WorldWideScience

Sample records for bundle thermohydraulic transients

  1. Thermohydraulics in rod bundles and critical heat flux in transient conditions in a tube

    International Nuclear Information System (INIS)

    Courtaud, M.; Roumy, R.

    1975-01-01

    After the determination of the scaling factor of Stevens's similitude for the pressure range of pressurized water vectors by comparison of critical heat flux data in from and in water, some examples of studies performed with freon are shown. The efficiency of the mixing vanes of spacer grids has been determined on the mixing phenomenon in single phase on critical heat flux. A calculation performed with the code FLICA using subchannel analysis on freon data transposed in water is in good agreement with the experiment. The influence of the number of spacer grids has been also shown. Critical heat fluxes have been determined in water at 140 bar in steady state and transient conditions on two tubular test sections. During the transient tests the flow rate was reduced by half in 0.5 seconds and the reincreased heat flux and inlet temperature remaining constant. These tests have shown the validity of the method which consists in using a critical heat flux correlation determined in steady state conditions applied with local transient conditions of enthalpy and mass velocity computed with the FLICA code [fr

  2. Thermohydraulic tests of 3x3-rod bundle maquette

    International Nuclear Information System (INIS)

    Ladeira, L.C.D.

    1986-10-01

    The results of a 3x3-rod bundle thermohydraulic research program, performed in the Thermohydraulics Laboratory of NUCLEBRAS' Nuclear Technology Development Center, are briefly described. This program included measurements of pressure drops in one and two-phase flows, heat transfer coefficients, mixing between interconnected subchannels in one-phase flow conditions and critical heat fluxes. The measurements covered the following parameter ranges: heat fluxes from zero to the critical values, pressure ranging from 1 to 15 ata, inlet temperature from 25 to 150 sup(0)C and flow rate from 20 to 300l/min. (author)

  3. Pius, self-protective thermohydraulics transient without safety system intervention

    International Nuclear Information System (INIS)

    Fredell, J.; Bredolt, V.

    1989-01-01

    In this paper, the self-protective thermohydraulic feedback of the PIUS reactor system is illustrated by an in-depth discussion of one typical transient. The selected transient is an undetected total loss of feedwater in the complete absence of conventional safety system intervention. The reactor shuts itself down to residual power in two steps. First, the power decreases due to the strongly negative moderator temperature reactivity coefficient, and then a complete shutdown occurs by ingress of cold, highly borated water from the reactor pool. The transient is terminated without any harm to the fuel or paint systems

  4. Computation of 3D thermohydraulics in partially blocked bundles during the reflood phase of a LOCA

    International Nuclear Information System (INIS)

    Cicero, G.M.; Briere, E.; Fornaciari, G.

    1994-06-01

    In Pressurized Water Reactors (PWR), ballooning of the fuel rod claddings may occur during a LOCA, since the fuel rod claddings are heated up, and the system pressure is low. The severe blockages that may result induce cross-flow diversion and three-dimensional effects on thermohydraulics in the core bundle, during the reflood phase. To improve the knowledge of these phenomena and their physical modelling in the code CATHARE, 3D computer codes are needed. In 1990, EDF has started up a development and validation program of the 3D THYC computer code to analyze the thermohydraulics of the flow during the reflood phase, in partially blocked bundles. The main objective is to calculate the temperatures of the rods above the quench front, when they are cooled by superheated steam with saturated droplets. First, this paper introduces the THYC model developed for reflood studies. Secondly, we report the first qualification results on a Flooding Experiments with Blocked Array (FEBA) test. Thirdly, we analyze the model predictions on a large break LOCA transient, in a 900 MW PWR 11x11 core area with a 3x3 central blockage. THYC simulates the transient in the bundle around and above the blockage, until the quench front enters the computational domain. Previously, a 1D CATHARE simulation gives the boundary conditions and, in the reactor core case, the deformation of the blocked fuel rods. The results analysis focused on the time evolution of the clad temperatures in the blocked and in the bypass region. In the FEBA test simulation, the main observations are properly predicted within the blockage. Temperatures are lower in blocked rod sleeves than in unblocked rod claddings since the steam gap reduces the power transmitted by the heater rod to the sleeve. In the core case, the model predicts the opposite result. Within the blockage, ballooned rod temperatures are higher than non-ballooned rod ones. We show by sensitivity studies that these behaviour difference between FEBA rods

  5. Status of thermohydraulic studies of wire-wrapped bundles

    International Nuclear Information System (INIS)

    Khairallah, A.; Leteinturier, D.; Skok, J.

    1979-01-01

    A status review is presented of the work undertaken in CEA to acquire good understanding and description of the single-phase thermal-hydraulic problems in LMFBR wire-wrapped bundles. Design-type and reference-type calculational tools developed for the study of forced convection in nominal and distorted bundle geometries are briefly presented. Local hot spots and mixed convection situations are discussed in some more details. Out-of-pile and in-pile experimental programs designed in support to code development are described. (author)

  6. Multi-bundle sodium experiments for thermohydraulics in core subassemblies during natural circulation decay heat removal operation

    International Nuclear Information System (INIS)

    Kamide, H.; Ieda, Y.; Toda, S.; Isozaki, T.; Sugawara, S.

    1993-01-01

    Two types of multi-subassembly sodium experiments, CCTL-CFR tests and PLANDTL-DHX tests, have been carried out in order to investigate thermohydraulics in a fast reactor core during natural circulation. Basic experiments are carried out in CCTL-CFR test rig without inter-wrapper gap and under steady state. Integral experiments are performed in PLANDTL-DHX test rig with the inter-wrapper gap and a dip cooler in an upper plenum under steady state and transient conditions. The first series of the experiments and post analyses showed that inter-subassembly heat transfer had significant effects on the transverse temperature distribution in the subassembly and was strongly coupled with intra-subassembly flow redistribution. And the cold sodium provided by the dip cooler could reduce the hot spot temperature in the pin bundle mainly via the inter-wrapper gap. (author)

  7. Multi-bundle sodium experiments for thermohydraulics in core subassemblies during natural circulation decay heat removal operation

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, H; Ieda, Y; Toda, S; Isozaki, T; Sugawara, S [Reactor Engineering Section, O-arai Engineering Center, Power Reactor and Nuclear Fuel Development Corporation, Narita, O-arai, Ibaraki-ken (Japan)

    1993-02-01

    Two types of multi-subassembly sodium experiments, CCTL-CFR tests and PLANDTL-DHX tests, have been carried out in order to investigate thermohydraulics in a fast reactor coreduring natural circulation. Basic experiments are carried out in CCTL-CFR test rig without inter-wrapper gap and under steady state. Integral experiments are performed in PLANDTL-DHX test rig with the inter-wrapper gap and a dip cooler in an upper plenum under steady state and transient conditions. The first series of the experiments and post analyses showed that inter-subassembly heat transfer had significant effects on the transverse temperature distribution in the subassembly and was strongly coupled with intra-subassembly flow redistribution. And the cold sodium provided by the dip cooler could reduce the hot spot temperature in the pin bundle mainly via the inter-wrapper gap. (author)

  8. Development of real time visual evaluation system for sodium transient thermohydraulic experiments

    International Nuclear Information System (INIS)

    Tanigawa, Shingo

    1990-01-01

    A real time visual evaluation system, the Liquid Metal Visual Evaluation System (LIVES), has been developed for the Plant Dynamics Test Loop facility at O-arai Engineering Center. This facility is designed to provide sodium transient thermohydraulic experimental data not only in a fuel subassembly but also in a plant wide system simulating abnormal or accident conditions in liquid metal fast breeder reactors. Since liquid metal sodium is invisible, measurements to obtain experimental data are mainly conducted by numerous thermo couples installed at various locations in the test sections and the facility. The transient thermohydraulic phenomena are a result of complicated interactions among global and local scale three-dimensional phenomena, and short- and long-time scale phenomena. It is, therefore, difficult to grasp intuitively thermohydraulic behaviors and to observe accurately both temperature distribution and flow condition solely by digital data or various types of analog data in evaluating the experimental results. For effectively conducting sodium transient experiments and for making it possible to observe exactly thermohydraulic phenomena, the real time visualization technique for transient thermohydraulics has been developed using the latest Engineering Work Station. The system makes it possible to observe and compare instantly the experiment and analytical results while experiment or analysis is in progress. The results are shown by not only the time trend curves but also the graphic animations. This paper shows an outline of the system and sample applications of the system. (author)

  9. Advanced thermohydraulic simulation code for transients in LMFBRs (SSC-L code)

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, A.K.

    1978-02-01

    Physical models for various processes that are encountered in preaccident and transient simulation of thermohydraulic transients in the entire liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-L, was written as a part of the Super System Code (SSC) development project for the ''loop''-type designs of LMFBRs. This code has the self-starting capability, i.e., preaccident or steady-state calculations are performed internally. These results then serve as the starting point for the transient simulation.

  10. Advanced thermohydraulic simulation code for transients in LMFBRs (SSC-L code)

    International Nuclear Information System (INIS)

    Agrawal, A.K.

    1978-02-01

    Physical models for various processes that are encountered in preaccident and transient simulation of thermohydraulic transients in the entire liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-L, was written as a part of the Super System Code (SSC) development project for the ''loop''-type designs of LMFBRs. This code has the self-starting capability, i.e., preaccident or steady-state calculations are performed internally. These results then serve as the starting point for the transient simulation

  11. Fundamental study on thermo-hydraulic behaviors during power transient, 2

    International Nuclear Information System (INIS)

    Shinano, M.; Inoue, A.

    1988-01-01

    Thermo-hydraulic behaviors during power transient of nuclear reactors are studied. Boiling around test rod heated transiently forces to flow out liquid in the test section and generates high pressure pulse. In this study, it is investigated experimentally and analytically that magnitude of pressure pulse and energy conversion efficiency to the mechanical works in cases of fragmentation and non-fragmentation. In analysis, effects of increasing of heat transfer and of interaction area due to fragmentation is considered. Consequently, 1) magnitude of pressure pulse on fragmentation is about 10 times greater than that on non-fragmentation. 2) analytical model can show characteristics of fragmentation processes qualitatively. (author)

  12. Recommendations for analysis of stress corrosion in pipe systems exposed to thermohydraulic transients

    International Nuclear Information System (INIS)

    Bjoerndahl, Olof; Letzter, Adam; Marcinkiewicz, Jerzy; Segle, Peter

    2007-03-01

    Transient thermohydraulic events often control the design of piping systems in nuclear power plants. Water hammers due to valve closure, pressure transients caused by steam collapse and pipe break all result in structural loads that are characterised by a high frequency content. What also characterises these pressures/forces is the specific spatial and time dependence that is acting on the piping system and found in the wave propagation in the contained fluid. The aim with this project has been to develop recommendations for analysis of the stress response in piping systems subjected to thermohydraulic transients. Basis for this work is that the so called two-step-method is applied and that the structural response is calculated with modal superposition. Derived analysis criteria are based on the assumption that the associated volume strain energy in the wave propagation for the contained fluid may be well defined by a parameter, here called ε PN . The stress response in the piping system is assumed to be completely determined with certain accuracy for that part of the volume strain energy in the wave propagation associated with this parameter. A comprehensive work has been done to determine the accuracy in loadings calculated with RELAP5. Properties such as period elongation and associated spurious oscillations in the pressure wave transient have been investigated. Furthermore, has the characteristics of the artificial numerical damping in RELAP5 been identified. Based on desired accuracy of the thermohydraulic analysis together with knowledge about the duration of the thermohydraulic perturbation, the lowest upper frequency limit f Pipe , in the modal base that is required for the structure model is calculated. With perturbation is meant such as a valve closure. According to suggested criteria and with the upper frequency limit set, the essential parameters i) largest size of the elements in the structure model and ii) the largest applicable time step in the

  13. THYDE-P, PWR LOCA Thermohydraulic Transient Analysis

    International Nuclear Information System (INIS)

    Asahi, Yoshiro

    2001-01-01

    1 - Description of problem or function: THYDE-P1 analyzes the behaviour of LWR plants in response to various disturbances, including the thermal hydraulic transient following a break of the primary coolant pipe system, generally referred to as a loss-of-coolant-accident (LOCA). LOCA can be considered as the most critical condition for testing the methods and models for plant dynamics, since thermal hydraulic conditions in the system change drastically during the transient. THYDE-P is capable of a complete LOCA calculation from start to complete reflooding of the core by subcooled water. The program performs steady-state adjustment, which is complete in the sense that the steady state obtained is a set of exact solutions of all the transient equations without time derivatives, not only for plant hydraulics but also for all the other phenomena in the simulation of a PWR plant. THYDE-P2 contains among others the following improvements over THYDE-P1: (1) not only the mass and momentum equations but also the energy equation are included in the non-linear implicit scheme; (2) the valve model is implemented; (3) the relaxation equation for void fraction is theoretically derived; (4) vectorized programming is implemented; (5) both EM (evaluation mode) and BE (best estimate) calculations are possible. THYDE-W is an improved version of THYDE-P2 and contains the following additional features: (a) analysis of multiple number of disjoint loops is possible; (b) a control system simulation model is included; (c) the trip model has been improved; (d) heavy water is allowed as coolant; (e) the effect of drift flux is accounted for in the steady state calculation; (f) boron transport is included; (g) to obtain steady state loop heat balance, the option of adjusting the enthalpy distribution is prepared included in addition to that of adjusting heat exchanger areas; (h) to obtain steady state pressure distribution, three other options are prepared in addition to the original ones

  14. Development of a computer code for thermohydraulic analysis of a heated channel in transients

    International Nuclear Information System (INIS)

    Jafari, J.; Kazeminejad, H.; Davilu, H.

    2004-01-01

    This paper discusses the thermohydraulic analysis of a heated channel of a nuclear reactor in transients by a computer code that has been developed by the writer. The considered geometry is a channel of a nuclear reactor with cylindrical or planar fuel rods. The coolant is water and flows from the outer surface of the fuel rod. To model the heat transfer in the fuel rod, two dimensional time dependent conduction equations has been solved by combination of numerical methods, O rthogonal Collocation Method in radial direction and finite difference method in axial direction . For coolant modelling the single phase time dependent energy equation has been used and solved by finite difference method . The combination of the first module that solves the conduction in the fuel rod and a second one that solved the energy balance in the coolant region constitute the computer code (Thyc-1) to analysis thermohydraulic of a heated channel in transients. The Orthogonal collocation method maintains the accuracy and computing time of conventional finite difference methods, while the computer storage is reduced by a factor of two. The same problem has been modelled by RELAP5/M3 system code to asses the validity of the Thyc-1 code. The good agreement of the results qualifies the developed code

  15. The delay function in finite difference models for nuclear channels thermo-hydraulic transients

    International Nuclear Information System (INIS)

    Agazzi, A.

    1977-01-01

    The study of the thermo-hydraulic transients in a nuclear reactor core often requires a bi- or tri-dimensional mathematical simulation of a reactor channel. The equations involved are generally solved by means of finite-difference methods. The determination of the spatial mesh-width and the time interval is strongly conditioned by the necessity of a good accuracy in the description of the delay function which defines the transfer of thermal perturbations along the cooling channel. In this paper the effects of both space and time discretization on the delay function are considered and for the classical cases of inlet temperature step and ramp universal functions and diagrams are given in order to make possible the determination of optimal spatial mesh-width and time interval, once the requested accuracy of the model is fixed in advance

  16. Transient void fraction measurements in rod bundle geometries

    International Nuclear Information System (INIS)

    Chan, A.M.C.

    1998-01-01

    A new gamma densitometer with a Ba-133 source and a Nal(TI) scintillator operated in the count mode has been designed for transient void fraction measurements in the RD-14M heated channels containing a seven-element heater bundle. The device was calibrated dynamically in the laboratory using an air-water flow loop. The void fraction measured was found to compare well with values obtained using the trapped-water method. The device was also found to follow very well the passage of air slugs in pulsating flow with slug passing frequencies of up to about 1.5 hz. (author)

  17. Analyses and computer code developments for accident-induced thermohydraulic transients in water-cooled nuclear reactor systems

    International Nuclear Information System (INIS)

    Wulff, W.

    1977-01-01

    A review is presented on the development of analyses and computer codes for the prediction of thermohydraulic transients in nuclear reactor systems. Models for the dynamics of two-phase mixtures are summarized. Principles of process, reactor component and reactor system modeling are presented, as well as the verification of these models by comparing predicted results with experimental data. Codes of major importance are described, which have recently been developed or are presently under development. The characteristics of these codes are presented in terms of governing equations, solution techniques and code structure. Current efforts and problems of code verification are discussed. A summary is presented of advances which are necessary for reducing the conservatism currently implied in reactor hydraulics codes for safety assessment

  18. THEBES: a thermal hydraulic code for the calculation of transient two phase flow in bundle geometry

    International Nuclear Information System (INIS)

    Camous, F.

    1983-01-01

    The three dimensional thermal hydraulic code THEBES, capable to calculate transient boiling of sodium in rod bundles is described here. THEBES, derived from the transient single phase code SABRE-2A, was developed in CADARACHE by the SIES to analyse the SCARABEE N loss of flow experiments. This paper also presents the results of tests which were performed against various types of experiments: (1) transient boiling in a 7 pin bundle simulating a partial blockage at the bottom of a subassembly (rapid transient SCARABEE 7.2 experiment), (2) transient boiling in a 7 pin bundle simulating a coolant coast down (slow transient SCARABEE 7.3 experiment), (3) steady local and generalised boiling in a 19 pin bundle (GR 19 I experiment), (4) transient boiling in a 19 pin bundle simulating a coolant coast down (GR 19 I experiment), (5) steady local boiling in a 37 pin bundle with internal blockage (MOL 7C experiment). Excellent agreement was found between calculated and experimental results for these different situations. Our conclusion is that THEBES is able to calculate transient boiling of sodium in rod bundles in a quite satisfying way

  19. Thermohydraulic tests in nuclear fuel model

    International Nuclear Information System (INIS)

    Ladeira, L.C.D.; Navarro, M.A.

    1984-01-01

    The main experimental works performed in the Thermohydraulics Laboratory of the NUCLEBRAS Nuclear Technology Development Center, in the field of thermofluodynamics are briefly described. These works include the performing of steady-state flow tests in single tube test sections, and the design and construction of a rod bundle test section, which will be also used for those kind of testes. Mention is made of the works to be performed in the near future, related to steady-state and transient flow tests. (Author) [pt

  20. Substantiation and verification of the heat exchange crisis model in a rod bundles by means of the KORSAR thermohydraulic code

    International Nuclear Information System (INIS)

    Bobkov, V.P.; Vinogradov, V.N.; Efanov, A.D.; Sergeev, V.V.; Smogalev, I.P.

    2003-01-01

    The results of verifying the model for calculating the heat exchange crisis in the uniformly heated rod bundles, realized in the calculation code of the improved evaluation KORSAR, are presented. The model for calculating the critical heat fluxes in this code is based on the tabular method. The experimental data bank of the Branch base center of the thermophysical data GNTs RF - FEhI for the rod bundles, structurally similar to the WWER fuel assemblies, was used by the verification within the wide range of parameters: pressure from 0.11 up to 20 MPa and mass velocity from 5- up to 5000 kg/(m 2 s) [ru

  1. Energy-1: a computer code for thermohydraulic analysis of a LMBFR rod bundles, in a mixed convection regime

    International Nuclear Information System (INIS)

    Braz Filho, F.A.

    1987-01-01

    A code was set up in which velocity, temperature and pressure distributions are calculated, using the porous body model, for a rod bundle where mixed convection regime plays an important role. Results show satisfactory agreement with experimental data, as well as a reduction in computational time when compared to ENERGY-III code. (author) [pt

  2. Steady-state thermohydraulic studies in seven-pin bundle out-of-pile experiments: nominal and distorted geometry tests

    International Nuclear Information System (INIS)

    Falzetti, L.; Meneghello, S.; Pezzilli, M.

    1979-01-01

    Two sets of experiments have been performed in sodium with two seven pin electrically heated bundles: the first with a nominal arrangement, the second with one dummy pin enlarged 20% in diameter in peripheral position. In this paper a rapid review of experimental results and theoretical works, related to the temperature distribution in these geometries, is presented together with a short description of the developed test section technology

  3. Thermohydraulic characteristics under some transient conditions of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang; Khang, Ngo Phu; An, Tran Khac; Nghiem, Huynh Ton [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Some experimental and theoretical thermal hydraulic characteristics of the Dalat Nuclear Research Reactor are presented, together with some general assessments, from a thermal hydraulic point of view, of its safety under transient conditions. (author). 3 refs., 9 figs., 7 tabs.

  4. Parallelization of TWOPORFLOW, a Cartesian Grid based Two-phase Porous Media Code for Transient Thermo-hydraulic Simulations

    Science.gov (United States)

    Trost, Nico; Jiménez, Javier; Imke, Uwe; Sanchez, Victor

    2014-06-01

    TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard.

  5. FORE-2, Thermohydraulics and Space-Independent Reactor Kinetics for Transients

    International Nuclear Information System (INIS)

    Fox, J.N.; Lawler, B.E.; Butz, H.R.; Heames, T.J.

    1984-01-01

    1 - Description of problem or function: FORE2 is a coupled thermal hydraulics-point kinetics digital computer code designed to calculate significant reactor parameters under steady-state conditions, or as functions of time during transients. The transients may result from a programmed reactivity insertion or a power change. Variable inlet coolant flow rate and temperature are considered. The code calculates the reactor power, the individual reactivity feedbacks, and the temperature of coolant, cladding, fuel, structure, and additional material for up to seven axial positions in three channel types which represent radial zones of the reactor. The heat of fusion, accompanying fuel melting, the liquid metal voiding reactivity, and the spatial and the time variation of the fuel cladding gap coefficient due to changes in gap size are considered. 2 - Method of solution: FORE2 input consists of property data, geometry, power and flow distribution factors, external time varying functions, experimental coefficients, and termination data. The differential equations for fluid flow, heat transfer, and point neutronics are solved by explicit finite-difference procedures. 3 - Restrictions on the complexity of the problem: Reactor excursions which can be calculated are restricted to those transients in which the reactor is not substantially destroyed. As a general rule, changes in reactor geometry and composition during an excursion are limited to those cases in which the reactivity effects of the changes may be considered as small perturbations of the initial system. Thus, accidents involving large-scale disassembly and bulk meltdown of a core are not covered by FORE2. FORE2 is valid only while the core retains its initial geometry

  6. TRACE/VALKIN: a neutronics-thermohydraulics coupled code to analyze strong 3D transients

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Miro; Gumersindo Verdu; Ana Maria Sanchez [Chemical and Nuclear Engineering Department. Polytechnic University of Valencia. Cami de Vera s/n. 46022 Valencia (Spain); Damian Ginestar [Applied Mathematics Department. Polytechnic University of Valencia. Cami de Vera s/n. 46022 Valencia (Spain)

    2005-07-01

    Full text of publication follows: A nuclear reactor simulator consists mainly of two different blocks, which solve the models used for the basic physical phenomena taking place in the reactor. In this way, there is a neutronic module which simulates the neutron balance in the reactor core, and a thermal-hydraulics module, which simulates the heat transfer in the fuel, the heat transfer from the fuel to the water, and the different condensation and evaporation processes taking place in the reactor core and in the condenser systems. TRACE is a two-phase, two-fluid thermal-hydraulic reactor systems analysis code. The TRACE acronym stands for TRAC/RELAP Advanced Computational Engine, reflecting its ability to run both RELAP5 and TRAC legacy input models. It includes a three-dimensional kinetics module called PARCS for performing advanced analysis of coupled core thermal-hydraulic/kinetics problems. TRACE-VALKIN code is a new time domain analysis code to study transients in LWR reactors. This code uses the best estimate code TRACE to give account of the heat transfer and thermal-hydraulic processes, and a 3D neutronics module. This module has two options, the MODKIN option that makes use of a modal method based on the assumption that the neutronic flux can be approximately expanded in terms of the dominant lambda modes associated with a static configuration of the reactor core, and the NOKIN option that uses a one-step backward discretization of the neutron diffusion equation. The lambda modes are obtained using the Implicit Restarted Arnoldi approach or the Jacob-Davidson algorithm. To check the performance of the coupled code TRACE-VALKIN against complex 3D neutronic transients, using the cross-sections tables generated with the translator SIMTAB from SIMULATE to TRACE/VALKIN, the Cofrentes NPP SCRAM-61 transient is simulated. Cofrentes NPP is a General Electric BWR-6 design located in Valencia-land (Spain). It is in operation since 1985 and currently in its fifteenth

  7. Solving linear systems in FLICA-4, thermohydraulic code for 3-D transient computations

    International Nuclear Information System (INIS)

    Allaire, G.

    1995-01-01

    FLICA-4 is a computer code, developed at the CEA (France), devoted to steady state and transient thermal-hydraulic analysis of nuclear reactor cores, for small size problems (around 100 mesh cells) as well as for large ones (more than 100000), on, either standard workstations or vector super-computers. As for time implicit codes, the largest time and memory consuming part of FLICA-4 is the routine dedicated to solve the linear system (the size of which is of the order of the number of cells). Therefore, the efficiency of the code is crucially influenced by the optimization of the algorithms used in assembling and solving linear systems: direct methods as the Gauss (or LU) decomposition for moderate size problems, iterative methods as the preconditioned conjugate gradient for large problems. 6 figs., 13 refs

  8. DRUFAN-01/MOD2, Transient Thermohydraulics of PWR Primary System LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Burwell, M J; Lerchl, G; Steinhoff, F; Wolfert, K [Gesellschaft fuer Reaktorsicherheit (GRS) mbH, Forschungsgelaende, 8046 Garching (Germany)

    1982-12-13

    1 - Description of problem or function: DRUFAN is an advanced best estimate code for simulation of the transient thermal hydraulic behaviour during PWR-blowdown with large break size. 2 - Method of solution: The code is based on the lumped parameter approach and allows flexible control volume configurations. The physical model takes into account thermodynamic nonequilibrium. Using finite difference techniques a 1-dimensional representation of the discharge flow path including geometrical influences is possible. The physical model is based on separated field equations for liquid and vapour mass and overall field equations for energy and momentum. The mass transfer rates between phases during evaporation and condensation are based on correlations for the controlled growth and shrinkage of vapour bubbles or liquid droplets, respectively. A heat conductor model based on the energy transport equation is available for simulation of structures, electrical heater rods and fuel rods. For the heat transfer between solid structures and the fluid a comprehensive package of flow regime dependent heat transfer and critical heat flux correlations can be used. Simulation of components (valve, pressurizer, accumulator, pump, steam generator) is possible with functions or models. Power generation in solid structures may be simulated by an input time function, an electrical heater model or a neutron kinetics models. As a result of the lumped parameter approach a set of ordinary differential equations is obtained from the field equations. These equations, together with those resulting from the simulation of critical discharge flow near the outlet by a finite difference method, are solved by an explicit/implicit integration method with automatic time step, order and error control. The ordinary differential equations representing heat conductors are solved by an essentially implicit integration method. 3 - Restrictions on the complexity of the problem: - Vapour or liquid phase are

  9. Mitigation of thermal transients by tube bundle inlet plenum design

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1984-06-01

    A multiphase program aimed at investigating the importance of thermal buoyancy to LMFBR steam-generator and heat-exchanger thermal hydraulics under low-flow transient conditions is being conducted in the Argonne Mixing Components Test Facility (MCTF) on a 60 0 sector shell-side flow model of the Westinghouse straight-tube steam generator being developed under the US/DOE large-component development program. A series of shell-side constant-flow thermal-downramp transient tests have been conducted focusing on the phenomenon of thermal-buoyancy-induced-flow channeling. In addition, it was discovered that a shell-inlet flow-distribution plenum can play a significant role in mitigating the severity of a thermal transient entering a steam generator or heat exchanger

  10. Critical power characteristics in 37-rod tight lattice bundles under transient conditions

    International Nuclear Information System (INIS)

    Liu, Wei; Kureta, Masatoshi; Tamai, Hidesada; Ohnuki, Akira; Akimoto, Hajime

    2007-01-01

    Critical power characteristics in the postulated abnormal transient processes that may be possibly met in the operation of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) were investigated for the design of the FLWR core. Transient Boiling Transition (BT) tests were carried out using two sets of 37-rod tight lattice rod bundles (rod diameter: 13 mm; rod clearance: 1.3 mm or 1.0 mm) at Japan Atomic Energy Agency (JAEA) under the conditions covering the FLWR operating condition (P ex =7.2 MPa, T in =556 K) for mass velocity G=400-800 kg/(m 2 s). For the postulated power increase and flow decrease transients, no obvious change of the critical power against the steady one was observed. The traditional quasi-steady characteristic was confirmed to be working for the postulated power increase and flow decrease transients. The experiments were analyzed with TRAC-BF1 code, where the JAEA newest critical power correlation for the tight lattice rod bundles was implemented for the BT judgment. The TRAC-BF1 code showed good prediction for the occurrence or the non occurrence of the BT and for the exact BT starting time. The tranditional quasi-steady state prediction of the BT in transient process was confirmed to be applicable for the postulated abnormal transient processes in the tight lattice rod bundles. (author)

  11. A thermal-hydraulic code for transient analysis in a channel with a rod bundle

    International Nuclear Information System (INIS)

    Khodjaev, I.D.

    1995-01-01

    The paper contains the model of transient vapor-liquid flow in a channel with a rod bundle of core of a nuclear power plant. The computer code has been developed to predict dryout and post-dryout heat transfer in rod bundles of nuclear reactor core under loss-of-coolant accidents. Economizer, bubble, dispersed-annular and dispersed regimes are taken into account. The computer code provides a three-field representation of two-phase flow in the dispersed-annular regime. Continuous vapor, continuous liquid film and entrained liquid drops are three fields. For the description of dispersed flow regime two-temperatures and single-velocity model is used. Relative droplet motion is taken into account for the droplet-to-vapor heat transfer. The conservation equations for each of regimes are solved using an effective numerical technique. This technique makes it possible to determine distribution of the parameters of flows along the perimeter of fuel elements. Comparison of the calculated results with the experimental data shows that the computer code adequately describes complex processes in a channel with a rod bundle during accident

  12. A thermal-hydraulic code for transient analysis in a channel with a rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Khodjaev, I.D. [Research & Engineering Centre of Nuclear Plants Safety, Electrogorsk (Russian Federation)

    1995-09-01

    The paper contains the model of transient vapor-liquid flow in a channel with a rod bundle of core of a nuclear power plant. The computer code has been developed to predict dryout and post-dryout heat transfer in rod bundles of nuclear reactor core under loss-of-coolant accidents. Economizer, bubble, dispersed-annular and dispersed regimes are taken into account. The computer code provides a three-field representation of two-phase flow in the dispersed-annular regime. Continuous vapor, continuous liquid film and entrained liquid drops are three fields. For the description of dispersed flow regime two-temperatures and single-velocity model is used. Relative droplet motion is taken into account for the droplet-to-vapor heat transfer. The conservation equations for each of regimes are solved using an effective numerical technique. This technique makes it possible to determine distribution of the parameters of flows along the perimeter of fuel elements. Comparison of the calculated results with the experimental data shows that the computer code adequately describes complex processes in a channel with a rod bundle during accident.

  13. Influence of thermal buoyancy on vertical tube bundle thermal density head predictions under transient conditions

    International Nuclear Information System (INIS)

    Lin, H.C.; Kasza, K.E.

    1984-01-01

    The thermal-hydraulic behavior of an LMFBR system under various types of plant transients is usually studied using one-dimensional (1-D) flow and energy transport models of the system components. Many of the transient events involve the change from a high to a low flow with an accompanying change in temperature of the fluid passing through the components which can be conductive to significant thermal bouyancy forces. Thermal bouyancy can exert its influence on system dynamic energy transport predictions through alterations of flow and thermal distributions which in turn can influence decay heat removal, system-response time constants, heat transport between primary and secondary systems, and thermal energy rejection at the reactor heat sink, i.e., the steam generator. In this paper the results from a comparison of a 1-D model prediction and experimental data for vertical tube bundle overall thermal density head and outlet temperature under transient conditions causing varying degrees of thermal bouyancy are presented. These comparisons are being used to generate insight into how, when, and to what degree thermal buoyancy can cause departures from 1-D model predictions

  14. Heart Failure with Transient Left Bundle Branch Block in the Setting of Left Coronary Fistula

    Directory of Open Access Journals (Sweden)

    Stephen P. Juraschek

    2011-01-01

    Full Text Available Coronary arterial fistulas are rare communications between vessels or chambers of the heart. Although cardiac symptoms associated with fistulas are well described, fistulas are seldom considered in the differential diagnosis of acute myocardial ischemia. We describe the case of a 64-year-old man who presented with left shoulder pain, signs of heart failure, and a new left bundle branch block (LBBB. Cardiac catheterization revealed a small left anterior descending (LAD-to-pulmonary artery (PA fistula. Diuresis led to subjective improvement of the patient's symptoms and within several days the LBBB resolved. We hypothesize that the coronary fistula in this patient contributed to transient ischemia of the LAD territory through a coronary steal mechanism. We elected to observe rather than repair the fistula, as his symptoms and ECG changes resolved with treatment of his heart failure.

  15. Investigation of combined free and forced convection in a 2 x 6 rod bundle during controlled flow transients

    International Nuclear Information System (INIS)

    Bates, J.M.; Khan, E.U.

    1980-10-01

    An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program

  16. Historical survey of the qualifying process of Furnas calculus methodology in the areas of rods, neutronics, thermohydraulic accidents and transients

    International Nuclear Information System (INIS)

    Conti, C.F.S.; Silva Galetti, M.R. da.

    1990-02-01

    As Furnas intends to assume in the future the responsibility of performing Safety Analyses associated to Reload and Operation questions to Angra 1, it was figured out the necessity of qualifying its methodology by CNEN. The Methodology Qualification Process is based on guidelines proposed by CNEN at NT-DR-N o 02/87, where it was divided in four steps. This Technical Note aims to present the follow up of FURNAS Methodology Qualification Process and to bring it up to date in the areas of Core Physics (Neutronics), Core Thermal-Hydraulics, Fuel Rod Behaviour, Transient and Large Break Loss of Coolant Accident Analyses (LBLOCA). (author)

  17. Thermohydraulic analysis of pressurized water reactors

    International Nuclear Information System (INIS)

    Veloso, M.A.

    1980-01-01

    The computer program PANTERA is applied in the thermo-hydraulic analysis of Pressurized Water Reactor Cores (PWR). It is a version of COBRA-IIIC in which a new thermal conduction model for fuel rods was introduced. The results calculated by this program are compared with experimental data obtained from bundles of fuel rods, simulating reactor conditions. The validity of the new thermal model is checked too. The PANTERA code, through a simplified procedure of calculation, is used in the thermo-hydraulic analysis of Indian Point, Unit 2, reactor core, in stationary conditions. The results are discussed and compared with design data. (Autor) [pt

  18. Proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic

    International Nuclear Information System (INIS)

    1986-01-01

    The proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic - 6. ENFIR - allow to evaluate the present status of development in reactor physics and thermohydraulic fields. The mathematical models and methods for calculating neutronic of nuclear reactors, safety reactor analysis, measuring methods of neutronic parameters, computerized simulation of accidents, transients and thermohydraulic analysis are presented. (M.C.K.) [pt

  19. LMFR core thermohydraulics: Status and prospects

    International Nuclear Information System (INIS)

    2000-06-01

    One of the fundamental steps for a successful reactor core thermohydraulic design is the capability to predict, reliably and accurately, the temperature distribution in the core assemblies. A detailed knowledge of the assembly and fuel pin thermohydraulic behaviour in the steady state and transient conditions is an indispensable prerequisite to safe and stable operation of the reactor. Considerable experimental and theoretical studies on various aspects of LMFR core thermohydraulics are necessary to acquire such knowledge. During the last decade, there have been substantial advances in fast reactor core thermohydraulic design and operation in several countries with fast reactor programmes (notably in France, the Russian Federation, Japan, the United Kingdom, Germany and the United States of America). Chief among these has been the demonstration of reliable operation of reactor cores at a high burnup. During the last years, some additional countries such as China, India and the Republic of Korea have launched new fast reactor programmes. International exchange of information and experience on LMFR development including core thermohydraulic design is becoming of increasing importance to these countries. It is with this focus that the IAEA convened the Technical Committee on 'Methods and Codes for Calculations of Thermohydraulic Parameters for Fuel, Absorber Pins and Assemblies of LMFR's with Traditional and Burner Cores'. This meeting, attended by participants from seven countries, brought together a group of international experts to review and discuss the thermohydraulic advances and design approaches providing a reliable, safe and robust reactor core, as well as to exchange the experience accumulated in different countries of using the codes for thermohydraulic calculations and to discuss the issues requiring further research and development. A total of thirty technical papers presented covered theoretical and computational issues as well as experiments under

  20. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    International Nuclear Information System (INIS)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified

  1. Rod-bundle transient-film boiling of high-pressure water in the liquid-deficient regime

    International Nuclear Information System (INIS)

    Morris, D.G.; Mullins, C.B.; Yoder, G.L.

    1982-01-01

    Results are reported from a recent experiment investigating dispersed flow film boiling of high pressure water in upflow through a rod bundle. The data, obtained under mildly transient conditions, are used to assess correlations currently used to predict heat transfer in these circumstances. In light of the scarcity of similar data, the data should prove useful in the development and assessment of new heat transfer models. The experiment was conducted at the Oak Ridge National Laboratory in the Thermal-Hydraulic Test Facility, a highly instrumented, non-nuclear, pressurized-water loop containing 64, 3.66-m (12-ft) long rods (of which 60 are electrically heated). The rods are arranged in a square array typical of 17 x 17 fuel rod assemblies in late generation PWRs. Data were collected over typical reactor blowdown parameter ranges

  2. Thermohydraulics of reactors

    International Nuclear Information System (INIS)

    Delhaye, J.M.

    2008-01-01

    This scientific and technical handbook about PWR reactors thermohydraulics is the result of many years of teaching in the framework of the CEA-INSTN's atomic engineering training courses, in engineering schools and during continuing training activities. Its main goal is to present in a rigorous and pedagogical way the basic knowledge necessary for the understanding and modeling of single phase and two-phase thermohydraulic phenomena encountered during the design and operation of nuclear reactors. In particular, heat transfers in two-phase flows are presented in a detailed way. Most chapters include some nuclear engineering examples of application of the studied concepts, and some exercises aiming at mastering these concepts. Each example or exercise is accompanied by its detailed solution. Content: - thermohydraulic characteristics of reactors; - design and thermal dimensioning of reactors; - thermal engineering of the fuel element; - two-phase flow configurations in ducts; - recalls about single-phase flow equations; - basic equations for two-phase flows; - modeling of two-phase flows inside ducts; - pressure drops in ducts; - boiling and vapor condensation heat transfers; - two-phase flow instabilities in ducts; - two-phase flow blocking; thermohydraulics of naval propulsion reactors

  3. Development of advanced BWR fuel bundle with spectral shift rod (3) -transient analysis of ABWR core with SSR

    International Nuclear Information System (INIS)

    Ikegawa, T.; Chaki, M.; Ohga, Y.; Abe, M.

    2010-01-01

    The spectral shift rod (SSR) is a new type of water rod, utilized instead of the conventional water rod, in which a water level develops during core operation. The water level can be changed according to the fuel channel flow rate. In this study, ABWR plant performance with SSR fuel bundles under transient conditions has been evaluated using the TRACG code. The TRACG code, which can treat three-dimensional hydrodynamic calculations in a reactor pressure vessel, is well suited for evaluating the reactor transient performance with the SSR fuel bundles because it can calculate the water levels in the SSR at each channel grouping and therefore evaluate the core reactivity according to the water level changes in the SSR. 'Generator load rejection with total turbine bypass failure' and 'Recirculation flow control failure with increasing flow' were selected as cases which may increase the reactivity with the increasing water level in the SSR. It was found that the absolute value of the void reactivity coefficient in the SSR core was larger than that in the conventional water rod core because the core averaged void fraction in the SSR core, which has the vapor region above the water level in the SSR, was larger than that in the conventional water rod core. Therefore, AMCPR for the SSR core was a little larger than that for the conventional water rod core; however, the difference was smaller than 0.02 because the inlet of the SSR ascending path was designed to be small enough to prevent the rapid water level increase in the SSR. (authors)

  4. Use of the ''Lagrangian and Eulerian points of view'' in the transient critical heat flux calculations for BWR rod bundles and experimental verifications

    International Nuclear Information System (INIS)

    Marinelli, V.; Pellei, A.; Vallero, P.; Vitanza, C.

    1975-01-01

    The calculations performed in comparison of the ''Lagrangian point of view'', by means of the DOLCE computer code with the local space--time approach of the ''Eulerian point of view'' indicate that the two methods give substantially equivalent results and predict satisfactorily the onset of the transient CHF for the Centro Informazioni Studi Esperienze annuli experimental data and General Electric Company 16-rod bundles data under typical boiling water reactor transients, including loss-of-coolant accident simulations. 9 references

  5. Transient non-boiling heat transfer in a fuel rod bundle during accidental power excursions

    International Nuclear Information System (INIS)

    Bonaekdarzadeh, S.; Johannsen, K.; Ramm, H.

    1977-01-01

    The physical problem studied is the transient non-boiling heat transfer of a cylindrical fuel rod consisting of fuel, gap, and cladding to a steady, fully developed turbulent flow. The fuel pin is assumed to be located in the interior region of a subassembly with regular triangular or square arrangements. The turbulent velocity field as well as turbulent transport properties are specified as functions of the coordinates normal to the axial flow direction. The heat generation within the fuel may be specified as an arbitrary function of the three spatial coordinates and time. A digital computer program has been developed. On the basis of finite-difference techniques, to solve the governing partial differential equations with their associated subsidiary conditions. Results have been obtained for a series of exponential power transients of interest to safety of liquid-metal and water cooled nuclear reactors. The general physical features of transient convective heat transfer as explored by previous investigators have qualitatively been substantiated by the present analysis. Emphasis has been devoted to investigate the differences of heat-transfer (coefficient) results from multi-region analysis including a realistic fuel rod model and single-region analysis for the coolant region only. A comparison with the engineering relationships for turbulent liquid-metal cooling by Stein, which are an extension of the heat transfer coefficient concept to account for transient heat fluxes, clearly demonstrates that, at the parameters studied, Stein's approach tends to largely overestimate the convective heat transfer at early times

  6. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1977--May 31, 1977

    International Nuclear Information System (INIS)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1977-01-01

    Progress is summarized in the following tasks: (1) bundle flow studies (wrapped and bare rods); (2) subchannel flow studies (bare rods); (3) LMFBR outlet plenum flow mixing; and (4) theoretical determination of local temperature fields in LMFBR fuel rod bundles

  7. Influence of the heat losses and accumulated heat upon the evolution of the thermohydraulic processes in the transients as applied to the ISB-WWER integral test facility

    International Nuclear Information System (INIS)

    Gashenko, I.V.; Melikhov, O.I.; Shmal, I.I.; Kouznetsov, V.D.

    2001-01-01

    The results of the calculational study using the RELAP5/MOD3.2 thermalhydraulic code performed on the influence of the heat losses to the ambient and the heat accumulated in the pipelines walls upon the evolution of the thermalhydraulic processes in the primary circuit of the integral test facility ISB-WWER when simulating the transients caused by the loss of the coolant are presented in the paper. (authors)

  8. A model for steady-state and transient determination of subcooled boiling for calculations coupling a thermohydraulic and a neutron physics calculation program for reactor core calculation

    International Nuclear Information System (INIS)

    Mueller, R.G.

    1987-06-01

    Due to the strong influence of vapour bubbles on the nuclear chain reaction, an exact calculation of neutron physics and thermal hydraulics in light water reactors requires consideration of subcooled boiling. To this purpose, in the present study a dynamic model is derived from the time-dependent conservation equations. It contains new methods for the time-dependent determination of evaporation and condensation heat flow and for the heat transfer coefficient in subcooled boiling. Furthermore, it enables the complete two-phase flow region to be treated in a consistent manner. The calculation model was verified using measured data of experiments covering a wide range of thermodynamic boundary conditions. In all cases very good agreement was reached. The results from the coupling of the new calculation model with a neutron kinetics program proved its suitability for the steady-state and transient calculation of reactor cores. (orig.) [de

  9. CAREM reactor thermohydraulic essays laboratory

    International Nuclear Information System (INIS)

    Horro, R.; Mazzi, R.; Rossini, A.

    1990-01-01

    The main characteristics, essays projected and the present state of the Thermohydraulic Essays Laboratory -under construction at present- prepared to meet the experimental needs resulting from a power reactor design of the CAREM type, are herein described. (Author) [es

  10. Steady state transient analysis of spent nuclear fuel bundle exposed to stagnant gaseous atmosphere (Paper No. HMT-56-87)

    International Nuclear Information System (INIS)

    Pal, G.; Markandeya, S.G.; Venkatraj, V.

