity over the whole frequency spectrum) calculated from the results of the magmatic dynamics. Exponential decay in the efficiency of the mixing process has been also observed experimentally, albeit on much smaller length and time scales (Morgavi et al., Contrib. Min. Petr. 2013). Depending on the initial and boundary conditions explored, such as chamber geometry or density contrast, the time constant thus the duration of the process can vary. Independently, the evolution of pressure in the magmatic system also depends on the initial and boundary conditions, leading either to eruption-favourable conditions or not. Relating the time scales for convective processes to be effective with their outcomes in terms of stresses at the chamber boundaries can substantially improve our ability to forecast eruptions at volcanoes worldwide.

  10. Buoyancy-driven detachment of a wall-bound pendant drop: interface shape at pinchoff and nonequilibrium surface tension.

    Science.gov (United States)

    Lamorgese, A; Mauri, R

    2015-09-01

    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90^{∘}, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000)JFLSA70022-112010.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment. PMID:26465476

  11. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    International Nuclear Information System (INIS)

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  12. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H., E-mail: hlh@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huo, R.; Yang, D. [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  13. Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow

    International Nuclear Information System (INIS)

    A fundamental study is reported of heat transfer from a vertical heated tube to air which is induced naturally upwards through it by the action of buoyancy. Measurements of local heat transfer coefficient were made using a specially designed computer-controlled power supply and measurement system for conditions of uniform wall temperature and uniform wall heat flux. The effectiveness of heat transfer proved to be much lower than for conditions of forced convection. It was found that the results could be correlated satisfactorily when presented in terms of dimensionless parameters similar to those used for free convection heat transfer from vertical surfaces provided that the heat transfer coefficients were evaluated using local fluid bulk temperature calculated utilising the measured values of flow rate induced through the system. Additional experiments were performed' with pumped flow. These covered the entire mixed convection region. It was found that the data for naturally-induced flow mapped onto the pumped flow data when presented in terms of Nusselt number ratio (mixed to forced) and buoyancy parameter. Computational simulations of the experiments were performed using an advanced computer code which incorporated a buoyancy-influenced, variable property, developing wall shear flow formulation and a low Reynolds number k-ε turbulence model. These reproduced observed behaviour quite well. (author)

  14. BUOYANCY INSTABILITY IN THE NATURAL CONVECTION BOUNDARY LAYER AROUND A VERTICAL HEATED FLAT PLATE

    Institute of Scientific and Technical Information of China (English)

    颜大椿; 张汉勋

    2002-01-01

    A systematic research on the buoyancy instability in the natural convection boundary layer was conducted, including the basic characteristics such as its spectral components, wave length and velocity, the location of its critical layer,and amplitude distributions of the triple independent eigenmodes with the linear instability theory, the growth rates of its temperature and velocity fluctuations and the corresponding neutral curves for the buoyancy eigenmode were also obtained.Results indicated that the neutral curve of the velocity fluctuation had a nose shape consistent with that obtained in the numerical calculation, but for the temperature fluctuation, a ring-like region could be measured at a lower Grashof number before the nose-shaped main portion of the neutral curve.

  15. Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport

    NARCIS (Netherlands)

    Rappoldt, C; Pieters, GJJM; Adema, EB; Baaijens, GJ; Grootjans, AP; van Duijn, CJ; Pieters, Gert-Jan J.M.; Adema, Erwin B.; Baaijens, Gerrit J.; Grootjans, Ab P.; Duijn, Cornelis J. van; Jury, William A.

    2003-01-01

    Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surfa

  16. Buoyancy-driven instability in a vertical cylinder: Binary fluids with Soret effect. I - General theory and stationary stability results

    Science.gov (United States)

    Hardin, G. R.; Sani, R. L.; Henry, D.; Roux, B.

    1990-01-01

    The buoyancy-driven instability of a monocomponent or binary fluid completely contained in a vertical circular cylinder is investigated, including the influence of the Soret effect for the binary mixture. The Boussinesq approximation is used, and the resulting linear stability problem is solved using a Galerkin technique. The analysis considers fluid mixtures ranging from gases to liquid metals. The flow structure is found to depend strongly on both the cylinder aspect ratio and the magnitude of the Soret effect. The predicted stability limits are shown to agree closely with experimental observations.

  17. Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, M., E-mail: manisankarir@yahoo.co [Department of Mathematics, Kyungpook National University, 1370 Sangyeok-Dong, Buk-Gu, Daegu 702-701 (Korea, Republic of); Department of Mathematics, East Point College of Engineering and Technology, Bangalore 560 049 (India); Venkatachalappa, M. [UGC Centre for Advanced Studies in Fluid Mechanics, Department of Mathematics, Bangalore University, Bangalore 560 001 (India); Do, Younghae [Department of Mathematics, Kyungpook National University, 1370 Sangyeok-Dong, Buk-Gu, Daegu 702-701 (Korea, Republic of)

    2011-04-15

    The main objective of this article is to study the effect of magnetic field on the combined buoyancy and surface tension driven convection in a cylindrical annular enclosure. In this study, the top surface of the annulus is assumed to be free, and the bottom wall is insulated, whereas the inner and the outer cylindrical walls are kept at hot and cold temperatures respectively. The governing equations of the flow system are numerically solved using an implicit finite difference technique. The numerical results for various governing parameters of the problem are discussed in terms of the streamlines, isotherms, Nusselt number and velocity profiles in the annuli. Our results reveal that, in tall cavities, the axial magnetic field suppresses the surface tension flow more effectively than the radial magnetic field, whereas, the radial magnetic field is found to be better for suppressing the buoyancy driven flow compared to axial magnetic field. However, the axial magnetic field is found to be effective in suppressing both the flows in shallow cavities. From the results, we also found that the surface tension effect is predominant in shallow cavities compared to the square and tall annulus. Further, the heat transfer rate increases with radii ratio, but decreases with the Hartmann number.

  18. Influence of rheology on buoyancy driven instabilities of miscible displacements in 2D micromodels

    International Nuclear Information System (INIS)

    The stability of miscible displacements of Newtonian and shear-thinning fluids of slightly different densities (Δρ/ρ ∼ 3x 10-4) with a mean flow velocity U is investigated in a 2D transparent network of channels (average width = 0.33 mm). Concentration maps providing information at both the global and local scale are obtained through optical absorption measurements and compared in gravitationally stable and unstable vertical flow configurations; the influence of buoyant flows of typical velocity Ug is characterized by the gravity number Ng = Ug/|U|. For Ng d = D/U. For the Newtonian water-glycerol solution, ld is only the same in the stable and unstable configurations for |Ng| g d is increased by buoyancy in the unstable configuration and increasingly large front structures are observed on the concentration maps; for Ng > 0.2, front spreading is not diffusive any more. In the stable configuration, in contrast, the front is flattened by buoyancy for Ng d reaches values of the order of the length of individual channels. For the shear thinning water-polymer solution, both the concentration maps and the value of ld are the same in the stable and unstable configurations over the full range of U values investigated: this stabilization is explained by their high effective viscosity at low shear rates keeping Ng below the instability threshold even at the lowest velocities.

  19. Weakly nonlinear model with exact coefficients for the fluttering and spiraling motion of buoyancy-driven bodies.

    Science.gov (United States)

    Tchoufag, Joël; Fabre, David; Magnaudet, Jacques

    2015-09-11

    Gravity- or buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Here, using a weakly nonlinear expansion of the full set of governing equations, we present a new generic reduced-order model based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (e.g., fluttering or spiraling) and characteristics (e.g., frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles. PMID:26406832

  20. Buoyancy-driven inflow to a relic cold core: the gas belt in radio galaxy 3C 386

    CERN Document Server

    Duffy, R T; Birkinshaw, M; Kraft, R P

    2016-01-01

    We report measurements from an XMM-Newton observation of the low-excitation radio galaxy 3C 386. The study focusses on an X-ray-emitting gas belt, which lies between and orthogonal to the radio lobes of 3C 386 and has a mean temperature of $0.94\\pm0.05$ keV, cooler than the extended group atmosphere. The gas in the belt shows temperature structure with material closer to the surrounding medium being hotter than gas closer to the host galaxy. We suggest that this gas belt involves a `buoyancy-driven inflow' of part of the group-gas atmosphere where the buoyant rise of the radio lobes through the ambient medium has directed an inflow towards the relic cold core of the group. Inverse-Compton emission from the radio lobes is detected at a level consistent with a slight suppression of the magnetic field below the equipartition value.

  1. Buoyancy-driven inflow to a relic cold core: the gas belt in radio galaxy 3C 386

    Science.gov (United States)

    Duffy, R. T.; Worrall, D. M.; Birkinshaw, M.; Kraft, R. P.

    2016-07-01

    We report measurements from an XMM-Newton observation of the low-excitation radio galaxy 3C 386. The study focusses on an X-ray-emitting gas belt, which lies between and orthogonal to the radio lobes of 3C 386 and has a mean temperature of 0.94 ± 0.05 keV, cooler than the extended group atmosphere. The gas in the belt shows temperature structure with material closer to the surrounding medium being hotter than gas closer to the host galaxy. We suggest that this gas belt involves a `buoyancy-driven inflow' of part of the group-gas atmosphere where the buoyant rise of the radio lobes through the ambient medium has directed an inflow towards the relic cold core of the group. Inverse-Compton emission from the radio lobes is detected at a level consistent with a slight suppression of the magnetic field below the equipartition value.

  2. Large-scale simulations of buoyancy-driven turbulent nuclear burning

    International Nuclear Information System (INIS)

    An critical uncertainty in modeling thermonuclear supernovae is the degree of enhancement of the burning rate by turbulence during the subsonic burning (deflagration) phase. As turbulent combustion in the laboratory is still an active area of research, this remains a challenging problem. A unique feature of turbulent combustion in supernovae is that the driving of the turbulence arises from the strong buoyancy of the burned material. We discuss the large-scale fully three dimensional studies under way. These studies have the goals of characterizing the essential length scales of flame surface structure and thereby developing specific requirements that models of small-scale structure must meet. We discuss some preliminary results of our study concerning the scale-dependence of flame surface structure

  3. Large-scale simulations of buoyancy-driven turbulent nuclear burning.

    Energy Technology Data Exchange (ETDEWEB)

    Townsley, D. M.; Bair, R. A.; Dubey, A.; Fisher, R. T.; Hearn, N. C.; Lamb, D. Q.; Riley, K. M. (LCF); (Univ. of Chicago)

    2009-01-01

    An critical uncertainty in modeling thermonuclear supernovae is the degree of enhancement of the burning rate by turbulence during the subsonic burning (deflagration) phase. As turbulent combustion in the laboratory is still an active area of research, this remains a challenging problem. A unique feature of turbulent combustion in supernovae is that the driving of the turbulence arises from the strong buoyancy of the burned material. We discuss the large-scale fully three dimensional studies under way. These studies have the goals of characterizing the essential length scales of flame surface structure and thereby developing specific requirements that models of small-scale structure must meet. We discuss some preliminary results of our study concerning the scale-dependence of flame surface structure.

  4. Influence of rheology on buoyancy driven instabilities of miscible displacements in 2D micromodels

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, M V; Rosen, M [University Buenos Aires, CONICET. Grupo de Medios Porosos, Facultad de IngenierIa, Paseo Colon 850, 1063 Buenos-Aires (Argentina); Auradou, H; Hulin, J P, E-mail: vdangelo@fi.uba.a, E-mail: auradou@fast.u-psud.f [University Pierre et Marie Curie-Paris 6, University Paris-Sud, CNRS. Lab. FAST, Bat 502, Campus Universitaire, F-91405 Orsay (France)

    2009-05-01

    The stability of miscible displacements of Newtonian and shear-thinning fluids of slightly different densities (DELTArho/rho approx 3x 10{sup -4}) with a mean flow velocity U is investigated in a 2D transparent network of channels (average width = 0.33 mm). Concentration maps providing information at both the global and local scale are obtained through optical absorption measurements and compared in gravitationally stable and unstable vertical flow configurations; the influence of buoyant flows of typical velocity U{sub g} is characterized by the gravity number N{sub g} = U{sub g}/|U|. For N{sub g} < 0.2, the spreading of the mean relative concentration profile is diffusive for both types of rheologies and characterized by a single dispersivity value l{sub d} = D/U. For the Newtonian water-glycerol solution, l{sub d} is only the same in the stable and unstable configurations for |N{sub g}| < 0.01. For 0.01 < N{sub g} < 0.2, l{sub d} is increased by buoyancy in the unstable configuration and increasingly large front structures are observed on the concentration maps; for N{sub g} > 0.2, front spreading is not diffusive any more. In the stable configuration, in contrast, the front is flattened by buoyancy for N{sub g} < -0.01 and l{sub d} reaches values of the order of the length of individual channels. For the shear thinning water-polymer solution, both the concentration maps and the value of l{sub d} are the same in the stable and unstable configurations over the full range of U values investigated: this stabilization is explained by their high effective viscosity at low shear rates keeping N{sub g} below the instability threshold even at the lowest velocities.

  5. Buoyancy driven flow of light gases in atmosphere compared to that of hot gases

    Energy Technology Data Exchange (ETDEWEB)

    Fardisi, S. [Mechanical and Manufacturing Engineering Department, University of Calgary, Calgary, T2N 1N4 (Canada); Karim, G.A., E-mail: karim@ucalgary.ca [Mechanical and Manufacturing Engineering Department, University of Calgary, Calgary, T2N 1N4 (Canada)

    2011-06-15

    The transient formation and subsequent dispersion of the plumes of a fixed mass of lighter than air gases emerging out of open cylindrical enclosures with negligible pressure difference was investigated using 3-D and 2-D CFD models. Subsequently, the dispersion into atmosphere of a similar amount of equally buoyant hot air was also considered. The structure and dynamics of the resulting thermally driven hot air plumes were compared to the corresponding characteristics of the mass-transfer driven isothermal plumes. Some cases were investigated in which the dispersing gases were both lighter than air and at a different temperature from that of the atmosphere. The similarities and differences of these double heat-mass-transfer driven problems with the other cases were discussed. It was shown that a criterion developed previously for judging the validity of the 2-D model relative to the more complex 3-D approach for mass-transfer driven problems could be equally applied for the thermally driven or double heat and mass-transfer driven plume flow characteristics.

  6. Dispersion and dissolution of a buoyancy driven gas plume in a layered permeable rock

    Science.gov (United States)

    Woods, Andrew W.; Norris, Simon

    2016-04-01

    Using a series of simplified models, we explore the controls on the migration, dispersion and eventual dissolution of a plume of hydrogen gas which may, in principle, rise under buoyancy through a layered permeable rock if released from a Geological Disposal Facility (GDF). We show that the presence of low permeability shale barriers causes the gas to spread laterally as it rises. Averaging over the length scale of the barriers, we use expressions for the Darcy velocity of the gas to describe the dispersion of a tracer and illustrate the effect with a new experiment using a baffled Hele-Shaw cell. While the plume is flowing, a large volume of gas may build up beneath the barriers. If the gas flux subsequently wanes, much of the gas will drain upward through the formation and spread on the upper impermeable boundary of the formation. However, a significant capillary-trapped wake of gas may develop beneath each barrier. Owing to the low solubility of hydrogen in water and assuming relatively slow groundwater flow rates, this trapped hydrogen may require a period of tens to hundreds of thousands of years to dissolve and form a cloud of hydrogen rich water. Although simplified, these models provide a framework to assess the possible travel times and pathways of such a gas plume.

  7. Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop

    Science.gov (United States)

    Lamorgese, A.; Mauri, R.

    2016-03-01

    We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.

  8. Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

    Directory of Open Access Journals (Sweden)

    Moshari Shahab

    2014-06-01

    Full Text Available With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

  9. Modeling the buoyancy-driven Black Sea Water outflow into the North Aegean Sea

    Directory of Open Access Journals (Sweden)

    Nikolaos Kokkos

    2016-04-01

    Full Text Available A three-dimensional numerical model was applied to simulate the Black Sea Water (BSW outflux and spreading over the North Aegean Sea, and its impact on circulation and stratification–mixing dynamics. Model results were validated against satellite-derived sea surface temperature and in-situ temperature and salinity profiles. Further, the model results were post-processed in terms of the potential energy anomaly, ϕ, analyzing the factors contributing to its change. It occurs that BSW contributes significantly on the Thracian Sea water column stratification, but its signal reduces in the rest of the North Aegean Sea. The BSW buoyancy flux contributed to the change of ϕ in the Thracian Sea by 1.23 × 10−3 W m−3 in the winter and 7.9 × 10−4 W m−3 in the summer, significantly higher than the corresponding solar heat flux contribution (1.41 × 10−5 W m−3 and 7.4 × 10−5 W m−3, respectively. Quantification of the ϕ-advective term crossing the north-western BSW branch (to the north of Lemnos Island, depicted a strong non-linear relation to the relative vorticity of Samothraki Anticyclone. Similar analysis for the south-western branch illustrated a relationship between the ϕ-advective term sign and the relative vorticity in the Sporades system. The ϕ-mixing term increases its significance under strong winds (>15 m s−1, tending to destroy surface meso-scale eddies.

  10. Investigation on the relative performance of various low-Reynolds number turbulence models for buoyancy-driven flow in a tall cavity

    Science.gov (United States)

    Rathore, Sushil Kumar; Das, Manab Kumar

    2016-03-01

    The present study deals with the numerical investigation of turbulent buoyancy driven flow in a differentially heated rectangular cavity with adiabatic horizontal walls. The aspect ratio of cavity is 5 and the Rayleigh number based on the cavity height is 4.56 × 1010. The computations have been carried out using the finite volume method on a staggered grid and SIMPLEC algorithm for pressure-velocity coupling. The low-Reynolds number k-ɛ model proposed by Yang and Shih (YS), low-Reynolds number k-ω model proposed by Wilcox, and k-ω shear stress transport (SST) model of Menter have been applied for turbulence closure. The performance comparison of different models have been carried out using the experimental, LES and various RANS results available in the literature. The computation of turbulent natural convection flow is numerically challenging due to complex flow involving laminar, transition and turbulent regions, coupling of velocity with the energy equation, and some other problems reported in literature e.g. grid dependency of solution, numerical stability problem, etc. The flux Richardson number is calculated to get an estimate of relative importance of buoyancy and shear force in different regions of flow. The shearing and swirling zones have been identified in the entire flow domain using the λ 2 criterion. Based on the comparison of mean flow, heat transfer and turbulence characteristics with the available results, it has been found that YS model performs better. The better performance obtained from YS model may be due to peculiarity of model that takes into account the Kolmogorov time scale near the wall and the conventional time scale (k/ɛ ) away from the wall.

  11. Buoyancy and Pressure Induced Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    Science.gov (United States)

    Jaluria, Yogesh; Tamm, Gunnar Olavi

    2014-11-01

    An experimental investigation was conducted to study buoyancy and pressure induced flow of hot gases in vertical shafts to model smoke propagation in elevator and ventilation shafts of high rise building fires. Various configurations were tested with regard to natural and forced ventilation imposed at the upper and lower surfaces of the vertical shaft. The aspect ratio was taken at a typical value of 6. From a lower vent, the inlet conditions for smoke and hot gases were varied in terms of the Reynolds and Grashof numbers. The forced ventilation at the upper or lower boundary was of the same order as the bulk shaft flow. Measurements were taken within the shaft to allow a detailed study of the steady state flow and thermal fields established for various shaft configurations and inlet conditions, from which optimal means for smoke alleviation in high rise building fires may be developed. Results indicated a wall plume as the primary transport mechanism for smoke propagating from the inlet towards the exhaust region. Recirculation and entrainment dominated at high inlet Grashof number flows, while increased inlet Reynolds numbers allowed greater mixing in the shaft. The development and stability of these flow patterns and their effects on the smoke behavior were assessed for several shaft configurations with different inlet conditions. The comparisons indicated that the fastest smoke removal and lowest overall shaft temperatures occur for a configuration with natural ventilation at the top surface and forced ventilation up from the shaft bottom.

  12. Buoyancy-Driven Radiative Unsteady Magnetohydrodynamic Heat Transfer over a Stretching Sheet with non-Uniform Heat Source/sink

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2016-01-01

    Full Text Available In the present study an unsteady mixed convection boundary layer flow of an electrically conduct- ing fluid over an stretching permeable sheet in the presence of transverse magnetic field, thermal radiation and non-uniform heat source/sink effects is investigated. The unsteadiness in the flow and temperature fields is due to the time-dependent nature of the stretching velocity and the surface temperature. Both opposing and assisting flows are considered. The dimensionless governing or- dinary non-linear differential equations are solved numerically by applying shooting method using Runge-Kutta-Fehlberg method. The effects of unsteadiness parameter, buoyancy parameter, thermal radiation, Eckert number, Prandtl number and non-uniform heat source/sink parameter on the flow and heat transfer characteristics are thoroughly examined. Comparisons of the present results with previously published results for the steady case are found to be excellent.

  13. Surface tension and buoyancy-driven flow in a non-isothermal liquid bridge

    Science.gov (United States)

    Zhang, Yiqiang; Alexander, J. I. D.

    1992-01-01

    The Navier-Stokes-Boussinesq equations governing the transport of momentum, mass and heat in a nonisothermal liquid bridge with a temperature-dependent surface tension are solved using a vorticity-stream-function formulation together with a nonorthogonal coordinate transformation. The equations are discretized using a pseudo-unsteady semi-implicit finite difference scheme and are solved by the ADI method. A Picard-type iteration is adopted which consists of inner and outer iterative processes. The outer iteration is used to update the shape of the free surface. Two schemes have been used for the outer iteration; both use the force balance normal to the free surface as the distinguished boundary condition. The first scheme involves successive approximation by the direct solution of the distinguished boundary condition. The second scheme uses the artificial force imbalance between the fluid pressure, viscous and capillary forces at the free surface which arises when the boundary condition for force balance normal to the surface is not satisfied. This artificial imbalance is then used to change the surface shape until the distinguished boundary condition is satisfied. These schemes have been used to examine a variety of model liquid bridge situations including purely thermocapillary-driven flow situations and mixed thermocapillary- and bouyancy-driven flow.

  14. The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid

    Science.gov (United States)

    Ohta, Mitsuhiro; Sussman, Mark

    2012-11-01

    The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid is computationally explored by way of 3d-axisymmetric computations. The Navier-Stokes equations for incompressible two-fluid flow are solved numerically in which the coupled level-set and volume-of-fluid method is used to simulate the deforming bubble/drop boundary and the interface jump conditions on the deforming boundary are enforced through a sharp interface numerical treatment. Dynamic, block structured adaptive grid refinement is employed in order to sufficiently resolve the thin skirts. Results on the sensitivity of the thickness of trailing bubble/drop skirts to the density ratio and viscosity ratio are reported. It is shown that both the density ratio (not the density difference) and the viscosity ratio effect the skirt thickness. Previous theory for predicting skirt thickness can be refined as a result of our calculations. It is also discovered that the formation of thin skirts for bubbles and drops have little effect on the rise velocity. In other words, the measured Re number for cases without skirt formation have almost the same values for Re as cases with a thin skirt.

  15. Particle fluid interactivity deteriorates buoyancy driven thermal transport in nanosuspensions : A multi component lattice Boltzmann approach

    CERN Document Server

    S, Savithiri; Pattamatta, Arvind; Das, Sarit K

    2015-01-01

    Severe contradictions exist between experimental observations and computational predictions regarding natural convective thermal transport in nanosuspensions. The approach treating nanosuspensions as homogeneous fluids in computations has been pin pointed as the major contributor to such contradictions. To fill the void, inter particle and particle fluid interactivities (slip mechanisms), in addition to effective thermophysical properties, have been incorporated within the present formulation. Through thorough scaling analysis, the dominant slip mechanisms have been identified. A Multi Component Lattice Boltzmann Model (MCLBM) approach has been proposed, wherein the suspension has been treated as a non homogeneous twin component mixture with the governing slip mechanisms incorporated. The computations based on the mathematical model can accurately predict and quantify natural convection thermal transport in nanosuspensions. The role of slip mechanisms such as Brownian diffusion, thermophoresis, drag, Saffman ...

  16. Second-law analysis for buoyancy-driven hydromagnetic couple stress fluid flow through a porous channel

    Science.gov (United States)

    Kareem, Semiu O.; Adesanya, Samuel O.; Vincent, Uchechukwu E.

    2016-08-01

    This paper examines the combined effects of the buoyancy force and of the magnetic field on the entropy generation rate in the flow of a couple stress fluid through a porous vertical channel. The flow's dynamical equations were non-dimensionalised and solved via the application of the Adomian decomposition method (ADM). Variations of some thermo-physical parameters were conducted and discussed, with regard to the physics of the fluid. Our result shows that the entropy generation rate increases as the buoyancy increases in the fluid. In addition, the irreversibility in the flow system results mainly from the fluid's viscosity, ohmic heating, and the buoyancy.

  17. Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux

    Directory of Open Access Journals (Sweden)

    Nirmal C. Sacheti

    2014-01-01

    Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.

  18. Buoyancy and thermocapillary driven convection flow of electrically conducting fluid in an enclosure with heat generation

    International Nuclear Information System (INIS)

    The effect of surface tension on unsteady laminar natural convection flow of a viscous incompressible fluid in a rectangle enclosure with internal heat generation and in presence of a uniform transverse magnetic field acting in the direction normal to the gravity has been investigated. The top horizontal surface of the rectangular cavity is assumed to be free and the bottom ones insulated; whereas the left vertical wall is cold and the right one is uniformly hot. The equations are non-dimensionalized and solved numerically by an upwind finite difference method together with a successive over-relaxation (SOR) technique. The effects of heat generation together with the combined effects of the magnetic field and the surface tension are presented graphically in terms of isotherms, streamlines and velocity vector plots. The effects of varying the physical parameters on the rate of heat transfer from the heated surface of the enclosure are also depicted. The fluid here has Prandtl number Pr=0.054 while the value of the Grashof number is 2x104. (author)

  19. A computational model for the rise and dispersion of wind-blown, buoyancy-driven plumes—I. Neutrally stratified atmosphere

    Science.gov (United States)

    Zhang, Xiaoming; Ghoniem, Ahmed F.

    A multi-dimensional computational model for the rise and dispersion of a wind-blown, buoyancy-driven plume in a calm, neutrally stratified atmosphere is presented. Lagrangian numerical techniques, based on the extension of the vortex method to variable density flows, are used to solve the governing equations. The plume rise trajectory and the dispersion of its material in the crosswind plane are predicted. It is found that the computed trajectory agrees well with the two-thirds power law of a buoyancy-dominated plume, modified to include the effect of the initial plume size. The effect of small-scale atmospheric turbulence, modeled in terms of eddy viscosity, on the plume trajectory is found to be negligible. For all values of buoyancy Reynolds number, the plume cross-section exhibits a kidney-shaped pattern, as observed in laboratory and field experiments. This pattern is due to the formation of two counter-rotating vortices which develop as baroclinically generated vorticity rolls up on both sides of the plume cross-section. Results show that the plume rise can be described in terms of three distinct stages: a short acceleration stage, a long double-vortex stage, and a breakup stage. The induced velocity field and engulfment are dominated by the two large vortices. The effect of a flat terrain on the plume trajectory and dispersion is found to be very small. The equivalent radii of plumes with different initial cross-sectional aspect ratios increase at almost the same rate. A large aspect-ratio plume rises slower initially and then catches up with smaller aspect-ratio plumes in the breakup stage. The Boussinesq approximation is found to be valid if the ratio of the density perturation to the reference density is less than 0.1.

  20. A computational model for the rise and dispersion of wind-blown, buoyancy-driven plumes—II. Linearly stratified atmosphere

    Science.gov (United States)

    Zhang, Xiaoming; Ghoniem, Ahmed F.

    A multi-dimensional computational model of wind-blown, buoyancy-driven flows is applied to study the effect of atmospheric stratification on the rise and dispersion of plumes. The model utilizes Lagrangian transport elements, distributed in the plane of the plume cross section normal to the wind direction, to caoture the evolution of the vorticity and density field, and another set of elements to model the dynamics in the atmosphere surrounding the plume. Solutions are obtained for a case in which atmospheric density changes linearly with height. Computational results show that, similar to the case of a neutrally stratified atmosphere, the plume acquires a kidney-shaped cross section which persists for a long distance downstream the source and may bifurcate into separate and distinct lumps. Baroclinic vortivity generated both along the plume boundary and in the surroundings is used to explain the origin of the distortion experienced by the plume and the inhibiting effect of a stratified atmosphere, respectively. The vorticity within the plume cross section forms two large-scale coherent eddies which are responsible for the plume motion and the entrainment. Prior to reaching the equilibrium height, the computed plume trajectory is found to follow the two-thirds law, when extended to include the initial plume size, reasonably well. Entrainment and added mass coefficients equal to 0.49 and 0.7 respectively, are obtained from the numerical results over a wide range of the buoyancy ratio, defined as the ratio between the plume buoyancy and the degree of background stratification. In the case of strong stratification, the plume trajectory shows weak, fast decaying oscillations around the equilibrium height.

  1. Buoyancy-driven mixing of fluids in a confined geometry; Melange gravitationnel de fluides en geometrie confinee

    Energy Technology Data Exchange (ETDEWEB)

    Hallez, Y

    2007-12-15

    The present work based on Direct Numerical Simulations is devoted to the study of mixing between two miscible fluids of different densities. The movement of these fluids is induced by buoyancy. Three geometries are considered: a cylindrical tube, a square channel and a plane two-dimensional flow. For cylindrical tubes, the results of numerical simulations fully confirm previous experimental findings by Seon et al., especially regarding the existence of three different flow regimes, depending on the tilt angle. The comparison of the various geometries shows that tridimensional flows in tubes or channels are similar, whereas the two-dimensional model fails to give reliable information about real 3D flows, either from a quantitative point of view or for a phenomenological understanding. A peculiar attention is put on a joint analysis of the concentration and vorticity fields and allows us to explain several subtle aspects of the mixing dynamics. (author)

  2. Dynamic pore network simulator for modelling buoyancy-driven migration during depressurisation of heavy-oil systems

    Energy Technology Data Exchange (ETDEWEB)

    Ezeuko, C.C.; McDougall, S.R. [Heriot-Watt Univ., Edinburgh (United Kingdom); Bondino, I. [Total E and P UK Ltd., London (United Kingdom); Hamon, G. [Total S.A., Paris (France)

    2008-10-15

    In an attempt to investigate the impact of gravitational forces on gas evolution during solution gas drive, a number of vertically-oriented heavy oil depletion experiments have been conducted. Some of the results of these studies suggest the occurrence of gas migration during these tests. However, a major limitation of these experiments is the difficulty in visualizing the process in reservoir rock samples. Experimental observations using transparent glass models have been useful in this context and provide a sound physical basis for modelling gravitational gas migration in gas-oil systems. This paper presented a new pore network simulator that was capable of modelling the time-dependent migration of growing gas structures. Multiple pore filling events were dynamically modelled with interface tracking allowing the full range of migratory behaviours to be reproduced, including braided migration and discontinuous dispersed flow. Simulation results were compared with experiments and were found to be in excellent agreement. The paper presented the model and discussed the implication of evolution regime on recovery from heavy oil systems undergoing depressurization. The simulation results demonstrated the complex interaction of a number of network and fluid parameters. It was concluded that the concomitant effect on the competition between capillarity and buoyancy produced different gas evolution patterns during pressure depletion. 28 refs., 2 tabs., 19 figs.

  3. Modeling and Analysis of a Buoyancy-Ballast Driven Airship%一类“浮力-压块”驱动飞艇建模与分析

    Institute of Scientific and Technical Information of China (English)

    邬依林; 刘屿

    2012-01-01

    In view of a new kind of buoyancy-ballast driven airship, the model and dynamics of a kind of buoyancy-ballast driven airship are studied. Based on Kirchhoff equations and Newton-Euler laws, we developed the six degree of freedom nonlinear dynamic model for an airship equipped with independent ballonets and moveable ballast by analysis its movement and stress. On the condition of little perturbation, the nonlinear dynamic model is divided into three group equations by restricting airship motion in longitudinal, lateral and e2-e3 planes respectively. Then the characteristics of mode and respond to input of airship are studied using linearization model and its related parameter. The results of simulation verify the correctness of established model and rationality of theoretical analysis on this kind of stratospheric airship, thus making itself a theoretical basis for the design of its control strategy.%针对一类新型“浮力-压块”驱动的自治飞艇,研究了该类飞艇的动力学建模和动力学特性.在Kirchhoff方程和Newton-Euler理论基础上,通过对飞艇运动及受力分析,建立了包括独立气囊和可运动压块的飞艇六自由度非线性动力学模型,并采用小扰动线性化方法,将飞艇运动分别限制在纵向、横侧向和e2-e3平面内,得到与之对应的三组飞艇线性化方程,其后基于飞艇相关参数和线性化模型,利用Matlab软件平台对飞艇运动模态和输入响应特性进行了分析研究.仿真结果验证了谊类飞艇模型的正确性和理论分析的合理性,为其后控制策略设计提供理论依据.

  4. Measurement of buoyancy driven convection and microaccelerations on board International Space Station with the use of convection sensor Dacon-M

    Science.gov (United States)

    Putin, Gennady; Belyaev, Mikhail; Babushkin, Igor; Glukhov, Alexander; Zilberman, Evgeny; Maksimova, Marina; Ivanov, Alexander; Sazonov, Viktor; Nikitin, Sergey; Zavalishin, Denis; Polezhaev, Vadim

    The system for studying buoyancy driven convection and low-frequency microaccelerations aboard spacecraft is described. The system consists of: 1. facility for experimentation on a spaceship - the convection sensor and electronic equipment for apparatus control and for acquisition and processing of relevant information; 2. facility for ground-based laboratory modeling of various fluid motion mechanisms in application to orbital flight environment; 3. the system for computer simulations of convection processes in a fluid cell of a sensor using the data on microaccelerations obtained by accelerometers and another devices aboard the orbital station. The arrangement and functioning of the sensor and control hardware are expounded. The results of terrestrial experiments performed in order to determine the sensitivity of the sensor are described. The results of experiments carried out in 2008 - 2011 with the “DACON-M” apparatus in different modules of the Russian Segment of International Space Station and for various regimes of Station activity are reported. Experimental data recorded by “DACON-M” apparatus have been compared with the calculations of acceleration components based on the telemetry information about the orientation of the Station.

  5. Analytical solution of buoyancy-driven flow and heat transfer in a vertical channel with spatially periodic boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gunes, Hasan [Department of Mechanical Engineering, Istanbul Technical University, Gumussuyu (Turkey)

    2003-12-01

    In this study, we derive analytical expressions describing the variation of field variables in steady, 2-D and 3-D natural convection in a vertical channel with discrete in-space, flush-mounted heat sources. The expressions are valid for sufficiently small Grasof numbers. The solution are governed by the following dimensionless parameters: aspect ratios defining the geometry of the problem, Prandtl number, Grashof number and dimensionless channel reference temperature. Test case solutions are obtained numerically to assess the accuracy of the derived expressions. For small values Gr, the derived expressions are in excellent agreement with the numerical solutions in the entire computational domain. Analytical expressions for the net volume flow rate through the channel and Nusselt number variation are also given. (orig.)

  6. Buoyancy driven rotating boundary currents

    CERN Document Server

    Yecko, P A

    1997-01-01

    The structure of boundary currents formed from intermediately dense water introduced into a rotating, stably stratified, two-layer environment is investigated in a series of laboratory experiments, performed for Froude numbers ranging from 0.01 to 1. The thickness and streamwise velocity profiles in quasi-steady currents are measured using a pH activated tracer (thymol blue) and found to compare favorably to simplified analytic solutions and numerical models. Currents flowing along sloping boundaries in a stratified background exhibit robust stability at all experimental Froude numbers. Such stability is in sharp contrast to the unequivocal instability of such currents flowing against vertical boundaries, or of currents flowing along slopes in a uniform background. The presence of a variety of wave mechanisms in the ambient medium might account for the slower and wider observed structures and the stability of the currents, by effecting the damping of disturbances through wave radiation.

  7. Cryogenic buoyancy-driven turbulence

    International Nuclear Information System (INIS)

    Fluid turbulence is of considerable importance both fundamentally, as a paradigm for all nonlinear systems with many degrees of freedom, and in applications. In recent years there has been considerable effort to take advantage of some unique properties of low temperature liquid and gaseous helium. In particular, studies of turbulent thermal convection in conventional fluids have been aided by the use of low temperature helium which principally allows the limit of large Reynolds and Rayleigh numbers to be attained under controlled conditions. We discuss some directions and recent progress in these studies. (author)

  8. Impulsive nature in collisional driven reconnection

    International Nuclear Information System (INIS)

    Compressible magnetohydrodynamic simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. In the impulsive phase, the reconnection rate is remarkably enhanced up to more than ten times of the driving rate on the boundary. (author)

  9. An Integrated Capillary, Buoyancy, and Viscous-Driven Model for Brine/CO2Relative Permeability in a Compositional and Parallel Reservoir Simulator

    KAUST Repository

    Kong, X.

    2012-11-03

    The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.

  10. The stability of protostellar disks with Hall effect and buoyancy

    OpenAIRE

    Urpin, V.; Rüdiger, G.

    2003-01-01

    The stability properties of inviscid protostellar disks are examined taking into account the Hall effect and buoyancy. Depending on the parameters, different types of instabilities can exist in different regions of disks. In a very low ionized region, the instability associated with baroclinic effects of buoyancy is likely most efficient. The Hall-driven shear instability can lead to destabilization of regions with a higher ionization. The magnetorotational instability modified by buoyancy ca...

  11. Center of buoyancy definition

    International Nuclear Information System (INIS)

    The center of buoyancy of an arbitrary shaped body is defined in analogy to the center of gravity. The definitions of the buoyant force and center of buoyancy in terms of integrals over the area of the body are converted to volume integrals and shown to have simple intuitive interpretations

  12. Numerical Investigation for the Modeling of the Magnetic Buoyancy Force during the Natural Convection of Air in a Square Enclosure

    OpenAIRE

    Kewei Song; Toshio Tagawa; Liang-bi Wang; Hiroyuki Ozoe

    2014-01-01

    Numerical computations are carried out for natural convection of air in a two-dimensional square enclosure under a nonuniform magnetic field and together with the gravity field. The nonuniform magnetic field is supplied by a cubic permanent magnet placed above the enclosure. Two kinds of the expressions for the magnetizing force are considered and compared in the numerical computations. The flow and temperature fields, the magnetizing force field and the Nusselt number for two kinds of magnet...

  13. Natural image classification driven by human brain activity

    Science.gov (United States)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  14. POWER GENERATION USING MEGNETOHYDRODYNAMIC GENERATOR WITH A CIRCULATION FLOW DRIVEN BY SOLAR-HEAT-INDUCED NATURAL CONVECTION

    Science.gov (United States)

    The project team has theoretically studied the mechanism of magnetohydrodynamic generator, the coupling of heat transfer and buoyancy-driven free convection, and radiation heat transfer. A number of ideas for the projects have been brainstormed in the team. The underline physi...

  15. Dynamics of the Leeuwin Current: Part 2. Impacts of mixing, friction, and advection on a buoyancy-driven eastern boundary current over a shelf

    Science.gov (United States)

    Benthuysen, Jessica; Furue, Ryo; McCreary, Julian P.; Bindoff, Nathaniel L.; Phillips, Helen E.

    2014-03-01

    depth. When the timescale δt is sufficiently short, the poleward current is nearly barotropic. The current's spatial structure over the shelf is controlled by horizontal mixing, having the structure of a Munk layer. Increasing vertical diffusion deepens the upper layer thickness and strengthens the alongshore current speed. Bottom drag leads to an offshore flow along the bottom, reducing the net onshore transport and weakening the current's poleward acceleration. When δt is long, poleward advection of buoyancy forms a density front near the shelf break, intensifying poleward speeds near the surface. With bottom drag, a bottom Ekman flow advects density offshore, shifting the jet core offshore of the shelf break. The resulting cross-shelf density gradient reverses the meridional current's direction at depth, leading to an equatorward undercurrent.

  16. MHD mixed convection in an inclined lid-driven cavity with opposing thermal buoyancy force: Effect of non-uniform heating on both side walls

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sameh E., E-mail: sameh_sci_math@yahoo.com [Mathematics Department, Faculty of Sciences, South Valley University, 83523 Qena (Egypt); Mansour, M.A. [Department of Mathematics, Assuit University, Faculty of Science, Assuit (Egypt); Mahdy, A., E-mail: mahdy4@yahoo.com [Mathematics Department, Faculty of Sciences, South Valley University, 83523 Qena (Egypt)

    2013-12-15

    Highlights: • We model MHD mixed convection in an inclined lid-driven cavity. • Increasing the Hartmann number leads to increase the heat transfer rate. • Increasing the inclination angle leads to the increase of the heat transfer rate. • Nusselt number at the left wall, for forced convection case, increases as the amplitude ratio increases. - Abstract: A numerical study of laminar magnetohydrodynamic mixed convection in an inclined lid-driven square cavity with opposing temperature gradients is presented. The vertical sidewalls are assumed to have non-uniform temperature variation while the top and bottom walls are kept insulated with the top surface moving at a constant speed. The transport equations are given in terms of the stream functions-vorticity formulation and are non-dimensionalized and then solved numerically by an accurate finite-volume method. The computation is carried out for wide ranges of the inclination angle (0 ≤ γ ≤ π/2), the Richardson number (0.01 ≤ Ri ≤ 100), the Hartmann number (0 ≤ Ha ≤ 100), the amplitude ratio (0 ≤ ε ≤ 1) and the phase deviation (0 ≤ ϕ ≤ π). The results indicate that the rate of heat transfer along the heated walls is enhanced on increasing either Hartmann number or inclination angle. Average Nusselt number is also, increased with increasing of the amplitude ratio for all values of the phase deviation. The non-uniform heating on both walls provides higher heat transfer rate than non-uniform heating of one wall.

  17. MHD mixed convection in an inclined lid-driven cavity with opposing thermal buoyancy force: Effect of non-uniform heating on both side walls

    International Nuclear Information System (INIS)

    Highlights: • We model MHD mixed convection in an inclined lid-driven cavity. • Increasing the Hartmann number leads to increase the heat transfer rate. • Increasing the inclination angle leads to the increase of the heat transfer rate. • Nusselt number at the left wall, for forced convection case, increases as the amplitude ratio increases. - Abstract: A numerical study of laminar magnetohydrodynamic mixed convection in an inclined lid-driven square cavity with opposing temperature gradients is presented. The vertical sidewalls are assumed to have non-uniform temperature variation while the top and bottom walls are kept insulated with the top surface moving at a constant speed. The transport equations are given in terms of the stream functions-vorticity formulation and are non-dimensionalized and then solved numerically by an accurate finite-volume method. The computation is carried out for wide ranges of the inclination angle (0 ≤ γ ≤ π/2), the Richardson number (0.01 ≤ Ri ≤ 100), the Hartmann number (0 ≤ Ha ≤ 100), the amplitude ratio (0 ≤ ε ≤ 1) and the phase deviation (0 ≤ ϕ ≤ π). The results indicate that the rate of heat transfer along the heated walls is enhanced on increasing either Hartmann number or inclination angle. Average Nusselt number is also, increased with increasing of the amplitude ratio for all values of the phase deviation. The non-uniform heating on both walls provides higher heat transfer rate than non-uniform heating of one wall

  18. Buoyancy-driven convection heat transfer of copper–water nanofluid in a square enclosure under the different periodic oscillating boundary temperature waves

    Directory of Open Access Journals (Sweden)

    Xilian Han

    2015-09-01

    Full Text Available This study investigates natural convective heat transfer of copper–water nanofluids in a square enclosure with alternating temperature at one vertical wall, relatively low temperature at the opposite sidewall and adiabatic at the other walls. The transport equations are solved numerically with finite volume approach using SIMPLEC algorithm. Calculations are performed for nanoparticle volume fractions from 0 to 0.2 and dimensionless amplitude from 0 to 1.0 with consideration of three typical alternating waves (trapezoid wave, sine wave and triangle wave. Results show the utilization of nanoparticles enhances heat transfer and the percentage increase in the time-averaged Nusselt number is around 38% d from ϕ=0 to ϕ=0.2 under the certain conditions. The oscillating waveform has a degree effect on the heat transfer enhancement and the trapezoid wave is more conducive to the enhancement of heat transfer than sine and triangle waves. And the oscillating area is introduced to combine the oscillating waveform and its amplitude and the percentage increase in the time-averaged Nusselt number is around 14.5% from S=0 to S=0.075. In the end, the regression equation about the time-averaged Nusselt number is obtained as parameters of the solid volume fraction and the oscillating area.

  19. Radiatively-driven natural supersymmetry at the LHC

    CERN Document Server

    Baer, Howard; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Sreethawong, Warintorn; Tata, Xerxes

    2013-01-01

    Radiatively-driven natural supersymmetry (RNS) potentially reconciles the Z and Higgs boson masses close to 100 GeV with gluinos and squarks lying beyond the TeV scale. Requiring no large cancellations at the electroweak scale in constructing M_Z=91.2 GeV while maintaining a light Higgs scalar with m_h 125 GeV implies a sparticle mass spectrum including light higgsinos with mass 100-300 GeV, electroweak gauginos in the 300-1200 GeV range, gluinos at 1-4 TeV and top/bottom squarks in the 1-4 TeV range (probably beyond LHC reach), while first/second generation matter scalars can exist in the 5-30 TeV range (far beyond LHC reach). We investigate several characteristic signals for RNS at LHC14. Gluino pair production yields a reach up to m_{\\tg} 1.7 TeV for 300 fb^{-1}. Wino pair production -- pp\\to\\tw_2\\tz_4 and \\tw_2\\tw_2 -- leads to a unique same-sign diboson (SSdB) signature accompanied by modest jet activity from daughter higgsino decays; this signature provides the best reach up to m_{\\tg} 2.1 TeV within th...