    1987-01-01

    This paper deals with the development of a computer code for the analysis of radiative heat exchange in rod bundles. Nuclear fuel bundles continue to generate heat even after their removal from the reactor core because of decay of fission products. During the transfer of the bundles from the core to storage bay they may pass through gaseous environment. Radiative heat exchange will be the dominant mode within the bundle under this condition. A computer code RIIEINA (Radiative Heat Exchange In Nuclear Assemblies) has been developed and used for predicting the behaviour of the spent fuel subassembly of the proposed Prototype Fast Breeder Reactor exposed to gaseous environment. The analytical model computer code and the results obtained are briefly discussed. (author). 5 refs., 5 figs

  11. COBRA - 3C/KFKI: a digital computer program for steady and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements

    International Nuclear Information System (INIS)

    Vigassy, J.; Kovacs, L.M.

    1977-11-01

    COBRA-3C/KFKI is a digital computer program for the CDC-3300 computer in FORTRAN language. The program is a revised version of the original COBRA-3C code. The code calculates steady-state and transient flow and enthalpy transport in rod-bundle nuclear fuel elements in both boiling and nonboiling conditions. The mathematical model is formulated by dividing the bundle flow area into flow subchannels that are assumed to contain one-dimensional flow and are coupled to each other by turbulent and diversion crossflow mixing. The program neglects sonic velocity propagation but allows for a temporal and spatial acceleration of the diversion crossflow in the transverse momentum equation. A semiexplicit finite-difference scheme is used to perform a boundary-value solution where the boundary conditions are the inlet enthalpy, inlet flow rate and exit pressure. (D.P.)

  12. Thermohydraulic tests in the area of reactor safety done in CDTN

    International Nuclear Information System (INIS)

    Ladeira, L.C.D.

    1990-01-01

    The main experimental works performed in the last five years at the Thermohydraulics Laboratory of the Nuclear Technology Development Center, in the field of reactor safety are briefly described. This paper cover the performing and analysis of pressure drop, heat transfer and mixing tests in 3X3 rod bundle and rewetting tests in single tube section. (autor) [pt

  13. Assessment of the uncertainties of COBRA sub-channel calculations by using a PWR type rod bundle and the OECD NEA UAM and the PSBT benchmarks data

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2014-01-01

    The assessment of the uncertainties of COBRA-IIIC thermal-hydraulic analyses of rod bundles is performed for a 5-by-5 bundle representing a PWR fuel assembly. In the first part of the paper the modeling uncertainties are evaluated in the term of the uncertainty of the turbulent mixing factor using the OECD NEA/NRC PSBT benchmark data. After that the uncertainties of the COBRA calculations are discussed performing Monte-Carlo type statistical analyses taking into account the modeling uncertainties and other uncertainties prescribed in the OECD NEA UAM benchmark specification. Both steady-state and transient cases are investigated. The target quantities are the uncertainties of the void distribution, the moderator density, the moderator temperature and the DNBR. We will see that - beyond the uncertainties of the geometry and the boundary conditions - it is very important to take into account the modeling uncertainties in case of bundle or sub-channel thermo-hydraulic calculations.

  14. Seminar on experimental thermohydraulics

    International Nuclear Information System (INIS)

    Katsaounis, A.

    1979-06-01

    Considerations on reactor safety are made. Problems related to the project and assembling of facilities for experiments in steady state and transient conditions are discussed. The advantages of using model fluids are finally, analysed. (Author) [pt

  15. Comparative Analysis of Thermohydraulic Margins in Embalse Power Station, CARA Vs. CANDU with Cobra IV-HW

    International Nuclear Information System (INIS)

    Daverio, H; Juanico, L

    2000-01-01

    Comparative analysis of thermohydraulic margins were studied of the CANDU 37 and CARA fuel bundles (FB) in Embalse power station with COBRA IV-HW code ., the geometry of the bundle laying on the channel was particularly modeled and discussing the results in comparison with former calculations with 1/6 simetry .The CARA design with enriched uranium (0.9 %) and extended burn up lets maintain the current thermohydraulic nominal margins , while compared with CANDU 37 rods FB enriched , the CARA design permits widely improve the current margins

  16. CFD simulating the transient thermal–hydraulic characteristics in a 17 × 17 bundle for a spent fuel pool under the loss of external cooling system accident

    International Nuclear Information System (INIS)

    Chen, S.R.; Lin, W.C.; Ferng, Y.M.; Chieng, C.C.; Pei, B.S.

    2014-01-01

    Highlights: • A 3-D CFD is adopted to simulate transient behaviors in an SFP under the accident. • This model realistically simulates a 17 × 17 bundle, rid of porous media approach. • The loss of external cooling system accident for an SFP is assumed in this paper. • Thermal–hydraulic characteristics in a bundle are strongly influenced by grids. • The results confirm temperature rising rate used in Maanshan NPP is conservative. - Abstract: This paper develops a three-dimensional (3-D) transient computational fluid dynamics (CFD) model to simulate the thermal–hydraulic characteristics in a fuel bundle located in a spent fuel pool (SFP) under the loss of external cooling system accident. The SFP located in the Maanshan nuclear power plant (NPP) is selected herein. Without adopting the porous media approach usually used in the previous CFD works, this model uses a real-geometry simulation of a 17 × 17 fuel bundle, which can obtain the localized distributions of the flow and heat transfer during the accident. These distribution characteristics include several peaks in the axial distributions of flow, pressure, temperature, and Nusselt number (Nu) near the support grids, the non-uniform distribution of secondary flow, and the non-uniform temperature distribution due to flow mixing between rods, etc. According to the conditions adopted in the Procedure 597.1 (MNPP Plant Procedure 597.1, 2010) for the management of the loss-of-cooling event of the spent fuel pool in the Maanshan NPP, the temperature rising rate predicted by the present model can be equivalent to 1.26 K/h, which is the same order as that of 3.5 K/h in the this procedure. This result also confirms that the temperature rising rate used in the Procedure 597.1 for the Maanshan NPP is conservative. In addition, after the loss of external cooling system, there are about 44 h for the operator to repair the malfunctioning system or provide the alternative water source for the pool inventory to

  17. Steady-state and transient studies on critical heat flux of a PWR 5 x 5 fuel element bundle with complex spacer wire geometry

    International Nuclear Information System (INIS)

    Fulfs, H.; Katsaounis, A.; Kreubig, M.; Minden, C. von; Orlowski, R.

    1980-01-01

    The results will be described in exemplary presentations completely and concluding. The experimental examination of the steady state simularity of critical heat flux (CHF) in freon 12 and water at identical PWR-5 x 15-rod bundles will show that hot rod/hot channels position as well as CHF can be transformed from model to original fluid with good accuracy. The investigated mass flow and power transients (only in freon 12) point out a definite influence of initial and boundary conditions on CHF and CHF time delay at changing rates higher than 10 to 20%/s. On the contrary simulation of primary pump failure (LOFA) shows no or only small improvement in CHF behaviour while a coupled Scram prevents from reaching the boiling crisis. (orig.) [de

  18. Dynamic thermo-hydraulic model of district cooling networks

    International Nuclear Information System (INIS)

    Oppelt, Thomas; Urbaneck, Thorsten; Gross, Ulrich; Platzer, Bernd

    2016-01-01

    Highlights: • A dynamic thermo-hydraulic model for district cooling networks is presented. • The thermal modelling is based on water segment tracking (Lagrangian approach). • Thus, numerical errors and balance inaccuracies are avoided. • Verification and validation studies proved the reliability of the model. - Abstract: In the present paper, the dynamic thermo-hydraulic model ISENA is presented which can be applied for answering different questions occurring in design and operation of district cooling networks—e.g. related to economic and energy efficiency. The network model consists of a quasistatic hydraulic model and a transient thermal model based on tracking water segments through the whole network (Lagrangian method). Applying this approach, numerical errors and balance inaccuracies can be avoided which leads to a higher quality of results compared to other network models. Verification and validation calculations are presented in order to show that ISENA provides reliable results and is suitable for practical application.

  19. Transient subchannel simulation of sodium boiling in a 37 rods bundle with semi implicit and full implicit algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Hamed Moslehi; Shirani, A.S. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-07-15

    Thermal hydraulic analysis of sodium boiling in fuel assemblies is an important issue in safety of sodium cooled reactors and subchannel method is an efficient approach in transient two phase flow analyses. Almost all of the subchannel codes which use two-fluid model in two phase flow analysis, are based on semi implicit algorithm. With the full implicit method it is possible to use larger time steps. In order to compare the semi implicit algorithm with full implicit algorithm, two transient subchannel numerical programs which one is based on semi implicit algorithm and the other is based on full implicit algorithm have been written in FORTRAN in this work for simulation of transients in sodium cooled Kompakter-Natriumsiede-Kreislauf (KNS) at the former Kernforschungszentrum Karlsruhe (KfK) in Germany.

  20. Thermohydraulic verification during THTR steam generator commissioning

    International Nuclear Information System (INIS)

    Henry, C.; Elter, C.

    1988-01-01

    In one of the six THTR 300 steam generators thermocouples are installed inside the heat transfer tube bundles for measuring the gas and steam temperatures. Fluid temperature distribution measurements along and across the helix bundle have been recorded in its first months of operation over a load range of 40% up to 100% for steady state and transient conditions. Using these measurements as well as the rest of the operating instrumentation. the computer programs for the design of heat exchanger heat transfer areas are verified. The temperature measurements for steady state conditions are compared with predictions obtained in the design stage. In these codes. the heat transferred from the outside helium gas to the water/steam inside the tubes is determined in discrete steps along the heating surface by one- and two-phase heat transfer correlations. The degree of conformity between prediction and measurement is discussed and compared with more recent correlations. (author)

  1. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  2. Basic researches on thermo-hydraulic non-equilibrium phenomena related to nuclear reactor safety

    International Nuclear Information System (INIS)

    Sakurai, Akira; Kataoka, Isao; Aritomi, Masanori.

    1989-01-01

    A review was made of recent developments of fundamental researches on thermo-hydraulic non-equilibrium phenomena related to light water reactor safety, in relation to problems to be solved for the improvement of safety analysis codes. As for the problems related to flow con ditions, fundamental researches on basic conservation equations and constitutive equations for transient two-phase flow were reviewed. Regarding to the problems related to thermal non-equilibrium phenomena, fundamental researches on film boiling in pool and forced convection, transient boiling heat transfer and flow behavior caused by pressure transients were reviewed. (author)

  3. PHEBUS/test-218, Behaviour of a Fuel Rod Bundle during a Large Break LOCA Transient with a two Peaks Temperature History

    International Nuclear Information System (INIS)

    1987-01-01

    1 - Description of test facility: PHEBUS test facility operated at CEA Research Center Cadarache consists of a pressurized circuit involving pumps, heat exchangers and a blowdown tank - 25 nuclear fuel rod bundle, coupled to a separate driver core; - active length 0.8 m, cosine axial power profile; - pressurized and un-pressurized fuel rods; - controlled cooling conditions at the bundle inlet (blowdown, refill and reflood period); - de-pressurized test rig volume 0.22 m 3 . The following 'as measured' boundary conditions (B.C.) were offered to participants as options with decreasing challenge to their analytical approach: Boundary conditions B.C.0: - full thermal-hydraulic analysis of PHEBUS test rig (was not recommended). Boundary conditions B.C.1: - thermal power level of fuel bundle; - fluid inlet conditions to bundle section. Boundary conditions B.C.2: - local cladding temperatures of rods; - heat transfer coefficients. Boundary conditions B.C.3: - cladding temperatures of rods; - internal pressure of rods. 2 - Description of test: Post-test investigation into the response of a nuclear fuel bundle to a large break loss of coolant accident with respect to - local fuel temperatures, - cladding strain at the time of burst, - time to burst and under given thermal-hydraulic boundary conditions of PHEBUS-test 218

  4. Polyelectrolyte bundles

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, H J; Sayar, M; Holm, C [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany)

    2004-06-09

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited.

  5. Polyelectrolyte bundles

    International Nuclear Information System (INIS)

    Limbach, H J; Sayar, M; Holm, C

    2004-01-01

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited

  6. Polyelectrolyte bundles

    Science.gov (United States)

    Limbach, H. J.; Sayar, M.; Holm, C.

    2004-06-01

    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.

  7. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  8. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  9. Core thermohydraulic design with LEU fuels for upgraded research reactor, JRR-3

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Y; Ando, H; Ikawa, H; Ohnishi, N [Department of Research Reactor Operation, Japan Atomic Energy Research Institute (JAERI), 319-11 Tokai-Mura, Ibaraki-Ken (Japan)

    1985-07-01

    This paper presents the outline of core thermohydraulic design and analysis of the research reactor, JRR-3, which is to be upgraded to a 20 MWt pool-type, light water-cooled reactor with 20% LEU plate-type fuels. The major feature of core thermohydraulics of the upgraded JRR-3 is that core flow is a downflow at the condition of normal operation, with which fuel plates are exposed to a severer condition than with an upflow in case of operational transients and accidents. The core thermo-hydraulic design was, therefore, done for the condition of normal operation so that fuel plates may have enough safety margin both against the onset of nucleate boiling not to allow the nucleate boiling anywhere in the core and against the initiation of DNB, and the safety margin for these were evaluated. The core velocity thus designed is at the optimum condition where fuel plates have the maximum margin against the onset of nucleate boiling. The core thermohydraulic characteristics were also clarified for the natural circulation cooling mode. (author)

  10. One-dimensional thermohydraulic code THESEUS and its application to chilldown process simulation in two-phase hydrogen flows

    Science.gov (United States)

    Papadimitriou, P.; Skorek, T.

    THESUS is a thermohydraulic code for the calculation of steady state and transient processes of two-phase cryogenic flows. The physical model is based on four conservation equations with separate liquid and gas phase mass conservation equations. The thermohydraulic non-equilibrium is calculated by means of evaporation and condensation models. The mechanical non-equilibrium is modeled by a full-range drift-flux model. Also heat conduction in solid structures and heat exchange for the full spectrum of heat transfer regimes can be simulated. Test analyses of two-channel chilldown experiments and comparisons with the measured data have been performed.

  11. The TOPFLOW multi-purpose thermohydraulic test facility

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Kruessenberg, A.-K.; Weiss, F.-P.; Prasser, H.-M.

    2002-01-01

    The TOPFLOW (Transient Two Phase Flow Test Facility) multi-purpose thermohydraulic test facility is being built for studies of steady-state and transient flow phenomena in two-phase flows, and for the development and validation of the models contained in CFD (Computational Fluid Dynamics) codes. The facility is under construction at the Institute for Safety Research of the Rossendorf Research Center (FZR). It will be operated together with the Dresden Technical University and the Zittau/Goerlitz School for Technology, Economics and Social Studies within the framework of the Nuclear Technology Competence Preservation Program. TOPFLOW, with its test sections and its flexible concept, is available as an attractive facility also to users from all European countries. Experiments are planned in these fields, among others: - Transient two-phase flows in vertical and horizontal pipes and pipes of any inclination as well as in geometries typical of nuclear reactors (annulus, hot leg). - Boiling in large vessels and water pools (measurements of steam generation, 3D steam content distribution, turbulence, temperature stratification). - Test of passive components and safety systems. - Condensation in horizontal pipes in the absence and presence of non-condensable gases. The construction phase of TOPFLOW has been completed more or less on schedule. Experiments can be started after a commissioning phase in the 3rd quarter of 2002. (orig.) [de

  12. On closure strategy for 1-D thermohydraulics models and closure relationships of two-phase flows in simple and subchannel geometry for NPP accident conditions

    International Nuclear Information System (INIS)

    Kornienko, Y.; Kornienko, E.; Ninokata, H.

    2001-01-01

    One-dimensional mathematical models are extensively used in thermohydraulics assessment of Nuclear Power Plant (NPP) transients and accidents, because specifically 1-D system of the conservation laws allows to reduce computing time and required memory, especially in ''best estimate'' code calculations. This work is generalization of the well-known Zuber-Findley and Hancox-Nicoll methods for two-phase flow distribution parameters Cs taking into account the non-monotonous void fraction distribution in the transverse direction in terms of two superimposed monotonous profiles. The method is very useful in evaluating the saddle-shape void fraction profile effects. In this work two-phase flow distribution parameters Cs were developed for simple circular and rectangular pipes, and subchannel geometry in a rod bundle. Basic assumptions were power-mode approximations for describing the profiles of local volume flux density, phase velocity and temperature. The general analytical (quadrature) relationships for Cs were obtained and their 3-D illustrations are proposed. Also, we propose generalized formulation and simple approach to construct friction factor, heat and mass transfer coefficients within the gradient hypothesis and boundary layer assumptions. The contribution of momentum, heat and mass transfer as well as their sources and sinks in the channel cross-section are taken into account. In the same way, the friction factor, heat and mass transfer coefficients with the transversal and azimuthal variations being taken into account are proposed for subchannel geometry as well. (author)

  13. Library thermohydraulic components for training simulators

    International Nuclear Information System (INIS)

    Castelao Caruana, M. J.; Di Benedetto, A.; Pierini, J.P.

    2013-01-01

    The thermohydraulic components Library was modeled in MatLab/Simulink®. This library owns Pipe type components (pump, control valve and / or heaters), storage tanks (Open, Closed and Equilibrium Water Vapor-Air) and Heat Exchangers (Co-Current, Counter-Current and U-tubes). Each component can be attached to other components through the component library Header, in order to create a more complex thermal-hydraulic system which in turn can interact with other thermal-hydraulic systems. (author)

  14. Research activity on thermohydraulic problems of PWR reactors

    International Nuclear Information System (INIS)

    Szabados, L.

    1976-06-01

    The general review of the experimental and theoretical research works on thermohydraulic investigation of pressurized water type reactors being done in the Central Research Institute for Physics is given. The main results of the theoretical and theoretical-numerical research are summarized. The most important result of the past years is the construction of the High Pressure Water Cooled Loop (NVH) thermohydraulic loop. Another significant achievement was the development of the reactor thermohydraulic program system. (Sz.N.Z.)

  15. ORNL rod-bundle heat-transfer test data. Volume 3. Thermal-hydraulic test facility experimental data report for test 3.06.6B - transient film boiling in upflow

    International Nuclear Information System (INIS)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Reduced instrument responses are presented for Thermal-Hyraulic Test Facility (THTF) Test 3.06.6B. This test was conducted by members of the Oak Ridge National Laboratory Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on August 29, 1980. The objective of the program was to investigate heat transfer phenomena believed to occur in PWR's during accidents, including small and large break loss-of-coolant accidents. Test 3.06.6B was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.06.6B available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers

  16. Thermo-hydraulic and structural analysis for finger-based concept of ITER blanket first wall

    International Nuclear Information System (INIS)

    Kim, Byoung-Yoon; Ahn, Hee-Jae

    2011-01-01

    The blanket first wall is one of the main plasma facing components in ITER tokamak. The finger-typed first wall was proposed through the current design progress by ITER organization. In this concept, each first wall module is composed of a beam and twenty fingers. The main function of the first wall is to remove efficiently the high heat flux loading from the fusion plasma during its operation. Therefore, the thermal and structural performance should be investigated for the proposed finger-based design concept of first wall. The various case studies were performed for a unit finger model considering different loading conditions. The finite element model was made for a half of a module using symmetric boundary conditions to reduce the computational effort. The thermo-hydraulic analysis was performed to obtain the pressure drop and temperature profiles. Then the structural analysis was carried out using the maximum temperature distribution obtained in thermo-hydraulic analysis. Finally, the transient thermo-hydraulic analysis was performed for the generic first wall module to obtain the temperature evolution history considering cyclic heat flux loading with nuclear heating. After that, the thermo-mechanical analysis was performed at the time step when the maximum temperature gradient was occurred. Also, the stress analysis was performed for the component with a finger and a beam to check the residual stress of the component after thermal shrinkage assembly.

  17. Study on thermo-hydraulic behavior during reflood phase of a PWR-LOCA

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1989-01-01

    This paper describes thermo-hydraulic behavior during the reflood phase in a postulated large-break loss-of-coolant accident (LOCA) of a PWR. In order to better predict the reflood transient in a nuclear safety analysis specific analytical models have been developed for, saturated film boiling heat transfer in inverted slung flow, the effect of grid spacers on core thermo-hydraulics, overall system thermo-hydraulic behavior, and the thermal response similarity between nuclear fuel rods and simulated rods. A heat transfer correlation has been newly developed for saturated film boiling based on a 4 x 4-rod experiment conducted at JAERI. The correlation provides a good agreement with existing experiments except in the vicinity of grid spacer locations. An analytical model has then been developed addressing the effect of grid spacers. The thermo-hydraulic behavior near the grid spacers was found to be predicted well with this model by considering the breakup of droplets in dispersed flow and water accumulation above the grid spacers in inverted slung flow. A system analysis code has been developed which couples the one-dimensional core and multi-loop primary system component models. It provides fairly good agreement with system behavior obtained in a large-scale integral reflood experiment with active primary system components. An analytical model for the radial temperature distribution in a rod has been developed and verified with data from existing experiments. It was found that a nuclear fuel rod has a lower cladding temperature and an earlier quench time than an electrically heated rod in a typical reflood condition. (author)

  18. Thermohydraulic model of WWER-1000 core

    International Nuclear Information System (INIS)

    Maroti, L.; Szabados, L.

    1987-11-01

    Safe and economic operation of the WWER-1000 type reactor requires more accurate calculation of the thermohydraulic processes than the one satisfactory for the 440 type cores. The high degree of accuracy is needed both for reactor physics calculations and for the determination of the operational safety limits of the core. The paper illustrates the most important differences between the 1000 and 440 type reactors and presents the main fields of the development work necessary to reach the required accuracy. A prediction for the capability of the computer programs after the proposed development is also given and some suggestions for the further improvement is outlined. (author) 7 refs

  19. Development of a model of a NSSS of the PWR reactor with thermo-hydraulic code GOTHIC

    International Nuclear Information System (INIS)

    Gomez Garcia-Torano, I.; Jimenez, G.

    2013-01-01

    The Thermo-hydraulic code GOTHIC is often used in the nuclear industry for licensing transient analysis inside containment of generation II (PWR, BWR) plants as Gen III and III + (AP1000, ESBWR, APWR). After entering the mass and energy released to the containment, previously calculated by other codes (basis, TRACE), GOTHIC allows to calculate in detail the evolution of basic parameters in the containment.

  20. ALARM, Thermohydraulics of BWR with Jet Pumps During LOCA

    International Nuclear Information System (INIS)

    Araya, F.; Akimoto, M.

    1985-01-01

    1 - Nature of physical problem solved: ALARM-B2 which is an improved version of ALARM-B1 is a computer program to analyze thermo-hydraulic phenomena of BWR during a blowdown period under a large-break loss-of-coolant accident condition with special emphasis on the heat transfer phenomena in the core region. 2 - Method of solution: A so called volume-junction method is used to present fluid conservations. The primary system is divided into a number of special elements called 'control-volumes'. The system of partial differential equations describing fluid conservations for a stream-tube are integrated over a number of control volumes. The resulting set of simultaneous differential equations that is based on the assumptions of one-dimensional, homogeneous and thermal- equilibrium flow is linearized and solved for a small time increment by a simple explicit numerical technique. The one-dimensional heat conduction equations describing temperature profiles within solid material are written in finite difference forms which are linearized and solved by the Crank-Nicholson implicit method. In order to simulate the blowdown heat transfer phenomena, the code has correlation packages for heat transfer coefficient and critical heat flux. The heat generation in the core is given by a point reactor kinetics model with six groups of delayed neutrons and decay of eleven groups of fission products and actinides. The solution technique of the reactor kinetics is based on the Runge-Kutta method. ALARM-B2 has the models to simulate various components incorporated in BWRs such as jet pumps, recirculation pumps, steam separators, valves, and so on. The discharge and injection systems are modeled by leak and fill systems, respectively. 3 - Restrictions on the complexity of the problem: As this has been developed to simulate a blowdown thermo-hydraulic transient during a large break LOCA, users must pay attention when applying the code to any medium or small break LOCAs or to later phases

  1. Characteristics of liquid and boiling sodium flows in heating pin bundles

    International Nuclear Information System (INIS)

    Menant, Bernard

    1976-01-01

    This study is related to cooling accidents which could occur in sodium cooled fast reactors. Thermo-hydraulic aspects of boiling experiments in pin bundles with helical wire-wrap spacer systems, in the case of undamaged geometries, are analyzed. Differences and analogies in the behavior of multi-rod bundle flows and one-dimensional channel flows are studied. A boiling model is developed for bundle geometries, and predictions obtained with the FLICA code using this models are presented. These predictions are compared with experimental results obtained in a water 19-rod bundle. Then, results of sodium boiling experiments through a 19-rod bundle are interpreted. Both cases of high power and reduced power are envisaged. (author) [fr

  2. Thermohydraulic and safety analysis on China advanced research reactor under station blackout accident

    International Nuclear Information System (INIS)

    Tian Wenxi; Qiu Suizheng; Su Guanghui; Jia Dounan; Liu Xingmin; Zhang Jianwei

    2007-01-01

    A thermohydraulic and safety analysis code-TSACC has been developed using Fortran90 language to evaluate the transient thermohydraulic behavior of the China advanced research reactor (CARR) under station blackout accident (SBA). For the development of TSACC, a series of corresponding mathematical and physical models were applied. Point reactor neutron kinetics model was adopted for solving the reactor power. All possible flow and heat transfer conditions under station blackout accident were considered and the optional correlations were supplied. The usual finite difference method was abandoned and the integral technique was adopted to evaluate the temperature field of the plate type fuel elements. A new simple and convenient equation was proposed for the resolution of the transient behaviors of the main pump instead of the complicated four-quadrant model. Gear method and Adams method were adopted alternately for a better solution to the stiff differential equations describing the dynamic behavior of the CARR. The computational result of TSACC showed the adequacy of the safety margin of CARR under SBA. For the purpose of Verification and Validation (V and V), the simulated results of TSACC were compared with those of RELAP5/MOD3 and a good agreement was obtained. The adoption of modular programming techniques enables TASCC to be applied to other reactors by easily modifying the corresponding function modules

  3. Nonabelian bundle 2-gerbes

    OpenAIRE

    Jurco, Branislav

    2009-01-01

    We define 2-crossed module bundle 2-gerbes related to general Lie 2-crossed modules and discuss their properties. A 2-crossed module bundle 2-gerbe over a manifold is defined in terms of a so called 2-crossed module bundle gerbe, which is a crossed module bundle gerbe equipped with an extra sructure. It is shown that string structures can be described and classified using 2-crossed module bundle 2-gerbes.

  4. Reactivity transient calculatios in research reactor

    International Nuclear Information System (INIS)

    Santos, R.S. dos

    1986-01-01

    A digital program for reactivity transient analysis in research reactor and cylindrical geometry was showed quite efficient when compared with methods and programs of the literature, as much in the solution of the neutron kinetics equation as in the thermohydraulic. An improvement in the representation of the feedback reactivity adopted on the program reduced markedly the computation time, with some accuracy. (Author) [pt

  5. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-01-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  6. Evaluation of Advanced Thermohydraulic System Codes for Design and Safety Analysis of Integral Type Reactors

    International Nuclear Information System (INIS)

    2014-02-01

    The integral pressurized water reactor (PWR) concept, which incorporates the nuclear steam supply systems within the reactor vessel, is one of the innovative reactor types with high potential for near term deployment. An International Collaborative Standard Problem (ICSP) on Integral PWR Design, Natural Circulation Flow Stability and Thermohydraulic Coupling of Primary System and Containment during Accidents was established in 2010. Oregon State University, which made available the use of its experimental facility built to demonstrate the feasibility of the Multi-application Small Light Water Reactor (MASLWR) design, and sixteen institutes from seven Member States participated in this ICSP. The objective of the ICSP is to assess computer codes for reactor system design and safety analysis. This objective is achieved through the production of experimental data and computer code simulation of experiments. A loss of feedwater transient with subsequent automatic depressurization system blowdown and long term cooling was selected as the reference event since many different modes of natural circulation phenomena, including the coupling of primary system, high pressure containment and cooling pool are expected to occur during this transient. The power maneuvering transient is also tested to examine the stability of natural circulation during the single and two phase conditions. The ICSP was conducted in three phases: pre-test (with designed initial and boundary conditions established before the experiment was conducted), blind (with real initial and boundary conditions after the experiment was conducted) and open simulation (after the observation of real experimental data). Most advanced thermohydraulic system analysis codes such as TRACE, RELAPS and MARS have been assessed against experiments conducted at the MASLWR test facility. The ICSP has provided all participants with the opportunity to evaluate the strengths and weaknesses of their system codes in the transient

  7. Strategic Aspects of Bundling

    International Nuclear Information System (INIS)

    Podesta, Marion

    2008-01-01

    The increase of bundle supply has become widespread in several sectors (for instance in telecommunications and energy fields). This paper review relates strategic aspects of bundling. The main purpose of this paper is to analyze profitability of bundling strategies according to the degree of competition and the characteristics of goods. Moreover, bundling can be used as price discrimination tool, screening device or entry barriers. In monopoly case bundling strategy is efficient to sort consumers in different categories in order to capture a maximum of surplus. However, when competition increases, the profitability on bundling strategies depends on correlation of consumers' reservations values. (author)

  8. Thermohydraulic behavior of liquid metal pool submitted to electronic bombardment

    International Nuclear Information System (INIS)

    Brun, Patrice

    1998-01-01

    This thesis deals with the thermohydraulics of liquid metal molten by an electron beam. We study the relationship between the liquid metal pool and the vapor rate. The aim is to find good conditions increasing the metal vapor rate. In first place, energy losses are identified. Mains are convection (buoyancy and thermo-capillary) strengthen by the deformation of the molten pool. The first action is to reduce the liquid interface deformation with a transient spot realized by scanning the electron beam. I find that in this case, the optimum vapor rate is obtained when the crossing time of the beam is smaller than characteristic time of formation of the cavity, but greater than the heating time of the surface. Secondly, I impose forces to change the morphology of the flow. Two actions are tried: magnetic field application and rotating motion of the crucible. External magnetic field application may reduce convective flow, by the creation of a magnetic brake. But in my experiment, magnetic field deteriorates electron beam before to be effective. Results obtained by the rotating motion of the crucible approve this choice to reduce energy losses and increase vapor rate. This growth of vapor rate is due to an expansion of the emitted vapor source and an increase of the central temperature of the molten pool. Nevertheless with the increase of the rotation velocity and after the optimum vapor rate, I note that the flow is not axisymmetric. My observation give to think about instabilities that are developed by baroclinic waves. The comparison of my works with the Eady's linear theory gives good results. (author) [fr

  9. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  10. Bundle Branch Block

    Science.gov (United States)

    ... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...

  11. Experiment on thermohydraulics of simulated control rod

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Ouchi, Mitsuo; Akino, Norio; Fujimura, Kaoru; Shiina, Yasuaki; Kawamura, Hiroshi

    1984-10-01

    A thermohydraulic study of a control rod channel is required for the core design of the Very High Temperature Gas Cooled Reactor (VHTR). A non-heating experiment with air flow was performed prior to heating experiment with helium flow. Experimental results on stability of flow, flow rate distribution and pressure drop of the control rod channel are reported. In a test section of the experimental apparatus, five simulated control subrods were suspended vertically in a circular duct. Their dimension was in coincide with those of the Detailed Disign (I) of the VHTR. Air of atomospheric pressure was used as a coolant gas, which flowed in inner and outer paths of the subrods. Total flow rate ranged from 0.0011 to 0.0062 kg/s. Flow rate distribution and pressure drop were obtained for various flow rates. Velocity fluctuation in the channel was also observed using a hot wire anemometer. From these experiments, it was found that the flow rate distribution was nearly the same as a disigned value and that turbulent and laminar flows were simultaneously realized in outer and inner paths respectively. These observations supported a feasibility of the present design. (author)

  12. Laughter-induced left bundle branch block.

    Science.gov (United States)

    Chow, Grant V; Desai, Dipan; Spragg, David D; Zakaria, Sammy

    2012-10-01

    We present the case of a patient with ischemic heart disease and intermittent left bundle branch block, reproducibly induced by laughter. Following treatment of ischemia with successful deployment of a drug-eluting stent, no further episodes of inducible LBBB were seen. Transient ischemia, exacerbated by elevated intrathoracic pressure during laughter, may have contributed to onset of this phenomenon. © 2012 Wiley Periodicals, Inc.

  13. Thermo-hydraulic analysis of the generic equatorial port plug design

    International Nuclear Information System (INIS)

    Rodríguez, E.; Guirao, J.; Ordieres, J.; Cortizo, J.L.; Iglesias, S.

    2012-01-01

    Highlights: ► Thermo-hydraulic transient performance evaluation and optimization of the GEPP structure cooling/heating system under neutronic heating and baking conditions. ► The optimization of the GEPP box structure's cooling system includes positioning and minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions. - Abstract: The port-based ITER diagnostic systems are housed primarily in two locations, the equatorial and upper port plugs. The port plug structure provides confinement function, maintains ultra-high vacuum quality and the first confinement barrier for radioactive materials at the ports. The port plug structure design, from the ITER International Organisation (IO), is cooled and heated by pressurized water which flows through a series of gun-drilled water channels and water pipes. The cooling function is required to remove nuclear heating due to radiation during operation of ITER, while the heating function is intended to heat up uniformly the machine during baking condition. The work presented provides coupled thermo-hydraulic analysis and optimization of a Generic Equatorial Port Plug (GEPP) structure cooling and heating system. The optimization performed includes positioning, minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions.

  14. The SABRE code for fuel rod cluster thermohydraulics

    International Nuclear Information System (INIS)

    Macdougall, J.D.; Lillington, J.N.

    1984-01-01

    This paper describes the capabilities of the SABRE code for the calculation of single phase and two phase fluid flow and temperature in fuel pin bundles, discusses the methods used in the modelling and solution of the problem, and presents some results including comparison with experiments. The SABRE code permits calculation of steady-state or transient, single or two phase flows and the geometrical options include general representation of grids, wire wraps, multiple blockages, bowed pins, etc. The derivation and solution of the difference equations is discussed. Emphasis is given to the derivation of the spatial differences in triangular subchannel geometry, and the use of central, upward or vector upwind schemes. The method of solution of the difference equations is described for both steady state and transient problems. Together with these topics we consider the problems involved in turbulence modelling and how it is implemented in SABRE. This includes supporting work with a fine scale curvilinear coordinate programme to provide turbulence source data. The problem of modelling boiling flows is discussed, with particular reference to the numerical problems caused by the rapid density change on boiling. The final part of the paper presents applications of the code to the analysis of blockage situations, the study of flow and power transients and analysis of natural circulation within clusters to demonstrate the scope of the code and compare with available experimental results. The comparisons include the calculation of a flow pressure drop characteristic of a boiling channel showing the Ledinegg instability, examples of overpower and flow rundown transients which lead to coolant boiling, and calculation of natural circulation within a rod cluster. (orig./GL)

  15. Annular burnout data from rod-bundle experiments

    International Nuclear Information System (INIS)

    Yoder, G.L.; Morris, D.G.; Mullins, C.B.

    1983-01-01

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident

  16. Thermohydraulic modeling and simulation of breeder reactors

    International Nuclear Information System (INIS)

    Agrawal, A.K.; Khatib-Rahbar, M.; Curtis, R.T.; Hetrick, D.L.; Girijashankar, P.V.

    1982-01-01

    This paper deals with the modeling and simulation of system-wide transients in LMFBRs. Unprotected events (i.e., the presumption of failure of the plant protection system) leading to core-melt are not considered in this paper. The existing computational capabilities in the area of protected transients in the US are noted. Various physical and numerical approximations that are made in these codes are discussed. Finally, the future direction in the area of model verification and improvements is discussed

  17. Observation and control system of the thermohydraulic assays laboratory

    International Nuclear Information System (INIS)

    Santome, D.; Hualde, R.

    1990-01-01

    The Thermohydraulic Assays Laboratory (L.E.T.) is an installation whose purpose will be the components testing and the CAREM-25 reactor thermohydraulic processes operation dynamics. This plant is located at Pilcaniyeu, province of Rio Negro. Part of the tests which will be carried out consist in the use of different control strategies. The control of the systems by digital processors (control by software) has been decided to proceed with a maximum flexibility and capacity to make changes in the algorithms. This work describes the design and implementation of a digital control system to command the three circuits of the installation. (Author) [es

  18. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  19. Utilization of Relap 5 computer code for analyzing thermohydraulic projects

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1987-01-01

    This work deals with the design of a scaled test facility of a typical pressurized water reactor plant of the 1300 MW (electric) class. A station blackout has been choosen to investigate the thermohydraulic behaviour of the the test facility in comparison to the reactor plant. The computer code RELAPS/MOD1 has been utilized to simulate the blackout and to compare the test facility behaviour with the reactor plant one. The results demonstrate similar thermohydraulic behaviours of the two systems. (author) [pt

  20. Polycation induced actin bundles

    OpenAIRE

    Muhlrad, Andras; Grintsevich, Elena E.; Reisler, Emil

    2011-01-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations an...

  1. Polycation induced actin bundles.

    Science.gov (United States)

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Experimental determination of temperature fields in sodium-cooled rod bundles with hexagonal rod arrangement and grid spacers

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1977-01-01

    Three-dimensional temperature fields in the claddings of sodium cooled rods were determined experimentally under representative nominal operating conditions for a SNR typical 19-rod bundle model provided with spark-eroded spacers. These experiments are required to verify thermohydraulic computer programs which will provide the output data for strength calculations of the high loaded cladding tubes. In this work the essentials are reported of the measured circumferential distributions of wall temperatures of peripheral rods. In addition the sub-channel temperatures measured over the bundle cross section are indicated, they are required to sustain codes for the global thermohydraulic design of core elements. The most important results are: 1) The whole fuel element is located within the thermal entrance length. 2) High azimuthal temperature differences were measured in the claddings of peripheral rods, which are strongly influenced by the distance between the rod and the shroud, especially for the corner rod. 3) With decreasing Pe-number ( [de

  3. The problems of thermohydraulics of prospective fast reactor concepts

    International Nuclear Information System (INIS)

    Sedov, A.A.

    2000-01-01

    In this report the main requirements to fast reactors in system of future multicomponent Nuclear Power with closed U-Pu fuel cycle are regarded. The peculiarities of different liquid-metal (sodium and lead-alloyed) coolants as well as the thermohydraulics problems of prospective fast reactors (FR) concepts are discussed. (author)

  4. Systems for neutronic, thermohydraulic and shielding calculation in personal computers

    International Nuclear Information System (INIS)

    Villarino, E.A.; Abbate, P.; Lovotti, O.; Santini, M.

    1990-01-01

    The MTR-PC (Materials Testing Reactors-Personal Computers) system has been developed by the Nuclear Engineering Division of INVAP S.E. with the aim of providing working conditions integrated with personal computers for design and neutronic, thermohydraulic and shielding analysis for reactors employing plate type fuel. (Author) [es

  5. Thermohydraulic analysis for power increase of IEAR-1 reactor

    International Nuclear Information System (INIS)

    Umbehaun, Pedro E.; Bastos, Jose L.F.

    1996-01-01

    In this work has been presented the reactor core thermohydraulic model of IEAR-1, aiming its power operation increase from 2MW to 5MW. The design criteria adopted have been established in Safety Series 35. Three configurations of reactor core were analysed: fuel elements 20, 25 and 30

  6. Thermohydraulic calculations of PWR primary circuits

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1984-01-01

    Some mathematical and numerical models from Retran computer codes aiming to simulate reactor transients, are presented. The equations used for calculating one-dimensional flow are integrated using mathematical methods from Flash code, with steam code to correlate the variables from thermodynamic state. The algorithm obtained was used for calculating a PWR reactor. (E.G.) [pt

  7. Principal noncommutative torus bundles

    DEFF Research Database (Denmark)

    Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve

    2008-01-01

    of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...

  8. Development of thermohydraulic codes for modeling liquid metal boiling in LMR fuel subassemblies

    International Nuclear Information System (INIS)

    Sorokin, G.A.; Avdeev, E.F.; Zhukov, A.V.; Bogoslovskaya, G.P.; Sorokin, A.P.

    2000-01-01

    An investigation into the reactor core accident cooling, which are associated with the power grow up or switch off circulation pumps in the event of the protective equipment comes into action, results in the problem of liquid metal boiling heat transfer. Considerable study has been given over the last 30 years to alkaline metal boiling including researches of heat transfer, boiling patterns, hydraulic resistance, crisis of heat transfer, initial heating up, boiling onset and instability of boiling. The results of these investigations have shown that the process of liquid metal boiling has substantial features in comparison with water boiling. Mathematical modeling of two phase flows in fast reactor fuel subassemblies have been developed intensively. Significant success has been achieved in formulation of two phase flow through the pin bundle and in their numerical realization. Currently a set of codes for thermohydraulic analysis of two phase flows in fast reactor subassembly have been developed with 3D macrotransfer governing equations. These codes are used for analysis of boiling onset and liquid metals boiling in fuel subassemblies during loss-of-coolant accidents, of warming up of reactor core, of blockage of some part of flow cross section in fuel subassembly. (author)

  9. Vibration of fuel bundles

    International Nuclear Information System (INIS)

    Chen, S.S.

    1975-06-01

    Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods

  10. Thermo-Hydraulic Modelling of Buffer and Backfill

    International Nuclear Information System (INIS)

    Pintado, X.; Rautioaho, E.

    2013-09-01

    The temporal evolution of saturation, liquid pressure and temperature in the components of the engineered barrier system was studied using numerical methods. A set of laboratory tests was conducted to calibrate the parameters employed in the models. The modelling consisted of thermal, hydraulic and thermo-hydraulic analysis in which the significant thermo-hydraulic processes, parameters and features were identified. CODE B RIGHT was used for the finite element modelling and supplementary calculations were conducted with analytical methods. The main objective in this report is to improve understanding of the thermo-hydraulic processes and material properties that affect buffer behaviour in the Olkiluoto repository and to determine the parametric requirements of models for the accurate prediction of this behaviour. The analyses consisted of evaluating the influence of initial canister temperature and gaps in the buffer, and the role played by fractures and the rock mass located between fractures in supplying water for buffer and backfill saturation. In the thermo-hydraulic analysis, the primary processes examined were the effects of buffer drying near the canister on temperature evolution and the manner in which heat flow affects the buffer saturation process. Uncertainties in parameters and variations in the boundary conditions, modelling geometry and thermo-hydraulic phenomena were assessed with a sensitivity analysis. The material parameters, constitutive models, and assumptions made were carefully selected for all the modelling cases. The reference parameters selected for the simulations were compared and evaluated against laboratory measurements. The modelling results highlight the importance of understanding groundwater flow through the rock mass and from fractures in the rock in order to achieve reliable predictions regarding buffer saturation, since saturation times could range from a few years to tens of thousands of years depending on the hydrogeological

  11. Modelling of thermohydraulic emergency core cooling phenomena

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.; Lewis, M.J.

    1990-10-01

    The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs

  12. Coupled thermohydraulic-neutronic instabilities in boiling water nuclear reactors: a review of the state of the art

    International Nuclear Information System (INIS)

    March-Leuba, J.; Rey, J.M.

    1992-01-01

    This paper provides a review of the current state of the art on the topic of coupled neutronic-thermohydraulic instabilities in boiling water nuclear reactors (BWRs). The topic of BWR instabilities is of great current relevance since it affects the operation of a large number of commercial nuclear reactors. The recent trends towards introduction of high efficiency fuels that permit reactor operation at higher power densities with increased void reactivity feedback and decreased response times, has resulted in a decrease of the stability margin in the low-flow, high-power region of the operating map. This trend has resulted in a number of 'unexpected' instability events. For instance, United States plants have experienced two instability events recently, one of them resulted in an automatic reactor scram; in Spain, two BWR plants have experienced unstable limit cycle oscillations that required operator action to suppress. Similar events have been experienced in other European countries. In recent years, BWR instabilities has been one of the more exciting topics of work in the area of transient thermohydraulics. As a result, significant advances in understanding the physics behind these events have occurred, and a 'new and improved' state of the art has emerged recently. (authors). 6 figs., 57 refs., 1 appendix

  13. Numerical simulation of flow-induced vibrations in tube bundles

    International Nuclear Information System (INIS)

    Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli

    2005-01-01

    Full text of publication follows: In many industrial components mechanical structures like rod cluster control assembly, fuel assembly and heat exchanger tube bundles are submitted to complex flows causing possible vibrations and damage. Fluid forces are usually split into two parts: structure motion independent forces and fluid-elastic forces coupled with tube motion and responsible for possible dynamic instability development leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics (C.F.D.), numerical fluid force identification is now practicable in the presence of industrial configurations. The present paper is devoted to numerical simulation of flow-induced vibrations of tube bundles submitted to single-phase cross flows by using C.F.D. codes. Direct Numerical Simulation (D.N.S.), Arbitrary Lagrange Euler formulation (A.L.E.) and code coupling process are involved to predict fluid forces responsible for tube bundle vibrations in the presence of fluid structure and fluid-elastic coupling effects. In the presence of strong multi-physics coupling, simulation of flow-induced vibrations requires a fluid structure code coupling process. The methodology consists in solving in the same time thermohydraulics and mechanics problems by using an A.L.E. formulation for the fluid computation. The purpose is to take into account coupling between flow and structure motions in order to be able to capture coupling effects. From a numerical point of view, there are three steps in the computation: the fluid problem is solved on the computational domain; fluid forces acting on the moving tube are estimated; finally they are introduced in the structure solver providing the tube displacement that is used to actualize the fluid computational domain. Specific

  14. Study of Transients in an Enrichment Closed Loop

    International Nuclear Information System (INIS)

    Fernandino, M.

    2002-06-01

    In the present thesis a mathematic model is presented in order to describe the dynamic behavior inside a closed enrichment loop, the latter representing a single stage of an uranium gaseous diffusion enrichment cascade.The analytical model is turned into a numerical model, and implemented through a computational code.For the verification of the model, measurements were taken in an experimental circuit using air as the process fluid.This circuit was instrumented so as to register its characteristic thermohydraulic variables.The measured transients were simulated, comparing the numerical results with the experimental measurements.A good agreement between the characteristic setting times and the thermohydraulic parameters evolution was observed.Besides, other transients of two species separation were numerically analyzed, including setting times of each magnitude, behavior of each one of them during different transients, and redistribution of concentrations

  15. Nuclear reactors transients identification and classification system

    International Nuclear Information System (INIS)

    Bianchi, Paulo Henrique

    2008-01-01

    This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient. (author)

  16. Flow in rod bundles

    International Nuclear Information System (INIS)

    Hazi, G.; Mayer, G.

    2005-01-01

    For power upgrading VVER-440 reactors we need to know exactly how the temperature measured by the thermocouples is related to the average outlet temperature of the fuel assemblies. Accordingly, detailed knowledge on mixing process in the rod bundles and in the fuel assembly head have great importance. Here we study the hydrodynamics of rod bundles based on the results of direct numerical and large eddy simulation of flows in subchannels. It is shown that secondary flow and flow pulsation phenomena can be observed using both methodologies. Some consequences of these observations are briefly discussed. (author)

  17. Standard-model bundles

    CERN Document Server

    Donagi, Ron; Pantev, Tony; Waldram, Dan; Donagi, Ron; Ovrut, Burt; Pantev, Tony; Waldram, Dan

    2002-01-01

    We describe a family of genus one fibered Calabi-Yau threefolds with fundamental group ${\\mathbb Z}/2$. On each Calabi-Yau $Z$ in the family we exhibit a positive dimensional family of Mumford stable bundles whose symmetry group is the Standard Model group $SU(3)\\times SU(2)\\times U(1)$ and which have $c_{3} = 6$. We also show that for each bundle $V$ in our family, $c_{2}(Z) - c_{2}(V)$ is the class of an effective curve on $Z$. These conditions ensure that $Z$ and $V$ can be used for a phenomenologically relevant compactification of Heterotic M-theory.

  18. Fine numerical modelling of thermohydraulic phenomena in EDF PWR reactors

    International Nuclear Information System (INIS)

    Boulot, F.

    1993-01-01

    Over the last 20 years, EDF has developed a family of 2D and 3D industrial thermohydraulics software to solve problems encountered in existing PWR power plants and to design new reactors for the future. The equations used in the models are the averaged Navier-Stokes and energy equations. A brief description is given of the four main codes developed for single-phase and two-phase water-steam flows, some of which use finite differences or finite volumes methods, while others make use of finite elements methods. An example of application is given for each code. (author). 4 figs., 4 refs

  19. Simulation of thermohydraulic phenomena and model test for FBR

    International Nuclear Information System (INIS)

    Satoh, Kazuziro

    1994-01-01

    This paper summarizes the major thermohydraulic phenomena of FBRs and the conventional ways of their model tests, and introduces the recent findings regarding measurement technology and computational science. In the future commercial stage of FBRs, the design optimization will becomes important to improve economy and safety more and more. It is indispensable to use computational science to the plant design and safety evaluation. The most of the model tests will be replaced by the simulation analyses based on computational science. The measurement technology using ultrasonic and the numerical simulation with super parallel computing are considered to be the key technology to realize the design by analysis method. (author)

  20. A thermohydraulic analysis for LOCA accident of a CANDU 600 reactor core charged with SEU 43 fuel by means of FIREBIRD code

    International Nuclear Information System (INIS)

    Serbanel, M.; Catana, A.

    2001-01-01

    This report presents a comparative analysis of the behaviour of primary circuit during a LOCA 20% RIH accident for two types of reactor core, namely, normally charged, i.e., with clusters of 37 rods and charged with clusters of 43 rods, respectively. This type of accident was chosen since Canadian analyses showed that the associated transient regime stress the fuel elements. The void reactivity as a function of coolant average density was calibrated for a reference regime (LOCA 20% RIH) so that the results of the model be able to reproduce the average distribution in the reference transient regime. The computation makes use of CERBERUS and FIREBIRD codes externally coupled by files. The void reactivity of the hot pencil was obtained this way. An extremely conservative hypothesis was used, namely that the momentary power of the cluster hosting the pencil is the maximal power over the cluster for the corresponding half reactor core. To carry out this work the following steps were covered: 1. The scenario for the LOCA 20% RIH accident was worked out and the input data corresponding to the thermohydraulic and neutronic modules, for the complex model and the 37 rod clusters, were checked; 2. The input data corresponding to the thermohydraulic module for the complex model and the 43 rod cluster were checked; 3. The kinetic parameters corresponding to the 37 rod cluster were computed; 4. The kinetic parameters corresponding to the 43 rod cluster were computed and the file for the input data in the neutronic module was built; 5. A sub-routine for writing files with the thermohydraulic and neutronic quantities, in a format adequate to the other programs, was implemented; 6. The two transient regimes considered were implemented and the archives containing the quantities were built ;7. The results obtained were analyzed. The conclusion of this work is that in case of LOCA 20% RIH accident the 43 bar clusters have a better behaviour than the 37 bar clusters

  1. Development of a model of a NSSS of the PWR reactor with thermo-hydraulic code GOTHIC; Desarrollo de un modelo del NSSS de un reactor PWR con el codigo termo-hidraulico GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Garcia-Torano, I.; Jimenez, G.

    2013-07-01

    The Thermo-hydraulic code GOTHIC is often used in the nuclear industry for licensing transient analysis inside containment of generation II (PWR, BWR) plants as Gen III and III + (AP1000, ESBWR, APWR). After entering the mass and energy released to the containment, previously calculated by other codes (basis, TRACE), GOTHIC allows to calculate in detail the evolution of basic parameters in the containment.

  2. DYNREL - the reference calculation (coupled code utilization on analysis of RIA-transient)

    International Nuclear Information System (INIS)

    Strmensky, C.; Darilek, P.

    2003-01-01

    DYNREL is coupled code, comprising DYN3D and RELAP5 programs. The coupled code has been developed during four years. Now DYNREL is tested on selected RIA and thermo-hydraulic transient calculations. This material describes some results from selected RIA transient calculation (initiated by control rod movement). DYNREL modelled the whole nuclear reactors. The core is modeled as 313 or 349 independent thermo-hydraulic channels with 10 or 20 axial layers. Thermo-hydraulic part contains about 700 components that covered the six loops' model of nuclear power plant in detail. The calculated results are compared with DYN3D/M3, DYN3D/H1.1 results (Authors)

  3. Rod bundle burnout data and correlation comparisons

    International Nuclear Information System (INIS)

    Yoder, G.L.; Morris, D.G.; Mullins, C.B.

    1985-01-01

    Rod bundle burnout data from 30 steady-state and 3 transient tests were obtained from experiments performed in the Thermal Hydraulic Test Facility at the Oak Ridge National Laboratory. The tests covered a parameter range relevant to intact core reactor accidents ranging from large break to small break loss-ofcoolant conditions. Instrumentation within the 64-rod test section indicated that burnout occurred over an axial range within the bundle. The distance from the point where the first dry rod was detected to the point where all rods were dry was up to 60 cm in some of the tests. The burnout data should prove useful in developing new correlations for use in reactor thermalhydraulic codes. Evaluation of several existing critical heat flux correlations using the data show that three correlations, the Barnett, Bowring, and Katto correlations, perform similarly and correlate the data better than the Biasi correlation

  4. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported. (U.S.)

  5. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported

  6. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  7. Kernel bundle EPDiff

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...

  8. Steady-state, local temperature fields with turbulent liquid sodium flow in nominal and disturbed bundle geometries with spacer grids

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1980-01-01

    The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). The essential results are: - Outside the spacer grids, the azimuthal temperature variations of the side and corner rods are approximately 10-fold those of rods in the central bundle zone. - The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points. - Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to adjacent cladding tubes. (orig.)

  9. Validation and verification of the MTRPC thermohydraulic package

    International Nuclear Information System (INIS)

    Doval, Alicia

    1998-01-01

    The MTR P C v2.6 is a computational package developed for research reactor design and calculation. It covers three of the main aspects of a research reactor: neutronic, shielding and thermohydraulic. In this work only the thermohydraulic package will be covered, dealing with verification and validation aspects. The package consists of the following steady state programs: CAUDVAP 2.60 for the hydraulic calculus, estimates the velocity distribution through different parallel channels connected to a common inlet and outlet common plenum. TERMIC 1H v3.0, used for the thermal design of research reactors, provides information about heat flux for a given maximum wall temperature, onset of nucleate boiling, redistribution phenomena and departure from nucleate boiling. CONVEC V3.0 allows natural convection calculations, giving information on heat fluxes for onset of nucleate boiling, pulsed and burn-out phenomena as well as total coolant flow. Results have been validated against experimental values and verified against theoretical and computational programmes results, showing a good agreement. (author)

  10. Thermohydraulic behaviour and heat transfer in the molten core

    International Nuclear Information System (INIS)

    Reineke, H.H.

    1977-01-01

    Increasing the application of nuclear reactors to produce electrical power extremely unprobable accidents should be investigated too. In the Federal Republic of Germany, a research program is performed for some years engaged in accidents at light water reactors in which the melting of the reactor core is presumed. A part of this program is to investigate the thermohydraulic and the heat transfer behavior in an accumulation of molten core material. The knowledge of these events is necessary to analyse the accident exactly. Further on the results of this work are of great importance to build a catcher for the molten core material. As a result of the decay heat the molten material is heated up and the density differences induce a free convection motion. In this work the thermohydraulic behavior and the distribution of the escaping heat fluxes for several accumulations of molten core material were determined. The numerical methods for solving the system of partial differential equation were used to develop computer codes, able to compute the average and local heat fluxes at the walls enclosing the molten core material and the inside increase of the temperature. The numerical computations were confirmed and verified by experimental investigations. In these investigations the molten core material was always assumed as a homogeneous fluid. In this case, the results could be reproduced by simple power laws

  11. IBIS, FBR 3-D Steady-State and Kinetics with Thermohydraulic Feedback

    International Nuclear Information System (INIS)

    Konomura, Mamoru; Tada, Nobuo; Oka, Yoshiaki; An, Shigehiro

    1987-01-01

    1 - Description of program or function: The IBIS code performs steady state and kinetics calculations based on a three-dimensional nuclear diffusion kinetics with thermal hydraulic feedback. It can calculate the following values in hexagonal-Z geometry of a fast breeder reactor core through the progress of transient: (1) Net reactivity; (2) Total and group-wise delayed neutron fraction; (3) Group-wise delayed neutron precursor concentration; (4) Total power and energy; (5) Space dependent neutron flux in each energy group; (6) Space dependent temperature of each material; (7) Maximum temperature of each material and its location. 2 - Method of solution: The quasi-static method is adopted to solve the three-dimensional nuclear diffusion kinetics problem. The method is the same as employed in the code QX1. The shape function equation is solved with the finite difference treatment as used in the codes CITATION and HONEYCOMB. One-dimensional thermo-hydraulics is solved with a model similar to that given in the code SASLA. Sodium boiling can be taken into account. 3 - Restrictions on the complexity of the problem: The number of neutron energy groups is fixed to 3 groups in the present version of the code

  12. Thermo-Hydraulic behaviour of dual-channel superconducting Cable-In-Conduit Conductors for ITER

    International Nuclear Information System (INIS)

    Renard, B.

    2006-09-01

    In an effort to optimise the cryogenics of large superconducting coils for fusion applications (ITER), dual channel Cable-In-Conduit Conductors (CICC) are designed with a central channel spiral to provide low hydraulic resistance and faster helium circulation. The qualitative and economic rationale of the conductor central channel is here justified to limit the superconductor temperature increase, but brings more complexity to the conductor cooling characteristics. The pressure drop of spirals is experimentally evaluated in nitrogen and water and an explicit hydraulic friction model is proposed. Temperatures in the cable must be quantified to guarantee superconductor margin during coil operation under heat disturbance and set adequate inlet temperature. Analytical one-dimensional thermal models, in steady state and in transient, allow to better understand the thermal coupling of CICC central and annular channels. The measurement of a heat transfer characteristic space and time constants provides cross-checking experimental estimations of the internal thermal homogenization. A simple explicit model of global inter-channel heat exchange coefficient is proposed. The risk of thermosyphon between the two channels is considered since vertical portions of fusion coils are subject to gravity. The new hydraulic model, heat exchange model and gravitational risk ratio allow the thermohydraulic improvement of CICC central spirals. (author)

  13. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  14. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included...... in the Copenhagen City Heart Study examined in 1976-2003 free from previous myocardial infarction (MI), chronic heart failure, and left bundle branch block through registry linkage until 2009 for all-cause mortality and cardiovascular outcomes. The prevalence of RBBB/IRBBB was higher in men (1.4%/4.7% in men vs. 0.......5%/2.3% in women, P block was associated with significantly...

  15. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K. [Eko-Log Oy, Kuopio (Finland)

    1996-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  16. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K [Eko-Log Oy, Kuopio (Finland)

    1997-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  17. A numerical method for a transient two-fluid model

    International Nuclear Information System (INIS)

    Le Coq, G.; Libmann, M.

    1978-01-01

    The transient boiling two-phase flow is studied. In nuclear reactors, the driving conditions for the transient boiling are a pump power decay or/and an increase in heating power. The physical model adopted for the two-phase flow is the two fluid model with the assumption that the vapor remains at saturation. The numerical method for solving the thermohydraulics problems is a shooting method, this method is highly implicit. A particular problem exists at the boiling and condensation front. A computer code using this numerical method allow the calculation of a transient boiling initiated by a steady state for a PWR or for a LMFBR

  18. Influence of taking into account in-pressurizer convective heat- and mass transfer influence effects at the transients in VVER with code RELAP 5/MOD 3.2

    International Nuclear Information System (INIS)

    Konovalyuk, L.N.; Shevelev, D.V.; Kravchenko, V.G.

    2003-01-01

    PRZ model is proposed which allows taking into account in pressurizer convective heat- and mass transfer influence effects at the transients in VVER (PWR) Type Reactors case when calculations performed with using 1D thermohydraulic codes. The theoretical backgrounds are given to define the transients with the convective coolant instability in PRZ. The instability threshold is given for real PRZ geometry

  19. Thermohydraulic stability coupled to the neutronic in a BWR

    International Nuclear Information System (INIS)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A.; Castlllo D, R.

    2006-01-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the Laguna Verde

  20. The Atiyah bundle and connections on a principal bundle

    Indian Academy of Sciences (India)

    be the fiber bundle constructed as in (1.1) for the universal principal G-bundle. In a work in progress, we hope to show that the universal G-connection can be realized as a fiber bundle over C(EG). Turning this ... a G-invariant vector field on EG|U . In other words, we get a bijective linear map between. A(EG)(U) (the space of ...

  1. Effects of thermohydraulics on clad ballooning, flow blockage and coolability in a LOCA

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Neitzel, H.J.; Wiehr, K.

    1983-01-01

    Thermohydraulic boundary conditions have a dominating effect on clad ballooning, flow blockage and coolability: Increasing heat transfer to the fluid decreases the total circumferential strain; Countercurrent flow in a combined injection leads to a relatively small flow blockage; Burst claddings exhibit premature quenching. Differences in the test results obtained in several countries are mainly due to different thermohydraulic test conditions; all test data are consistent with the understanding elaborated within the REBEKA program. Core coolability in a LOCA can be maintained. (author)

  2. Managing bundled payments.

    Science.gov (United States)

    Draper, Andrew

    2011-04-01

    Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system.

  3. Muon bundles from the Universe

    Directory of Open Access Journals (Sweden)

    Kankiewicz P.

    2018-01-01

    Full Text Available Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project. Significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles is found. Estimated directionality suggests their possible extragalactic provenance. We argue that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe.

  4. Infinitesimal bundles and projective relativity

    International Nuclear Information System (INIS)

    Evans, G.T.

    1973-01-01

    An intrinsic and global presentation of five-dimensional relativity theory is developed, in which special coordinate conditions are replaced by conditions of Lie invariance. The notion of an infinitesimal bundle is introduced, and the theory of connexions on principal bundles is extended to infinitesimal bundles. Global aspects of projective relativity are studied: it is shown that projective relativity can describe almost any space-time. In particular, it is not necessary to assume that the electromagnetic field have a global potential. (author)

  5. REBEKA bundle experiments

    International Nuclear Information System (INIS)

    Wiehr, K.

    1988-05-01

    This report is a summary of experimental investigations describing the fuel rod behavior in the refilling and reflooding phase of a loss-of-coolant accident of a PWR. The experiments were performed with 5x5 and 7x7 rod bundles, using indirectly electrically heated fuel rod simulators of full length with original PWR-KWU-geometry, original grid spacers and Zircaloy-4-claddings (Type Biblis B). The fuel rod simulators showed a cosine shaped axial power profile in 7 steps and continuous, respectively. The results describe the influence of the different parameters such as bundle size on the maximum coolant channel blockage, that of the cooling on the size of the circumferential strain of the cladding (azimuthal temperature distribution) a cold control rod guide thimble and the flow direction (axial temperature distribution) on the resulting coolant channel blockage. The rewetting behavior of different fuel rod simulators including ballooned and burst Zircaloy claddings is discussed as well as the influence of thermocouples on the cladding temperature history and the rewetting behavior. All results prove the coolability of a PWR in the case of a LOCA. Therefore, it can be concluded that the ECC-criteria established by licensing authorities can be fulfilled. (orig./HP) [de

  6. Transient Analysis of Generation IV quick reactors; Analisis de Transitorios en Reactores Rapidos de Generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Martin-Fuertes, F.

    2013-07-01

    As a complement to the attached code 3D neutron-CIEMAT thermohydraulic added a module to simulate transient. Temporary kinetics is resolved by factoring flow in a spatial part and another storm. MCNP provides the reactivity and updated spatial function and COBRA-IV calculates the temperature distribution. Temporary dependence of amplitude is calculated using time delayed neutron Kinetic equations. As an example of application, examines a transient loss of flow in MYRRHA, a lead-cooled experimental reactor.

  7. Nefness of adjoint bundles for ample vector bundles

    Directory of Open Access Journals (Sweden)

    Hidetoshi Maeda

    1995-11-01

    Full Text Available Let E be an ample vector bundle of rank >1 on a smooth complex projective variety X of dimension n. This paper gives a classification of pairs (X,E whose adjoint bundles K_X+det E are not nef in the case when  r=n-2.

  8. A phenomenological model of the thermal-hydraulics of convective boiling during the quenching of hot rod bundles: Part 2, Assessment of the model with steady-state and transient post-CHF data

    International Nuclear Information System (INIS)

    Unal, C.; Nelson, R.

    1991-01-01

    After completing the thermal-hydraulic model developed in a companion paper, we performed assessment calculations of the model using steady-state and transient post-critical heat flux (CHF) data. This paper discusses the results of those calculations. The hot-patch model, in conjunction with the other thermal-hydraulic models, was capable of modeling the Winfrith post-CHF hot-patch experiments. The hot-patch model kept the wall temperatures at the specified levels in the hot-patch regions and did not allow any quench-front propagation from either the bottom or the top of the test section. Among the four Winfrith runs selected to assess the hot-patch model, the average deviation in hot-patch power predictions was 15.4%, indicating reasonable predictions of the amount of energy transferred to the fluid by the hot patch. The interfacial heat-transfer model tended to slightly under-predict the vapor temperatures. The maximum difference between calculated and measured vapor superheats was 20%, with a 10% difference for the remainder of the runs considered. The wall-to-fluid heat transfer was predicted reasonably well, and the predicted wall superheats were in reasonable agreement with measured data with a maximum relative error of less than 13%. The effects of pressure, test section power, and flow rate on the axial variation of tube wall temperature are predicted reasonably well for a large range of operating parameters. A comparison of the predicted and measured local wall. The thermal-hydraulic model in TRAC/PF1-MOD2 was used to predict the axial variation of void fraction as measured in Winfrith post-CHF tests. The predictions for reflood calculations were reasonable. The model correctly predicted the trends in void fraction as a result of the effect of pressure and power, with the effect of pressure being more apparent than that of power. 13 refs

  9. Bundle Security Protocol for ION

    Science.gov (United States)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  10. CANFLEX fuel bundle impact test

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, C. H.; Park, J. S.; Hong, S. D.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs

  11. Connections on discrete fibre bundles

    International Nuclear Information System (INIS)

    Manton, N.S.; Cambridge Univ.

    1987-01-01

    A new approach to gauge fields on a discrete space-time is proposed, in which the fundamental object is a discrete version of a principal fibre bundle. If the bundle is twisted, the gauge fields are topologically non-trivial automatically. (orig.)

  12. Sasakian and Parabolic Higgs Bundles

    Science.gov (United States)

    Biswas, Indranil; Mj, Mahan

    2018-03-01

    Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.

  13. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  14. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  15. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.

  16. Theoretical and experimental investigations of the thermo-hydraulics of deformed wire-wrapped bundles in nominal flow conditions

    International Nuclear Information System (INIS)

    Leteinturier, D.; Cartier, L.

    1979-01-01

    Theoretical and experimental studies undertaken in CEN Cadarache on deformed subassemblies are presented. After the mainlines description of this program first temperature distribution results are given on an in-pile experiment in RAPSODIE (61 pins). Comparison with calculation is made

  17. Textor bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Wan, A.; Gierszewski, P.; Rapperport, E.; Montgomery, D.B.

    1982-01-01

    This report presents a preliminary bundle divertor conceptual design for installation on the TEXTOR tokamak. An advanced cascade T-shaped coil configuration is used. This divertor design has the following important characteristics: (1) the current density in the conductor is less than 6 kAmp/cm 2 , and the maximum field is less than 6 Tesla; (2) the divertor can be operated at steady-state either for copper or superconducting conductors; (3) the power consumption is about 7 MW for a normal conductor; (4) the divertor can be inserted into the existing geometry of TEXTOR; (5) the ripple on axis is only 0.3% and the mirror ratio is 2 to 4; (6) the stagnation axis is concave toward the plasma, therefore q/sub D/ is smaller, the acceptance angle is larger, and the efficiency may be better than the conventional circular coil design

  18. TEXTOR bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Wan, A.; Gierszewski, P.; Rapperport, E.; Montgomery, D.B.

    1982-01-01

    This report presents a preliminary bundle divertor conceptual design for installation on the TEXTOR tokamak. An advanced cascade T-shaped coil configuration is used. This divertor design has the following important characteristics: (1) the current density in the conductor is less than 6 kAmp/cm 2 , and the maximum field is less than 6 Tesla; (2) the divertor can be operated at steady-state either for copper or superconducting conductors; (3) the power consumption is about 7 MW for a normal conductor; (4) the divertor can be inserted into the existing geometry of TEXTOR; (5) the ripple on axis is only 0.3% and the mirror ratio is 2 to 4; (6) the stagnation axis is concave toward the plasma, therefore q/sub D/ is smaller, the acceptance angle is larger, and the efficiency may be better than the conventional circular coil design

  19. Transient reflectivity on vertically aligned single-wall carbon nanotubes

    NARCIS (Netherlands)

    Galimberti, Gianluca; Ponzoni, Stefano; Ferrini, Gabriele; Hofmann, Stephan; Arshad, Muhammad; Cepek, Cinzia; Pagliara, Stefania

    2013-01-01

    One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free

  20. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  1. Convergence analysis of neutronic/thermohydraulic coupling behavior of SCWR

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2013-01-01

    The neutronic/thermohydraulic coupling (N–T coupling) calculations play an important role in core design and stability analysis. The traditional iterative method is not applicable for some new reactors (such as supercritical water-cooled reactor) which have intense N–T coupling behavior. In this paper, the mathematical model of N–T coupling based on fixed point theory is established firstly, with the convergent criterion, which can show the real-time convergence situation of iteration. Secondly, the self-adaptive relaxation factor and corresponding algorithm are proposed. Thirdly, the convergence analysis of the method of self-adaptive relaxation factor and common relaxation iteration has been performed, based on three calculation examples of SCWR fuel assembly. The results show that the proposed algorithm can efficiently reduce the calculation time and be adapted to different coupling cases and different initial distribution. It is easy to program, providing convenience for reactor design and analysis. This research also provides the theoretical basis for further study of N–T coupling behavior of new reactors such as SCWR

  2. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  3. Latest developments for a computer aided thermohydraulic network

    International Nuclear Information System (INIS)

    Alemberti, A.; Graziosi, G.; Mini, G.; Susco, M.

    1999-01-01

    Thermohydraulic networks are I-D systems characterized by a small number of basic components (pumps, valves, heat exchangers, etc) connected by pipes and limited spatially by a defined number of boundary conditions (tanks, atmosphere, etc). The network system is simulated by the well known computer program RELAPS/mod3. Information concerning the network geometry component behaviour, initial and boundary conditions are usually supplied to the RELAPS code using an ASCII input file by means of 'input cards'. CATNET (Computer Aided Thermalhydraulic NETwork) is a graphically user interface that, under specific user guidelines which completely define its range of applicability, permits a very high level of standardization and simplification of the RELAPS/mod3 input deck development process as well as of the output processing. The characteristics of the components (pipes, valves, pumps etc), defining the network system can be entered through CATNET. The CATNET interface is provided by special functions to compute form losses in the most typical bending and branching configurations. When the input of all system components is ready, CATNET is able to generate the RELAPS/mod3 input file. Finally, by means of CATNET, the RELAPS/mod3 code can be run and its output results can be transformed to an intuitive display form. The paper presents an example of application of the CATNET interface as well as the latest developments which greatly simplified the work of the users and allowed to reduce the possibility of input errors. (authors)

  4. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Paepe, M. de [Ghent University (Belgium). Department of Flow, Heat and Combustion Mechanics; Janssens, A. [Ghent University (Belgium). Department of Architecture and Urbanism

    2003-05-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  5. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Ghent (Belgium); Janssens, A. [Department of Architecture and Urbanism, Ghent University, Ghent (Belgium)

    2003-07-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  6. Prediction of velocity distributions in rod bundle axial flow, with a statistical model (K-epsilon) of turbulence

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da.

    1978-12-01

    Reactor fuel elements generally consist of rod bundles with the coolant flowing axially through the region between the rods. The confiability of the thermohydraulic design of such elements is related to a detailed description of the velocity field. A two-equation statistical model (K-epsilon) of turbulence is applied to compute main and secondary flow fields, wall shear stress distributions and friction factors of steady, fully developed turbulent flows, with incompressible, temperature independent fluid flowing axially through triangular or square arrays of rod bundles. The numerical procedure uses the vorticity and the stream function to describe the velocity field. Comparison with experimental and analytical data of several investigators is presented. Results are in good agreement. (Author) [pt

  7. Comparisons of numerical simulations with ASTRID code against experimental results in rod bundle geometry for boiling flows

    International Nuclear Information System (INIS)

    Larrauri, D.; Briere, E.

    1997-12-01

    After different validation simulations of flows through cylindrical and annular channels, a subcooled boiling flow through a rod bundle has been simulated with ASTRID Steam-Water of software. The experiment simulated is called Poseidon. It is a vertical rectangular channel with three heating rods inside. The thermohydraulic conditions of the simulated flow were close to the DNB conditions. The simulation results were analysed and compared against the available measurements of liquid and wall temperatures. ASTRID Steam-Water produced satisfactory results. The wall and the liquid temperatures were well predicted in the different parts of the flow. The void fraction reached 40 % in the vicinity of the heating rods. The distribution of the different calculated variables showed that a three-dimensional simulation gives essential information for the analysis of the physical phenomena involved in this kind of flow. The good results obtained in Poseidon geometry will encourage future rod bundle flow simulations and analyses with ASTRID Steam-Water code. (author)

  8. Confirmatory simulation of safety and operational transients in LMFBR systems

    International Nuclear Information System (INIS)

    Guppy, J.G.; Agrawal, A.K.

    1978-01-01

    Operational and safety transients that may originate anywhere in an LMFBR system must be adequately simulated to assist in safety evaluation and plant design efforts. This paper describes an advanced thermohydraulic transient code, the Super System Code (SSC), that may be used for confirmatory safety evaluations of plant wide events, such as assurance of adequate decay heat removal capability under natural circulation conditions, and presents results obtained with SSC illustrating the degree of modelling detail present in the code as well as the computing efficiency. (author)

  9. Comparison of the results of the fifth dynamic AER benchmark-a benchmark for coupled thermohydraulic system/three-dimensional hexagonal kinetic core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1998-01-01

    The fifth dynamic benchmark was defined at seventh AER-Symposium, held in Hoernitz, Germany in 1997. It is the first benchmark for coupled thermohydraulic system/three-dimensional hexagonal neutron kinetic core models. In this benchmark the interaction between the components of a WWER-440 NPP with the reactor core has been investigated. The initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one control rod group stucking. This break causes an overcooling of the primary circuit. During this overcooling the scram reactivity is compensated and the scrammed reactor becomes re critical. The calculation was continued until the highly-borated water from the high pressure injection system terminated the power excursion. Each participant used own best-estimate nuclear cross section data. Only the initial subcriticality at the beginning of the transient was given. Solutions were received from Kurchatov Institute Russia with the code BIPR8/ATHLET, VTT Energy Finland with HEXTRAN/SMABRE, NRI Rez Czech Republic with DYN3/ATHLET, KFKI Budapest Hungary with KIKO3D/ATHLET and from FZR Germany with the code DYN3D/ATHLET.In this paper the results are compared. Beside the comparison of global results, the behaviour of several thermohydraulic and neutron kinetic parameters is presented to discuss the revealed differences between the solutions.(Authors)

  10. Evaluating big deal journal bundles.

    Science.gov (United States)

    Bergstrom, Theodore C; Courant, Paul N; McAfee, R Preston; Williams, Michael A

    2014-07-01

    Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish.

  11. Nuclear reactors transients identification and classification system; Sistema de identificacao e classificacao de transientes em reatores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Paulo Henrique

    2008-07-01

    This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient. (author)

  12. Effect of thermohydraulic parameter on the flux distribution and the effective multiplication factor

    International Nuclear Information System (INIS)

    Mello, J.C.; Valladares, G.L.

    1990-01-01

    The influence of two thermohydraulics parameters; the coolant flow velocity along the reactor channels and the increase of the average water temperature through the core, on the thermal flux distribution and on the effective multiplication factor, was studied in a radioisotopes production reactor. The results show that, for a fixed values of the thermohydraulics parameters reffered above, there are limits for the reactor core volume reduction for each value of the V sub(mod)/V sub(comb) ratio. These thermohydraulics conditions determine the higher termal flux value in the flux-trap and the lower value of the reactor effective multiplication factor. It is also show that there is a V sub(mod)/V sub(comb) ratio value that correspond to the higher value of the lower effective multiplication factor. These results was interpreted and comment using fundamentals concepts and relations of reactor physics. (author)

  13. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  14. MAVEN EUV Modelled Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains solar irradiance spectra in 1-nm bins from 0-190 nm. The spectra are generated based upon the Flare Irradiance Spectra Model - Mars (FISM-M)...

  15. MAVEN SEP Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — The maven.sep.calibrated Level 2 Science Data Bundle contains fully calibrated SEP data, as well as the raw count data from which they are derived, and ancillary...

  16. Bundling ecosystem services in Denmark

    DEFF Research Database (Denmark)

    Turner, Katrine Grace; Odgaard, Mette Vestergaard; Bøcher, Peder Klith

    2014-01-01

    We made a spatial analysis of 11 ecosystem services at a 10 km × 10 km grid scale covering most of Denmark. Our objective was to describe their spatial distribution and interactions and also to analyze whether they formed specific bundle types on a regional scale in the Danish cultural landscape....... We found clustered distribution patterns of ecosystem services across the country. There was a significant tendency for trade-offs between on the one hand cultural and regulating services and on the other provisioning services, and we also found the potential of regulating and cultural services...... to form synergies. We identified six distinct ecosystem service bundle types, indicating multiple interactions at a landscape level. The bundle types showed specialized areas of agricultural production, high provision of cultural services at the coasts, multifunctional mixed-use bundle types around urban...

  17. Line bundles and flat connections

    Indian Academy of Sciences (India)

    1School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, .... sequence for complex analytic bundles, Appendix to Topological Methods ... Society of Japan 15 (1987) (Iwanami Shoten Publishers and Princeton ...

  18. Holomorphic bundles over elliptic manifolds

    International Nuclear Information System (INIS)

    Morgan, J.W.

    2000-01-01

    In this lecture we shall examine holomorphic bundles over compact elliptically fibered manifolds. We shall examine constructions of such bundles as well as (duality) relations between such bundles and other geometric objects, namely K3-surfaces and del Pezzo surfaces. We shall be dealing throughout with holomorphic principal bundles with structure group GC where G is a compact, simple (usually simply connected) Lie group and GC is the associated complex simple algebraic group. Of course, in the special case G = SU(n) and hence GC = SLn(C), we are considering holomorphic vector bundles with trivial determinant. In the other cases of classical groups, G SO(n) or G = Sympl(2n) we are considering holomorphic vector bundles with trivial determinant equipped with a non-degenerate symmetric, or skew symmetric pairing. In addition to these classical cases there are the finite number of exceptional groups. Amazingly enough, motivated by questions in physics, much interest centres around the group E8 and its subgroups. For these applications it does not suffice to consider only the classical groups. Thus, while often first doing the case of SU(n) or more generally of the classical groups, we shall extend our discussions to the general semi-simple group. Also, we shall spend a good deal of time considering elliptically fibered manifolds of the simplest type, namely, elliptic curves

  19. Transient reflectivity on vertically aligned single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Galimberti, Gianluca; Ponzoni, Stefano; Ferrini, Gabriele [Interdisciplinary Laboratory for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia (Italy); Hofmann, Stephan [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Arshad, Muhammad [Zernike Institute for Advanced Materials, University of Groningen (Netherlands); ICTP, Strada Costiera 11, I-34151 Trieste (Italy); National Centre for Physics Quaid-i-Azam University Islamabad (Pakistan); Cepek, Cinzia [Istituto Officina dei Materiali — CNR, Laboratorio TASC, Area Science Park, Basovizza, I-34149 Trieste (Italy); Pagliara, Stefania, E-mail: pagliara@dmf.unicatt.it [Interdisciplinary Laboratory for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia (Italy)

    2013-09-30

    One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free electron character revealed on unaligned bundles is only due to the intertube interactions favored by the tube bending. Neither the presence of bundles nor the existence of structural defects in aligned bundles is able to induce a free-electron like behavior of the photoexcited carriers. This result is also confirmed by the presence of non-linear excitonic effects in the transient response of the aligned bundles. - Highlights: • Transient reflectivity measurements on two aligned carbon nanotube samples • Relationship between unalignment and/or bundling and intertube interaction • The bundling is not able to modify the intertube interactions • The presence of structural defects does not affect the intertube interactions • A localized exciton-like behavior has been revealed in these samples.

  20. Thermohydraulic relationships for advanced water cooled reactors and the role of the IAEA

    International Nuclear Information System (INIS)

    Badulescu, A.; Groeneveld, D.C.

    2000-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA) a Coordinated Research Program (CRP) on Thermohydraulic Relationships for Advanced Water-Cooled Reactors was carried out from 1995-1998. It was included into the IAEA's Programme following endorsement in 1995 by the International Working Group on Advanced Technologies for Water Cooled Reactors. The overall goal was to promote International Information exchange and cooperation in establishing a consistent set of thermohydraulic relationships that are appropriate for use in analyzing the performance and safety of advanced water-cooled reactors. (authors)

  1. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility

    International Nuclear Information System (INIS)

    Coragem, Helio Boemer de Oliveira

    1980-01-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  2. Numerical Analysis for IFM Grid Effect on 5x5 Rods Bundle

    International Nuclear Information System (INIS)

    Kim, Seong Jin; Cha, Jeong Hun; Seo, Kyong Won; Kim, Tae Woo; Kwon, Hyuk; Hwang, Dae Hyun

    2011-01-01

    Generally, the fuel assembly consists of fuel rods, bottom and top grids, spacer grids, mixing vane, etc. The mixing vane with spacer grid is used to increase the thermal mixing between subchannels and to increase CHF(Critical Heat Flux). IFM(Intermediate Flow Mixer) grids are used to induce lateral flow between adjacent channels and are well-known as improving CHF, also. A numerical analysis using CFD code(ANSYS CFX, version 12.1) and subchannel code(MATRA-S) was conducted to investigate the influence of IFM grid on the subchannel temperature in 5x5 rods bundle with and without the IFM grid, thermohydraulically. In this study, the quantitative improvement of the mixing effect of the IFM grid is presented from the results of CFX and MATRA-S code. Moreover, capacity of predicting subchannel temperature of MATRA-S code is compared with CFX result

  3. Experiments on the fluid dynamics and thermodynamics of rod bundles to verify and support the design of SNR-300 fuel elements - status and open problems

    International Nuclear Information System (INIS)

    Moeller, R.; Weinberg, D.; Trippe, G.; Tschoeke, H.

    1978-01-01

    The reliable design of reactor core elements calls for precise knowledge of the 3D-temperature fields of the different components; this primarily applies to the fuel element cladding tubes, these being the first safety barrier. This paper describes and discusses where and how the 3D-temperature fields so far determined exclusively with the help of global thermohydraulic computer codes (SUBCHANNEL-Codes) have to be determined more accurately by local investigations. The basis of these investigations is the measurement of local velocities and temperatures in 19-rod bundle models of the SNR-300 fuel element performed at the Kernforschungszentrum Karlsruhe (KfK). Some important results of the extensive experimental investigations are reported and compared with global and local recalculations. Open problems are pointed out. The influence of the uncertainties in the thermohydraulic design with respect to the strength analysis are discussed. The most significant results and conclusions are: (1) The peripheral bundle region is the critical zone, which has to be investigated with priority. Here the maximal azimuthal temperature differences of the claddings are ten times higher than those in the central bundle region. (2) The present deviations between thermal experiments and global as well as local calculations are much too high. Within the parameters investigated a careful code adaptation to the experiments is of high priority. (3) The knowledge gaps concerning liquid metal heat transfer in irregular geometries have to be closed. (4) The hot-channel analysis has to be checked with respect to the latest more detailed knowledge of thermohydraulics. (author)

  4. Qualification of the nuclear reactor core model DYN3D coupled to the thermohydraulic system code ATHLET, applied as an advanced tool for accident analysis of VVER-type reactors. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.

    1998-03-01

    The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.) [de

  5. Burnout experiments with 6 x 6, 8 x 8 and 7 x 7 rod bundle test sections using freon as model fluid

    International Nuclear Information System (INIS)

    Fulfs, H.; Katsaounis, A.; Minden, C.v.

    1976-01-01

    This paper reports on burnout experiments at staedy state condition using Freon12 as model fluid. The experiments were carried out with three test sections with 6 x 6, 8 x 8 and 7 x 7 rod bundles. The axial flux distribution of the rods is either constant or reactor like. The transformed measured points using STEVENS and BOURE scaling factors to equivalent water conditions respectively, were compared to the burnout correlation W3 using the reactor layout program DYNAMIT. The DYNAMIT code is a thermohydraulic lay-out reactor program without consideration of mixing flow between the subchannels. (orig.) [de

  6. Thermo-hydraulic behavior of saturated steam-water mixture in pressure vessel during injection of cold water

    International Nuclear Information System (INIS)

    Aya, Izuo; Kobayashi, Michiyuki; Inasaka, Fujio; Nariai, Hideki.

    1983-01-01

    The thermo-hydraulic behavior of saturated steam water mixture in a pressure vessel during injection of cold water was experimentally investigated with the Facility for Mixing Effect of Emergency Core Cooling Water. The dimensions of the pressure vessel used in the experiments were 284mm ID and 1,971mm height. 11 experiments were conducted without blowdown in order to comprehend the basic process excluding the effect of blowdown at injection of cold water. The initial pressure and water level, the injection flow rate and the size of injection nozzle were chosen as experimental parameters. Temperatures and void fractions at 6 elevations as well as pressure in the pressure vessel were measured, and new data especially on the pressure undershoot just after the initation of water injection and the vertical distribution of temperature and void fraction were gotten. The transients of pressure, average temperature and void fraction were caluculated using single-volume analysis code BLODAC-1V which is based on thermal equilibrium and so-called bubble gradient model. Some input parameters included in the analysis code were evaluated through the comparison of analysis with experimental data. Moreover, the observed pressure undershoot which is evaluated to be induced by a time lag of vapourization in water due to thermal nonequilibrium, was also discussed with the aid of another simple analysis model. (author)

  7. Comparison of thermohydraulic characteristics in the use of various coolants

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Suda, Kazunori; Yamaguchi, Akira

    2000-11-01

    Numerical calculations were carried out for a free surface sloshing, a thermal stratification, a thermal striping, and a natural convection as key phenomena of in-vessel thermohydraulics in future fast reactor systems with various fluids as coolants. This numerical work was initiated based on a recognition that the fundamental characteristics of the phenomena have been unsolved quantitatively in the use of various coolants. From the analysis for the phenomena, the following results were obtained. [Free Surface Sloshing phenomena] (1) There is no remarkable difference between liquid sodium and liquid Pb-Bi in characteristics of internal flows and free surface characteristics based on Fr number. (2) The AQUA-VOF code has a potential enough to evaluate gas entrainment behavior from the free surface including the internal flow characteristics. [Thermal Stratification Phenomena] (1) On-set position of thermal entrainment process due to dynamic vortex flows was moved to downstream direction with decreasing of Ri number. On the other hand, the position in the case of CO 2 gas was shifted to upstream side with decreasing of Ri number. (2) Destruction speed of the thermal stratification interface was dependent on thermal diffusivity as fluid properties. Therefore it was concluded that an elimination method is necessary for the interface generated in CO 2 gas. [Thermal Striping Phenomena] (1) Large amplitudes of fluid temperature fluctuations was reached to down stream area in the use of CO 2 gas, due to larger fluid viscosity and smaller thermal diffusivity, compared with liquid sodium and liquid Pb-Bi cases. (2) To simulate thermal striping conditions such as amplitude and frequency of the fluid temperature fluctuations, it is necessary for coincidences of Re number for the amplitude and of velocity value for the frequency, in various coolants. [Natural Convection Phynomlena] (1) Fundamental behavior of the natural convection in various coolant follows buoyant jet

  8. Steady-state, local temperature fields with turbulent sodium flow in nominal and disturbed bundle geometries with spacer grids

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1980-12-01

    The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). These are the essential results obtained: Outside the spacer grids the azimuthal temperature variations of the side and corner rods are greater by approximately the factor 10 in the bundle geometry under consideration as compared to rods in the central bundle zone. The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points. Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to the adjacent cladding tube zones. (orig.) [de

  9. Implicit thermohydraulic coupling of two-phause flow calculations

    International Nuclear Information System (INIS)

    Lekach, S.; Kaufman, J.M.

    1980-01-01

    A numerical scheme that implicitly couples the hydraulic variables with thermal variables during a one or two-phase transient calculation in a one-dimensional pipe is presented. The transients are performed to achieve a steady-state condition. It is shown that by preserving the strong interdependence that exists between the hydraulic and thermal variables with an implicit flux treatment, it is possible to achieve a greater degree of numerical stability and in less computer time than with an explicit treatment. The method is slightly more complex but the large time step advantage more than pays for the overhead

  10. BWR thermohydraulics simulation on the AD-10 peripheral processor

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.