  20. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., Kr ∼ Kθ + Kφ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  1. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam, E-mail: jmurphy@astro.princeton.edu, E-mail: jdolence@astro.princeton.edu, E-mail: burrows@astro.princeton.edu [Princeton University, Princeton, NJ (United States)

    2013-07-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K{sub r} {approx} K{sub {theta}} + K{sub {phi}}). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  2. Nonlinear Control of a Buoyancy Driven Airship

    OpenAIRE

    Wu, Xiaotao,; Moog, Claude; Marquez Martinez, L.

    2009-01-01

    The control of a new kind of airship is presented. By restricting its flight to a vertical plane, the athematical model is reduced. The simplified model is proved to be minimum phase, and a nonlinear controller based on inputoutput linearization is designed. Since the performance of the controller is significantly impacted by the choice of parameters, simulations of three different pole placement strategies are presented. The nonlinear controller shows better performances than a linear LQR co...

  3. Buoyancy-driven viscous flow with L

    Czech Academy of Sciences Publication Activity Database

    Nečas, J.; Roubíček, Tomáš

    2001-01-01

    Roč. 46, č. 99 (2001), s. 737-755. ISSN 0362-546X R&D Projects: GA AV ČR IAA1075707 Institutional research plan: AV0Z1075907 Keywords : non-Newtonean fluids * heat equation * dissipative heat Subject RIV: BA - General Mathematics Impact factor: 0.406, year: 2001

  4. Shell Model for Buoyancy-driven Turbulence

    CERN Document Server

    Kumar, Abhishek

    2014-01-01

    In this paper we construct shell models for convective turbulence, e.g., Rayleigh B\\'{e}nard convection, and stably-stratified turbulence. We simulate these models in the turbulent regime and show that the convective turbulence exhibits Kolmogorov spectrum for the kinetic energy, while the stably-stratified turbulence show Bolgiano-Obukhbov scaling.

  5. Shear-driven magnetic buoyancy oscillations

    CERN Document Server

    Vermersch, Violaine; 10.1002/asna.200911242

    2009-01-01

    The effects of uniform horizontal shear on a stably stratified layer of gas is studied. The system is initially destabilized by a magnetically buoyant flux tube pointing in the cross-stream direction. The shear amplifies the initial field to Lundquist numbers of about 200-400, but then its value drops to about 100-300, depending on the value of the sub-adiabatic gradient. The larger values correspond to cases where the stratification is strongly stable and nearly isothermal. At the end of the runs the magnetic field is nearly axisymmetric, i.e. uniform in the streamwise direction. In view of Cowling's theorem the sustainment of the field remains a puzzle and may be due to subtle numerical effects that have not yet been identified in detail. In the final state the strength of the magnetic field decreases with height in such a way that the field is expected to be unstable. Low amplitude oscillations are seen in the vertical velocity even at late times, suggesting that they might be persistent.

  6. Buoyancy organic Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Schoenmaker, J.; Rey, J.F.Q. [Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas, Universidade Federal do ABC (CECS-UFABC), Rua Santa Adelia 166, Bairro Bangu, 09210-170 Santo Andre, SP (Brazil); Pirota, K.R. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), C.P. 6165, Campinas, SP (Brazil)

    2011-03-15

    In the scope of renewable energy, we draw attention to a little known technique to harness solar and geothermal energy. The design here proposed and analyzed is a conceptual hybrid of several patents. By means of a modified organic Rankine cycle, energy is obtained utilizing buoyancy force of a working fluid. Based on thermodynamic properties we propose and compare the performance of Pentane and Dichloromethane as working fluids. Theoretical efficiencies up to 0.26 are estimated for a 51 m (Pentane) and 71.5 m (Dichloromethane) high column of water in a regime below 100 C operation temperature. These findings are especially relevant in the scope of distributed energy systems, combined cycle plants, and low-temperature Rankine cycles. (author)

  7. Short-term airing by natural ventilation

    DEFF Research Database (Denmark)

    Perino, Marco; Heiselberg, Per

    2009-01-01

    traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates...

  8. Stability of flashing-driven natural circulation in a passive moderator cooling system for Canadian SCWR

    International Nuclear Information System (INIS)

    Highlights: • The stability in a passive moderator cooling system of a unique system in the Canadian SCWR. • Identify and analyze unstable oscillations using flashing-driven natural circulation test results. • The flashing-driven oscillations categorized as a flashing-driven Type-I density wave instability including a geysering-like feature. • A stability map on the dimensionless plane with the Subcooling number and Phase Change number. - Abstract: This paper presents an examination of the instability mechanisms in a Passive Moderator Cooling System for the Canadian SCWR (Supercritical Water-cooled Reactor). The passive system is being developed at AECL using a flashing-driven natural circulation loop. Unstable intermittent and sinusoidal oscillations were identified from experimental data of the flashing-driven natural circulation passive moderator cooling system. The oscillation periods were correlated with the boiling delay time. A stability map for a flashing-driven two-phase natural circulation loop was established on the dimensionless plane with Subcooling number and Phase Change number. It was observed that there is thermal non-equilibrium in the single-phase and two-phase oscillation stages of the flashing-driven natural circulation

  9. A new method for deriving analytical solutions of partial differential equations-Algebraically explicit analytical solutions of two-buoyancy natural convection in porous media

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Analytical solutions of governing equations of various phenomena have their irre-placeable theoretical meanings. In addition, they can also be the benchmark solu-tions to verify the outcomes and codes of numerical solutions, and even to develop various numerical methods such as their differencing schemes and grid generation skills as well. A hybrid method of separating variables for simultaneous partial differential equation sets is presented. It is proposed that different methods of separating variables for different independent variables in the simultaneous equa-tion set may be used to improve the solution derivation procedure, for example, using the ordinary separating method for some variables and using extraordinary methods of separating variables, such as the separating variables with addition promoted by the first author, for some other variables. In order to prove the ability of the above-mentioned hybrid method, a lot of analytical exact solutions of two-buoyancy convection in porous media are successfully derived with such a method. The physical features of these solutions are given.

  10. A new method for deriving analytical solutions of partial differential equations--Algebraically explicit analytical solutions of two-buoyancy natural convection in porous media

    Institute of Scientific and Technical Information of China (English)

    CAI RuiXian; LIU QiBin

    2008-01-01

    Analytical solutions of governing equations of various phenomena have their irre-placeable theoretical meanings. In addition, they can also be the benchmark solu-tions to verify the outcomes and codes of numerical solutions, and even to develop various numerical methods such as their differencing schemes and grid generation skills as well. A hybrid method of separating variables for simultaneous partial differential equation sets is presented. It is proposed that different methods of separating variables for different independent variables in the simultaneous equa-tion set may be used to improve the solution derivation procedure, for example, using the ordinary separating method for some variables and using extraordinary methods of separating variables, such as the separating variables with addition promoted by the first author, for some other variables. In order to prove the ability of the above-mentioned hybrid method, a lot of analytical exact solutions of two-buoyancy convection in porous media are successfully derived with such a method. The physical features of these solutions are given.

  11. Spontaneous chiral parity breaking by hydromagnetic buoyancy

    CERN Document Server

    Chatterjee, Piyali; Brandenburg, Axel; Rheinhardt, Matthias

    2010-01-01

    Evidence for a parity-breaking nature of the magnetic buoyancy instability in a stably stratified gas is reported. In the absence of rotation, no helicity is produced, but the non-helical state is found to be unstable to small helical perturbations during the development of the instability. The parity-breaking nature of an instability in magnetohydrodynamics appears to be the first of its kind and is similar to chiral symmetry breaking in biochemistry. Applications to the production of mean fields in galaxy clusters are being discussed.

  12. Spontaneous chiral symmetry breaking by hydromagnetic buoyancy

    Science.gov (United States)

    Chatterjee, Piyali; Mitra, Dhrubaditya; Brandenburg, Axel; Rheinhardt, Matthias

    2011-08-01

    Evidence for the parity-breaking nature of the magnetic buoyancy instability in a stably stratified gas is reported. In the absence of rotation, no helicity is produced, but the nonhelical state is found to be unstable to small helical perturbations during the development of the instability. The parity-breaking nature of this magnetohydrodynamic instability appears to be the first of its kind and has properties similar to those in chiral symmetry breaking in biochemistry. Applications to the production of mean fields in galaxy clusters are discussed.

  13. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei

    OpenAIRE

    Itsumi Nakamura; Meyer, Carl G.; Katsufumi Sato

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two specie...

  14. Hydrodynamic buoyancy%水动浮力

    Institute of Scientific and Technical Information of China (English)

    陈振诚

    2012-01-01

    In nature, there exists the hydrostatic buoyancy and the hydrodynamic buoyancy practically. A body in static state under or on the water surface bears the hydrostatic buoyancy. Archimedes discovered that the quantitative value of the hydrostatic buoyancy equals the weight of the same volume water displaced by the said body. A moving body keeping an attack angle against the horizontal plane under or on the water surface would arouse the hydrodynamic buoyancy. Inferring from physical qualitative analysis, the hydrodynamic buoyancy is closely related with the physical factors of velocity, size, draft depth, attack angle of moving body, water density, and gravity acceleration embodying the action of gravity field to the fluid field. If the quantitative value of the hydrodynamic buoyancy is expressed by mathematical analytical expression, then it is the function of these physical factors. People hope to know the hydrodynamic buoyancy. Here we present a research into this problem, applying a new integral transform to solve the problem of the hydrodynamic buoyancy, and an analytical expression of the quantitative value of the hydrodynamic buoyancy has been acquired. The said expression generalizes the related physical factors of the moving body that contribute to the hydrodynamic buoyancy and the mutual-restricting relationship among these factors, which agrees with the physical qualitative analysis. Using a boat we designed by the result of this paper, the experiments in navigation show that the result of the theoretical calculation is in good agreement with the data acquired from practical measurements in the experiments. This proves that the researching result of this paper agrees with practice and has general significance. The said method may solve many problems in the design and production of hydrodynamic engineering. Finally in this paper, compared with our researching result, the forefather's approximate calculation formulae of the hydrodynamic buoyancy have been

  15. Buoyancy effects on smoldering combustion

    Science.gov (United States)

    Dosanjh, S.; Peterson, J.; Fernandez-Pello, A. C.; Pagni, P. J.

    1985-01-01

    The effect of buoyancy on the rate of spread of a concurrent smolder reaction through a porous combustible material is investigated theoretically and experimentally. In the experiments, buoyant forces are controlled by varying the density difference, and the smolder rate spread through porous alpha cellulose (0.83 void fraction) is measured as a function of the ambient air pressure. The smolder velocity is found to increase with the ambient pressure; extinction occurs when the buoyancy forces cannot overcome the drag forces, indicating that diffusion by itself cannot support the spread of a smolder reaction. Theoretical predictions are found to be in good qualitative agreement with the experimental results.

  16. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current...... situation, and proposes a number of activities in order to improve the buoyancy regulation system. This work was performed under EU ENERGIE contract no. ENK5-CT-2002-00603, and is a contribution to WP 2.3/2.4 and D40/D41....

  17. Investigations into natural circulation driven heat removal systems

    International Nuclear Information System (INIS)

    Passive safety systems can make an important contribution to decay heat removal in existing and next Generation NPP. Two-phase natural circulation systems have under certain circumstances instabilities which have to be analysed in detail. For this reason the test facility GENEVA has been constructed and commissioned at the TU Dresden. The experiments described in the experimental matrix will be started this year. First experimental data showed flow instabilities e.g. flashing as expected. Generic studies are necessary to examine two-phase flow and especially two-phase flow instabilities in further detail. The influence of subcooling and the diameters of downcomer and riser are of particular interest. These will help to evaluate the system behaviour of passive heat removal systems as well as their safety and reliability for nuclear reactors. (orig.)

  18. Bivariate conditional sampling of buoyancy flux during an intense cold-air outbreak

    Science.gov (United States)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1989-01-01

    The joint frequency distribution technique was used to analyze buoyancy fluxes in the marine atmospheric boundary layer (MABL) for the cloud street regime noted during the Genesis of Atlantic Lows Experiment. It is found that for the lower half of the MABL, the buoyancy flux is mainly generated by the rising thermals and the sinking compensating ambient air, and is mainly consumed by the entrainment and detrainment of thermals, penetrative convection, and the entrainment from the MABL top. If the buoyancy flux is primarily driven by the temperature flux, these buoyancy-flux generating processes should be the same for the lower boundary layers over land and ocean. The results of the scale analysis of the buoyancy flux agree well with those obtained for mesoscale cellular convection during the Air-Mass Transformation Experiment.

  19. Buoyancy Waves in Earth's Magnetosphere

    Science.gov (United States)

    Wolf, Richard Alan; Moore Schutza, Aaron; Rocco Toffoletto, Frank

    2015-04-01

    Thin-filament simulations raised the possibility that underpopulated flux tubes moving earthward through the plasma sheet from the distant plasma sheet might oscillate a few times before coming to rest near the inner edge. Such oscillations, called braking or interchange oscillations, have been observed, and their periods agree fairly well with the predictions of the thin-filament model. However, the thin-filament model assumes a highly idealized geometry and so does not provide a fully adequate theory of the oscillations. This paper addresses two questions: (1) How do the thin-filament oscillations relate to linear eigenmodes of the magnetosphere? (2) What do the corresponding eigenfunctions look like? We investigate those questions by focusing on a simple wedge-shaped plasma configuration with circular field lines that resembles the Earth’s magnetosphere in that it exhibits interchange oscillations in the thin filament approximation. However, the wedge configuration is also simple enough that linear eigenfunctions can easily be calculated. If we consider wavelengths smaller than the scale length for spatial variations in the wedge and frequencies far below the fast-mode speed, the resulting wave equation has exactly the form of an equation for buoyancy oscillation of the neutral atmosphere. The frequency of the thin-filament oscillation appears in the wave equation in exactly the way that the buoyancy frequency ωb (also known as the Brunt-Väisälä frequency) appears in the neutral-atmosphere equation. As in the neutral-atmosphere case, the magnetospheric buoyancy wave of frequency ω propagates through the region where the buoyancy frequency exceeds ω, but is evanescent in the region where the buoyancy frequency is less than ω.

  20. On the Anisotropic Nature of MRI-driven Turbulence in Astrophysical Disks

    DEFF Research Database (Denmark)

    Murphy, Gareth; Pessah, Martin E.

    2015-01-01

    power along each of the three independent directions differs by several orders of magnitude over most scales, except the largest ones. Our results suggest that a first-principles theory to describe fully developed MRI-driven turbulence will likely have to consider the anisotropic nature of the flow at a...

  1. Numerical simulations of the magnetorotational instability in protoneutron stars: I. Influence of buoyancy

    CERN Document Server

    Guilet, Jerome

    2015-01-01

    The magneto-rotational instability (MRI) is considered to be a promising mechanism to amplify the magnetic field in fast rotating protoneutron stars. In contrast to accretion disks, radial buoyancy driven by entropy and lepton fraction gradients is expected to have a dynamical role as important as rotation and shear. We investigate the poorly known impact of buoyancy on the non-linear phase of the MRI, by means of three dimensional numerical simulations of a local model in the equatorial plane of a protoneutron star. The use of the Boussinesq approximation allows us to utilise a shearing box model with clean shearing periodic boundary conditions, while taking into account the buoyancy driven by radial entropy and composition gradients. We find significantly stronger turbulence and magnetic fields in buoyantly unstable flows. On the other hand, buoyancy has only a limited impact on the strength of turbulence and magnetic field amplification for buoyantly stable flows in the presence of a realistic thermal diff...

  2. Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing

    Science.gov (United States)

    Morrison, Adele K.; Hogg, Andrew M.; Ward, Marshall L.

    2011-07-01

    The sensitivity of the Southern Ocean overturning to altered surface buoyancy forcing is investigated in a series of eddy-permitting, idealised simulations. The modelled response indicates that heat and freshwater fluxes in the Southern Hemisphere mid-latitudes may play a significant role in setting the strength of the overturning circulation. Enhanced buoyancy fluxes act to increase the meridional overturning up to a limit approaching the wind-driven Ekman transport. The sensitivity of the overturning to surface buoyancy forcing is strongly dependent on the relative locations of the wind stress profile, buoyancy forcing and upwelling region. The numerical simulations provide support for the hypothesis that changes in upwelling during deglaciations may have been driven by changes in heat and freshwater fluxes, instead of, or in addition to, changes in wind stress.

  3. Effect of the buoyancy force on natural convection in a cubical cavity with a heat source of triangular cross-section

    Science.gov (United States)

    Gibanov, N. S.; Sheremet, M. A.

    2016-04-01

    Numerical analysis of laminar natural convection inside a cubical cavity with a local heat source of triangular cross-section has been conducted. The mathematical model formulated in dimensionless variables such as "vector potential functions - vorticity vector" has been solved by the finite difference method of the second order accuracy. The three-dimensional temperature fields, 2D streamlines and isotherms in a wide range of the Rayleigh number from 104 to 106 have been presented illustrating variations of the fluid flow and heat transfer.

  4. Exact equations of motion for natural orbitals of strongly driven two-electron systems

    CERN Document Server

    Rapp, J; Bauer, D

    2014-01-01

    Natural orbital theory is a computationally useful approach to the few and many-body quantum problem. While natural orbitals are known and applied since many years in electronic structure applications, their potential for time-dependent problems is being investigated only since recently. Correlated two-particle systems are of particular importance because the structure of the two-body reduced density matrix expanded in natural orbitals is known exactly in this case. However, in the time-dependent case the natural orbitals carry time-dependent phases that allow for certain time-dependent gauge transformations of the first kind. Different phase conventions will, in general, lead to different equations of motion for the natural orbitals. A particular phase choice allows us to derive the exact equations of motion for the natural orbitals of any (laser-) driven two-electron system explicitly, i.e., without any dependence on quantities that, in practice, require further approximations. For illustration, we solve th...

  5. Kimberlite ascent by assimilation-fuelled buoyancy.

    Science.gov (United States)

    Russell, James K; Porritt, Lucy A; Lavallée, Yan; Dingwell, Donald B

    2012-01-19

    Kimberlite magmas have the deepest origin of all terrestrial magmas and are exclusively associated with cratons. During ascent, they travel through about 150 kilometres of cratonic mantle lithosphere and entrain seemingly prohibitive loads (more than 25 per cent by volume) of mantle-derived xenoliths and xenocrysts (including diamond). Kimberlite magmas also reputedly have higher ascent rates than other xenolith-bearing magmas. Exsolution of dissolved volatiles (carbon dioxide and water) is thought to be essential to provide sufficient buoyancy for the rapid ascent of these dense, crystal-rich magmas. The cause and nature of such exsolution, however, remains elusive and is rarely specified. Here we use a series of high-temperature experiments to demonstrate a mechanism for the spontaneous, efficient and continuous production of this volatile phase. This mechanism requires parental melts of kimberlite to originate as carbonatite-like melts. In transit through the mantle lithosphere, these silica-undersaturated melts assimilate mantle minerals, especially orthopyroxene, driving the melt to more silicic compositions, and causing a marked drop in carbon dioxide solubility. The solubility drop manifests itself immediately in a continuous and vigorous exsolution of a fluid phase, thereby reducing magma density, increasing buoyancy, and driving the rapid and accelerating ascent of the increasingly kimberlitic magma. Our model provides an explanation for continuous ascent of magmas laden with high volumes of dense mantle cargo, an explanation for the chemical diversity of kimberlite, and a connection between kimberlites and cratons. PMID:22258614

  6. MyProLang - My Programming Language: A Template-Driven Automatic Natural Programming Language

    CERN Document Server

    Bassil, Youssef

    2012-01-01

    Modern computer programming languages are governed by complex syntactic rules. They are unlike natural languages; they require extensive manual work and a significant amount of learning and practicing for an individual to become skilled at and to write correct programs. Computer programming is a difficult, complicated, unfamiliar, non-automated, and a challenging discipline for everyone; especially, for students, new programmers and end-users. This paper proposes a new programming language and an environment for writing computer applications based on source-code generation. It is mainly a template-driven automatic natural imperative programming language called MyProLang. It harnesses GUI templates to generate proprietary natural language source-code, instead of having computer programmers write the code manually. MyProLang is a blend of five elements. A proprietary natural programming language with unsophisticated grammatical rules and expressive syntax; automation templates that automate the generation of in...

  7. Buoyancy instability of homologous implosions

    CERN Document Server

    Johnson, Bryan M

    2015-01-01

    I consider the hydrodynamic stability of imploding gases as a model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes under a homologous flow, a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)^(|N0| ti)$, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(pi |N0| ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular...

  8. 14 CFR 29.755 - Hull buoyancy.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull buoyancy. 29.755 Section 29.755 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.755 Hull buoyancy. Water-based and amphibian rotorcraft....

  9. Short wavelength magnetic buoyancy instability

    CERN Document Server

    Mizerski, K A; Hughes, D W

    2013-01-01

    Magnetic buoyancy instability plays an important role in the evolution of astrophysical magnetic fields. Here we revisit the problem introduced by \\citet{Gilman_1970} of the short wavelength linear stability of a plane layer of compressible isothermal fluid permeated by a horizontal magnetic field of strength decreasing with height. Dissipation of momentum and magnetic field is neglected. By the use of a Rayleigh-Schr\\"odinger perturbation analysis, we explain in detail the limit in which the transverse horizontal wavenumber of the perturbation, denoted by $k$, is large (i.e.\\ short horizontal wavelength) and show that the fastest growing perturbations become localized in the vertical direction as $k$ is increased. The growth rates are determined by a function of the vertical coordinate $z$ since, in the large $k$ limit, the eigenmodes are strongly localized in the vertical direction. We consider in detail the case of two-dimensional perturbations varying in the directions perpendicular to the magnetic field,...

  10. Investigation on the Performance of the Universal Buoyancy System

    OpenAIRE

    Staalesen, Odd Eivind Solø

    2014-01-01

    Future increase in the market demand for liquefied natural gas (LNG) will pose new challenges to the existing infrastructure for LNG distribution. The Universal Buoyancy System (UBS) seeks to contribute to the solution of these challenges by offering a new, cost-efficient, and safe solution for small scale LNG transfer, as an alternative to land based distribution. A critical component in the UBS is the floating cryogenic pipeline, connecting an onshore LNG terminal to an inshore loading buoy...

  11. Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone

    Science.gov (United States)

    Barker, Adrian J.; Silvers, Lara J.; Proctor, Michael R. E.; Weiss, Nigel O.

    2012-07-01

    We perform idealized numerical simulations of magnetic buoyancy instabilities in three dimensions, solving the equations of compressible magnetohydrodynamics in a model of the solar tachocline. In particular, we study the effects of including a highly simplified model of magnetic flux pumping in an upper layer ('the convection zone') on magnetic buoyancy instabilities in a lower layer ('the upper parts of the radiative interior - including the tachocline'), to study these competing flux transport mechanisms at the base of the convection zone. The results of the inclusion of this effect in numerical simulations of the buoyancy instability of both a preconceived magnetic slab and a shear-generated magnetic layer are presented. In the former, we find that if we are in the regime that the downward pumping velocity is comparable with the Alfvén speed of the magnetic layer, magnetic flux pumping is able to hold back the bulk of the magnetic field, with only small pockets of strong field able to rise into the upper layer. In simulations in which the magnetic layer is generated by shear, we find that the shear velocity is not necessarily required to exceed that of the pumping (therefore the kinetic energy of the shear is not required to exceed that of the overlying convection) for strong localized pockets of magnetic field to be produced which can rise into the upper layer. This is because magnetic flux pumping acts to store the field below the interface, allowing it to be amplified both by the shear and by vortical fluid motions, until pockets of field can achieve sufficient strength to rise into the upper layer. In addition, we find that the interface between the two layers is a natural location for the production of strong vertical gradients in the magnetic field. If these gradients are sufficiently strong to allow the development of magnetic buoyancy instabilities, strong shear is not necessarily required to drive them (cf. previous work by Vasil & Brummell). We find

  12. Numerical simulations of the magnetorotational instability in protoneutron stars - I. Influence of buoyancy

    Science.gov (United States)

    Guilet, Jérôme; Müller, Ewald

    2015-06-01

    The magnetorotational instability (MRI) is considered to be a promising mechanism to amplify the magnetic field in fast-rotating protoneutron stars. In contrast to accretion discs, radial buoyancy driven by entropy and lepton fraction gradients is expected to have a dynamical role as important as rotation and shear. We investigate the poorly known impact of buoyancy on the non-linear phase of the MRI, by means of three-dimensional numerical simulations of a local model in the equatorial plane of a protoneutron star. The use of the Boussinesq approximation allows us to utilize a shearing box model with clean shearing periodic boundary conditions, while taking into account the buoyancy driven by radial entropy and composition gradients. We find significantly stronger turbulence and magnetic fields in buoyantly unstable flows. On the other hand, buoyancy has only a limited impact on the strength of turbulence and magnetic field amplification for buoyantly stable flows in the presence of a realistic thermal diffusion. The properties of the turbulence are, however, significantly affected in the latter case. In particular, the toroidal components of the magnetic field and of the velocity become even more dominant with respect to the poloidal ones. Furthermore, we observed in the regime of stable buoyancy the formation of long-lived coherent structures such as channel flows and zonal flows. Overall, our results support the ability of the MRI to amplify the magnetic field significantly even in stably stratified regions of protoneutron stars.

  13. Buoyancy effects of a growing, isolated dendrite

    Science.gov (United States)

    Canright, D.; Davis, S. H.

    1991-01-01

    The buoyancy effect of a growing isolated dendrite on the solidification process in the undercooling liquid material was investigated by developing an analytic solution to the growth/convection problem in powers of a buoyancy parameter G. The solution depends on the Prandtl number P and the Stefan number S (undercooling) for the local velocity and thermal fields and also the buoyant alteration of the interface shape. Results suggest that buoyancy effect for metals (low P) may be qualitatively different from that for organics (high P).

  14. Surfactants for Bubble Removal against Buoyancy

    OpenAIRE

    Md. Qaisar Raza; Nirbhay Kumar; Rishi Raj

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble remova...

  15. Supersymmetry with Radiatively-Driven Naturalness: Implications for WIMP and Axion Searches

    Directory of Open Access Journals (Sweden)

    Kyu Jung Bae

    2015-05-01

    Full Text Available By insisting on naturalness in both the electroweak and quantum chromodynamics (QCD sectors of the minimal supersymmetric standard model (MSSM, the portrait for dark matter production is seriously modified from the usual weakly interacting massive particle (WIMP miracle picture. In supersymmetry (SUSY models with radiatively-driven naturalness (radiative natural SUSY or radiative natural SUSY (RNS which include a Dine–Fischler–Srednicki–Zhitnitsky (DFSZ-like solution to the strong charge-conjugation-parity (CP and SUSY \\(\\mu\\ problems, dark matter is expected to be an admixture of both axions and higgsino-like WIMPs. The WIMP/axion abundance calculation requires simultaneous solution of a set of coupled Boltzmann equations which describe quasi-stable axinos and saxions. In most of parameter space, axions make up the dominant contribution of dark matter although regions of WIMP dominance also occur. We show the allowed range of Peccei-Quinn (PQ scale \\(f_a\\ and compare to the values expected to be probed by the axion dark matter search experiment (ADMX axion detector in the near future. We also show WIMP detection rates, which are suppressed from usual expectations, because now WIMPs comprise only a fraction of the total dark matter. Nonetheless, ton-scale noble liquid detectors should be able to probe the entirety of RNS parameter space. Indirect WIMP detection rates are less propitious since they are reduced by the square of the depleted WIMP abundance.

  16. Buoyancy instability of homologous implosions

    Science.gov (United States)

    Johnson, Bryan

    2015-11-01

    Hot spot turbulence is a potential contributor to yield degradation in inertial confinement fusion (ICF) capsules, although its origin, if present, remains unclear. In this work, a perturbation analysis is performed of an analytical homologous solution that mimics the hot spot and surrounding cold fuel during the late stages of an ICF implosion. It is shown that the flow is governed by the Schwarzschild criterion for buoyant stability, and that during stagnation, short wavelength entropy and vorticity fluctuations amplify by a factor exp (π |N0 | ts) , where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. This amplification factor is exponentially sensitive to mean flow gradients and varies from 103-107 for realistic gradients. Comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ~ 30 zones per wavelength is required to capture the evolution of vorticity accurately. This translates to an angular resolution of ~(12 / l) ∘ , or ~ 0 .1° to resolve the fastest growing modes (Legendre mode l > 100).

  17. Supersymmetry with radiatively-driven naturalness: implications for WIMP and axion searches

    CERN Document Server

    Bae, Kyu Jung; Barger, Vernon; Savoy, Michael R; Serce, Hasan

    2015-01-01

    By insisting on naturalness in both the electroweak and QCD sectors of the MSSM, the portrait for dark matter production is seriously modified from the usual WIMP miracle picture. In SUSY models with radiatively-driven naturalness (radiative natural SUSY or RNS) which include a DFSZ-like solution to the strong CP and SUSY mu problems, dark matter is expected to be an admixture of both axions and higgsino-like WIMPs. The WIMP/axion abundance calculation requires simultaneous solution of a set of coupled Boltzmann equations which describe quasi-stable axinos and saxions. In most of parameter space, axions make up the dominant contribution of dark matter although regions of WIMP dominance also occur. We show the allowed range of PQ scale f_a and compare to the values expected to be probed by the ADMX axion detector in the near future. We also show WIMP detection rates which are suppressed from usual expectations because now WIMPs comprise only a fraction of the total dark matter. Nonetheless, ton-scale noble liq...

  18. The island wind–buoyancy connection

    OpenAIRE

    De Boer, Agatha M.; Nof, Doron

    2005-01-01

    A variety of recent studies have suggested that the meridional overturning circulation (MOC) is at least partially controlled by the Southern Ocean (SO) winds. The paradoxical implication is that a link exists between the global surface buoyancy flux to the ocean (which is needed for the density transformation between surface and deep water) and the SO winds. Although the dependency of buoyancy forcing on local wind is obvious, the global forcings are usually viewed independently with regard ...

  19. Sub-natural linewidth resonances in coherently-driven double system

    Indian Academy of Sciences (India)

    Niharika Singh; Q V Lawande; R D’souza; A Ray; B N Jagatap

    2010-12-01

    We investigate theoretically the pump-probe spectroscopy of coherently-driven four-level system with two closely spaced excited common levels, thereby forming a double system. Using the master equation approach, analytical results are obtained for the absorption spectrum of a weak probe in the presence of a strong pump. The model is applied to the double system 52 1/2 = 1, 2 → 523/2 ' = 1, 2 of 87Rb atom. It is shown that the absorption spectrum consists of a triplet, of which one resonance is of sub-natural linewidth depending on the atom–field interaction parameters. The effect of Doppler broadening on the absorption spectrum is also investigated.

  20. Buoyancy Instabilities in a Weakly Collisional Intracluster Medium

    CERN Document Server

    Kunz, Matthew W; Reynolds, Christopher S; Stone, James M

    2012-01-01

    The intracluster medium of galaxy clusters is a weakly collisional, high-beta plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign, the magnetothermal instability (MTI) in the outskirts of non-isothermal clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena MHD code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We highlight the importance of the microscale instabilities that inevitably accompany and regulate the pressure anisotropies generated by the HBI and MTI. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal...

  1. Predator-driven brain size evolution in natural populations of Trinidadian killifish (Rivulus hartii).

    Science.gov (United States)

    Walsh, Matthew R; Broyles, Whitnee; Beston, Shannon M; Munch, Stephan B

    2016-07-13

    Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278

  2. Numerical simulations of buoyancy instabilities in galaxy cluster plasmas with cosmic rays and anisotropic thermal conduction

    CERN Document Server

    Rasera, Yann

    2008-01-01

    In clusters of galaxies, the specific entropy of intracluster plasma increases outwards. Nevertheless, a number of recent studies have shown that the intracluster medium is subject to buoyancy instabilities due to the effects of cosmic rays and anisotropic thermal conduction. In this paper, we present a new numerical algorithm for simulating such instabilities. This numerical method treats the cosmic rays as a fluid, accounts for the diffusion of heat and cosmic rays along magnetic field lines, and enforces the condition that the temperature and cosmic-ray pressure remain positive. We carry out several tests to ensure the accuracy of the code, including the detailed matching of analytic results for the eigenfunctions and growth rates of linear buoyancy instabilities. This numerical scheme will be useful for simulating convection driven by cosmic-ray buoyancy in galaxy cluster plasmas and may also be useful for other applications, including fusion plasmas, the interstellar medium, and supernovae remnants.

  3. Buoyancy Instabilities in Galaxy Clusters: Convection Due to Adiabatic Cosmic Rays and Anisotropic Thermal Conduction

    CERN Document Server

    Sharma, P; Quataert, E; Parrish, I J

    2009-01-01

    Using a linear stability analysis and two and three-dimensional nonlinear simulations, we study the physics of buoyancy instabilities in a combined thermal and relativistic (cosmic ray) plasma, motivated by the application to clusters of galaxies. We argue that cosmic ray diffusion is likely to be slow compared to the buoyancy time on large length scales, so that cosmic rays are effectively adiabatic. If the cosmic ray pressure $p_{cr}$ is $\\gtrsim 25 %$ of the thermal pressure, and the cosmic ray entropy ($p_{\\rm cr}/\\rho^{4/3}$; $\\rho$ is the thermal plasma density) decreases outwards, cosmic rays drive an adiabatic convective instability analogous to Schwarzschild convection in stars. Global simulations of galaxy cluster cores show that this instability saturates by reducing the cosmic ray entropy gradient and driving efficient convection and turbulent mixing. At larger radii in cluster cores, the thermal plasma is unstable to the heat flux-driven buoyancy instability (HBI), a convective instability genera...

  4. Modelling of Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also be......-energy approach. These lecture notes focus on modelling of natural and hybrid ventilation driven by thermal buoyancy, wind and/or mechanical driving forces for a single zone with one, two or several openings....... installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement as...

  5. Modelling and Control of a Complex Buoyancy-Driven Airship

    OpenAIRE

    Wu, Xiaotao,; Moog, Claude; Márquez-Martínez, Luis Alejandro; Hu, Yueming

    2010-01-01

    The general model for a new generation airship is introduced from the model of an elementary mechanical system which embodies the core of the problem to more complex. It is shown that the basic properties of a suitable two degree of freedom mechanical system are instrumental for the analysis and synthesis of advanced airships. It is shown that the control of the airship mechanical system yields suitable approximations for the control of the airship subject to aerodynamic forces.

  6. On the instability of a buoyancy-driven downflow

    Science.gov (United States)

    Dai, Albert

    2015-09-01

    Gravity currents flowing downslope, namely downflows, were observed to have a larger scale instability on high slope angles and such violent instability was absent for downflows on low slope angles. By linear theory, it is found that two branches of instability occur for slope angle in the range of 0° < θ < 90°. The ensuing instability is on the upper branch for low slope angles and on the lower branch for high slope angles. There also exists a transitional slope angle, θE ≈ 0.04°, at which the onset instability switches from one branch to the other. The scale of instability is found to increase and tend to skew towards the upper edge of the downflow as the ensuing instability switches from the upper branch to the lower one. Our findings surprisingly resonate with previously reported observations. Critical Reynolds number, below which the flow is stable to infinitesimal disturbances, is found to increase as the slope angle decreases. The role played by the bottom slope is essentially twofold. On one hand, the downslope component of gravity acts as the driving force for downflows. On the other hand, the wall-normal component of gravity acts for the stratification effect. Therefore, as the slope angle decreases, the driving force diminishes and the stratification intensifies, which can explain that the critical Reynolds number increases as the slope angle decreases. When a downflow propagates onto a sufficiently low slope angle, the low driving force and intensified stratification effect would make the downflow less prone to sustain a turbulent state of flow, which ultimately leads to the final stage of a gravity current event.

  7. Buoyancy-driven flow excursions in fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  8. A Guided Tour Through Buoyancy Driven Flows and Mixing

    OpenAIRE

    Wirth, Achim

    2015-01-01

    The major source of energy for fluid motion on the earth surface is the thermal heating by the sun, leading to temperature differences in the atmosphere and the ocean. These temperature difference and differences of other fluid properties (as e.g. salinity, humidity, particles, ...) lead to differences in density which generate fluid motion when subject to the gravitational force. In the interior of our planet the motion of the magma is also generated by density differences.the same is true f...

  9. Flow anisotropy in rotating buoyancy-driven turbulence

    Science.gov (United States)

    Rajaei, Hadi; Joshi, Pranav; Kunnen, Rudie P. J.; Clercx, Herman J. H.

    2016-08-01

    We report a combined experimental-numerical study of the effects of background rotation on large- and small-scale isotropy in rotating Rayleigh-Bénard convection (RBC) from both Eulerian and Lagrangian points of view. Three-dimensional particle-tracking velocimetry (3D-PTV) and direct numerical simulations (DNS) are employed at three different heights within the cylindrical cell. The Lagrangian velocity fluctuation and second-order Eulerian structure function are utilized to evaluate the large-scale isotropy for different rotation rates. Furthermore, we examine the experimental measurements of the Lagrangian acceleration of neutrally buoyant particles and the second-order Eulerian structure function to evaluate the small-scale isotropy as a function of rotation rate. It is found that background rotation enhances large-scale anisotropy at the cell center and close to the top plate, while decreases it at intermediate height. The large-scale anisotropy, induced by rotation, has negligible effect on the small scales at the cell center, whereas the small scales remain anisotropic close to the top plate.

  10. Using the computer-driven VR environment to promote experiences of natural world immersion

    Science.gov (United States)

    Frank, Lisa A.

    2013-03-01

    In December, 2011, over 800 people experienced the exhibit, :"der"//pattern for a virtual environment, created for the fully immersive CAVETM at the University of Wisconsin-Madison. This exhibition took my nature-based photographic work and reinterpreted it for virtual reality (VR).Varied responses such as: "It's like a moment of joy," or "I had to see it twice," or "I'm still thinking about it weeks later" were common. Although an implied goal of my 2D artwork is to create a connection that makes viewers more aware of what it means to be a part of the natural world, these six VR environments opened up an unexpected area of inquiry that my 2D work has not. Even as the experience was mediated by machines, there was a softening at the interface between technology and human sensibility. Somehow, for some people, through the unlikely auspices of a computer-driven environment, the project spoke to a human essence that they connected with in a way that went beyond all expectations and felt completely out of my hands. Other interesting behaviors were noted: in some scenarios some spoke of intense anxiety, acrophobia, claustrophobia-even fear of death when the scene took them underground. These environments were believable enough to cause extreme responses and disorientation for some people; were fun, pleasant and wonder-filled for most; and were liberating, poetic and meditative for many others. The exhibition seemed to promote imaginative skills, creativity, emotional insight, and environmental sensitivity. It also revealed the CAVETM to be a powerful tool that can encourage uniquely productive experiences. Quite by accident, I watched as these nature-based environments revealed and articulated an essential relationship between the human spirit and the physical world. The CAVETM is certainly not a natural space, but there is clear potential to explore virtual environments as a path to better and deeper connections between people and nature. We've long associated contact

  11. The Evolution of a Double Diffusive Magnetic Buoyancy Instability

    CERN Document Server

    Silvers, Lara J; Brummell, Nicholas H; Proctor, Michael R E

    2011-01-01

    Recently, Silvers, Vasil, Brummell, & Proctor (2009), using numerical simulations, confirmed the existence of a double diffusive magnetic buoyancy instability of a layer of horizontal magnetic field produced by the interaction of a shear velocity field with a weak vertical field. Here, we demonstrate the longer term nonlinear evolution of such an instability in the simulations. We find that a quasi two-dimensional interchange instability rides (or "surfs") on the growing shear-induced background downstream field gradients. The region of activity expands since three-dimensional perturbations remain unstable in the wake of this upward-moving activity front, and so the three-dimensional nature becomes more noticeable with time.

  12. The Evolution of a Double Diffusive Magnetic Buoyancy Instability

    Science.gov (United States)

    Silvers, Lara J.; Vasil, Geoffrey M.; Brummell, Nicholas H.; Proctor, Michael R. E.

    2011-08-01

    Recently, Silvers et al. (2009b), using numerical simulations, confirmed the existence of a double diffusive magnetic buoyancy instability of a layer of horizontal magnetic field produced by the interaction of a shear velocity field with a weak vertical field. Here, we demonstrate the longer term nonlinear evolution of such an instability in the simulations. We find that a quasi two-dimensional interchange instability rides (or ``surfs'') on the growing shear-induced background downstream field gradients. The region of activity expands since three-dimensional perturbations remain unstable in the wake of this upward-moving activity front, and so the three-dimensional nature becomes more noticeable with time.

  13. An approach to modelling of intermittent buoyancy induced flow

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J. [Dept. of Engineering Physics, McMaster Univ., Hamilton, Ontario (Canada)], E-mail: spencejh@mcmaster.ca

    2009-07-01

    In the event of a loss of forced circulation while at low power, heat sinks may be maintained by natural circulation phenomena including Intermittent Buoyancy Induced Flow (IBIF). The sensitivity of IBIF to a variety of parameters is an important consideration in determining its effectiveness as a cooling mechanism and in planning heat sinks. Although there has been some work done on IBIF in industry, there are no publicly available models of IBIF and very limited material available in open literature. This paper presents an outline of a proposed best-estimate IBIF model, to be used for uncertainty analysis. (author)

  14. An approach to modelling of intermittent buoyancy induced flow

    International Nuclear Information System (INIS)

    In the event of a loss of forced circulation while at low power, heat sinks may be maintained by natural circulation phenomena including Intermittent Buoyancy Induced Flow (IBIF). The sensitivity of IBIF to a variety of parameters is an important consideration in determining its effectiveness as a cooling mechanism and in planning heat sinks. Although there has been some work done on IBIF in industry, there are no publicly available models of IBIF and very limited material available in open literature. This paper presents an outline of a proposed best-estimate IBIF model, to be used for uncertainty analysis. (author)

  15. A buoyancy profile for the Earth's core

    Science.gov (United States)

    Davies, C. J.; Gubbins, D.

    2011-11-01

    We investigate the thermal and chemical buoyancy forces that drive convection in the Earth's liquid outer core and derive a radial buoyancy profile that can be used in geodynamo models. We assume the core is well mixed, adiabatic and cools as a result of mantle convection. The buoyancy profile is developed for a Boussinesq fluid and incorporates secular cooling, latent heat release at the inner core boundary, radiogenic heating, the effect of the adiabat, and compositional buoyancy due to inner core freezing. Surprisingly, these complex effects can be modelled accurately by a simple combination of bottom heating and near-uniform heat sinks, which is implemented using a cotemperature formulation that converts compositional effects into effective thermal effects. The relative importance of internal and bottom heating is then defined by just two parameters, the cooling rate at the core-mantle boundary (CMB) and the uniform rate of internal radiogenic heat production, both of which can be obtained from core evolution calculations. We vary these parameters in geodynamo models and compare basic features of the generated fields with the geomagnetic field; in this manner we link core evolution models, geodynamo simulations and geomagnetic observations. We consider three end-member scenarios for core evolution: (1) rapid cooling and a young inner core; (2) moderate cooling and neutral stability at the CMB; (3) slow cooling and enough radiogenic heating to allow the inner core to be 3.5 Gyr old. We find that compositional buoyancy dominates thermal buoyancy everywhere except near the CMB, even with large amounts of radiogenic heating, and buoyancy forces are far larger at depth than higher up. Reducing the cooling rate and increasing radiogenic heating reduces the drop in the superadiabatic gradient between the inner and outer boundaries: for rapid cooling the drop is by a factor 50; for slow cooling it is a factor of 5. We demonstrate the effects of these different buoyancy

  16. A Model of Secondary Hydrocarbon Migration As a Buoyancy-Driven Separate Phase Flow Un modèle de migration secondaire des hydrocarbures considéré comme un écoulement en phases séparées régi par la poussée d'Archimède

    Directory of Open Access Journals (Sweden)

    Lehner F. K.

    2006-11-01

    Full Text Available A mathematical model of secondary migration is described which permits the prediction of hydrocarbon migration and accumulation patterns in a sedimentary basin, if source rock expulsion rates and geometrical and hydraulic properties of major carrier systems are known through geological time. In this model, secondary migration is treated as buoyancy-driven, segregated flow of hydrocarbons in hydrostatic aquifers. Lateral, updip migration is conceived as a Boussinesq-type, free-surface flow, with source and sink terms representing supply from source rocks and leakage through cap rocks and faults. This permits a two-dimensional, map-view mathematical description of a three-dimensional, time-dependent secondary migration system. A nine-point finite difference approximation has been developed to minimize numerical dispersion, and upstream-weighting is used to obtain stable solutions. Example computations for simple, single carrier bed structures are presented. L'article décrit un modèle mathématique de migration secondaire prédisant la migration des hydrocarbures et leur accumulation dans un bassin sédimentaire, lorsque les taux d'expulsion des roches mères et les propriétés géométriques et hydrauliques des principaux systèmes de drainage sont connus à l'échelle du temps géologique. Dans ce modèle, la migration secondaire est traitée comme un écoulement des hydrocarbures en phase séparée, contrôlé par la poussée d'Archimède, dans des aquifères hydrostatiques. La migration latérale est considérée comme un écoulement de type Boussinesq, à surface libre, avec des termes sources et puits représentant les apports venant des roches mères et les fuites à travers les couvertures et les failles. Ceci permet une description mathématique bidimensionnelle cartographiable d'un système de migration secondaire tridimensionnel et dépendant du temps. On utilise une approximation type différences finies à neuf points pour minimiser

  17. Surfactants for Bubble Removal against Buoyancy.

    Science.gov (United States)

    Raza, Md Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  18. Surfactants for Bubble Removal against Buoyancy

    Science.gov (United States)

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.