    1983-01-01

    This presentation demonstrates the feasibility of simulating plant transients and severe abnormal transients in nuclear power plants at much faster than real-time computing speeds in a low-cost, dedicated, interactive minicomputer. This is achieved by implementing advanced modeling techniques in modern, special-purpose peripheral processors for high-speed system simulation. The results of this demonstration will impact safety analyses and parametric studies, studies on operator responses and control system failures and it will make possible the continuous on-line monitoring of plant performance and the detection and diagnosis of system or component failures

  11. The state of art of the methods for thermohydraulics design of LMFBR fuel elements

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1981-09-01

    The present (experimental and analytical) state of art of the methods for thermohydraulics design of LMFBR fuel elements is analyzed. A development program is suggested, in order to obtain a computer code for modelling the distribution of coolant enthalpy in reactor core. This computer code is in development. (Author) [pt

  12. An overview of IPPE research on liquid metal fast reactor thermohydraulics

    International Nuclear Information System (INIS)

    Sorokin, A. P.; Efanov, A. D.; Zhukov, A. V.; Bogoslovskaia, G. P.

    2003-01-01

    The paper presents brief information on the most significant researches in the fields of liquid metal hydrodynamics and heat transfer performed in the State Scientific Center of Russian Federation 'Institute for Physics and Power Engineering' named after A.I.Leypunski applied to sodium-cooled fast reactors. Experimental methods for studying liquid metal thermohydraulics and applied measurement techniques are overviewed briefly in the paper. Some results of fundamental thermohydraulic investigations, such as quasi-universal character of velocity and temperature profile in liquid metals, if considered normally to the channel wall etc. are presented. Specific features of heat transfer in liquid metal cooled fuel subassembly are mentioned, among them there are: high level of coolant temperature; significant influence of an interchannel exchange on velocity and temperature distribution; an availability of contact thermal resistance; large azimuthal non-uniformity of velocity and temperature; 'conjugate' problem of heat transfer in combined geometry of fuel pin; an absence of stabilization of heat transfer in non-standard channels; an influence of non-uniform heat generation. Special attention is given to the temperature fields in fuel subassembly subjected to deformation because of radioactive swelling and creeping, as well as in case of blockage of a part of subassembly cross section. Some results of thermohydraulic investigation are demonstrated for intermediate heat exchangers, pressurized head collectors. Also the developed methods and codes of thermohydraulic calculations applied to fast reactor core are considered: subchannel approach, porous body model

  13. GPU Parallel Bundle Block Adjustment

    Directory of Open Access Journals (Sweden)

    ZHENG Maoteng

    2017-09-01

    Full Text Available To deal with massive data in photogrammetry, we introduce the GPU parallel computing technology. The preconditioned conjugate gradient and inexact Newton method are also applied to decrease the iteration times while solving the normal equation. A brand new workflow of bundle adjustment is developed to utilize GPU parallel computing technology. Our method can avoid the storage and inversion of the big normal matrix, and compute the normal matrix in real time. The proposed method can not only largely decrease the memory requirement of normal matrix, but also largely improve the efficiency of bundle adjustment. It also achieves the same accuracy as the conventional method. Preliminary experiment results show that the bundle adjustment of a dataset with about 4500 images and 9 million image points can be done in only 1.5 minutes while achieving sub-pixel accuracy.

  14. Numerical modeling of secondary side thermohydraulics of horizontal steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Melikhov, V.I.; Melikhov, O.I.; Nigmatulin, B.I. [Research and Engineering Centre of LWR Nuclear Plants Safety, Moscow (Russian Federation)

    1995-12-31

    A mathematical model for the transient three-dimensional secondary side thermal hydraulics of the horizontal steam generator has been developed. The calculations of the steam generator PGV-1000 and PGV-4 nominal regimes and comparison of numerical and experimental results have been carried out. 7 refs.

  15. Numerical modeling of secondary side thermohydraulics of horizontal steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Melikhov, V I; Melikhov, O I; Nigmatulin, B I [Research and Engineering Centre of LWR Nuclear Plants Safety, Moscow (Russian Federation)

    1996-12-31

    A mathematical model for the transient three-dimensional secondary side thermal hydraulics of the horizontal steam generator has been developed. The calculations of the steam generator PGV-1000 and PGV-4 nominal regimes and comparison of numerical and experimental results have been carried out. 7 refs.

  16. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  17. Principal bundles the classical case

    CERN Document Server

    Sontz, Stephen Bruce

    2015-01-01

    This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles.  While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.

  18. Development of a computer code for transients simulation in PWR type reactors

    International Nuclear Information System (INIS)

    Alvim, A.C.M.; Botelho, D.A.; Oliveira Barroso, A.C. de

    1981-01-01

    A computer code for the simulation of operacional-transients and accidents in PWR type reactors is being developed at IEN (Instituto de Engenharia Nuclear). Accidents will be considered in which variations in thermohydraulics parameters of fuel and coolant don't cause nucleate boiling in the reactor core, but, otherwise are sufficiently strong to justify a more detailed simulation than that used in linearized models. (E.G.) [pt

  19. Point kinetics improvements to evaluate three-dimensional effects in transients calculation

    International Nuclear Information System (INIS)

    Castellotti, U.

    1987-01-01

    A calculation method, which considers the flux axial perturbations in the parameters related to the reactivity within a point kinetics model, is described. The method considered uses axial factors of consideration which act on the thermohydraulic variables included in the reactivity calculation. The PUMA three-dimensional code as reference model for the comparisons, is used. The limitations inherent to the reactivity balance of the point models used in the transients calculation, are given. (Author)

  20. PDS4 Bundle Creation Governance Using BPMN

    Science.gov (United States)

    Radulescu, C.; Levoe, S. R.; Algermissen, S. S.; Rye, E. D.; Hardman, S. H.

    2015-06-01

    The AMMOS-PDS Pipeline Service (APPS) provides a Bundle Builder tool, which governs the process of creating, and ultimately generates, PDS4 bundles incrementally, as science products are being generated.

  1. Calculation of coolant temperature sensitivity related to thermohydraulic parameters

    International Nuclear Information System (INIS)

    Silva, F.C. da; Andrade Lima, F.R. de

    1985-01-01

    It is verified the viability to apply the generalized Perturbation Theory (GPT) in the calculation of sensitivity for thermal-hydraulic problems. It was developed the TEMPERA code in FORTRAN-IV to transient calculations in the axial temperature distribution in a channel of PWR reactor and the associated importance function, as well as effects of variations of thermalhydraulic parameters in the coolant temperature. The results are compared with one which were obtained by direct calculation. (M.C.K.) [pt

  2. Exploring Bundling Theory with Geometry

    Science.gov (United States)

    Eckalbar, John C.

    2006-01-01

    The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…

  3. Episodic payments (bundling): PART I.

    Science.gov (United States)

    Jacofsky, D J

    2017-10-01

    Episodic, or bundled payments, is a concept now familiar to most in the healthcare arena, but the models are often misunderstood. Under a traditional fee-for-service model, each provider bills separately for their services which creates financial incentives to maximise volumes. Under a bundled payment, a single entity, often referred to as a convener (maybe the hospital, the physician group, or a third party) assumes the risk through a payer contract for all services provided within a defined episode of care, and receives a single (bundled) payment for all services provided for that episode. The time frame around the intervention is variable, but defined in advance, as are included and excluded costs. Timing of the actual payment in a bundle may either be before the episode occurs (prospective payment model), or after the end of the episode through a reconciliation (retrospective payment model). In either case, the defined costs over the defined time frame are borne by the convener. Cite this article: Bone Joint J 2017;99-B:1280-5. ©2017 The British Editorial Society of Bone & Joint Surgery.

  4. Fast breeder fuel pin bundle tests in the KNK II-reactor

    International Nuclear Information System (INIS)

    Haefner, H.E.; Bojarsky, E.

    1986-11-01

    Three variants of ring elements with test bundles will be reported in this paper: In a first step a ring element was built with a permanently integrated test bundle (19 carbide pins of the Karlsruhe reference concept) while the proven fuel element components have been largely maintained. This irradiation will be completed in autumn 1986 after 380 full power days of operation. The central topic of this paper will be the technique of reloadable ring elements with replaceable test bundles. A first experiment, TOAST, is in preparation. For this experiment, above all the components of the fuel element head and foot had to be newly developed and tested. A special version of double-walled replaceable test bundles to be used in the TETRA temperature transient experiments will be briefly mentioned. It is envisaged in these experiments to vary in a defined manner the coolant flow at remotely assembled test bundles consisting of 19 KNK pins each having undergone a high burnup and to use a measuring and control plug placed on the test bundle so that a variety of fuel pin temperature programs can be realized. Finally, some additional aspects of bundle design will be indicated. (orig./GL) [de

  5. Deformation quantization of principal fibre bundles

    International Nuclear Information System (INIS)

    Weiss, S.

    2007-01-01

    Deformation quantization is an algebraic but still geometrical way to define noncommutative spacetimes. In order to investigate corresponding gauge theories on such spaces, the geometrical formulation in terms of principal fibre bundles yields the appropriate framework. In this talk I will explain what should be understood by a deformation quantization of principal fibre bundles and how associated vector bundles arise in this context. (author)

  6. Output commitment through product bundling : Experimental evidence

    NARCIS (Netherlands)

    Hinloopen, Jeroen; Mueller, Wieland; Normann, Hans-Theo

    We analyze the impact of product bundling in experimental markets. One firm has monopoly power in a first market but competes with another firm la Cournot in a second market. We compare treatments where the multi-product firm (i) always bundles, (ii) never bundles, and (iii) chooses whether to

  7. Distribution of two-phase flow thermal and hydraulic parameters over the cross-section of channels with a rod bundle

    International Nuclear Information System (INIS)

    Mironov, Yu.V.; Shpanskij, S.V.

    1975-01-01

    The paper describes PUCHOK-2, a program for thermohydraulic calculation of a channel with a bundle of smooth fuel elements. The pro.gram takes into consideration the non-uniformity of flow parameter distributions over the channel cross-section. The channel cross-section was divided into elementary cells, within which changes in flow parameters (mass velocity, heat- and steam content) were disregarded. The bundle was considered to be a system of parallel interconnected channels. Accounting for equal pressure drops in all the cells, the above model led to a system of non-linear algebraic equations. The system of equations was solved by the method of successive approximations. Theoretical results were compared with experimental data

  8. Method of relative comparison of the thermohydraulic efficiency of heat exchange intensification in channels of heat-exchange surfaces

    International Nuclear Information System (INIS)

    Dubrovskij, E.V.; Vasil'ev, V.Ya.

    2002-01-01

    One introduces a technique to compare relatively thermohydraulic efficiency of heat transfer intensification in channels of heat exchange surfaces of any design types. It is shown that one should compare thermohydraulic efficiency of heat exchange intensification as to the thermal power of heat exchangers and pressure losses in channels with turbulators and in polished channels of heat exchange surfaces on the basis of dimensions of heat exchangers, their heat exchange surfaces and at similar (as to Re numbers) modes of coolant flow [ru

  9. Higher order jet prolongations type gauge natural bundles over vector bundles

    Directory of Open Access Journals (Sweden)

    Jan Kurek

    2004-05-01

    Full Text Available Let $rgeq 3$ and $mgeq 2$ be natural numbers and $E$ be a vector bundle with $m$-dimensional basis. We find all gauge natural bundles ``similar" to the $r$-jet prolongation bundle $J^rE$ of $E$. We also find all gauge natural bundles ``similar" to the vector $r$-tangent bundle $(J^r_{fl}(E,R_0^*$ of $E$.

  10. Sensitivity calculation of the coolant temperature regarding the thermohydraulic parameters

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de; Silva, F.C. da; Thome Filho, Z.D.; Alvim, A.C.M.; Oliveira Barroso, A.C. de.

    1985-01-01

    It's studied the application of the Generalized Perturbation Theory (GPT) in the sensitivity calculation of thermalhydraulic problems, aiming at verifying the viability of the extension of the method. For this, the axial distribution, transient, of the coolant temperature in a PWR channel are considered. Perturbation expressions are developed using the GPT formalism, and a computer code (Tempera) is written, to calculate the channel temperature distribution and the associated importance function, as well as the effect of the thermalhydraulic parameters variations in the coolant temperature (sensitivity calculation). The results are compared with those from the direct calculation. (E.G.) [pt

  11. Co-Higgs bundles on P^1

    OpenAIRE

    Rayan, Steven

    2010-01-01

    Co-Higgs bundles are Higgs bundles in the sense of Simpson, but with Higgs fields that take values in the tangent bundle instead of the cotangent bundle. Given a vector bundle on P^1, we find necessary and sufficient conditions on its Grothendieck splitting for it to admit a stable Higgs field. We characterize the rank-2, odd-degree moduli space as a universal elliptic curve with a globally-defined equation. For ranks r=2,3,4, we explicitly verify the conjectural Betti numbers emerging from t...

  12. Improved lumped parameter for annular fuel element thermohydraulic analysis

    International Nuclear Information System (INIS)

    Duarte, Juliana Pacheco; Su, Jian; Alvim, Antonio Carlos Marques

    2011-01-01

    Annular fuel elements have been intensively studied for the purpose of increasing power density in light water reactors (LWR). This paper presents an improved lumped parameter model for the dynamics of a LWR core with annular fuel elements, composed of three sub-models: the fuel dynamics model, the neutronics model, and the coolant energy balance model. The transient heat conduction in radial direction is analyzed through an improved lumped parameter formulation. The Hermite approximation for integration is used to obtain the average temperature of the fuel and cladding and also to obtain the average heat flux. The volumetric heat generation in fuel rods was obtained with the point kinetics equations with six delayed neutron groups. The equations for average temperature of fuel and cladding are solved along with the point kinetic equations, assuming linear reactivity and coolant temperature in cases of reactivity insertion. The analytical development of the model and the numeric solution of the ordinary differential equation system were obtained by using Mathematica 7.0. The dynamic behaviors for average temperatures of fuel, cladding and coolant in transient events as well as the reactor power were analyzed. (author)

  13. CAPRICORN subchannel code for sodium boiling in LMFBR fuel bundles

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Smith, D.E.; O'Dell, L.D.

    1983-01-01

    The CAPRICORN computer code analyzes steady-state and transient, single-phase and boiling problems in LMFBR fuel bundles. CAPRICORN uses the same type of subchannel geometry as the COBRA family of codes and solves a similar system of conservation equations for mass, momentum, and energy. However, CAPRICORN uses a different numerical solution method which allows it to handle the full liquid-to-vapor density change for sodium boiling. Results of the initial comparison with data (the W-1 SLSF pipe rupture experiment) are very promising and provide an optimistic basis for proceeding with further development

  14. Maximum allowable heat flux for a submerged horizontal tube bundle

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1995-01-01

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or open-quotes criticalclose quotes) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration

  15. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  16. Single-phase multi-dimensional thermohydraulics direct numerical simulation code DINUS-3. Input data description

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-08-01

    This report explains the numerical methods and the set-up method of input data for a single-phase multi-dimensional thermohydraulics direct numerical simulation code DINUS-3 (Direct Numerical Simulation using a 3rd-order upwind scheme). The code was developed to simulate non-stationary temperature fluctuation phenomena related to thermal striping phenomena, developed at Power Reactor and Nuclear Fuel Development Corporation (PNC). The DINUS-3 code was characterized by the use of a third-order upwind scheme for convection terms in instantaneous Navier-Stokes and energy equations, and an adaptive control system based on the Fuzzy theory to control time step sizes. Author expect this report is very useful to utilize the DINUS-3 code for the evaluation of various non-stationary thermohydraulic phenomena in reactor applications. (author)

  17. Development of a model for the primary system CAREM reactor's stationary thermohydraulic calculation

    International Nuclear Information System (INIS)

    Gaspar, C.; Abbate, P.

    1990-01-01

    The ESCAREM program oriented to CAREM reactors' stationary thermohydraulic calculation is presented. As CAREM gives variations in relation to models for BWR (Boiling Water Reactors)/PWR (Pressurized Water Reactors) reactors, it was decided to develop a suitable model which allows to calculate: a) if the Steam Generator design is adequate to transfer the power required; b) the circulation flow that occurs in the Primary System; c) the temperature at the entrance (cool branch) and d) the contribution of each component to the pressure drop in the circulation connection. Results were verified against manual calculations and alternative numerical models. An experimental validation at the Thermohydraulic Essays Laboratory is suggested. A parametric analysis series is presented on CAREM 25 reactor, demonstrating operating conditions, at different power levels, as well as the influence of different design aspects. (Author) [es

  18. A benchmark for coupled thermohydraulics system/three-dimensional neutron kinetics core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1999-01-01

    During the last years 3D neutron kinetics core models have been coupled to advanced thermohydraulics system codes. These coupled codes can be used for the analysis of the whole reactor system. Although the stand-alone versions of the 3D neutron kinetics core models and of the thermohydraulics system codes generally have a good verification and validation basis, there is a need for additional validation work. This especially concerns the interaction between the reactor core and the other components of a nuclear power plant (NPP). In the framework of the international 'Atomic Energy Research' (AER) association on VVER Reactor Physics and Reactor Safety, a benchmark for these code systems was defined. (orig.)

  19. Prediction of the thermohydraulic performance of porous-media reservoirs for compressed-air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    The numerical modeling capability that has been developed at the Pacific Northwest Laboratory (PNL) for the prediction of the thermohydraulic performance of porous media reservoirs for compressed air energy storage (CAES) is described. The capability of the numerical models was demonstrated by application to a variety of parametric analyses and the support analyses for the CAES porous media field demonstration program. The demonstration site analyses include calculations for the displacement of aquifer water to develop the air storage zone, the potential for water coning, thermal development in the reservoir, and the dehydration of the near-wellbore region. Unique features of the demonstration site reservoir that affect the thermohydraulic performance are identified and contrasted against the predicted performance for conditions that would be considered more typical of a commercial CAES site.

  20. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  1. Fluid structure interaction in tube bundles

    International Nuclear Information System (INIS)

    Brochard, D.; Jedrzejewski, F.; Gibert, R.J.

    1995-01-01

    A lot of industrial components contain tube bundles immersed in a fluid. The mechanical analysis of such systems requires the study of the fluid structure interaction in the tube bundle. Simplified methods, based on homogenization methods, have been developed to analyse such phenomenon and have been validated through experimental results. Generally, these methods consider only the fluid motion in a plan normal to the bundle axis. This paper will analyse, in a first part, the fluid structure interaction in a tube bundle through a 2D finite element model representing the bundle cross section. The influence of various parameters like the bundle size, and the bundle confinement will be studied. These results will be then compared with results from homogenization methods. Finally, the influence of the 3D fluid motion will be investigated, in using simplified methods. (authors). 11 refs., 12 figs., 2 tabs

  2. Development of CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan

    1991-12-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle(so-called CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactors for 1996 and 1997, and consequently will be used in the existing and future reactors in Korea. The research activities during this year include the basic design of CANFLEX fuel with slightly enriched uranium(CANFLEX-SEU), with emphasis on the extension of fuel operation limit. Based on this basic design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel. (Author)

  3. DRESDYN: A new platform for liquid metal thermohydraulic studies and measurement technique developments

    International Nuclear Information System (INIS)

    Gerbeth, Gunter; Eckert, Sven; Stefani, Frank; Gundrum, Thomas

    2013-01-01

    DRESDYN: General features. DRESDYN: DREsden Sodium facility for DYNamo and thermohydraulic studies. A large-scale new infrastructure for liquid metal experiments. Features: • New building ~ 500 m 2 ; • Total sodium inventory: 12-15 tons; • Precession driven experiment with separate strong basement and containment for Argon flooding; • Big hall for SFR related experiments, including ISI, a sodium loop, X-ray lab; • Financing is given, construction will start soon in spring 2013; • First experiments 2015 (hopefully...)

  4. Application of CFD methods in research of SCWR thermo-hydraulics

    International Nuclear Information System (INIS)

    Zeng Xiaokang; Li Yongliang; Yan Xiao; Xiao Zejun; Huang Yanping

    2013-01-01

    The CFD method has been an important tool in the research of SCWR thermo- hydraulics. Currently, the CFD methods uses commonly the subcritical turbulence models, which can not accurately simulate the gravity and thermal expansion acceleration effect, and CFD numerical method is not applicable when the heat flux is large. The paper summarizes the application status of the CFD methods in the research of SCWR thermo-hydraulics in RETH. (authors)

  5. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II

    International Nuclear Information System (INIS)

    Caro, R.

    1976-01-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs

  6. A model development for a thermohydraulic calculation material convection of MTR (Materials Testing Reactors)

    International Nuclear Information System (INIS)

    Abbate, P.

    1990-01-01

    The CONVEC program developed for the thermohydraulic calculation under a natural convection regime for MTR type reactors is presented. The program is based on a stationary, one dimensional model of finite differences that allow to calculate the temperatures of cooler, cladding and fuel as well as the flow for a power level specified by the user. This model has been satisfactorily validated by a water cooling (liquid phase) and air system. (Author) [es

  7. Evaluation of two-fluid and drift flux thermohydraulics in APROS code environment

    International Nuclear Information System (INIS)

    Miettinen, J.; Karppinen, I.; Haenninen, M.; Ylijoki, J.

    1999-01-01

    The characteristics of the thermohydraulic solutions in APROS are considered for the nuclear power plant modelling. The thermohydraulic model of the APROS plant analyzer includes three levels of solutions, homogeneous 3-equation model, 5-equation drift flux model and 6-equation two-fluid model. In practical modelling of versatile process systems different approaches are selected for different types of the power plant sections. The 3-equation model is used for turbines and auxiliary systems. The 5-equation model and 6-equation model are alternative models for main process sections of the primary and secondary sides. The 5-equation model has been typically selected for the real time applications and the 6-equation model for the safety analysis applications. The validation needs for both approaches are the same. Because the change of the solution mode is an easy task in APROS, the validation tasks are typically performed in parallel for 5-equation and 6-equation models. By calculating in parallel with both models systematic errors in solutions may be pointed out. The testing against both separate effects tests and integral tests is an essential part in the thermohydraulics. In different plant applications different physical features are important. The analysis requirements vary from one application to another. When nodalizations together with increased computer speed are growing up, the earlier validation cases may be insufficient. That is why the content of the code has to be known in detail. Such an expertise in the code development has to be gained that properties of the code against other thermohydraulics codes are known. (author)

  8. Preliminary study of the thermo-hydraulic behaviour of the binary breeder reactor

    International Nuclear Information System (INIS)

    Silveira Luz, M. da; Ferreira, W.J.

    1984-06-01

    Continuing the development of the Binary Breeder Reactor, its physical configuration and the advantages of differents types of spacers are analysed. In order to simulate the thermo-hydraulic behaviour and obtain data for a preliminary evaluation of the core geometry, the COBRA III C code was used to study the effects of the lenght and diameter of the fuel element, the coolant inlet temperature, the system pressure, helicoidal pitch and the pitch to diameter ratio. (Author) [pt

  9. Competitive nonlinear pricing and bundling

    OpenAIRE

    Armstrong, Mark; Vickers, John

    2006-01-01

    We examine the impact of multiproduct nonlinear pricing on profit, consumer surplus and welfare in a duopoly. When consumers buy all their products from one firm (the one-stop shopping model), nonlinear pricing leads to higher profit and welfare, but often lower consumer surplus, than linear pricing. By contrast, in a unit-demand model where consumers may buy one product from one firm and another product from another firm, bundling generally acts to reduce profit and welfare and to boost cons...

  10. Thermohydraulic analysis of BWR and PWR spent fuel assemblies contained within square canisters

    International Nuclear Information System (INIS)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    This report presents the results of several thermohydraulic simulations of spent fuel assembly/canister configurations performed in support of a program investigating the feasibility of storing spent nuclear fuel assemblies in canisters that would be stored in an air environment. Eleven thermohydraulic simulations were performed. Five simulations were performed using a single BWR fuel assembly/canister design. The various cases were defined by changing the canister spacing and the heat generation rate of the fuel assembly. For each simulation a steady-state thermohydraulic solution was achieved for the region inside the canister. Similarly, six simulations were performed for a single PWR fuel assembly/canister design. The square fuel rod arrays were contained in square canisters which would permit closer packing of the canisters in a storage facility. However, closer packing of the canisters would result in higher fuel temperatures which would possibly have an adverse impact on fuel integrity. Thus, the most important aspect of the analysis was to define the peak fuel assembly temperatures for each case. These results are presented along with various temperature profiles, heat flux distributions, and air velocity profiles within the canister. 48 figures, 4 tables

  11. Signal detection by active, noisy hair bundles

    Science.gov (United States)

    O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.

    2018-05-01

    Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.

  12. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    International Nuclear Information System (INIS)

    2014-08-01

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  13. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  14. Study on the transient behaviours of MNSR reactor for control rod withdrawal

    International Nuclear Information System (INIS)

    Yang Shunhai

    1995-10-01

    The transient behaviours of Miniature Neutron Source Reactor MNSR are analyzed and calculated with the reactor thermohydraulics RETRAN-02 program and the reactor physics MARIA program. The obtained event sequence and consequence from the calculation are compared with the experiments. The effective resonance integral for study on Doppler effect is taken into account. The reactivity temperature coefficient weighting factors are computed. The transient parameters related to reactor power peaking, coolant inlet temperatures, outlet temperatures and coolant mass flow, etc. are computed and compared with the experimental results. (6 refs., 2 figs., 5 tabs.)

  15. Thermohydraulics of emergency core cooling in light water reactors

    International Nuclear Information System (INIS)

    1989-10-01

    This report, by a group of experts of the OECD-NEA Committee on the Safety of Nuclear Installations, reviews the current state-of-knowledge in the field of emergency core cooling (ECC) for design-basis, loss-of-coolant accidents (LOCA) and core uncover transients in pressurized- and boiling-water reactors. An overview of the LOCA scenarios and ECC phenomenology is provided for each type of reactor, together with a brief description of their ECC systems. Separate-effects and integral-test facilities, which contribute to understanding and assessing the phenomenology, are reviewed together with similarity and scaling compromises. All relevant LOCA phenomena are then brought together in the form of tables. Each phenomenon is weighted in terms of its importance to the course of a LOCA, and appraised for the adequacy of its data base and analytical modelling. This qualitative procedure focusses attention on the modelling requirements of dominant LOCA phenomena and the current capabilities of the two-fluid models in two-phase flows. This leads into the key issue with ECC: quantitative code assessment and the application of system codes to predict with a well defined uncertainty the behaviour of a nuclear power plant. This issue, the methodologies being developed for code assessment and the question of how good is good enough are discussed in detail. Some general conclusions and recommendations for future research activities are provided

  16. Thermohydraulic feedbacks in self-pressurized reactor systems

    International Nuclear Information System (INIS)

    Fiebig, R.

    1977-01-01

    The impact on the dynamic behaviour of a self-pressurized reactor by the thermodynamic properties of the steam dome is investigated. For self-stabilization of the system the water of the primary circuit must be coupled thermodynamically to the steam in the steam dome, or alternatively the water in the reactor core must be subcooled sufficiently. Ways of thermodynamically coupling the water to the steam are heat conduction, boiling and condensation. A heat sink within the steam dome forces thermodynamic equilibrium between water and steam. This condition yields excellent self-control. Without heat sink thermal coupling is suspended at transients resulting in pressure rises. However, the reactor is still controlable as long as circuit and steam dome have direct contact. At the reactor of the NCS-80 a buffer volume of water separates primary circuit and steam volume. Stability is achieved by a heat sink in the steam dome and a shift of the core temperature into the subcooled domain effected by steam bubbles rising into the steam dome. (orig.) [de

  17. Thermohydraulic feedbacks in self-pressurized reactor systems

    International Nuclear Information System (INIS)

    Fiebig, R.

    1977-01-01

    The impact on the dynamic behaviour of a self-pressurized reactor by the thermodynamic properties of the steam dome is investigated. For self-stabilization of the system the water of the primary circuit must be coupled thermodynamically to the steam in the steam dome, or alternatively the water in the reactor core must be subcooled sufficiently. Ways of thermodynamically coupling the water to the steam are heat conduction, boiling and condensation. A heat sink within the steam dome forces thermodynamic equilibrium between water and steam. This condition yields excellent self-control. Without heat sink thermal coupling is suspended at transients resulting in pressure rises. However, the reactor is still controllable as long as circuit and steam dome have direct contact. At the reactor of the NCS-80 a buffer volume of water separates primary circuit and steam volume. Stability is achieved by a heat sink in the steam dome and a shift of the core temperature into the subcooled domain effected by steam bubbles rising into the steam dome. (orig.) [de

  18. Transient analyzer

    International Nuclear Information System (INIS)

    Muir, M.D.

    1975-01-01

    The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general

  19. Job Management and Task Bundling

    Science.gov (United States)

    Berkowitz, Evan; Jansen, Gustav R.; McElvain, Kenneth; Walker-Loud, André

    2018-03-01

    High Performance Computing is often performed on scarce and shared computing resources. To ensure computers are used to their full capacity, administrators often incentivize large workloads that are not possible on smaller systems. Measurements in Lattice QCD frequently do not scale to machine-size workloads. By bundling tasks together we can create large jobs suitable for gigantic partitions. We discuss METAQ and mpi_jm, software developed to dynamically group computational tasks together, that can intelligently backfill to consume idle time without substantial changes to users' current workflows or executables.

  20. Job Management and Task Bundling

    Directory of Open Access Journals (Sweden)

    Berkowitz Evan

    2018-01-01

    Full Text Available High Performance Computing is often performed on scarce and shared computing resources. To ensure computers are used to their full capacity, administrators often incentivize large workloads that are not possible on smaller systems. Measurements in Lattice QCD frequently do not scale to machine-size workloads. By bundling tasks together we can create large jobs suitable for gigantic partitions. We discuss METAQ and mpi_jm, software developed to dynamically group computational tasks together, that can intelligently backfill to consume idle time without substantial changes to users’ current workflows or executables.

  1. Fuel bundle for nuclear reactor

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1977-01-01

    The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr

  2. Reduction of symplectic principal R-bundles

    International Nuclear Information System (INIS)

    Lacirasella, Ignazio; Marrero, Juan Carlos; Padrón, Edith

    2012-01-01

    We describe a reduction process for symplectic principal R-bundles in the presence of a momentum map. These types of structures play an important role in the geometric formulation of non-autonomous Hamiltonian systems. We apply this procedure to the standard symplectic principal R-bundle associated with a fibration π:M→R. Moreover, we show a reduction process for non-autonomous Hamiltonian systems on symplectic principal R-bundles. We apply these reduction processes to several examples. (paper)

  3. ACM Bundles on Del Pezzo surfaces

    Directory of Open Access Journals (Sweden)

    Joan Pons-Llopis

    2009-11-01

    Full Text Available ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface X of degree less or equal than six and for any n ≥ 2 we construct a family of dimension ≥ n − 1 of non-isomorphic simple ACM bundles of rank n on X.

  4. Bundling and mergers in energy markets

    International Nuclear Information System (INIS)

    Granier, Laurent; Podesta, Marion

    2010-01-01

    Does bundling trigger mergers in energy industries? We observe mergers between firms belonging to various energy markets, for instance between gas and electricity providers. These mergers enable firms to bundle. We consider two horizontally differentiated markets. In this framework, we show that bundling strategies in energy markets create incentives to form multi-market firms in order to supply bi-energy packages. Moreover, we find that this type of merger is detrimental to social welfare. (author)

  5. Transient behavior of natural circulation for boiling two-phase flow, 2

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Chiang, Jing-Hsien; Mori, Michitugu.

    1991-01-01

    In this set of experiments, natural circulation in boiling two-phase flow has been investigated for power transients, simulating the start-up process in a natural circulation BWR. This was done in order to understand the underlying mechanism of thermo-hydraulic instability which may appear during a start-up. In this paper, geysering is dealt with especially and the driving mechanism is clarified by investigating the stability related to effects of inlet velocity, subcooling, temperature in an outlet plenum and non-heated length between heated section and the outlet plenum. Furthermore, by considering these results and the operational experience in the Dodewaard reactor, recommendations on how the thermo-hydraulic instabilities can be prevented from occurring are proposed concerning a reactor configuration and start-up procedure for natural circulation BWRs. (author)

  6. Entropy for frame bundle systems and Grassmann bundle systems induced by a diffeomorphism

    Institute of Scientific and Technical Information of China (English)

    SUN; Weniang(孙文祥)

    2002-01-01

    ALiao hyperbolic diffeomorphism has equal measure entropy and topological entropy to that ofits induced systems on frame bundles and Grassmann bundles. This solves a problem Liao posed in 1996 forLiao hyperbolic diffeomorphisms.

  7. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  8. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S; Chung, H J; Chun, S Y; Yang, S K; Chung, M K [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  9. Cotangent bundle approach to noninertial frames

    International Nuclear Information System (INIS)

    DeFacio, B.; Retzloff, D.

    1980-01-01

    The most general possible noninertial acceleration in special relativity is formulated with differential forms in the cotangent bundle. We show that the Lie derivative plays the same role in the cotangent bundle that the covariant derivative plays in the tangent bundle. We also show that a cotangent bundle analog of Fermi--Walker transport can be based upon the, ''cotangent-geodesic'' equation, L/sub u/ω=0. This gives a generalization of the work by Kiehn on classical Hamiltonian mechanics to special relativity

  10. A Thermo-Hydraulic Tool for Automatic Virtual Hazop Evaluation

    Directory of Open Access Journals (Sweden)

    Pugi L.

    2014-12-01

    Full Text Available Development of complex lubrication systems in the Oil&Gas industry has reached high levels of competitiveness in terms of requested performances and reliability. In particular, the use of HazOp (acronym of Hazard and Operability analysis represents a decisive factor to evaluate safety and reliability of plants. The HazOp analysis is a structured and systematic examination of a planned or existing operation in order to identify and evaluate problems that may represent risks to personnel or equipment. In particular, P&ID schemes (acronym of Piping and Instrument Diagram according to regulation in force ISO 14617 are used to evaluate the design of the plant in order to increase its safety and reliability in different operating conditions. The use of a simulation tool can drastically increase speed, efficiency and reliability of the design process. In this work, a tool, called TTH lib (acronym of Transient Thermal Hydraulic Library for the 1-D simulation of thermal hydraulic plants is presented. The proposed tool is applied to the analysis of safety relevant components of compressor and pumping units, such as lubrication circuits. Opposed to the known commercial products, TTH lib has been customized in order to ease simulation of complex interactions with digital logic components and plant controllers including their sensors and measurement systems. In particular, the proposed tool is optimized for fixed step execution and fast prototyping of Real Time code both for testing and production purposes. TTH lib can be used as a standard SimScape-Simulink library of components optimized and specifically designed in accordance with the P&ID definitions. Finally, an automatic code generation procedure has been developed, so TTH simulation models can be directly assembled from the P&ID schemes and technical documentation including detailed informations of sensor and measurement system.

  11. THALES, Thermohydraulic LOCA Analysis of BWR and PWR

    International Nuclear Information System (INIS)

    ABE, Kiyoharu

    1990-01-01

    reactor coolant system, combustible gas burning, atmosphere- structure heat transfer, ventilation, containment spray cooling, etc. After the molten core penetrates the reactor bottom head, steam generation, concrete disintegration and noncondensable gas generation are calculated in the reactor cavity or the pedestal. 2 - Method of solution: Each of the THALES member codes first establishes the steady state conditions after reading input data. Then iterative time-dependent calculation is continued, taking account of various phenomena and events and their interactions which will occur in the course of a postulated severe accident. The transient calculations are iterated by the physical times specified by input. Generally the RCS thermal hydraulic analysis with the THALES-PM or THALES-BM code is first carried out and its results are transferred to the following containment analysis with the THALES-CV code. Then both results are transferred to a code for analyzing fission product release and transport behavior. Automatic data transfer is possible in the case the JAERI's ART code is used for fission product behavior analysis. In overall thermal hydraulic analysis, a new method is adopted aiming at sufficiently accurate estimation of mixture levels in the reactor coolant system and the containment in a reasonable computer time. The heat transfer calculation in the core is carried out based on the backward method. 3 - Restrictions on the complexity of the problem: Restrictions relating to storage allocation are: (1) Maximum number of radial regions in the core : 10; (2) Maximum number of axial increments in the fuel rods : 50; (3) Maximum number of loops in the PWR primary system : 4; (4) Maximum number of volumes in the PWR primary system : 11; (5) Number of BWR recirculation loops: 2 (fixed); (6) Number of volumes in the BWR reactor coolant system : 7 (fixed); (7) Maximum number of compartments in the containment : 10. There is another restriction, which relates to time step

  12. 3. Workshop for IAEA ICSP on Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents. Presentations

    International Nuclear Information System (INIS)

    2012-04-01

    Most advanced nuclear power plant designs adopted several kinds of passive systems. Natural circulation is used as a key driving force for many passive systems and even for core heat removal during normal operation such as NuScale, CAREM, ESBWR and Indian AHWR designs. Simulation of natural circulation phenomena is very challenging since the driving force of it is weak compared to forced circulation and involves a coupling between primary system and containment for integral type reactor. The IAEA ICSP (International Collaborative Standard Problem) on 'Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents' was proposed within the CRP on 'Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems that utilize Natural Circulation'. Oregon State University (OSU) of USA offered to host this ICSP. This ICSP plans to conduct the following experiments and blind/open simulations with system codes: 1. Quasi-steady state operation with different core power levels: Conduct quasi-steady state operation with step-wise increase of core power level in order to observe single phase natural circulation flow according to power level. The experimental facility and operating conditions for an integral PWR will be used. 2. Thermo-hydraulic Coupling between Primary system and Containment: Conduct a loss of feedwater transient with subsequent ADS blowdown and long term cooling to determine the progression of a loss of feedwater transient by natural circulation through primary and containment systems. These tests would examine the blowdown phase as well as the long term cooling using sump natural circulation by coupling the primary to containment systems. This data could be used for the evaluation of system codes to determine if they model specific phenomena in an accurate manner. OSU completed planned two ICSP tests in July 2011 and real initial and boundary conditions measured from the

  13. Two-phase flow modeling in the rod bundle subchannel analysis

    International Nuclear Information System (INIS)

    Hisashi, Ninokata

    2006-01-01

    In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current methodology adopted to improve

  14. Two-phase flow modeling in the rod bundle subchannel analysis

    International Nuclear Information System (INIS)

    Hisashi, Ninokata

    2004-01-01

    Full text of publication follows:In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current

  15. Removing fuelling transient using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, S.; Chan, P.K.; Bonin, H.W., E-mail: Stephane.Paquette@rmc.ca [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, Ontario (Canada); Pant, A. [Cameco Fuel Manufacturing, Port Hope, Ontario (Canada)

    2012-07-01

    Preliminary criticality and burnup calculation results indicate that by employing a small amount of neutron absorber the fuelling transient, currently occurring in a CANDU 37-element fuel bundle, can be significantly reduced. A parametric study using the Los Alamos National Laboratories' MCNP 5 code and Atomic Energy of Canada Limited's WIMS-AECL 3.1 is presented in this paper. (author)

  16. Thermo-hydraulic characteristics of ship propulsion reactor in the conditions of ship motions and safety assessment

    International Nuclear Information System (INIS)

    Kobayashi, Michiyuki; Aya, Izuo; Inasaka, Fujio; Murata, Hiroyuki; Odano, Naoteru; Shiozaki, Koki

    1998-01-01

    A research project from 1995-1999 had a plan to make experimental studies on (1) safety of nuclear ship loaded with an integral ship propulsion reactor (2) effects of pulsating flow on the thermo-hydraulic characteristics of ship propulsion reactor and (3) thermo-hydraulic behaviors of the reactor container at the time of accident in a passively safe ship propulsion reactor. Development of a data base for ship propulsion reactor was attempted using previous experimental data on the thermo-hydraulic characteristics of the reactor in the institute in addition to the present results aiming to make general analytical evaluation for the safety of the engineering-simulation system for nuclear ship. A general data base was obtained by integrating the data list and the analytical program for static characteristics. A test equipment which allows to visualize the pulsating flow was produced and visualization experiments have started. (M.N.)

  17. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  18. TRAWA, a transient analysis code for water reactions

    International Nuclear Information System (INIS)

    Rajamaeki, M.

    1976-06-01

    TRAWA is a transient analysis code for water reactors. It solves the two-group neutron diffusion equations simultaneously with the heat conduction equations and the two-phase hydraulic equations for one or more channels. At most one-dimensional submodels are used. Neither thermal nor hydraulic mixing appear between channels. Doppler, coolant density, coolant temperature, and soluble poison density feedbacks due to the thermohydraulics of the channels are described by using polynomial expansions for the group constants. The hydraulic circuit outside the reactor core consists of by-pass channel and risers with two-phase flow and of pump lines with incompressible flow. Nontrivial implicit methods are employed in the discretization of the equations to allow for sparse spatial mesh and flexible choice of time steps. Various transients can be calculated by applying external disturbances. The code is extensively supplied by input and output capabilities. TRAWA is written in FORTRAN V for UNIVAC 1108 computer. (author)

  19. Thermohydraulic calculations in rectangular channels for RA-6 type reactors with transition regime

    International Nuclear Information System (INIS)

    Sillin, N; Vertullo, A.; Masson, V.; Hilal, R

    2009-01-01

    In August 2000 and within the framework of the RA-6 core conversion from high to low enrichment (20%), a preliminary analysis was performed to evaluate the maximum power that the reactor could operate with the new kernel without makeing substantial changes. This meant keeping intact, for example, the concrete shield of the pool and the nucleus inlet and outlet pipes embedded in the walls. Preliminary results indicated that for these boundary conditions a maximum power of about 3 MWt could be achieved. In August 2005 the project was resumed and new calculations performed taking as a starting point the ECBE plate fuel element(U3O8-Al). A core was developed with cooling channle widths of 2.6 mm for the control fuel elements and 2.7 mm for standard fuel elements. The thermo-hydraulic calculation puts in evidence that coolant flow into the core was in the transitional regime for the vast majority of configurations. While TERMIC code, used for thermo-hydraulic design, has been extensively tested and validated for use in research reactors under turbulent and laminar flows, this is not so for transition conditions. The transition regime is strongly dependent on conditions such as flow inlet characteristics, channel geometry, etc.. and therefore there are no reliable correlations for general use. For this reason we found it convenient to carry out experiments simulating the working conditions in order to adjust the code results with experimental data. In the present work we show the experimental results, the simulation of the experiences using the TERMIC code, and the adjustments made to the correlations used by the code so that it can be applied to the thermo-hydraulic design of the new core. [es

  20. Experimental study on thermo-hydraulic instability on reduced-moderation natural circulation BWR concept

    International Nuclear Information System (INIS)

    Watanabe, Noriyuki; Subki, M.H.; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Reduced-moderation natural circulation BWR has been promoted to solve the recent challenges in BWR nuclear power technology problems as one of advanced small and medium-sized reactors equipped with the passive safety features in conformity with the natural law. However, the elimination of recirculation pumps and a high-density core due to the increase of conversion ratio could cause various thermo-hydraulic instabilities especially during the start-up stage. The occurrences of the thermo-hydraulic instabilities are not desirable and it is one of the main challenges in establishing reduced-moderation natural circulation BWR as a commercial reactor. The purpose of this present study is to experimentally investigate the driving mechanism of the thermo-hydraulic instabilities and the effect of system pressure on the unstable flow patterns. Hence, as the fundamental research for this study, a natural circulation loop that carries boiling fluid with parallel boiling channel has been constructed. Channel gap that has been set at 2 mm in order to simulate reduced-moderation reactor core. Pressure ranges of 0.1 up to 0.7 MPa, input heat flux range of 0 ou to 577 kW/m 2 , and inlet subcooling temperatures of 5, 10, and 15 K respectively, are imposed in the experiments. This experiment clarifies that changes in unstable flow patterns with increase in heat flux can be classified into two in response to system pressure range. In case of atmospheric pressure, unstable flow patters has been classified in beyond order, (1) in-phase geysering, (2) transition oscillation combined with both features of in-phase geysering and natural circulation oscillation, (3) natural circulation oscillation induced by hydrostatic head fluctuation, (4) density wave oscillation, and finally (5) stable boiling two-phase flow. On the other hand, in the system pressure range from 0.2 to 0.7 MPa, unstable patters have been dramatically changed in the following order (1) out-of-phase geysering, (2

  1. The significance of thermohydraulic conditions for the corrosion safety of PWR steam generators

    International Nuclear Information System (INIS)

    Gulich, J.F.