  19. Naturally driven variability in the global secondary organic aerosol over a decade

    Directory of Open Access Journals (Sweden)

    K. Tsigaridis

    2005-03-01

    Full Text Available In order to investigate the variability of the secondary organic aerosol (SOA distributions and budget and provide a measure for the robustness of the conclusions on human induced changes of SOA, a global 3-dimensional chemistry transport model describing both the gas and the particulate phase chemistry of the troposphere has been applied. The response of the global budget of SOA to temperature and moisture changes as well as to biogenic emission changes over a decade (1984–1993 has been evaluated. The considered emissions of biogenic non-methane volatile organic compounds (VOC are driven by temperature, light and vegetation. They vary between 756 and 810 TgC y-1 and are therefore about 5.5 times higher than the anthropogenic VOC emissions. All secondary aerosols (sulphuric, nitrates and organics are computed on-line together with the aerosol associated water. Over the studied decade, the computed natural variations (8% in the chemical SOA production from biogenic VOC oxidation equal the chemical SOA production from anthropogenic VOC oxidation. This computed variability results from a 7% increase in biogenic VOC emissions combined with 8.5% and 6% increases in the wet and dry deposition of SOA and leads to about 11.5% increase in the SOA burden of biogenic origin. The present study also demonstrates the importance of the hydrological cycle in determining the built up and fate of SOA in the atmosphere. It also reveals the existence of significant positive and negative feedback mechanisms in the atmosphere responsible for the non linear relationship between emissions of biogenic VOC and SOA burden.

  20. Potential fate of SOC eroded from natural crusted soil surface under simulated wind driven storm

    Science.gov (United States)

    Xiao, Liangang; Fister, Wolfgang; Greenwood, Philip; Hu, Yaxian; Kuhn, Nikolaus J.

    2016-04-01

    Improving the assessment of the impact of soil erosion on carbon (C) cycling requires a better understanding of the redistribution of eroded sediment and associated soil organic carbon (SOC) across agricultural landscapes. Recent studies conducted on dry-sieved aggregates in the laboratory demonstrated that aggregation can profoundly skew SOC redistribution and its subsequent fate by accelerating settling velocities of aggregated sediment compared to mineral grains, which in turn can increase SOC mineralization into greenhouse gases. However, the erodibility of the soil in the field is more variable than in the laboratory due to tillage, crus formation, drying-wetting and freeze-thaw cycles, and biological effects. This study aimed to investigate the potential fate of the SOC eroded from naturally developed soil surface and to compare the observations with those made in the laboratory. Simulated, short, high intensity wind driven storms were conducted on a crusted loam in the field. The sediments were fractionated with a settling tube according to their potential transport distances. The soil mass, SOC concentration and cumulative 80-day CO2 emission of each fraction were identified. The results show: 1) 53% of eroded sediment and 62% of eroded SOC from the natural surface in the field would be deposited across landscapes, which is six times and three times higher compared to that implied by mineral grains, respectively; 2) the preferential deposition of SOC-rich fast-settling sediment potentially releases approximately 50% more CO2 than the same layer of the non-eroded soil; 3) the respiration of the slow-settling fraction that is potentially transported to the aquatic systems was much more active compared to the other fractions and the bulk soil. Our results confirm in general the conclusions drawn from laboratory and thus demonstrate that aggregation can affect the redistribution of sediment associated SOC under field conditions, including an increase in

  1. Swirl and buoyancy effects on mixing performance of baffle-plate-type miniature confined multijet

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumi, Kazuya, E-mail: tatsumi@mbox.kudpc.kyoto-u.ac.j [Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501 (Japan); Tanaka, Miyako [Department of Mechanical Engineering, Osaka Prefecture University, Osaka 599-8531 (Japan); Woodfield, Peter L. [Research Center for Hydrogen Industrial Use and Storage, National Institute of Advanced Industrial Science and Technology, Fukuoka 819-0395 (Japan); Nakabe, Kazuyoshi [Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501 (Japan)

    2010-02-15

    A three-dimensional numerical simulation was carried out to examine the effects of swirl and buoyancy-driven flows on the mixing performance of a baffle-plate-type miniature confined multijet. Swirl flow was produced by inclining the jet nozzles surrounding the central jet in the circumferential direction. The results obtained were compared with those of the non-swirl case. The swirl flow interrupted the radial secondary flow generated in the region adjacent to the baffle plate. This interruption decreased the size of the reverse flow region, resulting in a deterioration of the mixing performance. This behavior was more noticeable in the case of a large swirl number. During the study of the buoyancy effect, the operating direction of the gravitational force was changed with respect to the central axis of the mixing chamber, i.e. the attack angles were 0 deg., 90 deg. and 180 deg. The buoyancy effect was negligible when the operating direction was parallel to the chamber axis. However, when the attack angle was 90 deg., asymmetric distributions of mixture fraction and flow velocity were obtained, and the mixing performance was found to be poor. In the swirl-accompanied cases, the effect of buoyancy force was apparent even when the operating direction was parallel to the central axis. The swirl flow, which reduced the secondary flow effects of the reverse and radial flows, tended to increase the effect of the buoyancy force on the multijet flow. On the other hand, the swirl flow prevented the mixture fraction distribution to be asymmetric in the case of buoyancy with 90 deg. attack angle. These tendencies became more conspicuous for flows with stronger swirl.

  2. Drag, but not buoyancy, affects swim speed in captive Steller sea lions

    Directory of Open Access Journals (Sweden)

    Ippei Suzuki

    2014-04-01

    Full Text Available Swimming at an optimal speed is critical for breath-hold divers seeking to maximize the time they can spend foraging underwater. Theoretical studies have predicted that the optimal swim speed for an animal while transiting to and from depth is independent of buoyancy, but is dependent on drag and metabolic rate. However, this prediction has never been experimentally tested. Our study assessed the effects of buoyancy and drag on the swim speed of three captive Steller sea lions (Eumetopias jubatus that made 186 dives. Our study animals were trained to dive to feed at fixed depths (10–50 m under artificially controlled buoyancy and drag conditions. Buoyancy and drag were manipulated using a pair of polyvinyl chloride (PVC tubes attached to harnesses worn by the sea lions, and buoyancy conditions were designed to fall within the natural range of wild animals (∼12–26% subcutaneous fat. Drag conditions were changed with and without the PVC tubes, and swim speeds were recorded and compared during descent and ascent phases using an accelerometer attached to the harnesses. Generalized linear mixed-effect models with the animal as the random variable and five explanatory variables (body mass, buoyancy, dive depth, dive phase, and drag showed that swim speed was best predicted by two variables, drag and dive phase (AIC = −139. Consistent with a previous theoretical prediction, the results of our study suggest that the optimal swim speed of Steller sea lions is a function of drag, and is independent of dive depth and buoyancy.

  3. Drag, but not buoyancy, affects swim speed in captive Steller sea lions.

    Science.gov (United States)

    Suzuki, Ippei; Sato, Katsufumi; Fahlman, Andreas; Naito, Yasuhiko; Miyazaki, Nobuyuki; Trites, Andrew W

    2014-01-01

    Swimming at an optimal speed is critical for breath-hold divers seeking to maximize the time they can spend foraging underwater. Theoretical studies have predicted that the optimal swim speed for an animal while transiting to and from depth is independent of buoyancy, but is dependent on drag and metabolic rate. However, this prediction has never been experimentally tested. Our study assessed the effects of buoyancy and drag on the swim speed of three captive Steller sea lions (Eumetopias jubatus) that made 186 dives. Our study animals were trained to dive to feed at fixed depths (10-50 m) under artificially controlled buoyancy and drag conditions. Buoyancy and drag were manipulated using a pair of polyvinyl chloride (PVC) tubes attached to harnesses worn by the sea lions, and buoyancy conditions were designed to fall within the natural range of wild animals (∼12-26% subcutaneous fat). Drag conditions were changed with and without the PVC tubes, and swim speeds were recorded and compared during descent and ascent phases using an accelerometer attached to the harnesses. Generalized linear mixed-effect models with the animal as the random variable and five explanatory variables (body mass, buoyancy, dive depth, dive phase, and drag) showed that swim speed was best predicted by two variables, drag and dive phase (AIC = -139). Consistent with a previous theoretical prediction, the results of our study suggest that the optimal swim speed of Steller sea lions is a function of drag, and is independent of dive depth and buoyancy. PMID:24771620

  4. Numerical Simulation of Inter-Flat Air Cross-Contamination under the Condition of Single-Sided Natural Ventilation

    DEFF Research Database (Denmark)

    Liu, Xiaoping; Niu, Jianlei; Perino, Marco;

    2008-01-01

    the two sides, each of which has a flat fa ade with openable windows. When the wind speed is extremely low, with doors closed and windows opened, the flats become single-sided naturally ventilated driven by buoyancy effects. The air pollutants can travel from a lower flat to a vertically adjacent...... upper flat through open windows, caused by indoor/outdoor temperature-difference induced buoyancy. Computational fluid dynamics is employed to explore the characteristics of this process. Based on the comparison with experimental data about the air flow distribution in and around a single...

  5. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    Science.gov (United States)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to

  6. Study of Buoyancy Effects in Diffusion Flames Using Rainbow Schlieren Deflectometry

    Science.gov (United States)

    Agrawal, Ajay K.; Gollahalli, Subramanyam R.; Griffin, DeVon

    1997-01-01

    Diffusion flames are extensively encountered in many domestic and industrial processes. Even after many decades of research, a complete understanding of the diffusion flame structure is not available. The structure and properties of the flames are governed by the mixing (laminar or turbulent), chemical kinetics, radiation and soot processes. Another important phenomenon that affects flame structure in normal gravity is buoyancy. The presence of buoyancy has long hindered the rational understanding of many combustion processes. In gas jet diffusion flames, buoyancy affects the structure of the shear layer, the development of fluid instabilities, and formation of the coherent structures in the near nozzle region of the gas jets. The buoyancy driven instabilities generate vorticial structures outside the flame resulting in flame flicker. The vortices also strongly interact with the small-scale structures in the jet shear layer. This affects the transitional and turbulence characteristics of the flame. For a fundamental understanding of diffusion flames it is essential to isolate the effects of buoyancy. This is the primary goal of the experiments conducted in microgravity. Previous investigations, have shown dramatic differences between the jet flames in microgravity and normal gravity. It has been observed that flames in microgravity are taller and more sooty than in normal gravity. The fuels used in these experiments were primarily hydrocarbons. In the absence of buoyancy the soot resides near the flame region, which adversely affects the entrainment of reactants. It is very important to eliminate the interference of soot on flame characteristics in microgravity. The present work, therefore, focuses on the changes in the flame structure due to buoyancy without the added complexities of heterogeneous reactions. Clean burning hydrogen is used as the fuel to avoid soot formation and minimize radiative losses. Because of the low luminosity of hydrogen flames, we use

  7. Twisted magnetic structures emerging from buoyancy instabilities

    CERN Document Server

    Jouve, L; Proctor, M R E

    2012-01-01

    We here report calculations of magnetic buoyancy instabilities of a sheared magnetic layer where two separate zones are unstable. The idea is to study the possible generation of large-scale helical structures which could then rise through a stellar convection zone and emerge at the surface to create active regions. The calculations shown here are a follow-up of the work of Favier et al. (2012) where the instability developed in a weakly magnetized atmosphere, consisting of a uniform field oriented in a different direction from the unstable layer below. Here, the top layer representing the atmosphere is itself unstable to buoyancy instabilities and thus quickly creates a more complex magnetic configuration with which the layer below will interact. We also find in this case that the accumulation of magnetic tension between the two unstable layers favors the creation of large-scale helical structures.

  8. Twisted magnetic structures emerging from buoyancy instabilities

    Science.gov (United States)

    Jouve, L.; Silvers, L. J.; Proctor, M. R. E.

    2012-12-01

    We here report calculations of magnetic buoyancy instabilities of a sheared magnetic layer where two separate zones are unstable. The idea is to study the possible generation of large-scale helical structures which could then rise through a stellar convection zone and emerge at the surface to create active regions. The calculations shown here are a follow-up of the work of Favier et al. (2012) where the instability developed in a weakly magnetized atmosphere, consisting of a uniform field oriented in a different direction from the unstable layer below. Here, the top layer representing the atmosphere is itself unstable to buoyancy instabilities and thus quickly creates a more complex magnetic configuration with which the layer below will interact. We also find in this case that the accumulation of magnetic tension between the two unstable layers favors the creation of large-scale helical structures.

  9. Buoyancy Instabilities in Degenerate, Collisional, Magnetized Plasmas

    CERN Document Server

    Chang, P

    2009-01-01

    In low-collisionality plasmas, anisotropic heat conduction due to a magnetic field leads to buoyancy instabilities for any nonzero temperature gradient. We study analogous instabilities in degenerate {\\it collisional} plasmas, i.e., when the electron collision frequency is large compared to the electron cyclotron frequency. Although heat conduction is nearly isotropic in this limit, the small residual anisotropy ensures that collisional degenerate plasmas are also convectively unstable independent of the sign of the temperature gradient. We show that the range of wavelengths that are unstable is independent of the magnetic field strength, while the growth time increases with decreasing magnetic field strength. We discuss the application of these collisional buoyancy instabilities to white dwarfs and neutron stars. Magnetic tension and the low specific heat of a degenerate plasma significantly limit their effectiveness; the most promising venues for growth are in the liquid oceans of young, weakly magnetized n...

  10. Topology Optimization including Inequality Buoyancy Constraints

    OpenAIRE

    Picelli, R.; Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; Van Keuen, A.

    2014-01-01

    This paper presents an evolutionary topology optimization method for applications in design of completely submerged buoyant devices with design-dependent fluid pressure loading. This type of structures aid rig installations and pipeline transportation in all water depths in offshore structural engineering. The proposed optimization method seeks the buoy design that presents higher stiffness, less material and a prescribed buoyancy effect. A hydrostatic fluid is used to simulate the underwater...

  11. The effect of buoyancy on opposed smoldering

    OpenAIRE

    Bar-Ilan, Amnon; Rein, Guillermo; Walther, David C; Fernandez-Pello, A. C; Torero, Jose L; Urban, David L.

    2004-01-01

    An experimental investigation on the effects of buoyancy on opposed-flow smolder is presented. Tests were conducted on cylindrical samples of open-cell, unretarded polyurethane foams at a range of ambient pressures using the Microgravity Smoldering Combustion (MSC) experimental apparatus. The samples were tested in the opposed configuration, in which the flow of oxidizer is induced in the opposite direction of the propagation of the Smolder front. These data were compared with opposed-forced-...

  12. On the general concept of buoyancy in sedimentation and ultracentrifugation.

    Science.gov (United States)

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    2013-08-01

    Gravity or ultracentrifuge settling of colloidal particles and macromolecules usually involves several disperse species, either because natural and industrial colloids display a large size polydispersity, or because additives are put in on purpose to allow for density-based fractionation of the suspension. Such 'macromolecular crowding', however, may have surprising effects on sedimentation, for it strongly affects the buoyant force felt by a settling particle. Here we show that, as a matter of fact, the standard Archimedes' principle is just a limiting law, valid only for mesoscopic particles settling in a molecular fluid, and we obtain a fully general expression for the actual buoyancy force providing a microscopic basis to the general thermodynamic analysis of sedimentation in multi-component mixtures. The effective buoyancy also depends on the particle shape, being much more pronounced for thin rods and discs. Our model is successfully tested on simple colloidal mixtures, and used to predict rather unexpected effects, such as denser particles floating on top of a lighter fluid, which we actually observe in targeted experiments. This 'generalized Archimedes principle' may provide a tool to devise novel separation methods sensitive to particle size and shape. PMID:23913160

  13. On the general concept of buoyancy in sedimentation and ultracentrifugation

    International Nuclear Information System (INIS)

    Gravity or ultracentrifuge settling of colloidal particles and macromolecules usually involves several disperse species, either because natural and industrial colloids display a large size polydispersity, or because additives are put in on purpose to allow for density-based fractionation of the suspension. Such ‘macromolecular crowding’, however, may have surprising effects on sedimentation, for it strongly affects the buoyant force felt by a settling particle. Here we show that, as a matter of fact, the standard Archimedes' principle is just a limiting law, valid only for mesoscopic particles settling in a molecular fluid, and we obtain a fully general expression for the actual buoyancy force providing a microscopic basis to the general thermodynamic analysis of sedimentation in multi-component mixtures. The effective buoyancy also depends on the particle shape, being much more pronounced for thin rods and discs. Our model is successfully tested on simple colloidal mixtures, and used to predict rather unexpected effects, such as denser particles floating on top of a lighter fluid, which we actually observe in targeted experiments. This ‘generalized Archimedes principle’ may provide a tool to devise novel separation methods sensitive to particle size and shape. (paper)

  14. DNS of MHD turbulent flow with buoyancy

    International Nuclear Information System (INIS)

    Liquid-metals as coolant material in fusion reactor have a significant role in the design of advanced reactors. The investigation of thermal behavior in the actual facility environment, such as in the case of low Pr number fluid flow, is needed with the buoyancy effect under a magnetic field. In the present study, a direct numerical simulation (DNS) for the low Pr number fluid flow of turbulent heat transfer with buoyancy effect has been carried out under a magnetic field. The values of Hartmann number Ha were 0, 8, 16, 32, 64 and 128, and Prandtl number was 0.06. Grashof number was 4.8 x 106. The turbulent quantities such as the mean temperature, turbulent heat flux, and temperature variant were obtained by DNS. The Reynolds number for channel flow based on friction velocity, viscosity, and channel half width was set to be constant as Reτ=150. A uniform magnetic field was applied in a direction perpendicular to the wall of the channel. On the large Hartmann number, large-scale thermal convection by the effect of buoyancy can not be found at the whole region of the channel even if Grashof number is large, that is, the thermal transport is restricted by the effect of the magnetic field. (author)

  15. Evaluation of Discharge Coefficients for Window Openings in Wind Driven Natural Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Sandberg, Mats

    2006-01-01

    This paper describes the classical approach for calculation of wind driven airflow through large openings in buildings and discusses the fulfilment of the limiting assumptions. It is demonstrated that the limiting assumptions are not fulfilled for large openings in buildings for cross ventilation...

  16. Preliminary report on the promise of accelerator-driven natural-uranium-fueled light-water-moderated breeding power reactors

    International Nuclear Information System (INIS)

    A new concept for a power breeder reactor that consists of an accelerator-driven subcritical thermal fission system is proposed. In this system an accelerator provides a high-energy proton beam which interacts with a heavy-element target to produce, via spallation reactions, an intense source of neutrons. This source then drives a natural-uranium-fueled, light-water-moderated and -cooled subcritical blanket which both breeds new fuel and generates heat that can be converted to electrical power. The report given presents a general layout of the resulting Accelerator Driven Light Water Reactor (ADLWR), evaluates its performance, discusses its fuel cycle characteristics, and identifies the potential contributions to the nuclear energy economy this type of power reactor might make. A light-water thermal fission system is found to provide an attractive feature when designed to be source-driven. The equilibrium fissile fuel content that gives the highest energy multiplication is approximately equal to the content of 235U in natural uranium. Consequently, natural-uranium-fueled ADLWRs that are designed to have the highest energy generation per source neutron are also fuel-self-sufficient; that is, their fissile fuel content remains constant with burnup. This feature allows the development of a nuclear energy system that is based on the most highly developed fission technology available (the light water reactor technology) and yet has a simple and safe fuel cycle. ADLWRs will breed on natural uranium, have no doubling time limitation, and be free from the need for uranium enrichment or for the separation of plutonium. It appears that ADLWRs could also be efficiently operated with thorium fuel cycles and with denatured fuel cycles

  17. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Science.gov (United States)

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats. PMID:26061525

  18. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Directory of Open Access Journals (Sweden)

    Itsumi Nakamura

    Full Text Available We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes, indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  19. Effects of Buoyancy on Langmuir Circulation

    Institute of Scientific and Technical Information of China (English)

    SONG Jun; SONG Jin-Bao

    2008-01-01

    Based on the Navier-Stokes equation,an equation describing the Langmuir circulation is derived by a perturbation method when the influences of Coriolis force and buoyancy force are both considered.The approach used in the analysis is similar to the works carried out by Craik and Leibovich[J.Fluid Mech.73 (1976)401],Leibovich [J.Fluid Mech.79 (1977) 715]and Huang[J.Fluid Mech.91 (1979) 191].Potential applications of the equation proposed are discussed in the area of Antarctic circumpolar current.

  20. Buoyancy under control: underwater locomotor performance in a deep diving seabird suggests respiratory strategies for reducing foraging effort.

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available BACKGROUND: Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag and report locomotor adjustments to the change of buoyancy with depth. METHODOLOGY/PRINCIPAL FINDINGS: Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. CONCLUSIONS/SIGNIFICANCE: Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants--as in other families of diving seabirds--of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control.

  1. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. PMID:21216525

  2. Dynamics of Change in Human-Driven and Natural Systems: Fast Forward, Slow Motion, Same Movie? A Case Study from Plant Protection

    Directory of Open Access Journals (Sweden)

    Didier Andrivon

    2012-03-01

    Full Text Available Evolutionary biology and evolutionary ecology deal with change in species and ecosystems over time, and propose mechanisms to explain and predict these. In particular, they look for generic elements that will drive any organism or phylum to adaptive changes or to extinction. This paper, using examples from the field of plant protection against pests and diseases, shows that the patterns of change observed in natural and in human-driven systems are comparable, and proposes that their similarities result from the same mechanisms operating at different paces. Human-driven systems can thus be seen simply as ‘fast-forward’ versions of natural systems, making them tractable tools to test and predict elements from evolutionary theory. Conversely, the convergence between natural and human-driven systems opens opportunities for a more widespread use of evolutionary theory when analyzing and optimizing any human-driven system, or predicting its adaptability to changing conditions.

  3. Skylab Astronauts' Neutral Buoyancy Simulator Training

    Science.gov (United States)

    1970-01-01

    After the end of the Apollo missions, NASA's next adventure into space was the marned spaceflight of Skylab. Using an S-IVB stage of the Saturn V launch vehicle, Skylab was a two-story orbiting laboratory, one floor being living quarters and the other a work room. The objectives of Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. At the Marshall Space Flight Center (MSFC), astronauts and engineers spent hundreds of hours in an MSFC Neutral Buoyancy Simulator (NBS) rehearsing procedures to be used during the Skylab mission, developing techniques, and detecting and correcting potential problems. The NBS was a 40-foot deep water tank that simulated the weightlessness environment of space. This photograph shows astronaut Ed Gibbon (a prime crew member of the Skylab-4 mission) during the neutral buoyancy Skylab extravehicular activity training at the Apollo Telescope Mount (ATM) mockup. One of Skylab's major components, the ATM was the most powerful astronomical observatory ever put into orbit to date.

  4. On the buoyancy force and the metacentre

    CERN Document Server

    Mégel, Jacques

    2009-01-01

    We address the point of application A of the buoyancy force (also known as the Archimedes force) by using two different definitions of the point of application of a force, derived one from the work-energy relation and another one from the equation of motion. We present a quantitative approach to this issue based on the concept of the hydrostatic energy, considered for a general shape of the immersed cross-section of the floating body. We show that the location of A depends on the type of motion experienced by the body. In particular, in vertical translation, from the work-energy viewpoint, this point is fixed with respect to the centre of gravity G of the body. In contrast, in rolling/pitching motion there is duality in the location of A ; indeed, the work-energy relation implies A to be fixed with respect to the centre of buoyancy C, while from considerations involving the rotational moment it follows that A is located at the metacentre M. We obtain analytical expressions of the location of M for a general s...

  5. Buoyancy instabilities in degenerate, collisional, magnetized plasmas

    Science.gov (United States)

    Chang, Philip; Quataert, Eliot

    2010-03-01

    In low-collisionality plasmas, anisotropic heat conduction due to a magnetic field leads to buoyancy instabilities for any non-zero temperature gradient. We study analogous instabilities in degenerate collisional plasmas, i.e. when the electron collision frequency is large compared to the electron cyclotron frequency. Although heat conduction is nearly isotropic in this limit, the small residual anisotropy ensures that collisional degenerate plasmas are also convectively unstable independent of the sign of the temperature gradient. We show that the range of wavelengths that are unstable is independent of the magnetic field strength, while the growth time increases with decreasing magnetic field strength. We discuss the application of these collisional buoyancy instabilities to white dwarfs and neutron stars. Magnetic tension and the low specific heat of a degenerate plasma significantly limit their effectiveness; the most promising venues for growth are in the liquid oceans of young, weakly magnetized neutron stars (B <~ 109 G) and in the cores of young, high magnetic field white dwarfs (B ~ 109 G).

  6. Predicting natural streamflows in regulated snowmelt-driven watersheds using regionalization methods

    OpenAIRE

    D. Kim; J. Kaluarachchi

    2013-01-01

    Predicting streamflows in snow-fed watersheds in the Western United States is important for water allocation. Since many of these watersheds are heavily regulated through canal networks and reservoirs, predicting expected natural flows and therefore water availability under limited data is always a challenge. This study investigates the applicability of the flow duration curve (FDC) method for predicting natural flows in gauged and ungauged snow-fed watersheds. Point snow observations,...

  7. Studies of heat-source driven natural convection: A numerical investigation

    Science.gov (United States)

    Emara, A. A.; Kulacki, F. A.

    1977-01-01

    Thermal convection driven by uniform volumetric energy sources was studied in a horizontal fluid layer bounded from above by a rigid, isothermal surface and from below by a rigid, zero heat-flux surface. The side walls of the fluid domain were assumed to be rigid and perfectly insulating. The computations were formally restricted to two-dimensional laminar convection but were carried out for a range of Rayleigh numbers which spans the regimes of laminar and turbulent flow. The results of the computations consists of streamline and isotherm patterns, horizontally averaged temperature distributions, and horizontally averaged Nusselt numbers at the upper surface. Flow and temperature fields do not exhibit a steady state, but horizontally averaged Nusselt numbers reach limiting, quasi-steady values for all Rayleigh numbers considered. Correlations of the Nusselt number in terms of the Rayleigh and Prandtl numbers were determined.

  8. Coupling between Buoyancy Forces and Electroconvective Instability near Ion-Selective Surfaces

    Science.gov (United States)

    Karatay, Elif; Andersen, Mathias Bækbo; Wessling, Matthias; Mani, Ali

    2016-05-01

    Recent investigations have revealed that ion transport from aqueous electrolytes to ion-selective surfaces is subject to electroconvective instability that stems from coupling of hydrodynamics with electrostatic forces. These systems inherently involve fluid density variation set by salinity gradients. However, the coupling between the buoyancy effects and electroconvective instability has not yet been investigated although a wide range of electrochemical systems are naturally prone to these interplaying effects. In this study we thoroughly examine the interplay of gravitational convection and chaotic electroconvection. Our results reveal that buoyant forces can significantly influence the transport rates, otherwise set by electroconvection, when the Rayleigh number Ra of the system exceeds a value Ra ˜1000 . We show that buoyancy forces can significantly alter the flow patterns in these systems. When the buoyancy acts in the stabilizing direction, it limits the extent of penetration of electroconvection, but without eliminating it. When the buoyancy destabilizes the flow, it alters the electroconvective patterns by introducing upward and downward fingers of respectively light and heavy fluids.

  9. Coupling between Buoyancy Forces and Electroconvective Instability near Ion-Selective Surfaces.

    Science.gov (United States)

    Karatay, Elif; Andersen, Mathias Bækbo; Wessling, Matthias; Mani, Ali

    2016-05-13

    Recent investigations have revealed that ion transport from aqueous electrolytes to ion-selective surfaces is subject to electroconvective instability that stems from coupling of hydrodynamics with electrostatic forces. These systems inherently involve fluid density variation set by salinity gradients. However, the coupling between the buoyancy effects and electroconvective instability has not yet been investigated although a wide range of electrochemical systems are naturally prone to these interplaying effects. In this study we thoroughly examine the interplay of gravitational convection and chaotic electroconvection. Our results reveal that buoyant forces can significantly influence the transport rates, otherwise set by electroconvection, when the Rayleigh number Ra of the system exceeds a value Ra∼1000. We show that buoyancy forces can significantly alter the flow patterns in these systems. When the buoyancy acts in the stabilizing direction, it limits the extent of penetration of electroconvection, but without eliminating it. When the buoyancy destabilizes the flow, it alters the electroconvective patterns by introducing upward and downward fingers of respectively light and heavy fluids. PMID:27232024

  10. Buoyancy and Pressure Effects on Bulk Metal-Oxygen Reactions

    Science.gov (United States)

    Abbud-Madrid, A.; McKnight, C.; Branch, M. C.; Daily, J. W.; Friedman, R. (Technical Monitor)

    1998-01-01

    The combustion behavior of metal-oxygen reactions if a weakly buoyant environment is studied to understand the rate-controlling mechanisms in the homogeneous and heterogeneous combustion of bulk metals. Cylindrical titanium and magnesium specimens are ignited in pure-oxygen at pressures ranging from 0.1 to 4.0 atm. Reduced gravity is obtained from an aircraft flying parabolic trajectories. A weakly buoyant environment is generated at low pressures under normal gravity and also at 1 atm under reduced gravity (0.01g). The similarity between these two experimental conditions comes from the p(exp 2)g buoyancy scale extracted from the Grashof number. Lower propagation rates of the molten interface on titanium samples are found at progressively lower pressures at 1 g. These rates are compared to theoretical results from heat conduction analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical values indicate the importance values indicate the importance of natural convection enhanced oxygen transport on combustion rates. For magnesium, progressively longer burning times are experienced at lower pressures and 1 g. Under reduced gravity conditions at 1 atm, a burning time twice as long as in 1 g is exhibited. However, in this case, the validity of the p(exp 2)g buoyancy scale remains untested due to the inability to obtain steady gas-phase burning of the magnesium sample at 0.1 atm. Nevertheless, longer burning times and larger flame standoff distance at low pressures and at low gravity points to a diffusion/convection controlled reaction.

  11. Buoyancy, bending, and seismic visibility in deep slab stagnation

    Science.gov (United States)

    Bina, Craig R.; Kawakatsu, Hitoshi; Suetsugu, D.; Bina, C.; Inoue, T.; Wiens, D.; Jellinek, M.

    2010-11-01

    The petrological consequences of deep subhorizontal deflection ("stagnation") of subducting slabs should affect both apparent seismic velocity structures and slab morphology. We construct kinematic thermal models of stagnant slabs and perform thermodynamic modeling of the consequent perturbation of high-pressure phase transitions in mantle minerals, focusing upon Japan as our study area. We calculate associated thermo-petrological buoyancy forces and bending moments which (along with other factors such as viscosity variations and rollback dynamics) may contribute to slab deformation. We consider effects of variations in depth of stagnation, post-stagnation dip angle, phase transition sharpness, transition triplication due to multiple intersection of geotherms with phase boundaries, and potential persistence of metastable phases due to kinetic hindrance. We also estimate seismic velocity anomalies, as might be imaged by seismic tomography, and corresponding seismic velocity gradients, as might be imaged by receiver-function analysis. We find that buoyant bending moment gradients of petrological origin at the base of the transition zone may contribute to slab stagnation. Such buoyancy forces vary with the depth at which stagnation occurs, so that slabs may seek an equilibrium slab stagnation depth. Metastable phase bending moment gradients further enhance slab stagnation, but they thermally decay after ∱/4600•700 km of horizontal travel, potentially allowing stagnant slabs to descend into the lower mantle. Stagnant slabs superimpose zones of negative velocity gradient onto a depressed 660-km seismic discontinuity, affecting the seismological visibility of such features. Seismologically resolvable details should depend upon both stagnation depth and the nature of the imaging technique (travel-time tomography vs. boundary-interaction phases). While seismic tomography appears to yield images of stagnant slabs, discontinuity topography beneath Japan resolved by

  12. Time-dependent renormalized-natural-orbital theory applied to laser-driven H$_2^+$

    CERN Document Server

    Hanusch, A; Brics, M; Bauer, D

    2016-01-01

    Recently introduced time-dependent renormalized-natural orbital theory (TDRNOT) is extended towards a multi-component approach in order to describe H$_2^+$ beyond the Born-Oppenheimer approximation. Two kinds of natural orbitals, describing the electronic and the nuclear degrees of freedom are introduced, and the exact equations of motion for them are derived. The theory is benchmarked by comparing numerically exact results of the time-dependent Schr\\"odinger equation for a H$_2^+$ model system with the corresponding TDRNOT predictions. Ground state properties, linear response spectra, fragmentation, and high-order harmonic generation are investigated.

  13. Time-dependent renormalized-natural-orbital theory applied to laser-driven H2 +

    Science.gov (United States)

    Hanusch, A.; Rapp, J.; Brics, M.; Bauer, D.

    2016-04-01

    Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is extended towards a multicomponent approach in order to describe H2 + beyond the Born-Oppenheimer approximation. Two kinds of natural orbitals, describing the electronic and the nuclear degrees of freedom are introduced, and the exact equations of motion for them are derived. The theory is benchmarked by comparing numerically exact results of the time-dependent Schrödinger equation for an H2 + model system with the corresponding TDRNOT predictions. Ground-state properties, linear-response spectra, fragmentation, and high-order harmonic generation are investigated.

  14. Buoyancy Instabilities in Weakly Magnetized Low Collisionality Plasmas

    CERN Document Server

    Quataert, Eliot

    2007-01-01

    I calculate the linear stability of a stratified low collisionality plasma in the presence of a weak magnetic field. Heat is assumed to flow only along magnetic field lines. In the absence of a heat flux in the background plasma, Balbus (2000) demonstrated that plasmas in which the temperature increases in the direction of gravity are buoyantly unstable to convective-like motions (the ``magnetothermal instability''). I show that in the presence of a background heat flux, an analogous instability is present when the temperature decreases in the direction of gravity. The instability is driven by the background heat flux and the fastest growing mode has a growth time of order the local dynamical time. Thus, independent of the sign of the temperature gradient, weakly magnetized low collisionality plasmas are unstable on a dynamical time to magnetically-mediated buoyancy instabilities. The instability described in this paper is predicted to be present in clusters of galaxies at radii from ~ 0.1-100 kpc, where the ...

  15. Predicting natural streamflows in regulated snowmelt-driven watersheds using regionalization methods

    Directory of Open Access Journals (Sweden)

    D. Kim

    2013-07-01

    Full Text Available Predicting streamflows in snow-fed watersheds in the Western United States is important for water allocation. Since many of these watersheds are heavily regulated through canal networks and reservoirs, predicting expected natural flows and therefore water availability under limited data is always a challenge. This study investigates the applicability of the flow duration curve (FDC method for predicting natural flows in gauged and ungauged snow-fed watersheds. Point snow observations, air temperature, precipitation, and snow water equivalent, are used to simulate snowmelt process with SNOW-17 model and extended to streamflow generation by a FDC method with modified current precipitation index. For regulated (ungauged watersheds, a parametric regional FDC method is applied to reconstruct natural flow. For comparison, a simplified Tank Model is used as well. The proximity regionalization method is used to generate streamflow using the Tank Model in ungauged watersheds. The results show that the FDC method can produce acceptable natural flow estimates in both gauged and ungauged watersheds under data limited conditions. The performance of the FDC method is better in watersheds with relatively low evapotranspiration (ET. Multiple donor data sets including current precipitation index are recommended to reduce uncertainty of the regional FDC method for ungauged watersheds. In spite of its simplicity, the FDC method can perform better than the Tank Model under minimal data availability.

  16. Pitching effects of buoyancy during four competitive swimming strokes.

    Science.gov (United States)

    Cohen, Raymond C Z; Cleary, Paul W; Harrison, Simon M; Mason, Bruce R; Pease, David L

    2014-10-01

    The purpose of this study was to determine the pitching effects of buoyancy during all competitive swimming strokes--freestyle, backstroke, butterfly, and breaststroke. Laser body scans of national-level athletes and synchronized multiangle swimming footage were used in a novel markerless motion capture process to produce three-dimensional biomechanical models of the swimming athletes. The deforming surface meshes were then used to calculate swimmer center-of-mass (CoM) positions, center-of-buoyancy (CoB) positions, pitch buoyancy torques, and sagittal plane moments of inertia (MoI) throughout each stroke cycle. In all cases the mean buoyancy torque tended to raise the legs and lower the head; however, during part of the butterfly stroke the instantaneous buoyancy torque had the opposite effect. The swimming strokes that use opposing arm and leg strokes (freestyle and backstroke) had smaller variations in CoM positions, CoB positions, and buoyancy torques. Strokes with synchronized left-right arm and leg movement (butterfly and breaststroke) had larger variations in buoyancy torques, which impacts the swimmer's ability to maintain a horizontal body pitch for these strokes. The methodology outlined in this paper enables the rotational effects of buoyancy to be better understood by swimmers, allowing better control of streamlined horizontal body positioning during swimming to improve performance. PMID:24979812

  17. 14 CFR 27.751 - Main float buoyancy.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float buoyancy. 27.751 Section 27.751 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the...

  18. 14 CFR 29.751 - Main float buoyancy.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float buoyancy. 29.751 Section 29.751 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.751 Main float buoyancy. (a) For main floats,...

  19. 46 CFR 197.342 - Buoyancy-changing devices.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Buoyancy-changing devices. 197.342 Section 197.342 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.342 Buoyancy-changing devices. (a) A dry suit or other...

  20. 14 CFR 25.751 - Main float buoyancy.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float buoyancy. 25.751 Section 25.751 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.751 Main float buoyancy. Each main float must have— (a)...

  1. 14 CFR 23.751 - Main float buoyancy.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float buoyancy. 23.751 Section 23.751 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.751 Main float buoyancy....

  2. BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Matthew W.; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Bogdanovic, Tamara; Reynolds, Christopher S., E-mail: kunz@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: tamarab@astro.umd.edu, E-mail: chris@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-08-01

    The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.

  3. Buoyancy Instabilities in a Weakly Collisional Intracluster Medium

    Science.gov (United States)

    Kunz, Matthew W.; Bogdanović, Tamara; Reynolds, Christopher S.; Stone, James M.

    2012-08-01

    The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few× 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.

  4. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system.

    Science.gov (United States)

    Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-09-17

    In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system. PMID:23957893

  5. Towards theory driven structure elucidation of complex natural products: mandelalides and coibamide A.

    Science.gov (United States)

    Snyder, Kevin M; Sikorska, Justyna; Ye, Tao; Fang, Lijing; Su, Wu; Carter, Rich G; McPhail, Kerry L; Cheong, Paul H-Y

    2016-06-28

    The effectiveness of computational tools in determining relative configurations of complex molecules is investigated, using natural products mandelalides A-D and coibamide A, towards a generalized recipe for the scientific community at large. Ultimately, continuing efforts in this vein will accelerate and strengthen relative structure elucidation of complex molecules, such as natural products. Molecular mechanics conformational search, quantum mechanical NMR chemical shift predictions, and DP4 analyses led to confirmation of the revised structures of mandelalides A-D and coibamide A. All chiral centers in the northern hemisphere of mandelalides A-D are inverted with respect to the originally proposed structures, in agreement with recent total syntheses of mandelalide A by Ye, Fürstner & Carter. In the case of coibamide A, it was found that Fang & Su's revision, in which both the macrocycle [MeAla(11)] and the side chain [HIV(2)] residues are inverted from l to d, was consistent with the authentic natural product and computations. PMID:27152741

  6. What buoyancy really is. A Generalized Archimedes Principle for sedimentation and ultracentrifugation

    OpenAIRE

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    2012-01-01

    Particle settling is a pervasive process in nature, and centrifugation is a much versatile separation technique. Yet, the results of settling and ultracentrifugation experiments often appear to contradict the very law on which they are based: Archimedes Principle - arguably, the oldest Physical Law. The purpose of this paper is delving at the very roots of the concept of buoyancy by means of a combined experimental-theoretical study on sedimentation profiles in colloidal mixtures. Our analysi...

  7. Fluid-to-fluid scaling for a gravity- and flashing-driven natural circulation loop

    International Nuclear Information System (INIS)

    In certain natural-circulation reactor systems proposed recently, vapor generation takes place by flashing in an adiabatic riser above the core. A step-by-step facility design procedure was used to define suitable scaling criteria for a refrigerant-113 (R-113) experiment simulating the dynamics and stability of such a loop. The fact that vapor generation does not normally take place in the core allows additional flexibility in designing the model; almost perfect simulation can be achieved, mainly by reducing the height of the facility according to the liquid density ratio and scaling for similar void fraction distributions in the prototype and the model. ((orig.))

  8. Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, Paola [Dipartimento di Chimica Analitica, Universita di Torino, via P. Giuria 5, 10125 Torino (Italy)], E-mail: paola.calza@unito.it; Massolino, Cristina; Pelizzetti, Ezio; Minero, Claudio [Dipartimento di Chimica Analitica, Universita di Torino, via P. Giuria 5, 10125 Torino (Italy)

    2008-07-15

    Natural seawater (NSW) sampled in March and June 2007 in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated in a device simulating solar light spectrum and intensity. Opposite to the case of artificial seawater, for which phenol is slightly degraded by direct photolysis, in NSW the phenol degradation mediated by natural photosensitizers occurs, forming several secondary pollutants, including hydroxyderivatives (1,4-benzoquinone, resorcinol), three chlorophenol isomers, 2,3-dichlorophenol, 2- and 4-bromophenol, 2- and 4-nitrophenol, and several condensed products (2 and 4-phenoxyphenol, 2,2'-, 4,4'- and 2,4-bisphenol). These compounds are toxic to bacteria and other living organisms. Ecotoxicologic effect has been evaluated by using the Vibrio Fischeri luminescent bacteria assay. This technique uses marine organisms, and it is therefore well suited for the study on marine samples. A correlation exists between the intermediates evolution and the toxicity profile, as the largest toxicity is observed when compounds with the lower EC50 (halophenols, phenoxyphenols) are formed at higher concentration.

  9. Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater

    International Nuclear Information System (INIS)

    Natural seawater (NSW) sampled in March and June 2007 in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated in a device simulating solar light spectrum and intensity. Opposite to the case of artificial seawater, for which phenol is slightly degraded by direct photolysis, in NSW the phenol degradation mediated by natural photosensitizers occurs, forming several secondary pollutants, including hydroxyderivatives (1,4-benzoquinone, resorcinol), three chlorophenol isomers, 2,3-dichlorophenol, 2- and 4-bromophenol, 2- and 4-nitrophenol, and several condensed products (2 and 4-phenoxyphenol, 2,2'-, 4,4'- and 2,4-bisphenol). These compounds are toxic to bacteria and other living organisms. Ecotoxicologic effect has been evaluated by using the Vibrio Fischeri luminescent bacteria assay. This technique uses marine organisms, and it is therefore well suited for the study on marine samples. A correlation exists between the intermediates evolution and the toxicity profile, as the largest toxicity is observed when compounds with the lower EC50 (halophenols, phenoxyphenols) are formed at higher concentration

  10. Researcher-driven Campaigns Engage Nature's Notebook Participants in Scientific Data Collection

    Science.gov (United States)

    Crimmins, Theresa M.; Elmore, Andrew J.; Huete, Alfredo; Keller, Stephen; Levetin, Estelle; Luvall, Jeffrey; Meyers, Orrin; Stylinski, Cathlyn D.; Van De Water, Peter K.; Vukovic, Ana

    2013-01-01

    One of the many benefits of citizen science projects is the capacity they hold for facilitating data collection on a grand scale and thereby enabling scientists to answer questions they would otherwise not been able to address. Nature's Notebook, the plant and animal phenology observing program of the USA National Phenology Network (USA-NPN) suitable for scientists and non-scientists alike, offers scientifically-vetted data collection protocols and infrastructure and mechanisms to quickly reach out to hundreds to thousands of potential contributors. The USA-NPN has recently partnered with several research teams to engage participants in contributing to specific studies. In one example, a team of scientists from NASA, the New Mexico Department of Health, and universities in Arizona, New Mexico, Oklahoma, and California are using juniper phenology observations submitted by Nature's Notebookparticipants to improve predictions of pollen release and inform asthma and allergy alerts. In a second effort, researchers from the University of Maryland Center for Environmental Science are engaging Nature's Notebookparticipants in tracking leafing phenophases of poplars across the U.S. These observations will be compared to information acquired via satellite imagery and used to determine geographic areas where the tree species are most and least adapted to predicted climate change. Researchers in these partnerships receive benefits primarily in the form of ground observations. Launched in 2010, the juniper pollen effort has engaged participants in several western states and has yielded thousands of observations that can play a role in model ground validation. Periodic evaluation of these observations has prompted the team to improve and enhance the materials that participants receive, in an effort to boost data quality. The poplar project is formally launching in spring of 2013 and will run for three years; preliminary findings from 2013 will be presented. Participants in these

  11. Single-sided natural ventilation driven by wind pressure and temperature difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Heiselberg, Per

    2008-01-01

    Even though opening a window for ventilation of a room seems very simple, the flow that occurs in this situation is rather complicated. The amount of air going through the window opening will depend on the wind speed near the building, the temperatures inside and outside the room, the wind...... direction, the turbulence characteristics in the wind and the pressure variations caused by e.g. wind gusts. Finally, it also depends on the size, type and location of the opening. Many of these parameters are unsteady which makes the calculation of air-change rates even more complicated. In this work, full......-scale wind tunnel experiments have been made with the aim of making a new expression for calculation of the airflow rate in single-sided natural ventilation. During the wind tunnel experiments it was found that the dominating driving force differs between wind speed and temperature difference depending on...

  12. Microgravity Flow Regime Data: Buoyancy and Mixing Apparatus Effects

    Science.gov (United States)

    Shephard, Adam; Best, Frederick

    2010-01-01

    Zero-g two-phase flow data set qualification and flight experiment design have not been standardized and as a result, agreement among researchers has not been reached regarding what experimental conditions adequately approximate those of microgravity. The effects of buoyancy forces and mixing apparatus on the flow regime transitions are presented in this study. The gravity conditions onboard zero-g aircraft are at best 10-3 g which is used to approximate the 10-5 g conditions of microgravity, thus the buoyancy forces present on zero-g aircraft can become significantly large and unrepresentative of microgravity. When buoyancy forces approach those of surface tension forces, buoyancy induced coalescence occurs. When discussing flow regime transitions, these large buoyancy forces lead to flow regime transitions which otherwise would not occur. The buoyancy attributes of the two-phase flow data sets available in the literature are evaluated to determine which data sets exhibit buoyancy induced transitions. Upon comparison of the representative data sets, the affects of different mixing apparatus can be seen in the superficial velocity flow regime maps.

  13. Effect of ship motions and flow stability in a small marine reactor driven by natural circulation

    International Nuclear Information System (INIS)

    By using a small reactor as a power source for investigations and developments under sea, widely expanded activity is expectable. In this case, as for a nuclear reactor, small-size and lightweightness, and simplification of a system are needed with the safety. In JAERI, very small reactors for submersible research vessel (Deep-sea Reactor DRX and submersible Compact Reactor SCR) have been designed on the basis of needs investigation of sea research. Although the reactor is a PWR type, self-pressurization and natural circulation system are adopted in a primary system for small size and lightweightness. The fluid flow condition of the reactor core outlet is designed to be the two-phase with a low quality. Although the flow of a primary system is the two-phase flow with a low quality, the density wave oscillation may occur according to operating conditions. Moreover, since there are ship motions of heaving (the vertical direction acceleration) etc., when a submersible research vessel navigates on the sea surface, the circulation flow of the primary system is directly influenced by this external force. In order to maintain stable operations of the reactor, it is necessary to clarify effects of the flow stability characteristic of the primary coolant system and the external force. Until now, as for the flow stability of a nuclear reactor itself, many research reports have been published including the nuclear-coupled thermal oscillation of BWRs such as LaSalle-2, WNP-2 etc. As for the effect of external force, it is reported that the acceleration change based on a seismic wave affects the reactor core flow and the reactor power in a BWR. On the other hand, also in a PWR, since adoption of natural circulation cooling is considered for a generation 4 reactor, it is thought that the margin of the reactor core flow stability becomes an important parameter in the design. The reactor coolant flow mentioned in this report is the two-phase natural circulation flow coupled with

  14. Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain

    Directory of Open Access Journals (Sweden)

    Kritana Prueksakorn

    2015-08-01

    Full Text Available With an increased awareness of sustainability issues, natural ventilation has become an elegant method for reducing the costs and environmental effects of the energy that is used to maintain comfortable indoor air quality rather than using mechanical ventilation. The windows in many industrial buildings are continuously open to exhaust pollutants and intake fresh air. Though windows are functional and efficient for natural ventilation, rainwater is able to penetrate through the windows during wind-driven rain. For industries in which the moisture content affects the quality of the product, the intrusion of a large amount of rainwater through windows must be prevented without compromising the effective ventilation. The aim of this research is to determine an innovative design for windows to accomplish the optimum of high ventilation and low rain penetration. For this purpose, windows are variously innovated and tested in full-scale measurements, reduced-scale wind-tunnel measurements and computational fluid dynamics (CFD. An artificial rain and wind velocity to mimic the average of the maximum values in Korea are created. The maximum reduction in rain penetration of over 98% compared to basic 90° open windows is attained with only a 4%–9% decrement of ventilation efficiency in the two recommended designs.

  15. Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects

    International Nuclear Information System (INIS)

    In this paper we investigate the mass transfer of CO2 injected into a homogenous (sub)-surface porous formation saturated with a liquid. In almost all cases of practical interest CO2 is present on top of the liquid. Therefore, we perform our analysis to a porous medium that is impermeable from sides and that is exposed to CO2 at the top. For this configuration density-driven natural convection enhances the mass transfer rate of CO2 into the initially stagnant liquid. The analysis is done numerically using mass and momentum conservation laws and diffusion of CO2 into the liquid. The effects of aspect ratio and the Rayleigh number, which is dependent on the characteristics of the porous medium and fluid properties, are studied. This configuration leads to an unstable flow process. Numerical computations do not show natural convection effects for homogeneous initial conditions. Therefore a sinusoidal perturbation is added for the initial top boundary condition. It is found that the mass transfer increases and concentration front moves faster with increasing Rayleigh number. The results of this paper have implications in enhanced oil recovery and CO2 sequestration in aquifers. (author)

  16. Neutral Buoyancy Test - NB23 - Space Telescope

    Science.gov (United States)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Included in the plans for the space station was a space telescope. This telescope would be attached to the space station and directed towards outerspace. Astronomers hoped that the space telescope would provide a look at space that is impossible to see from Earth because of Earth's atmosphere and other man made influences. In an effort to make replacement and repairs easier on astronauts the space telescope was designed to be modular. Practice makes perfect as demonstrated in this photo: an astronaut practices moving modular pieces of the space telescope in the Neutral

  17. Is VHF Fresnel reflectivity due to low frequency buoyancy waves?

    Science.gov (United States)

    Vanzandt, T. E.; Vincent, R. A.

    1983-01-01

    VHF radar echoes are greatly enhanced near the zenith relative to other directions. This enhancement must be due to reflection from horizontally stratified laminate of refractive index. The refractivity laminate are due to the displacements of low frequency buoyancy (internal gravity) waves acting on the background vertical gradient of refractivity. VANZANDT (1982) has shown that the observed spectra of mesoscale wind fluctuations in the troposphere and lower stratosphere are modeled by a universal spectrum of buoyancy (internal gravity) waves. Since the observed frequency spectrum is red, the buoyancy wave model of the vertical displacement spectrum is strongly enhanced near the zenith. In other terms, the resulting refractivity irregularities are strongly stratified.

  18. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle.

    Science.gov (United States)

    McNeil, Ben I; Sasse, Tristan P

    2016-01-21

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean 'CO2 hotspots' evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for

  19. Short-wavelength Magnetic Buoyancy Instability

    Science.gov (United States)

    Mizerski, K. A.; Davies, C. R.; Hughes, D. W.

    2013-04-01

    Magnetic buoyancy instability plays an important role in the evolution of astrophysical magnetic fields. Here we revisit the problem introduced by Gilman of the short-wavelength linear stability of a plane layer of compressible isothermal fluid permeated by a horizontal magnetic field of strength decreasing with height. Dissipation of momentum and magnetic field is neglected. By the use of a Rayleigh-Schrödinger perturbation analysis, we explain in detail the limit in which the transverse horizontal wavenumber of the perturbation, denoted by k, is large (i.e., short horizontal wavelength) and show that the fastest growing perturbations become localized in the vertical direction as k is increased. The growth rates are determined by a function of the vertical coordinate z since, in the large k limit, the eigenmodes are strongly localized in the vertical direction. We consider in detail the case of two-dimensional perturbations varying in the directions perpendicular to the magnetic field, which, for sufficiently strong field gradients, are the most unstable. The results of our analysis are backed up by comparison with a series of initial value problems. Finally, we extend the analysis to three-dimensional perturbations.

  20. SHORT-WAVELENGTH MAGNETIC BUOYANCY INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Mizerski, K. A.; Davies, C. R.; Hughes, D. W., E-mail: kamiz@igf.edu.pl, E-mail: tina@maths.leeds.ac.uk, E-mail: d.w.hughes@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2013-04-01

    Magnetic buoyancy instability plays an important role in the evolution of astrophysical magnetic fields. Here we revisit the problem introduced by Gilman of the short-wavelength linear stability of a plane layer of compressible isothermal fluid permeated by a horizontal magnetic field of strength decreasing with height. Dissipation of momentum and magnetic field is neglected. By the use of a Rayleigh-Schroedinger perturbation analysis, we explain in detail the limit in which the transverse horizontal wavenumber of the perturbation, denoted by k, is large (i.e., short horizontal wavelength) and show that the fastest growing perturbations become localized in the vertical direction as k is increased. The growth rates are determined by a function of the vertical coordinate z since, in the large k limit, the eigenmodes are strongly localized in the vertical direction. We consider in detail the case of two-dimensional perturbations varying in the directions perpendicular to the magnetic field, which, for sufficiently strong field gradients, are the most unstable. The results of our analysis are backed up by comparison with a series of initial value problems. Finally, we extend the analysis to three-dimensional perturbations.

  1. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Buoyancy Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Buoyancy Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  2. Vertigo and positional alcohol nystagmus. The buoyancy mechanism

    Directory of Open Access Journals (Sweden)

    Franco-Gutiérrez V, Pérez-Vázquez P.

    2013-02-01

    Full Text Available Ethanol can cause nistagmus and dizziness by a buoyancy mechanism. Its differential diagnosis includes atypical or central positional vertigo. We report the case of a woman whose positional symptoms were caused by ethanol contained in some mixtures.

  3. The treatment of magnetic buoyancy in flux transport dynamo models

    OpenAIRE

    Choudhuri, Arnab Rai; Hazra, Gopal

    2015-01-01

    One important ingredient of flux transport dynamo models is the rise of the toroidal magnetic field through the convection zone due to magnetic buoyancy to produce bipolar sunspots and then the generation of the poloidal magnetic field from these bipolar sunspots due to the Babcock-Leighton mechanism. Over the years, two methods of treating magnetic buoyancy, a local method and a non-local method have been used widely by different groups in constructing 2D kinematic models of the flux transpo...

  4. Field Effects of Buoyancy on Lean Premixed Turbulent Flames

    Science.gov (United States)

    Cheng, R. K.; Johnson, M. R.; Greenberg, P. S.; Wernet, M. P.

    2003-01-01

    The study of field effects of buoyancy on premixed turbulent flames is directed towards the advancement of turbulent combustion theory and the development of cleaner combustion technologies. Turbulent combustion is considered the most important unsolved problem in combustion science and laboratory studies of turbulence flame processes are vital to theoretical development. Although buoyancy is dominant in laboratory flames, most combustion models are not yet capable to consider buoyancy effects. This inconsistency has impeded the validation of theories and numerical simulations with experiments. Conversely, the understanding of buoyancy effects is far too limited to help develop buoyant flame models. Our research is also relevant to combustion technology because lean premixed combustion is a proven method to reduce the formation of oxides of nitrogen (NOx). In industrial lean premixed combustion systems, their operating conditions make them susceptible to buoyancy thus affecting heat distribution, emissions, stability, flashback and blowoff. But little knowledge is available to guide combustion engineers as to how to avoid or overcome these problems. Our hypothesis is that through its influence on the mean pressure field, buoyancy has direct and indirect effects on local flame/turbulence interactions. Although buoyancy acts on the hot products in the farfield the effect is also felt in the nearfield region upstream of the flame. These changes also influence the generation and dissipation of turbulent kinetic energy inside the flame brush and throughout the flowfield. Moreover, the plume of an open flame is unstable and the periodic fluctuations make additional contributions to flame front dynamics in the farfield. Therefore, processes such as flame wrinkling, flow acceleration due to heat release and flame- generated vorticity are all affected. Other global flame properties (e.g. flame stabilization limits and flame speed) may all be coupled to buoyancy. This

  5. Failure Prediction in Multiphase Deep-Water Buoyancy Systems

    OpenAIRE

    Hoel, Eirik

    2013-01-01

    The objective of this thesis is to explore how a new type of buoyancy material foroshore applications will perform under operating conditions. This includes buoy-ancy loads and extreme hydrostatic pressure. The new material system, Compbuoy,consists of porous, low cost pellets in a polymer matrix. Conventional buoyancyelements today are lled with syntactic foam, a much more expensive material. Asthe promising material Compbuoy has been developed, critical failure mechanismsmust be investigate...

  6. 40 CFR 1065.690 - Buoyancy correction for PM sample media.

    Science.gov (United States)

    2010-07-01

    ... insignificant effect on buoyancy correction, air density is primarily a function of atmospheric pressure... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Buoyancy correction for PM sample... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air...

  7. Physics of Buoyancy, pressure potential and Buoyancy reversal for CO2 and hydrocarbon migration

    Energy Technology Data Exchange (ETDEWEB)

    Udo Weyer, K. [WDA Consultants Inc., Calgary, Alberta (Canada)], email: weyer@wda-consultants.com

    2011-07-01

    Buoyancy reversal has been proven to exist by the three means of theoretical derivation, field evidence, and mathematical modelling. It is becoming urgent to use Hubbert's force potential and buoyancy reversal for studying carbon sequestration and the accumulation and production of hydrocarbons, in order to better understand the physical processes involved. As well, this study is important for optimization of both the methods of carbon sequestration and the recovery rate of hydrocarbons from reservoirs and unconventional gas plays, such as CBM and shale gas. The application of correct physics, through the existing models of regional groundwater flow, to the long-term migration of CO2, helps identify the eventual discharge points of injected CO2 and gives an estimation of the time required. With proper selection of the injection sites, it will take more than thousands or tens of thousands of years before the CO2 will re-enter the atmosphere, and the amount of CO2 discharged at that time will be significantly reduced by geochemical processes.

  8. Numerical Simulation on Floating Behavior of Buoyancy Tank Foundation of Anemometer Tower

    Institute of Scientific and Technical Information of China (English)

    丁红岩; 韩艳丽; 张浦阳

    2014-01-01

    The intact stability and damage stability of a model of an anemometer tower with buoyancy tank founda-tion are computed by the finite element software MOSES in this paper. The natural period of the anemometer tower is discussed through frequency domain analysis. The influence of a single factor, such as towing point position, wave height, wave direction and wave period, on towing stability is discussed through time domain analysis. At the same time, the towing stability under the condition of various combinations of many factors is analyzed based on the meas-ured data of the target area. Computer simulation results show that the intact stability is preferable and the damage stability is sufficient under the condition of plenty of subdivisions. Within the scope of the buoyancy tank foundation, the higher the towing point position is, the better the stability is. Wave height has a great impact on the motion ampli-tude of buoyancy tank foundation, but the effect on the acceleration is not obvious;wave period has a great impact on the acceleration, while the effect on the motion amplitude is not obvious;following-waves towing is more conducive to safety than atry.

  9. The Effect of Buoyancy Force in Computational Fluid Dynamics Simulation of a Two-Dimensional Continuous Ohmic Heating Process

    Directory of Open Access Journals (Sweden)

    Elzubier A. Salih

    2009-01-01

    Full Text Available Problem statement: Earlier research on ohmic heating technique focused on viscous food and foods containing solid particles. In this study, use of ohmic heating on sterilization of guava juice is carried out. Computational fluid dynamics was used to model and simulate the system. Investigate the buoyancy effect on the CFD simulation of continuous ohmic heating systems of fluid foods. Approach: A two-dimensional model describing the flow, temperature and electric field distribution of non-Newtonian power law guava juice fluid in a cylindrical continuous ohmic heating cell was developed. The electrical conductivity, thermo physical and rheological properties of the fluid was temperature dependent. Numerical simulation was carried out using FLUENT 6.1 software package. A user defined functions available in FLUENT 6.1 was employed for the electric field equation. The heating cell used consisted of a cylindrical tube of diameter 0.05 m, height 0.50 m and having three collinear electrodes of 0.02 m width separated by a distance of 0.22 m. The sample was subjected to zero voltage at the top and bottom of electrodes while electrical potential of 90 volts (AC 50-60 Hz was set at the middle electrode. The inlet velocity is 0.003 m sec-1 and the temperature is in the range of 30-90°C. Results: Simulation was carried with and without buoyancy driven force effect. The ohmic heating was successfully simulated using CFD and the results showed that the buoyancy had a strong effect in temperature profiles and flow pattern of the collinear electrodes configuration ohmic heating. A more uniform velocity and temperature profiles were obtained with the buoyancy effect included. Conclusion: For accurate results, the inclusion of buoyancy effect into the CFD simulation is important.

  10. Surface tension driven convection experiment

    Science.gov (United States)

    Ostrach, Simon; Kamotani, Yasuhiro

    1988-01-01

    Thermocapillary flow is driven by a thermally induced surface tension variation along a liquid free surface. In the Earth-gravity environment such flows are usually overshadowed by buoyancy driven flows, but at reduced gravity conditions their influence could be significant. A comprehensive theoretical and experimental research program was stated 12 years ago and is still being continued. Past work done at Case Western Reserve University as well as work done by others is reviewed. The justification for low-gravity experiments is presented.

  11. The effects of buoyancy on turbulent nonpremixed jet flames in crossflow

    Science.gov (United States)

    Boxx, Isaac G.

    became apparent in the JFICF at around xiy = 3.1 and grew in influence to become a dominant flow-field characteristic approximately xi y = 4.3. The PLMS images also yielded physical-insight into the nature of the fore-aft asymmetry of JFICF characteristics noted by previous researchers. Ensemble-averages of PLMS images were used to investigate centerline mixture fraction decay. Consistent with previous studies of non-reacting JICF studies, the mixture-fraction of the JFICF showed a power-law decay profile which scaled with (rd)-0.66. Over the region these measurements were made (xiy = 0--1.9), the mixture fraction decay scaling showed little sensitivity to buoyancy. Taken as a whole, these measurements show that buoyancy has the potential to significantly modify both the mean and instantaneous flow-field of a turbulent JFICF, even at relatively modest length-scales.

  12. Buoyancy flow in fractured rock with a salt gradient in the groundwater. A second study of coupled salt and thermal buoyancy

    International Nuclear Information System (INIS)

    An underground nuclear waste repository produces heat that will induce a buoyancy flow of groundwater in fractures and other permeable regions in the surrounding rock. The radioactive material may then, in case of penetrated canisters, possibly reach the biosphere. Measurements of ground water in crystalline rock show an increasing salt content with depth. The resulting increase of water density counteracts the thermal buoyancy, and it may create a natural barrier for the groundwater flow between the repository and the biosphere. The aim of the study is to analyse this barrier effect and to assess the maximum upward displacement of water starting from the vicinity of the repository. The coupled flow process for groundwater, salt and heat with buoyancy due to temperature and salt concentration differences is studied. The equations have been analysed in great detail, and a numerical model has been developed for the case of groundwater flow in a fracture plane. The largest upward displacement from the repository has been determined with the model for any heat release. Approximate formulas, which are shown to be sufficiently accurate for assessments, have been derived. The main formula concerns the case, when the canisters are stacked on the top of each other in a very deep borehole. There are no restrictions in the position of the fracture plane. The borehole may even lie directly in the fracture plane. We find a strong barrier effect. In a reference case with a salt concentration increase of 2% per km downwards and with 300 canisters placed over a length of 2000 m in the borehole (the total amount of released heat is 0.32 TWh), the largest upward displacement from the top of canisters becomes, according to the formula, 60 m

  13. The treatment of magnetic buoyancy in flux transport dynamo models

    CERN Document Server

    Choudhuri, Arnab Rai

    2015-01-01

    One important ingredient of flux transport dynamo models is the rise of the toroidal magnetic field through the convection zone due to magnetic buoyancy to produce bipolar sunspots and then the generation of the poloidal magnetic field from these bipolar sunspots due to the Babcock-Leighton mechanism. Over the years, two methods of treating magnetic buoyancy, a local method and a non-local method have been used widely by different groups in constructing 2D kinematic models of the flux transport dynamo. We review both these methods and conclude that neither of them is fully satisfactory, presumably because magnetic buoyancy is an inherently 3D process. We also point out so far we do not have proper understanding of why sunspot emergence is restricted to rather low latitudes.

  14. Numerical Simulations of Buoyancy Effects in low Density Gas Jets

    Science.gov (United States)

    Satti, R. P.; Pasumarthi, K. S.; Agrawal, A. K.

    2004-01-01

    This paper deals with the computational analysis of buoyancy effects in the near field of an isothermal helium jet injected into quiescent ambient air environment. The transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum were solved using a staggered grid finite volume method. Laminar, axisymmetric, unsteady flow conditions were considered for the analysis. An orthogonal system with non-uniform grids was used to capture the instability phenomena. Computations were performed for Earth gravity and during transition from Earth to different gravitational levels. The flow physics was described by simultaneous visualizations of velocity and concentration fields at Earth and microgravity conditions. Computed results were validated by comparing with experimental data substantiating that buoyancy induced global flow oscillations present in Earth gravity are absent in microgravity. The dependence of oscillation frequency and amplitude on gravitational forcing was presented to further quantify the buoyancy effects.

  15. Buoyancy effects on flames spreading down thermally thin fuels

    Science.gov (United States)

    Altenkirch, R. A.; Eichhorn, R.; Shang, P. C.

    1980-01-01

    Experiments show that buoyancy influences the downward spread rate of flames consuming thermally thin fuel beds. For index cards (0.0098 cm half-thickness) and adding-machine tape (0.0043 cm half-thickness), an increase in the buoyancy level causes the spread rate to drop until no flame propagation is possible. A dimensionless spread rate is found to correlate with a Damkoehler number. As the Damkoehler number increases with decreasing buoyancy level brought about by an increase in pressure or a decrease in gravity, the dimensionless spread rate approaches unity. It is also found that a small change in orientation with respect to the vertical is equivalent to a change in the magnitude of gravity in the direction of spread, and power-law relations between the dimensional spread rate and pressure are only valid over a small pressure range.

  16. Axisymmetric large eddy simulation of a circular source of buoyancy

    Energy Technology Data Exchange (ETDEWEB)

    Nihous, Gerard C., E-mail: nihous@hawaii.ed [University of Hawaii, Hawaii Natural Energy Institute, 1680 East-West Road, POST 109, Honolulu, HI 96822 (United States)

    2009-12-15

    Axisymmetric large-eddy simulations (LES) of published experiments on vertical mixing above a circular source of buoyancy are performed. Numerical results confirm the existence of a mixing boundary layer just above the buoyancy source (freshwater injected into saline water). As experiments suggested, the calculated normalized shape of the boundary layer seems independent of source size, freshwater injection rate and background solute concentration. This validates a restrictive but numerically efficient assumption of axisymmetric turbulence for the LES calculations. It also lends additional credibility to the theoretical boundary-layer analysis of Epstein and Burelbach [Epstein, M., Burelbach, J.P., 2001. Vertical mixing above a steady circular source of buoyancy. Int. J. Heat Mass Trans. 44, 525-536], even at marginally high Froude numbers.

  17. Axisymmetric large eddy simulation of a circular source of buoyancy

    International Nuclear Information System (INIS)

    Axisymmetric large-eddy simulations (LES) of published experiments on vertical mixing above a circular source of buoyancy are performed. Numerical results confirm the existence of a mixing boundary layer just above the buoyancy source (freshwater injected into saline water). As experiments suggested, the calculated normalized shape of the boundary layer seems independent of source size, freshwater injection rate and background solute concentration. This validates a restrictive but numerically efficient assumption of axisymmetric turbulence for the LES calculations. It also lends additional credibility to the theoretical boundary-layer analysis of Epstein and Burelbach [Epstein, M., Burelbach, J.P., 2001. Vertical mixing above a steady circular source of buoyancy. Int. J. Heat Mass Trans. 44, 525-536], even at marginally high Froude numbers.

  18. How did Archimedes discover the law of buoyancy by experiment?

    Science.gov (United States)

    Kuroki, Hidetaka

    2016-03-01

    After Archimedes and Vitruvius era, for more than 2000 years, it has been believed that the displaced water measurement of golden crown is impossible, and at his Eureka moment, Archimedes discovered the law of buoyancy (Proposition 7 of his principles) and proved the theft of a goldsmith by weighing the golden crown in water. A previous study showed that a small amount of displaced water was able to be measured with enough accuracy by the introduced method. Archimedes measured the weight of displaced water. He did not find the law of buoyancy but rather specific gravity of things at the moment. After which, Archimedes continued to measure the specific gravity of various solids and fluids. Through these measurements, he reached the discovery of the law of buoyancy directly by experiment. In this paper, the process to the discovery of Archimedes' principle (Proposition 5) is presented.

  19. The Effects of Buoyancy on Characteristics of Turbulent Nonpremixed Jet Flames

    Science.gov (United States)

    Idicheria, Cherian; Boxx, Isaac; Clemens, Noel

    2002-11-01

    This work addresses the influence of buoyant forces on the underlying structure of turbulent nonpremixed jet flames. Buoyancy effects are investigated by studying transitional and turbulent propane and ethylene flames (Re_D=2500-10500) at normal, low and microgravity conditions. The reduced gravity experiments are conducted by dropping a combustion rig in the University of Texas 1.25-second drop tower and the NASA Glenn 2.2-second drop tower. The diagnostic employed is high-speed luminosity imaging using a CCD camera. The images obtained are used to compare flame length, mean, RMS and flame tip oscillation characteristics The results showed that, in contrast to previous studies, the high Reynolds number flames at all gravity levels were essentially identical. Furthermore, the parameter ξL (Becker and Yamazaki, 1978) is sufficient for quantifying the effects of buoyancy on the flame characteristics. The large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided ξL is less than approximately 3.

  20. Trapping of swimming microorganisms at lower surfaces by increasing buoyancy.

    Science.gov (United States)

    Jung, Ilyong; Guevorkian, Karine; Valles, James M

    2014-11-21

    Models suggest that mechanical interactions alone can trap swimming microorganisms at surfaces. Testing them requires a method for varying the mechanical interactions. We tuned contact forces between Paramecia and surfaces in situ by varying their buoyancy with nonuniform magnetic fields. Remarkably, increasing their buoyancy can lead to ∼100% trapping at lower surfaces. A model of Paramecia in surface contact passively responding to external torques quantitatively accounts for the data implying that interactions with a planar surface do not engage their mechanosensing network and illuminating how their trapping differs from other smaller microorganisms. PMID:25479523

  1. Natural Convection Analysis with Various Turbulent Models Using FLUENT

    International Nuclear Information System (INIS)

    The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Especially, in last decades, natural convection in a close loop or cavity becomes the main issue in the molecular biology for the polymerase chain reaction (PCR). Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT, various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of flow characteristics. This work will suggest the best turbulent model of CFD for analyzing turbulent flows of the natural convection in an enclosure system

  2. Exploring a Detonation Nature of Mesoscopic Perturbations and Ejecta Formation from the Mesoscale Probing of the PBX-driven Liners

    Science.gov (United States)

    Plaksin, Igor; Guiruis, Raafat; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; Fernandes, Eduardo; Ferreira, Claudia

    2015-06-01

    Ejecting debris from free surface of liner is of considerable interest at optimization of explosive devices, in which the PBX-driven liner effects shock compression of gaseous matter. Following factors were historically considered as main drivers of material ejection: granular microstructure of liner material, roughness and surface defects of liner, and shock pressure time history in PBX-driven liner. In contrast to existing models, we are considering the small scale fluctuations of detonation flow as probable dominating factor of surface jetting in the PBX-driven collapsing liners. Obtained experimental evidence is indicative that jetting from the liners is caused by meso-scale perturbations of PBX detonations, which are identified as (1) ejecta of overdriven detonation products through detonation front, (2) ejecta-driven detonation cells, and (3) galloping detonation front motion. Spatially resolved scenarios of each of phenomena (1-3) were obtained in experiments with copper-liners and HMX-based PBXs fabricated on maximum packing density of crystalline constituents. Both the DRZ-induced perturbations translated to a PBX-driven liner and the ejected debris were recorded and quantitatively measured in the mesoscale range with application of the 96-channel optical analyzer MCOA-UC. Work was supported by the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and John Zimmerman Program Managers.

  3. Can conduction induce convection? The non-linear saturation of buoyancy instabilities in dilute plasmas

    CERN Document Server

    McCourt, Michael; Sharma, Prateek; Quataert, Eliot

    2010-01-01

    We study the effects of anisotropic thermal conduction on low-collisionality, astrophysical plasmas using two and three-dimensional magnetohydrodynamic simulations. For weak magnetic fields, dilute plasmas are buoyantly unstable for either sign of the temperature gradient: the heat-flux-driven buoyancy instability (HBI) operates when the temperature increases with radius while the magnetothermal instability (MTI) operates in the opposite limit. In contrast to previous results, we show that, in the presence of a sustained temperature gradient, the MTI drives strong turbulence and operates as an efficient magnetic dynamo (akin to standard, adiabatic convection). Together, the turbulent and magnetic energies contribute up to ~10% of the pressure support in the plasma. In addition, the MTI drives a large convective heat flux, ~1.5% of rho c_s^3. These findings are robust even in the presence of an external source of strong turbulence. Our results on the nonlinear saturation of the HBI are consistent with previous...

  4. On the role of buoyancy force in the ore genesis of SEDEX deposits: Example from Northern Australia

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Finite element modeling on a highly conceptualized 2-D model of fluid flow and heat transport is un-dertaken to simulate the paleo-hydrological system as if the Mount Isa deposits were being formed in the Mount Isa basin, Northern Australia, and to evaluate the potential of buoyancy force in driving ba-sin-scale fluid flow for the formation of sedimentary-exhalative (SEDEX) deposits. Our numerical case studies indicate that buoyancy-driven fluid flow is controlled mainly by the fault penetration depth and its spatial relation with the aquifer. Marine water recharges the basin via one fault and flows through the aquifer where it is heated from below. The heated metalliferous fluid discharges to the basin floor via the other fault. The venting fluid temperatures are computed to be in the range of 115 to 160℃, with fluid velocities of 2.6 to 4.1 m/year over a period of 1 Ma. These conditions are suitable for the formation of a Mount Isa-sized zinc deposit, provided a suitable chemical trap environment is present. Buoyancy force is therefore a viable driving mechanism for basin-scale ore-forming hydrothermal fluid migration, and it is strong enough to lead to the genesis of supergiant SEDEX deposits like the Mount Isa deposit, Northern Australia.

  5. On the role of buoyancy force in the ore genesis of SEDEX deposits: Example from Northern Australia

    Institute of Scientific and Technical Information of China (English)

    YANG JianWen; FENG ZuoHai; LUO XianRong; CHEN YuanRong

    2009-01-01

    Finite element modeling on a highly conceptualized 2-D model of fluid flow and heat transport is un-dertaken to simulate the paleo-hydrological system as if the Mount Ise deposits were being formed in the Mount Isa basin, Northern Australia, and to evaluate the potential of buoyancy force in driving ba-sin-scale fluid flow for the formation of sedimentary-exhalative (SEDEX) deposits. Our numerical case studies indicate that buoyancy-driven fluid flow is controlled mainly by the fault penetration depth and its spatial relation with the aquifer. Marine water recharges the basin via one fault and flows through the aquifer where it is heated from below. The heated metalliferous fluid discharges to the basin floor via the other fault. The venting fluid temperatures are computed to be in the range of 115 to 160℃, with fluid velocities of 2.6 to 4.1 m/year over a period of 1 Ma. These conditions are suitable for the formation of a Mount Isa-sized zinc deposit, provided a suitable chemical trap environment is present. Buoyancy force is therefore a viable driving mechanism for basin-scale ore-forming hydrothermal fluid migration, and it is strong enough to lead to the genesis of supergiant SEDEX deposits like the Mount Isa deposit, Northern Australia.

  6. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    Science.gov (United States)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  7. An Analytic Model for Buoyancy Resonances in Protoplanetary Disks

    CERN Document Server

    Lubow, Stephen H

    2014-01-01

    Zhu, Stone, and Rafikov (2012) found in 3D shearing box simulations a new form of planet-disk interaction that they attributed to a vertical buoyancy resonance in the disk. We describe an analytic linear model for this interaction. We adopt a simplified model involving azimuthal forcing that produces the resonance and permits an analytic description of its structure. We derive an analytic expression for the buoyancy torque and show that the vertical torque distribution agrees well with results of Athena simulations and a Fourier method for linear numerical calculations carried out with the same forcing. The buoyancy resonance differs from the classic Lindblad and corotation resonances in that the resonance lies along tilted planes. Its width depends on damping effects and is independent of the gas sound speed. The resonance does not excite propagating waves. At a given large azimuthal wavenumber k_y > 1/h (for disk thickness h), the buoyancy resonance exerts a torque over a region that lies radially closer to...

  8. An analytic model for buoyancy resonances in protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Lubow, Stephen H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Zhu, Zhaohuan, E-mail: lubow@stsci.edu, E-mail: zhzhu@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-04-10

    Zhu et al. found in three-dimensional shearing box simulations a new form of planet-disk interaction that they attributed to a vertical buoyancy resonance in the disk. We describe an analytic linear model for this interaction. We adopt a simplified model involving azimuthal forcing that produces the resonance and permits an analytic description of its structure. We derive an analytic expression for the buoyancy torque and show that the vertical torque distribution agrees well with the results of the Athena simulations and a Fourier method for linear numerical calculations carried out with the same forcing. The buoyancy resonance differs from the classic Lindblad and corotation resonances in that the resonance lies along tilted planes. Its width depends on damping effects and is independent of the gas sound speed. The resonance does not excite propagating waves. At a given large azimuthal wavenumber k{sub y} > h {sup –1} (for disk thickness h), the buoyancy resonance exerts a torque over a region that lies radially closer to the corotation radius than the Lindblad resonance. Because the torque is localized to the region of excitation, it is potentially subject to the effects of nonlinear saturation. In addition, the torque can be reduced by the effects of radiative heat transfer between the resonant region and its surroundings. For each azimuthal wavenumber, the resonance establishes a large scale density wave pattern in a plane within the disk.

  9. An Analytic Model for Buoyancy Resonances in Protoplanetary Disks

    Science.gov (United States)

    Lubow, Stephen H.; Zhu, Zhaohuan

    2014-04-01

    Zhu et al. found in three-dimensional shearing box simulations a new form of planet-disk interaction that they attributed to a vertical buoyancy resonance in the disk. We describe an analytic linear model for this interaction. We adopt a simplified model involving azimuthal forcing that produces the resonance and permits an analytic description of its structure. We derive an analytic expression for the buoyancy torque and show that the vertical torque distribution agrees well with the results of the Athena simulations and a Fourier method for linear numerical calculations carried out with the same forcing. The buoyancy resonance differs from the classic Lindblad and corotation resonances in that the resonance lies along tilted planes. Its width depends on damping effects and is independent of the gas sound speed. The resonance does not excite propagating waves. At a given large azimuthal wavenumber ky > h -1 (for disk thickness h), the buoyancy resonance exerts a torque over a region that lies radially closer to the corotation radius than the Lindblad resonance. Because the torque is localized to the region of excitation, it is potentially subject to the effects of nonlinear saturation. In addition, the torque can be reduced by the effects of radiative heat transfer between the resonant region and its surroundings. For each azimuthal wavenumber, the resonance establishes a large scale density wave pattern in a plane within the disk.

  10. Using Surface Integrals for Checking Archimedes' Law of Buoyancy

    Science.gov (United States)

    Lima, F. M. S.

    2012-01-01

    A mathematical derivation of the force exerted by an "inhomogeneous" (i.e. compressible) fluid on the surface of an "arbitrarily shaped" body immersed in it is not found in the literature, which may be attributed to our trust in Archimedes' law of buoyancy. However, this law, also known as Archimedes' principle (AP), does not yield the force…

  11. Numerical Study of Buoyancy Convection of Air under Permanent Magnetic Field and Comparison with That under Gravity Field

    OpenAIRE

    Kewei Song; Wenkai Li; Yang Zhou; Yuanru Lu

    2014-01-01

    Magnetothermal free convection of air in a square enclosure under a nonuniform magnetic field provided by a permanent neodymium-iron-boron magnet is numerically studied. The natural convection under the gravity field alone is also studied for comparison. The physical fields of magnetizing force, velocity, and temperature as well as the local distribution characteristic of Nusselt number are all presented in this paper. The results show that the buoyancy convection of air in the square enclosu...

  12. Longitudinal Modelling of Academic Buoyancy and Motivation: Do the 5Cs Hold Up over Time?

    Science.gov (United States)

    Martin, Andrew J.; Colmar, Susan H.; Davey, Louise A.; Marsh, Herbert W.

    2010-01-01

    Background: Academic buoyancy is students' ability to successfully deal with setbacks and challenges that are typical of academic life. The present study extends previous preliminary cross-sectional work that tentatively identified five motivational predictors of academic buoyancy--referred to as the "5Cs" of academic buoyancy: confidence…

  13. Gravity-driven intrusions in stratified fluids

    Science.gov (United States)

    Maurer, Benjamin Dudley

    All natural fluids stratify. Stable stratifications, in which isobars and isopycnals are parallel, are capable of supporting internal wave motion. Unstable stratification, in which density and pressure gradients are not aligned, results in gravity-driven flow. Gravity currents are a subset of these flows in which horizontal density gradients sharpen and propagate horizontally, transporting mass, momentum, and energy. If the density of the gravity current is within the density extrema of the stably stratified ambient fluid, it propagates as an intrusion at an intermediate height. Through laboratory experiments and numerical simulations, this dissertation explores the influence of stratification on the dynamics of gravity-driven intrusions. Intrusions require stable stratification in the ambient fluid, which is capable of transporting momentum and energy away from the current in the form of internal waves. We investigate the constant velocity propagation of well-mixed intrusions propagating into a linearly stratified ambient fluid. Varying the level of neutral buoyancy, we quantify the corresponding variation in structure, momentum, and energy of the upstream wave field. Adjacent stable stratifications of differing vertical density structure necessarily entail horizontal density gradients. These gradients determine the hydrostatic pressure differences driving the ensuing gravity current. We examine the mid-depth, constant velocity propagation of one linearly stratified fluid into another more strongly linearly stratified fluid. Working from the available potential energy of the system and measurements of the intrusion thickness, we develop an energy model to describe the speed of the intrusion in terms of the ratio of the two buoyancy frequencies. Distinct from adjacent linear stratifications, adjacent discrete stratifications may create flow consisting of interleaving intrusions. Single intrusions into a two-layer ambient fluid are well understood. Limiting our

  14. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    Science.gov (United States)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet

  15. Buoyancy statistics in moist turbulent Rayleigh-Benard convection

    CERN Document Server

    Schumacher, Joerg

    2009-01-01

    We study shallow moist Rayleigh-Benard convection in the Boussinesq approximation in three-dimensional direct numerical simulations. The thermodynamics of phase changes is approximated by a piecewise linear equation of state close to the phase boundary. The impact of phase changes on the turbulent fluctuations and the transfer of buoyancy through the layer is discussed as a function of the Rayleigh number and the ability to form liquid water. The enhanced buoyancy flux due to phase changes is compared with dry convection reference cases and related to the cloud cover in the convection layer. This study indicates that the moist Rayleigh-Benard problem offers a practical framework for the development and evaluation of parametrizations for atmospheric convection.

  16. Buoyancy Effect on MHD Flow Past a Permeable Bed

    Directory of Open Access Journals (Sweden)

    S. Venkataramana

    1986-10-01

    Full Text Available In this paper, the effect of buoyancy force on the parallel flows bounded above by a rigid permeable plate which may be moving or stationary and below, by a permeable bed has been investigated. To discuss the solution, the flow region is divided into two zones. In Zone 1, the flow is laminar and is governed by the Navier-Stokes equations from the impermeable upper rigid plate to the permeable bed. In Zone 2, the flow is governed by the Darcy law in the permeable bed below the nominal surface. The expressions for velocity and temparature distributions, Slip velocity, slip temperature, mass flow rate and the rates of heat transfer coefficients are obtained. The effects of magnetic, porous, slip and buoyancy parameters and Biot number on the above physical quantities are investigated. The thickness of the boundary layer in Zone 2 has been evaluated.

  17. Surface buoyancy flux in Bay of Bengal and Arabian Sea

    Directory of Open Access Journals (Sweden)

    G. Anitha

    2008-03-01

    Full Text Available The seasonal variation of thermal, haline, net surface buoyancy flux, the Monin-Obukhov length (M-O length, L and stability parameter, i.e. the ratio of M-O length to mixed layer depth (h were studied in the Bay of Bengal (BoB and the Arabian Sea (AS for the years 2003 and 2004 using Argo temperature and salinity profiles. The relative quantitative influence of winds to surface buoyancy and the applicability of scaling mixed layer using M-O length in BoB and AS was brought out. Rotation and light penetration modify the mixed layer depth from M-O length during shoaling in spring giving L/h<1.

  18. The global Meridional Overturning Circulation's response to variable buoyancy forcing

    OpenAIRE

    Butler, Edward D.

    2015-01-01

    The meridional overturning circulation (MOC) is a large-scale circulation throughout the global ocean and plays a significant role in the complex global climate system. However, our traditional understanding of the processes driving the MOC has been questioned in recent years. In particular, it has been suggested that surface buoyancy forcing plays little energetic role in driving the MOC. Furthermore, doubt has also been cast over the relationship between meridional overturning and meridiona...

  19. SuperLig Ion Exchange Resin Swelling and Buoyancy Study

    International Nuclear Information System (INIS)

    The objective of this study was to achieve a fundamental understanding of SuperLig resin swelling and shrinking characteristics, which lead to channeling and early breakthrough during loading cycles. The density of salt solution that causes resin floating was also determined to establish a limit for operation. Specific tests performed include (a) pH dependence, (b) ionic strength dependence and (c) buoyancy effect vs. simulant composition

  20. Design and Analysis of Typical Buoyancy Tank Riser Tensioner Systems

    Institute of Scientific and Technical Information of China (English)

    Zhuang Kang; Lusheng Jia; Liping Sun; Wenzhou Liang

    2012-01-01

    The method for design and analysis of a buoyancy tank riser tensioner system (BTRTS) was put forward in this paper,taking the free standing hybrid riser's top buoyancy tank as an example.The design procedure was discussed and was also illustrated in a flowchart,after a short description of the global arrangement,structure configuration,and the function of different types of buoyancy tanks (BT).The objective of this paper is to describe a way of developing a BT with minimal hydro force,maximal net lift,and no redundancy of comparunents.The method of determining the main dimensions of the BT,namely the length and the outer diameter,was outlined.A series of investigations was conducted for a West Africa FSHR BT design,and the effect of the ratio of the length to the outer diameter (L/D) on the hydrodynamics and the weight of the BT was discussed.The methodology of designing the internal structure of the BT was presented.The effects of the number of compartments and the dimension of the inner stem on the BT weight and strength were compared.The relationship between inner structure and the number one index of the BT as well as the riser's top tension factor (TTF) were illustrated for normal operating conditions and conditions with one or more compartments (or inner stem) damaged.A design instance was given in this paper,when L/D is 4-6,the BT weight and the drag force are compromised.When the BT is divided into 10 compartments,the riser TTF will reach the maximum value,and the ratio of the stem OD to shell OD is about 0.3.A global strength analysis method of the BT and the main load case matrix was also included in the paper,together with the local strength analysis of the buoyancy tank's pad-eye assembly.

  1. Oscillatory convection in binary mixtures: thermodiffusion, solutal buoyancy, and advection

    OpenAIRE

    Jung, D.; Matura, P.; Luecke, M.

    2005-01-01

    The role of thermodiffusive generation of concentration fluctuations via the Soret effect, their contribution to the buoyancy forces that drive convection, the advective mixing effect of the latter, and the diffusive homogenisation are compared and elucidated for oscillatory convection. Numerically obtained solutions of the field equations in the form of spatially extended relaxed traveling waves, of standing waves, and of the transient growth of standing waves and their transition to traveli...

  2. Neutral Buoyancy Portable Life Support System performance study

    Science.gov (United States)

    Chang, Chi-Min; Conger, Bruce C.; Iovine, John V.

    1991-01-01

    The Neutral Buoyancy Portable Life Support System (NBPSS) has been designed to support astronaut underwater training activities associated with EVA operations. The performance of competing NBPSS configurations has been analyzed on the basis of a modified 'Metabolic Man' program. NBPSS success is dependent on the development of novel cryogen supply tank and liquid-cooling garment vaporizer. Attention is given to mass and thermal balances and the evaluation results for the vent-loop ejector and heat-exchanger designs.

  3. Buoyancy waves in Pluto's high atmosphere: Implications for stellar occultations

    CERN Document Server

    Hubbard, W B; Kulesa, C A; Benecchi, S D; Person, M J; Elliot, J L; Gulbis, A A S

    2009-01-01

    We apply scintillation theory to stellar signal fluctuations in the high-resolution, high signal/noise, dual-wavelength data from the MMT observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined high wavenumber cutoff in the fluctuations is consistent with viscous-thermal dissipation of buoyancy waves (internal gravity waves) in Pluto's high atmosphere, and provides strong evidence that the underlying density fluctuations are governed by the gravity-wave dispersion relation.

  4. Experimental parameterisation of principal physics in buoyancy variations of marine teleost eggs.

    Science.gov (United States)

    Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Sundby, Svein

    2014-01-01

    It is generally accepted that the high buoyancy of pelagic marine eggs is due to substantial influx of water across the cell membrane just before ovulation. Here we further develop the theoretical basis by applying laboratory observations of the various components of the fertilized egg in first-principle equations for egg specific gravity (ρ(egg)) followed by statistical validation. We selected Atlantic cod as a model animal due to the affluent amount of literature on this species, but also undertook additional dedicated experimental works. We found that specific gravity of yolk plus embryo is central in influencing ρ(egg) and thereby the buoyancy. However, our established framework documents the effect on ρ(egg) of the initial deposition of the heavy chorion material in the gonad prior to spawning. Thereafter, we describe the temporal changes in ρ(egg) during incubation: Generally, the eggs showed a slight rise in ρ(egg) from fertilization to mid-gastrulation followed by a gradual decrease until full development of main embryonic organs just before hatching. Ontogenetic changes in ρ(egg) were significantly associated with volume and mass changes of yolk plus embryo. The initial ρ(egg) at fertilization appeared significantly influenced by the chorion volume fraction which is determined by the combination of the final chorion volume of the oocyte and of the degree of swelling (hydrolyzation) prior to spawning. The outlined principles and algorithms are universal in nature and should therefore be applicable to fish eggs in general. PMID:25122447

  5. Compositional vs. thermal buoyancy and the evolution of subducted lithosphere

    Science.gov (United States)

    Gaherty, James B.; Hager, Bradford H.