    1975-04-01

    In several PWR nuclear power plants leakages have occurred in the steam generator which were caused by localised corrosion attack. While the attention of manufacturers and operators is focused on the influences of feedwater chemistry and tube material, the present work highlights the fact that the damage always occurred in those places where flow regimed are poorly defined. The investigation leads to the result that local dry out of the heating surface can be contributing cause of damage. A method is indicated for estimating the thermohydraulic conditions in the inflow region over the tube plate and measures to improve corrosion safety are discussed. (author)

  2. Validation of thermohydraulic codes by comparison of experimental results with computer simulations

    International Nuclear Information System (INIS)

    Madeira, A.A.; Galetti, M.R.S.; Pontedeiro, A.C.

    1989-01-01

    The results obtained by simulation of three cases from CANON depressurization experience, using the TRAC-PF1 computer code, version 7.6, implanted in the VAX-11/750 computer of Brazilian CNEN, are presented. The CANON experience was chosen as first standard problem in thermo-hydraulic to be discussed at ENFIR for comparing results from different computer codes with results obtained experimentally. The ability of TRAC-PF1 code to prevent the depressurization phase of a loss of primary collant accident in pressurized water reactors is evaluated. (M.C.K.) [pt

  3. ASCOT-1, Thermohydraulics of Axisymmetric PWR Core with Homogeneous Flow During LOCA

    International Nuclear Information System (INIS)

    1978-01-01

    1 - Nature of the physical problem solved: ASCOT-1 is used to analyze the thermo-hydraulic behaviour in a PWR core during a loss-of-coolant accident. 2 - Method of solution: The core is assumed to be axisymmetric two-dimensional and the conservation laws are solved by the method of characteristics. For the temperature response of fuel in the annular regions into which the core is divided, the heat conduction equations are solved by an explicit method with averaged flow conditions. 3 - Restrictions on the complexity of the problem: Axisymmetric two-dimensional homogeneous flows

  4. Reliability analysis of PWR thermohydraulic design by the Monte Carlo method

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da; Berthoud, J.S.; Carajilescov, P.

    1977-01-01

    The operating power level of a PWR is limited by the occurence of DNB. Without affecting the safety and performance of the reactor, it is possible to admit failure of a certain number of core channels. The thermohydraulic design, however, is affect by a great number of uncertainties of deterministic or statistical nature. In the present work, the Monte Carlo method is applied to yield the probability that a number F of channels submitted to boiling crises will not exceed a number F* previously given. This probability is obtained as function of the reactor power level. (Author) [pt

  5. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  6. Anatomic Double-bundle ACL Reconstruction

    NARCIS (Netherlands)

    Schreiber, Verena M.; van Eck, Carola F.; Fu, Freddie H.

    2010-01-01

    Rupture of the anterior cruciate ligament (ACL) is one of the most frequent forms of knee trauma. The traditional surgical treatment for ACL rupture is single-bundle reconstruction. However, during the past few years there has been a shift in interest toward double-bundle reconstruction to closely

  7. CANFLEX fuel bundle strength tests (test report)

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, C. H.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs

  8. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  9. Output commitment through product bundling: experimental evidence

    NARCIS (Netherlands)

    Hinloopen, J.; Mueller, W.; Normann, H.T.

    2011-01-01

    We analyze the impact of product bundling in experimental markets. A firm has monopoly power in one market but faces competition by a second firm in another market. We compare treatments where the monopolist can bundle its two products to treatments where it cannot, and we contrast simultaneous and

  10. RFSP simulations of Darlington FINCH refuelling transient

    International Nuclear Information System (INIS)

    Carruthers, E.V.; Chow, H.C.

    1997-01-01

    Immediately after refuelling of a channel, the fresh bundles are free of fission products. Xenon-135, the most notable of the saturating fission products, builds up to an equilibrium level in about 30 h. The channel power of the refuelled channel would therefore initially peak and then drop to a steady-state level. The RFSP code can track saturating-fission-product transients and power transients. The Fully INstrumented CHannels (FINCHs) in Darlington NGS provides channel power data on the refuelling power transients. In this paper, such data has been used to identify the physical evidence of the fission-product transient effect on channel power, and to validate RFSP fission-product-driver calculation results. (author)

  11. Fuel bundle movement due to reverse flow

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, N N; Akalin, O [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    When a break occurs in the inlet feeder or inlet header, the rapid depressurization will cause the channel flow to reverse forcing the string of bundles to accelerate and impact with upstream shield plug. A model has been developed to predict the bundle motion due to the channel flow reversal. The model accounts for various forces acting on the bundle. A series of five reverse flow, bundle acceleration experiments have been conducted simulating a break in the inlet feeder of a CANDU fuel channel. The model has been validated against the experiments. The predicted impact velocities are in good agreement with the measured values. It is demonstrated that the model may be successfully used in predicting bundle relocation timing following a large LOCA (loss of coolant). (author). 7 refs., 3 tabs., 11 figs.

  12. Chiral equations and fiber bundles

    International Nuclear Information System (INIS)

    Mateos, T.; Becerril, R.

    1992-01-01

    Using the hypothesis g = g (lambda i ), the chiral equations (rhog, z g -1 ), z -bar + (rhog, z -barg -1 ), z = 0 are reduced to a Killing equation of a p-dimensional space V p , being lambda i lambda i (z, z-bar) 'geodesic' parameters of V p . Supposing that g belongs to a Lie group G, one writes the corresponding Lie algebra elements (F) in terms of the Killing vectors of V p and the generators of the subalgebra of F of dimension d = dimension of the Killing space. The elements of the subalgebras belong to equivalence classes which in the respective group form a principal fiber bundle. This is used to integrate the matrix g in terms of the complex variables z and z-bar ( Author)

  13. Constructing co-Higgs bundles on CP^2

    OpenAIRE

    Rayan, Steven

    2013-01-01

    On a complex manifold, a co-Higgs bundle is a holomorphic vector bundle with an endomorphism twisted by the tangent bundle. The notion of generalized holomorphic bundle in Hitchin's generalized geometry coincides with that of co-Higgs bundle when the generalized complex manifold is ordinary complex. Schwarzenberger's rank-2 vector bundle on the projective plane, constructed from a line bundle on the double cover CP^1 \\times CP^1 \\to CP^2, is naturally a co-Higgs bundle, with the twisted endom...

  14. MCNP Simulations of End Flux Peaking in ACR-1000, 2.4 wt % {sup 235}U Fuel Bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Ian; Donnelly, Jim [Atomic Energy of Canada Limited (AECL), 2251 Speakman Drive, Mississauga, ON, L5K 1B2 (Canada)

    2008-07-01

    This paper examines the end flux peaking in ACR-1000 fuel bundles. Reactor physics simulations are performed with MCNP to assess the steady state end-flux peaking in an infinite lattice of ACR fuel, as well as to quantify the peaking that occurs during refuelling. 3-dimensional MCNP models are created based on the detailed geometry of the fuel bundle. Detailed position-dependent fuel compositions are obtained from MONTEBURNS which couples MCNP and ORIGIN2.2. Axial and radial power profiles are obtained for both fresh and mid-burnup fuel bundles in an infinite lattice. Subsequently an assessment of the impact of a refuelling transient on the power profiles is performed. The refuelling transient is found to increase the end flux peaking in the region adjacent to light water. (authors)

  15. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2017-09-01

    A novel thermo-hydraulic coupling model was proposed in this study to investigate the crater formation in electrical discharge machining (EDM). The temperature distribution of workpiece materials was included, and the crater formation process was explained from the perspective of hydrodynamic characteristics of the molten region. To better track the morphology of the crater and the movement of debris, the level-set method was introduced in this study. Simulation results showed that the crater appears shortly after the ignition of the discharge, and the molten material is removed by vaporizing in the initial stage, then by splashing at the following time. The driving force for the detachment of debris in the splashing removal stage comes from the extremely large pressure difference in the upper part of the molten region, and the morphology of the crater is also influenced by the shearing flow of molten material. It was found that the removal ratio of molten material is only about 7.63% under the studied conditions, leaving most to form the re-solidification layer on the surface of the crater. The size of the crater reaches the maximum at the end of discharge duration then experiences a slight reduction because of the reflux of molten material after the discharge. The results of single pulse discharge experiments showed that the morphologies and sizes between the simulation crater and actual crater are good at agreement, verifying the feasibility of the proposed thermo-hydraulic coupling model in explaining the mechanisms of crater formation in EDM.

  16. On three-dimensional nuclear thermo-hydraulic computation techniques for ATR

    International Nuclear Information System (INIS)

    1997-08-01

    The three-dimensional computation code for nuclear thermo-hydraulic combination core LAYMON-2A is used for the calculation of the power distribution and the control rod reactivity value of the ATR. This code possesses various functions which are required for planning the core operation such as the search function for critical boric acid concentration, and can do various simulation calculations such as core burning calculation. Further, the three-dimensional analysis code for xenon dynamic characteristics in the core LAYMON-2C, in which the dynamic characteristic equation of xenon-samarium was incorporated into the LAYMON-2A code can take the change with time lapse of xenon-samarium concentration accompanying the change of power level and power distribution into account, and it is used for the analysis of the spatial vibration characteristics of power and the regional power control characteristics due to xenon in the core. As to the LAYMON-2A, the computation flow, power distribution and thermo-hydraulic computation models, and critical search function are explained. As to the LAYMON-2C, the computation flow is described. The comparison of the calculated values by using the LAYMON-2A code and the operation data of the Fugen is reported. (K.I.)

  17. Neutronic and thermo-hydraulic design of LEU core for Japan Research Reactor 4

    International Nuclear Information System (INIS)

    Arigane, Kenji; Watanabe, Shukichi; Tsuruta, Harumichi

    1988-04-01

    As a part of the Reduced Enrichment Research and Test Reactor (RERTR) program in JAERI, the enrichment reduction for Japan Research Reactor 4 (JRR-4) is in progress. A fuel element using a 19.75 % enriched UAlx-Al dispersion type with a uranium density of 2.2 g/cm 3 was designed as the LEU fuel and the neutronic and thermo-hydraulic performances of the LEU core were compared with those of the current HEU core. The results of the neutronic design are as follows: (1) the excess reactivity of the LEU core becomes about 1 % Δk/k less, (2) the thermal neutron flux in the fuel region decreases about 25 % on the average, (3) the thermal neutron fluxes in the irradiation pipes are almost the same and (4) the core burnup lifetime becomes about 20 % longer. The thermo-hydraulic design also shows that: (1) the fuel plate surface temperature decreases about 10 deg C due to the increase of the number of fuel plates and (2) the temperature margin with respect to the ONB temperature increases. Therefore, it is confirmed that the same utilization performance as the HEU core is attainable with the LEU core. (author)

  18. EBaLM-THP - A neural network thermohydraulic prediction model of advanced nuclear system components

    International Nuclear Information System (INIS)

    Ridluan, Artit; Manic, Milos; Tokuhiro, Akira

    2009-01-01

    In lieu of the worldwide energy demand, economics and consensus concern regarding climate change, nuclear power - specifically near-term nuclear power plant designs are receiving increased engineering attention. However, as the nuclear industry is emerging from a lull in component modeling and analyses, optimization for example using ANN has received little research attention. This paper presents a neural network approach, EBaLM, based on a specific combination of two training algorithms, error-back propagation (EBP), and Levenberg-Marquardt (LM), applied to a problem of thermohydraulics predictions (THPs) of advanced nuclear heat exchangers (HXs). The suitability of the EBaLM-THP algorithm was tested on two different reference problems in thermohydraulic design analysis; that is, convective heat transfer of supercritical CO 2 through a single tube, and convective heat transfer through a printed circuit heat exchanger (PCHE) using CO 2 . Further, comparison of EBaLM-THP and a polynomial fitting approach was considered. Within the defined reference problems, the neural network approach generated good results in both cases, in spite of highly fluctuating trends in the dataset used. In fact, the neural network approach demonstrated cumulative measure of the error one to three orders of magnitude smaller than that produce via polynomial fitting of 10th order

  19. Analysis of the influences of thermal correlations on neutronic–thermohydraulic coupling calculation of SCWR

    International Nuclear Information System (INIS)

    Xu, Weifeng; Cai, Jiejin; Liu, Shichang; Tang, Qi

    2015-01-01

    Highlights: • Different thermal correlations for supercritical water are summarized. • Influences of thermal correlations on neutronic–thermohydraulic coupling calculation are analyzed. • Sensitivity analysis has been done for the thermal correlations. - Abstract: The neutronic–thermohydraulic coupling (N–T coupling) calculation is important on core design, security and stability analysis of supercritical water-coolant reactor (SCWR), and a suitable thermal correlation is also necessary for the N–T coupling calculation. In this paper, the scheme of the U.S. SCWR design and the process of the N–T coupling will be introduced as well as some of different thermal correlations firstly. Then, based on the N–T coupling system ARNT, the U.S. SCWR design is simulated to analyze the influences of thermal correlations on N–T coupling calculation of SCWR so as to find out which correlation is best. The result shows that all thermal correlations are suitable. However, using different correlations for calculation leads to a great difference in safety margin of SCWR. What's more, the Bishop and Jackson correlations are more suitable and conservative, but the Griem correlation is not very precise. And the effect of buoyancy lift makes little influence on the calculation of heat transfer of SCWR. This research is also of great significance for the further study of N–T coupling of SCWR

  20. Validation and verification of the MTR{sub P}C thermohydraulic package

    Energy Technology Data Exchange (ETDEWEB)

    Doval, Alicia [INVAP S.E., Bariloche, Rio Negro (Argentina). Nuclear Engineering Dept.]. E-mail: doval@invap.com.ar

    1998-07-01

    The MTR{sub P}C v2.6 is a computational package developed for research reactor design and calculation. It covers three of the main aspects of a research reactor: neutronic, shielding and thermohydraulic. In this work only the thermohydraulic package will be covered, dealing with verification and validation aspects. The package consists of the following steady state programs: CAUDVAP 2.60 for the hydraulic calculus, estimates the velocity distribution through different parallel channels connected to a common inlet and outlet common plenum. TERMIC 1H v3.0, used for the thermal design of research reactors, provides information about heat flux for a given maximum wall temperature, onset of nucleate boiling, redistribution phenomena and departure from nucleate boiling. CONVEC V3.0 allows natural convection calculations, giving information on heat fluxes for onset of nucleate boiling, pulsed and burn-out phenomena as well as total coolant flow. Results have been validated against experimental values and verified against theoretical and computational programmes results, showing a good agreement. (author)

  1. Evaluation of droplet deposition in rod bundle

    International Nuclear Information System (INIS)

    Ji, W.; Gu, C.Y.; Anglart, H.

    1997-01-01

    Deposition model for droplets in gas droplet two-phase flow in rod bundle is developed in this work using the Lagrangian method. The model is evaluated in a 9-rod bundle geometry. The deposition coefficient in the bundle geometry are compared with that in round tube. The influences of the droplet size and gas mass flow rate on deposition coefficient are investigated. Furthermore, the droplet motion is studied in more detail by dividing the bundle channel into sub-channels. The results show that the overall deposition coefficient in the bundle geometry is close to that in the round tube with the diameter equal to the bundle hydraulic diameter. The calculated deposition coefficient is found to be higher for higher gas mass flux and smaller droplets. The study in the sub-channels show that the ratio between the local deposition coefficient for a sub-channel and the averaged value for the whole bundle is close to a constant value, deviations from the mean value for all the calculated cases being within the range of ±13%. (author)

  2. Preliminary report: NIF laser bundle review

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-01-01

    As requested in the guidance memo 1 , this committe determined whether there are compelling reasons to recommend a change from the NIF CDR baseline laser. The baseline bundle design based on a tradeoff between cost and technical risk, which is replicated four times to create the required 192 beams. The baseline amplifier design uses bottom loading 1x4 slab and flashlamp cassettes for amplifier maintenance and large vacuum enclosures (2.5m high x 7m wide in cross-section for each of the two spatial filters in each of the four bundles. The laser beams are arranged in two laser bays configured in a u-shape around the target area. The entire bundle review effort was performed in a very short time (six weeks) and with limited resources (15 personnel part-time). This should be compared to the effort that produced the CDR design (12 months, 50 to 100 personnel). This committee considered three alternate bundle configurations (2x2, 4x2, and 4x4 bundles), and evaluated each bundle against the baseline design using the seven requested issues in the guidance memo: Cost; schedule; performance risk; maintainability/operability; hardware failure cost exposure; activation; and design flexibility. The issues were reviewed to identify differences between each alternate bundle configuration and the baseline

  3. The applicability of CFD to simulate and study the mixing process and the thermo-hydraulic consequences of a main steam line break in PWR model

    Directory of Open Access Journals (Sweden)

    Farkas Istvan

    2017-01-01

    Full Text Available This paper focuses on the validation and applicability of CFD to simulate and analyze the thermo-hydraulic consequences of a main steam line break. Extensive validation data come from experiments performed using the Rossendorf coolant mixing model facility. For the calculation, the range of 9 to 12 million hexahe¬dral cells was constructed to capture all details in the interrogation domain in the system. The analysis was performed by running a time-dependent calculation, Detailed analyses were made at different cross-sections in the system to evaluate not only the value of the maximum and minimum temperature, but also the loca¬tion and the time at which it occurs during the transient which is considered to be indicator for the quality of mixing in the system. CFD and experimental results were qualitatively compared; mixing in the cold legs with emergency core cooling systems was overestimated. This could be explained by the sensitivity to the bound¬ary conditions. In the downcomer, the experiments displayed higher mixing: by our assumption this related to the dense measurement grid (they were not modelled. The temperature distribution in the core inlet plane agreed with the measurement results. Minor deviations were seen in the quantitative comparisons: the maximum temperature difference was 2ºC.

  4. Full scale mock-up tests for rod bundle thermal-hydraulics in Japan

    International Nuclear Information System (INIS)

    Sugawara, S.

    1995-01-01

    This poster describes tests aimed at development and validation of principal design methodology of rod bundle thermal-hydraulics correlations. The works are based on domestic data base using the full-scale mock-up test facilities. The scope of the tests comprises DNB heat flux, transient DNB heat flux, post DNB heat transfer, pressure drop and void distribution. The works have been performed under collaboration among electric facilities, NPP vendors, universities, governmental corporations. 1 tab., 14 figs

  5. A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark

    International Nuclear Information System (INIS)

    In, Wang-Kee; Hwang, Dae-Hyun; Jeong, Jae Jun

    2013-01-01

    Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment

  6. Adaptation and implementation of the TRACE code for transient analysis on designs of cooled lead fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2014-01-01

    The article describes the changes implemented in the TRACE code to include thermodynamic tables of liquid lead drawn from experimental results. He then explains the process for developing a thermohydraulic model for the prototype ALFRED and analysis of a selection of representative transient conducted within the framework of international research projects. The study demonstrates the applicability of TRACE code to simulate designs of cooled lead fast reactors and exposes the high safety margins are there in this technology to accommodate the most severe transients identified in their security study. (Author)

  7. Bundle duct interaction studies for fuel assemblies

    International Nuclear Information System (INIS)

    Hsia, H.T.S.; Kaplan, S.

    1981-06-01

    It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant

  8. Geometry of Quantum Principal Bundles. Pt. 1

    International Nuclear Information System (INIS)

    Durdevic, M.

    1996-01-01

    A theory of principal bundles possessing quantum structure groups and classical base manifolds is presented. Structural analysis of such quantum principal bundles is performed. A differential calculus is constructed, combining differential forms on the base manifold with an appropriate differential calculus on the structure quantum group. Relations between the calculus on the group and the calculus on the bundle are investigated. A concept of (pseudo)tensoriality is formulated. The formalism of connections is developed. In particular, operators of horizontal projection, covariant derivative and curvature are constructed and analyzed. Generalizations of the first Structure Equation and of the Bianchi identity are found. Illustrative examples are presented. (orig.)

  9. Bundles of C*-categories and duality

    OpenAIRE

    Vasselli, Ezio

    2005-01-01

    We introduce the notions of multiplier C*-category and continuous bundle of C*-categories, as the categorical analogues of the corresponding C*-algebraic notions. Every symmetric tensor C*-category with conjugates is a continuous bundle of C*-categories, with base space the spectrum of the C*-algebra associated with the identity object. We classify tensor C*-categories with fibre the dual of a compact Lie group in terms of suitable principal bundles. This also provides a classification for ce...

  10. Methodology for the study of the boiling crisis in a nuclear fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Crecy, F. de; Juhel, D. [Commissariat a l`Energie Atomique, Grenoble (France)

    1995-09-01

    The boiling crisis is one of the phenoumena limiting the available power from a nuclear power plant. It has been widely studied for decades, and numerous data, models, correlations or tables are now available in the literature. If we now try to obtain a general view of previous work in this field, we may note that there are several ways of tackling the subject. The mechanistic models try to model the two-phase flow topology and the interaction between different sublayers, and must be validated by comparison with basic experiments, such as DEBORA, where we try to obtain some detailed informations on the two-phase flow pattern in a pure and simple geometry. This allows us to obtain better knowledge of the so-called {open_quotes}intrinsic effect{close_quotes}. These models are not yet acceptable for nuclear use. As the geometry of the rod bundles and grids has a tremendous importance for the Critical Heat Flux (CHF), it is mandatory to have more precise results for a given fuel rod bundle in a restricted range of parameters: this leads to the empirical approach, using empirical CHF predictors (tables, correlations, splines, etc...). One of the key points of such a method is the obtaining local thermohydraulic values, that is to say the evaluation of the so-called {open_quotes}mixing effect{close_quotes}. This is done by a subchannel analysis code or equivalent, which can be qualified on two kinds of experiments: overall flow measurements in a subchannel, such as HYDROMEL in single-phase flow or GRAZIELLA in two-phase flow, or detailed measurements inside a subchannel, such as AGATE. Nevertheless, the final qualification of a specific nuclear fuel, i.e. the synthesis of these mechanistic and empirical approaches, intrinsic and mixing effects, etc..., must be achieved on a global test such as OMEGA. This is the strategy used in France by CEA and its partners FRAMATOME and EdF.

  11. Evaluation of bundle duct interaction by out of pile compressive test of FBR bundles. FFTF type bundle

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kosuke; Yamamoto, Yuji; Nagamine, Tsuyoshi; Maeda, Koji [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-10-01

    Bundle duct interaction (BDI) caused by expansion of fuel pin bundle becomes one of the main limiting factors for fuel life times. Then, it is important for the design of fast reactor fuel assembly to understand the BDI behavior in detail. In order to understand the BDI behavior, out of pile compressive tests were conducted for FFTF type bundle by use of X-ray CT equipment. In these compressive tests, two type bundles with different accuracy of initial wire position were conducted. The objective of this test is to evaluate the influence of the initial error from standard position of wire at the same axial position. The locations of the pins and the duct flats are analyzed from CT image data. Quantitative evaluation was performed at the CT image data and discussed the bundle deformation status under BDI condition. Following results are obtained. 1) The accuracy of initial wire position is strongly depends on the pin-to-duct contact behavior. In the case of bundle with large error from standard position, pin-to-duct contact is delayed. 2) The BDI mitigation of the bundle with small error from standard wire position is following: The elastic ovality is the dominant deformation in mild BDI condition, then the wire dispersion and pin dispersion are occurred in severe BDI condition. 3) The BDI mitigation of the bundle with large error from standard wire position is following: The elastic ovality and local bowing of pins with large error from standard wire position are occurred in mild BDI condition, then pin dispersion is occurred around pins with large error from standard wire position, finally wire dispersion is occurred in severe BDI condition. 4) The existence of pins with large error from standard wire position is effective to delay the pin-to-duct contact, but the existence of these pins is possible to contact of pin- to- pin. (author)

  12. Fundamental study on thermo-hydraulics during start-up in natural circulation boiling water reactors, (1)

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Chiang Jing-Hsien; Takahashi, Tohru; Wataru, Masumi; Mori, Michitsugu.

    1992-01-01

    Recently, many concepts, in which passive and simplified functions are actively adapted, have been proposed for the next generation LWRs. The natural circulation BWR is one such considered from the requirements for next generation LWRs as compared with current BWRs. It is pointed out from this consideration that a thermo-hydraulic instability, which may appear during start-up, greatly influences concept feasibility because its occurence makes operation for raising power output difficult. Thermo-hydraulic instabilities are investigated experimentally under conditions simulating normal and abnormal start-up processes. It is clarified that three kinds of thermo-hydraulic instabilities may occur during start-up in the natural circulation BWR according to its procedure and reactor configuration, which are (1) geysering induced by condensation, (2) natural circulation instability induced by hydrostatic head fluctuation in steam separators and (3) density wave instability. Driving mechanisms of the geysering and the natural circulation instability, which have never understood enough, are inferred from the results. Finally, the difference of thermo-hydraulic behavior during start-up processes between thermal natural circulation boilers and the Dodewaard reactor is discussed. (author)

  13. Numerical simulation of fuel assembly thermohydraulics of fast reactors with the partial blockage of cross section under the coolant

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sorokin, A.P.

    2000-01-01

    The problems of numerical modeling of thermohydraulics in assembly of fuel elements of fast reactors with the partial blockage of cross-section under the coolant are considered. The information about existing codes constructed on use of subchannel technique and model of porous body are presented. The results of calculation obtained by these codes are presented. (author)

  14. Reconstruction of intra-bundle fission density profile during a postulated LOCA in a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, D. [Oak Ridge National Laboratory (United States); Rahnema, F. [Georgia Inst. of Technology (United States); Nuclear and Radiological Engineering/Medical Physics Programs, George W. Woodruff School, Georgia Inst. of Technology, Atlanta, GA 30332-0405 (United States); Serghiuta, D. [Canadian Nuclear Safety Commission (Canada); Sarsour, H.; Turinsky, P. J. [North Carolina State Univ. (United States); Stamm' ler, R. [Studsvik Scandpower AS (Norway)

    2006-07-01

    In this paper, results related to the reconstruction of intra-bundle fission density profile for a 37-pin CANDU-6 bundle with the highest enthalpy deposition during a postulated large LOCA stagnation break in a Bruce B core are presented. Bruce B is a nuclear power plant in Kincardine, Ontario (Canada)), on the shores of Lake Huron with 4 CANDU reactors that are rated at about 750 MWe. The reconstruction of the fuel pin fission densities is based on steady-state, three-dimensional simulations with the Monte Carlo code MCNP for a subset of 27 out of 69 time steps during the first two seconds of the power pulse predicted for the fuel bundle at core location V13/8. Two-group cross section data libraries are generated for MCNP at each time step by the lattice depletion neutron transport code HELIOS-1.7. To include the effect of the surrounding core environment, the calculations are performed with time-dependent albedo boundary conditions inferred from a full core simulation of the transient by the nodal diffusion code NESTLE with HELIOS homogenized cross-sections. It is found that the local peaking factor (LPF) in the outer ring varies during the transient, but never exceeds its value before the transient. Inclusion of the core environment increases the LPF in the outer ring. For the analyzed case, the increase is 0.72% with a relative error of 0.01% for the LPF before the transient and 0.55% (with a relative error of 0.01%) for the maximum average LPF during the transient. The latter is based on only four selected transient time points. Note that the immediate environment of the 'hot bundle' does not contain any reactivity devices or other perturbing factors. As a result, the increases observed in the LPF in the outer ring may not be representative of the situations in which 'other' core environment perturbing factors are present. To determine the effect of these factors on the LPF, further analyses of a bundle in the proximity of control devices

  15. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F., E-mail: higorfabiano@gmail.com, E-mail: mdora@nuclear.ufmg.br, E-mail: vitors@cdtn.br, E-mail: aacs@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10{sup 4} to 5.4 x 10{sup 4}. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  16. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    International Nuclear Information System (INIS)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F.

    2017-01-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10"4 to 5.4 x 10"4. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  17. The use of twisted tapes for the enhancement of heat transfer outside tube bundles

    International Nuclear Information System (INIS)

    Mansur, Sergio-Said

    1993-01-01

    A numerical and experimental investigation of the thermohydraulics of tubular heat exchangers equipped with twisted tapes outside the tubes was carried out. Experimental data for the pressure drop and flow velocity as well as flow visualization data were obtained using a simulated exchanger made of plexiglas. A porous medium type of model allowed for the numerical evaluation of the heat transfer and pressure drop in this unique geometry exchanger. The model was used on the TRIO computer code, developed by the Commissariat a l'Energie Atomique, CEA - France. The experimental data allowed for the evaluation of the flow distribution throughout the exchanger and for the determination of parameters entering the numerical model. The appropriateness of the latter for the macroscopic description of the flow was confirmed by extensive comparison with the experimental data. A comparative analysis of different types of configurations of this exchanger revealed satisfactory performance levels for the exchanger presently investigated. Finally, the flow visualization data were used to qualitatively infer the main aspects of the turbulent diffusion along the tube bundle. The twisted tapes were observed to enhance the fluid mixing process, thus providing for a more effective diffusion of momentum, mass and energy. (author) [fr

  18. Post-irradiation examination of overheated fuel bundles

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1995-01-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding-was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2 MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  19. Post-irradiation examination of overheated fuel bundles

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1997-08-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was.not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  20. Nuclear fuel bundle disassembly and assembly tool

    International Nuclear Information System (INIS)

    Yates, J.; Long, J.W.

    1975-01-01

    A nuclear power reactor fuel bundle is described which has a plurality of tubular fuel rods disposed in parallel array between two transverse tie plates. It is secured against disassembly by one or more locking forks which engage slots in tie rods which position the transverse plates. Springs mounted on the fuel and tie rods are compressed when the bundle is assembled thereby maintaining a continual pressure against the locking forks. Force applied in opposition to the springs permits withdrawal of the locking forks so that one tie plate may be removed, giving access to the fuel rods. An assembly and disassembly tool facilitates removal of the locking forks when the bundle is to be disassembled and the placing of the forks during assembly of the bundle. (U.S.)

  1. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    Piascik, T.G.; Patenaude, R.S.

    1988-01-01

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power / Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved

  2. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    Piascik, T.G.; Patenaude, R.S.

    1988-01-01

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package, and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power/Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved. In spite of several emergent problems which a task of this nature presents, this small, close knit utility/vendor team completed the work on schedule and within the exposure and cost budgets

  3. Group Coupons: Interpersonal Bundling on the Internet

    OpenAIRE

    Yongmin Chen; Tianle Zhang

    2012-01-01

    Sellers sometimes offer goods for sale under both a regular price and a discount for group purchase if the consumer group reaches some minimum size. This selling practice, which we term interpersonal bundling, has been popularized on the Internet by companies such as Groupon. We explain why interpersonal bundling is a profitable strategy in the presence of demand uncertainty, and how it may further boost profits by stimulating product information dissemination. Other reasons for its profitabi...

  4. A Brief Survey of Higgs Bundles

    OpenAIRE

    Zúñiga-Rojas, Ronald Alberto

    2018-01-01

    Considering a compact Riemann surface of genus greater than two, a Higgs~bundle is a pair composed of a holomorphic bundle over the Riemann surface, joint with an auxiliar vector field, so-called Higgs field. This theory started around thirty years ago, with Hitchin's work, when he reduced the self-duality equations from dimension four to dimension two, and so, studied those equations over Riemann surfaces. Hitchin baptized those fields as "Higgs fields" beacuse in the context of physics and ...

  5. Frobenius splitting of projective toric bundles

    Indian Academy of Sciences (India)

    He Xin

    2018-03-19

    Mar 19, 2018 ... Firstly it is easy to see that the image of s under the restriction map (2.5) falls in the χ-isotypical component of (Uσ , E), i.e. for all t ∈ T .... σ falls in the χ-isotypical component of (E,Uσ ). D. As mentioned in Remark 2.3, for a vector v .... The determinant of a toric bundle. LetE be a toric bundle on a toric variety X ...

  6. Dynamic behaviour of FBR fuel pin bundles

    International Nuclear Information System (INIS)

    Martin, P.H.; Van Dorsselaere, J.P.; Ravenet, A.

    1990-01-01

    A programme of shock tests on a fast neutron reactor subassembly model (SPX1 geometry) including a complete bundle of fuel pins (dummy elements) is being carried out in the BELIER test facility at Cadarache. The purpose of these tests is: to determine the distribution of dynamic forces applied to the fuel rod clads under the impact conditions encountered in a reactor during a earthquake; to reduce as much as possible the conservatism of the methods presently used for the calculation of those forces. The test programme, now being completed, consists of the following steps: impacts on the mock-up in air with an non-compact bundle (situation of the subassembly at beginning of life (BOL) with clearances within the bundle); impacts under the same conditions but with fluid (water) in the subassembly; impacts on the mock-up in air and with a compacted bundle (simulating the conditions of an end-of-life (EOL) bundle with no clearance within the bundle). The accelerations studied in these tests cover the range encountered in design calculations for the subassembly frequencies in beam mode. (author)

  7. Computer code HYDRO-ACE for analyzing thermo-hydraulic phenomena in the BWR core

    International Nuclear Information System (INIS)

    Abe, Kiyoharu; Naito, Yoshitaka

    1979-10-01

    A computer code HYDRO-ACE has been developed for analyzing thermo-hydraulic phenomena in the BWR core under forced or natural circulation of cooling water. The code is composed of two main calculation routines for single channels such as riser, separator, and downcommer and multiple channels such as the reactor core with a heated zone. Functionally the code is divided into many subroutines to be connected straightforwardly, and so that the user can choose a given course freely by simply arranging the subroutines. In the program, void fraction is calculated by Maurer's method, two-phase frictional pressure drop by Maltinelli-Nelson's, and critical heat flux ratio by Hench-Levy's. The coolant flow distributions in the JPDR-II core calculated by the code are in good agreement with those measured. (author)

  8. Analysis of natural circulation stability in a low pressure thermohydraulic test loop

    International Nuclear Information System (INIS)

    Jafari, J.; D'Auria, F.; Kazeminejad, H.; Davilu, H.

    2002-01-01

    This paper discusses an instability study of a natural circulation (NC) loop performed with the aid of Relap5 thermal-hydraulic system code. This loop has been designed and constructed for the analysis of relevant thermohydraulic parameters of a nuclear reactor. In this study, the main parameters for the stability of NC are identified and characterized through the execution of proper code runs. The obtained stability boundary (SB) in the dimensionless Zuber- Sub-cooling plane is compared with the SB reported in referenced literature. The agreement of predicted NC stability boundaries with the results of independent studies demonstrates both the capability of the mentioned code in assessing NC loop stability and the quality of the performed calculations.(author)

  9. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  10. Fracture mechanical analysis of relevant transients in the pressure vessel of Atucha I reactor

    International Nuclear Information System (INIS)

    Saavedra, Fernando M.

    2001-01-01

    The evolution of the applied stress intensity factor K I for 10 relevant transients of the nuclear power station Atucha I obtained from thermohydraulic data is analyzed according to the methodology proposed in Section XI of ASME Boiler and Pressure Vessel Code. Vast knowledge was thus obtained about basic concepts of fracture mechanics and its application to remanent life of nuclear components. Basic knowledge which commands the performance of nuclear power stations was also obtained, especially that related to the Atucha I utility [es

  11. Computer simulation of WWER - 440 normal and emergency transient operating conditions

    International Nuclear Information System (INIS)

    Izbeshesku, M.; Rajka, V.; Untaru, S.; Dumitresku, A.; Paneh, M.; Turku, I.

    1976-01-01

    Results of computer realization of a model for studying transient process in the nuclear system of vapour production at the WWER - 40 peactor nuclear power plant are presented. The first circuit model consists of a number of modules, corresponding to its main parts: for each module derived were the equations describing neutron and thermohydraulic parameters. The second circuit effect is taken into account by heat quantity accepted from a steam generator. The equations are mostly differential with constant coefficients. Coefficient values and initial values of physical quantities are evaluated according to the technical literature. Both manual and automatic operations are modelled [ru

  12. Modifications in Compacted MX-80 Bentonite Due to Thermo-Hydraulic Treatment

    International Nuclear Information System (INIS)

    Gomez-Espina, R.; Villar, M. V.

    2013-01-01

    The thermo-hydraulic tests reproduce the thermal and hydraulic conditions to which bentonite is subjected in the engineered barrier of a deep geological repository of radioactive waste. The results of thermo-hydraulic test TBT1500, which was running for approximately 1500 days, are presented. This is a continuation to the Technical Report Ciemat 1199, which presented results of test TBT500, performed under similar conditions but with duration of 500 days. In both tests the MX-80 bentonite was used with initial density and water content similar to those of the large-scale test TBT. The bentonite column was heated at the bottom at 140 degree centigrade and hydrated on top with deionized water. At the end of the test a sharp water content gradient was observed along the column, as well as an inverse dry density gradient. Hydration modified also the bentonite microstructure. Besides, an overall decrease of the smectite content with respect to the initial value took place, especially in the most hydrated areas where the percentage of interest ratified illite increased and in the longer test. On the other hand, the content of cristobalite, feldspars and calcite increased. Smectite dissolution processes (probably colloidal) occurred, particularly in the more hydrated areas and in the longer test. Due to the dissolution of low-solubility species and to the loss of exchangeable positions in the smectite, the content of soluble salts in the pore water increased with respect to the original one, especially in the longer test. The solubilized ions were transported; sodium, calcium, magnesium and sulphate having a similar mobility, which was in turn lower than that of potassium and chloride. The cationic exchange complex was also modified. (Author)

  13. Design, construction and evaluation of solar flat-plate collector simulator based on the thermohydraulic coefficient

    Directory of Open Access Journals (Sweden)

    H Rahmati Aidinlou

    2017-05-01

    Full Text Available Introduction Increasing the area of absorber plate between the flowed air through the duct can be accomplished by corrugating the absorber plate or by using the artificial roughness underside of the absorber plate as the commercial methods for enhancing the thermohydraulic performance of the flat plate solar air heaters. Evaluation of this requires the construction of separated solar air heater which is costly and time consuming. The constructed solar flat-plate collector simulator can be a sufficient solution for obtaining the heat transfer and thermodynamic parameters for evaluating the absorber plate. The inclined broken roughness was chosen as the optimum roughness which is surrounded by three aluminum smooth walls. Materials and Methods The duct for both smooth and roughened plate have been constructed based on the ASHRAE 93-2010 standard. In order to achieve a fully thermal and hydraulic developed flow, the plenum is constructed. The centrifugal fan is considered by applying the required air volume at the pressure drop obtained by the duct, plenum and the orifice meter. The TSI velocity-meter 8355 is used to measure the velocity of air crossing through the pipe connected to the centrifugal fan. The micro manometer Kimo CPE310-s with the resolution of 0.1 Pa is used to measure the pressure drop across the test section of the smooth and roughened duct. The LM35 sensors are used to measure the absorber plate and air temperature through the test section. Obtained parameters are used to calculate the Nusselt number and friction factor across the test section for smooth and roughened absorber plate. The Nusselt number and friction factor parameters which is obtained for smooth absorber plate based on experimental set-up, is compared with Dittus-Bolter and Blasius equations, respectively, for validating the simulator. By calculating the Nusselt number and friction factor, Stanton number is obtained based on the equation (6, and thermohydraulic

  14. Safety analysis report of the irradiation test of Type-B bundle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Sung; Lim, I. C.; Lee, B. C.; Ryu, J. S.; Kim, H. R

    2000-06-01

    The HANARO fuel, U{sub 3}Si-A1, has been developed by AECL and tested in NRU reactor. In the course of the fuel qualification tests, only one case was performed under the higher power condition than maximum linear power which was expected in the design stage. The Korea regulatory body, KINS imposed that HANARO shall be operated at the power level less than 24MW which is 80% of the design full power until HANARO shows the repetitive performance of the fuel at the power condition abov e 112.8KW/m. To resolve this imposition, KAERI designed two types of special test bundles: two non-instrumented(Type-A) and one instrumented(Type-B) test bundles. Two Type-A bundles were irradiated in HANARO: one of them has finished PIE and the other is under PIE. Type-B bundle was loaded in the core during 1.32 day at 1996, but outstanding FIV(flow induced vibration) was observed at the pool top because of long guide tube attached to the top of the bundle. The successful installation of the chimney fastener to fix the guide tube resulted in conducting the irradiation test of Type-B bundle again. The test will start at mid- July, 2000. In order to safely do the Type-B irradiation test, the safety analysis for the nuclear, mechanical and thermal-hydraulic aspects was performed. The reactivity worth and the maximum 1 near power predicted by VENTURE are 6.3mk/k and 121.6kW/m, respectively. Thermal margins for normal and transient conditions using MATRA-h, are assessed to satisfy the safety criteria.

  15. Analysis of steam generator plugging on core thermohydraulic performance of NPP Krsko; Analiza vpliva cepljenja cevi v upravljaniku na termohidravliko sredice JE Krsko

    Energy Technology Data Exchange (ETDEWEB)

    Kostadinov, V; Petelin, S; Sarler, B [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1988-07-01

    Nuclear safety analysis of NPP Krsko core operating at full power with 4% steam generator tubes plugged have been performed. Influence of individual parameters on core thermohydraulic performance have been evaluated. Using COBRA-III-C computer code we have analysed a core design (evaluation) model. The DNBR change was calculated as a consequence of 4% plugging. The influence of thermohydraulic parameters change on DNBR was analysed. (author)

  16. Deformations of the generalised Picard bundle

    International Nuclear Information System (INIS)

    Biswas, I.; Brambila-Paz, L.; Newstead, P.E.

    2004-08-01

    Let X be a nonsingular algebraic curve of genus g ≥ 3, and let Mξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime. We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3, and suppose further that n 0 , d 0 are integers such that n 0 ≥ 1 and nd 0 + n 0 d > nn 0 (2g - 2). Let E be a semistable vector bundle over X of rank n 0 and degree d 0 . The generalised Picard bundle W ξ (E) is by definition the vector bundle over M ξ defined by the direct image p M ξ *(U ξ x p X * E) where U ξ is a universal vector bundle over X x M ξ . We obtain an inversion formula allowing us to recover E from W ξ (E) and show that the space of infinitesimal deformations of W ξ (E) is isomorphic to H 1 (X, End(E)). This construction gives a locally complete family of vector bundles over M ξ parametrised by the moduli space M(n 0 ,d 0 ) of stable bundles of rank n 0 and degree d 0 over X. If (n 0 ,d 0 ) = 1 and W ξ (E) is stable for all E is an element of M(n 0 ,d 0 ), the construction determines an isomorphism from M(n 0 ,d 0 ) to a connected component M 0 of a moduli space of stable sheaves over M ξ . This applies in particular when n 0 = 1, in which case M 0 is isomorphic to the Jacobian J of X as a polarised variety. The paper as a whole is a generalisation of results of Kempf and Mukai on Picard bundles over J, and is also related to a paper of Tyurin on the geometry of moduli of vector bundles. (author)

  17. NIF laser bundle review. Final report

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-01-01

    We performed additional bundle review effort subsequent to the completion of the preliminary report and are revising our original recommendations. We now recommend that the NIF baseline laser bundle size be changed to the 4x2 bundle configuration. There are several 4x2 bundle configurations that could be constructed at a cost similar to that of the baseline 4x12 (from $11M more to about $11M less than the baseline; unescalated, no contingency) and provide significant system improvements. We recommend that the building cost estimates (particularly for the in-line building options) be verified by an architect/engineer (A/E) firm knowledgeable about building design. If our cost estimates of the in-line building are accurate and therefore result in a change from the baseline U-shaped building layout, the acceptability of the in-line configuration must be reviewed from an operations viewpoint. We recommend that installation, operation, and maintenance of all laser components be reviewed to better determine the necessity of aisles, which add to the building cost significantly. The need for beam expansion must also be determined since it affects the type of bundle packing that can be used and increases the minimum laser bay width. The U-turn laser architecture (if proven viable) offers a reduction in building costs since this laser design is shorter than the baseline switched design and requires a shorter laser bay

  18. Catheter Associated Urinary Tract Infection Prevention bundle

    Directory of Open Access Journals (Sweden)

    O. Zarkotou

    2017-01-01

    Full Text Available Catheter-associated urinary tract infections (CAUTI are among the most common healthcare-associated infections, and potentially lead to significant morbidity and mortality. Multifaceted infection control strategies implemented as bundles can prevent nosocomial infections associated with invasive devices such as CAUTIs. The components of the CAUTI bundle proposed herein, include appropriate indications for catheterization and recommendations for the procedures of catheter insertion and catheter maintenance and care. Avoiding unnecessary urinary catheter use is the most effective measure for their prevention. To minimize the risk of CAUTI, urinary catheters should be placed only when a clinical valid indication is documented and they should be removed as soon as possible; alternatives to catheterization should also be considered. Aseptic insertion technique, maintenance of closed drainage system and strict adherence to hand hygiene are essential for preventing CAUTI. The successful implementation of the bundle requires education and training for all healthcare professionals and evaluation of surveillance data.

  19. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, H. C.; Hwang, W.; Rhee, B. W.; Jung, S. H.; Chung, C. H.