    1994-01-01

    We formulate 2-D Cartesian finite element models that explore the fate of compositionally defined lithosphere as it encounters a viscosity increase at the boundary between the upper and lower mantle. Subducted lithosphere is represented as a cold, stiff, layered composite of denser eclogite underlain by more buoyant harzburgite. Slabs impinging on a lower mantle 30 and 100 times more viscous than the upper mantle thicken and fold strongly as they penetrate the lower mantle. Approximately a factor of two thickening occurs via pure shear just above the discontinuity, with additional enhancement due to folding by over a factor of two. No separation of the individual slab components occurs at the discontinuity, and direct comparison with models in which compositional buoyancy is explicitly ignored indicates that slab evolution is largely controlled by the thermal buoyancy. These results are at odds with hypotheses about slab evolution in which the compositional buoyancy contributions lead to component separation and the formation of slab megaliths or a compositionally layered upper mantle.

  6. Buoyancy Effects in Strongly-Pulsed, Turbulent Diffusion Flames

    Science.gov (United States)

    Hermanson, James; Johari, Hamid; Stocker, Dennis; Hegde, Uday

    2004-11-01

    Buoyancy effects in pulsed, turbulent flames are studied in microgravity in a 2.2 s drop-tower. The fuel is pure ethylene or a 50/50 mixture with nitrogen; the oxidizer co-flow is either air or 30% oxygen in nitrogen. A fast solenoid valve fully modulates (shuts off) the fuel flow between pulses. The jet Reynolds number is 5000 with a nozzle i.d. of 2 mm. For short injection times and small duty cycle (jet-on fraction), compact, puff-like flames occur. The invariance in flame length of these puffs with buoyancy is due to offsetting changes in puff celerity and burnout time. Buoyancy does impact interacting flame puffs, with the flame length generally increasing with injection duty cycle. The mean centerline temperatures for all flames are generally higher in microgravity than in normal gravity. The transition in temperatures with increasing injection time is more gradual in micro-g than in 1-g. These observations can be explained in terms of the local duty cycle in the flame and differences in entrainment in normal- vs. microgravity.

  7. Buoyancy Effects in Turbulent Jet Flames in Crossflow

    Science.gov (United States)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2003-11-01

    The aim of this study is to investigate the effects of buoyancy on the structure of turbulent, non-premixed hydrocarbon jet-flames in crossflow (JFICF). This was accomplished using a small jet-in-crossflow facility which can be oriented at a variety of angles with respect to the gravity vector. This facility enables us to alter the relative influence of buoyancy on the JFICF without altering the jet-exit Reynolds number, momentum flux ratio or the geometry of the system. Results are compared to similar, but non-buoyant, JFICF studied in microgravity. Departures of jet-centerline trajectory from the well-known power-law scaling of turbulent JFICF were used to explore the transition from a buoyancy-influenced regime to a momentum dominated one. The primary diagnostic was CCD imaging of soot-luminosity. We present results on ethylene jet flames with jet-exit Reynolds numbers of 1770 to 8000 and momentum flux ratios of 5 to 13.

  8. Computational study of buoyancy effects in a laminar starting jet

    International Nuclear Information System (INIS)

    Vortical structures formed in evolving jets are important in applications such as fuel injection in diesel engines and fuel leaks. When the jet fluid is different from the ambient fluid, the buoyancy can play an important role in determining the jet flow structure, and hence, the entrainment and fluid mixing processes. In the present study, a jet of helium injected in air is investigated, with emphasis placed on delineating the buoyancy effects on vector-scalar fields during the starting phase. We utilize a computational model, previously validated to predict the flow field of low-density gas jets. The model incorporates finite volume approach to solve the transport equation of helium mass fraction coupled with conservation equations of mixture mass and momentum. Computations were performed for a laminar jet to characterize the advancing jet front, and to capture the formation and propagation of vortex rings and the related pinch-off process. Results show significant effects of buoyancy on jet advancement, as well as on vorticity and helium concentration in the core of the vortex rings

  9. Effect of the radial buoyancy on a circular Couette flow

    Science.gov (United States)

    Meyer, Antoine; Yoshikawa, Harunori N.; Mutabazi, Innocent

    2015-11-01

    The effect of a radial temperature gradient on the stability of a circular Couette flow is investigated when the gravitational acceleration is neglected. The induced radial stratification of the fluid density coupled with the centrifugal acceleration generates radial buoyancy which is centrifugal for inward heating and centripetal for outward heating. This radial buoyancy modifies the Rayleigh discriminant and induces the asymmetry between inward heating and outward heating in flow behavior. The critical modes are axisymmetric and stationary for inward heating while for outward heating, they can be oscillatory axisymmetric or nonaxisymmetric depending on fluid diffusion properties, i.e., on the Prandtl number Pr. The dependence of the critical modes on Pr is explored for different values of the radius ratio of the annulus. The power input of the radial buoyancy is compared with other power terms. The critical frequency of the oscillatory axisymmetric modes is linked to the Brunt-Väisälä frequency due to the density stratification in the radial gravity field induced by the rotation. These modes are associated with inertial waves. The dispersion relation of the oscillatory axisymmetric modes is derived in the vicinity of the critical conditions. A weakly nonlinear amplitude equation with a forcing term is proposed to explain the domination of these axisymmetric oscillatory modes over the stationary centrifugal mode.

  10. Buoyancy, transport, and head loss of fibrous reactor insulation

    International Nuclear Information System (INIS)

    In the event of a loss of coolant accident (LOCA) in a nuclear power plant, it is possible that insulation for pipes or other items inside the containment building could be dislodged by the high energy break jet. This insulation debris could affect the recirculation of water from the sump of the emergency core cooling system (ECCS) by collecting on the screen surrounding this sump. To help in assessing the possible effect of detached insulation on the ECCS, buoyancy, transport, and head loss characteristics of the insulation were studied experimentally. Three types of insulation pillows with mineral wool and fiberglass cores were tested in undamaged state, with their covers opened and with the insulation core in broken-up and shredded conditions. Small samples of reflective metallic and closed cell insulations were also tested for transport and buoyancy. The buoyancy studies revealed that the insulation core material sank more rapidly in hot water than in cold, that the tested mineral wool insulation did not readily sink, but that the fiberglass insulation did and that undamaged pillows could remain afloat for several days due to trapped air pockets forming inside the pillow covers. The transport studies furnished values of the flow velocity needed (i) to initiate the movement of sunken insulation towards a screen, (ii) to bring all the insulation on the screen, and (iii) to flip the insulation vertically on the screen. The head loss studies resulted in graphs of head loss versus approach velocity for undisturbed insulation and for beds of accumulated insulation fragments

  11. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.

    Science.gov (United States)

    Dash, Susmita; Chandramohan, Aditya; Weibel, Justin A; Garimella, Suresh V

    2014-12-01

    We investigate hitherto-unexplored flow characteristics inside a sessile droplet evaporating on heated hydrophobic and superhydrophobic surfaces and propose the use of evaporation-induced flow as a means to promote efficient "on-the-spot" mixing in microliter-sized droplets. Evaporative cooling at the droplet interface establishes a temperature gradient that induces buoyancy-driven convection inside the droplet. An asymmetric single-roll flow pattern is observed on the superhydrophobic substrate, in stark contrast with the axisymmetric toroidal flow pattern that develops on the hydrophobic substrate. The difference in flow patterns is attributed to the larger height-to-diameter aspect ratio of the droplet (of the same volume) on the superhydrophobic substrate, which dictates a single asymmetric vortex as the stable buoyancy-induced convection mode. A scaling analysis relates the observed velocities inside the droplet to the Rayleigh number. On account of the difference in flow patterns, Rayleigh numbers, and the reduced solid-liquid contact area, the flow velocity is an order of magnitude higher in droplets evaporating on a superhydrophobic substrate as compared to hydrophobic substrates. Flow velocities in all cases are shown to increase with substrate temperature and droplet size: The characteristic time required for mixing of a dye in an evaporating sessile droplet is reduced by ∼8 times on a superhydrophobic surface when the substrate temperature is increased from 40 to 60 °C. The mixing rate is ∼15 times faster on the superhydrophobic substrate compared to the hydrophobic surface maintained at the same temperature of 60 °C. PMID:25615112

  12. Special session: computational predictability of natural convection flows in enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Christon, M A; Gresho, P M; Sutton, S B

    2000-08-14

    Modern thermal design practices often rely on a ''predictive'' simulation capability--although predictability is rarely quantified and often difficult to confidently achieve in practice. The computational predictability of natural convection in enclosures is a significant issue for many industrial thermal design problems. One example of this is the design for mitigation of optical distortion due to buoyancy-driven flow in large-scale laser systems. In many instances the sensitivity of buoyancy-driven enclosure flows can be linked to the presence of multiple bifurcation points that yield laminar thermal convective processes that transition from steady to various modes of unsteady flow. This behavior is brought to light by a problem as ''simple'' as a differentially-heated tall rectangular cavity (8:1 height/width aspect ratio) filled with a Boussinesq fluid with Pr = 0.71--which defines, at least partially, the focus of this special session. For our purposes, the differentially-heated cavity provides a virtual fluid dynamics laboratory.

  13. Effects of salinity and sea salt type on egg activation, fertilization, buoyancy and early embryology of European eel, Anguilla anguilla.

    Science.gov (United States)

    Sørensen, Sune Riis; Butts, Ian Anthony Ernest; Munk, Peter; Tomkiewicz, Jonna

    2016-02-01

    Improper activation and swelling of in vitro produced eggs of European eel, Anguilla anguilla, has been shown to negatively affect embryonic development and hatching. We investigated this phenomenon by examining the effects of salinity and sea salt type on egg dimensions, cell cleavage patterns and egg buoyancy. Egg diameter after activation, using natural seawater adjusted to different salinities, varied among female eels, but no consistent pattern emerged. Activation salinities between 30-40 practical salinity unit (psu) produced higher quality eggs and generally larger egg diameters. Chorion diameters reached maximal values of 1642 ± 8 μm at 35 psu. A positive relationship was found between egg neutral buoyancy and activation salinity. Nine salt types were investigated as activation and incubation media. Five of these types induced a substantial perivitelline space (PVS), leading to large egg sizes, while the remaining four salt types resulted in smaller eggs. All salt types except NaCl treatments led to high fertilization rates and had no effect on fertilization success as well as egg neutral buoyancies at 7 h post-fertilization. The study points to the importance of considering ionic composition of the media when rearing fish eggs and further studies are encouraged. PMID:25707438

  14. The influence of flow inertia, buoyancy, wind, and flow unsteadiness on mixing at the asymmetrical confluence of two large rivers

    Science.gov (United States)

    Ramón, Cintia L.; Prats, Jordi; Rueda, Francisco J.

    2016-08-01

    The rates and patterns of mixing of two large rivers with large density differences at a strongly asymmetrical confluence in northern Spain are analyzed. We assess the factors controlling the site where the denser river plunges and the mixing rates between the rivers. In particular, we focus on the interaction between inertial and buoyancy forces, the effect of wind forcing, and the unsteady nature of the hydraulic forcing. The steady-state location of the plunge line is shown to be controlled by an inertia-buoyancy balance, which accounts for the relative magnitude of the buoyancy forcing associated with density differences between the confluent rivers, and the magnitudes of both the main-stream and the side-flow (tributary) inertia. The plunge line moves to upstream locations as the inertia of the tributary increases (for low tributary inertia) and/or the density contrast between the rivers increases. This has important consequences for river mixing since mixing rates increase as the plunging occurs at the confluence. The high mixing rates in this case occur as a result of a large mixing interface surface area and high diffusivities. As the plunging area moves upstream or downstream of the confluence, vertical diffusivities or the area of contact available for mixing decrease and constrain mixing rates. Wind forcing, depending on its velocity and direction, affects mixing rates through (1) altering the buoyancy-inertia equilibrium and so changing the location of the plunge line, (2) altering the pattern of secondary circulation within the confluence and/or (3) increasing shear at the confluence. Flow unsteadiness can lead to changes in the location of the plunge line through time and thus can strongly modify mixing rates at the confluence. The downstream movement of the plunge line is advection dominated, while its upstream movement seems to respond to a baroclinic response of the confluence.

  15. Effects of Buoyancy in Hydrogen Jet Diffusion Flames

    Science.gov (United States)

    Agrawal, A. K.; Al-Ammar, K.; Gollahalli, S. R.; Griffin, D. W.

    1999-01-01

    This project was carried out to understand the effects of heat release and buoyancy on the flame structure of diffusion flames. Experiments were conducted at atmospheric pressure in both normal gravity and microgravity conditions in the NASA LeRC 2.2 s drop tower. Experiments were also conducted in a variable pressure combustion facility in normal gravity to scale buoyancy and thus, to supplement the drop tower experiments. Pure H2 or H2 mixed with He was used as the jet fluid to avoid the complexities associated with soot formation. Fuel jet burning in quiescent air was visualized and quantified by the Rainbow Schlieren Deflectometry (RSD) to obtain scalar profiles (temperature, oxygen concentration) within the flame. Burner tube diameter (d) was varied from 0.3 to 1.19 mm producing jet exit Reynolds numbers ranging from 40 to 1900, and generating flames encompassing laminar and transitional (laminar to turbulent) flow structure. Some experiments were also complemented with the CFD analysis. In a previous paper, we have presented details of the RSD technique, comparison of computed and measured scalar distributions, and effects of buoyancy on laminar and transitional H2 gas-jet diffusion flames. Results obtained from the RSD technique, variable pressure combustion chamber, and theoretical models have been published. Subsequently, we have developed a new drop rig with improved optical and image acquisition. In this set up, the schlieren images are acquired in real time and stored digitally in RAM of an onboard computer. This paper deals with laminar diffusion flames of pure H2 in normal and microgravity.

  16. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  17. Noble gas and carbon isotopic evidence for CO2-driven silicate dissolution in a recent natural CO2 field

    Science.gov (United States)

    Dubacq, Benoît; Bickle, Mike J.; Wigley, Max; Kampman, Niko; Ballentine, Chris J.; Sherwood Lollar, Barbara

    2012-08-01

    Secure storage of anthropogenic carbon dioxide (CO2) in geological reservoirs requires predicting gas-water-rock interactions over millennial timescales. Noble gases and carbon isotope measurements can be used to shed light on the nature of competing dissolution-precipitation processes over different timescales, from the fast dissolution of gaseous CO2 in groundwater to more sluggish reactions involving dissolution and precipitation of newly formed minerals in the reservoir. Here we study a compilation of gas analyses including noble gases and δ13C of CO2 from nine different natural CO2 reservoirs. Amongst these reservoirs, the Bravo Dome CO2 field (New Mexico, USA) shows distinct geochemical trends which are explained by degassing of noble gases from groundwater altering the composition of the gas phase. This groundwater degassing is synchronous with the dissolution of CO2 in groundwater. Progressive creation of alkalinity via CO2-promoted mineral dissolution is required to explain the observed positive correlation between CO2/3He and δ13C of the gas phase, a unique feature of Bravo Dome. The differences between Bravo Dome and other natural CO2 reservoirs are likely explained by the more recent filling of Bravo Dome, reflecting CO2-water-rock interactions over thousands of years rather than over millions of years in older reservoirs.

  18. Buoyancy waves in Pluto's high atmosphere: Implications for stellar occultations

    OpenAIRE

    Hubbard, W. B.; McCarthy, D. W.; Kulesa, C. A.; Benecchi, S. D.; Person, M. J.; Elliot, J. L.; Gulbis, A.A.S.

    2009-01-01

    We apply scintillation theory to stellar signal fluctuations in the high-resolution, high signal/noise, dual-wavelength data from the MMT observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined high wavenumber cutoff in the fluctuations is consistent with viscous-thermal dissipation of buoyancy waves (internal gravity waves) in Pluto’s high atmosphere, and provides strong evidence that the underlying density fluctuations are governed by the gravity-wave dispersion rela...

  19. Buoyancy Effect on MHD Flow Past a Permeable Bed

    OpenAIRE

    S. Venkataramana; D. Bathaiah

    1986-01-01

    In this paper, the effect of buoyancy force on the parallel flows bounded above by a rigid permeable plate which may be moving or stationary and below, by a permeable bed has been investigated. To discuss the solution, the flow region is divided into two zones. In Zone 1, the flow is laminar and is governed by the Navier-Stokes equations from the impermeable upper rigid plate to the permeable bed. In Zone 2, the flow is governed by the Darcy law in the permeable bed below the nominal surface....

  20. Alpha effect due to buoyancy instability of a magnetic layer

    OpenAIRE

    Chatterjee, Piyali; Mitra, Dhrubaditya; Rheinhardt, Matthias; Brandenburg, Axel

    2010-01-01

    A strong toroidal field can exist in form of a magnetic layer in the overshoot region below the solar convection zone. This motivates a more detailed study of the magnetic buoyancy instability with rotation. We calculate the alpha effect due to helical motions caused by a disintegrating magnetic layer in a rotating density-stratified system with angular velocity Omega making an angle theta with the vertical. We also study the dependence of the alpha effect on theta and the strength of the ini...

  1. Non-Gaussian buoyancy statistics in fingering convection

    CERN Document Server

    von Hardenberg, Jost

    2010-01-01

    We examine the statistics of active scalar fluctuations in high-Rayleigh number fingering convection with high-resolution three-dimensional numerical experiments. The one-point distribution of buoyancy fluctuations is found to present significantly non-Gaussian tails. A modified theory based on an original approach by Yakhot (1989) is used to model the active scalar distributions as a function of the conditional expectation values of scalar dissipation and fluxes in the flow. Simple models for these two quantities highlight the role of blob-like coherent structures for scalar statistics in fingering convection.

  2. Non-Gaussian buoyancy statistics in fingering convection

    Energy Technology Data Exchange (ETDEWEB)

    Hardenberg, Jost von, E-mail: j.vonhardenberg@isac.cnr.i [Institute of Atmospheric Sciences and Climate, CNR, Torino (Italy); Paparella, Francesco, E-mail: francesco.paparella@unisalento.i [Dip. di Matematica, Universita del Salento and CMCC, Lecce (Italy)

    2010-06-07

    We examine the statistics of active scalar fluctuations in high-Rayleigh number fingering convection with high-resolution three-dimensional numerical experiments. Marked non-Gaussian tails are found in the one-point distribution of buoyancy fluctuations. A modified theory based on an original approach by Yakhot (1989) is used to model the active scalar distributions as a function of the conditional expectation values of scalar dissipation and fluxes in the flow. Simple models for these two quantities highlight the role of blob-like coherent structures for scalar statistics in fingering convection.

  3. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...... producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting. The...

  4. Using surface integrals for checking the Archimedes' law of buoyancy

    OpenAIRE

    Lima, F. M. S.

    2011-01-01

    A mathematical derivation of the force exerted by an \\emph{inhomogeneous} (i.e., compressible) fluid on the surface of an \\emph{arbitrarily-shaped} body immersed in it is not found in literature, which may be attributed to our trust on Archimedes' law of buoyancy. However, this law, also known as Archimedes' principle (AP), does not yield the force observed when the body is in contact to the container walls, as is more evident in the case of a block immersed in a liquid and in contact to the ...

  5. Niche-driven evolution of metabolic and life-history strategies in natural and domesticated populations of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sicard Delphine

    2009-12-01

    Full Text Available Abstract Background Variation of resource supply is one of the key factors that drive the evolution of life-history strategies, and hence the interactions between individuals. In the yeast Saccharomyces cerevisiae, two life-history strategies related to different resource utilization have been previously described in strains from different industrial origins. In this work, we analyzed metabolic traits and life-history strategies in a broader collection of yeast strains sampled in various ecological niches (forest, human body, fruits, laboratory and industrial environments. Results By analysing the genetic and plastic variation of six life-history and three metabolic traits, we showed that S. cerevisiae populations harbour different strategies depending on their ecological niches. On one hand, the forest and laboratory strains, referred to as extreme "ants", reproduce quickly, reach a large carrying capacity and a small cell size in fermentation, but have a low reproduction rate in respiration. On the other hand, the industrial strains, referred to as extreme "grasshoppers", reproduce slowly, reach a small carrying capacity but have a big cell size in fermentation and a high reproduction rate in respiration. "Grasshoppers" have usually higher glucose consumption rate than "ants", while they produce lower quantities of ethanol, suggesting that they store cell resources rather than secreting secondary products to cross-feed or poison competitors. The clinical and fruit strains are intermediate between these two groups. Conclusions Altogether, these results are consistent with a niche-driven evolution of S. cerevisiae, with phenotypic convergence of populations living in similar habitat. They also revealed that competition between strains having contrasted life-history strategies ("ants" and "grasshoppers" seems to occur at low frequency or be unstable since opposite life-history strategies appeared to be maintained in distinct ecological niches.

  6. Buoyancy Effects on Flow Transition in Low-Density Inertial Gas Jets

    Science.gov (United States)

    Pasumarthi, Kasyap S.; Agrawal, Ajay K.

    2005-01-01

    Effects of buoyancy on transition from laminar to turbulent flow are presented for momentum-dominated helium jet injected into ambient air. The buoyancy was varied in a 2.2-sec drop tower facility without affecting the remaining operating parameters. The jet flow in Earth gravity and microgravity was visualized using the rainbow schlieren deflectometry apparatus. Results show significant changes in the flow structure and transition behavior in the absence of buoyancy.

  7. Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions.

    Science.gov (United States)

    Nehaniv, Chrystopher L; Rhodes, John; Egri-Nagy, Attila; Dini, Paolo; Morris, Eric Rothstein; Horváth, Gábor; Karimi, Fariba; Schreckling, Daniel; Schilstra, Maria J

    2015-07-28

    Interaction computing is inspired by the observation that cell metabolic/regulatory systems construct order dynamically, through constrained interactions between their components and based on a wide range of possible inputs and environmental conditions. The goals of this work are to (i) identify and understand mathematically the natural subsystems and hierarchical relations in natural systems enabling this and (ii) use the resulting insights to define a new model of computation based on interactions that is useful for both biology and computation. The dynamical characteristics of the cellular pathways studied in systems biology relate, mathematically, to the computational characteristics of automata derived from them, and their internal symmetry structures to computational power. Finite discrete automata models of biological systems such as the lac operon, the Krebs cycle and p53-mdm2 genetic regulation constructed from systems biology models have canonically associated algebraic structures (their transformation semigroups). These contain permutation groups (local substructures exhibiting symmetry) that correspond to 'pools of reversibility'. These natural subsystems are related to one another in a hierarchical manner by the notion of 'weak control'. We present natural subsystems arising from several biological examples and their weak control hierarchies in detail. Finite simple non-Abelian groups are found in biological examples and can be harnessed to realize finitary universal computation. This allows ensembles of cells to achieve any desired finitary computational transformation, depending on external inputs, via suitably constrained interactions. Based on this, interaction machines that grow and change their structure recursively are introduced and applied, providing a natural model of computation driven by interactions. PMID:26078349

  8. Dispersion of a passive tracer in buoyancy- and shear-driven boundary layers

    NARCIS (Netherlands)

    Dosio, A.; Vilà-Guerau de Arellano, J.; Holtslag, A.A.M.; Builtjes, P.J.H.

    2003-01-01

    By means of finescale modeling [large-eddy simulation (LES)], the combined effect of thermal and mechanical forcing on the dispersion of a plume in a convective boundary layer is investigated. Dispersion of a passive tracer is studied in various atmospheric turbulent flows, from pure convective to a

  9. Disentangle plume-induced anisotropy in the velocity field in buoyancy-driven turbulence

    CERN Document Server

    Zhou, Quan

    2011-01-01

    We present a method of disentangling the anisotropies produced by the cliff structures in turbulent velocity field and test it in the system of turbulent Rayleigh-B\\'{e}nard (RB) convection. It is found that in the RB system the cliff structures in the velocity field are generated by thermal plumes. These cliff structures induce asymmetry in the velocity increments, which leads us to consider the plus and minus velocity structure functions (VSF). The plus velocity increments exclude cliff structures, while the minus ones include them. Our results show that the scaling exponents of the plus VSFs are in excellent agreement with those predicted for homogeneous and isotropic turbulence (HIT), whereas those of the minus VSFs exhibit significant deviations from HIT expectations in places where thermal plumes abound. These results demonstrate that plus and minus VSFs can be used to quantitatively study the effect of cliff structures in the velocity field and to effectively disentangle the associated anisotropies cau...

  10. CFD simulations of buoyancy driven flow mixing experiments performed at the ROCOM facility

    International Nuclear Information System (INIS)

    Multi-physics approaches are currently developed at Tractebel Engineering (TE) for accurately simulating the complex interaction between neutronics and thermal-hydraulics during asymmetric accidents. One branch of the improvements of the method focuses on the implementation in the coupled codes package of realistic core inlet distributions obtained from CFD results. Two flow mixing tests performed at the ROCOM facility and representative of asymmetric flow conditions are being simulated with the CFD code ANSYS CFX 12.0. The results show that the main mixing phenomena are qualitatively well reproduced, but a quantitative analysis points out an underestimation of the mixing in the simulations. (author)

  11. Assessment of CFD URANS models for buoyancy driven mixing flows based on ROCOM experiments

    International Nuclear Information System (INIS)

    An assessment of STAR-CCM+ Computational Fluid Dynamics (CFD) models of a KONVOI type Reactor Pressure Vessel (RPV) has been performed based on experimental data collected at the ROssendorf COolant Mixing (ROCOM) test facility as part of the OECD-NEA PKL 2 Project. Three different experimental configurations typical of Main Steam Line Break (MSLB) with Loss-Of-Offsite-Power (LOOP) scenarios are investigated (i.e. Test 1.1, 2.1 and 2.2). The transport of the mixing scalar is based on an equivalent thermal model of the isothermal experimental system. The focus of the study is on the modeling of the physical properties and the turbulent heat flux (closure term) needed by the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations. Results show that a standard Constant Turbulent Prandtl number (CTP) and the chosen Variable Turbulent Prandtl number (VTP) models are capable of describing qualitatively and quantitatively well the time-evolution of the temperature field in the core inlet zone (Test 1.1). When large density differences of the coolant are present in the system, the VTP model outperforms the CTP model in predicting the elevation of the thermal stratification line that builds up in the downcomer due to incomplete mixing. Nevertheless, the CTP model performs very well when the density difference is very low (Test 2.1). No significant changes have been observed for Test 2.2 when idealized boundary conditions are used instead of the experimental ones. (author)

  12. Magnetic Control of Solutal Buoyancy-driven Convection. Part 1; Theory and Experiments

    Science.gov (United States)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented.

  13. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    CERN Document Server

    Zhuravleva, I; Arevalo, P; Schekochihin, A A; Forman, W R; Allen, S W; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N

    2016-01-01

    Cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ~ 8-70 kpc scales in the inner region have an isobaric nature, i.e., are consistent with slow displacements of the gas in pressure equilibrium with ambient medium. Observed variance translates to the ratio of non-thermal to thermal energy of ~13 per cent. In the region dominated by weak "ripples", about half of the total variance is also associated with isobaric perturbations on scales ~ a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should fi...

  14. Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes.

    Science.gov (United States)

    Ito, Tsukasa; Adachi, Yusuke; Yamanashi, Yu; Shimada, Yosuke

    2016-09-01

    The textile and dyeing industries are major sources of environmental water pollution all over the world. The textile wastewater effluents discharged into rivers often appear dark red-purple in color due to azo dyes, which can be transformed into carcinogenic aromatic amines. The chemicals used in dyeing are not readily degraded in nature and thus precipitate in river sediment. However, little is known about how dyeing chemicals affect river sediment and river water or how long they persist because they are difficult to monitor. To assess undetectable dyes and byproducts in river sediments, we evaluated the potential of river sediment bacteria to degrade dyes and aromatic amines. We describe the natural remediation of river sediment long-contaminated by textile dyeing effluent. After cessation of wastewater discharge, the dye-degradation potential decreased, and the aromatic amine-degradation potential increased initially and then declined over time. The changes in degradation potential were consistent with changes in the sediment bacterial community. The transition occurred on the order of years. Our data strongly suggest that dyes remained in the river sediment and that aromatic amines were produced even in transparent- and no longer colored-river water, but these chemicals were degraded by the changing sediment bacteria. Time-course monitoring of the degradation activities of key bacteria thus enables assessment of the fate of dye pollutants in river sediments. PMID:27232990

  15. Buoyancy Effects upon Vapor Flame and Explosion Processes

    Science.gov (United States)

    Edelman, R. B.; Harsha, P. T.

    1985-01-01

    The objective of this microgravity project is to develop an experimental and theoretical analyses critical to the understanding of the coupling of buoyancy and turbulence generation and its effect on fuel-air mixing, flame intensity and flame propagation in jet diffusion flames. The experiment is designed to examine certain effects of buoyancy acting on a diffusion flame in which the flame is directed either upward or downward. This change from negative to positive g is observed to significantly alter the flame shape although all other operating conditions are the same for both configurations. However, to perform this experiment a significant coaxial secondary air flow is needed in order to prevent flow reversal when the flame is inverted. The theoretical analysis that has been developed handles the secondary air flow and the extreme change in gravity vector direction. Thus the data will provide a measure of credibility of the analysis which will then be used to assist in the design of the actual zero-g experiment.

  16. Response of mantle transition zone thickness to plume buoyancy flux

    Science.gov (United States)

    Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.

    2010-01-01

    The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).

  17. Equilibrium models of coronal loops that involve curvature and buoyancy

    Energy Technology Data Exchange (ETDEWEB)

    Hindman, Bradley W. [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309-0440 (United States); Jain, Rekha, E-mail: hindman@solarz.colorado.edu [School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  18. Equilibrium Models of Coronal Loops That Involve Curvature and Buoyancy

    Science.gov (United States)

    Hindman, Bradley W.; Jain, Rekha

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  19. Equilibrium models of coronal loops that involve curvature and buoyancy

    CERN Document Server

    Hindman, Bradley W

    2013-01-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  20. Buoyancy Wave Interaction with Critical Levels in the Atmosphere

    Science.gov (United States)

    Rõõm, Rein; Zirk, Marko

    2013-04-01

    General non-linear internal buoyancy wave equation (BWE) is developed, which has the second (differential) order in space but the third order in time. The wave operator splitting method is then applied to the stationary BWE to get the orographically generated buoyancy waves in the thermally stratified atmosphere for altitude-variable wind conditions. The splitting method is further generalized to a critical level (CL) containing atmosphere. The CLs, which appear in the atmosphere (including the planetary boundary layer) if the wind weakens and changes direction or rotates with the altitude, will provide a break-up of the atmosphere to the regular (for BWE) layers separated by singular critical levels at which the differential order of the BWE is lowered. This lowering will cause either partial or full reflection of waves, though in the special fast wind altering case, the CL can prove transparent, too. The wave modelling examples for different CLs are provided. Classification of the wind situations with respect to the various reflection-transparency types of CL is vital for wave stress (vertical flux of mean horizontal momentum) and upper-level wave breaking study. ------------------------------------------------------------------ This research is supported by Estonian Science Foundation Grant 9134 and Estonian Research Council TF Project SF0180038s08.

  1. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-01-01

    Central events of ultrasonic action are the bubbles of cavitation that can be considered as powered microreactors within which high-energy chemistry occurs. This work presents the results of a comprehensive numerical assessment of frequency and saturating gases effects on single bubble sonochemistry. Computer simulations of chemical reactions occurring inside a bubble oscillating in liquid water irradiated by an ultrasonic wave have been performed for a wide range of ultrasonic frequencies (213-1100kHz) under different saturating gases (O2, air, N2 and H2). For O2 and H2 bubbles, reactions mechanism consisting in 25 reversible chemical reactions were proposed for studying the internal bubble-chemistry whereas 73 reversible reactions were taken into account for air and N2 bubbles. The numerical simulations have indicated that radicals such as OH, H, HO2 and O are created in the bubble during the strong collapse. In all cases, hydroxyl radical (OH) is the main oxidant created in the bubble. The production rate of the oxidants decreases as the driving ultrasonic frequency increases. The production rate of OH radical followed the order O2>air>N2>H2 and the order becomes more remarkable at higher ultrasonic frequencies. The effect of ultrasonic frequency on single bubble sonochemistry was attributed to its significant impact on the cavitation process whereas the effects of gases were attributed to the nature of the chemistry produced in the bubble at the strong collapse. It was concluded that, in addition to the gas solubility, the nature of the internal bubble chemistry is another parameter of a paramount importance that controls the overall sonochemical activity in aqueous solutions. PMID:25112684

  2. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    Science.gov (United States)

    Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A. A.; Forman, W. R.; Allen, S. W.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2016-05-01

    Cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ˜8-70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambient medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ˜13 per cent. In the region dominated by weak `ripples', about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling-heating balance.

  3. Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study.

    Science.gov (United States)

    Ul Haq, Rizwan; Rajotia, D; Noor, N F M

    2016-03-01

    The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number. PMID:27006069

  4. Effects of Lateral Window Position and Wind Direction on Wind-Driven Natural Cross Ventilation of a Building: A Computational Approach

    Directory of Open Access Journals (Sweden)

    M. Z. I. Bangalee

    2014-01-01

    Full Text Available Energy is saved when an effective natural ventilation system can provide comfort air to the occupants in a building by replacing a mechanical ventilation system. It also minimizes the risk of the environmental pollution and the global warming. A one story, full scale building was considered to carry out a comparative study of three different cases of wind-driven natural (WDN cross ventilation with the help of computational fluid dynamics (CFD. In each case, the location of window was changed in lateral direction to predict the probable position for optimum ventilation performance and the angle of wind was varied to check the sensitivity of the wind direction on the flow field. After validating the current methodology through two satisfactory comparisons with the experimental investigations, the governing equations subjected to the corresponding boundary conditions were solved using commercial software and then the results were analyzed. A better location for the windows in each case was proposed. The ventilation purpose was served quite well even if the wind angle was changed in a moderate range from the original design. Furthermore, the velocity components, ventilation rate, surface pressure, ventilation time, and so forth in each case were investigated and compared extensively with those in other cases.

  5. Mechanical power input from buoyancy and wind to the circulation in an ocean model

    Science.gov (United States)

    Saenz, J. A.; Hogg, A. M.; Hughes, G. O.; Griffiths, R. W.

    2012-07-01

    We make a systematic quantitative comparison of the effects that surface buoyancy forcing and wind stress have on the energy balance of an idealized, rotating, pole-to-pole ocean model with a zonally re-entrant channel in the south, forced by realistic heat (buoyancy) fluxes and wind stresses representative of global climatology. Surface buoyancy fluxes and wind stress forcing are varied independently; both have significant effects on the reservoirs of various forms of energy and the rates of transfer between them. Importantly, we show for the first time that in the ocean, each power input has a positive feedback on the other. Changes in the rate of generation of available potential energy by buoyancy fluxes at the surface lead to similar changes in the rate of conversion of potential energy to kinetic energy by buoyancy forces (sinking) in the interior, and to changes in the rate of generation of kinetic energy by wind stress. Conversely, changes in the rate of generation of kinetic energy by wind stress lead to changes in the rate of generation of available potential energy by buoyancy forcing. We discuss how this feedback is mediated by the circumpolar current, and processes involving buoyancy, mixing and geostrophic balances. Our results support the notion that surface buoyancy forcing, along with wind and tidal forcing, plays an active role in the energy balance of the oceans. The overturning circulation in the oceans is not the result of a single driving force. Rather, it is a manifestation of a complex and subtle balance.

  6. Temporal Genetic Variance and Propagule-Driven Genetic Structure Characterize Naturalized Rainbow Trout (Oncorhynchus mykiss) from a Patagonian Lake Impacted by Trout Farming.

    Science.gov (United States)

    Benavente, Javiera N; Seeb, Lisa W; Seeb, James E; Arismendi, Ivan; Hernández, Cristián E; Gajardo, Gonzalo; Galleguillos, Ricardo; Cádiz, Maria I; Musleh, Selim S; Gomez-Uchida, Daniel

    2015-01-01

    Knowledge about the genetic underpinnings of invasions-a theme addressed by invasion genetics as a discipline-is still scarce amid well documented ecological impacts of non-native species on ecosystems of Patagonia in South America. One of the most invasive species in Patagonia's freshwater systems and elsewhere is rainbow trout (Oncorhynchus mykiss). This species was introduced to Chile during the early twentieth century for stocking and promoting recreational fishing; during the late twentieth century was reintroduced for farming purposes and is now naturalized. We used population- and individual-based inference from single nucleotide polymorphisms (SNPs) to illuminate three objectives related to the establishment and naturalization of Rainbow Trout in Lake Llanquihue. This lake has been intensively used for trout farming during the last three decades. Our results emanate from samples collected from five inlet streams over two seasons, winter and spring. First, we found that significant intra- population (temporal) genetic variance was greater than inter-population (spatial) genetic variance, downplaying the importance of spatial divergence during the process of naturalization. Allele frequency differences between cohorts, consistent with variation in fish length between spring and winter collections, might explain temporal genetic differences. Second, individual-based Bayesian clustering suggested that genetic structure within Lake Llanquihue was largely driven by putative farm propagules found at one single stream during spring, but not in winter. This suggests that farm broodstock might migrate upstream to breed during spring at that particular stream. It is unclear whether interbreeding has occurred between "pure" naturalized and farm trout in this and other streams. Third, estimates of the annual number of breeders (Nb) were below 73 in half of the collections, suggestive of genetically small and recently founded populations that might experience substantial

  7. Temporal Genetic Variance and Propagule-Driven Genetic Structure Characterize Naturalized Rainbow Trout (Oncorhynchus mykiss) from a Patagonian Lake Impacted by Trout Farming

    Science.gov (United States)

    Seeb, Lisa W.; Seeb, James E.; Arismendi, Ivan; Hernández, Cristián E.; Gajardo, Gonzalo; Galleguillos, Ricardo; Cádiz, Maria I.; Musleh, Selim S.

    2015-01-01

    Knowledge about the genetic underpinnings of invasions—a theme addressed by invasion genetics as a discipline—is still scarce amid well documented ecological impacts of non-native species on ecosystems of Patagonia in South America. One of the most invasive species in Patagonia’s freshwater systems and elsewhere is rainbow trout (Oncorhynchus mykiss). This species was introduced to Chile during the early twentieth century for stocking and promoting recreational fishing; during the late twentieth century was reintroduced for farming purposes and is now naturalized. We used population- and individual-based inference from single nucleotide polymorphisms (SNPs) to illuminate three objectives related to the establishment and naturalization of Rainbow Trout in Lake Llanquihue. This lake has been intensively used for trout farming during the last three decades. Our results emanate from samples collected from five inlet streams over two seasons, winter and spring. First, we found that significant intra- population (temporal) genetic variance was greater than inter-population (spatial) genetic variance, downplaying the importance of spatial divergence during the process of naturalization. Allele frequency differences between cohorts, consistent with variation in fish length between spring and winter collections, might explain temporal genetic differences. Second, individual-based Bayesian clustering suggested that genetic structure within Lake Llanquihue was largely driven by putative farm propagules found at one single stream during spring, but not in winter. This suggests that farm broodstock might migrate upstream to breed during spring at that particular stream. It is unclear whether interbreeding has occurred between “pure” naturalized and farm trout in this and other streams. Third, estimates of the annual number of breeders (Nb) were below 73 in half of the collections, suggestive of genetically small and recently founded populations that might experience

  8. Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames

    Science.gov (United States)

    Cheng, R. K.; Bedat, B.; Yegian, D. T.; Greenberg, P.

    1999-01-01

    Open laboratory turbulent flames used for investigating fundamental flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in open flames, buoyancy effects are usually not considered in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with the mean and the fluctuating pressure fields. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, and flame geometry.

  9. Statistical Change Detection for Diagnosis of Buoyancy Element Defects on Moored Floating Vessels

    DEFF Research Database (Denmark)

    Blanke, Mogens; Fang, Shaoji; Galeazzi, Roberto; Leira, Bernt J.

    Floating platforms with mooring systems are used extensively in off-shore operations. Part of the mooring systems are underwater buoyancy elements that are attached to the mooring lines. Loss or damage of a buoyancy element is invisible but changes the characteristics of the mooring system and...... alters its ability to provide the necessary responses to withstand loads from weather. Damage of a buoyancy element increases the operation risk and could even cause abortion during an oil-offloading. The objective of this paper is to diagnose the loss of a buoyancy element using diagnostic methods....... After residual generation, statistical change detection scheme is derived from mathematical models supported by experimental data. To experimentally verify loss of an underwater buoyancy element, an underwater line breaker is designed to create realistic replication of abrupt faults. The paper analyses...

  10. Magma zonation - Effects of chemical buoyancy and diffusion

    Science.gov (United States)

    Spera, Frank J.; Oldenburg, Curtis M.; Yuen, David A.

    1989-01-01

    Numerical simulations and scale analysis are used to assess the viability of the marginal box-filling mechanism for producing compositional zonation in magma bodies. Scale analysis and two-dimensional numerical experiments both show that box-filling occurs provided a critical ratio of compositional-to-thermal buoyancy is exceeded. This critical ratio depends on the ratio of thermal-to-chemical diffusivity; application of this result to magma bodies suggests that box-filling may occur for components with relatively high-chemical diffusivities such as water. However, box-filling will not produce significant zonation for components with small chemical diffusivities, such as silica, unless diffusive coupling increases silica diffusivity.

  11. The mean electromotive force resulting from magnetic buoyancy instability

    CERN Document Server

    Davies, C R

    2010-01-01

    Motivated both by considerations of the generation of large-scale astrophysical magnetic fields and by potential problems with mean magnetic field generation by turbulent convection, we investigate the mean electromotive force (emf) resulting from the magnetic buoyancy instability of a rotating layer of stratified magnetic field, considering both unidirectional and sheared fields. We discuss why the traditional decomposition into $\\alpha$ and $\\beta$ effects is inappropriate in this case, and that it is only consideration of the entire mean emf that is meaningful. By considering a weighted average of the unstable linear eigenmodes, and averaging over the horizontal plane, we obtain depth-dependent emfs. For the simplified case of isothermal, ideal MHD we are able to obtain an analytic expression for the emf; more generally the emf has to be determined numerically. We calculate how the emf depends on the various parameters of the problem, particularly the rotation rate and the latitude of the magnetic layer.

  12. The Mean Electromotive Force Resulting from Magnetic Buoyancy Instability

    Science.gov (United States)

    Davies, C. R.; Hughes, D. W.

    2011-02-01

    Motivated both by considerations of the generation of large-scale astrophysical magnetic fields and by potential problems with mean magnetic field generation by turbulent convection, we investigate the mean electromotive force (emf) resulting from the magnetic buoyancy instability of a rotating layer of stratified magnetic field, considering both unidirectional and sheared fields. We discuss why the traditional decomposition into α and β effects is inappropriate in this case, and that it is only consideration of the entire mean emf that is meaningful. By considering a weighted average of the unstable linear eigenmodes, and averaging over the horizontal plane, we obtain depth-dependent emfs. For the simplified case of isothermal, ideal MHD, we are able to obtain an analytic expression for the emf; more generally, the emf has to be determined numerically. We calculate how the emf depends on the various parameters of the problem, particularly the rotation rate and the latitude of the magnetic layer.

  13. Nature

    OpenAIRE

    Ferretti, Federico; Schmidt Di Friedberg, Marcella

    2012-01-01

    International audience From the ancient times to the present debates on nature and environment, the idea of Nature has been one of the main concepts which interested Geographers. This paper deals with the representations of this idea in the works of thinkers who played a major role in shaping modern Geography, with a special focus on the Mediterranean world. It aims to clarify how Nature was important in defining heuristic strategies of the geographical sciences and their explications of r...

  14. Multi-phase Nature of a Radiation-Driven Fountain with Nuclear Starburst in a Low-mass Active Galactic Nucleus

    CERN Document Server

    Wada, Keiichi; Meijerink, Rowin

    2016-01-01

    The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small ($2\\times 10^6 M_\\odot$) black hole using 3D radiation hydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-ray dominated region in the "radiation-driven fountain" (Wada 2012) with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick "torus" around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick ($h/r \\gtrsim 1$) atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase ( > 1000 K) as well as in a cold ( $10^3$ cm$^{-3}$) phase. The velocity dispersion of H$_2$ in the vertical direction is comparable to the rotational velocity, which is consistent with near infrared observations o...

  15. Effect of buoyancy on power deposition in microwave cavity hydrogen plasma source

    Science.gov (United States)

    Prasanna, S.; Rond, C.; Michau, A.; Hassouni, K.; Gicquel, A.

    2016-08-01

    A self-consistent model describing the coupling of resonant microwave radiation and plasma has been constructed. This model improves upon the models developed by Hassouni et al and Hagelaar et al, in 1999 and 2004, respectively with inclusion of hydrodynamic effects. The model has been used to study the effect of buoyancy on power deposition in microwave assisted hydrogen plasmas at different operating pressures over the range 25–300 mbar and power over the range 400 and 4000 W. Three cases viz. normal reactor (g  =  ‑9.81 m s‑2, negative buoyancy), pure diffusion (g  =  0 m s‑2) and the inverted case (g  =  9.81 m s‑2, positive buoyancy) were considered. Buoyancy effects in the cavity become important at high power / pressure operating conditions. The formation of a secondary plasma zone is strongly increased in the presence of negative buoyancy, while positive buoyancy and diffusion cases are more stable. Also the density of atomic hydrogen close to the substrate is larger with a wider radial spread for the positive buoyancy case over normal operating conditions which augurs well for achieving good deposition of diamond.

  16. Catastrophic caldera-forming eruptions II: The subordinate role of magma buoyancy as an eruption trigger

    Science.gov (United States)

    Gregg, Patricia M.; Grosfils, Eric B.; de Silva, Shanaka L.

    2015-10-01

    Recent analytical investigations have suggested that magma buoyancy is critical for triggering catastrophic caldera forming eruptions. Through detailed assessment of these approaches, we illustrate how analytical models have been misapplied for investigating buoyancy and are, therefore, incorrect and inconclusive. Nevertheless, the hypothesis that buoyancy is the critical trigger for larger eruptions warrants further investigation. As such, we utilize viscoelastic finite element models that incorporate buoyancy to test overpressure evolution and mechanical failure in the roof due to the coalescence of large buoyant magma bodies for two model cases. In the first case, we mimic empirical approaches and include buoyancy as an explicit boundary condition. In the second set of models, buoyancy is calculated implicitly due to the density contrast between the magma in the reservoir and the host rock. Results from these numerical experiments indicate that buoyancy promotes only minimal overpressurization of large silicic magma reservoirs (implementations and the results from the numerical experiments, we conclude that buoyancy does not provide an eruption triggering mechanism for large silicic systems. Therefore, correlations of buoyancy with magma residence times, the eruption frequency-volume relationship, and the dimensions of calderas are re-assessed. We find a causal relationship with magma reservoir volume that implicates the mechanical conditions of the host rock as a primary control on eruption frequency. As magma reservoirs grow in size (> 100 km3) they surpass a rheological threshold where their subsequent evolution is controlled by host rock mechanics. Consequently, this results in a thermomechanical division between small systems that are triggered "internally" by magmatic processes and large systems that are triggered "externally" by faulting related to roof uplift or tectonism. Finally, critical assessment of recent analytical approaches illustrates that care

  17. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.

    Science.gov (United States)

    Macaluso, T; Bourdin, C; Buloup, F; Mille, M-L; Sainton, P; Sarlegna, F R; Taillebot, V; Vercher, J-L; Weiss, P; Bringoux, L

    2016-07-01

    Astronauts' training is conventionally performed in a pool to reproduce weightlessness by exploiting buoyancy which is supposed to reduce the impact of gravity on the body. However, this training method has not been scientifically validated yet, and requires first to study the effects of underwater exposure on motor behavior. We examined the influence of neutral buoyancy on kinematic features of whole-body reaching underwater and compared them with those produced on land. Eight professional divers were asked to perform arm reaching movements toward visual targets while standing. Targets were presented either close or far from the subjects (requiring in the latter case an additional whole-body displacement). Reaching movements were performed on land or underwater in two different contexts of buoyancy. The divers either wore a diving suit only with neutral buoyancy applied to their center of mass or were additionally equipped with a submersible simulated space suit with neutral buoyancy applied to their body limbs. Results showed that underwater exposure impacted basic movement features, especially movement speed which was reduced. However, movement kinematics also differed according to the way buoyancy was exerted on the whole-body. When neutral buoyancy was applied to the center of mass only, some focal and postural components of whole-body reaching remained close to land observations, notably when considering the relative deceleration duration of arm elevation and concomitant forward trunk bending when reaching the far target. On the contrary, when neutral buoyancy was exerted on body segments, movement kinematics were close to those reported in weightlessness, as reflected by the arm deceleration phase and the whole-body forward displacement when reaching the far target. These results suggest that astronauts could benefit from the application of neutral buoyancy across the whole-body segments to optimize underwater training and acquire specific motor skills which

  18. Basal buoyancy and fast-moving glaciers: in defense of analytic force balance

    Science.gov (United States)

    van der Veen, C. J.

    2016-06-01

    The geometric approach to force balance advocated by T. Hughes in a series of publications has challenged the analytic approach by implying that the latter does not adequately account for basal buoyancy on ice streams, thereby neglecting the contribution to the gravitational driving force associated with this basal buoyancy. Application of the geometric approach to Byrd Glacier, Antarctica, yields physically unrealistic results, and it is argued that this is because of a key limiting assumption in the geometric approach. A more traditional analytic treatment of force balance shows that basal buoyancy does not affect the balance of forces on ice streams, except locally perhaps, through bridging effects.

  19. Suppression/Reversal of Natural Convection by Exploiting the Temperature/Composition Dependence of Magnetic Susceptibility

    Science.gov (United States)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2000-01-01

    Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.

  20. A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    Science.gov (United States)

    Zabek, D.; Taylor, J.; Ayel, V.; Bertin, Y.; Romestant, C.; Bowen, C. R.

    2016-07-01

    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1-5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate-lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm-3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation.

  1. Nearshore bar migration and sediment-induced buoyancy effects

    Science.gov (United States)

    Falchetti, Silvia; Conley, Daniel C.; Brocchini, Maurizio; Elgar, Steve

    2010-02-01

    A 1-D General Ocean Turbulence Model that includes the effects of sediment-induced stratification is shown to simulate the observed onshore and offshore migration of a nearshore sandbar. The only two free parameters of the model, the bed reference concentration and the sediment diffusivity, are taken from the literature, rather than tuned to the data used here. The model results suggest that predictions of onshore bar migration, in which wave-induced sediment transport confined to within a few centimeters of the bottom dominates, are not greatly affected by accounting for buoyancy effects. The model results also suggest that both mean flows and waves transport sediment during offshore bar migration, with different components of transport dominating at different cross-shore locations across the bar-trough bathymetry. Neglecting the effects of sediment-induced stratification results in higher model skill during the largest waves, likely because the excess turbulence production simulated by the non-stratified model is counterbalanced by neglected breaking-wave-generated turbulence. Considering both onshore and offshore migration, the model that includes sediment-induced stratification has higher skill than the model without stratification.

  2. Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames

    Science.gov (United States)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.

    2003-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.

  3. Effects of buoyancy on gas jet diffusion flames

    Science.gov (United States)

    Bahadori, M. Yousef; Edelman, Raymond B.

    1993-01-01

    The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.

  4. Alpha effect due to buoyancy instability of a magnetic layer

    CERN Document Server

    Chatterjee, Piyali; Rheinhardt, Matthias; Brandenburg, Axel

    2010-01-01

    A strong toroidal field can exist in form of a magnetic layer in the overshoot region below the solar convection zone. This motivates a more detailed study of the magnetic buoyancy instability with rotation. We calculate the alpha effect due to helical motions caused by a disintegrating magnetic layer in a rotating density-stratified system with angular velocity Omega making an angle theta with the vertical. We also study the dependence of the alpha effect on theta and the strength of the initial magnetic field. We carry out three-dimensional hydromagnetic simulations in Cartesian geometry. A turbulent EMF due to the correlations of the small scale velocity and magnetic field is generated. We use the test-field method to calculate the transport coefficients of the inhomogeneous turbulence produced by the layer. We show that the growth rate of the instability and the twist of the magnetic field vary monotonically with the ratio of thermal conductivity to magnetic diffusivity. The resulting alpha effect is inho...

  5. Where is the level of neutral buoyancy for deep convection?

    Science.gov (United States)

    Takahashi, Hanii; Luo, Zhengzhao

    2012-08-01

    This study revisits an old concept in meteorology - level of neutral buoyancy (LNB). The classic definition of LNB is derived from the parcel theory and can be estimated from the ambient sounding (LNB_sounding) without having to observe any actual convective cloud development. In reality, however, convection interacts with the environment in complicated ways; it will eventually manage to find its own effective LNB and manifests it through detraining masses and developing anvils (LNB_observation). This study conducts a near-global survey of LNB_observation for tropical deep convection using CloudSat data and makes comparison with the corresponding LNB_sounding. The principal findings are as follows: First, although LNB_sounding provides a reasonable upper bound for convective development, correlation between LNB_sounding and LNB_observation is low suggesting that ambient sounding contains limited information for accurately predicting the actual LNB. Second, maximum mass outflow is located more than 3 km lower than LNB_sounding. Hence, from convective transport perspective, LNB_sounding is a significant overestimate of the “destination” height level of the detrained mass. Third, LNB_observation is consistently higher over land than over ocean, although LNB_sounding is similar between land and ocean. This difference is likely related to the contrasts in convective strength and environment between land and ocean. Finally, we estimate the bulk entrainment rates associated with the observed deep convection, which can serve as an observational basis for adjusting GCM cumulus parameterization.

  6. Using surface integrals for checking the Archimedes' law of buoyancy

    CERN Document Server

    Lima, F M S

    2011-01-01

    A mathematical derivation of the force exerted by an \\emph{inhomogeneous} (i.e., compressible) fluid on the surface of an \\emph{arbitrarily-shaped} body immersed in it is not found in literature, which may be attributed to our trust on Archimedes' law of buoyancy. However, this law, also known as Archimedes' principle (AP), does not yield the force observed when the body is in contact to the container walls, as is more evident in the case of a block immersed in a liquid and in contact to the bottom, in which a \\emph{downward} force that \\emph{increases with depth} is observed. In this work, by taking into account the surface integral of the pressure force exerted by a fluid over the surface of a body, the general validity of AP is checked. For a body fully surrounded by a fluid, homogeneous or not, a gradient version of the divergence theorem applies, yielding a volume integral that simplifies to an upward force which agrees to the force predicted by AP, as long as the fluid density is a \\emph{continuous func...

  7. Control of a Buoyancy-Based Pilot Underwater Lifting Body

    Directory of Open Access Journals (Sweden)

    Finn Haugen

    2010-04-01

    Full Text Available This paper is about position control of a specific small-scale pilot underwater lifting body where the lifting force stems from buoyancy adjusted with an air pocket in the lifting body. A mathematical model is developed to get a basis for a simulator which is used for testing and for designing the control system, including tuning controller parameters. A number of different position controller solutions were tried both on a simulator and on the physical system. Successful control on both the simulator and the physical system was obtained with cascade control based on feedback from measured position and height of the air pocket in the lifting body. The primary and the secondary controllers of the cascade control system were tuned using Skogestad's model-based PID tuning rules. Feedforward from estimated load force was implemented in combination with the cascade control system, giving a substantial improvement of the position control system, both with varying position reference and varying disturbance (load mass.

  8. Alpha effect due to buoyancy instability of a magnetic layer

    Science.gov (United States)

    Chatterjee, P.; Mitra, D.; Rheinhardt, M.; Brandenburg, A.

    2011-10-01

    Context. A strong toroidal field can exist in form of a magnetic layer in the overshoot region below the solar convection zone. This motivates a more detailed study of the magnetic buoyancy instability with rotation. Aims: We calculate the α effect due to helical motions caused by an unstable magnetic layer in a rotating density-stratified system with angular velocity Ω making an angle θ with the vertical. We also study the dependence of the α effect on θ and the strength of the initial magnetic field. Methods: We carry out three-dimensional hydromagnetic simulations in Cartesian geometry. A turbulent electromotive force (EMF) due to the correlations of the small scale velocity and magnetic field is generated. We use the test-field method to calculate the transport coefficients of the inhomogeneous turbulence produced by the layer. Results: We show that the growth rate of the instability and the twist of the magnetic field vary monotonically with the ratio of thermal conductivity to magnetic diffusivity. The resulting α effect is non-uniform and increases with the strength of the initial magnetic field. It is thus an example of an "anti-quenched" α effect. The α effect is also nonlocal, i.e. scale dependent, requiring around 8-16 Fourier modes to reconstruct the actual mean EMF based on the actual mean field.

  9. Buoyancy and Penrose Process Produce Jets from Rotating Black Holes

    CERN Document Server

    Semenov, V S; Heyn, M F

    2014-01-01

    The exact mechanism by which astrophysical jets are formed is still unknown. It is believed that necessary elements are a rotating (Kerr) black hole and a magnetised accreting plasma. We model the accreting plasma as a collection of magnetic flux tubes/strings. If such a tube falls into a Kerr black hole, then the leading portion loses angular momentum and energy as the string brakes, and to compensate for this loss, momentum and energy is redistributed to the trailing portion of the tube.} {We found that buoyancy creates a pronounced helical magnetic field structure aligned with the spin axis. Along the field lines, the plasma is centrifugally accelerated close to the speed of light. This process leads to unlimited stretching of the flux tube since one part of the tube continues to fall into the black hole and simultaneously the other part of the string is pushed outward. Eventually, reconnection cuts the tube, the inner part is filled with new material and the outer part forms a collimated bubble-structured...

  10. Using surface integrals for checking Archimedes' law of buoyancy

    International Nuclear Information System (INIS)

    A mathematical derivation of the force exerted by an inhomogeneous (i.e. compressible) fluid on the surface of an arbitrarily shaped body immersed in it is not found in the literature, which may be attributed to our trust in Archimedes' law of buoyancy. However, this law, also known as Archimedes' principle (AP), does not yield the force observed when the body is in contact with the container walls, as is more evident in the case of a block immersed in a liquid and in contact with the bottom, in which a downward force that increases with depth is observed. In this work, by taking into account the surface integral of the pressure force exerted by a fluid over the surface of a body, the general validity of AP is checked. For a body fully surrounded by a fluid, homogeneous or not, a gradient version of the divergence theorem applies, yielding a volume integral that simplifies to an upward force which agrees with the force predicted by AP, as long as the fluid density is a continuous function of depth. For the bottom case, this approach yields a downward force that increases with depth, which contrasts to AP but is in agreement with experiments. It also yields a formula for this force which shows that it increases with the area of contact.

  11. Effect of wind and buoyancy on hydrogen release and dispersion in a compartment with vents at multiple levels

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kuldeep; Pitts, William; Yang, Jiann [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2010-09-15

    The natural and forced mixing and dispersion of hydrogen released in an accidental manner in a partially enclosed compartment with vents at multiple heights is investigated using theoretical tools. The key to the analysis is determination of the position of the neutral buoyancy plane, where the pressure in the compartment is equal to that of the exterior. Air flows in through vents below the position of neutral buoyancy and exits from vents above it. CFD simulations are conducted to confirm the physical phenomena and to compare with the analytical results. The analytical model is useful in understanding the important physical processes involved during hydrogen release and dispersion in a compartment with vents at multiple levels, with and without a steady wind. Parametric studies are conducted to identify the relative importance of various parameters. Model results indicate that the steady-state hydrogen volume fraction in the compartment is lower when the hydrogen release rate is smaller and the vent cross-sectional area is larger. Results also indicate that the fastest way to reduce flammable levels of hydrogen concentration in a compartment can be accomplished by blowing through the vents. (author)

  12. Can conduction induce convection? On the non-linear saturation of buoyancy instabilities in dilute plasmas

    Science.gov (United States)

    McCourt, Michael; Parrish, Ian J.; Sharma, Prateek; Quataert, Eliot

    2011-05-01

    We study the effects of anisotropic thermal conduction on low-collisionality, astrophysical plasmas using two- and three-dimensional magnetohydrodynamic simulations. Dilute, weakly magnetized plasmas are buoyantly unstable for either sign of the temperature gradient: the heat-flux-driven buoyancy instability (HBI) operates when the temperature increases with radius while the magnetothermal instability (MTI) operates in the opposite limit. In contrast to previous results, we show that the MTI can drive strong turbulence and operate as an efficient magnetic dynamo, akin to standard, adiabatic convection. Together, the turbulent and magnetic energies may contribute up to ˜10 per cent of the pressure support in the plasma. In addition, the MTI drives a large convective heat flux, up to ˜1.5 per cent ×ρc3s. These findings are robust even in the presence of an external source of strong turbulence. Our results for the non-linear saturation of the HBI are consistent with previous studies but we explain physically why the HBI saturates quiescently, while the MTI saturates by generating sustained turbulence. We also systematically study how an external source of turbulence affects the saturation of the HBI: such turbulence can disrupt the HBI only on scales where the shearing rate of the turbulence is faster than the growth rate of the HBI. The HBI reorients the magnetic field and suppresses the conductive heat flux through the plasma, and our results provide a simple mapping between the level of turbulence in a plasma and the effective isotropic thermal conductivity. We discuss the astrophysical implications of these findings, with a particular focus on the intracluster medium of galaxy clusters.

  13. Annual and seasonal mean buoyancy fluxes for the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.

    INSAT-derived monthly mean precipitation, combined with estimates of evaporation from COADS, are used to prepare the annual mean and seasonal distributions of evaporation-precipitation (E-P)) and buoyancy fluxes for the tropical Indian Ocean...

  14. Buoyancy package for self-contained acoustic doppler current profiler mooring

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Krishnakumar, V.

    A buoyancy package for self-contained Acoustic Doppler Current Profiler(SC-ADCP 1200 RD instruments USA) was designed and fabricated indigenously, for subsurface mooring in coastal waters. The system design is discussed. The design to keep SC...

  15. The Role of Magnetic Buoyancy in a Babcock-Leighton Type Solar Dynamo

    Indian Academy of Sciences (India)

    Dibyendu Nandy; Arnab Rai Choudhuri

    2000-09-01

    We study the effects of incorporating magnetic buoyancy in a model of the solar dynamo—which draws inspiration from the Babcock-Leighton idea of surface processes generating the poloidal field. We present our main results here.

  16. Report for neutral buoyancy simulations of transfer orbit stage contingency extravehicular activities

    Science.gov (United States)

    Sexton, J. D.

    1992-06-01

    The transfer orbit stage (TOS) will propel the advanced communications technology satellite (ACTS) from the Space Shuttle to an Earth geosynchronous transfer orbit. Two neutral buoyancy test series were conducted at MSFC to validate the extravehicular activities (EVA) contingency operations for the ACTS/TOS/mission. The results of the neutral buoyancy tests are delineated and a brief history of the TOS EVA program is given.

  17. Estimating the Federal Direct Tax Buoyancy for Pakistan in Post-1973 Era

    OpenAIRE

    Shaikh, Salman

    2012-01-01

    This study used the simple co-integration technique to estimate the direct tax buoyancy for Pakistan economy for the 36 year period starting from FY-1974 to FY-2009. The buoyancy estimated was more than unity which represents slight improvement over previous estimates in past studies. The study attributes the improvement to factors such as expansion of tax base, diversification and deepening of manufacturing sector and structural change in the economy with the size of agriculture sector outpu...

  18. Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture

    OpenAIRE

    Brito López, Ricardo; Soto, R.

    2009-01-01

    It has been recently reported that a granular mixture in which grains differ in their restitution coefficients presents segregation: the more inelastic particles sink to the bottom. When other segregation mechanisms as buoyancy and the Brazil nut effect are present, the inelasticity induced segregation can compete with them. First, a detailed analysis, based on numerical simulations of two dimensional systems, of the competition between buoyancy and the inelasticity induced segregation is pre...

  19. Effects of Buoyancy on Lean Premixed V-Flames Part I: Laminar and Turblent Flame Structure

    Science.gov (United States)

    Cheng, Robert K.; Bedat, Benoit; Kostiuk, Larry W.

    1998-01-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in +g, -g, and micro g under flow conditions that span the regimes of momentum domination (Ri buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and -g flame angles decrease with Ri (i.e., increasing Re) and converge to the microgravity flame angle at the momentum limit (Ri - 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and -g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and -g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in -g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy effects on flame instability mechanisms. It seems to be associated with the field effects of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in -g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  20. Errors caused by incompatible wind and buoyancy forcing in the ocean general circulation models.

    OpenAIRE

    Kuo, Yu-Heng

    1992-01-01

    Approved for public release; distribution is unlimited The Geophysical Fluid Dynamics Laboratory Modular Ocean Model (GFDL MOM) is used to investigate the model difference between compatible and incompatible surface wind and buoyancy forcing. The atmosphere is a physical system in which surface wind and temperature fields are related, however in most ocean numerical models, the wind stress and buoyancy forcing are usually specified separately, i.e., no constraint between the...

  1. THE INFLUENCE OF BUOYANCY ON FLOW AND POLLUTANT DISPERSION IN STREET CANYONS

    OpenAIRE

    Buccolieri, Riccardo; Pulvirenti, Beatrice; Di Sabatino, Silvana; Britter, Rex

    2008-01-01

    Abstract: In this paper, the effect of buoyancy on flow and pollutant dispersion within street canyons is studied by means of computational fluid dynamics simulations. We consider a neutral boundary layer approaching a 3D street canyon assuming a wind direction perpendicular to the street canyon. The Boussinesq hypothesis for incompressible fluids is chosen for modelling buoyancy. We distinguish three cases: leeward, ground and windward wall heating. Thermal effects on both the flow ...

  2. Drag, but not buoyancy, affects swim speed in captive Steller sea lions

    OpenAIRE

    Ippei Suzuki; Katsufumi Sato; Andreas Fahlman; Yasuhiko Naito; Nobuyuki Miyazaki; Andrew W Trites

    2014-01-01

    ABSTRACT Swimming at an optimal speed is critical for breath-hold divers seeking to maximize the time they can spend foraging underwater. Theoretical studies have predicted that the optimal swim speed for an animal while transiting to and from depth is independent of buoyancy, but is dependent on drag and metabolic rate. However, this prediction has never been experimentally tested. Our study assessed the effects of buoyancy and drag on the swim speed of three captive Steller sea lions (Eumet...

  3. Investigation of buoyancy effects on turbulent nonpremixed jet flames by using normal and low-gravity conditions

    Science.gov (United States)

    Idicheria, Cherian Alex

    An experimental study was performed with the aim of investigating the structure of transitional and turbulent nonpremixed jet flames under different gravity conditions. In particular, the focus was to determine the effect of buoyancy on the mean and fluctuating characteristics of the jet flames. Experiments were conducted under three gravity levels, viz. 1 g, 20 mg and 100 mug. The milligravity and microgravity conditions were achieved by dropping a jet-flame rig in the UT-Austin 1.25-second and the NASA-Glenn Research Center 2.2-second drop towers, respectively. The principal diagnostics employed were time-resolved, cinematographic imaging of the visible soot luminosity and planar laser Mie scattering (PLMS). For the cinematographic flame luminosity imaging experiments, the flames studied were piloted nonpremixed propane, ethylene and methane jet flames at source Reynolds numbers ranging from 2000 to 10500. From the soot luminosity images, mean and root-mean square (RMS) images were computed, and volume rendering of the image sequences was used to investigate the large-scale structure evolution and flame tip dynamics. The relative importance of buoyancy was quantified with the parameter, xL , as defined by Becker and Yamazaki [1978]. The results show, in contrast to previous microgravity studies, that the high Reynolds number flames have the same flame length irrespective of the gravity level. The RMS fluctuations and volume renderings indicate that the large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided xL is approximately less than 2. The volume-renderings show that the luminous structure celerities (normalized by jet exit velocity) are approximately constant for xL 8. The celerity values for xL > 8 are seen to follow a x3/2L scaling, which can be predicted with a simplified momentum equation analysis for the buoyancy-dominated regime. The underlying turbulent structure and mean mixture

  4. Effects of body condition on buoyancy in endangered North Atlantic right whales.

    Science.gov (United States)

    Nousek-McGregor, Anna E; Miller, Carolyn A; Moore, Michael J; Nowacek, Douglas P

    2014-01-01

    Buoyancy is an important consideration for diving marine animals, resulting in specific ecologically relevant adaptations. Marine mammals use blubber as an energy reserve, but because this tissue is also positively buoyant, nutritional demands have the potential to cause considerable variation in buoyancy. North Atlantic right whales Eubalaena glacialis are known to be positively buoyant as a result of their blubber, and the thickness of this layer varies considerably, but the effect of this variation on buoyancy has not been explored. This study compared the duration and rate of ascending and descending glides, recorded with an archival tag, with blubber thickness, measured with an ultrasound device, in free-swimming right whales. Ascending whales with thicker blubber had shorter portions of active propulsion and longer passive glides than whales with thinner blubber, suggesting that blubber thickness influences buoyancy because the buoyant force is acting in the same direction as the animal's movement during this phase. Whales with thinner layers also used similar body angles and velocities when traveling to and from depth, while those with thicker layers used shallower ascent angles but achieved higher ascent velocities. Such alterations in body angle may help to reduce the cost of transport when swimming against the force of buoyancy in a state of augmented positive buoyancy, which represents a dynamic response to reduce the energetic consequences of physiological changes. These results have considerable implications for any diving marine animal during periods of nutritional stress, such as during seasonal migrations and annual variations in prey availability. PMID:24457930

  5. Field Effects of Buoyancy on a Premixed Turbulent Flame Studied by Particle Image Velocimetry

    Science.gov (United States)

    Cheng, Robert K.

    2003-01-01

    Typical laboratory flames for the scientific investigation of flame/turbulence interactions are prone to buoyancy effects. Buoyancy acts on these open flame systems and provides upstream feedbacks that control the global flame properties as well as local turbulence/flame interactions. Consequently the flame structures, stabilization limits, and turbulent reaction rates are directly or indirectly coupled with buoyancy. The objective of this study is to characterize the differences between premixed turbulent flames pointing upwards (1g), pointing downwards (-1g), and in microgravity (mg). The configuration is an inverted conical flame stabilized by a small cone-shaped bluff body that we call CLEAN Flames (Cone-Stabilized Lean Flames). We use two laser diagnostics to capture the velocity and scalar fields. Particle image velocimetry (PIV) measures the mean and root mean square velocities and planar imaging by the flame fronts method outlines the flame wrinkle topology. The results were obtained under typical conditions of small domestic heating systems such as water heaters, ovens, and furnaces. Significant differences between the 1g and -1g flames point to the need for including buoyancy contributions in theoretical and numerical calculations. In Earth gravity, there is a complex coupling of buoyancy with the turbulent flow and heat release in the flame. An investigation of buoyancy-free flames in microgravity will provide the key to discern gravity contributions. Data obtained in microgravity flames will provide the benchmark for interpreting and analyzing 1g and -1g flame results.

  6. Parametric Studies on Buoyancy Induced Flow through Circular Pipes in Solar water heating system

    Directory of Open Access Journals (Sweden)

    Dr. S. V. Prayagi

    2011-01-01

    Full Text Available Solar energy is the primary source of energy for our planet. The average solar energy reaching the earth in the tropical zone is about 1kWh/m2 giving approximately 5 to 10 kWh/m2 per day. Increased utilization of solar energy in India would result in all around benefits, both in term of cleaner environment and monetary gain.The energy from the sun can be used for various purposes such as water heating, water distillation, refrigeration, drying, power generation etc. The present work deals with solar water heating system in particular. Performance of the solar collectors can be determined using the famous Hottel-Whillier-Bliss equation [1]. The analysis is simple for the forced convection situation, where the flow rate is artificially maintained constant to a desired value and the heat transfer coefficient can easily be predicted using the information available in the literature. However the natural convection situation it is very difficult to analyze as appropriate correlations for predicting the values of induced mass flow rate due to thermosiphon effect and the associated heat transfer coefficient are not available. The aim of the present investigation, therefore, is to establish correlations for heat transfer and flow characteristics for the buoyancy induced flow through inclined tubes in case of solar water heating system in particular. Considering the complexity of the problem, experimental approach is preferred. In order to produce required data, experiments were performed using inclined tubes of various lengths, diameters, inclinations, and different heat inputs.

  7. Gravitaxis of Euglena gracilis depends only partially on passive buoyancy

    Science.gov (United States)

    Richter, Peter R.; Schuster, Martin; Lebert, Michael; Streb, Christine; Häder, Donat-Peter

    In darkness, the unicellular freshwater flagellate Euglena gracilis shows a pronounced negative gravitactic behavior, and the cells swim actively upward in the water column. Up to now it was unclear whether this behavior is based on a passive (physical) alignment mechanism (e.g., buoyancy due to a fore-aft asymmetry of the cell body) or on an active physiological mechanism. A sounding rocket experiment was performed in which the effect of sub-1g-accelerations (0.05, 0.08, 0.12, and 0.2g) on untreated living cells and immobilized (fixation with liquid nitrogen) cells was observed. By means of computerized image analysis the angles of the cells long axis with respect to the acceleration vector were analyzed in order to calculate and compare the reorientation kinetics of the immobilized cells versus that of the controls. In both groups, the reorientation kinetics depended on the dose, but the reorientation of the living cells was about five times faster than that of the immobilized cells. This indicates that in young cells gravitaxis can be explained by a physical mechanism only to a small extend. In older cultures, in which the cells often have a drop shaped cell body, the physical reorientation is considerably faster, and a more pronounced influence of passive alignment caused by fore/aft asymmetry (drag-gravity model) can not be excluded. In addition to these results, Euglena gracilis cells seem to respond very sensitively to small accelerations when they are applied after a longer microgravity period. The data indicate that gravitactic orientation occurred at an acceleration as low as 0.05g.

  8. Academic Buoyancy and Academic Outcomes: Towards a Further Understanding of Students with Attention-Deficit/Hyperactivity Disorder (ADHD), Students without ADHD, and Academic Buoyancy Itself

    Science.gov (United States)

    Martin, Andrew J.

    2014-01-01

    Background: Academic buoyancy is students' capacity to successfully overcome setback and challenge that is typical of the ordinary course of everyday academic life. It may represent an important factor on the psycho-educational landscape assisting students who experience difficulties in school and schoolwork. Aims: This study investigated the…

  9. Gravity-driven injection experiments and direct-contact condensation regime map for passive high-pressure injection system

    International Nuclear Information System (INIS)

    A gravity-driven injection experiment of a passive high-pressure injection system with a pressurizer pressure balance line (PRZ PBL) is conducted by using a small-scale test facility to identify the parameters affecting the gravity-driven injection and the major condensation regimes. It turns out that the larger the water subcooling is, the more the injection initiation is delayed. A sparger and natural circulation of the hot water from the steam generator accelerate the gravity-driven injection. The condensation regimes identified through the experiments are divided into three distinct ones: sonic jet, subsonic jet, and steam cavity. The steam cavity regime is a unique regime of downward injection with the present geometry not previously observed in other experiments. The condensation regime map is constructed using Froude number and Jacob number. It turns out that the buoyancy force has a larger influence on the regime map transition because the regime map using the Froude number better fits data with different geometries than other dimensionless parameters. Simple correlations for the regime boundaries are proposed using the Froude number and the Jacob number. (orig.)

  10. The analysis of repository-heat-driven hydrothermal flow at Yucca Mountain

    International Nuclear Information System (INIS)

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact the waste package (WP), accelerate its failure rate, and eventually transport radionuclides to the water table. In a concept called the ''extended-dry repository,'' decay heat arising from radioactive waste extends the time before liquid water can contact a WP. Recent modeling and theoretical advances in nonisothermal, multiphase fracture-matrix flow have demonstrated (1) the critical importance of capillary pressure disequilibrium between fracture and matrix flow, and (2) that radioactive decay heat plays a dominant role in the ability of the engineered and natural barriers to contain and isolate radionuclides. Our analyses indicate that the thermo-hydrological performance of both the unsaturated zone (UZ) and saturated zone (SZ) will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. For thermal loads resulting in extended-dry repository conditions, UZ performance is primarily sensitive to the thermal properties and thermal loading conditions and much less sensitive to the highly spatially and temporally variable ambient hydrologic properties and conditions. The magnitude of repository-heat-driven buoyancy flow in the SZ is far more dependent on the total mass of emplaced spent nuclear fuel (SNF) than on the details of SNF emplacement, such as the Areal Power Density [(APD) expressed in kill/acre] or SNF age

  11. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles.

    Directory of Open Access Journals (Sweden)

    Yu-Ren Liou

    Full Text Available Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including fluorescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs conjugated with antibodies (i.e., targeted biotin-MBs. Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2 μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10 g for 1 min, and then allowed 1 hour at 4 °C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs, which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44(+ and MDA-MB-453 cells (CD44-, which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44(+ is a commonly used cancer

  12. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles.

    Science.gov (United States)

    Liou, Yu-Ren; Wang, Yu-Hsin; Lee, Chia-Ying; Li, Pai-Chi

    2015-01-01

    Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including fluorescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2 μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10 g for 1 min, and then allowed 1 hour at 4 °C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44(+)) and MDA-MB-453 cells (CD44-), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44(+) is a commonly used cancer-stem-cell biomarker, our

  13. Developer Driven and User Driven Usability Evaluations

    DEFF Research Database (Denmark)

    Bruun, Anders

    2013-01-01

    Usability evaluation provide software development teams with insights on the degree to which a software application enables a user to achieve his/her goals, how fast these goals can be achieved, how easy it is to learn and how satisfactory it is in use Although usability evaluations are crucial in...... explores two of these: 1) The first approach is to support SWPs by training them to drive usability evaluations. 2) The second approach to support SWPs involves minimalist training of end users to drive usability evaluations. In related work, a set of five quality criteria for usability evaluations is...... usability evaluations, and how do they perform with respect to the quality criteria? I studied the developer driven and user driven approaches by firstly conducting literature surveys related to each of these topics followed by artificial settings research and finally by conducting research in natural...

  14. Double-diffusive magnetic buoyancy instability in a quasi-two-dimensional Cartesian geometry

    Science.gov (United States)

    Skinner, D. M.; Silvers, L. J.

    2013-11-01

    Magnetic buoyancy, believed to occur in the solar tachocline, is both an important part of large-scale solar dynamo models and the picture of how sunspots are formed. Given that in the tachocline region the ratio of magnetic diffusivity to thermal diffusivity is small it is important, for both the dynamo and sunspot formation pictures, to understand magnetic buoyancy in this regime. Furthermore, the tachocline is a region of strong shear and such investigations must involve structures that become buoyant in the double-diffusive regime which are generated entirely from a shear flow. In a previous study, we have illustrated that shear-generated double-diffusive magnetic buoyancy instability is possible in the tachocline. However, this study was severely limited due to the computational requirements of running three-dimensional magnetohydrodynamic simulations over diffusive time-scales. A more comprehensive investigation is required to fully understand the double-diffusive magnetic buoyancy instability and its dependency on a number of key parameters; such an investigation requires the consideration of a reduced model. Here we consider a quasi-two-dimensional model where all gradients in the x direction are set to zero. We show how the instability is sensitive to changes in the thermal diffusivity and also show how different initial configurations of the forced shear flow affect the behaviour of the instability. Finally, we conclude that if the tachocline is thinner than currently stated then the double-diffusive magnetic buoyancy instability can more easily occur.

  15. Use of A-Train data to estimate convective buoyancy and entrainment rate

    Science.gov (United States)

    Luo, Zhengzhao Johnny; Liu, G. Y.; Stephens, Graeme L.

    2010-05-01

    This study describes a satellite-based method to estimate simultaneously convective buoyancy (B) and entrainment rate (λ). The measurement requirements are cloud-top height (CTH), cloud-top temperature (CTT), cloud profiling information (from radar and lidar), and ambient sounding. Initial results of the new method applied to A-Train data are presented. It is observed that tropical oceanic convection above the boundary layer fall into two groups: deep convection (DC) and cumulus congestus (Cg). DC tend to have negative buoyancy near cloud top and λ < 10%/km. Cg are further divided into two groups due to the snapshot view of the A-Train: one has positive buoyancy and λ ≤ 10%/km and the other has negative buoyancy and λ reaching up to 50%/km. Uncertainty analysis is conducted showing that CTT and CTH are the primary source of errors, but they do not affect our conclusions qualitatively. Brief comparisons with previous studies indicate the results of this study are broadly consistent with these earlier studies. Although most of the initial results are expected, this study represents the first time, to our knowledge, that satellite data are used to estimate convective buoyancy and entrainment rate. This new, space-borne method presents an opportunity for a number of follow-up investigations. For example, it serves as a bridge to connect A-Train observations (and follow-up missions) to GCM cumulus parameterizations.

  16. Design and testing of a shape memory alloy buoyancy engine for unmanned underwater vehicles

    Science.gov (United States)

    Angilella, Alex J.; Gandhi, Farhan S.; Miller, Timothy F.

    2015-11-01

    The US Navy’s 2004 Unmanned Underwater Vehicle (UUV) Master Plan outlines the Navy’s aim to expand the role of UUVs, and one of the key areas of interest is the increase in UUV range and endurance. A class of UUVs known as underwater gliders achieves this objective by cyclically modifying its buoyancy and covering horizontal distance with a climb/dive pattern. The present study proposes the use of shape memory alloys (SMAs) in a buoyancy heat engine where the oceanic thermocline would be exploited to produce martensite-austenite phase transformations that in turn change the buoyancy of a piston-cylinder prototype. The working principle of the device involves transitioning between the following two states. At low temperature (at depth) the SMA wires are tensioned into a detwinned martensitic state by a parallel compressed spring. This moves the piston within the cylinder to increase the chamber dry volume and device buoyancy. At higher temperatures (near the surface) the SMA wires undergo a martensite-to-austenite phase transformation, recover part of the applied strain, and reduce the volume and buoyancy of the piston-cylinder. This paper presents the analysis, design, fabrication, and testing of a prototype device. The prototype was immersed in a water bath, and it was demonstrated that its volume would change, as expected, with change in temperature of the water bath. Simulation results showed good correlation with test data.

  17. Hybrid ventilation in two interconnected rooms with a buoyancy source

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, R. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 34, Temixco Mor. 62580 (Mexico); Linden, P.F. [Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 920903-0411 (United States); Thomas, L.P. [Instituto de Fisica Arroyo Seco, Universidad Nacional del Centro, Pinto 399, 7000 Tandil (Argentina)

    2007-05-15

    The design of energy efficient buildings and the potential for using solar energy for heating and cooling is contingent upon optimizing the building ventilation systems. In this paper, we study the ventilation of two interconnected spaces, such as adjacent offices or areas in an open plan office. The goal is to locate return vents to increase the efficiency of night ventilation and to reduce energy consumption. The flow in two interconnected rooms of similar sizes is studied experimentally using a tank divided by an interior vertical wall. A forced buoyancy source with a finite volume flux is located in the ceiling of one-room and an unforced vent is opened in the ceiling of the other room. The goal of the study is to understand the transient cooling/heating that occurs in this two-room system when a forced cold-air vent is located in the ceiling of the first room and a return ventilation exit is located in the second. In particular, we investigate the effects of varying the number of openings and their vertical positions in the interconnecting wall. First, a single opening at the bottom, middle or top of the shared wall is examined. Second, the case of two openings in the wall is considered, with the openings located at the top-bottom, top-middle, bottom-middle, and finally at two mid locations in the wall. The results are compared with the one-room case, which represents the reference case. It was found that, irrespective of the number and locations of the openings, the flow evolves into a quasi-stationary stably stratified two-layer system, with the depths of the layers being different in each room. The average temperature inside each room initially decreases linearly with time and approaches the supply-air temperature at large times. This initial linear decrease holds until cold-air leaves the unforced room through the top-vent at time t{sub e}. Subsequently, temperature decreases as an exponential function of time with a characteristic filling time {tau} V

  18. The effects of buoyancy on the critical heat flux in forced convection

    Science.gov (United States)

    Brusstar, Matthew J.; Merte, Herman, Jr.

    1993-01-01

    The critical heat flux (CHF) in forced convection over a flat surface at relatively low flow velocities has been found, not unexpectedly, to depend upon the orientation of the buoyancy. The CHF for R-113 was measured at various heating surface orientations for test section Reynolds numbers ranging between 3000 and 6500. In this flow range, the buoyancy force acting on the vapor generally dominates over the flow inertia, yet the inertia would still be substantial were gravity to be reduced. In the experiments of this study, the CHF is determined for heating surface orientations ranging from 0 deg to 360 deg, for flow velocities between 4 cm/s and 35 cm/s, and for subcoolings between 2.8 C and 22.2 C. The results presented here demonstrate the strong influence of buoyancy at low flow velocities, which diminishes as the flow velocity and subcooling are increased.

  19. Debris size and buoyancy influence the dispersal distance of stranded litter.

    Science.gov (United States)

    Fazey, Francesca M C; Ryan, Peter G

    2016-09-15

    Recent at sea surveys of floating macro-debris in the southeast Atlantic Ocean found that debris increases in size with distance from shore, suggesting that many smaller items, which dominate litter close to urban source areas, sink before dispersing far into the ocean. We test whether this pattern is evident in beach litter in the same region. Freshly stranded beach litter was collected at increasing distances (0km, 100km, 200km and 2800km) from Cape Town, a major urban litter source. Mean size and buoyancy of litter items increased significantly with distance from Cape Town. Size-specific sedimentation due to the ballasting effect of biofouling is a plausible explanation for the disappearance of smaller, less buoyant items. Our results provide further evidence that many low buoyancy items sink and support the hypothesis that size and buoyancy are strong predictors of dispersal distance for floating debris. PMID:27389460

  20. Analysis of buoyancy effect on fully developed laminar heat transfer in a rotating tube

    Science.gov (United States)

    Siegel, R.

    1985-01-01

    Laminar heat transfer is analyzed in a tube rotating about an axis perpendicular to the tube axis. The solution applies for flow that is either radially outward from the axis of rotation, or radially inward toward the axis of rotation. The conditions are fully developed, and there is uniform heat addition at the tube wall. The analysis is performed by expanding velocities and temperature in power series using the Taylor number as a perturbation parameter. Coriolis and buoyancy forces caused by tube rotation are included, and the solution is calculated through second-order terms. The secondary flow induced by the Coriolis terms always tends to increase the heat transfer coefficient; this effect can dominate for small wall heating. For radial inflow, buoyancy also tends to improve heat transfer. For radial outflow, however, buoyancy tends to reduce heat transfer; for large wall heating this effect can dominate, and there is a net reduction in heat transfer coefficient.

  1. An improving method for micro-G simulation with magnetism-buoyancy hybrid system

    Science.gov (United States)

    Zhu, Zhanxia; Yuan, Jianping; Song, Jiangzhou; Cui, Rongxin

    2016-06-01

    This paper presents a novel solution for the micro-G experiment with magnetism-buoyancy hybrid system. The improvement includes two parts, (i) proposing an innovative system called general balance test bed (GBTB), and (ii) designing a resistance effect compensation system. The GBTB, a special platform, can be used to realize the effect of neutral buoyancy, by using controllable electromagnetic force instead of conventional weight or foam module to eliminate the difference between gravity and liquid buoyancy. In this paper, principles, components, and functions of the GBTB are developed. Then, in order to improve test fidelity, a compensation system is designed to counteract the water resistance effect during maneuver, and a novel prediction law is proposed to make water resistance force prediction more coincident with the real value by introducing control errors and error rates. Finally, the feasibility and effectiveness of the proposed solution are demonstrated through micro-G experiments and tests.

  2. Buoyancy effects on the vapor condensation rate on a horizontal liquid surface

    Science.gov (United States)

    Hasan, Mohammad M.; Lin, Chin-Shun

    1989-01-01

    The results are presented of a numerical study of the effects of buoyancy on the direct condensation of saturated or nearly saturated vapor on a horizontal liquid surface in a cylindrical tank. The liquid motion beneath the liquid-vapor interface is induced by an axisymmetric laminar jet of subcooled liquid. Analysis and numerical results show that the dominant parameter which determines the influence of buoyancy on the condensation rate is the Richardson number. However, the effect of buoyancy on the condensation rate cannot be quantified in terms of the Richardson number alone. The critical value of the Richardson number below which the condensation rate is not significantly reduced depends on the Reynolds number as well as the Prandtl number.

  3. An innovative method for simulating microgravity effects through combining electromagnetic force and buoyancy

    Science.gov (United States)

    Yuan, Jianping; Zhu, Zhanxia; Ming, Zhenfeng; Luo, Qiuyue

    2015-07-01

    This paper proposes an innovative method for simulating space microgravity effects. The new approach combines the neutral buoyancy and the electromagnetic force on the tested-body to balance the gravity and simulate the microgravity effects. In the paper, we present in some detail the magnetism-buoyancy hybrid microgravity simulation system, its components, functions and verification. We describe some key techniques such as ground-space similarity, the homogenization of electromagnetic field, the precise control of microgravity effects in dynamic environment, measurement in the hybrid suspension system. With this innovative microgravity simulation system, we prove through experiments and tests that our innovative method is feasible and effective and that the simulation fidelity is even higher than the neutral buoyancy system.

  4. Buoyancy of a thin plate pressing a floating oil film on water.

    Science.gov (United States)

    Ji, Xiang-Ying; Feng, Xi-Qiao

    2013-06-01

    Because of the superhydrophobicity of their legs, water striders and many other aquatic creatures can stand and walk effortlessly on water. Because of pollution, an oil film may exist on water in some practical situations. To date, however, it remains unclear how the presence of an oil film would affect the wetting behavior of an object floating on water. In this work, we investigated, both theoretically and experimentally, the buoyancy of a thin plate pressing the surface of a bilayered liquid system. In particular, the effect of the oil layer on the buoyancy force was examined. The critical depth and the corresponding buoyancy at the penetration of the plate into the liquids were obtained analytically. For a plate vertically pressing the liquid surface, the force-displacement loop during a complete advancing-receding cycle was analyzed. Experiments were also performed to verify the theoretical results. PMID:23659380

  5. On the coupling between buoyancy forces and electroconvective instability near ion-selective surfaces

    CERN Document Server

    Karatay, Elif; Mani, Ali

    2016-01-01

    Recent investigations have revealed that ion transport from aqueous electrolytes to ion-selective surfaces is subject to electroconvective instability that stems from coupling of hydrodynamics with electrostatic forces. Electroconvection is shown to enhance ion mixing and the net rate of transport. However, systems subject to electroconvection inherently involve fluid density variation set by salinity gradient in the bulk fluid. In this study we thoroughly examine the interplay of gravitational convection and chaotic electroconvection. Our results reveal that buoyant forces can significantly influence the transport rates, otherwise set by electroconvection, when the Rayleigh number $Ra$ of the system exceeds a value $Ra \\sim 1000$. We show that buoyancy forces can significantly alter the flow patterns in these systems. When the buoyancy acts in the stabilizing direction, it limits the extent of penetration of electroconvection, but without eliminating it. When the buoyancy destabilizes the flow, it alters the...