    1992-05-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor for 1996 and 1997, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year include the detail design of CANFLEX fuel with natural enriched uranium (CANFLEX-NU). Based on this design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel in the CANDU Cold Test Loop to investigate the condition under which maximum pressure drop occurs and the maximum value of the bundle pressure drop. (Author)

  20. Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?

    Science.gov (United States)

    Sayar, Mehmet

    2005-03-01

    Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.

  1. Bundled payment and enhanced recovery after surgery.

    Science.gov (United States)

    Huang, Jeffrey

    2015-01-01

    Medicare's fee-for-service (FFS) payment model may contribute to unsustainable spending growth. Payers are turning to alternative payment methods. The leading alternative payment model to the FFS problem is bundled payment. The Centers for Medicare & Medicaid Services (CMS) is taking another step to improve healthcare quality at lower cost. The CMS's Center for Medicare and Medicaid Innovation developed four models of bundled payments and 48 discrete clinical condition episodes. Many surgical care procedures are included in the 48 different clinical condition episodes.

  2. Direct His bundle pacing post AVN ablation.

    Science.gov (United States)

    Lakshmanadoss, Umashankar; Aggarwal, Ashim; Huang, David T; Daubert, James P; Shah, Abrar

    2009-08-01

    Atrioventricular nodal (AVN) ablation with concomitant pacemaker implantation is one of the strategies that reduce symptoms in patients with atrial fibrillation (AF). However, the long-term adverse effects of right ventricular (RV) apical pacing have led to the search for alternating sites of pacing. Biventricular pacing produces a significant improvement in functional capacity over RV pacing in patients undergoing AVN ablation. Another alternative site for pacing is direct His bundle to reduce the adverse outcome of RV pacing. Here, we present a case of direct His bundle pacing using steerable lead delivery system in a patient with symptomatic paroxysmal AF with concurrent AVN ablation.

  3. Investigation on in-vessel thermal transients in a fast breeder reactor

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Kasahara, Naoto

    1999-01-01

    Thermal stratification phenomena are observed in an upper plenum of liquid metal fast breeder reactors (LMFBRs) under reactor scram conditions, which give rise to thermal stress on structural components. Therefore it is important to evaluate characteristics of the phenomena in the design of the internal structures in an LMFBR plenum. To evaluate thermal stress characteristics for the inner barrel in a typical LMFBR upper plenum, numerical analysis was carried out with a multi-dimensional thermohydraulics code AQUA for a scram condition from full power operation conditions. Thereafter, thermal stress conditions for the inner barrel were evaluated by the use of a structural analysis code FINAS with the thermohydraulic results calculated by the AQUA code as boundary conditions. From the thermohydraulic analysis and the thermal stress analysis, the following results have been obtained. (1) A large axial temperature gradient was calculated at the region between the upper and lower flow holes located on the inner barrel. The axial position of the thermal stratification interface was fixed in the various circumferential directions. As for the comparison with a 40% operation condition, maximum temperature gradients at the lower flow hole region indicated a 2 times value of that in the 40% operation condition. (2) Transient thermal stratification phenomena were observed after 120 sec from the reactor scram in the numerical results. These tendencies on thermal stratification phenomena were sameness with the transient results from the 40% operation condition. (3) During the reactor trip from full power operation, large temperature gradient in both vertical and sectional direction are enforced around the lower flow hole, since there exists flow pass of low temperature sodium through this hole. As a result, the maximum thermal stress within 32.6 kg/mm 2 was predicted at the lower flow hole when considering stress concentration at the hole edge. (J.P.N.)

  4. Thermo-hydraulic characteristics of ship propulsion reactor in the conditions of ship motions and safety assessment

    International Nuclear Information System (INIS)

    Kobayashi, Michiyuki; Murata, Hiroyuki; Sawada, Kenichi; Inasaka, Fujio; Aya, Izuo; Shiozaki, Koki

    1999-01-01

    By inputting the experimental data, information and others on thermo-hydraulic characteristics of integrated ship propulsion reactor accumulated hitherto by the Ship Research Institute and some recent cooperation results into the nuclear ship engineering simulation system, it was conducted not only to contribute an improvement study on next ship reactor by executing general analysis and evaluation on motion characteristics under ship body motion conditions, safety at accidents, and others of the integrated ship reactor but also to investigate and prepare some measures to apply fundamental experiment results based on obtained here information to safety countermeasure of the nuclear ships. In 1997 fiscal year, on safety of the integrated ship propulsion reactor loading nuclear ship, by adding experimental data on unstable flow analysis and information on all around of the analysis to general data base fundamental program, development to intellectual data base program was intended; on effect of pulsation flow on thermo-hydraulic characteristics of ship propulsion reactor; after pulsation flow visualization experiment, experimental equipment was reconstructed into heat transfer type to conduct numerical analysis of pulsation flow by confirming validity of numerical analysis code under comparison with the visualization experiment results; and on thermo-hydraulic behavior in storage container at accident of active safety type ship propulsion reactor; a flashing vibration test using new apparatus finished on its higher pressurization at last fiscal year to examine effects of each parameter such as radius and length of exhausting nozzle and pool water temperature. (G.K.)

  5. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    NTR engines have continued as a main stream based on the mature technology. The typical core design of the NERVA derived engines uses hexagonal shaped fuel elements with circular cooling channels and structural tie-tube elements for supporting the fuel elements, housing moderator and regeneratively cooling the moderator. The state-of-the-art NTR designs mostly use a fast or epithermal neutron spectrum core utilizing a HEU fuel to make a high power reactor with small and simple core geometry. Nuclear propulsion is the most promising and viable option to achieve challenging deep space missions. Particularly, the attractions of a NTR include excellent thrust and propellant efficiency, bimodal capability, proven technology, and safe and reliable performance. The KANUTER-HEU and -LEU are the innovative and futuristic NTR engines to reduce the reactor size and to implement a LEU fuel in the reactor by using thermal neutron spectrum. The KANUTERs have some features in the reactor design such as the integrated fuel element and the regeneratively cooling channels to increase room for moderator and heat transfer in the core, and ensuing rocket performance. To study feasible design points in terms of thermo-hydraulics and to estimate rocket performance of the KANUTERs, the NSES is under development. The model of the NSES currently focuses on thermo-hydraulic analysis of the peculiar and complex EHTGR design during the propulsion mode in steady-state. The results indicate comparable performance for future applications, even though it uses the heavier LEU fuel. In future, the NSES will be modified to obtain temperature distribution of the entire reactor components and then more extensive design analysis of neutronics, thermohydraulics and their coupling will be conducted to validate design feasibility and to optimize the reactor design enhancing the rocket performance.

  6. Characteristics of CANDU fuel bundles that caused pressure tube fretting at the bundle midplane

    Energy Technology Data Exchange (ETDEWEB)

    Dennier, D; Manzer, A M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Koehn, E [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    Detailed measurements on new bundles, and those that caused fretting during in- and out-reactor tests, have given insight into the factors responsible for fretting at the midplane of the inlet bundle. Bottom fuel elements that were attached near radial endplate spokes and had inboard bearing pads in the rolled joint cavity produced a significant portion of the observed fret marks. These elements are influenced by several driving forces that deflect the centre bearing pads towards the pressure tube surface. The evidence suggests that slight changes in bundle design may be possible to reduce pressure tube fretting. (author). 4 refs., 3 tabs., 8 figs.

  7. Impact of bundle deformation on CHF: ASSERT-PV assessment of extended burnup Bruce B bundle G85159W

    International Nuclear Information System (INIS)

    Rao, Y.F.; Manzer, A.M.

    2005-01-01

    This paper presents a subchannel thermalhydraulic analysis of the effect on critical heat flux (CHF) of bundle deformation such as element bow and diametral creep. The bundle geometry is based on the post-irradiation examination (PIE) data of a single bundle from the Bruce B Nuclear Generating Station, Bruce B bundle G85159W, which was irradiated for more than two years in the core during reactor commissioning. The subchannel code ASSERT-PV IST is used to assess changes in CHF and dryout power due to bundle deformation, compared to the reference, undeformed bundle. (author)

  8. Transient pseudohypoaldosteronism

    Directory of Open Access Journals (Sweden)

    Stajić Nataša

    2011-01-01

    Full Text Available Introduction. Infants with urinary tract malformations (UTM presenting with urinary tract infection (UTI are prone to develop transient type 1 pseudohypoaldosteronism (THPA1. Objective. Report on patient series with characteristics of THPA1, UTM and/or UTI and suggestions for the diagnosis and therapy. Methods. Patients underwent blood and urine electrolyte and acid-base analysis, serum aldosterosterone levels and plasma rennin activity measuring; urinalysis, urinoculture and renal ultrasound were done and medical and/or surgical therapy was instituted. Results. Hyponatraemia (120.9±5.8 mmol/L, hyperkalaemia (6.9±0.9 mmol/L, metabolic acidosis (plasma bicarbonate, 11±1.4 mmol/L, and a rise in serum creatinine levels (145±101 μmol/L were associated with inappropriately high urinary sodium (51.3±17.5 mmol/L and low potassium (14.1±5.9 mmol/L excretion. Elevated plasma aldosterone concentrations (170.4±100.5 ng/dL and the very high levels of the plasma aldosterone to potassium ratio (25.2±15.6 together with diminished urinary K/Na values (0.31±0.19 indicated tubular resistance to aldosterone. After institution of appropriate medical and/or surgical therapy, serum electrolytes, creatinine, and acid-base balance were normalized. Imaging studies showed ureteropyelic or ureterovesical junction obstruction in 3 and 2 patients, respectively, posterior urethral valves in 3, and normal UT in 1 patient. According to our knowledge, this is the first report on THPA1 in the Serbian literature. Conclusion. Male infants with hyponatraemia, hyperkalaemia and metabolic acidosis have to have their urine examined and the renal ultrasound has to be done in order to avoid both, the underdiagnosis of THPA1 and the inappropriate medication.

  9. Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures

    Directory of Open Access Journals (Sweden)

    Snehasis Tripathy

    2017-07-01

    Full Text Available The final disposal of high-level nuclear waste in many countries is preferred to be in deep geological repositories. Compacted bentonites are proposed for use as the buffer surrounding the waste canisters which may be subjected to both thermal and hydraulic loadings. A significant increase in the temperature is anticipated within the buffer, particularly during the early phase of the repository lifetime. In this study, several non-isothermal and non-isothermal hydraulic tests were carried on compacted MX80 bentonite. Compacted bentonite specimens (water content = 15.2%, dry density = 1.65 Mg/m3 were subjected to a temperature of either 85 or 150 °C at one end, whereas the temperature at the opposite end was maintained at 25 °C. During the non-isothermal hydraulic tests, water was supplied from the opposite end of the heat source. The temperature and relative humidity were monitored along predetermined depths of the specimens. The profiles of water content, dry density, and degree of saturation were established after termination of the tests. The test results showed that thermal gradients caused redistribution of the water content, whereas thermo-hydraulic gradients caused both redistribution and an increase in the water content within compacted bentonites, both leading to development of axial stress of various magnitudes. The applied water injection pressures (5 and 600 kPa and temperature gradients appeared to have very minimal impact on the magnitude of axial stress developed. The thickness of thermal insulation layer surrounding the testing devices was found to influence the temperature and relative humidity profiles thereby impacting the redistribution of water content within compacted bentonites. Under the influence of both the applied thermal and thermo-hydraulic gradients, the dry density of the bentonite specimens increased near the heat source, whereas it decreased at the opposite end. The test results emphasized the influence of

  10. Fiber bundle geometry and space-time structure

    International Nuclear Information System (INIS)

    Nascimento, J.C.

    1977-01-01

    Within the framework of the geometric formulation of Gauge theories in fiber bundles, the general relation between the bundle connection (Gauge field) and the geometry of the base space is obtained. A possible Gauge theory for gravitation is presented [pt

  11. Automated negotiation and bundling of information goods

    NARCIS (Netherlands)

    Somefun, D.J.A.; Gerding, E.H.; Bohté, S.M.; Poutré, la J.A.; Faratin, P.; Parkes, D.; Rodriquez-Aguilar, J.

    2004-01-01

    In this paper, we present a novel system for selling bundles of news items. Through the system, customers bargain with the seller over the price and quality of the delivered goods. The advantage of the developed system is that it allows for a high degree of flexibility in the price, quality, and

  12. Jacobi bundles and the BFV-complex

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Tortorella, A. G.; Vitagliano, L.

    2017-01-01

    Roč. 121, November (2017), s. 347-377 ISSN 0393-0440 Institutional support: RVO:67985840 Keywords : Jacobi manifold * Jacobi bundle * coisotropic submanifolds Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.819, year: 2016 http://www.sciencedirect.com/science/article/pii/S0393044017301948

  13. Optimization of a bundle divertor for FED

    International Nuclear Information System (INIS)

    Hively, L.M.; Rothe, K.E.; Minkoff, M.

    1982-01-01

    Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations

  14. Large eddy simulation of bundle turbulent flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1995-01-01

    Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)

  15. Experimental studies on heat transfer to supercritical water in 2 × 2 rod bundle with two channels

    International Nuclear Information System (INIS)

    Gu, H.Y.; Hu, Z.X.; Liu, D.; Xiao, Y.; Cheng, X.

    2015-01-01

    Highlights: • Heat transfer to supercritical water in a 2 × 2 rod bundle is investigated. • Effects of system parameters on heat transfer in bundle are analyzed. • The test data were compared with twenty heat transfer correlations. - Abstract: The experiment of heat transfer to supercritical water in 2 × 2 rod bundle is performed at Shanghai Jiao Tong University. The test section consists of two channels separated by a square steel assembly box with rounded corners. Water flows downward in the first channel and then turns upward in the second channel to cool the 2 × 2 rod bundle installed inside the assembly box. The bundle consists of four heated rods of 10 mm in O.D. and 1.18 in pitch-to-diameter ratio. The fluid enthalpy in the first channel increases due to the heat transfer through the assembly box when flowing downward. The minimum fluid enthalpy increase in the first channel appears at the pseudo-critical region due to the small temperature difference between the two channels. Effects of various parameters on heat transfer behavior inside the 2 × 2 rod bundle are similar to those observed in tube or annuli. No special phenomenon in heat transfer is observed during the mass flux and power transient. The steady-state heat transfer correlation is applicable to predict the heat transfer in the mass or power transient sequence. In addition, the importance of several dimensionless numbers and the accuracy of 20 heat transfer correlations are assessed. It is concluded that the buoyancy parameter proposed by Cheng et al. (2009) shows unique effect on heat transfer coefficient. Among the 20 selected heat transfer correlations, the correlations of Jackson and Fewster (1975) and Bishop et al. (1964) give the best predictions when compared with the experimental data

  16. AgInCd control rod failure in the QUENCH-13 bundle test

    International Nuclear Information System (INIS)

    Sepold, L.; Lind, T.; Csordas, A. Pinter; Stegmaier, U.; Steinbrueck, M.; Stuckert, J.

    2009-01-01

    The QUENCH off-pile experiments performed at the Karlsruhe Research Center are to investigate the high-temperature behavior of Light Water Reactor (LWR) core materials under transient conditions and in particular the hydrogen source term resulting from the water injection into an uncovered LWR core. The typical LWR-type QUENCH test bundle, which is electrically heated, consists of 21 fuel rod simulators with a total length of approximately 2.5 m. The Zircaloy-4 rod claddings and the grid spacers are identical to those used in Pressurized Water Reactors (PWR) whereas the fuel is represented by ZrO 2 pellets. In the QUENCH-13 experiment the single unheated fuel rod simulator in the center of the test bundle was replaced by a PWR-type control rod. The QUENCH-13 experiment consisting of pre-oxidation, transient, and quench water injection at the bottom of the test section investigated the effect of an AgInCd/stainless steel/Zircaloy-4 control rod assembly on early-phase bundle degradation and on reflood behavior. Furthermore, in the frame of the EU 6th Framework Network of Excellence SARNET, release and transport of aerosols of a failed absorber rod were to be studied in QUENCH-13, which was accomplished with help of aerosol measurements performed by PSI-Switzerland and AEKI-Hungary. Control rod failure was initiated by eutectic interaction of steel cladding and Zircaloy-4 guide tube and was indicated at about 1415 K by axial peak absorber and bundle temperature responses and additionally by the on-line aerosol monitoring system. Significant releases of aerosols and melt relocation from the control rod were observed at an axial peak bundle temperature of 1650 K. At a maximum bundle temperature of 1820 K reflood from the bottom was initiated with cold water at a flooding rate of 52 g/s. There was no noticeable temperature escalation during quenching. This corresponds to the small amount of about 1 g in hydrogen production during the quench phase (compared to 42 g of H 2

  17. Fiber bundles in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Moylan, P.

    1979-11-01

    The problem of describing a quantum-mechanical system with symmetry by a fiber bundle is considered. The quantization of a fiber bundle is introduced. Fiber bundles for the Kepler problem and the rotator are constructed. The fiber bundle concept provides a new model for a physical system: it provides a model for an elementary particle with extension having integral values of spin. 5 figures

  18. Interplanetary Overlay Network Bundle Protocol Implementation

    Science.gov (United States)

    Burleigh, Scott C.

    2011-01-01

    The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.

  19. Deformation quantization with separation of variables of an endomorphism bundle

    OpenAIRE

    Karabegov, Alexander

    2013-01-01

    Given a holomorphic Hermitian vector bundle and a star-product with separation of variables on a pseudo-Kaehler manifold, we construct a star product on the sections of the endomorphism bundle of the dual bundle which also has the appropriately generalized property of separation of variables. For this star product we prove a generalization of Gammelgaard's graph-theoretic formula.

  20. Image-Based Edge Bundles : Simplified Visualization of Large Graphs

    NARCIS (Netherlands)

    Telea, A.; Ersoy, O.

    2010-01-01

    We present a new approach aimed at understanding the structure of connections in edge-bundling layouts. We combine the advantages of edge bundles with a bundle-centric simplified visual representation of a graph's structure. For this, we first compute a hierarchical edge clustering of a given graph

  1. 3-dimensional thermohydraulic analysis of KALIMER reactor pool during unprotected accidents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Hahn Do Hee

    2003-01-01

    During a normal reactor scram, the heat generation is reduced almost instantaneously while the coolant flow rate follows the pump coastdown. This mismatch between power and flow results in a situation where the core flow entering the hot pool is at a lower temperature than the temperature of the bulk pool sodium. This temperature difference leads to thermal stratification. Thermal stratification can occur in the hot pool region if the entering coolant is colder than the existing hot pool coolant and the flow momentum is not large enough to overcome the negative buoyancy force. Since the fluid of hot pool enters IHXs, the temperature distribution of hot pool can alter the overall system response. Hence, it is necessary to predict the pool coolant temperature distribution with sufficient accuracy to determine the inlet temperature conditions for the IHXs and its contribution to the net buoyancy head. Therefore, two-dimensional hot pool thermohydraulic model named HP2D has been developed. In this report code-to-code comparison analysis between HP2D and COMMIX-1AR/P has been performed in the case of steady-state and UTOP.

  2. Thermo-hydraulic consequence of pressure suppression containment vessel during blowdown, 2

    International Nuclear Information System (INIS)

    Aya, Izuo; Nariai, Hideki; Kobayashi, Michiyuki

    1980-01-01

    As a part of the safety research works for the integral-type marine reactor, an analytical code SUPPAC-2V was developed to simulate the thermo-hydraulic consequence of a pressure suppression containment system during blowdown and the code was applied to the Model Experimental Facility of the Safety of Integral Type Marine Reactors (explained already in Part 1). SUPPAC-2V is much different from existing codes in the following points. A nonhomogeneous model for the gaseous region in the drywell, a new correlation for condensing heat transfer coefficient at drywell wall based on existing data and approximation of air bubbles in wetwell water by one dimensional bubble rising model are adopted in this code. In comparing calculational results with experimental results, values of predominant input parameters were evaluated and discussed. Moreover, the new code was applied also to the NSR-7 marine reactor, conceptually designed at the Shipbuilding Research Association in Japan, of which suppression system had been already analysed by CONTEMPT-PS. (author)

  3. Inductive analysis of failure patterns and of their impact on thermohydraulic circuits of nuclear power plants

    International Nuclear Information System (INIS)

    Limnios, N.

    1983-01-01

    The APACHE code (Automatic Analysis of Failures of Hydraulic and Thermohydraulic Circuits more particularly of Water) situates in an important program of computer codes development in the field of studies on reliability and safety of systems in nuclear power plants. APACHE is an automatic generation code of failure pattern and of their effects. After a presentation of the theoretical basis, the methodological principles of the theory of networks are developed. Then, the model of the code is developed: model of individual behavior of each classical model component of normal behavior and model of failure pattern with specifications. The global model of hydraulic systems and the resolution systems are then developed. More particularly, some aspects of the theory of graphs, and the algorithms developed for the automatic construction of the equation systems and especially the algorithm of the research of meshes are presented. The computer aspect of the code and the programming of the code with its limits and some specifications are described. The practical aspect of utilization is finally presented [fr

  4. Development of gas-cooled fast reactor and its thermo-hydraulics

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi

    1977-10-01

    Development, thermo-hydraulics and safety of GCFR are reviewed. The Development of Gas-Cooled Fast Reactor (GCFR) utilizes helium technology of HTGR and fuel technology of LMFBR. The breeding ratio of GCFR will be larger than that of LMFBR by about 0.2. Features of GCFR are a fuel with roughened surface to raise the heat transfer and vent system for the pressure equalization in the fuel rod. Helium as coolant of GCFR is chemically stable and stays in the single phase. So, there is no fuel-coolant interaction unlike the case of LMFBR. Since the helium must be pressurized, possibility of a depressurization accident is not negligible. In the United States, a 300MWe demonstration plant program is about to start; the collaboration with European countries is now quite active in this field. Though the development of GCFR started behind that of LMFBR, GCFR is equally promising as a fast breeder reactor. When realized, it will present possibility of a choice between these two. (auth.)

  5. The development of the thermohydraulic analysis code for the passive containment cooling system: PCCSAC

    International Nuclear Information System (INIS)

    Wang Jianyu; Zhang Shenru; Min Yuanyou

    1994-01-01

    To estimate the performance of the passive containment cooling system (PCCS) of the AC-600 nuclear power plant, the PCCSAC code is developed currently by the jointed efforts between Tsinghua University and NPIC. Different features on the passive behavior of the system and the main components of the containment are considered in the code which is needed by the further AC-600 R and D Program. With a brief description of the AC-600 passive containment cooling system and components, the main thermohydraulic models and numerical scheme used in the PCCSAC code are introduced and the selected results of the verification and the prediction for the performance of the AC-600 passive containment cooling system under LOCA and a steam line break accident are presented to preliminarily demonstrate the applicability and reliability of the PCCSAC model. The current PCCSAC model is conservative and a further 2-D PCCSAC version is under consideration in addition to provide the database for models from some tests associated with the components and systems unique to AC-600 nuclear power plant to meet the requirement of the more realistic modelization for the AC-600 passive containment cooling system. (author)

  6. A parametric thermohydraulic study an advanced pressurized light water reactor with a tight fuel rod lattice

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Hame, W.

    1982-12-01

    A parametric thermohydraulic study for an Advanced Pressurized Light Water Reactor (APWR) with a tight fuel rod lattice has been performed. The APWR improves the uranium utilisation. The APWR core should be placed in a modern German PWR plant. Within this study about 200 different reactors have been calculated. The tightening of the fuel rod lattice implies a decrease of the net electrical output of the plant, which is greater for the heterogeneous reactor than for the homogeneous reactor. APWR cores mean higher core pressure drops and higher water velocities in the core region. The cores tend to be shorter and the number of fuel rods to be higher than for the PWR. At the higher fuel rod pitch to diameter ratios (p/d) the DNB limitation is more stringent than the limitation on the fuel rod linear rating given by the necessity of reflooding after a reactor accident. The contrary is true for the lower p/d ratios. Subcooled boiling in the highest rated coolant channels occurs for the most of the calculated reactors. (orig.) [de

  7. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Uebert G.; Dominguez, Dany S. [Universidade Estadual de Santa Cruz (UESC), Ilh´eus, BA (Brazil). Programa de P´os-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Mazaira, Leorlen Y.R.; Lira, Carlos A.B.O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Hernandez, Carlos R.G., E-mail: uebert.gmoreira@gmail.com, E-mail: dsdominguez@gmail.com, E-mail: leored1984@gmail.com, E-mail: cabol@ufpe.br, E-mail: cgh@instec.cu [Instituto Superior de Tecnologas y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  8. Thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    International Nuclear Information System (INIS)

    Silva, Alexandro S.; Dominguez, Dany S.; Mazaira, Leorlen Y. Rojas; Hernandez, Carlos R.G.; Lira, Carlos Alberto Brayner de Oliveira

    2015-01-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, it was performed the thermal–hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a column of FCC (Face Centered Cubic) cells, with 41 layers and 82 pebbles. The input data used were taken from the thermohydraulic IAEA Benchmark (TECDOC-1694). The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  9. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    International Nuclear Information System (INIS)

    Moreira, Uebert G.; Dominguez, Dany S.

    2017-01-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  10. General and preliminary thermohydraulic, hydrogen and aerosol instrumentation plan for the Phebus Fp-project

    International Nuclear Information System (INIS)

    Hampel, G.; Poss, G.; Frohlich, H.K.

    1989-10-01

    The objective of the project was to draw up an instrumentation plan for the French core melting programme PHEBUS FP. This instrumentation plan essentially was to include proven and reliable instruments for recording various thermohydraulic, aerosol and hydrogen phenomena. The candidate measuring methods, which are known mainly from reactor safety programmes, have been described and examined for their usefulness in PHEBUS. Each method and instrument has been described in detail under various aspects such as measuring principle, measuring range, technical design, evaluation model, calibration procedure, accuracy, previous experience, commercial availability, etc. Special attention has been paid to the behaviour of the measuring transducers when exposed to radiation. First, the performance of the instruments was compared with the requirements of PHEBUS. The results of this comparison served as the basis for a measuring concept in tabular form, giving the locations of the measurements, the measuring tasks, and the number and kind of instruments that are recommended. Redundancy and cost-benefit aspects have been taken into account in qualitative terms

  11. Thermo-hydraulic analysis of the cool-down of the EDIPO test facility

    Science.gov (United States)

    Lewandowska, Monika; Bagnasco, Maurizio

    2011-09-01

    The first cool-down of the EDIPO (European DIPOle) test facility is foreseen to take place in 2011 by means of the existing 1.2 kW cryoplant at EPFL-CRPP Villigen. In this work, the thermo-hydraulic analysis of the EDIPO cool-down is performed in order both to assess the its duration and to optimize the procedure. The cool-down is driven by the helium flowing in both the outer cooling channel and in the windings connected hydraulically in parallel. We take into account limitations due to the pressure drop in the cooling circuit and the refrigerator capacity as well as heat conduction in the iron yoke. Two schemes of the hydraulic cooling circuit in the EDIPO windings are studied (coils connected in series and coils connected in parallel). The analysis is performed by means of an analytical model complemented by and numerical model. The results indicate that the cool-down to 5 K can be achieved in about 12 days.

  12. Confirmatory simulation of safety and operational transients in LMFBR systems

    International Nuclear Information System (INIS)

    Guppy, J.G.; Agrawal, A.K.

    1978-01-01

    Operational and safety transients (anticipated, unlikely, or extremely unlikely) that may originate anywhere in a liquid-metal fast breeder reactor (LMFBR) system must be adequately simulated to assist in safety evaluation and plant design efforts. An advanced thermohydraulic transient code, the Super System Code (SSC), is described that may be used for confirmatory safety evaluations of plant-wide events, such as assurance of adequate decay heat removal capability under natural circulation conditions. Results obtained with SSC illustrating the degree of modeling detail present in the code as well as the computing efficiency are presented. A version of the SSC code, SSC-L, applicable to any loop-type LMFBR design, has been developed at Brookhaven. The scope of SSC-L is to enable the simulation of all plant-wide transients covered by Plant Protection System (PPS) action, including sodium pipe rupture and coastdown to natural circulation conditions. The computations are stopped when loss of core integrity (i.e., clad melting temperature exceeded) is indicated

  13. Cobra-IE Evaluation by Simulation of the NUPEC BWR Full-Size Fine-Mesh Bundle Test (BFBT)

    International Nuclear Information System (INIS)

    Burns, C. J.; Aumiler, D.L.

    2006-01-01

    The COBRA-IE computer code is a thermal-hydraulic subchannel analysis program capable of simulating phenomena present in both PWRs and BWRs. As part of ongoing COBRA-IE assessment efforts, the code has been evaluated against experimental data from the NUPEC BWR Full-Size Fine-Mesh Bundle Tests (BFBT). The BFBT experiments utilized an 8 x 8 rod bundle to simulate BWR operating conditions and power profiles, providing an excellent database for investigation of the capabilities of the code. Benchmarks performed included steady-state and transient void distribution, single-phase and two-phase pressure drop, and steady-state and transient critical power measurements. COBRA-IE effectively captured the trends seen in the experimental data with acceptable prediction error. Future sensitivity studies are planned to investigate the effects of enabling and/or modifying optional code models dealing with void drift, turbulent mixing, rewetting, and CHF

  14. Bundling of harvesting residues and whole-trees and the treatment of bundles; Hakkuutaehteiden ja kokopuiden niputus ja nippujen kaesittely

    Energy Technology Data Exchange (ETDEWEB)

    Kaipainen, H; Seppaenen, V; Rinne, S

    1997-12-31

    The conditions on which the bundling of the harvesting residues from spruce regeneration fellings would become profitable were studied. The calculations showed that one of the most important features was sufficient compaction of the bundle, so that the portion of the wood in the unit volume of the bundle has to be more than 40 %. The tests showed that the timber grab loader of farm tractor was insufficient for production of dense bundles. The feeding and compression device of the prototype bundler was constructed in the research and with this device the required density was obtained.The rate of compaction of the dry spruce felling residues was about 40 % and that of the fresh residues was more than 50 %. The comparison between the bundles showed that the calorific value of the fresh bundle per unit volume was nearly 30 % higher than that of the dry bundle. This means that the treatment of the bundles should be done of fresh felling residues. Drying of the bundles succeeded well, and the crushing and chipping tests showed that the processing of the bundles at the plant is possible. The treatability of the bundles was also excellent. By using the prototype, developed in the research, it was possible to produce a bundle of the fresh spruce harvesting residues, the diameter of which was about 50 cm and the length about 3 m, and the rate of compaction over 50 %. By these values the reduction target of the costs is obtainable

  15. Bundling of harvesting residues and whole-trees and the treatment of bundles; Hakkuutaehteiden ja kokopuiden niputus ja nippujen kaesittely

    Energy Technology Data Exchange (ETDEWEB)

    Kaipainen, H.; Seppaenen, V.; Rinne, S.

    1996-12-31

    The conditions on which the bundling of the harvesting residues from spruce regeneration fellings would become profitable were studied. The calculations showed that one of the most important features was sufficient compaction of the bundle, so that the portion of the wood in the unit volume of the bundle has to be more than 40 %. The tests showed that the timber grab loader of farm tractor was insufficient for production of dense bundles. The feeding and compression device of the prototype bundler was constructed in the research and with this device the required density was obtained.The rate of compaction of the dry spruce felling residues was about 40 % and that of the fresh residues was more than 50 %. The comparison between the bundles showed that the calorific value of the fresh bundle per unit volume was nearly 30 % higher than that of the dry bundle. This means that the treatment of the bundles should be done of fresh felling residues. Drying of the bundles succeeded well, and the crushing and chipping tests showed that the processing of the bundles at the plant is possible. The treatability of the bundles was also excellent. By using the prototype, developed in the research, it was possible to produce a bundle of the fresh spruce harvesting residues, the diameter of which was about 50 cm and the length about 3 m, and the rate of compaction over 50 %. By these values the reduction target of the costs is obtainable

  16. Comparison of ASSERT subchannel code with Marviken bundle data

    International Nuclear Information System (INIS)

    Tahir, A.; Carver, M.B.

    1984-04-01

    In this paper ASSERT predictions are compared with the Marviken 6-rod bundle and 36+1 rod bundle. The predictions are presented for two experiments in the 6-rod bundle and four experiments in the 36+1 rod bundle. For low inlet subcooling, the void predictions are in good agreement with the experimental data. For high inlet subcooling, however, the agreement is not as good. This is attributed to the fact that in the high inlet subcooling experiments, single phase turbulent mixing plays a more important role in determining flow conditions in the bundle

  17. Triviality and Split of Vector Bundles on Rationally Connected Varieties

    OpenAIRE

    Pan, Xuanyu

    2013-01-01

    In this paper, we give a simple proof of a triviality criterion due to I.Biswas and J.Pedro and P.Dos Santos. We also prove a vector bundle on a homogenous space is trivial if and only if the restrictions of the vector bundle to Schubert lines are trivial. Using this result and Chern classes of vector bundles, we give a general criterion of a uniform vector bundle on a homogenous space to be splitting. As an application, we prove a uniform vector bundle on classical Grassmannians and quadrics...

  18. CANDU fuel behaviour under transient conditions

    International Nuclear Information System (INIS)

    Segel, A.W.L.

    1979-04-01

    The Canadian R and D program to understand CANDU fuel behaviour under transient conditions is described. Fuel sheath behaviour studies have led to the development of a model of transient plastic strain in inert gas, which integrates the deformation due to several mechanisms. Verification tests demonstrated that on average the model overpredicts strain by 20%. From oxidation kinetics studies a sheath failure embrittlement criterion based on oxygen distribution has been developed. We have also established a rate equation for high-temperature stress-dependent crack formation due to embrittlement of the sheath by beryllium. An electric, simulated fuel element is being used in laboratory tests to characterize the behaviour of fuel in the horizontal. In-reactor, post-dryout tests have been done for several years. There is an axially-segmented, axisymmetric fuel element model in place and a fully two-dimensional code is under development. Laboratory testing of bundles, in its early stages, deals with the effects of geometric distortion and sheath-to-sheath interaction. In-reactor, post-dryout tests of CANDU fuel bundles with extensive central UO 2 melting did not result in fuel fragmentation nor damage to the pressure tube. (author)

  19. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 37-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Bae, Hwang; Chang, Seok-Kyu; Choi, Sun Rock; Lee, Dong Won; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Lee, Hyeong-Yeon

    2014-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are very important. Wrapped wires make a cross flow in a around the fuel rod) of the fuel rod, and this effect lets flow be mixed. Experimental results of flow mixing can be meaningful for verification and validation of thermal mixing correlation in a reactor core thermo-hydraulic design code. A wire mesh sensing technique can be useful method for measuring of flow mixing characteristics. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, it has been recently reported that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. This can be powerfully adapted to recognize flow mixing characteristics by wrapped wires in SFR core thermal design. In this work, we conducted the flow mixing experiments using a custom designed wire mesh sensor. To verify and validate computer codes for the SFR core thermal design, mixing experiments were conducted at a hexagonally arrayed 37-pin wire-wrapped fuel rod bundle test section. The well-designed wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable. In addition, by uncertainty analysis, the system errors and the random error were estimated in experiments. Therefore, the present results and methods can be used for design code verification and validation

  20. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  1. RAP-2A Computer code for transients analysis in fast reactors

    International Nuclear Information System (INIS)

    Iftode, I.; Popescu, C.; Turcu, I.; Biro, L.

    1975-10-01

    The RAP-2A computer code is designed for analyzing thermohydraulic transients and/or steady state problems for large LMFBR cores. Physical and mathematical models, main input-output data, the flow chart of the code and a sample problem are given. RAP-2A calculates the power and the thermoydraulic transients initiated by a flow or reactivity changes, from a normal operating state of the reactor up to core disassembly. In this analysis a representative fuel pin is considered: a one-group space-independent (point) kinetics model to describe the neutron kinetics and a one-dimensional model describing the heat transfer (radial in the fuel and axial in the coolant) are used. Mechanical deformations due to temperature gradient, pressure losses, fuel melting, etc., are also calculated. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  2. The turbulent flow in rod bundles

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1989-01-01

    Experimental studies have shown that the axial and azimuthal turbulence intensities in the gap regions of rod bundles increase strongly with decreasing rod spacing; the fluctuating velocities in the axial and azimuthal directions have a quasi-periodic behaviour. To determine the origin of this phenomenon, an its characteristics as a function of the geometry and the Reynolds number, an experimental investigation was performed on the turbulent in several rod bundles with different aspect ratios (P/D, W/D). Hot-wires and microsphones were used for the measurements of velocity and wall pressure fluctuations. The data were evaluated to obtain spectra as well as auto and cross correlations. Based on the results, a phenomenological model is presented to explain this phenomenon. By means of the model, the mass exchange between neighbouring subchannels is explained [pt

  3. Reactor application of an improved bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Ruck, G.W.; Lee, A.Y.; Smeltzer, G.; Prevenslik, T.

    1978-11-01

    A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supported by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW

  4. On stability of Kummer surfaces' tangent bundle

    International Nuclear Information System (INIS)

    Bozhkov, Y.D.

    1988-10-01

    In this paper we propose an explicit approximation of the Kaehler-Einstein-Calabi-Yau metric on the Kummer surfaces, which are manifolds of type K3. It is constructed by gluing 16 pieces of the Eguchi-Hanson metric and 16 pieces of the Euclidean metric. Two estimates on its curvature are proved. Then we prove an estimate on the first eigenvalue of a covariant differential operator of second order. This enables us to apply Taubes' iteration procedure to obtain that there exists an anti-self-dual connection on the considered Kummer surface. In fact, it is a Hermitian-Einstein connection from which we conclude that Kummer surfaces' co-tangent bundle is stable and therefore their tangent bundle is stable too. (author). 40 refs

  5. SIKAP KONSUMEN TERHADAP PRODUK BUNDLING AGRIBISNIS

    Directory of Open Access Journals (Sweden)

    Didi Junaedi

    2017-04-01

    implementation to Dekalb brand hybrid corn and Round-up brand herbicide. By analyzes how consumer attitudes toward buying intention in this regard farmers as buyer and retailers as products services. The data used is primary data. Primary data is obtained using 2 kind of respondents are retailers and farmers. The data obtained by distributed 30 questionnaires for retailers and 110 farmers in Grobogan. The descriptive statistic employed to analyzed data by using multiple linear regressions with t test, F test and coefficient of determination. The result showed that on retailers respondents attribute the product bundling has no significant influence to consumer buying intention but consumer attitudes significantly influence the buying intention. On the farmers respondents showed that attributes of the product bundling and consumer attitudes positive and significant influence to buying intention.

  6. Tube bundle vibrations in transversal flow

    International Nuclear Information System (INIS)

    Gibert, R.J.; Sagner, M.

    1978-01-01

    This study gives important information concerning characteristic parameters about lock-in and whirling instability phenomena, in the case of tube arrays. The work is mainly an experimental one though models are also developed: 1) an equilateral pitch bundle (p=1,5 D with D=tube diameter) is tested. Tube damping (epsilon) and first eigenfrequency (f), flow velocity are explored in a large domain. Vibratory level of the tubes are measured and critical points are ploted on the fluidelastic parameters diagram. Several bundles with various usual pitches and arrangements (in line or staggered) are tested. Critical velocities are measured and the whirling instability characteristic coefficient is tabulated. A complementary experiment is made on tube rows with various pitches. This gives valuable informations concerning the look-in domain in VR and A'R diagram. Furthermore this puts in evidence the important effect of a frequency difference between two adjacent tubes on the whirling critical velocity

  7. Constrained ripple optimization of Tokamak bundle divertors

    International Nuclear Information System (INIS)

    Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.

    1983-02-01

    Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ω B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple ( 0 ) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded

  8. Fiber Bundle Model Under Heterogeneous Loading

    Science.gov (United States)

    Roy, Subhadeep; Goswami, Sanchari

    2018-03-01

    The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.

  9. Validation of the coupled neutron kinetic thermohydraulic code ATHLET/DYN3D with help of measured data of the OECD Turbine Trip Benchmarks. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.

    2003-12-01

    various calculations for phase II. So, differences of the power and void distribution in single fuel assemblies can be explained by the differences in the neutron kinetic and thermo-hydraulic models. Comparisons between ATHLET/DYN3D (parallel coupling) and ATHLET/QUABOX-CUBBOX (internal coupling) show only small deviations for spatially averaged parameters. The deviations in the local parameters can be explained mainly by the differences in the modeling of the reactor core (reduced number of coolant channels, disregard of the ADF and a different two-phase model in the calculations with ATHLET/QUABOX-CUBBOX). The calculations for the extreme scenarios in phase III demonstrate the applicability of the coupled code ATHLET/DYN3D to transients with conditions beyond the experiment. (orig.) [de

  10. Uncovering ecosystem service bundles through social preferences.

    Directory of Open Access Journals (Sweden)

    Berta Martín-López

    Full Text Available Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem's capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem's capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis. We found a clear trade-off among provisioning services (and recreational hunting versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs.

  11. Principal bundles on the projective line

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    LetX be a complete nonsingular curve over the algebraic closurek ofk andGa reductive group over k. Let E → X be a principal G-bundle on X. E is said to be semistable if, for every reduction of structure group EP ⊂ E to a maximal parabolic subgroup P of G, we have degree EP (p) ≤ 0, where p is the Lie algebra of P and EP ...

  12. Spanning forests and the vector bundle Laplacian

    OpenAIRE

    Kenyon, Richard

    2011-01-01

    The classical matrix-tree theorem relates the determinant of the combinatorial Laplacian on a graph to the number of spanning trees. We generalize this result to Laplacians on one- and two-dimensional vector bundles, giving a combinatorial interpretation of their determinants in terms of so-called cycle rooted spanning forests (CRSFs). We construct natural measures on CRSFs for which the edges form a determinantal process. ¶ This theory gives a natural generalization of the spanning tre...

  13. Uncovering Ecosystem Service Bundles through Social Preferences

    Science.gov (United States)

    Martín-López, Berta; Iniesta-Arandia, Irene; García-Llorente, Marina; Palomo, Ignacio; Casado-Arzuaga, Izaskun; Amo, David García Del; Gómez-Baggethun, Erik; Oteros-Rozas, Elisa; Palacios-Agundez, Igone; Willaarts, Bárbara; González, José A.; Santos-Martín, Fernando; Onaindia, Miren; López-Santiago, Cesar; Montes, Carlos

    2012-01-01

    Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem’s capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem’s capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs. PMID:22720006

  14. Bundling harvester; Harvennuspuun automaattisen nippukorjausharvesterin kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K [Eko-Log Oy, Kuopio (Finland)

    1997-12-01

    The starting point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automating of the harvester, and automated loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilisation of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilised without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilisation of wood-energy. (orig.)

  15. Experimental heat transfer in tube bundle

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, A.; Habib, M.

    1983-01-01

    Previous work has looked for the problem of heat transfer with flow parallel to rod bundle either by treating each rod individually as a separate channel or by treating the bundle as one unit. The present work will consider the existence of both the central and corner rods simultaneously inside the cluster itself under the same working conditions. The test section is geometrically similar to the fuel assembly of the Egyptian Research Reactor-1. The hydro-thermal performance of bundle having 16 - stainless steel tubes arranged in square array of 1.5 pitch to diameter ratio is investigated. Surface temperature and pressure distributions are determined. Average heat transfer coefficient for both central and corner tubes are correlated. Also, pressure drop and friction factor correlations are predicted. The maximum experimental range of the measured parameters are determined in the nonboiling region at 1400 Reynolds number and 3.64 W/cm 2 . It is found that the average heat transfer coefficient of the central tube is higher than that of the corner tube by 27%. Comparison with the previous work shows satisfactory agreement particularly with the circular tubes correlation - Dittus et al. - at 104 Reynolds number

  16. Study of fuel bundle geometry on inter subchannel flow in a 19 pin wire wrapped bundle

    International Nuclear Information System (INIS)

    Naveen Raj, M.; Velusamy, D.K.