  6. High accuracy measurement of ThO2 kernel density by buoyancy method

    International Nuclear Information System (INIS)

    Accuracy was compared between pycnometer and buoyancy methods in measuring densities of ThO2 kernels. It was found that, in order to measure with accuracy less than 0.3%, 25 g of samples were required by pycnometer method but only 1 g was by the buoyancy method. Densities of ThO2 kernels prepared by a sol-gel process were measured by the buoyancy method; sample weight dependence of the accuracy was found to agree with one calculated on the basis of limits estimated for the apparatus and attachments used. Sintered ThO2 kernel density was found to depend considerably on the conditions of each step of the sol-gel process. (author)

  7. On the suppression of the diffusion and the quantum nature of a cavity mode. Optical bistability; forces and friction in driven cavities

    CERN Document Server

    Murr, K

    2003-01-01

    A new analytical method is presented here, offering a physical view of driven cavities where the external field cannot be neglected. We introduce a new dimensionless complex parameter, intrinsically linked to the cooperativity parameter of optical bistability, and analogous to the scaled Rabbi frequency for driven systems where the field is classical. Classes of steady states are iteratively constructed and expressions for the diffusion and friction coefficients at lowest order also derived. They have in most cases the same mathematical form as their free-space analog. The method offers a semiclassical explanation for two recent experiments of one atom trapping in a high Q cavity where the excited state is significantly saturated. Our results refute both claims of atom trapping by a quantized cavity mode, single or not. Finally, it is argued that the parameter newly constructed, as well as the groundwork of this method, are at least companions of the cooperativity parameter and its mother theory. In particula...

  8. Anisotropy and buoyancy in nuclear turbulent heat transfer - critical assessment and needs for modelling

    International Nuclear Information System (INIS)

    Computational Fluid Dynamics (CFD) programs have a wide application field in reactor technique, like to diverse flow types which have to be considered in Accelerator Driven nuclear reactor Systems (ADS). This requires turbulence models for the momentum and heat transfer with very different capabilities. The physical demands on the models are elaborated for selected transport mechanisms, the status quo of the modelling is discussed, and it is investigated which capabilities are offered by the market dominating commercial CFD codes. One topic of the discussion is on the already earlier achieved knowledge on the distinct anisotropy of the turbulent momentum and heat transport near walls. It is shown that this is relevant in channel flows with inhomogeneous wall conditions. The related consequences for the turbulence modelling are discussed. The second topic is the turbulent heat transport in buoyancy influenced flows. The only turbulence model for heat transfer which is available in the large commercial CFD-codes is based on the Reynolds analogy. This means, it is required to prescribe suitable turbulent Prandtl number distributions. There exist many correlations for channel flows, but they are seldom used in practical applications. Here, a correlation is deduced for the local turbulent Prandtl number which accounts for many parameters, like wall distance, molecular Prandtl number of the fluid, wall roughness and local shear stress, thermal wall condition, etc. so that it can be applied to most ADS typical heat transporting channel flows. The spatial dependence is discussed. It is shown that it is essential for reliable temperature calculations to get accurate turbulent Prandtl numbers especially near walls. If thermal wall functions are applied, then the correlation for the turbulent Prandtl number has to be consistent with the wall functions to avoid unphysical discretisation dependences. In using Direct Numerical Simulation (DNS) data for horizontal fluid layers it

  9. Examining Buoyancy Waves in the Martian Atmosphere with Mars Climate Sounder

    Science.gov (United States)

    Edmonds, Robert; Murphy, J.; Teal, D.

    2010-10-01

    Bouyancy ('gravity') waves can potentially play a significant role in the dynamics of the Martian atmosphere (Barnes, 1990). Small wave disturbances created at the surface (i.e. topographically) or at low altitudes (ex. convection) can propagate vertically under the appropriate thermodynamic conditions. To conserve energy, the amplitude of small waves can grow substantially in response to decreasing densities at higher altitudes. Gravity waves in the upper atmosphere have been analyzed from atmospheric densities derived from aerobarking Martian spacecraft (Creasey et al., 2006b & Fritts et al., 2006). Potentially large wave amplitudes aloft can result in wave saturation and wave breaking (Lindzen, 1981). The breaking waves deposit momentum, potentially altering the winds at that breaking level substantially. Creasey et al. (2006a) investigated the amplitudes of Martian atmospheric gravity waves by attempting to determine their manifested temperature perturbations as derived from Mars Global Surveyor (MGS) radio occultation measurements. Their results showed little correlation between topographic variance and gravitational wave energy. Motivated by this result, we are interested in how wave energies derived from Mars Climate Sounder (MCS) limb radiance measurements compare to the MGS Radio Science (RS) results. The continuous nature of the MCS measurements offer the opportunity to systematically investigate buoyancy wave characteristics diurnally, seasonally, and geographically, and to do so to a higher altitude (lower pressure) than the MGS RS profiles afforded. The MCS data used in this work is made publicly available through NASA's Planetary Data System's Atmospheres Node. This work is supported by NSF Grant ATM-0535811 (Univ. of Michigan), NMSU subcontract 3000615888 Barnes, J.R., 1990, JGR, 95, B2, 1401-1421. Creasey, J.E., et al., 2006, Geophys. Res. Lett., 33, L01803. Creasey, J.E., et al., 2006, Geophys. Res. Lett., 33, L22814. Fritts, D.C., et al., 2006

  10. On the role of buoyancy in determining the course of PWR boron dilution transients

    International Nuclear Information System (INIS)

    A computational investigation is undertaken into the role of buoyancy in a PWR boron dilution transient initiated by a postulated Small Break Loss of Coolant Accident (SB-LOCA). The scenario envisages a flow of de-borated and relatively high temperature water entering the annular downcomer from a single cold leg; flow rates are typical of natural circulation conditions. The study focuses on the temporal and spatial development of boron concentration distributions in the downcomer. The physical framework consists of a 3D-unsteady formulation of the mean flow and standard high-Reynolds-number k-ε turbulence model equations. It is found that the Richardson number (Ri = Gr/Re2) is the most important group in relation to the parameterization of the course of a concentration transient, and at Ri values characterizing a ‘baseline’ scenario, the present results indicate that there is a stable, circumferentially-uniform, descent through the downcomer of a stratified region of low-borated fluid. The same qualitative behaviour is found at a higher Richardson number; however, when Ri is reduced to approximately one-fifth of the baseline level there is evidence of large-scale mixing and a consequent absence of concentration stratification. -- Highlights: • PWR downcomer boron concentration is computed using a 3D-unsteady formulation. • There are two stages: first, an establishment of concentration stratification. • This is succeeded by a coherent downwards progression of low-borated water. • However, large-scale mixing can occur at low values of the Richardson number (Ri). • A critical Ri value/range might determine whether stratification or mixing occurs

  11. Overview of thermal-buoyancy-induced phenomena in reactor-plant components

    International Nuclear Information System (INIS)

    Studies related to delineating the influence of thermal-buoyancy forces on the thermal-hydraulics of Liquid Metal Fast Breeder Reactor plant components under low-flow thermal transient and steady state conditions have generated unique information which will aid design of these components. Various buoyancy force induced phenomena such as thermal stratification, flow recirculation, stagnation, and channeling are described and the importance to component performance are discussed. The water based studies have been conducted in the Mixing Components Test Facility, a large multi program facility capable of performing generic studies of fluid flow and heat transfer in reactor components under programmed transient and steady state conditions

  12. The role of negative buoyancy in convective Cepheid models. Double-mode pulsations revisited

    CERN Document Server

    Smolec, R

    2008-01-01

    The longstanding problem of modeling double-mode behaviour of classical pulsators was solved with the incorporation of turbulent convection into pulsation hydrocodes. However, the reasons for the computed double-mode behaviour were never clearly identified. In our recent papers (Smolec & Moskalik 2008a,b) we showed that the double-mode behaviour results from the neglect of negative buoyancy effects in some of the hydrocodes. If these effects are taken into account, no stable non-resonant double-mode behaviour can be found. In these proceedings we focus our attention on the role of negative buoyancy effects in classical Cepheid models.

  13. Investigation of small-scale unintended releases of hydrogen: Buoyancy effects

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States)

    2008-09-15

    Measurements were performed in small-scale hydrogen leaks to characterize the dimensional properties and flow characteristics of the resulting ignitable hydrogen cloud. The data are intended to provide a technological basis for determining hazardous length scales associated with the formation of ignitable mixtures due to unintended releases. In contrast to a previous study where momentum-dominated releases were considered, the present study focuses on smaller-scale releases at lower flow rates where buoyancy becomes important. A turbulent jet flow is selected as representative of releases in which the leak geometry is circular. Laser-based Rayleigh scattering is used to characterize the hydrogen concentration field downstream of the leak. Particle Image Velocimetry (PIV) is also used to characterize the flow velocity. Time-averaged mean and fluctuating hydrogen concentration statistics are presented and compared with results in momentum-dominated flows to elucidate the effects of buoyancy on the H{sub 2} dispersion process. Over the range of Froude numbers investigated (Fr=268, 152 and 99), increasing effects of buoyancy are seen as the Fr is reduced and at downstream locations where the influence of buoyancy increases relative to jet momentum. The primary effect of buoyancy is to increase the centerline decay rate of the time-averaged H{sub 2} mass fraction relative to momentum-dominated flows. Acceleration due to buoyancy also results in a slower decay of the time-averaged axial velocity component along the centerline. Radial profiles of the time-averaged H{sub 2} mass fraction also collapse onto the same curves as results in momentum-dominated flows when plotted against the same similarity/scaling variables. While buoyancy is found to have a negligible effect on centerline velocity fluctuations, the maximum H{sub 2} mass fraction fluctuation intensity increases by 70 percent in the buoyant regime and the peak value shifts from the mixing region to the jet

  14. How can large-scale twisted magnetic structures naturally emerge from buoyancy instabilities?

    Science.gov (United States)

    Favier, B.; Jouve, L.; Edmunds, W.; Silvers, L. J.; Proctor, M. R. E.

    2012-11-01

    We consider the 3D instability of a layer of horizontal magnetic field in a polytropic atmosphere where, contrary to previous studies, the field lines in the initial state are not unidirectional. We show that if the twist is initially concentrated inside the unstable layer, the modifications of the instability reported by several authors are only observed when the calculation is restricted to two dimensions. In three dimensions, the usual interchange instability occurs in the direction fixed by the field lines at the interface between the layer and the field-free region. We therefore introduce a new configuration: the instability now develops in a weakly magnetized atmosphere where the direction of the field can vary with respect to the direction of the strong unstable field below, the twist being now concentrated at the upper interface. Both linear stability analysis and non-linear direct numerical simulations are used to study this configuration. We show that from the small-scale interchange instability, large-scale twisted coherent magnetic structures are spontaneously formed, with possible implications to the formation of active regions from a deep-seated solar magnetic field.

  15. How can large-scale twisted magnetic structures naturally emerge from buoyancy instabilities?

    CERN Document Server

    Favier, B F N; Edmunds, W; Silvers, L J; Proctor, M R E

    2012-01-01

    We consider the three-dimensional instability of a layer of horizontal magnetic field in a polytropic atmosphere where, contrary to previous studies, the field lines in the initial state are not unidirectional. We show that if the twist is initially concentrated inside the unstable layer, the modifications of the instability reported by several authors (see e.g. Cattaneo et al. (1990)) are only observed when the calculation is restricted to two dimensions. In three dimensions, the usual interchange instability occurs, in the direction fixed by the field lines at the interface between the layer and the field-free region. We therefore introduce a new configuration: the instability now develops in a weakly magnetised atmosphere where the direction of the field can vary with respect to the direction of the strong unstable field below, the twist being now concentrated at the upper interface. Both linear stability analysis and non-linear direct numerical simulations are used to study this configuration. We show tha...

  16. Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference betwe

  17. Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans

    NARCIS (Netherlands)

    King, B.; Stone, M.; Zhang, H.P.; Gerkema, T.; Marder, M.; Scott, R.B.; Swinney, H.L.

    2012-01-01

    We examine the possible existence of internal gravity wave "turning depths," depths below which the local buoyancy frequency N(z) becomes smaller than the wave frequency. At a turning depth, incident gravity waves reflect rather than reaching the ocean bottom as is generally assumed. Here we conside

  18. Influence of Buoyancy Control Performance on Power Production by the Wave Dragon Nissum Bredning Prototype

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Tedd, James; Friis-Madsen, E.;

    2007-01-01

    This paper reports on the real sea performance of the buoyancy control system of Wave Dragon, a floating wave energy converter using the overtopping principle. The device operates with the full independent control system which has been tested during three years of operation. The impact of the...

  19. Dissipation of buoyancy waves and turbulence in the atmosphere of venus

    Science.gov (United States)

    Izakov, M. N.

    2010-12-01

    The turbulent energy dissipation rate and the coefficients of turbulent diffusion and viscosity caused by breaking buoyancy waves (BWs) have been calculated. From the comparison of these values with other data, the contribution of BWs to the generation of turbulence has been determined. The comparison confirms the validity of the turbulence characteristics of the Venusian troposphere previously calculated from experimental data.

  20. 46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5 Section 160.010-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Buoyant Apparatus for Merchant Vessels § 160.010-5 Buoyant apparatus...

  1. Non-uniqueness of the point of application of the buoyancy force

    Energy Technology Data Exchange (ETDEWEB)

    Kliava, Janis; Megel, Jacques, E-mail: janis.kliava@u-bordeaux1.f [CPMOH UMR 5798 Universite de Bordeaux1-CNRS, 351 cours de la Liberation, 33405 Talence cedex (France)

    2010-07-15

    Even though the buoyancy force (also known as the Archimedes force) has always been an important topic of academic studies in physics, its point of application has not been explicitly identified yet. We present a quantitative approach to this problem based on the concept of the hydrostatic energy, considered here for a general shape of the cross-section of a floating body and for an arbitrary angle of heel. We show that the location of the point of application of the buoyancy force essentially depends (i) on the type of motion experienced by the floating body and (ii) on the definition of this point. In a rolling/pitching motion, considerations involving the rotational moment lead to a particular dynamical point of application of the buoyancy force, and for some simple shapes of the floating body this point coincides with the well-known metacentre. On the other hand, from the work-energy relation it follows that in the rolling/pitching motion the energetical point of application of this force is rigidly connected to the centre of buoyancy; in contrast, in a vertical translation this point is rigidly connected to the centre of gravity of the body. Finally, we consider the location of the characteristic points of the floating bodies for some particular shapes of immersed cross-sections. The paper is intended for higher education level physics teachers and students.

  2. An analytical theory of the buoyancy-Kolmogorov subrange transition in turbulent flows with stable stratification.

    Science.gov (United States)

    Sukoriansky, Semion; Galperin, Boris

    2013-01-13

    The buoyancy subrange of stably stratified turbulence is defined as an intermediate range of scales larger than those in the inertial subrange. This subrange encompasses the crossover from internal gravity waves (IGWs) to small-scale turbulence. The energy exchange between the waves and small-scale turbulence is communicated across this subrange. At the same time, it features progressive anisotropization of flow characteristics on increasing spatial scales. Despite many observational and computational studies of the buoyancy subrange, its theoretical understanding has been lagging. This article presents an investigation of the buoyancy subrange using the quasi-normal scale elimination (QNSE) theory of turbulence. This spectral theory uses a recursive procedure of small-scale modes elimination based upon a quasi-normal mapping of the velocity and temperature fields using the Langevin equations. In the limit of weak stable stratification, the theory becomes completely analytical and yields simple expressions for horizontal and vertical eddy viscosities and eddy diffusivities. In addition, the theory provides expressions for various one-dimensional spectra that quantify turbulence anisotropization. The theory reveals how the dispersion relation for IGWs is modified by turbulence, thus alleviating many unique waves' features. Predictions of the QNSE theory for the buoyancy subrange are shown to agree well with various data. PMID:23185059

  3. Non-uniqueness of the point of application of the buoyancy force

    International Nuclear Information System (INIS)

    Even though the buoyancy force (also known as the Archimedes force) has always been an important topic of academic studies in physics, its point of application has not been explicitly identified yet. We present a quantitative approach to this problem based on the concept of the hydrostatic energy, considered here for a general shape of the cross-section of a floating body and for an arbitrary angle of heel. We show that the location of the point of application of the buoyancy force essentially depends (i) on the type of motion experienced by the floating body and (ii) on the definition of this point. In a rolling/pitching motion, considerations involving the rotational moment lead to a particular dynamical point of application of the buoyancy force, and for some simple shapes of the floating body this point coincides with the well-known metacentre. On the other hand, from the work-energy relation it follows that in the rolling/pitching motion the energetical point of application of this force is rigidly connected to the centre of buoyancy; in contrast, in a vertical translation this point is rigidly connected to the centre of gravity of the body. Finally, we consider the location of the characteristic points of the floating bodies for some particular shapes of immersed cross-sections. The paper is intended for higher education level physics teachers and students.

  4. Investigating Students' Ideas About Buoyancy and the Influence of Haptic Feedback

    Science.gov (United States)

    Minogue, James; Borland, David

    2016-04-01

    While haptics (simulated touch) represents a potential breakthrough technology for science teaching and learning, there is relatively little research into its differential impact in the context of teaching and learning. This paper describes the testing of a haptically enhanced simulation (HES) for learning about buoyancy. Despite a lifetime of everyday experiences, a scientifically sound explanation of buoyancy remains difficult to construct for many. It requires the integration of domain-specific knowledge regarding density, fluid, force, gravity, mass, weight, and buoyancy. Prior studies suggest that novices often focus on only one dimension of the sinking and floating phenomenon. Our HES was designed to promote the integration of the subconcepts of density and buoyant forces and stresses the relationship between the object itself and the surrounding fluid. The study employed a randomized pretest-posttest control group research design and a suite of measures including an open-ended prompt and objective content questions to provide insights into the influence of haptic feedback on undergraduate students' thinking about buoyancy. A convenience sample (n = 40) was drawn from a university's population of undergraduate elementary education majors. Two groups were formed from haptic feedback (n = 22) and no haptic feedback (n = 18). Through content analysis, discernible differences were seen in the posttest explanations sinking and floating across treatment groups. Learners that experienced the haptic feedback made more frequent use of "haptically grounded" terms (e.g., mass, gravity, buoyant force, pushing), leading us to begin to build a local theory of language-mediated haptic cognition.

  5. Lifetime of oil drops pressed by buoyancy against a planar interface: Large drops

    OpenAIRE

    Rojas, Clara; García-Sucre, Máximo; Urbina-Villalba, Germán

    2010-01-01

    In a previous report [10] it was shown that emulsion stability simulations are able to reproduce the lifetime of micrometer-size drops of hexadecane pressed by buoyancy against a planar water-hexadecane interface. It was confirmed that small drops (ri

  6. Academic Buoyancy and Academic Resilience: Exploring "Everyday" and "Classic" Resilience in the Face of Academic Adversity

    Science.gov (United States)

    Martin, Andrew J.

    2013-01-01

    Academic buoyancy has been defined as a capacity to overcome setbacks, challenges, and difficulties that are part of everyday academic life. Academic resilience has been defined as a capacity to overcome acute and/or chronic adversity that is seen as a major threat to a student's educational development. This study is the first to examine the…

  7. Importance of initial buoyancy field on evolution of mantle thermal structure:Implications of surface boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Petar Glisovic; Alessandro M. Forte

    2015-01-01

    Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition). As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid) boundary condition. A rigid boundary condition dem-onstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like) on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs), especially below the Pacific. The evolution of sub-duction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique slow feature

  8. Thermally and Acoustically Driven Transport in Supercritical Fluids

    Science.gov (United States)

    Hasan, Nusair Mohammed Ibn

    Supercritical fluids are fluids at temperature and pressure above their respective critical values. Such fluids are increasingly being used in power generation, refrigeration and chemical process industry. The objectives of the current research were to develop a fundamental understanding of the transport phenomena in near-critical supercritical fluids via high-resolution numerical simulations and careful experiments for improved design of industrial processes and applications that employ supercritical fluids. A set of synergistic experimental and numerical studies were proposed in this research. Four main focus areas under the broad spectrum of supercritical fluid transport were chosen -- (a) characterization of thermoacoustic transport, (b) interaction of thermoacoustic transport with natural convection, (c) characterization of acoustically augmented transport and (d) enhancement of mass transport using acoustic waves. A numerical model to simulate thermoacoustic convection in near-critical fluids was developed. In the computational model, the conservation equations were solved along with a real-fluid equation of state for supercritical fluid and variable thermo-physical properties. Thermoacoustic waves in near-critical carbon dioxide were also investigated experimentally on acoustic time scales using a fast response measurement system. The predicted results from the calculation and the measurements provide interesting details regarding the thermal transport mechanisms at near-critical states. The numerical model was applied to investigate the interaction of buoyancy driven flows with thermoacoustic convection in near-critical supercritical fluids. This model can be extensively used for studying the steady-state thermal transport and stability behavior of near-critical fluids. Mechanically driven acoustic waves in supercritical fluid generated by a vibrating wall in a cylindrical resonator were studied both numerically and experimentally. The simulations revealed

  9. Model of Wave Driven Flow Oscillation for Solar Cycle

    Science.gov (United States)

    Mayr, Hans G.; Wolff, Charles L.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    At low latitudes in the Earth's atmosphere, the observed zonal flow velocities are dominated by the semi-annual and quasi-biennial oscillations with periods of 6 months and 20 to 32 months respectively. These terrestrial oscillations, the SAO and QBO respectively, are driven by wave-mean flow interactions due to upward propagating planetary-scale waves (periods of days) and small-scale gravity waves (periods of hours). We are proposing (see also Mayr et al., GRL, 2001) that such a mechanism may drive long period oscillations (reversing flows) in stellar and planetary interiors, and we apply it to the Sun. The reversing flows would occur below the convective envelope where waves can propagate. We apply a simplified, one dimensional, analytical flow model that incorporates a gravity wave parameterization due to Hines (1997). Based on this analysis, our estimates show that relatively small wave amplitudes less than 10 m/s can produce zonal flow amplitudes of 20 m/s, which should be sufficient to generate the observed variations in the magnetic field. To produce the 22-year period of oscillation, a low buoyancy frequency must be chosen, and this places the proposed flow in a region that is close to (and below) the base of the convective envelope. Enhanced turbulence associated with this low stability should help to generate the dynamo currents. With larger stability at deeper levels in the solar interior, the model can readily produce also oscillations with much longer periods. To provide an understanding of the fluid dynamics involved, we present numerical results from a 2D model for the terrestrial atmosphere that exemplify the non-linear nature of the wave interaction for which a mechanical analog is the escapement mechanism of the clock.

  10. Examination of Buoyancy-Reduction Effect in Induction-Heating Cookers by Using 3D Finite Element Method

    Science.gov (United States)

    Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa

    In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.

  11. Natural circulation in PWR for asymmetric secondary conditions

    International Nuclear Information System (INIS)

    Natural circulation in the primary loop of PWRs offers an essential means of removing the shutdown decay heat during accidents and is an important safety issue due to its passive mechanism. The flow is driven by the buoyancy force arisen by the average coolant density difference between the heat source and the heat sink. In order to examine the thermal-hydraulic behavior and heat removal capability by the natural circulation of system in transients or accident conditions, the experimental facility (SNUF) is constructed on the model of KORI unit 1 and 2 with the scaling factor of 1/710 by volume. With SNUF, a series of experiments is performed to understand the characteristics of natural circulation. Form the steady-state experiments, it is turned out that the loop mass flow rate is in pro potion to core power and to reciprocal of loop temperature difference. From the transient experiments, the core heat can be removed for active secondary heat sinks including the condition that one steam generator degrades its heat removal capability such as feed line break accident or loss of normal feedwater

  12. CFD-analysis of buoyancy-driven flow inside a cooling pipe system attached to a reactor pressure vessel

    OpenAIRE

    Petersson, Jens

    2014-01-01

    In this work a cooling system connected to a reactor pressure vessel has been studied using the CFD method for the purpose of investigating the strengths and shortcomings of using CFD as a tool in similar fluid flow problems within nuclear power plants. The cooling system is used to transport water of 288K (15°C) into a nuclear reactor vessel filled with water of about 555K (282°C) during certain operating scenarios. After the system has been used, the warm water inside the vessel will be car...

  13. Effect of oxygen on the corrosion behavior of SS316L in a buoyancy driven Pb-17Li loop

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, P., E-mail: myworld.pc@gmail.com [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Fotedar, R.K.; Krishnamurthy, N. [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We examined the role of oxygen in the mitigating corrosion of SS316L by Pb-17Li. Black-Right-Pointing-Pointer We compared the ferrite layer formed in the presence and absence of oxygen. Black-Right-Pointing-Pointer Introduction of oxygen developed a thinner ferrite layer on the SS316L surface. Black-Right-Pointing-Pointer The reduction in thickness was due to the formation of a Cr enriched passive layer. Black-Right-Pointing-Pointer The aforesaid protective layer on the surface of SS316L contained LiCrO{sub 2} and Cr{sub 2}O{sub 3}. - Abstract: Corrosion behavior of SS316L in lead-lithium eutectic in the presence of oxygen was investigated in a thermal convection loop for 1000 h of exposure. At a thermal gradient of 100 K, a 20 {mu}m deep ferrite layer was formed on the exposed surface. Introduction of oxygen resulted in a substantially high chromium depletion from the steel matrix. EPMA profiles revealed the presence of chromium enriched, lead free layer over the surface facing liquid lead-lithium. XRD data confirmed the presence of LiCrO{sub 2} and Cr{sub 2}O{sub 3} in this layer. It is expected that this layer at the interface can act as a passive boundary and thus prevent continued corrosion by liquid metal.

  14. Thermal analysis of a fully wet porous radial fin with natural convection and radiation using the spectral collocation method

    Science.gov (United States)

    Khani, F.; Darvishi, M. T.; Gorla, R. S.. R.; Gireesha, B. J.

    2016-05-01

    Heat transfer with natural convection and radiation effect on a fully wet porous radial fin is considered. The radial velocity of the buoyancy driven flow at any radial location is obtained by applying Darcy's law. The obtained non-dimensionalized ordinary differential equation involving three highly nonlinear terms is solved numerically with the spectral collocation method. In this approach, the dimensionless temperature is approximated by Chebyshev polynomials and discretized by Chebyshev-Gausse-Lobatto collocation points. A particular algorithm is used to reduce the nonlinearity of the conservation of energy equation. The present analysis characterizes the effect of ambient temperature in different ways and it provides a better picture regarding the effect of ambient temperature on the thermal performance of the fin. The profiles for temperature distributions and dimensionless base heat flow are obtained for different parameters which influence the heat transfer rate.

  15. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    OpenAIRE

    Janovcová Martina; Jandačka Jozef; Malcho Milan

    2015-01-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measureme...

  16. PUBLIC SECTOR ASSET MANAGEMENT PLANNING TO MITIGATE CLIMATE CHANGE DRIVEN NATURAL DISASTERS - A STUDY OF UK DISASTER AND BUSINESS CONTINUITY PLANNING

    OpenAIRE

    C.M.J. Warren

    2010-01-01

    This paper describes the current climate change predictions and the likely consequences for European building assets. It addresses the role of Public Sector Asset Managers with particular emphasis on UK practice. It highlights the need for asset managers to mitigate the adverse effects of climate change and prepare for extreme weather events and other associated natural disasters.The paper is based on a literature review of current climate data and best practice public sector asset management...

  17. Mixed convection in inclined lid driven cavity by Lattice Boltzmann Method and heat flux boundary condition

    International Nuclear Information System (INIS)

    Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration

  18. Mathematical modelling of nucleation and growth of crystals with buoyancy effects

    Science.gov (United States)

    Alexandrov, D. V.

    2016-04-01

    A complete analytical solution of the integro-differential model describing the nucleation of crystals and their subsequent growth in a binary system with allowance for buoyancy forces is constructed. An exact analytical solution of the Fokker-Planck-type equation for the three-parameter density distribution function is found for arbitrary nucleation kinetics. Two important cases of the Weber-Volmer-Frenkel-Zel'dovich and Meirs kinetics are considered in some detail. It is shown that the solute concentration decreases and the distribution function increases with increasing the melt supercooling (with increasing the depth of a metastable system). It is demonstrated that the distribution function attains its minimum at a certain size of crystals owing to buoyancy forces.

  19. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames

    Science.gov (United States)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  20. Multicomponent theory of buoyancy instabilities in magnetized astrophysical plasmas: MHD analysis revisited

    CERN Document Server

    Nekrasov, Anatoly K

    2010-01-01

    We develop a theory of buoyancy instabilities of the electron-ion plasma with the heat flux based on not the MHD equations, but using the multicomponent plasma approach. We investigate a geometry in which the background magnetic field, gravity, and stratification are directed along one axis. No simplifications usual for the MHD-approach in studying these instabilities are used. The background electron thermal flux and collisions between electrons and ions are included. We derive the simple dispersion relation, which shows that the thermal flux perturbation generally stabilizes an instability. There is a narrow region of the temperature gradient, where an instability is possible. This result contradicts to a conclusion obtained in the MHD-approach. We show that the reason of this contradiction is the simplified assumptions used in the MHD analysis of buoyancy instabilities and the role of the longitudinal electric field perturbation, which is not captured by the MHD equations. Our dispersion relation also show...

  1. Multicomponent theory of buoyancy instabilities in magnetized plasmas: The case of magnetic field parallel to gravity

    CERN Document Server

    Nekrasov, Anatoly

    2011-01-01

    We investigate electromagnetic buoyancy instabilities of the electron-ion plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations, but using the multicomponent plasma approach when the momentum equations are solved for each species. We consider a geometry in which the background magnetic field, gravity, and stratification are directed along one axis. The nonzero background electron thermal flux is taken into account. Collisions between electrons and ions are included in the momentum equations. No simplifications usual for the one-fluid MHD-approach in studying these instabilities are used. We derive a simple dispersion relation, which shows that the thermal flux perturbation generally stabilizes an instability for the geometry under consideration. This result contradicts to conclusion obtained in the MHD-approach. We show that the reason of this contradiction is the simplified assumptions used in the MHD analysis of buoyancy instabilities and the role of the longitudinal electric field ...

  2. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept.

    Science.gov (United States)

    Dannberg, Juliane; Sobolev, Stephan V

    2015-01-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970

  3. Tropical cloud buoyancy is the same in a world with or without ice

    Science.gov (United States)

    Seeley, Jacob T.; Romps, David M.

    2016-04-01

    When convective clouds grow above the melting line, where temperatures fall below 0°C, condensed water begins to freeze and water vapor is deposited. These processes release the latent heat of fusion, which warms cloud air, and many previous studies have suggested that this heating from fusion increases cloud buoyancy in the upper troposphere. Here we use numerical simulations of radiative-convective equilibrium with and without ice processes to argue that tropical cloud buoyancy is not systematically higher in a world with fusion than in a world without it. This insensitivity results from the fact that the environmental temperature profile encountered by developing tropical clouds is itself determined by convection. We also offer a simple explanation for the large reservoir of convective available potential energy in the tropical upper troposphere that does not invoke ice.

  4. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan

    2015-07-26

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed particles in a fuel stream using continuous-wave (CW) Argon-ion laser. Velocity fields were also quantified with particle mage velocimetry (PIV) system having kHz repetition rate. The results showed that the dynamic motion of negative buoyance induced vortices near the nozzle exit was coupled strongly with a flame flickering instability. Typically during the flame flickering, the negative buoyant vortices oscillated at the flickering frequency. The vortices were distorted by the flickering motion and exhibited complicated transient vortical patterns, such as tilting and stretching. Numerical simulations were also implemented based on an open source C++ package, LaminarSMOKE, for further validations.

  5. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    Science.gov (United States)

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-01-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970

  6. Buoyancy effects on morphological instability during directional solidification

    Science.gov (United States)

    Coriell, S. R.; Mcfadden, G. B.

    1989-01-01

    The onset of morphological instability during the directional solidification of a single-phase binary alloy at constant velocity vertically upwards is treated by a linear stability analysis. The case in which a heavier solute is rejected at the solidifying interface is considered, and the effect of natural convection on the critical concentration for the onset of instability is studied. For tin containing lead, a small destabilization of the system at low growth velocities, and a large increase in the wavelength of the instability at the onset are found. Calculations show that the destabilization is enhanced as the variation of density with solute concentration is reduced, and in the limit of neutrally-dense solute, there is a long wavelength instability for which the critical solute concentration is several orders of magnitude lower than that predicted by the Mullins and Sekerka (1964) analysis in the absence of convection. For the neutrally-dense solute, a simplified analysis indicates the roles played by the interface deformation and thermal convection in promoting the instability. In particular, the destabilization is very sensitive to the ratio of crystal and melt thermal conductivities.

  7. The effect of surface buoyancy gradients on oceanic Rossby wave propagation

    OpenAIRE

    Xiao, Xiao(Institute for Strings, Cosmology and Astroparticle Physics (ISCAP) and Physics Department, Columbia University, 538 West 120th Street, New York, NY, 10027 U.S.A.); Smith, K. Shafer; Keating, Shane R.

    2014-01-01

    Motivated by the discrepancy between satellite observations of coherent westward propagating surface features and Rossby wave theory, this paper revisits the planetary wave propagation problem, taking into account the effects of lateral buoyancy gradients at the ocean's surface. The standard theory for long baroclinic Rossby waves is based on an expansion of the quasigeostrophic stretching operator in normal modes, $\\phi_n(z)$, satisfying a Neumann boundary condition at the surface, $\\phi_n'(...

  8. Asymptotic conditions for the use of linear ventilation models in the presence of buoyancy forces

    OpenAIRE

    Cao, Shijie; Meyers, Johan

    2014-01-01

    Low-dimensional discrete linear ventilation models have been studied by Cao and Meyers (2012). In the present study, we investigate the validity and applicability of linear ventilation models for heavy-gas dispersion by employing Reynolds-averaged Navier-Stokes (RANS) simulations. A simple benchmark ventilation case is considered under isothermal condition. Considering large density differences from pollutant gas and fresh air, the effect of buoyancy force has been taken into account in turbu...

  9. Convective damping of buoyancy anomalies and its effect on lapse rates in the tropical lower troposphere

    OpenAIRE

    Folkins, I.

    2005-01-01

    International audience In regions of the tropics undergoing active deep convection, the variation of lower tropospheric lapse rates (2.0 km to 5.2 km) with height is inconsistent with both reversible moist adiabatic and pseudoadiabatic assumptions. It is argued that this anomalous behavior arises from the tendency for the divergence of a convective buoyancy anomaly to be primarily offset by the collective divergence of other updrafts and downdrafts within one Rossby radius of deformation. ...

  10. Buoyancy Effects on the Scaling Characteristics of Atmospheric Boundary Layer Wind Fields in the Mesoscale Range

    CERN Document Server

    Kiliyanpilakkil, V P; Ruiz-Columbié, A; Araya, G; Castillo, L; Hirth, B; Burgett, W

    2015-01-01

    We have analyzed long-term wind speed time-series from five field sites up to a height of 300 m from the ground. Structure function-based scaling analysis has revealed that the scaling exponents in the mesoscale regime systematically depend on height. This anomalous behavior is shown to be caused by the buoyancy effects. In the framework of the extended self-similarity, the relative scaling exponents portray quasi-universal behavior.

  11. Effect of bioadhesion on initial in vitro buoyancy of effervescent floating matrix tablets of ciprofloxacin HCL

    OpenAIRE

    Jeetendra Singh Negi; Abhinav Trivedi; Praveen Khanduri; Vandana Negi; Nikhil Kasliwal

    2011-01-01

    The purpose of this study was to investigate effect of bioadhesion on the initial in vitro buoyancy behaviour of effervescent matrix tablets of ciprofloxacin HCl (CIPRO). Tablets were prepared by direct compression using HPMC K4M and Carbopol 971P as hydrophilic-controlled release polymers, sodium bicarbonate (NaHCO 3 ) as gas-generating agent, polyplasdone XL, Explotab and Ac-Di-Sol as swelling agents. Tablets were evaluated for normal and modified initial in vitro floating behavior, floatin...

  12. The buoyancy convection during directional solidification of AlZn eutectic

    OpenAIRE

    PrazÁk, M.; Procio, M.; Holecek, S.

    1993-01-01

    A study has been made of the effect of buoyancy convection during the directional solidification of AlZn eutectic alloy. Experiments have been conducted using a Bridgman-Stockbarger arrangement with the furnace moving along the specimen. The apparatus rotated around the horizontal axis, which made it possible to carry out measurements at different angles β contained by the gravity and temperature gradient vectors in the specimen. The anisotropy of both the linear thermal expansion coefficient...

  13. Experimental parameterisation of principal physics in buoyancy variations of marine teleost eggs

    OpenAIRE

    Kyung-Mi Jung; Arild Folkvord; Olav Sigurd Kjesbu; Svein Sundby

    2014-01-01

    It is generally accepted that the high buoyancy of pelagic marine eggs is due to substantial influx of water across the cell membrane just before ovulation. Here we further develop the theoretical basis by applying laboratory observations of the various components of the fertilized egg in first-principle equations for egg specific gravity (ρ(egg)) followed by statistical validation. We selected Atlantic cod as a model animal due to the affluent amount of literature on this species, but also u...

  14. Craton stability and longevity: The roles of composition-dependent rheology and buoyancy

    OpenAIRE

    Wang, Hongliang; van Hunen, Jeroen; Pearson, D. Graham; Allen, Mark B.

    2014-01-01

    Survival of thick cratonic roots in a vigorously convecting mantle system for billions of years has long been studied by the geodynamical community. High strength of the cratonic root is generally considered to be the most important factor, but the role of lithospheric mantle depletion and dehydration in this strengthening is still debated. Geodynamical models often argue for a significant strength or buoyancy contrast between cratonic and non-cratonic mantle lithosphere, induced by mantle de...

  15. The effect of ambient salinity on the buoyancy of eggs from the Atlantic halibut (Hippoglossus hippoglossus)

    OpenAIRE

    Mangor-Jensen, Anders; Jelmert, Anders

    1986-01-01

    The effect of ambient salinity on buoyancy and the formation of perivitelline fluid in eggs from the Atlantic halibut Hippoglossus hippoglossus have been investigated. The results clearly demonstrate that the water balance of the eggs are independant of the ambient salinity the first days after fertilization. The water loss from eggs fertilized in 17 ppt saline sea water was not less than from eggs fertilized in 34 ppt sea water in spite of a reduced osmotic gradient. Nei...

  16. Viscous Dissipation and Buoyancy Effects on Laminar Convection in a Vertical Channel with Transpiration

    OpenAIRE

    Idowu Amos Sesan; Joseph K. Moses; Onwubuoya Cletus; Joseph W D

    2013-01-01

    The viscous dissipation and buoyancy effects on laminar convection with transpiration are investigated. Uniform and asymmetric temperatures are prescribed at the channel walls. The velocity field is considered as parallel. A perturbation method is employed to solve the momentum balance equation and the energy balance equation. A comparison with the velocity and temperature profiles in the case of laminar forced convection with various dissipation is performed in order to point out the effect ...

  17. Combined Effect of Buoyancy Force and Navier Slip on Entropy Generation in a Vertical Porous Channel

    OpenAIRE

    Oluwole Daniel Makinde; Adetayo Samuel Eegunjobi

    2012-01-01

    In this paper, we investigate the combined effects of buoyancy force and Navier slip on the entropy generation rate in a vertical porous channel with wall suction/injection. The nonlinear model problem is tackled numerically using Runge–Kutta–Fehlberg method with shooting technique. Both the velocity and temperature profiles are obtained and utilized to compute the entropy generation number. The effects of slip parameter, Brinkmann number, the Peclet number and suction/injection Reynolds numb...

  18. Investigation of Hydrodynamic Aspects of the Design of the Universal Buoyancy Concept (UBC) Loading Buoy

    OpenAIRE

    Knutsen, David Mikal

    2012-01-01

    A new loading and discharge concept for ships, referred to as the Universal Buoyancy Concept (UBC), is proposed as an effective alternative to land based infrastructure for distribution of primarily LNG. The UBC system consists of a slack moored stepped spar buoy equipped with pads for shipside vacuum attachment. The buoy is connected to shore based tank facilities with a flexible cryogenic riser, thus providing opportunity for offshore loading and discharge of cryogenic liquids. In the follo...

  19. The ALTEC- Neutral Buoyancy Test Facility: A Powerful Tool for Physiology and Neuroscience Research

    Science.gov (United States)

    Benassai, Mario

    2013-02-01

    Recently introduced by the European Space Agency in the list of Ground Based Facilities (GBF), the ALTEC Neutral Buoyancy Test Facility (NBTF) is a unique item: this is the greatest pool completely out of the ground in Europe. Its four huge windows - one facing on a dedicated control room connected to subjects via audio and video links - allow a complete monitoring of the subject / experiment scenario

  20. Buoyancy waves in Pluto’s high atmosphere: Implications for stellar occultations

    Science.gov (United States)

    Hubbard, W. B.; McCarthy, D. W.; Kulesa, C. A.; Benecchi, S. D.; Person, M. J.; Elliot, J. L.; Gulbis, A. A. S.

    2009-11-01

    We apply scintillation theory to stellar signal fluctuations in the high-resolution, high signal/noise, dual-wavelength data from the MMT observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined high wavenumber cutoff in the fluctuations is consistent with viscous-thermal dissipation of buoyancy waves (internal gravity waves) in Pluto's high atmosphere, and provides strong evidence that the underlying density fluctuations are governed by the gravity-wave dispersion relation.

  1. Buoyancy efects on three-dimensional waves of iodate-arsenous acid reactions

    Czech Academy of Sciences Publication Activity Database

    Šebestíková, Lenka

    Gothenburg: University of Gothenburg, 2012 - (Mehlig, B.; Ghavami, O.; Östlund, S.; Hanstorp, D.). s. 136 ISBN 978-91-637-1501-3. [Dynamics Days Europe /32./. 02.09.2012-07.09.2012, Gothenburg] R&D Projects: GA ČR GAP105/10/0919 Institutional research plan: CEZ:AV0Z20600510 Keywords : buoyancy * chemical waves * iodate-arsenous acid reaction Subject RIV: BK - Fluid Dynamics

  2. Buoyant balaenids: the ups and downs of buoyancy in right whales.

    OpenAIRE

    Nowacek, D. P.; Johnson, M P; Tyack, P.L.; Shorter, K. A.; McLellan, W. A.; Pabst, D.A.

    2001-01-01

    A variety of marine mammal species have been shown to conserve energy by using negative buoyancy to power prolonged descent glides during dives. A new non-invasive tag attached to North Atlantic right whales recorded swim stroke from changes in pitch angle derived from a three-axis accelerometer. These results show that right whales are positively buoyant near the surface, a finding that has significant implications for both energetics and management. Some of the most powerful fluke strokes o...

  3. Predictions of buoyancy-induced flow in asymmetrical heated rotating cavity system

    International Nuclear Information System (INIS)

    This paper presents the finite difference solutions for buoyancy-induced flow in the asymmetrical heated rotating cavity system for the range of rotational Reynolds numbers Re =6.13x10/sup 5/< Re/sub theta/=4.4*10/sup 6/ and the mass flow rates C/sub w/ <28000< C/sub w/ <3000. All the simulations have been carried out through the CFD (computational Fluid Dynamics) commercial code, ANSYS Fluent 12.0, by adopting axisymmetric, steady-state and elliptic technique. Two well know models namely k-epsilon and the Reynolds stress models have been employed. The simulated results illustrate the important aspects of the heated rotating cavity flow system. The noteworthy influence of buoyancy-induced flow have been observed on the predicted stream line, static temperature contours and the local Nusselt numbers for the rotating cavity flow system. The noteworthy influence of buoyancy-induced flow have been observed on the predicted stream lines, static temperature contours and the local Nusselt numbers for the rotating cavity space. A comparison of the predicted local nusselt numbers for the hot and cold discs showed a good level of agreement with the measurement. (author)

  4. Schlieren Measurements of Buoyancy Effects on Flow Transition in Low-Density Gas Jets

    Science.gov (United States)

    Pasumarthi, Kasyap S.; Agrawal, Ajay K.

    2005-01-01

    The transition from laminar to turbulent flow in helium jets discharged into air was studied using Rainbow Schlieren Deflectometry technique. In particular, the effects of buoyancy on jet oscillations and flow transition length were considered. Experiments to simulate microgravity were conducted in the 2.2s drop tower at NASA Glenn Research Center. The jet Reynolds numbers varied from 800 to1200 and the jet Richardson numbers ranged between 0.01 and 0.004. Schlieren images revealed substantial variations in the flow structure during the drop. Fast Fourier Transform (FFT) analysis of the data obtained in Earth gravity experiments revealed the existence of a discrete oscillating frequency in the transition region, which matched the frequency in the upstream laminar regime. In microgravity, the transition occurred farther downstream indicating laminarization of the jet in the absence of buoyancy. The amplitude of jet oscillations was reduced by up to an order of magnitude in microgravity. Results suggest that jet oscillations were buoyancy induced and that the brief microgravity period may not be sufficient for the oscillations to completely subside.

  5. Effects of buoyancy and forcing on transitioning and turbulent circular jet flames

    Science.gov (United States)

    Nichols, Joseph W.; Riley, James J.; Schmid, Peter J.

    2003-11-01

    The effects of buoyancy and forcing on circular jet flames are first studied by comparing direct numerical simulations (DNS) of the jet flames in zero-gravity environments to simulations of similar jet flames in normal gravity. A low Mach number approximation is applied to the fully compressible Navier-Stokes equations which filters out acoustic waves but still captures variable density effects. It is found that buoyancy tends to make the flow much more unstable, so that strong instabilities appear even in the absence of externally applied forcing. In order to understand the effects of the enhancement of the instability by buoyancy, a spatial stability analysis of the linearized low Mach number equations is performed for a variable density jet by means of a primitive variable formulation. Using spectral expansion methods, a spectrum of eigenvalues and corresponding eigenfunctions is obtained. Additionally, the stability analysis determines the optimal forcing needed to enhance the instability growth, which is thought to play a key role in the control of the flow development in the near field of a jet.