    2015-01-01

    In typical sodium cooled fast reactor (SFR) fuel pin bundle, gap between the pins is maintained by helically wound wire wrap around each pin. The presence of wire induces large inter-subchannel transverse flow, eventually promoting mixing and heat transfer. The magnitude of the transverse flow is highly dependent on the various pin-bundle dimensions. Appropriate modeling of these transverse flows in subchannel codes is necessary to predict realistic temperature distribution in pin bundle. Hence, detailed parametric study of transverse flow on pin-bundle geometric parameters has been conducted. The parameters taken for the present study are pin diameter, wire diameter, helical wire pitch and edge gap. Towards this 3-D computational fluid dynamic analysis on a structured mesh of 19 pin bundle is carried out using k-epsilon turbulence model. Periodic oscillations along the primacy flow direction were found in subchannel transverse flow and peripheral pin clad temperatures with periodicity over one pitch length. Based on parametric studies, correlations for transverse flow in central subchannels are proposed. (author)

  17. Thermo-hydraulic characterization of a self-pumping corrugated wall heat exchanger

    International Nuclear Information System (INIS)

    Schmidmayer, Kevin; Kumar, Prashant; Lavieille, Pascal; Miscevic, Marc; Topin, Frédéric

    2017-01-01

    Compactness, efficiency and thermal control of the heat exchanger are of critical significance for many electronic industry applications. In this view, a new concept of heat exchanger at millimeter scale is proposed and numerically studied. It consists in dynamically deforming at least one of its walls by a progressive wave in order to create an active corrugated channel. Systematic studies were performed in single-phase flow on the different deformation parameters that allow obtaining the thermo-hydraulic characteristics of the system. It has been observed the dynamic wall deformation induces a significant pumping effect. Intensification of heat transfer remains very important even for highly degraded waveforms although the pumping efficiency is reduced in this case. The mechanical power applied on the upper wall to deform it dynamically is linked to the wave shape, amplitude, frequency and outlet-inlet pressure difference. The overall performance of the proposed system has been evaluated and compared to existing static channels. The performance of the proposed heat exchanger evolved in two steps for a given wall deformation. It declines slightly up to a critical value of mechanical power applied on the wall. When this critical value is exceeded, it deteriorates significantly, reaching the performance of existing conventional systems. - Highlights: • A new concept of heat exchanger within channel at millimeter scale is proposed. • Upper wall is deformed dynamically by applying external mechanical power. • Pumping effect is observed and is linked to the wave shape, amplitude and frequency. • Efficient proposed system in low Reynolds number range. • Overall performance is significantly high compared to static corrugated and straight channels.

  18. Specialists' meeting on correlation between material properties and thermohydraulics conditions in LMFRs

    International Nuclear Information System (INIS)

    1994-01-01

    In a liquid metal fast reactor (LMFR), temperature fluctuations in the fluid close to a structure occur in many areas: core outlet zone, lower part of hot pool, free surface of pool, IHX outlet, secondary circuit, water steam interface in steam generators. In some conditions, these temperature fluctuations can lead to mechanical damage to structures. Consequently, knowledge of temperature fluctuations and induced thermomechanical damage to structures is essential to support design and maintenance during the plant life-time. In response to a recommendation from the IWGFR, the IAEA convened a Specialist Meeting on 'Correlation between material properties and thermohydraulics conditions in LMFRs' in November 1994. The purpose of the meeting was to exchange information on the state of the art on thermalhydraulic aspects of temperature fluctuations (mixing jet phenomena, temperature gradient fluctuations, transfer of fluctuations from the fluid to the wall), and associated thermomechanical studies (thermal striping, thermal ratchetting, high strain fatigue) as well as design criteria to avoid damage. The main areas discussed by the delegates were: thermalhydraulics and thermomechanics. The objective of thermalhydraulic activities is the characterization of the temperature fluctuations on the wall. Three main items can be identified, for which both the experimental and calculational approaches were considered: identification of the areas where the fluctuations may occur; characterization of the fluctuations in the fluid; and transfer of the fluid fluctuations to the walls. For thermomechanical studies, which cover the effect of the fluctuations in the structures, the following subjects are of great importance: determination of the damage modes induced by thermal loadings in structures (thermal striping, ratchetting, high strain fatigue), and study of all damage modes so as to take them into account in the design criteria and to provide rules for avoiding failure of the

  19. Specialists' meeting on correlation between material properties and thermohydraulics conditions in LMFRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    In a liquid metal fast reactor (LMFR), temperature fluctuations in the fluid close to a structure occur in many areas: core outlet zone, lower part of hot pool, free surface of pool, IHX outlet, secondary circuit, water steam interface in steam generators. In some conditions, these temperature fluctuations can lead to mechanical damage to structures. Consequently, knowledge of temperature fluctuations and induced thermomechanical damage to structures is essential to support design and maintenance during the plant life-time. In response to a recommendation from the IWGFR, the IAEA convened a Specialist Meeting on 'Correlation between material properties and thermohydraulics conditions in LMFRs' in November 1994. The purpose of the meeting was to exchange information on the state of the art on thermalhydraulic aspects of temperature fluctuations (mixing jet phenomena, temperature gradient fluctuations, transfer of fluctuations from the fluid to the wall), and associated thermomechanical studies (thermal striping, thermal ratchetting, high strain fatigue) as well as design criteria to avoid damage. The main areas discussed by the delegates were: thermalhydraulics and thermomechanics. The objective of thermalhydraulic activities is the characterization of the temperature fluctuations on the wall. Three main items can be identified, for which both the experimental and calculational approaches were considered: identification of the areas where the fluctuations may occur; characterization of the fluctuations in the fluid; and transfer of the fluid fluctuations to the walls. For thermomechanical studies, which cover the effect of the fluctuations in the structures, the following subjects are of great importance: determination of the damage modes induced by thermal loadings in structures (thermal striping, ratchetting, high strain fatigue), and study of all damage modes so as to take them into account in the design criteria and to provide rules for avoiding failure of the

  20. Bundled payment fails to gain a foothold In California: the experience of the IHA bundled payment demonstration.

    Science.gov (United States)

    Ridgely, M Susan; de Vries, David; Bozic, Kevin J; Hussey, Peter S

    2014-08-01

    To determine whether bundled payment could be an effective payment model for California, the Integrated Healthcare Association convened a group of stakeholders (health plans, hospitals, ambulatory surgery centers, physician organizations, and vendors) to develop, through a consensus process, the methods and means of implementing bundled payment. In spite of a high level of enthusiasm and effort, the pilot did not succeed in its goal to implement bundled payment for orthopedic procedures across multiple payers and hospital-physician partners. An evaluation of the pilot documented a number of barriers, such as administrative burden, state regulatory uncertainty, and disagreements about bundle definition and assumption of risk. Ultimately, few contracts were signed, which resulted in insufficient volume to test hypotheses about the impact of bundled payment on quality and costs. Although bundled payment failed to gain a foothold in California, the evaluation provides lessons for future bundled payment initiatives. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Assessment of TRAC-PD2 reflood core thermo-hydraulic model by CCTF Test C1-16

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1982-11-01

    The TRAC-PD2 reflood core thermo-hydraulic model was assessed by CCTF Test C1-16. The measured data were utilized as core boundary conditions in the TRAC calculations. The results indicate that the core inlet liquid temperature and the core heater rod temperatures are in reasonable agreement with data, but the pressure distribution in the core and water pool formation in the upper plenum are not in good agreement. The parametric effects of the droplet critical Weber number, the material properties of the heater rod, the noding of the upper plenum, and the minimum stable film boiling temperature are also discussed. (author)

  2. Flow and heat transfer thermohydraulic modelisation during the reflooding phase of a P.W.R.'s core

    International Nuclear Information System (INIS)

    Raymond, Patrick

    1978-04-01

    Some generalities about L.O.C.A. are first recalled. The French experimental studies about Emergency Core Cooling System are briefly described. The different heat transfer mechanisms to take into account, according to the flow pattern in the dry zone, and the correlations or methods to calculate them, are defined. Then the Thermohydraulic code computer: FLIRA, which describe the reflooding phase, and a modelisation taking into account the different flow patterns are setted. A first interpretation of ERSEC experiments with a tubular test section shows that it is possible, with this modelisation and some classical heat transfer correlations, to describe the reflooding phase. [fr

  3. Study on in-vessel thermohydraulics phenomena of sodium-cooled fast reactors. 4. Numerical analysis of 1/10 scaled water experiment with the AQUA code

    International Nuclear Information System (INIS)

    Muramatu, Toshiharu; Yamaguchi, Akira

    2004-01-01

    A large-scale sodium-cooled fast breeder reactor in the feasibility studies on commercialized fast reactors has a feature of consideration of thorough simplified and compacted systems and components design to realize drastic economical improvements. Therefore, special attentions should be paid to thermohydraulic designs for gas entrainment behavior from free surface, flow-induced vibration of in-vessel components, thermal stratification in the plenum, thermal shock for various structures due to high-speed coolant flows, nonsymmetrical coolant flows, etc. in the reactor vessel. A numerical analysis was carried out with a multi-dimensional code AQUA to confirm an applicability to the evaluations for the in-vessel thermohydraulic phenomena using a 1/10 scaled water experiment simulating the large-scale fast breeder reactor in the feasibility studies. From the analysis, the following results were obtained. (1) In-vessel thermohydraulics characterized by a radiated flow pattern to the reactor vessel wall and a strong upward flow through a slit of the upper core structures were evaluated. These characteristics agreed approximately with the water experiment. (2) The upward velocity values at the slit agreed well with the experimental data under a condition of γ z = 0.3 and ξ z = 0.5, though overall evaluations of the in-vessel thermohydraulics were failed to predict quantitatively. (3) The AQUA code is applicable to the in-vessel thermohydraulics evaluations in the feasibility studies, though it is necessary to make further modifications of the calculational models for accurate evaluations. On the one hand, it was confirmed that calculated results for the 1/10 water experimental model and the 1/1 actual-scaled model agreed quantitatively for the in-vessel thermohydraulics characteristics indicated above. (author)

  4. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  5. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    International Nuclear Information System (INIS)

    Mendler, O.J.; Takeuchi, K.; Young, M.Y.

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results

  6. Development of subchannel void measurement sensor and multidimensional two-phase flow dynamics in rod bundle

    International Nuclear Information System (INIS)

    Arai, T.; Furuya, M.; Kanai, T.; Shirakawa, K.

    2011-01-01

    An accurate subchannel database is crucial for modeling the multidimensional two-phase flow in a rod bundle and for validating subchannel analysis codes. Based on available reference, it can be said that a point-measurement sensor for acquiring void fractions and bubble velocity distributions do not infer interactions of the subchannel flow dynamics, such as a cross flow and flow distribution, etc. In order to acquire multidimensional two-phase flow in a 10×10 rod bundle with an o.d. of 10 mm and 3110 mm length, a new sensor consisting of 11-wire by 11-wire and 10-rod by 10-rod electrodes was developed. Electric potential in the proximity region between two wires creates a void fraction in the center subchannel region, like a so-called wire mesh sensor. A unique aspect of the devised sensor is that the void fraction near the rod surface can be estimated from the electric potential in the proximity region between one wire and one rod. The additional 400 points of void fraction and phasic velocity in 10×10 bundle can therefore be acquired. The devised sensor exhibits the quasi three-dimensional flow structures, i.e. void fraction, phasic velocity and bubble chord length distributions. These quasi three-dimensional structures exhibit the complexity of two-phase flow dynamics, such as coalescence and the breakup of bubbles in transient phasic velocity distributions. (author)

  7. Nanotube bundle oscillators: Carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2009-01-01

    In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.

  8. Dimensional measurement of fresh fuel bundle for CANDU reactor

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Cho, Moon Sung; Suk, Ho Chun; Koo, Dae Seo; Jun, Ji Su; Jung, Jong Yeob

    2005-01-01

    This report describes the results of the dimensional measurement of fresh fuel bundles for the CANDU reactor in order to estimate the integrity of fuel bundle in two-phase flow in the CANDU-6 fuel channel. The dimensional measurements of fuel bundles are performed by using the 'CANDU Fuel In-Bay Inspection and Dimensional Measurement System', which was developed by this project. The dimensional measurements are done from February 2004 to March 2004 in the CANDU fuel storage of KNFC for the 36 fresh fuel bundles, which are produced by KNFC and are waiting for the delivery to the Wolsong-3 plant. The detail items of dimensional measurements are included fuel rod and bearing pad profiles of the outer ring in fuel bundle, diameter of fuel bundle, bowing of fuel bundle, fuel rod length, and surface profile of end plate profile. The measurement data will be compared with those of the post-irradiated bundles cooled in Wolsong-3 NPP spent fuel pool by using the same bundles and In-Bay Measurement System. So, this analysis of data will be applied for the evaluation of fuel bundle integrity in two-phase flow of the CANDU-6 fuel channel

  9. Thermohydraulic characteristics analysis of natural convective cooling mode on the steady state condition of upgraded JRR-3 core, using COOLOD-N code

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Watanabe, Shukichi; Ando, Hiroei; Sudo, Yukio; Ikawa, Hiromasa.

    1987-03-01

    This report describes the results of the steady state thermohydraulic analysis of upgraded JRR-3 core under natural convective cooling mode, using COOLOD-N code. In the code, function to calculate flow-rate under natural convective cooling mode, and a heat transfer package have been newly added to the COOLOD code which has been developed in JAERI. And this report describes outline of the COOLOD-N code. The results of analysis show that the thermohydraulics of upgraded JRR-3 core, under natural convective cooling mode have enough margine to ONB temperature, DNB heat flux and occurance of blisters in fuel meats, which are design criterion of upgraded JRR-3. (author)

  10. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Le Vinh Vinh; Huynh Ton Nghiem

    2004-01-01

    Requirements of neutron, thermohydraulic and safety analysis calculation are very important because of issuing new version of SAR for DNRR, research on construction of new research reactor and nuclear power plant. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor has been done in the frame work of research theme in the year 2002-2003. The purposes of the research are maintaining safety operation of the DNRR and enhancement of man power and calculation and safety analysis tool potential. (author)

  11. COBRA-IV-I: an interim version of COBRA for thermal-hydraulic analysis of rod bundle nuclear fuel elements and cores

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, C.L.; Stewart, C.W.; Cena, R.J.; Rowe, D.S.; Sutey, A.M.

    1976-03-01

    The COBRA-IV-I computer code uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV-I as the implicit solution scheme option. In addition to these techniques, a new explicit solution scheme is now available which allows the calculation of severe transients involving flow reversals, recirculations, expulsion and reentry flows, with a pressure or flow boundary condition specified. Significant storage compaction and reduced running times have been achieved to allow the calculation of problems involving hundreds of subchannels.

  12. Stability of Picard bundle over moduli space of stable vector bundles ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Since the morphism ϕ is given by the universal property of the moduli space, the pullback of the universal bundle E on X × M to X × P by the map idX × ϕ is isomorphic (up to a twist by a line bundle coming from P) to ˜E. In other words, there is an integer k such that. 0 −→ (idX × ϕ)∗E −→ W ⊠ OP (k) −→ Ox×P (k + 1) −→ 0.

  13. Influence of Bundle Diameter and Attachment Point on Kinematic Behavior in Double Bundle Anterior Cruciate Ligament Reconstruction Using Computational Model

    Directory of Open Access Journals (Sweden)

    Oh Soo Kwon

    2014-01-01

    Full Text Available A protocol to choose the graft diameter attachment point of each bundle has not yet been determined since they are usually dependent on a surgeon’s preference. Therefore, the influence of bundle diameters and attachment points on the kinematics of the knee joint needs to be quantitatively analyzed. A three-dimensional knee model was reconstructed with computed tomography images of a 26-year-old man. Based on the model, models of double bundle anterior cruciate ligament (ACL reconstruction were developed. The anterior tibial translations for the anterior drawer test and the internal tibial rotation for the pivot shift test were investigated according to variation of bundle diameters and attachment points. For the model in this study, the knee kinematics after the double bundle ACL reconstruction were dependent on the attachment point and not much influenced by the bundle diameter although larger sized anterior-medial bundles provided increased stability in the knee joint. Therefore, in the clinical setting, the bundle attachment point needs to be considered prior to the bundle diameter, and the current selection method of graft diameters for both bundles appears justified.

  14. Transient drainage summary report

    International Nuclear Information System (INIS)

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage

  15. LMFR core and heat exchanger thermohydraulic design: former USSR and present Russian approaches

    International Nuclear Information System (INIS)

    1999-01-01

    The information presented in this report is dealing with liquid metal cooled fast reactors some of which are in operation (France, Japan, Russian federation) or under construction. Comprehensive thermal hydraulic research both experimental and numeric applied to such reactors was carried out in the Institute of Physics and Power Engineering (IPPE), Obninsk, Russian Federation. The IAEA Working Group on fast Reactors (IWGFR) recommended that IPPE should generalize its thermal hydraulic studies as well as results of other countries published previously in the field of liquid metal flow distribution and heat transfer in fuel pin and heat exchanger rod bundles (France, Germany, Japan, India, Russian Federation, United Kingdom and United States). The validity of computer codes and design approaches was proven by comparison of calculated results with measured values of velocity, pressure, temperature distributions in rod bundles cooled/heated by liquid metal, usually sodium. The report includes the methodology and philosophy of the analytical and experimental investigations when applied to core and heat exchanger thermal hydraulic design of Light Water Moderated Fast Reactors (LMFRs)

  16. A Tannakian approach to dimensional reduction of principal bundles

    Science.gov (United States)

    Álvarez-Cónsul, Luis; Biswas, Indranil; García-Prada, Oscar

    2017-08-01

    Let P be a parabolic subgroup of a connected simply connected complex semisimple Lie group G. Given a compact Kähler manifold X, the dimensional reduction of G-equivariant holomorphic vector bundles over X × G / P was carried out in Álvarez-Cónsul and García-Prada (2003). This raises the question of dimensional reduction of holomorphic principal bundles over X × G / P. The method of Álvarez-Cónsul and García-Prada (2003) is special to vector bundles; it does not generalize to principal bundles. In this paper, we adapt to equivariant principal bundles the Tannakian approach of Nori, to describe the dimensional reduction of G-equivariant principal bundles over X × G / P, and to establish a Hitchin-Kobayashi type correspondence. In order to be able to apply the Tannakian theory, we need to assume that X is a complex projective manifold.

  17. Analytical prediction of turbulent friction factor for a rod bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Park, Joo Hwan

    2011-01-01

    An analytical calculation has been performed to predict the turbulent friction factor in a rod bundle. For each subchannel constituting a rod bundle, the geometry parameters are analytically derived by integrating the law of the wall over each subchannel with the consideration of a local shear stress distribution. The correlation equations for a local shear stress distribution are supplied from a numerical simulation for each subchannel. The explicit effect of a subchannel shape on the geometry parameter and the friction factor is reported. The friction factor of a corner subchannel converges to a constant value, while the friction factor of a central subchannel steadily increases with a rod distance ratio. The analysis for a rod bundle shows that the friction factor of a rod bundle is largely affected by the characteristics of each subchannel constituting a rod bundle. The present analytic calculations well predict the experimental results from the literature with rod bundles in circular, hexagonal, and square channels.

  18. Matrix remodeling between cells and cellular interactions with collagen bundle

    Science.gov (United States)

    Kim, Jihan; Sun, Bo

    When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.

  19. Adaptation and implementation of the TRACE code for transient analysis on designs of cooled lead fast reactors; Adaptacion y aplicacion del codigo TRACE para el analisis de transitorios en disenos de reactores rapidos refrigerados por plomo

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2014-07-01

    The article describes the changes implemented in the TRACE code to include thermodynamic tables of liquid lead drawn from experimental results. He then explains the process for developing a thermohydraulic model for the prototype ALFRED and analysis of a selection of representative transient conducted within the framework of international research projects. The study demonstrates the applicability of TRACE code to simulate designs of cooled lead fast reactors and exposes the high safety margins are there in this technology to accommodate the most severe transients identified in their security study. (Author)

  20. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  1. MODULAR BUNDLE ADJUSTMENT FOR PHOTOGRAMMETRIC COMPUTATIONS

    Directory of Open Access Journals (Sweden)

    N. Börlin

    2018-05-01

    Full Text Available In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013 based on the Photogrammetric and Computer Vision interpretations of Brown (1971 lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.

  2. Historical dynamics in ecosystem service bundles.

    Science.gov (United States)

    Renard, Delphine; Rhemtulla, Jeanine M; Bennett, Elena M

    2015-10-27

    Managing multiple ecosystem services (ES), including addressing trade-offs between services and preventing ecological surprises, is among the most pressing areas for sustainability research. These challenges require ES research to go beyond the currently common approach of snapshot studies limited to one or two services at a single point in time. We used a spatiotemporal approach to examine changes in nine ES and their relationships from 1971 to 2006 across 131 municipalities in a mixed-use landscape in Quebec, Canada. We show how an approach that incorporates time and space can improve our understanding of ES dynamics. We found an increase in the provision of most services through time; however, provision of ES was not uniformly enhanced at all locations. Instead, each municipality specialized in providing a bundle (set of positively correlated ES) dominated by just a few services. The trajectory of bundle formation was related to changes in agricultural policy and global trends; local biophysical and socioeconomic characteristics explained the bundles' increasing spatial clustering. Relationships between services varied through time, with some provisioning and cultural services shifting from a trade-off or no relationship in 1971 to an apparent synergistic relationship by 2006. By implementing a spatiotemporal perspective on multiple services, we provide clear evidence of the dynamic nature of ES interactions and contribute to identifying processes and drivers behind these changing relationships. Our study raises questions about using snapshots of ES provision at a single point in time to build our understanding of ES relationships in complex and dynamic social-ecological systems.

  3. Hydrodynamic behavior of a bare rod bundle

    International Nuclear Information System (INIS)

    Bartzis, J.G.; Todreas, N.E.

    1977-06-01

    The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers

  4. Global properties of systems quantized via bundles

    International Nuclear Information System (INIS)

    Doebner, H.D.; Werth, J.E.

    1978-03-01

    Take a smooth manifold M and a Lie algebra action (g-ation) theta on M as the geometrical arena of a physical system moving on M with momenta given by theta. It is proposed to quantize the system with a Mackey-like method via the associated vector bundle xisub(rho) of a principal bundle xi=(P,π,M,H) with model dependent structure group H and with g-action phi on P lifted from theta on M. This (quantization) bundle xisub(rho) gives the Hilbert space equal to L 2 (xisub(rho),ω) of the system as the linear space of sections in xisub(rho) being square integrable with respect to a volume form ω on M; the usual position operators are obtained; phi leads to a vector field representation D(phisub(rho),theta) of g in an hence Hilbert space to momentum operators. So Hilbert space carries the quantum kinematics. In this quantuzation the physically important connection between geometrical properties of the system, e.g. quasi-completeness of theta and G-maximality of phisub(rho), and global properties of its quantized kinematics, e.g. skew-adjointness of the momenta and integrability of D(phisub(rho), theta) can easily be studied. The relation to Nelson's construction of a skew-adjoint non-integrable Lie algebra representation and to Palais' local G-action is discussed. Finally the results are applied to actions induced by coverings as examples of non-maximal phisub(rho) on Esub(rho) lifted from maximal theta on M which lead to direct consequences for the corresponding quantum kinematics

  5. Modular Bundle Adjustment for Photogrammetric Computations

    Science.gov (United States)

    Börlin, N.; Murtiyoso, A.; Grussenmeyer, P.; Menna, F.; Nocerino, E.

    2018-05-01

    In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.

  6. Development of LILAC-meltpool for the thermo-hydraulic analysis of core melt relocated in a reactor vessel

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Kim, Sang Baik; Kim, Hee Dong

    2002-03-01

    LILAC-meltpool has been developed to study thermo-hydraulic behavior of molten pool and thermal behavior of vessel wall during severe accident. To validate LILAC-meltpool code several two and three dimensional thermo-hydraulic problems were selected and solved. The benchmark problems have experimental results or verified numerical results. Through the validation it was found that LILAC-meltpool reproduces very accurate numerical results. Two-layered semicircular pool was solved to study thermal and hydraulic characteristics of pool stratification. The LAVA experiment using alumina/ferrite molten pool was calculated and compared with computed results. Cooling of alumina/ferrite two-layered pool was affected by stratification. In the numerical results temperature of vessel inner was highest at a location below the interface. Crust was developed from upper surface and lower outer surface, but in the area near the interface corium simulant existed as molten state for long time. LAVA-4 experiment was studied using gap-cooling model in LILAC-meltpool code. Temperature increase of LAVA vessel after alumina melt relocation was strongly dependent on gap formation mechanism. Calculated cooling rates of the vessel were very similar to experimental results. For LAVA experiments which do not have heat generation coolant penetrates easily into a gap and it is found that gap-cooling is very effective for cooling of vessel, but it is thought that coolant penetration could be limited near upper part of gap because of decay heat and high temperature of corium crust

  7. Experimental Investigation of Thermohydraulic Performance of a Rectangular Solar Air Heater Duct Equipped with V-Shaped Perforated Blocks

    Directory of Open Access Journals (Sweden)

    Tabish Alam

    2014-01-01

    Full Text Available This paper presents the thermohydraulic performance of rectangular solar air heater duct equipped with V-shaped rectangular perforated blocks attached to the heated surface. The V-shaped perforated blocks are tested for downstream (V-down to the air flow at Reynolds number from 2000 to 20000. The perforated blocks have relative pitch ratio (P/e from 4 to 12, relative blockage height ratio (e/H from 0.4 to 1.0, and open area ration from 5% to 25% at a fixed value of angle of attack of 60∘ in a rectangular duct having duct aspect ratio (W/H of 12. Thermohydraulic performance is compared at different geometrical parameters of V-shaped perforated blocks for equal pumping power which shows that maximum performance is observed at a relative pitch of 8, relative rib height of 0.8, and open area ration of 20%. It is also observed that the performance of V-shaped perforated blocks was better than transverse-perforated blocks.

  8. Observation and control system of the thermohydraulic assays laboratory; Sistema de observacion y control del laboratorio de ensayos termohidraulicos

    Energy Technology Data Exchange (ETDEWEB)

    Santome, D; Hualde, R

    1991-12-31

    The Thermohydraulic Assays Laboratory (L.E.T.) is an installation whose purpose will be the components testing and the CAREM-25 reactor thermohydraulic processes operation dynamics. This plant is located at Pilcaniyeu, province of Rio Negro. Part of the tests which will be carried out consist in the use of different control strategies. The control of the systems by digital processors (control by software) has been decided to proceed with a maximum flexibility and capacity to make changes in the algorithms. This work describes the design and implementation of a digital control system to command the three circuits of the installation. (Author). [Espanol] El Laboratorio de Ensayos Termohidraulicos (L.E.T.) es una instalacion cuyo objeto sera el ensayo de componentes y de la dinamica de operacion de los procesos termohidraulicos del reactor CAREM-25. Esta planta esta localizada en Pilcaniyeu, provincia de Rio Negro. Parte de las pruebas que se efectuaran en el L.E.T. consisten en el empleo de distintas estrategias de control. Para disponer de una maxima flexibilidad y capacidad de efectuar cambios en los algoritmos, se decidio realizar el control de los sistemas por medio de procesadores digitales (control por software). Este trabajo consistio en el diseno e implementacion de un sistema de control digital distribuido para el comando de los tres circuitos con que cuenta la instalacion. (Autor).

  9. Computational fluid dynamic model for thermohydraulic calculation for the steady-state of the real scale HTR-1

    Energy Technology Data Exchange (ETDEWEB)

    Gamez, Abel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy Y.; Gonzalez, Daniel; Garcia, Carlos, E-mail: agamezgmf@gmail.com, E-mail: leored1984@gmail.com, E-mail: jrosales@instec.cu, E-mail: lcastro@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgr@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Oliveira, Carlos B. de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    The high temperature gas cooled reactor (HTGR) is one of candidates of next generation of nuclear reactor according to IAEA report 2013. Evaluation of thermohydraulic performance and an experimental comparison results were proposed to the international research community. In this article, the tree dimensional CFD thermohydraulic modelation of steady state of HTR-10 modular reactor, using ANSYS CFX v14.0, has been done. Code-to-code and Code-to-experiment benchmark analyses, related to the testing program of the HTR-10 plant including steady state temperature distribution with the reactor at full power, were developed. The 3D real scale representation of reflector zone and fluid path flow inner and outer reflector blocks and cold helium cavity were carried out. The porous medium model was used to simulate the core zone in the reactor. The power distribution of the initial core published by IAEA-TECDOC-1694 obtained by Chief Scientific Investigators (CSIs) from China was used as heat sources in the core zone. (author)

  10. A Hodge dual for soldered bundles

    International Nuclear Information System (INIS)

    Lucas, Tiago Gribl; Pereira, J G

    2009-01-01

    In order to account for all possible contractions allowed by the presence of the solder form, a generalized Hodge dual is defined for the case of soldered bundles. Although for curvature the generalized dual coincides with the usual one, for torsion it gives a completely new dual definition. Starting from the standard form of a gauge Lagrangian for the translation group, the generalized Hodge dual yields precisely the Lagrangian of the teleparallel equivalent of general relativity, and consequently also the Einstein-Hilbert Lagrangian of general relativity

  11. Bundling Products and Services Through Modularization Strategies

    DEFF Research Database (Denmark)

    Bask, Anu; Hsuan, Juliana; Rajahonka, Mervi

    2012-01-01

    Modularity has been recognized as a powerful tool in improving the efficiency and management of product design and manufacturing. However, the integrated view on covering both, product and service modularity for product-service systems (PSS), is under researched. Therefore, in this paper our...... objective is to contribute to the PSS modularity. Thus, we describe configurations of PSSs and the bundling of products and services through modularization strategies. So far there have not been tools to analyze and determine the correct combinations of degrees of product and service modularities....

  12. SEU43 fuel bundles in CANDU 600

    International Nuclear Information System (INIS)

    Catana, Alexandru; Prodea, Iosif; Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel

    2008-01-01

    Cernavoda Unit 1 and Unit 2 are pressure tube 650 MWe nuclear stations moderated and cooled with heavy water, of Canada design, located in Romania. Fuelling is on-power and the plant is currently fuelled with natural uranium dioxide. Fuel is encapsulated in a 37 fuel rod assembly having a specific standard geometry (STD37). In order to reduce fuel cycle costs programs were initiated in Canada, South Korea and at SCN Pitesti, Romania for design and build of a new, improved geometry fuel bundle and some fuel compositions. Among fuel compositions, which are considered, is the slightly enriched uranium (SEU) fuel (0.96 w% U-235) with an associated burn-up increase from ∼7900 MWd/tU up to ∼15000 MWd/tU. Neutron analysis showed that the Canadian-Korean fuel bundle geometry with 43 rods called SEU (SEU43) can be used in already operated reactors. A new fuel bundle resulted. Extended, comprehensive analysis must be conducted in order to assess the TH behavior of SEU43 besides the neutron, mechanical (drag force, etc) analyses. In this paper, using the sub-channel approach, main thermal-hydraulic parameters were analyzed: pressure drop; fuel, sheath and coolant temperatures; coolant density; critical heat flux. Some significant differences versus standard fuel are outlined in the paper and some conclusions are drawn. While, by using this new fuel, there are many benefits to be attained like: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power generation against other sources of generation, etc., the safety margins must be, at least, conserved. The introduction of a new fuel bundle type, different in geometry and fuel composition, requires a detailed preparation, a testing program and a series of neutron and thermal-hydraulic analysis. The results reported by this paper is part of this effort. The feasibility to increase the enrichment from 0.71% U-235 (NU) to 0.96% U-235, with an estimated burn-up increase up to 14000 MWd

  13. Vector bundles on complex projective spaces

    CERN Document Server

    Okonek, Christian; Spindler, Heinz

    1980-01-01

    This expository treatment is based on a survey given by one of the authors at the Séminaire Bourbaki in November 1978 and on a subsequent course held at the University of Göttingen. It is intended to serve as an introduction to the topical question of classification of holomorphic vector bundles on complex projective spaces, and can easily be read by students with a basic knowledge of analytic or algebraic geometry. Short supplementary sections describe more advanced topics, further results, and unsolved problems.

  14. Differential geometry bundles, connections, metrics and curvature

    CERN Document Server

    Taubes, Clifford Henry

    2011-01-01

    Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the

  15. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1980-01-01

    The invention relates to a nuclear power reactor fuel bundle of the type wherein several rods are mounted in parallel array between two tie plates which secure the fuel rods in place and are maintained in assembled position by means of a number of tie rods secured to both of the end plates. Improved apparatus is provided for attaching the tie rods to the upper tie plate by the use of locking lugs fixed to rotatable sleeves which engage the upper tie plate. (auth)

  16. Deformation quantization with separation of variables of an endomorphism bundle

    Science.gov (United States)

    Karabegov, Alexander

    2014-01-01

    Given a holomorphic Hermitian vector bundle E and a star-product with separation of variables on a pseudo-Kähler manifold, we construct a star product on the sections of the endomorphism bundle of the dual bundle E∗ which also has the appropriately generalized property of separation of variables. For this star product we prove a generalization of Gammelgaard's graph-theoretic formula.

  17. Relativistic rotators: a quantum mechanical de Sitter bundle

    International Nuclear Information System (INIS)

    Boehm, A.

    1976-02-01

    If de Sitter fiber bundle over space time is the classical picture of hadrons then for a quantum mechanical description one has to generalize the concept of a principal fiber bundle to a bundle that contains the representation of the group of motion. This idea is related to the relativistic rotator model, and the radius of the de Sitter fiber is determined from the experimental hadron spectrum

  18. Crossed Module Bundle Gerbes; Classification, String Group and Differential Geometry

    OpenAIRE

    Jurco, Branislav

    2005-01-01

    We discuss nonabelian bundle gerbes and their differential geometry using simplicial methods. Associated to any crossed module there is a simplicial group NC, the nerve of the 1-category defined by the crossed module and its geometric realization |NC|. Equivalence classes of principal bundles with structure group |NC| are shown to be one-to-one with stable equivalence classes of what we call crossed module gerbes bundle gerbes. We can also associate to a crossed module a 2-category C'. Then t...

  19. Analytic convergence of harmonic metrics for parabolic Higgs bundles

    Science.gov (United States)

    Kim, Semin; Wilkin, Graeme

    2018-04-01

    In this paper we investigate the moduli space of parabolic Higgs bundles over a punctured Riemann surface with varying weights at the punctures. We show that the harmonic metric depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle generalisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic parametrisation of these metrics.

  20. Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction

    OpenAIRE

    Demet Pepele

    2014-01-01

    Aim: The goal in anterior cruciate ligament reconstruction (ACLR) is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our ...

  1. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  2. Local load-sharing fiber bundle model in higher dimensions.

    Science.gov (United States)

    Sinha, Santanu; Kjellstadli, Jonas T; Hansen, Alex

    2015-08-01

    We consider the local load-sharing fiber bundle model in one to five dimensions. Depending on the breaking threshold distribution of the fibers, there is a transition where the fracture process becomes localized. In the localized phase, the model behaves as the invasion percolation model. The difference between the local load-sharing fiber bundle model and the equal load-sharing fiber bundle model vanishes with increasing dimensionality with the characteristics of a power law.

  3. Study of thermophysical and thermohydraulic properties of sodium for fast sodium cooled reactors

    International Nuclear Information System (INIS)

    Vega R, A. K.; Espinosa P, G.; Gomez T, A. M.

    2016-09-01

    The importance of liquid sodium lies in its use as a coolant for fast reactors, but why should liquid metal be used as a coolant instead of water? Water is difficult to use as a coolant for a fast nuclear reactor because its acts as a neutron moderator, that is, stop the fast neutrons and converts them to thermal neutrons. Nuclear reactors such as the Pressurized Water Reactor or the Boiling Water Reactor are thermal reactors, which mean they need thermal neutrons for their operation. However, is necessary for fast reactors to conserve as much fast neutrons, so that the liquid metal coolants that do have this capability are implemented. Sodium does not need to be pressurized, its low melting point and its high boiling point, higher than the operating temperature of the reactor, make it an adequate coolant, also has a high thermal conductivity, which is necessary to transfer thermal energy and its viscosity is close to that of the water, which indicates that is an easily transportable liquid and does not corrode the steel parts of the reactor. This paper presents a brief state of the art of the rapid nuclear reactors that operated and currently operate, as well as projects in the door in some countries; types of nuclear reactors which are cooled by liquid sodium and their operation; the mathematical models for obtaining the properties of liquid sodium in a range of 393 to 1673 Kelvin degrees and a pressure atmosphere. Finally a program is presented in FORTRAN named Thermo-Sodium for the calculation of the properties, which requires as input data the Kelvin temperature in which the liquid sodium is found and provides at the user the thermo-physical and thermo-hydraulic properties for that data temperature. Additional to this the user is asked the Reynolds number and the hydraulic diameter in case of knowing them, and in this way the program will provide the value of the convective coefficient and that of the dimensionless numbers: Nusselt, Prandtl and Peclet. (Author)

  4. Effect of boundary conditions on thermohydraulic behavior of clay buffer used in nuclear waste repository

    International Nuclear Information System (INIS)

    Arul Peter, A.; Murugesan, K.; Mamidi, Ganesh; Sharma, Umesh Kumar; Sharma, D. Akanshu; Arora, Puneet

    2010-01-01

    barrier will be subjected to in real situations. When either the temperature or heat flux is increased at the canister side, the saturation corresponding to that side decreases because of increase in temperature and pressure gradients. The comparisons of the results obtained from the present numerical simulation with the available experimental results shows that the present model can simulate the thermo-hydraulic behaviour of unsaturated porous media according to the physics underlying the problem. (author)

  5. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  6. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  7. Warps, grids and curvature in triple vector bundles

    Science.gov (United States)

    Flari, Magdalini K.; Mackenzie, Kirill

    2018-06-01

    A triple vector bundle is a cube of vector bundle structures which commute in the (strict) categorical sense. A grid in a triple vector bundle is a collection of sections of each bundle structure with certain linearity properties. A grid provides two routes around each face of the triple vector bundle, and six routes from the base manifold to the total manifold; the warps measure the lack of commutativity of these routes. In this paper we first prove that the sum of the warps in a triple vector bundle is zero. The proof we give is intrinsic and, we believe, clearer than the proof using decompositions given earlier by one of us. We apply this result to the triple tangent bundle T^3M of a manifold and deduce (as earlier) the Jacobi identity. We further apply the result to the triple vector bundle T^2A for a vector bundle A using a connection in A to define a grid in T^2A . In this case the curvature emerges from the warp theorem.

  8. Experimental and numerical investigations of BWR fuel bundle inlet flow

    International Nuclear Information System (INIS)

    Hoashi, E; Morooka, S; Ishitori, T; Komita, H; Endo, T; Honda, H; Yamamoto, T; Kato, T; Kawamura, S

    2009-01-01

    We have been studying the mechanism of the flow pattern near the fuel bundle inlet of BWR using both flow visualization test and computational fluid dynamics (CFD) simulation. In the visualization test, both single- and multi-bundle test sections were used. The former test section includes only a corner orifice facing two support beams and the latter simulates 16 bundles surrounded by four beams. An observation window is set on the side of the walls imitating the support beams upstream of the orifices in both test sections. In the CFD simulation, as well as the visualization test, the single-bundle model is composed of one bundle with a corner orifice and the multi-bundle model is a 1/4 cut of the test section that includes 4 bundles with the following four orifices: a corner orifice facing the corner of the two neighboring support beams, a center orifice at the opposite side from the corner orifice, and two side orifices. Twin-vortices were observed just upstream of the corner orifice in the multi-bundle test as well as the single-bundle test. A single-vortex and a vortex filament were observed at the side orifice inlet and no vortex was observed at the center orifice. These flow patterns were also predicted in the CFD simulation using Reynolds Stress Model as a turbulent model and the results were in good agreement with the test results mentioned above. (author)

  9. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J W; Choi, H; Rhee, B W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  10. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  11. The differential geometry of higher order jets and tangent bundles

    International Nuclear Information System (INIS)

    De Leon, M.; Rodrigues, P.R.

    1985-01-01

    This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)

  12. Restriction Theorem for Principal bundles in Arbitrary Characteristic

    DEFF Research Database (Denmark)

    Gurjar, Sudarshan

    2015-01-01

    The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...

  13. Limitations of transient power loads on DEMO and analysis of mitigation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Maviglia, F., E-mail: francesco.maviglia@euro-fusion.org [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Consorzio CREATE, University Napoli Federico II – DIETI, 80125 Napoli (Italy); Federici, G. [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Strohmayer, G. [Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Wenninger, R. [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Bachmann, C. [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Albanese, R. [Consorzio CREATE, University Napoli Federico II – DIETI, 80125 Napoli (Italy); Ambrosino, R. [Consorzio CREATE University Napoli Parthenope, Naples (Italy); Li, M. [Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Loschiavo, V.P. [Consorzio CREATE, University Napoli Federico II – DIETI, 80125 Napoli (Italy); You, J.H. [Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Zani, L. [CEA, IRFM, F-13108 St Paul-Lez-Durance (France)

    2016-11-01

    Highlights: • A parametric thermo-hydraulic analysis of the candidate DEMO divertor is presented. • The operational space assessment is presented under static and transient heat loads. • Strike points sweeping is analyzed as a divertor power exhaust mitigation technique. • Results are presented on sweeping installed power required, AC losses and thermal fatigue. - Abstract: The present European standard DEMO divertor target technology is based on a water-cooled tungsten mono-block with a copper alloy heat sink. This paper presents the assessment of the operational space of this technology under static and transient heat loads. A transient thermo-hydraulic analysis was performed using the code RACLETTE, which allowed a broad parametric scan of the target geometry and coolant conditions. The limiting factors considered were the coolant critical heat flux (CHF), and the temperature limits of the materials. The second part of the work is devoted to the study of the plasma strike point sweeping as a mitigation technique for the divertor power exhaust. The RACLETTE code was used to evaluate the impact of a large range of sweeping frequencies and amplitudes. A reduced subset of cases, which complied with the constraints, was benchmarked with a 3D FEM model. A reduction of the heat flux to the coolant, up to a factor ∼4, and lower material temperatures were found for an incident heat flux in the range (15–30) MW/m{sup 2}. Finally, preliminary assessments were performed on the installed power required for the sweeping, the AC losses in the superconductors and thermal fatigue analysis. No evident show stoppers were found.

  14. Molybdenum-99-producing 37-element fuel bundle neutronically and thermal-hydraulically equivalent to a standard CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: Eleodor.Nichita@uoit.ca; Haroon, J., E-mail: Jawad.Haroon@uoit.ca

    2016-10-15

    Highlights: • A 37-element fuel bundle modified for {sup 99}Mo production in CANDU reactors is presented. • The modified bundle is neutronically and thermal-hydraulically equivalent to the standard bundle. • The modified bundle satisfies all safety criteria satisfied by the standard bundle. - Abstract: {sup 99m}Tc, the most commonly used radioisotope in diagnostic nuclear medicine, results from the radioactive decay of {sup 99}Mo which is currently being produced at various research reactors around the globe. In this study, the potential use of CANDU power reactors for the production of {sup 99}Mo is investigated. A modified 37-element fuel bundle, suitable for the production of {sup 99}Mo in existing CANDU-type reactors is proposed. The new bundle is specifically designed to be neutronically and thermal-hydraulically equivalent to the standard 37-element CANDU fuel bundle in normal, steady-state operation and, at the same time, be able to produce significant quantities of {sup 99}Mo when irradiated in a CANDU reactor. The proposed bundle design uses fuel pins consisting of a depleted-uranium centre surrounded by a thin layer of low-enriched uranium. The new molybdenum-producing bundle is analyzed using the lattice transport code DRAGON and the diffusion code DONJON. The proposed design is shown to produce 4081 six-day Curies of {sup 99}Mo activity per bundle when irradiated in the peak-power channel of a CANDU core, while maintaining the necessary reactivity and power rating limits. The calculated {sup 99}Mo yield corresponds to approximately one third of the world weekly demand. A production rate of ∼3 bundles per week can meet the global demand of {sup 99}Mo.

  15. Confinement-Dependent Friction in Peptide Bundles

    Science.gov (United States)

    Erbaş, Aykut; Netz, Roland R.