  6. Energy cost and putative benefits of cellular mechanisms modulating buoyancy in aflagellate marine phytoplankton.

    Science.gov (United States)

    Lavoie, Michel; Raven, John A; Levasseur, Maurice

    2016-04-01

    Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl-sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (<12%) of the total photon energy cost for growth. Cell wall formation in E. huxleyi was the least costly ballast strategy, whereas in T. pseudonana, the photon energy cost of the three ballast strategies was similar. In E. rex, carbohydrate storage and mobilization appear to be energetically cheaper than modulations in organic solute synthesis to achieve vertical migration. This supports the carbohydrate-ballast strategy for vertical migration for this species, but argues against the theory of replacement of low- or high-density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton. PMID:27037589

  7. Craton stability and longevity: The roles of composition-dependent rheology and buoyancy

    Science.gov (United States)

    Wang, Hongliang; van Hunen, Jeroen; Pearson, D. Graham; Allen, Mark B.

    2014-04-01

    Survival of thick cratonic roots in a vigorously convecting mantle system for billions of years has long been studied by the geodynamical community. High strength of the cratonic root is generally considered to be the most important factor, but the role of lithospheric mantle depletion and dehydration in this strengthening is still debated. Geodynamical models often argue for a significant strength or buoyancy contrast between cratonic and non-cratonic mantle lithosphere, induced by mantle depletion and dehydration. But recent laboratory experiments argue for only a modest effect of dehydration strengthening. Can we reconcile laboratory experiments and geodynamical models? We perform and discuss new numerical models to investigate craton stability and longevity with different composition-dependent rheology and buoyancy. Our results show that highly viscous and possibly buoyant cratonic root is essential to stabilise a geometry in which thick cratonic lithosphere and thinner non-cratonic lithosphere coexist for billions of years. Using non-Newtonian rheology, a modest strengthening factor of Δη=3 can protect compositionally buoyant cratonic roots from erosion by mantle convection for over billions of years. A larger strengthening factor (Δη=10) can maintain long term craton stability even with little or no intrinsic buoyancy. Such composition-dependent rheology is comparable to the laboratory experiments. This implies that a strict isopycnic state of cratonic lithosphere may not be necessary for the preservation of a cratonic root, provided a sufficient level of compositional strengthening is present.

  8. Fluid mechanics of ventilation system generated by buoyancy and momentum sources and experiments research

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; HUANG Chen; FU Yu-ying; CAO Wei-wu

    2010-01-01

    This paper presents fluid mechanics of ventilation system formed by the momentum source and the buoyancy source,which investigates inter-action between the plume and the non-isothermal air jet since buoyancy source is produced by the plume and momentum source is generated by the air jet,respectively.The interaction is discussed by a mathematical model,an idealized situation of the plume rising from a point heat source of buoyancy alone-in particular the initial momentum flux at the source is zero.Furthermore,the paper discusses the effects of the parameters such as strength of source,air-flow volume and air-flow velocity used in the mathematical-physical model.Considering the effect of the plume generated by the indoor heat source,one expression of trajectory of the non-isothermal air jet produced by jet diffuser is deduced.And field-experiment has also been carried out to illustrate the effect on flowing-action of the air jet and validate the theoretical work.It can be concluded that the heat sources do have effect on the flowing-action of the air jet,and the effect mainly depends on the interaction produced by the plume and the air jet.The results show that the thermal buoyant effect of plumes on the air jet should be taken into account if the indoor heat sources are large enough.Numerical simulation is conducted and coincides with the experimental results as well.

  9. Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone

    OpenAIRE

    Barker, A.J.; Silvers, L. J.; Proctor, M. R. E.; Weiss, N.O.

    2012-01-01

    We perform idealized numerical simulations of magnetic buoyancy instabilities in three dimensions, solving the equations of compressible magnetohydrodynamics in a model of the solar tachocline. In particular, we study the effects of including a highly simplified model of magnetic flux pumping in an upper layer (‘the convection zone’) on magnetic buoyancy instabilities in a lower layer (‘the upper parts of the radiative interior – including the tachocline’), to study these competing flux trans...

  10. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    Science.gov (United States)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  11. Numerical Study of Buoyancy Convection of Air under Permanent Magnetic Field and Comparison with That under Gravity Field

    Directory of Open Access Journals (Sweden)

    Kewei Song

    2014-01-01

    Full Text Available Magnetothermal free convection of air in a square enclosure under a nonuniform magnetic field provided by a permanent neodymium-iron-boron magnet is numerically studied. The natural convection under the gravity field alone is also studied for comparison. The physical fields of magnetizing force, velocity, and temperature as well as the local distribution characteristic of Nusselt number are all presented in this paper. The results show that the buoyancy convection of air in the square enclosure under magnetic field is quite different from that under the gravity field. The local value of Nusselt number under the magnetic field supplied by a permanent magnet with a residual magnetic flux density of about 4.5 Tesla can reach a high value of about three times larger than the maximum local value of Nusselt number under the gravity field. Relatively uniform distributions of temperature gradient and Nusselt number can be obtained along the cold wall of the enclosure under the magnetic field. A permanent magnet with high magnetic energy product with Br reaching to 3.5 Tesla can play a comparative role on the averaged Nusselt number compared with that under the gravity environment.

  12. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  13. Scaling Analysis of Natural Circulation Flow Loop

    International Nuclear Information System (INIS)

    To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. The boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, an increase in the natural circulation mass flow rate of the coolant leads to an increase in the critical heat flux (CHF) on the hot wall, thus enhancing the thermal margin. An ex-vessel core catcher under consideration, which is one of the engineered corium cooling system, is a passive system consisting of an inclined engineered cooling channel made of a single channel between the body of the core catcher and the inside wall of the reactor cavity. Under severe accident conditions, water is supplied from the IRWST to the engineered cooling channel. The water in the inclined channel absorbs the decay heat transferred from the corium through the carbon steel structure of the core catcher body and boils off as steam. The latter is subsequently released into the free volume of the containment above the corium spreading compartment. Water continues to flow from the IRWST to the cooling channel as a result of buoyancy-driven natural circulation. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. In this study, the scaling analysis was performed by solving the natural circulation flow loop equation for the cooling channel in the ex-vessel core catcher. The scaling analysis was performed by solving the natural circulation flow loop equation for the cooling channel in the ex-vessel core catcher. The boiling-induced natural circulation flow in the cooling channel of the core catcher has been modeled by considering the conservation of mass, momentum and energy in the two-phase mixture, along

  14. Fishing for drifts: detecting buoyancy changes of a top marine predator using a step-wise filtering method.

    Science.gov (United States)

    Gordine, Samantha Alex; Fedak, Michael; Boehme, Lars

    2015-12-01

    In southern elephant seals (Mirounga leonina), fasting- and foraging-related fluctuations in body composition are reflected by buoyancy changes. Such buoyancy changes can be monitored by measuring changes in the rate at which a seal drifts passively through the water column, i.e. when all active swimming motion ceases. Here, we present an improved knowledge-based method for detecting buoyancy changes from compressed and abstracted dive profiles received through telemetry. By step-wise filtering of the dive data, the developed algorithm identifies fragments of dives that correspond to times when animals drift. In the dive records of 11 southern elephant seals from South Georgia, this filtering method identified 0.8-2.2% of all dives as drift dives, indicating large individual variation in drift diving behaviour. The obtained drift rate time series exhibit that, at the beginning of each migration, all individuals were strongly negatively buoyant. Over the following 75-150 days, the buoyancy of all individuals peaked close to or at neutral buoyancy, indicative of a seal's foraging success. Independent verification with visually inspected detailed high-resolution dive data confirmed that this method is capable of reliably detecting buoyancy changes in the dive records of drift diving species using abstracted data. This also affirms that abstracted dive profiles convey the geometric shape of drift dives in sufficient detail for them to be identified. Further, it suggests that, using this step-wise filtering method, buoyancy changes could be detected even in old datasets with compressed dive information, for which conventional drift dive classification previously failed. PMID:26486362

  15. Quantifying the performance of natural ventilation windcatchers

    OpenAIRE

    Jones, B

    2010-01-01

    This thesis was submitted for the degree of Doctor of Doctor of Environmental Technology and awarded by Brunel University, 2010. The significant energy consumption of non- domestic buildings has led to renewed interest in natural ventilation strategies that utilise the action of the wind, and the buoyancy of hot air. One natural ventilation element is the Windcatcher, a roof mounted device that works by channelling air into a room under the action of wind pressure, whilst simultaneously dr...

  16. Confined Non-Newtonian Fluid Flow and Heat and Mass Transfers Induced by both Thermal and Solutal Buoyancy Forces of Equal Intensities

    Directory of Open Access Journals (Sweden)

    T. Makayssi

    2011-01-01

    Full Text Available In this paper is reported an analytical and numerical study on double-diffusive natural convection in a non-Newtonian power-law fluid confined in a shallow horizontal rectangular enclosure submitted to uniform heat and mass fluxes along its short vertical sides, while the horizontal ones are insulated and impermeable. Here, the cases of aiding and opposing thermal and solutal buoyancy forces of equal intensities are considered. In the first part of the work the full governing equations are solved and the effects of the power-law behavior index, n, and the generalized thermal Rayleigh number, RaT , are examined and analyzed. In the second part, an analytical solution, based on the parallel flow approximation valid in the case of a shallow cavity, is proposed and an excellent agreement of results between the two approaches is observed, which validates them mutually.

  17. On the correlation of buoyancy-influenced turbulent convective heat transfer to fluids at supercritical pressure

    International Nuclear Information System (INIS)

    This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experiments using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)

  18. Turbulent flow in rib-roughened channel under the effect of Coriolis and rotational buoyancy forces

    Science.gov (United States)

    Coletti, Filippo; Jacono, David Lo; Cresci, Irene; Arts, Tony

    2014-04-01

    The turbulent flow inside a rotating channel provided with transverse ribs along one wall is studied by means of two-dimensional time-resolved particle image velocimetry. The measurement set-up is mounted on the same rotating disk with the test section, allowing to obtain the same accuracy and resolution as in a non-rotating rig. The Reynolds number is 15 000, and the rotation number is 0.38. As the ribbed wall is heated, both the Coriolis force and the centrifugal force play a role in the fluid dynamics. The mean velocity fields highlight the major impact of the rotational buoyancy (characterized by a buoyancy number of 0.31) on the flow along the leading side of the duct. In particular, since the flow is directed radially outward, the near-wall layers experience significant centripetal buoyancy. The recirculation area behind the obstacles is enlarged to the point of spanning the whole inter-rib space. Also the turbulent fluctuations are significantly altered, and overall augmented, with respect to the non-buoyant case, resulting in higher turbulence levels far from the rib. On the other hand the centrifugal force has little or no impact on the flow along the trailing wall. Vortex identification, proper orthogonal decomposition, and two-point correlations are used to highlight rotational effects, and in particular to determine the dominant scales of the turbulent unsteady flow, the time-dependent behavior of the shear layer and of the recirculation bubble behind the wall-mounted obstacles, the lifetime and advection velocity of the coherent structures.

  19. On the correlation of buoyancy-influenced turbulent convective heat transfer to fluids at supercritical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. D. [Univ. of Manchester, Manchester (United Kingdom); Jiang, P. X.; Liu, B. [Tsinghua Univ., Thermal Engineering Dept., Beijing (China)

    2012-07-01

    This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experiments using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)

  20. Effect of buoyancy and power design parameters on hybrid airship performance

    Science.gov (United States)

    Talbot, P. D.; Gelhausen, P. A.

    1983-01-01

    The effects of several design parameters on the performance of hybrid airships having rotors and propellers were examined with a simple mathematical model. The parameters included buoyancy ratio, Froude number, ratio of rotor power to total power, and rotor shaft tilt. Performance variations resulting from changes in these parameters were calculated, and are presented and discussed. Performance quantities included best climb rate, equivalent vehicle L/D, and maximum speed. Performance at all speeds between hover and maximum speed was found to be sensitive to power distribution between rotors and propellers, and to rotor shaft tilt.

  1. Penetration of a turbulent jet with negative buoyancy into the upper plenum of a LMFBR

    International Nuclear Information System (INIS)

    The penetration of a turbulent jet with negative buoyancy in a uniform environment is investigated. The jet generated from a finite source is treated by using the integral representation of the governing equations. The entrainment is assumed to be dependent on the local Froude number. Numerical solutions are compared with experimental results to suggest values for three empirical constants: the entrainment coefficients and the spreading ratio of density and velocity profiles. Good agreement is obtained over a large range of initial Froude number, which determines the maximum penetration distance. (Auth.)

  2. Estimation of Uncertainty of Air Buoyancy Correction for Establishment of Primary Mass Standards

    OpenAIRE

    KAÇMAZ, Sevda

    2000-01-01

    The most accurate value of air density is obtained by a calculation based on the equation using measured atmospheric parameters approved by the International Committee for Weights and Measures in 1981. When a 1-kg steel weight was calibrated against the prototype kilogram using the international expression for determining the density of air, experimental results showed that the estimated uncertainty of the air density was 1.45x10-4 mg.cm-3 and the uncertainty of air buoyancy was 11.3 mg.

  3. Alpha effect due to magnetic buoyancy instability of a horizontal magnetic layer

    Science.gov (United States)

    Chatterjee, Piyali

    In this paper we study the hydromagnetic instability of a toroidal magnetic layer such as that thought to be located in the solar tachocline. The magnetic layer is located in a convectively stable layer and is subject to what is known as the magnetic buoyancy instability (MBI) and under suitable conditions breaks up into twisted and arching magnetic flux tubes. The MBI gives rise to an anti-quenched α effect which can be measured by using the sophisticated quasi-kinematic test field method. This paper aims at summarizing the main results of a much longer paper by Chatterjee et al. 2011, A&A (in press).

  4. Numerical computations of natural convection heat transfer in irregular geometries

    Science.gov (United States)

    Glakpe, E. K.

    1987-01-01

    This report explains the determination of buoyancy driven flow characteristics and heat transfer in enclosures of complex geometrical shapes. Applications of buoyancy driven flows can be found in solar collector devices, energy conservation technologies, cooling of micro-electronic chips, and nuclear reactor spent fuel shipping configurations. The problem is further complicated when three dimensional effects, non-Boussinesq effects, turbulence, and heat transfer by radiation are accounted for in the overall balance of energy transfer. This study developed a capability to model and predict the heat transfer and flow characteristics in shipping cask configurations involving light water and fast reactor fuel assemblies. We explored the complex flow phenomena involved in these configurations to develop numerical prediction capabilities to obtain data for the design and/or thermal analysis of such shipping casks.

  5. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    2012-03-01

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.

  6. Simulation of buoyancy-induced turbulent flow from a hot horizontal jet

    Institute of Scientific and Technical Information of China (English)

    El-AMIN M. F.; SUN Shuyu; SALAM Amgad

    2014-01-01

    Experimental visualizations and numerical simulations of a horizontal hot water jet entering cold water into a rectangular storage tank are described. Three different temperature differences and their corresponding Reynolds numbers are considered. Both experimental visualization and numerical computations are carried out for the same flow and thermal conditions. The realizable k-e model is used for modeling the turbulent flow while the buoyancy is modeled using the Boussinesq approximation. Polynomial approximations of the water properties are used to compare with the Boussinesq approximation. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank as well as the Froude number are analyzed. The experimental visualizations are performed at intervals of five seconds for all different cases. The simulated results are compared with the visualized results, and both of them show the stratification phenomena and buoyancy force effects due to temperature difference and density variation. After certain times, depending on the case condition, the flow tends to reach a steady state.

  7. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    Science.gov (United States)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  8. Simulation of buoyancy-induced turbulent flow from a hot horizontal jet

    KAUST Repository

    El-Amin, Mohamed

    2014-02-01

    Experimental visualizations and numerical simulations of a horizontal hot water jet entering cold water into a rectangular storage tank are described. Three different temperature differences and their corresponding Reynolds numbers are considered. Both experimental visualization and numerical computations are carried out for the same flow and thermal conditions. The realizable k - ε model is used for modeling the turbulent flow while the buoyancy is modeled using the Boussinesq approximation. Polynomial approximations of the water properties are used to compare with the Boussinesq approximation. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank as well as the Froude number are analyzed. The experimental visualizations are performed at intervals of five seconds for all different cases. The simulated results are compared with the visualized results, and both of them show the stratification phenomena and buoyancy force effects due to temperature difference and density variation. After certain times, depending on the case condition, the flow tends to reach a steady state. © 2014 Publishing House for Journal of Hydrodynamics.

  9. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target.

    Science.gov (United States)

    Dubey, P K; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique. PMID:24880401

  10. PLANET-DISK INTERACTION IN THREE DIMENSIONS: THE IMPORTANCE OF BUOYANCY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R., E-mail: zhzhu@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2012-10-20

    We carry out local three-dimensional (3D) hydrodynamic simulations of planet-disk interaction in stratified disks with varied thermodynamic properties. We find that whenever the Brunt-Vaeisaelae frequency (N) in the disk is non-zero, the planet exerts a strong torque on the disk in the vicinity of the planet, with a reduction in the traditional 'torque cutoff'. In particular, this is true for adiabatic perturbations in disks with isothermal density structure, as should be typical for centrally irradiated protoplanetary disks. We identify this torque with buoyancy waves, which are excited (when N is non-zero) close to the planet, within one disk scale height from its orbit. These waves give rise to density perturbations with a characteristic 3D spatial pattern which is in close agreement with the linear dispersion relation. The torque due to these waves can amount to as much as several tens of percent of the total planetary torque, which is not expected based on analytical calculations limited to axisymmetric or low-m modes. Buoyancy waves should be ubiquitous around planets in the inner, dense regions of protoplanetary disks, where they might possibly affect planet migration.

  11. Multicomponent theory of buoyancy instabilities in magnetized plasmas: the case of magnetic field parallel to gravity

    Science.gov (United States)

    Nekrasov, A. K.; Shadmehri, Mohsen

    2011-06-01

    We investigate electromagnetic buoyancy instabilities of the electron-ion plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations, but using the multicomponent plasma approach when the momentum equations are solved for each species. We consider a geometry in which the background magnetic field, gravity, and stratification are directed along one axis. The nonzero background electron thermal flux is taken into account. Collisions between electrons and ions are included in the momentum equations. No simplifications usual for the one-fluid MHD-approach in studying these instabilities are used. We derive a simple dispersion relation, which shows that the thermal flux perturbation generally stabilizes an instability for the geometry under consideration. This result contradicts to conclusion obtained in the MHD-approach. We show that the reason of this contradiction is the simplified assumptions used in the MHD analysis of buoyancy instabilities and the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. Our dispersion relation also shows that the medium with the electron thermal flux can be unstable, if the temperature gradients of ions and electrons have the opposite signs. The results obtained can be applied to the weakly collisional magnetized plasma objects in laboratory and astrophysics.

  12. Planet-Disk Interaction in Three Dimensions: The Importance of Buoyancy Waves

    Science.gov (United States)

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.

    2012-10-01

    We carry out local three-dimensional (3D) hydrodynamic simulations of planet-disk interaction in stratified disks with varied thermodynamic properties. We find that whenever the Brunt-Väisälä frequency (N) in the disk is non-zero, the planet exerts a strong torque on the disk in the vicinity of the planet, with a reduction in the traditional "torque cutoff." In particular, this is true for adiabatic perturbations in disks with isothermal density structure, as should be typical for centrally irradiated protoplanetary disks. We identify this torque with buoyancy waves, which are excited (when N is non-zero) close to the planet, within one disk scale height from its orbit. These waves give rise to density perturbations with a characteristic 3D spatial pattern which is in close agreement with the linear dispersion relation. The torque due to these waves can amount to as much as several tens of percent of the total planetary torque, which is not expected based on analytical calculations limited to axisymmetric or low-m modes. Buoyancy waves should be ubiquitous around planets in the inner, dense regions of protoplanetary disks, where they might possibly affect planet migration.

  13. Predictions of Buoyancy-induced Flow in Asymmetrical Heated Rotating Cavity System

    Directory of Open Access Journals (Sweden)

    Abdul Fatah Abbassi

    2013-04-01

    Full Text Available This paper presents the finite difference solutions for buoyancy-induced flow in the asymmetrical heated rotating cavity system for the range of rotational Reynolds numbers Reθ =6.13x10^5 buoyancy-induced flow have been observed on the predicted stream lines, static temperature contours and the local Nusselt numbers for the rotating cavity space. A comparison of the predicted local Nusselt numbers for the hot and cold discs showed a good level of agreement with the measurements.

  14. Planet-Disk interaction in 3D: the importance of buoyancy waves

    CERN Document Server

    Zhu, Zhaohuan; Rafikov, Roman R

    2012-01-01

    We carry out local three dimensional (3D) hydrodynamic simulations of planet-disk interaction in stratified disks with varied thermodynamic properties. We find that whenever the Brunt-Vaisala frequency (N) in the disk is nonzero, the planet exerts a strong torque on the disk in the vicinity of the planet, with a reduction in the traditional "torque cutoff". In particular, this is true for adiabatic perturbations in disks with isothermal density structure, as should be typical for centrally irradiated protoplanetary disks. We identify this torque with buoyancy waves, which are excited (when N is non-zero) close to the planet, within one disk scale height from its orbit. These waves give rise to density perturbations with a characteristic 3D spatial pattern which is in close agreement with the linear dispersion relation for buoyancy waves. The torque due to these waves can amount to as much as several tens of per cent of the total planetary torque, which is not expected based on analytical calculations limited ...

  15. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, P. K., E-mail: premkdubey@gmail.com; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar [Acoustics, Ultrasonics, Vibration Standards and Electronics Instrumentation Cell, CSIR–National Physical Laboratory, New Delhi 110012 (India)

    2014-05-15

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  16. Quantum buoyancy, generalized second law, and higher-dimensional entropy bounds

    CERN Document Server

    Hod, Shahar

    2011-01-01

    Bekenstein has presented evidence for the existence of a universal upper bound of magnitude $2\\pi R/\\hbar c$ to the entropy-to-energy ratio $S/E$ of an arbitrary {\\it three} dimensional system of proper radius $R$ and negligible self-gravity. In this paper we derive a generalized upper bound on the entropy-to-energy ratio of a $(D+1)$-dimensional system. We consider a box full of entropy lowered towards and then dropped into a $(D+1)$-dimensional black hole in equilibrium with thermal radiation. In the canonical case of three spatial dimensions, it was previously established that due to quantum buoyancy effects the box floats at some neutral point very close to the horizon. We find here that the significance of quantum buoyancy increases dramatically with the number $D$ of spatial dimensions. In particular, we find that the neutral (floating) point of the box lies near the horizon only if its length $b$ is large enough such that $b/b_C>F(D)$, where $b_C$ is the Compton length of the body and $F(D)\\sim D^{D/2}...

  17. Buoyancy reversal, decoupling and the transition from stratocumulus to shallow cumulus topped marine boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Heng; Wu, Chien-Ming; Mechoso, Carlos Roberto [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles (United States)

    2011-09-15

    The transition in a marine boundary layer (MBL) from stratocumulus topped to shallow cumulus topped is investigated by using a large eddy simulation (LES) model. The experiments performed aim to examine the influence on the transition of (1) the probability of buoyancy reversal at the MBL top (i.e. situations in which the mixture of two air parcels becomes denser than either of the original parcels due to phase change or other nonlinear processes involved in the mixing), and (2) the degree of decoupling in the MBL (i.e. the strength of a shallow stably stratified layer near cloud base). Our results suggest that a stratocumulus-topped MBL is most likely to transit to a cumulus-topped one when (1) there exists high probability of buoyancy reversal at the MBL top, and (2) the MBL is decoupled due to large surface evaporation. We argue that a parameterization that includes representation of those two effects combined has the potential to provide a simple way of predicting the MBL transition in climate models. (orig.)

  18. Investigation of the buoyancy affected airflow patterns in the enclosure subjected at the different wall temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Brajesh; Moulic, S.G. [Department of Mechanical Engineering, IIT, Kharagpur 721302 (India)

    2007-08-15

    In air-conditioning systems, conditioned warm/cold air is supplied to the room depending upon winter/summer. This air should be properly distributed into the room so that there are neither draft conditions nor stagnant zones. In this investigation air circulation and temperature distribution in a room have been studied for a particular location of air inlet and outlet on opposite walls. Two-dimensional, steady, laminar, incompressible flow has been considered. Navier-Stokes equation and energy equations in two-dimensional rectangular Cartesian co-ordinates have been numerically solved using control volume method. Boussinesq's approximation has been used for buoyancy force. The cold primary air enters the room near the ceiling. The flow attaches with the ceiling due to Coanda effect. It moves along the ceiling and comes down along the opposite wall to go out for small values of Gr. For larger values of Gr, it moves along the ceiling for some distance and then stoops downwards, attaches with the floor and then goes out. As Reynolds number increases, the point of attachment on floor moves away from the inlet. As the buoyancy increases the flow attaches with floor earlier. Two circulation zones are observed due to entrainment. The intensity of circulation increases with Reynolds number and Grashof number and temperature becomes more uniform. (author)

  19. Nonlinear waves in stratified Taylor--Couette flow. Part 2. Buoyancy flux

    CERN Document Server

    Leclercq, Colin; Caulfield, Colm-Cille P; Dalziel, Stuart B; Linden, Paul F

    2016-01-01

    This paper is the second part of a two-fold study of mixing, i.e. the formation of layers and upwelling of buoyancy, in axially stratified Taylor--Couette flow, with fixed outer cylinder. In a first paper, we showed that the dynamics of the flow was dominated by coherent structures made of a superposition of nonlinear waves. (Mixed)-ribbons and (mixed)-cross-spirals are generated by interactions between a pair of linearly unstable helical modes of opposite `handedness', and appear to be responsible for the formation of well-mixed layers and sharp density interfaces. In this paper, we show that these structures are also fully accountable for the upwards buoyancy flux in the simulations. The mechanism by which this occurs is a positive coupling between the density and vertical velocity components of the most energetic waves. This coupling is primarily caused by diffusion of density at low Schmidt number Sc, but can also be a nonlinear effect at larger Sc. Turbulence was found to contribute negatively to the buo...

  20. EXPERIMENTAL INVESTIGATION INTO HOT WATER SLOT JETS WITH NEGATIVELY BUOYANCY IN CROSS FLOW

    Institute of Scientific and Technical Information of China (English)

    YANG Zhong-hua; HUAI Wen-xin; DAI Hui-chao

    2005-01-01

    An experiment was conducted to examine the near-field behavior of negatively buoyant planar jets in flowing environment. Hot water jet was projected downwards at different angles from a slot into a uniform cross flow. Micro Acoustic Doppler Velocimeter (Micro ADV) system is used to measure the velocity and turbulent fluxes of Reynolds stresses. The whole field temperatures were measured with fast response thermocouples. Pure jets experiments were made also to study the effect of buoyancy in negatively buoyant jets. It is found that the influenced area of hot jets is larger than which of pure jets when the jet angle is 90° and the influenced area of hot jets is smaller than which of pure jets when the jet angle is 45°. The difference is not obvious at 60° angle jets. This means that the rising of temperature has effect not only on negatively buoyancy, but also on the intensity of turbulence. The contrast of these two influences dominates the trend of jet flow.

  1. Role of natural convection in the dissolution of sessile droplets

    OpenAIRE

    Dietrich, Erik; Wildeman, Sander; Visser, Claas Willem; Hofhuis, Kevin; Kooij, E. Stefan; Zandvliet, Harold J.W.; Lohse, Detlef

    2016-01-01

    The dissolution process of small (initial (equivalent) radius $R_0 < 1$ mm) long-chain alcohol (of various types) sessile droplets in water is studied, disentangling diffusive and convective contributions. The latter can arise for high solubilities of the alcohol, as the density of the alcohol-water mixture is then considerably less as that of pure water, giving rise to buoyancy driven convection. The convective flow around the droplets is measured, using micro-particle image velocimetry ($\\m...

  2. The use of spirometry to evaluate pulmonary function in olive ridley sea turtles (Lepidochelys olivacea) with positive buoyancy disorders.

    Science.gov (United States)

    Schmitt, Todd L; Munns, Suzanne; Adams, Lance; Hicks, James

    2013-09-01

    This study utilized computed spirometry to compare the pulmonary function of two stranded olive ridley sea turtles (Lepidochelys olivacea) presenting with a positive buoyancy disorder with two healthy captive olive ridley sea turtles held in a large public aquarium. Pulmonary function test (PFT) measurements demonstrated that the metabolic cost of breathing was much greater for animals admitted with positive buoyancy than for the normal sea turtles. Positively buoyant turtles had higher tidal volumes and significantly lower breathing-frequency patterns with significantly higher expiration rates, typical of gasp-type breathing. The resulting higher energetic cost of breathing in the diseased turtles may have a significant impact on their long-term survival. The findings represent a method for clinical respiratory function analysis for an individual animal to assist with diagnosis, therapy, and prognosis. This is the first study, to our knowledge, to evaluate objectively sea turtles presenting with positive buoyancy and respiratory disease using pulmonary function tests. PMID:24063092

  3. Heat transfer data, including impairment by buoyancy, for a CAGR fuel cluster in a Reynolds number range 103-106

    International Nuclear Information System (INIS)

    Current fault studies for the CAGR require heat transfer data over a coolant flow range from low flow to normal reactor flow ie. Re1 = 103 to 106. At low flow, Re1 approx.= 104, buoyancy is known to affect heat transfer performance and can produce impairment in particular conditions determined by the relative magnitude of Reynolds number and Grashof number. Experimental work in which the buoyancy effect was quantified has been used together with data at higher rates of flow to produce a revised heat transfer performance curve. The experimental data have been compared with prediction using the computer program HOTSPOT. The results have been used to provide correlations of Stanton number and Reynolds number, in program input form, for a CAGR fuel element in a 7 1/2 in. channel. The correlations are for both buoyancy-free and impaired heat transfer performance. (author)

  4. Natural and gas-injection enhanced circulation in a loop with variable friction

    International Nuclear Information System (INIS)

    The paper describes an experimental and computational activity related to passive circulation in a simple loop. Both natural circulation, driven by thermal buoyancy, and gas-injection enhanced circulation, as in air-lift reactors, are addressed. The problem is relevant for accelerator driven nuclear reactor systems (ADS), which are presently being considered as a viable means for transmutation of long lived wastes from nuclear reactors. The experimental facility consists of a roughly 4 m tall, 1 m wide rectangular loop made of 1 1/2 I.D. pipes. Electric heating (up to 5 kW) and gas injection are both available. Experimental tests have been performed with water as a working fluid at different heating powers and gas-injection flow rates, also varying loop friction by adjusting the closure of a spherical valve located on one of the branches. Obtained data are compared with predictions by the RELAP5 code, drawing conclusions about the observed phenomena and the capability of the code in describing them. (author)

  5. Large shield volcanos on Venus: The effect of neutral buoyancy zone development on evolution and altitude distribution

    Science.gov (United States)

    Keddie, S.; Head, James W., III

    1992-01-01

    The Magellan mission to Venus has emphasized the importance of volcanism in shaping the surface of the planet. Volcanic plains make up 80 percent of the terrain and hundreds of regions of localized eruptions have been identified. Large volcanos, defined as edifices with diameters greater than 100 km, are the sites of some of the most voluminous eruptions. Head et al. have identified 158 of these structures. Their spatial distribution is neither random nor arranged in linear chains as on the Earth; large volcanos on Venus are concentrated in two large, near-equatorial clusters that are also the site of many other forms of volcanic activity. The set of conditions that must be met on Venus that controls the change from widespread, distributed volcanism to focused, shield-building volcanism is not well understood. Future studies of transitional features will help to address this problem. It is likely, however, that the formation and evolution of a neutral buoyancy zone (NBZ) plays an important role in both determining the style of the volcanism and the development of the volcanic feature once it has begun to erupt. Head and Wilson have suggested that the high surface pressure on Venus may inhibit volatile exsolution, which may influence the density distribution of the upper crust and hence control the nature and location of a NBZ. The extreme variations in pressure with elevation may result in significantly different characteristics of such a NBZ at different locations on the planet. In order to test these ideas regarding the importance of NBZ development in the evolution of a large shield and to determine the style of volcanism, three large volcanos that occur at different basal elevations were examined and the distribution of large volcanos as a function of altitude was determined.

  6. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    Science.gov (United States)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  7. Numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities

    International Nuclear Information System (INIS)

    In this research work a numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities of a Boussinesq fluid is presented. The conservation equations are written in a general curvilinear coordinate system which matches the irregular boundaries of the domain. The nonorthogonal system is generated by a suitable system of elliptic equations. The momentum and continuity equations are transformed from the Cartesian system to the general curvilinear system keeping the Cartesian velocity components as the dependent variables in the transformed domain. Finite difference equations are obtained for the contravariant velocity components in the transformed domain. The numerical calculations are performed in a fixed rectangular domain and both the Cartesian and the contravariant velocity components take part in the solutiomn procedure. The dependent variables are arranged on the grid in a staggered manner. The numerical model is tested by solving the driven flow in a square cavity with a moving side using a nonorthogoanl grid. The natural convenction in a square cavity, using an orthogonal and a nonorthogonal grid, is also solved for the model test. Also, the solution for the buoyancy flow between a square cylinder placed inside a circular cylinder is presented. The results of the test problems are compared with those available in the specialized literature. Finally, in order to show the generality of the model, the natural convection problem inside a very irregular cavity is presented. (Author)

  8. Proof Driven Development

    OpenAIRE

    Goodspeed, Ben

    2015-01-01

    A new workflow for software development (proof-driven development) is presented. An extension of test-driven development, the new workflow utilizes the paradigm of dependently typed programming. The differences in design, complexity and provability of software are discussed, based on the technique used to create the system. Furthermore, the difference in what properties can be expressed in a proof-driven development workflow versus a traditional test-driven development workflow or using test-...

  9. Swim bladder function and buoyancy control in pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus).

    Science.gov (United States)

    Stewart, John; Hughes, Julian M

    2014-04-01

    Physoclist fish are able to regulate their buoyancy by secreting gas into their hydrostatic organ, the swim bladder, as they descend through the water column and by resorbing gas from their swim bladder as they ascend. Physoclists are restricted in their vertical movements due to increases in swim bladder gas volume that occur as a result of a reduction in hydrostatic pressure, causing fish to become positively buoyant and risking swim bladder rupture. Buoyancy control, rates of swim bladder gas exchange and restrictions to vertical movements are little understood in marine teleosts. We used custom-built hyperbaric chambers and laboratory experiments to examine these aspects of physiology for two important fishing target species in southern Australia, pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus). The swim bladders of pink snapper and mulloway averaged 4.2 and 4.9 % of their total body volumes, respectively. The density of pink snapper was not significantly different to the density of seawater (1.026 g/ml), whereas mulloway were significantly denser than seawater. Pink snapper secreted gas into their swim bladders at a rate of 0.027 ± 0.005 ml/kg/min (mean ± SE), almost 4 times faster than mulloway (0.007 ± 0.001 ml/kg/min). Rates of swim bladder gas resorption were 11 and 6 times faster than the rates of gas secretion for pink snapper and mulloway, respectively. Pink snapper resorbed swim bladder gas at a rate of 0.309 ± 0.069 ml/kg/min, 7 times faster than mulloway (0.044 ± 0.009 ml/kg/min). Rates of gas exchange were not affected by water pressure or water temperature over the ranges examined in either species. Pink snapper were able to acclimate to changes in hydrostatic pressure reasonably quickly when compared to other marine teleosts, taking approximately 27 h to refill their swim bladders from empty. Mulloway were able to acclimate at a much slower rate, taking approximately 99 h to refill their swim bladders. We estimated that the

  10. Effects of buoyancy on gas jet diffusion flames - Experiment and theory

    Science.gov (United States)

    Edelman, R. B.; Bahadori, M. Y.

    1985-01-01

    Theoretical and experimental research on the effects of buoyancy on gas-jet diffusion flames is described. Part of this research involves an assessment of existing data obtained under reduced-gravity conditions. The results show that uncertainties in the current understanding of flame structure exist and further research is required before reliable predictions of ignition, stabilization, and propagation of flames under microgravity conditions can be made. Steady-state and transient theories have been developed and used in the analysis of existing drop-tower data and new data obtained from a stationary experiment involving inverted flames. The result of this research has led to the definition of a microgravity experiment to be performed in space.

  11. Heart Rate Responses to Unaided Orion Side Hatch Egress in the Neutral Buoyancy Laboratory

    Science.gov (United States)

    English, Kirk L.; Hwang, Emma Y.; Ryder, Jeffrey W.; Kelly, Cody; Walker, Thomas; Ploutz-Snyder, Lori

    2016-01-01

    The Orion capsule will be the next NASA-built vehicle used for near and deep space exploration. The nominal landing scenario for Orion involves splashdown in the Pacific Ocean and subsequent aided crew egress conducted by military personnel. Contingency operations, however, require the crew to egress the capsule unaided, deploy an inflatable life raft, and to ingress the raft. Unaided egress is expected to be physiologically demanding, but no data exist to corroborate this. Thus, we evaluated the heart rate response to unaided Orion side hatch egress and raft ingress as par of the NASA crew Survival Engineering Team's evaluation of egress procedures using the Post-landing Orion Recovery Trainer (PORT) article in the Neutral Buoyancy Laboratory (NBL).

  12. Positive segregation as a function of buoyancy force during steel ingot solidification

    Energy Technology Data Exchange (ETDEWEB)

    Radovic, Zarko; Jaukovic, Nada; Lalovic, Milisav; Tadic, Nebojsa [Faculty of Metallurgy and Technology, University of Montenegro, Podgorica (Montenegro)], E-mail: zarkor@cg.ac.yu

    2008-12-15

    We analyze theoretically and experimentally solute redistribution in the dendritic solidification process and positive segregation during solidification of steel ingots. Positive segregation is mainly caused by liquid flow in the mushy zone. Changes in the liquid steel velocity are caused by the temperature gradient and by the increase in the solid fraction during solidification. The effects of buoyancy and of the change in the solid fraction on segregation intensity are analyzed. The relationships between the density change, liquid fraction and the steel composition are considered. Such elements as W, Ni, Mo and Cr decrease the effect of the density variations, i.e. they show smaller tendency to segregate. Based on the modeling and experimental results, coefficients are provided controlling the effects of chemical composition, secondary dendrite arm spacing and the solid fraction.

  13. A modified emulsion gelation technique to improve buoyancy of hydrogel tablets for floating drug delivery systems.

    Science.gov (United States)

    Yom-Tov, Ortal; Seliktar, Dror; Bianco-Peled, Havazelet

    2015-10-01

    The use of buoyant or floating hydrogel tablets is of particular interest in the sustained release of drugs to the stomach. They have an ability to slow the release rates of drugs by prolonging their absorption window in the upper part of the gastrointestinal (GI) tract. In this study we synthesized bioactive hydrogels that have sustainable release rates for drugs in the stomach based on a hydrogel preparation technique that employs emulsifying surfactants. The emulsion gelation technique, which encapsulates oil droplets within the hydrogels during crosslinking, was used to decrease their specific gravity in aqueous environments, resulting in floating drug release depots. Properties such as swelling, buoyancy, density and drug release were manipulated by changing the polymer concentrations, surfactant percentages and the oil:polymer ratios. The relationship between these properties and the hydrogel's floating lag time was documented. The potential for this material to be used as a floating drug delivery system was demonstrated. PMID:26117764

  14. Entropy versus APE production: On the buoyancy power input in the oceans energy cycle

    Science.gov (United States)

    Tailleux, R.

    2010-11-01

    This letter argues that the current controversy about whether Wbuoyancy, the power input due to the surface buoyancy fluxes, is large or small in the oceans stems from two distinct and incompatible views on how Wbuoyancy relates to the volume-integrated work of expansion/contraction B. The current prevailing view is that Wbuoyancy should be identified with the net value of B, which current theories estimate to be small. The alternative view, defended here, is that only the positive part of B, i.e., the one converting internal energy into mechanical energy, should enter the definition of Wbuoyancy, since the negative part of B is associated with the non-viscous dissipation of mechanical energy. Two indirect methods suggest that by contrast, the positive part of B is potentially large.

  15. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake

    Science.gov (United States)

    MacIntyre, Sally; Jonsson, Anders; Jansson, Mats; Aberg, Jan; Turney, Damon E.; Miller, Scott D.

    2010-12-01

    Gas fluxes from lakes and other stratified water bodies, computed using conservative values of the gas transfer coefficient k600, have been shown to be a significant component of the carbon cycle. We present a mechanistic analysis of the dominant physical processes modifying k600 in a stratified lake and resulting new models of k600 whose use will enable improved computation of carbon fluxes. Using eddy covariance results, we demonstrate that i) higher values of k600 occur during low to moderate winds with surface cooling than with surface heating; ii) under overnight low wind conditions k600 depends on buoyancy flux β rather than wind speed; iii) the meteorological conditions at the time of measurement and the inertia within the lake determine k600; and iv) eddy covariance estimates of k600 compare well with predictions of k600 using a surface renewal model based on wind speed and β.

  16. A Study on the Buoyancy and Radiation Effects of the Experimental Helium Loop for VHTR Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Churl; Hong, Sung Deok; Noh, Jae Man; Kim, Yong Wan; Chang, Jong Hwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    A medium-scale Helium loop for simulating the VHTR(Very High Temperature Reactor) is now under construction in Korea Atomic Energy Research Institute. Two electric heaters of the test Helium loop heat the Helium fluid up to 950 . deg. C at the pressure of 1 {approx} 9MPa. To optimize design specification of the experimental Helium loop, conjugate heat transfer in the high temperature Helium heater was analyzed by CFD simulation. Main factors tested in this CFD analyses are the effects of turbulence, buoyancy forces, and geometrical configuration of the heater, etc. From the previous studies, the optimum design configuration was selected. In this study, the gravity and emissivity effects on the thermal-fluid characteristics will be investigated by sensitivity studies

  17. Effective buoyancy ratio: a new parameter to characterize thermo-chemical mixing in the Earth's mantle

    Directory of Open Access Journals (Sweden)

    A. Galsa

    2014-09-01

    Full Text Available Numerical modeling has been carried out in a 2-D cylindrical shell domain to quantify the evolution of a primordial dense layer around the core mantle boundary. Effective buoyancy ratio, Beff was introduced to characterize the evolution of the two-layer thermo-chemical convection in the Earth's mantle. Beff decreases with time due to (1 warming the compositionally dense layer, (2 cooling the overlying mantle, (3 eroding the dense layer by thermal convection in the overlying mantle, and (4 diluting the dense layer by inner convection. When Beff reaches the instability point, Beff = 1, effective thermo-chemical convection starts, and the mantle will be mixed (Beff = 0 during a short time. A parabolic relation was revealed between the initial density difference of the layers and the mixing time. Morphology of large low shear velocity provinces as well as results from seismic tomography and normal mode data suggest a value of Beff ≥ 1 for the mantle.

  18. Buoyancy effects on thermal behavior of a flat-plate solar collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2008-01-01

    Theoretical and experimental investigations of the flow and temperature distribution in a 12.53 m(2) solar collector panel with an absorber consisting of two vertical manifolds interconnected by 16 parallel horizontal fins have been carried out. The investigations are focused on overheating and...... the influence of the buoyancy effects are considered in the investigations. Further experimental investigations of the solar collector panel are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the back of the absorber tubes. The measured...... temperatures are compared to the temperatures determined by the CFD model and there is a good agreement between the measured and calculated temperatures. Calculations with the CFD model elucidate the flow and temperature distribution in the collector The influences of collector fluid flow rate and inlet...

  19. Investigation of the effectiveness of Jackson's Nusselt correlation with buoyancy and acceleration terms in critical water

    International Nuclear Information System (INIS)

    Jackson 2009 recently proposed a modification to a semi-empirical correlation for Nusselt number calculations specifically adapted for variable property heat transfer. To determine the effectiveness of this new approach in predicting supercritical heat transfer, experimentally measured heat transfer data was compared to that predicted by the correlation. The data used were from previous supercritical water experiments at the University of Wisconsin- Madison's supercritical water loop. The computer code EES which contains the NIST properties of supercritical water was used to calculate the predicted Nusselt number for all of the experimental conditions. Jackson's equation contains two coefficients relating to the acceleration and buoyancy parameters which have recommended values of 10000 and 2000 respectively, but which may be adjusted to better reproduce observed behavior. Calculations of Jackson's correlation were conducted where one coefficient was varied and the other held constant to best observe its effect and determine the best fitting coefficient for 957 data points where Gr/Re2.7 is greater than 1e-5, the conditions where heat transfer deterioration due to mixed convection are expected. The resulting calculated Nusselt values were compared to the experimental values to optimize the equation for the given data. It was found that the value of C1 (the coefficient related to thermally induced bulk flow acceleration) had little effect as expected because of the relatively large diameter (4.3 cm) used in the experiments. C1 was then chosen to keep the recommended value of 10000. C2, the coefficient for buoyancy had a much greater effect and was varied with the constraint that (C1Acb ± C2Bob) FVP,1 stay below 0.382. With these conditions, C2 was optimized to approximately 475 for a maximum R2 value of a linear regression of the experimental vs. calculated Nusselt number. (author)

  20. Numerical Study of Buoyancy and Different Diffusion Effects on the Structure and Dynamics of Triple Flames

    Science.gov (United States)

    Chen, Jyh-Yuan; Echekki, Tarek

    2001-01-01

    Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of