    2013-01-01

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  16. Hydrated and Dehydrated Tertiary Interactions–Opening and Closing–of a Four-Helix Bundle Peptide

    Science.gov (United States)

    Lignell, Martin; Tegler, Lotta T.; Becker, Hans-Christian

    2009-01-01

    Abstract The structural heterogeneity and thermal denaturation of a dansyl-labeled four-helix bundle homodimeric peptide was studied with steady-state and time-resolved fluorescence spectroscopy and with circular dichroism (CD). At room temperature the fluorescence decay of the polarity-sensitive dansyl, located in the hydrophobic core region, can be described by a broad distribution of fluorescence lifetimes, reflecting the heterogeneous microenvironment. However, the lifetime distribution is nearly bimodal, which we ascribe to the presence of two major conformational subgroups. Since the fluorescence lifetime reflects the water content of the four-helix bundle conformations, we can use the lifetime analysis to monitor the change in hydration state of the hydrophobic core of the four-helix bundle. Increasing the temperature from 9°C to 23°C leads to an increased population of molten-globule-like conformations with a less ordered helical backbone structure. The fluorescence emission maximum remains constant in this temperature interval, and the hydrophobic core is not strongly affected. Above 30°C the structural dynamics involve transient openings of the four-helix bundle structure, as evidenced by the emergence of a water-quenched component and less negative CD. Above 60°C the homodimer starts to dissociate, as shown by the increasing loss of CD and narrow, short-lived fluorescence lifetime distributions. PMID:19619472

  17. Safety assessment for the CANFLEX-NU fuel bundles with respect to the 37-element fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H. C.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    The KAERI and AECL have jointly developed an advanced CANDU fuel, called CANFLEX-NU fuel bundle. CANFLEX 43-element bundle has some improved features of increased operating margin and enhanced safety compared to the existing 37-element bundle. Since CANFLEX fuel bundle is designed to be compatible with the CANDU-6 reactor design, the behaviour in the thermalhydraulic system will be nearly identical with 37-element bundle. But due to different element design and linear element power distribution between the two bundles, it is expected that CANFLEX fuel behaviour would be different from the behaviour of the 37-element fuel. Therefore, safety assessments on the design basis accidents which result if fuel failures are performed. For all accidents selected, it is observed that the loading of CANFLEX bundle in an existing CANDU-6 reactor would not worsen the reactor safety. It is also predicted that fission product release for CANFLEX fuel bundle generally is lower than that for 37-element bundle. 3 refs., 2 figs., 2 tabs. (Author)

  18. Real-time wavelet-based inline banknote-in-bundle counting for cut-and-bundle machines

    Science.gov (United States)

    Petker, Denis; Lohweg, Volker; Gillich, Eugen; Türke, Thomas; Willeke, Harald; Lochmüller, Jens; Schaede, Johannes

    2011-03-01

    Automatic banknote sheet cut-and-bundle machines are widely used within the scope of banknote production. Beside the cutting-and-bundling, which is a mature technology, image-processing-based quality inspection for this type of machine is attractive. We present in this work a new real-time Touchless Counting and perspective cutting blade quality insurance system, based on a Color-CCD-Camera and a dual-core Computer, for cut-and-bundle applications in banknote production. The system, which applies Wavelet-based multi-scale filtering is able to count banknotes inside a 100-bundle within 200-300 ms depending on the window size.

  19. Evaluation of Single-Bundle versus Double-Bundle PCL Reconstructions with More Than 10-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Masataka Deie

    2015-01-01

    Full Text Available Background. Posterior cruciate ligament (PCL injuries are not rare in acute knee injuries, and several recent anatomical studies of the PCL and reconstructive surgical techniques have generated improved patient results. Now, we have evaluated PCL reconstructions performed by either the single-bundle or double-bundle technique in a patient group followed up retrospectively for more than 10 years. Methods. PCL reconstructions were conducted using the single-bundle (27 cases or double-bundle (13 cases method from 1999 to 2002. The mean age at surgery was 34 years in the single-bundle group and 32 years in the double-bundle group. The mean follow-up period was 12.5 years. Patients were evaluated by Lysholm scoring, the gravity sag view, and knee arthrometry. Results. The Lysholm score after surgery was 89.1±5.6 points for the single-bundle group and 91.9±4.5 points for the double-bundle group. There was no significant difference between the methods in the side-to-side differences by gravity sag view or knee arthrometer evaluation, although several cases in both groups showed a side-to-side difference exceeding 5 mm by the latter evaluation method. Conclusions. We found no significant difference between single- and double-bundle PCL reconstructions during more than 10 years of follow-up.

  20. Numerical study of the thermo-hydraulic behavior for the Candu type fuel channel

    International Nuclear Information System (INIS)

    Lazaro, Pavel Gabriel; Balas Ghizdeanu, Elena Nineta

    2008-01-01

    Candu type reactors use fuel channel in a horizontal lattice. The fuel bundles are positioned in two Zircaloy tubes: the pressure tube surrounded by calandria tube. Inside the pressure tube the coolant heavy water flows. The coolant reaches high temperatures and pressures. Due to irregular neutron spatial distribution, the fuel channel stress differs from one channel to other. In one improbable event of severe accident, the fuel channel behaves differently according to its normal function history. Over the years, there have been many research projects trying to analyze thermal hydraulic performance of the design and to add some operational improvements in order to achieve an efficient thermal hydraulic distribution. This paper discusses the thermo hydraulic behavior (influence of the temperature and velocity distribution) of the most solicited channel, simulated with Fluent 6.X. Code. Moreover it will be commented the results obtained using different models and mesh applied. (authors)

  1. A friend man-machine interface for thermo-hydraulic simulation codes of nuclear installations

    International Nuclear Information System (INIS)

    Araujo Filho, F. de; Belchior Junior, A.; Barroso, A.C.O.; Gebrim, A.

    1994-01-01

    This work presents the development of a Man-Machine Interface to the TRAC-PF1 code, a computer program to perform best estimate analysis of transients and accidents at nuclear power plants. The results were considered satisfactory and a considerable productivity gain was achieved in the activity of preparing and analyzing simulations. (author)

  2. Moduli of Parabolic Higgs Bundles and Atiyah Algebroids

    DEFF Research Database (Denmark)

    Logares, Marina; Martens, Johan

    2010-01-01

    In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundle...

  3. Infinite Grassmannian and moduli space of G-bundles

    International Nuclear Information System (INIS)

    Kumar, S.; Ramanathan, A.

    1993-03-01

    Let C be a smooth irreducible projective curve and G a simply connected simple affine algebraic group of C. We study in this paper the relationship between the space of vacua defined in Conformal Field Theory and the space of sections of a line bundle on the moduli space of G-bundles over C. (author). 33 refs

  4. Monoubiquitination Inhibits the Actin Bundling Activity of Fascin.

    Science.gov (United States)

    Lin, Shengchen; Lu, Shuang; Mulaj, Mentor; Fang, Bin; Keeley, Tyler; Wan, Lixin; Hao, Jihui; Muschol, Martin; Sun, Jianwei; Yang, Shengyu

    2016-12-30

    Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys 247 and Lys 250 , two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC 50 , delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Monoubiquitination Inhibits the Actin Bundling Activity of Fascin*

    Science.gov (United States)

    Lin, Shengchen; Lu, Shuang; Mulaj, Mentor; Fang, Bin; Keeley, Tyler; Wan, Lixin; Hao, Jihui; Muschol, Martin; Sun, Jianwei; Yang, Shengyu

    2016-01-01

    Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys247 and Lys250, two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC50, delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions. PMID:27879315

  6. An overview on rod-bundle thermal-hydraulic analyses

    International Nuclear Information System (INIS)

    Sha, W.T.

    1980-01-01

    Three methods used in rod-bundle thermal-hydraulic analysis are summarized. These methods are: (1) subchannel analysis, (2) porous medium formulation with volume porosity, surface permeability, distributed resistance and distributed heat source (sink) and, (3) bench-mark rod-bundle thermal-hydraulic analysis using a boundary-fitted coordinate system. Basic limitations and merits of each method are delineated. (orig.)

  7. Computational imaging through a fiber-optic bundle

    Science.gov (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  8. The behaviour of Phenix fuel pin bundle under irradiation

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Blanchard, P.; Huillery, R.

    1979-07-01

    An entire Phenix sub-assembly has been mounted and sectioned after irradiation. The examination of cross-sections revealed the effects of mechanical interaction in the bundle (ovalisations and contacts between clads). According to analysis of the sodium channels, cooling of the pin bundle remained uniform. (author)

  9. Smooth Bundling of Large Streaming and Sequence Graphs

    NARCIS (Netherlands)

    Hurter, C.; Ersoy, O.; Telea, A.

    2013-01-01

    Dynamic graphs are increasingly pervasive in modern information systems. However, understanding how a graph changes in time is difficult. We present here two techniques for simplified visualization of dynamic graphs using edge bundles. The first technique uses a recent image-based graph bundling

  10. Two-categorical bundles and their classifying spaces

    DEFF Research Database (Denmark)

    Baas, Nils A.; Bökstedt, M.; Kro, T.A.

    2012-01-01

    -category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop a lot of powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. A calculation based...

  11. Multi-bundle shashlik calorimeter prototypes beam-test results

    International Nuclear Information System (INIS)

    Badier, J.; Bloch, P.; Bityukov, S.; Bordalo, P.; Busson, P.; Charlot, C.; Dobrzynski, L.; Golutvin, I.; Guschin, E.; Issakov, V.; Ivanchenko, I.; Klimenko, V.; Marin, V.; Moissenz, P.; Obraztsov, V.; Ostankov, A.; Popov, V.; Puljak, I.; Ramos, S.; Seez, C.; Sergueev, S.; Soushkov, V.; Tanaka, R.; Varela, J.; Virdee, T.S.; Zaitchenko, A.; Zamiatin, N.

    1995-01-01

    The first beam-test results for two- and three-bundle shashlik tower prototypes are described. We found that the spatial resolution, the uniformity of energy response, the calorimeter reliability and hermeticity and also two showers separation are improved in multi-bundle design approach. ((orig.))

  12. Stability of Picard Bundle Over Moduli Space of Stable Vector ...

    Indian Academy of Sciences (India)

    Abstract. Answering a question of [BV] it is proved that the Picard bundle on the moduli space of stable vector bundles of rank two, on a Riemann surface of genus at least three, with fixed determinant of odd degree is stable.

  13. Tokyo Guidelines 2018: management bundles for acute cholangitis and cholecystitis

    NARCIS (Netherlands)

    Mayumi, Toshihiko; Okamoto, Kohji; Takada, Tadahiro; Strasberg, Steven M.; Solomkin, Joseph S.; Schlossberg, David; Pitt, Henry A.; Yoshida, Masahiro; Gomi, Harumi; Miura, Fumihiko; Garden, O. James; Kiriyama, Seiki; Yokoe, Masamichi; Endo, Itaru; Asbun, Horacio J.; Iwashita, Yukio; Hibi, Taizo; Umezawa, Akiko; Suzuki, Kenji; Itoi, Takao; Hata, Jiro; Han, Ho-Seong; Hwang, Tsann-Long; Dervenis, Christos; Asai, Koji; Mori, Yasuhisa; Huang, Wayne Shih-Wei; Belli, Giulio; Mukai, Shuntaro; Jagannath, Palepu; Cherqui, Daniel; Kozaka, Kazuto; Baron, Todd H.; de Santibañes, Eduardo; Higuchi, Ryota; Wada, Keita; Gouma, Dirk J.; Deziel, Daniel J.; Liau, Kui-Hin; Wakabayashi, Go; Padbury, Robert; Jonas, Eduard; Supe, Avinash Nivritti; Singh, Harjit; Gabata, Toshifumi; Chan, Angus C. W.; Lau, Wan Yee; Fan, Sheung Tat; Chen, Miin-Fu; Ker, Chen-Guo; Yoon, Yoo-Seok; Choi, In-Seok; Kim, Myung-Hwan; Yoon, Dong-Sup; Kitano, Seigo; Inomata, Masafumi; Hirata, Koichi; Inui, Kazuo; Sumiyama, Yoshinobu; Yamamoto, Masakazu

    2018-01-01

    Management bundles that define items or procedures strongly recommended in clinical practice have been used in many guidelines in recent years. Application of these bundles facilitates the adaptation of guidelines and helps improve the prognosis of target diseases. In Tokyo Guidelines 2013 (TG13),

  14. A stochastic-deterministic approach for evaluation of uncertainty in the predicted maximum fuel bundle enthalpy in a CANDU postulated LBLOCA event

    Energy Technology Data Exchange (ETDEWEB)

    Serghiuta, D.; Tholammakkil, J.; Shen, W., E-mail: Dumitru.Serghiuta@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2014-07-01

    A stochastic-deterministic approach based on representation of uncertainties by subjective probabilities is proposed for evaluation of bounding values of functional failure probability and assessment of probabilistic safety margins. The approach is designed for screening and limited independent review verification. Its application is illustrated for a postulated generic CANDU LBLOCA and evaluation of the possibility distribution function of maximum bundle enthalpy considering the reactor physics part of LBLOCA power pulse simulation only. The computer codes HELIOS and NESTLE-CANDU were used in a stochastic procedure driven by the computer code DAKOTA to simulate the LBLOCA power pulse using combinations of core neutronic characteristics randomly generated from postulated subjective probability distributions with deterministic constraints and fixed transient bundle-wise thermal hydraulic conditions. With this information, a bounding estimate of functional failure probability using the limit for the maximum fuel bundle enthalpy can be derived for use in evaluation of core damage frequency. (author)

  15. Sodium boiling and mixed oxide fuel thermal behavior in FBR undercooling transients; W-1 SLSF experiment results

    International Nuclear Information System (INIS)

    Henderson, J.M.; Wood, S.A.; Knight, D.D.

    1981-01-01

    The W-1 Sodium Loop Safety Facility (SLSF) Experiment was conducted to study fuel pin heat release characteristics during a series of LMFBR Loss-of-Piping Integrity (LOPI) transients and to investigate a regime of coolant boiling during a second series of transients at low, medium and high bundle power levels. The LOPI transients produced no coolant boiling and showed only small changes in coolant temperatures as the test fuel microstructure changed from a fresh, unrestructured to a low burnup, restructured condition. During the last of seven boiling transients, intense coolant boiling produced inlet flow reversal, cladding dryout and moderate cladding melting

  16. The avalanche process of the multilinear fiber bundles model

    International Nuclear Information System (INIS)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2012-01-01

    In order to describe the smooth nonlinear constitutive behavior in the process of fracture of ductile micromechanics structures, the multilinear fiber bundle model was constructed, based on the bilinear fiber bundle model. In the multilinear fiber bundle model, the Young modulus of a fiber is assumed to decay K max times before the final failure occurs. For the large K max region, this model can describe the smooth nonlinear constitutive behavior well. By means of analytical approximation and numerical simulation, we show that the two critical parameters, i.e. the decay ratio of the Young modulus and the maximum number of decays, have substantial effects on the failure process of the bundle. From a macroscopic view, the model can provide various shapes of constitutive curves, which represent diverse kinds of tensile fracture processes. However, at the microscopic scale, the statistical properties of the model are in accord with the classical fiber bundle model. (paper)

  17. Introduction to the theory of fiber bundles and connections I

    International Nuclear Information System (INIS)

    Socolvsky, M.

    1990-01-01

    In lectures 1 and 2 we discuss basic concepts of topology and differential geometry: definition of a topological space and of Hausdorff, compact, connected and paracompact spaces; topological groups and actions of groups on spaces; differentiable manifolds, tangent vectors and 1 forms; partitions of unity and Lie groups. In lecture 3 we present the concept of a fiber bundle and discuss vector bundles and principal bundles. The concept of a connection on a smooth vector bundle is defined in lecture 4, together with the associated concepts of curvature and parallel transport; as an illustration we present the Levi-Civita connection on a Riemannian manifold. Finally, in lecture 5 we define connections on principal bundles and present examples with the Lie groups U(1) and SU(2). For reasons of space the present article only includes lectures 1, 2 and 3. Lectures 4 and 5 will be published in a forthcoming paper. (Author)

  18. Bundles over Quantum RealWeighted Projective Spaces

    Directory of Open Access Journals (Sweden)

    Tomasz Brzeziński

    2012-09-01

    Full Text Available The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that generalises the quantum disc, so do the constructed principal bundles. In the negative case the principal bundle is proven to be non-trivial and associated projective modules are described. In the positive case the principal bundles turn out to be trivial, and so all the associated modules are free. It is also shown that the circle (coactions on the quantum Seifert manifold that define quantum real weighted projective spaces are almost free.

  19. Development and Assessment of a Bundle Correction Method for CHF

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Chang, Soon Heung

    1993-01-01

    A bundle correction method, based on the conservation laws of mass, energy, and momentum in an open subchannel, is proposed for the prediction of the critical heat flux (CHF) in rod bundles from round tube CHF correlations without detailed subchannel analysis. It takes into account the effects of the enthalpy and mass velocity distributions at subchannel level using the first dericatives of CHF with respect to the independent parameters. Three different CHF correlations for tubes (Groeneveld's CHF table, Katto correlation, and Biasi correlation) have been examined with uniformly heated bundle CHF data collected from various sources. A limited number of GHE data from a non-uniformly heated rod bundle are also evaluated with the aid of Tong's F-factor. The proposed method shows satisfactory CHF predictions for rod bundles both uniform and non-uniform power distributions. (Author)

  20. Development of nuclear fuel. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan; Jung, Sung Hoon

    1991-07-01

    In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)

  1. Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Grigorenko

    2013-01-01

    Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.

  2. CFD modeling of secondary flows in fuel rod bundles

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Ninokata, Hisashi

    2004-01-01

    An optimized non-linear eddy viscosity model is introduced, for calculations of detailed coolant velocity distribution in a tight lattice fuel bundle. The low Reynolds formulation has been optimized based on DNS data for channel flow. The non-linear stress-strain relationship has been modified in the coefficients to model the flow anisotropy, which causes the formation of turbulence driven secondary flows inside the bundle subchannels. Predictions of the model are first compared to experimental measurements of secondary flows in a triangularly arrayed rod bundle with p/d=1.3. Subsequently wall shear stress and velocity predictions are compared with different experimental data for a rod bundle with p/d=1.17. The model shows to be able to correctly reproduce the scale of the secondary motion, and to accurately reproduce both wall shear stress and velocity distributions inside the rod bundle subchannels. (author)

  3. Wire-wrap bundle compression-characteristics study. Phase I

    International Nuclear Information System (INIS)

    Chertock, A.J.

    1974-06-01

    An analytical computer comparison was made of the compression characteristics of proposed wire-wrap bundles. The study included analysis of 7- and 37-rod straight-start bundles (base configuration), and softened 37-rod configurations. The softened configurations analyzed were: straight-start with distributed wireless fuel rods, and the staggered wire-wrap start angles of 0 0 -30 0 -60 0 and 0 0 -45 0 -90 0 . The compression of the bundle simulates the bundle-to-channel interference at end-of-life conditions at which high differential swelling between the channel and bundle has been predicted. The computer results do not include the so-called dispersion effects. The effects of other variables such as pitch length, creep, axial variations in swelling, and degree of swelling were not studied. These analytic studies give an indication of trends only. No credence should be given to specific quantitative load or deflection results quoted in this report

  4. Feasibility evaluation of x-ray imaging for measurement of fuel rod bowing in CFTL test bundles

    International Nuclear Information System (INIS)

    Baker, S.P.

    1980-06-01

    The Core Flow Test Loop (CFTL) is a high temperature, high pressure, out-of-reactor helium-circulating system. It is designed for detailed study of the thermomechanical performance, at prototypic steady-state and transient operating conditions, of electrically heated rods that simulate segments of core assemblies in the Gas-Cooled Fast Breeder reactor demonstration plant. Results are presented of a feasibility evaluation of x-ray imaging for making measurements of the displacement (bowing) of fuel rods in CFTL test bundles containing electrically heated rods. A mock-up of a representative CFTL test section consisting of a test bundle and associated piping was fabricated to assist in this evaluation

  5. Vision, healing brush, and fiber bundles

    Science.gov (United States)

    Georgiev, Todor

    2005-03-01

    The Healing Brush is a tool introduced for the first time in Adobe Photoshop (2002) that removes defects in images by seamless cloning (gradient domain fusion). The Healing Brush algorithms are built on a new mathematical approach that uses Fibre Bundles and Connections to model the representation of images in the visual system. Our mathematical results are derived from first principles of human vision, related to adaptation transforms of von Kries type and Retinex theory. In this paper we present the new result of Healing in arbitrary color space. In addition to supporting image repair and seamless cloning, our approach also produces the exact solution to the problem of high dynamic range compression of17 and can be applied to other image processing algorithms.

  6. TRANSIENT ELECTRONICS CATEGORIZATION

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0169 TRANSIENT ELECTRONICS CATEGORIZATION Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...SUBTITLE TRANSIENT ELECTRONICS CATEGORIZATION 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Dr. Burhan...88ABW-2017-3747, Clearance Date 31 July 2017. Paper contains color. 14. ABSTRACT Transient electronics is an emerging technology area that lacks proper

  7. Big things come in bundled packages: implications of bundled payment systems in health care reimbursement reform.

    Science.gov (United States)

    Delisle, Dennis R

    2013-01-01

    With passage of the Affordable Care Act, the ever-evolving landscape of health care braces for another shift in the reimbursement paradigm. As health care costs continue to rise, providers are pressed to deliver efficient, high-quality care at flat to minimally increasing rates. Inherent systemwide inefficiencies between payers and providers at various clinical settings pose a daunting task for enhancing collaboration and care coordination. A change from Medicare's fee-for-service reimbursement model to bundled payments offers one avenue for resolution. Pilots using such payment models have realized varying degrees of success, leading to the development and upcoming implementation of a bundled payment initiative led by the Center for Medicare and Medicaid Innovation. Delivery integration is critical to ensure high-quality care at affordable costs across the system. Providers and payers able to adapt to the newly proposed models of payment will benefit from achieving cost reductions and improved patient outcomes and realize a competitive advantage.

  8. Birefringence of single and bundled microtubules.

    Science.gov (United States)

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses.

  9. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  10. Restriction of Preferences to the Set of Consumption Bundles, In a Model with Production and Consumption Bundles

    NARCIS (Netherlands)

    Schalk, S.

    1999-01-01

    In contrast to the neo-classical theory of Arrow and Debreu, a model of a private ownership economy is presented, in which production and consumption bundles are treated separately. Each of the two types of bundles is assumed to establish a con- vex cone. Production technologies can convert

  11. Surgical anatomy of the atrioventricular conduction bundle in anomalous muscle bundle of the right ventricle with subarterial ventricular septal defect

    NARCIS (Netherlands)

    Kurosawa, H.; Becker, A. E.

    1985-01-01

    A stillborn baby girl was found to have an anomalous muscle bundle of the right ventricle, associated with a doubly committed subarterial ventricular septal defect. The latter was separated from the area of the atrioventricular conduction bundle by muscle. Serial histologic sectioning of the

  12. Thermo-hydraulic test of the moderator cell of liquid hydrogen cold neutron source for the Budapest research reactor

    International Nuclear Information System (INIS)

    Grosz, Tamas; Rosta, Laszlo; Hargitai, Tibor; Mityukhlyaev, V.A.; Serebrov, A.P.; Zaharov, A.A.

    1999-01-01

    Thermo-hydraulic experiment was carried out in order to test performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center. Two electric hearers up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling he gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 w expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  13. Thermo-hydraulic performance of solar air heater having multiple v-shaped rib roughness on absorber plates

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2018-03-01

    Full Text Available This paper presents the performance analysis of the effect of geometrical parameters having multiple v-shaped rib roughness on the airflow side of the absorber plates. Mathematical approach and solution procedure for the analysis of such a solar air heater has been developed theoretically and MATLAB code generated for the solution of the mathematical equations. The effect of parameters such as flow Reynolds number and Relative roughness height on the thermohydraulic performance have been examined and compared with the conventional flat plate solar air heater. A substantial improvement in thermal efficiency of roughened solar air heater as compared to smooth one due to appreciable enhancement in heat transfer coefficient. The enhancement in heat transfer coefficient is also accompanied by a considerable enhancement in pumping power requirement due to the increase in friction factor.

  14. Mechanistic insights into a hydrate contribution to the Paleocene-Eocene carbon cycle perturbation from coupled thermohydraulic simulations

    Science.gov (United States)

    Minshull, T. A.; Marín-Moreno, H.; Armstrong McKay, D. I.; Wilson, P. A.

    2016-08-01

    During the Paleocene-Eocene Thermal Maximum (PETM), the carbon isotopic signature (δ13C) of surface carbon-bearing phases decreased abruptly by at least 2.5 to 3.0‰. This carbon isotope excursion (CIE) has been attributed to widespread methane hydrate dissociation in response to rapid ocean warming. We ran a thermohydraulic modeling code to simulate hydrate dissociation due to ocean warming for various PETM scenarios. Our results show that hydrate dissociation in response to such warming can be rapid but suggest that methane release to the ocean is modest and delayed by hundreds to thousands of years after the onset of dissociation, limiting the potential for positive feedback from emission-induced warming. In all of our simulations at least half of the dissociated hydrate methane remains beneath the seabed, suggesting that the pre-PETM hydrate inventory needed to account for all of the CIE is at least double that required for isotopic mass balance.

  15. Sensitiveness Analysis of Neutronic Parameters Due to Uncertainty in Thermo-hydraulic parameters on CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Serra, Oscar

    2000-01-01

    Some studies were done about the effect of the uncertainty in the values of several thermo-hydraulic parameters on the core behaviour of the CAREM-25 reactor.By using the chain codes CITVAP-THERMIT and the perturbation the reference states, it was found that concerning to the total power, the effects were not very important, but were much bigger for the pressure.Furthermore were hardly significant in the presence of any perturbation on the void fraction calculation and the fuel temperature.The reactivity and the power peaking factor had highly important changes in the case of the coolant flow.We conclude that the use of this procedure is adequate and useful to our purpose

  16. Thermohydraulic behaviour of the hot channel in a PWR type reactor under loss-of-coolant accident conditions (LOCA)

    International Nuclear Information System (INIS)

    Costa, J.R.

    1978-12-01

    An analysis is done of the core behavior for a 1861 MW(th) pressurized water reactor with two coolant loops, during the blowdown phase of a double-ended cold leg rupture, between the main feedwater pump, and the pressure vessel. The analysis is done through a detailed thermohydraulic study of the hot pin channel with RELAP4/MOD 5 code, including the Evaluatin Model options. The problem is solved separately for two values of discharge coefficient (C sub(D)= 1,0 and 0,4). The results show that the maximum clad temperature is lower than the limit value for licensing purposes. Concerning clad material oxidation, the maximum value obtained is also under the limit of acceptance. (author) [pt

  17. ASCOT-1: a computer program for analyzing the thermo-hydraulic behavior in a PWR core during a LOCA

    International Nuclear Information System (INIS)

    Kobayashi, Kensuke; Sato, Kazuo

    1978-09-01

    A digital computer code ASCOT-1 has been developed to analyze the thermo-hydraulic behavior in a PWR core during a loss-of-coolant accident. The core is assumed to be axi-symmetric two-dimensional and the conservation laws are solved by the method of characteristics. For the temperature response of representative fuels of the concentric annular subregions into which the core is divided, the heat conduction equations are solved by the explicit method with the averaged flow conditions decided above. The boundary conditions at the upper and lower plenum are given as inputs. The program is of an adjustable dimension so there are no restrictions to the numbers of meshes. ASCOT-1 is written in FORTRAN-IV for FACOM230-75. (author)

  18. Thermohydraulic stability coupled to the neutronic in a BWR; Estabilidad termohidraulica acoplada a la neutronica en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A. [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Mpio. Alto Lucero, Veracruz (Mexico); Castlllo D, R. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: gcm9acpp@cfe.gob.mx

    2006-07-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the

  19. Analysis of transient thermal response in the outlet plenum of an LMFBR

    International Nuclear Information System (INIS)

    Yang, J.W.

    1976-05-01

    A two-zone mixing model based on the lumped-parameter approach was developed for the analysis of transient thermal response in the upper outlet plenum of an LMFBR. The one-dimensional turbulent jet flow equations were solved to determine the maximum penetration of the core flow. The maximum penetration is used as the criterion for dividing the sodium region into two mixing zones. The lumped-parameter model considers the transient sodium temperature affected by the thermal expansion of sodium, heat transfer with cover gas, heat capacity of different sections of metal and the addition of bypass flow into the plenum. Numerical calculations were performed for two cases. The first case corresponds to a normal scram followed by flow coast-down. The second case represents the double-ended pipe rupture at the inlet of cold leg followed by reactor scram. The results indicate that effects of flow stratification, chimney height, metal heat capacity and bypass flow are important for transient sodium temperature calculation. Thermal expansion of sodium and heat transfer with the cover gas does not play any significant role on sodium temperature. This two-zone mixing model will be a part of the thermohydraulic transient code SSC

  20. Cost-effectiveness of a central venous catheter care bundle.

    Directory of Open Access Journals (Sweden)

    Kate A Halton

    Full Text Available BACKGROUND: A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI. Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. METHODS AND FINDINGS: A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters, or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below $1.1 million. If antimicrobial catheters are not an option the bundle must cost less than $4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds. CONCLUSIONS: A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision

  1. Possibilities of optimizing non-nuclear simulation of pressurized water reactor transients

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1985-01-01

    The GKSS-Forschungszentrum Geesthacht GmbH has instituted the concept of a scaled test facility (volume scale factor of 1/100) of a typical PWR of the 1 300 MWe class for the purpose of studying small breaks Loss-of-Coolant Accidents (LOCA) and transients. Having in mind the goal of an optimization of this concept has been choosen a station blackout with and without reactor shutdown and a small break LOCA in a primary loop piping to investigate the thermohydraulic behaviour of the test facility in comparison to the reactor plant. The computer code RELAP 5/MOD 1 has been utilized to compare the test facility behaviour with the reactor plant one. Recommendations are given for minimization of distortions between test facility and reactor plant. (orig./HP) [de

  2. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  3. Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations

    Science.gov (United States)

    Sayar, Mehmet; Holm, Christian

    2010-09-01

    We present the results of molecular-dynamics simulations on the salt concentration dependence of the formation of polyelectrolyte bundles in thermodynamic equilibrium. Extending our results on salt-free systems we investigate here deficiency or excess of trivalent counterions in solution. Our results reveal that the trivalent counterion concentration significantly alters the bundle size and size distribution. The onset of bundle formation takes place at earlier Bjerrum length values with increasing trivalent counterion concentration. For the cases of 80%, 95%, and 100% charge compensation via trivalent counterions, the net charge of the bundles decreases with increasing size. We suggest that competition among two different mechanisms, counterion condensation and merger of bundles, leads to a nonmonotonic change in line-charge density with increasing Bjerrum length. The investigated case of having an abundance of trivalent counterions by 200% prohibits such a behavior. In this case, we find that the difference in effective line-charge density of different size bundles diminishes. In fact, the system displays an isoelectric point, where all bundles become charge neutral.

  4. Single-phase convective heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2008-01-01

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids

  5. Single-phase convective heat transfer in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)

    2008-04-15

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.

  6. Bundling Actin Filaments From Membranes: Some Novel Players

    Directory of Open Access Journals (Sweden)

    Clément eThomas

    2012-08-01

    Full Text Available Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.

  7. Results of the QUENCH-12 experiment on reflood of a VVER-type bundle

    International Nuclear Information System (INIS)

    Stuckert, J.; Grosse, M.; Heck, M.; Schanz, G.; Sepold, L.; Stegmaier, U.; Steinbrueck, M.

    2008-09-01

    The QUENCH experiments are to investigate the hydrogen source term resulting from the water injection into an uncovered core of a Light-Water Reactor. The QUENCH test bundle with a total length of approximately 2.5 m usually consists of 21 fuel rod simulators of Western PWR (Pressurized Water Reactor) geometry. The QUENCH-12 test bundle, however, which was set up to investigate the effects of VVER materials and bundle geometry (hexagonal lattice) on core reflood consisted of 31 fuel rod simulators. 18 rods of which were electrically heated using tungsten heaters in the rod center. All claddings, corner rods and grid spacers were made of Zr1%Nb (E110) and the shroud of Zr2.5%Nb (E125). For comparison, the QUENCH-06 test (ISP-45) with Western PWR geometry (square lattice) was chosen as reference. QUENCH-12 conducted at the Forschungszentrum Karlsruhe (FZK, Karlsruhe Research Center) on 27 September, 2006 in the frame of the EC-supported ISTC program 1648.2 was proposed by FZK together with RIAR Dimitrovgrad and IBRAE Moscow (Russia), and supported by pretest calculations performed by PSI (Switzerland) and the Kurchatov Institute Moscow (Russia) together with IRSN Cadarache (France). It had been preceded by a low-temperature (maximum 1073 K) pretest on 25 August, 2006 to characterize the bundle thermal hydraulic performance and to provide data to assess the code models used for pretest calculational support. After a stabilization period at 873 K pre-oxidation took place at ∝1470 K for ∝3400 s to achieve a maximum oxide thickness of about 200 μm. A transient phase followed with a temperature rise to ∝2050 K. Then quenching of the bundle by a water flow of 48 g/s was initiated cooling the bundle to ambient temperature in ∝5 min. Following reflood initiation, a moderate temperature excursion of ∝50 K was observed, over a longer period than in QUENCH-06. The temperatures at elevations between 850 mm and 1050 mm exceeded the melting temperature of β-Zr, i

  8. Results of the QUENCH-12 experiment on reflood of a VVER-type bundle

    Energy Technology Data Exchange (ETDEWEB)

    Stuckert, J.; Grosse, M.; Heck, M.; Schanz, G.; Sepold, L.; Stegmaier, U.; Steinbrueck, M. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Materialforschung, Programm Nukleare Sicherheitsforschung; Goryachev, A.; Ivanova, I. [RIAR (FSUE SSC-RIAR) Dimitrovgrad (Russian Federation)

    2008-09-15

    The QUENCH experiments are to investigate the hydrogen source term resulting from the water injection into an uncovered core of a Light-Water Reactor. The QUENCH test bundle with a total length of approximately 2.5 m usually consists of 21 fuel rod simulators of Western PWR (Pressurized Water Reactor) geometry. The QUENCH-12 test bundle, however, which was set up to investigate the effects of VVER materials and bundle geometry (hexagonal lattice) on core reflood consisted of 31 fuel rod simulators. 18 rods of which were electrically heated using tungsten heaters in the rod center. All claddings, corner rods and grid spacers were made of Zr1%Nb (E110) and the shroud of Zr2.5%Nb (E125). For comparison, the QUENCH-06 test (ISP-45) with Western PWR geometry (square lattice) was chosen as reference. QUENCH-12 conducted at the Forschungszentrum Karlsruhe (FZK, Karlsruhe Research Center) on 27 September, 2006 in the frame of the EC-supported ISTC program 1648.2 was proposed by FZK together with RIAR Dimitrovgrad and IBRAE Moscow (Russia), and supported by pretest calculations performed by PSI (Switzerland) and the Kurchatov Institute Moscow (Russia) together with IRSN Cadarache (France). It had been preceded by a low-temperature (maximum 1073 K) pretest on 25 August, 2006 to characterize the bundle thermal hydraulic performance and to provide data to assess the code models used for pretest calculational support. After a stabilization period at 873 K pre-oxidation took place at {proportional_to}1470 K for {proportional_to}3400 s to achieve a maximum oxide thickness of about 200 {mu}m. A transient phase followed with a temperature rise to {proportional_to}2050 K. Then quenching of the bundle by a water flow of 48 g/s was initiated cooling the bundle to ambient temperature in {proportional_to}5 min. Following reflood initiation, a moderate temperature excursion of {proportional_to}50 K was observed, over a longer period than in QUENCH-06. The temperatures at elevations

  9. Nucleate boiling heat transfer on horizontal tubes in bundles

    International Nuclear Information System (INIS)

    Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.

    1986-01-01

    In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate

  10. Steady state heat transfer of helium cooled cable bundles

    International Nuclear Information System (INIS)

    Khalil, A.

    1982-01-01

    In the present study nucleate and film boiling heat transfer characteristics of horizontal conductor bundles are investigated at steady state conditions. The effect of gaps between wires, number of wires, wire position, wire size and bundle orientation on the departure from nucleate boiling and transition to film boiling is studied. For gaps close to the bubble departure diameter, the critical heat flux can approach up to 90% of the single wire value. Consequently, the maximum stable current for a given bundle can be significantly increased above the single conductor value for the same cross-sectional area. (author)

  11. On the existence of n-dimensional indecomposable vector bundles

    International Nuclear Information System (INIS)

    Tan Xiaojiang.

    1991-09-01

    Let X be an arbitrary smooth irreducible complex projective curve of genus g with g ≥ 4. In this paper we extend the existence theorem of special divisors to high dimensional indecomposable vector bundles. We give a necessary and sufficient condition on the existence of n-dimensional indecomposable vector bundles E with deg(E) = d, dimH 0 (X,E) ≥ h. We also determine under what condition the set of all such vector bundles will be finite and how many elements it contains. (author). 9 refs

  12. The Comparison Study of Contralateral Transient Evoked Otoacoustic Emission (TEOAE Suppression in Normal Hearing Subjects and Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    KH Mohamadkhani

    2007-01-01

    Full Text Available ABSTRACT: Introduction & Objective: A common auditory complaint of multiple sclerosis patients, is misunderstanding speech in the presence of background noise. Evidence from animal and human studies has suggested that the medial olivocochlear bundle may play an important role in hearing noise. The medial olivocochlear bundle function can be evaluated by the suppression effect of transient otoacoustic emission in response to contralateral acoustic stimulation. The present study was conducted to investigate the suppression effect of transient otoacoustic emission in multiple sclerosis patients. Materials & Methods: This analytical case-control study was conducted on 34 multiple sclerosis patients (24 female, 10 male, aged 20-50 years and 34 controls matched for age and gender in Faculty of Rehabilitation, Tehran University of Medical Sciences in 2006. All cases were selected in simple random manner. The suppression effect of transient otoacoustic emission was evaluated by comparing the transient otoacoustic emission levels with and without contralateral acoustic stimulation. Data were analyzed using SPSS software and independent T- test. Results:There was no significant difference in transient otoacoustic emission levels of two groups, but a significantly reduced suppression effect of transient otoacoustic emission was found in multiple sclerosis patients, in compare with the controls. Conclusion: Outer hair cells activity in multiple sclerosis patients was normal but these patients presented low activity of the medial olivocochlear bundle system which could affect their ability to hear in the presence of background noise.

  13. Development of multidimensional two-phase flow measurement sensor in rod bundle

    International Nuclear Information System (INIS)

    Arai, Takahiro; Furuya, Masahiro; Shirakawa, Kenetsu; Kanai, Taizo

    2011-01-01

    In order to acquire multidimensional two-phase flow in 10x10 bundle, SubChannel Void Sensor (SCVC) consisting of 11-wire by 11-wire and 10-rod by 10-rod electrodes is developed. A conductance value in a proximity region of one wire and another gives void fraction in the center of subchannel region. A phasic velocity can be estimated by using two layers of wire meshes, like as so-called wire mesh sensor. 121 points (=11x11) of void fraction as well as those of phasic velocity are acquired. It is peculiarity of the devised sensor that void fraction near rod surface can be estimated by a conductance value in a proximity region of one wire and one rod. 400 additional points of void fraction in 10x10 bundle can be, therefore, acquired. The time resolution of measurement is up to 1250 frames (cross sections) per second. We capability in a 10x10 bundle with o.d. 10 mm and 3110 mm long is demonstrated. The devised sensor is installed in 8 height levels to acquire the two-phase flow dynamics along axial direction. A pair of sensor layers is mounted in each level and is placed by 30 mm apart with each other to estimate a phasic velocity distribution on the basis of cross-correlation function of the two layers. Air bubbles are injected through sintered metal nozzles from the bottom end of 10x10 rods. Air flow rate distribution can vary with a controlled valves connected to each nozzle. The devised sensor exhibited the quasi three-dimensional flow structures, i.e. void fraction, phasic velocity and bubble chord length distributions. These quasi three-dimensional structures explorer complexity of two-phase flow dynamics such as coalescence and breakup of bubbles in the transient phasic velocity distributions. (author)

  14. Some basic thermohydraulic calculation methods for the analysis of pressure transients in a multicompartment total containment enclosing a breached water reactor circuit

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1976-05-01

    This paper gives an appreciation and commentary of the basic calculation methods under development at AEE Winfrith for the analysis of multicompartment total containments. The assumptions introduced and the effects of their variation are important in establishing a parametric survey of the range of possible conditions which the containment may be required to meet. These aspects of the performance will be discussed as each individual factor in the train of events is examined in turn. (U.K.)

  15. RELAP5 analysis of reflux condensation behavior in heat transfer tube bundle of a steam generator

    International Nuclear Information System (INIS)

    Minami, Noritoshi; Chikusa, Toshiaki; Nagae, Takashi; Murase, Michio

    2007-01-01

    In case of loss of the residual heat removal system and other alternative cooling methods under mid-loop operation during shutdown of the pressurized water reactor plant, reflux condensation in the steam generator (SG) may be an effective heat removal mechanism. In reflux condensation experiments 7.2c with injection of nitrogen gas using the BETHSY facility in France, which is a scale model of a pressurized water reactor plant, 34 heat transfer tubes were divided into two kinds of flow patterns, which were steam forward flow and nitrogen reverse flow. In this study, we simulated the BETHSY experiments using the transient analysis code RELAP5. Modifying calculation equations for interfacial friction force and wall friction force between the inlet plenum and heat transfer tubes, nitrogen reverse flow was successfully simulated. In calculations with alteration of the flow area ratio to two flow channels for the heat transfer tube bundle, the number of active tubes with the maximum nitrogen recirculation flow rate agreed rather well with the observed number of active tubes. In calculations with three flow channels for the heat transfer tube bundle, the average number of active tubes in several calculations with different flow area ratios of the three flow channels predicted the number of active tubes well. (author)

  16. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.

    1977-01-01

    A method of securing a fuel bundle to permit easy remote disassembly is described. Fuel rods are held loosely between end plates, each end of the rods fitting into holes in the end plates. At the upper end of each fuel rod there is a spring pressing against the end plate. Tie rods are used to hold the end plates together securely. The lower end of each tie rod is screwed into the lower end plate; the upper end of each tie rod is attached to the upper end plate by means of a locking assembly described in the patent. In order to remove the upper tie plate during the disassembly process, it is necessary only to depress the tie plate against the pressure of the springs surrounding the fuel rods and then to rotate each locking sleeve on the tie rods from its locked to its unlocked position. It is then possible to remove the tie plate without disassembling the locking assembly. (LL)

  17. Wire-wrapped rod-bundle heat-transfer analysis for LMFBR

    International Nuclear Information System (INIS)

    Wong, C.N.C.; Todreas, N.E.

    1982-07-01

    Helical wire wraps are widely used in the LMFBR fuel and blanket assemblies to provide coolant mixing and maintain proper spacing between fuel pins. The presence of the helical wire, however, may possibly induce heat transfer problems, such as the uncertainty of the maximum clad temperature as a result of the contact between the wires and the pins. In this study, the detailed transient three dimensional velocity and temperature distributions for the coolant around the pin will be determined by solving the governing momentum and energy equation numerically. A computer code HEATRAN has been developed to perform this calculation. Before the computer code HEATRAN is applied to the wire wrapped rod bundle problem, it is used to analyze a wide range of fluid and heat transfer problem to verify its capabilities

  18. Seven pin bundle fast top tests L01 and L02

    International Nuclear Information System (INIS)

    Davies, A.L.; Bowen, G.R.; Herbert, R.; Kear, K.L.; Tylka, J.P.; Holland, J.W.

    1984-01-01

    Tests L01 and L02 were the first two seven pin bundle tests in the PFR/TREAT program of fuel failure tests carried out jointly by the US and the UK. The two tests were on bottom plenum annular pellet mixed oxide fuel clad in 316 stainless steel. L01 used fresh fuel, while L02 used PFR irradiated 4% burn-up fuel, to determine any differences in the failure mechanism and subsequent fuel behavior due to irradiation. They were performed in flowing sodium in the Mark IIIA version of a TREAT integral loop. Both were fast transient overpower (TOP) tests intended to simulate 5 $/s reactivity ramp hypothetical accidents in a large fast reactor. The test objectives were to obtain information on fuel motion in the central hole before failure, the time and location of cladding failures, and material motion in the channel after failure, having particular regard to the effect of irradiation

  19. Summary of transient analysis

    International Nuclear Information System (INIS)

    Saha, P.

    1984-01-01

    This chapter reviews the papers on the pressurized water reactor (PWR) and boiling water reactor (BWR) transient analyses given at the American Nuclear Society Topical Meeting on Anticipated and Abnormal Plant Transients in Light Water Reactors. Most of the papers were based on the systems calculations performed using the TRAC-PWR, RELAP5 and RETRAN codes. The status of the nuclear industry in the code applications area is discussed. It is concluded that even though comprehensive computer codes are available for plant transient analysis, there is still a need to exercise engineering judgment, simpler tools and even hand calculations to supplement these codes

  20. Simulating fission product transients via the history-based local-parameter methodology

    International Nuclear Information System (INIS)

    Jenkins, D.A.; Rouben, B.; Salvatore, M.

    1993-01-01

    This paper describes the fission-product-calculation capacity of the history-based local-parameter methodology for evaluating lattice properties for use in core-tracking calculations in CANDU reactors. In addition to taking into account the individual past history of each bundles flux/power level, fuel temperature, and coolant density and temperature that the bundle has seen during its stay in the core, the latest refinement of the history-based method provides the capability of fission-product-drivers. It allows the bundle-specific concentrations of the three basic groups of saturating fission products to be calculated in steady state or following a power transient, including long shutdowns. The new capability is illustrated by simulating the startup period following a typical long-shutdown, starting from a snapshot in the Point Lepreau operating history. 9 refs., 7 tabs